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Post-thermalization via information spreading in open quantum systems
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2Complex Systems and Statistical Mechanics, Department of Physics and Materials Science,

University of Luxembourg, L-1511 Luxembourg, Luxembourg

(Received 3 November 2020; revised 17 May 2022; accepted 5 July 2022; published 18 July 2022)

Thermalization in open systems coupled to macroscopic environments is usually analyzed from the perspective
of relaxation of the reduced state of the system to the equilibrium state. Less emphasis is given to the change
of the state of the bath. However, as previously shown for some specific models, during the thermalization the
environment may undergo a nontrivial dynamics, indicated by the the change of its von Neumann entropy, at
timescales even longer than the relaxation time of the system; here such a behavior is called post-thermalization.
We provide a more detailed analysis of this phenomenon by simulating the full dynamics of a variety of systems
together with their environment. In particular, the post-thermalization is qualitatively explained as a result of
reconversion of the initially built up correlation between the system and the bath into the correlation between
the degrees of freedom in the environment. We also present exemplary systems in which such a reconversion is
suppressed due to non-Markovian dynamics or the presence of interactions.
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I. INTRODUCTION

When a finite system is coupled to an extensive thermal
environment it undergoes thermalization, namely it relaxes to
an equilibrium state determined by the macroscopic properties
of the bath (such as its temperature or chemical potential).
Since the 19th century much work has been done to explain
the emergence of the irreversible nature of such a process
from the reversible, microscopic laws of classical and quan-
tum mechanics. An important step in this direction has been
done in Ref. [1] which explained the microscopic nature
of the entropy production—a basic quantity describing the
thermodynamic irreversibility of the process—by relating it
to generation of correlations in the joint state of the system
and the environment in result of their coupling. Specifically,
the authors considered a joint unitary evolution of the system
and the environment starting (in the moment t = 0) from the
initially uncorrelated state ρSE (0) = ρS (0) ⊗ ρ

eq
E , where the

density matrices ρS (0) and ρ
eq
E represent an arbitrary initial

state of the system and the equilibrium state of the environ-
ment, respectively. The entropy production after a time t was
defined as

σ ≡ �SS − βQ, (1)

where �SS = SS (t ) − SS (0) is the change of the von Neumann
entropy of the system SS = −Tr(ρS ln ρS ), β is the inverse
temperature of the bath, and Q is the heat subtracted from the
bath within the time interval [0, t] (generalization to multiple-
bath environments is straightforward). It was shown that this
quantity can be, on the other hand, expressed as a sum of two
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information-theoretic terms [1,2],

σ = ISE + D
(
ρE ||ρeq

E

)
. (2)

The first contribution ISE = SS (t ) + SE (t ) − SSE (t ) is the mu-
tual information describing the correlations built up between
the system and the environment during their joint evolution.
The second term D(ρE ||ρeq

E ) = Tr[ρE (ln ρE − ln ρ
eq
E )] is the

relative entropy between the actual state of the environment
ρE ≡ ρE (t ) and the initial equilibrium state ρ

eq
E . It describes

the displacement of the environment from equilibrium. As
shown in our recent study [3], for extended baths this displace-
ment can be related to generation of correlations between the
initially independent degrees of freedom within the environ-
ment.

This leads to the following question: Which of these con-
tributions is dominant? In the same work [3] we pointed out
that the system-environment mutual information is bounded
from above by a corollary of the Araki-Lieb inequality [4,5],

ISE � 2min{SS, SE } � 2 ln dim(ĤS ), (3)

where dim(ĤS ) is the dimension of the Hilbert space of
the system. In contrast, the entropy production itself is un-
bounded and may well exceed the maximum value of ISE ,
especially when the system is driven far from equilibrium.
This, however, does not preclude that the mutual information
ISE may be dominant in the opposite regime when the entropy
production is smaller than or comparable to 2 ln dim(ĤS ).
Such a case has been studied in Refs. [6,7], where ther-
malization of a quantum Brownian particle described by the
Caldeira-Leggett model has been investigated. In these studies
an interesting phenomenon has been observed: Whereas the
system-environment mutual information ISE can be a domi-
nant contribution to the entropy production at short times, it
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reaches a maximum at a certain point of time and later de-
creases to some residual value, being exceeded by the relative
entropy D(ρE ||ρeq

E ). A similar observation has been done for a
collisional model, where the system interacts repeatedly with
different units of the bath [8]. Interestingly, the decay of the
system-environment mutual information, and the associated
nontrivial dynamics of the environment, occurs at timescales
longer than the relaxation time of the system; therefore, in this
work we call this phenomenon post-thermalization.

Here we provide a detailed analysis of this process. First,
based on our previous study [3], we qualitatively explain the
post-thermalization as a result of reconversion of the system-
environment correlations into the correlations between the
degrees of freedom in the environment. Such an interpreta-
tion has been already suggested for a collisional model in
Ref. [8]; we show that it is also valid for systems continuously
coupled to a bath consisting of many degrees of freedom. A
similar phenomenon of spreading (or scrambling) of initially
local information across many degrees of freedom in many-
body quantum systems, and its relation to thermalization, has
recently received much attention [9–13]. Second, we investi-
gate whether the post-thermalization can be suppressed such
that the system-environment mutual information remains a
dominant contribution to the entropy production also at long
times. It is shown that this can be indeed achieved either by
the formation of the system-environment bound state or by
the presence of nonquadratic interactions which leads to the
emergence of nontrivial higher-order many-body correlations.

The paper is organized as follows. In Sec. II we remind
the basics of the formalism relating the entropy production
to the generation of correlations. In Sec. III the correlation
matrix approach, used to simulate the dynamics and the ther-
modynamics of noininteracting systems, is briefly reviewed.
Section IV presents our original results, namely the numerical
simulations of the thermalization and the post-thermalization
in selected open quantum systems. Finally, Sec. V brings
conclusions following from our results. Appendix includes
some additional remarks concerning the role of initial state
of the system.

II. ENTROPY PRODUCTION AS CORRELATION

To make the paper self-contained, let us first review the
main results of Refs. [1–3] relating the entropy production
to the generation of correlations. Throughout the paper we
take kB = h̄ = 1. We consider a generic open quantum system
described by the Hamiltonian

ĤSE = ĤS + ĤE + ĤI , (4)

where ĤS , ĤE , and ĤI are the Hamiltonians of the system,
environment, and the interaction between them, respectively.
The supersystem SE consisting of the system and the environ-
ment undergoes a unitary evolution given by the von Neumann
equation,

i
d

dt
ρSE = [ĤSE , ρSE ]. (5)

As mentioned, the evolution is assumed to start from the
initially uncorrelated state ρSE (0) = ρS (0) ⊗ ρ

eq
E . The initial

state of the environment it taken to be a grand-canonical Gibbs

state,

ρ
eq
E = Z−1

E e−β(ĤE −μN̂E ), (6)

where β and μ are the inverse temperature and the chem-
ical potential of the environment, respectively, N̂E is the
particle number operator of the environment, and ZE =
Tr exp[−β(ĤE − μN̂E )] is the partition function. Here we fo-
cus on thermalization and therefore consider an environment
consisting of a single bath, but generalization to the case of
multiple baths is straightforward [1].

The heat subtracted from the environment is defined as

Q = −Tr
[
ĤE

(
ρE − ρ

eq
E

)] + μTr
[
N̂E

(
ρE − ρ

eq
E

)]
, (7)

where the first contribution is the change of the energy of the
bath (with a minus sign), and the second is the chemical work
associated with a particle transfer. Using Eq. (6) one gets

βQ = Tr
[(

ρE − ρ
eq
E

)
log ρ

eq
E

]

= Tr
(
ρE log ρ

eq
E

) − Tr(ρE log ρE )

+ Tr(ρE log ρE ) − Tr
(
ρ

eq
E log ρ

eq
E

)

= −D
(
ρE

∣∣∣∣ρeq
E

) − �SE , (8)

where �SE = SE (t ) − SE (0); here in the second step we just
added and subtracted Tr(ρE log ρE ). One may now insert the
expression above to Eq. (1) to obtain Eq. (2). Here we use
the facts that the system and the environment are initially un-
correlated, and the unitary evolution does not change the von
Neumann entropy of the supersystem SSE , thus �SS + �SE =
ISE .

To get a further insight into the nature of the relative
entropy contribution D(ρE ||ρeq

E ) let us assume that the bath
is composed of K independent degrees of freedom k (e.g.,
spins or fermionic or bosonic energy levels), later referred to
as modes:

ĤE =
∑

k

Ĥk . (9)

Then the initial state of the environment can be expressed as a
product of Gibbs states of independent modes,

ρ
eq
E =

∏
k

ρ
eq
k , (10)

where N̂k is the particle number operator of the mode k and

ρ
eq
k = Z−1

k e−β(Ĥk−μN̂k ), (11)

with Zk = Tr exp[−β(Ĥk − μN̂k )]. Then, in analogy to
Eq. (8), we have

βQ =
∑

k

Tr
[(

ρk − ρ
eq
k

)
log ρ

eq
k

]

= −
∑

k

D
(
ρk

∣∣∣∣ρeq
k

) −
∑

k

�Sk, (12)

where ρk ≡ ρk (t ) is the density matrix of the mode k in the
moment t . Comparing Eqs. (8) and (12) the relative entropy
term can be decomposed into a sum of two independently non-
negative contributions [3]

D
(
ρE

∣∣∣∣ρeq
E

) = Denv + Ienv. (13)
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The first term,

Denv =
∑

k

D
(
ρk||ρeq

k

)
� 0, (14)

measures the deviation of the modes from their equilibrium
states. The second contribution,

Ienv =
∑

k

Sk − SE � 0, (15)

is the multipartite mutual information between the modes.
It measures the correlation built up between the degrees of
freedom in the environment. As shown in our previous paper
[3], for extended bath (i.e., in the thermodynamic limit) the
contribution Denv becomes negligible and the relative entropy
D(ρE ||ρeq

E ) is dominated by the term Ienv. In such a case the en-
tropy production is clearly related to generation of the mutual
information, either between the system and the environment
or between the modes of the environment:

σ ≈ ISE + Ienv. (16)

This illustrates the microscopic nature of the entropy pro-
duction as a result of generation of correlations between the
initially uncorrelated degrees of freedom.

III. CORRELATION MATRIX METHOD

To evaluate the information-theoretic contributions to the
entropy production such as ISE or D(ρE ||ρeq

E ) an exact char-
acterization of the evolution of both the system and the
environment is required. The computational complexity of
such a problem increases exponentially with the size of
the bath, and therefore the numerical studies are tractable
only for relatively small environments with just a few or a
dozen modes. Fortunately, for noninteracting fermionic sys-
tems much larger baths can be studied using the correlation
matrix approach introduced by Peschel [14]. Let us here
briefly review this formalism, focusing on a way to calculate
the thermodynamic and information-theoretic quantities.

The correlation matrix approach is applicable to systems
described by a quadratic Hamiltonian

ĤSE =
∑

i j

HSE
ji c†

i c j, (17)

and initialized in the Gaussian state of the form [14]

ρSE (0) = Z−1e− ∑
i j Ai j c

†
i c j , (18)

where Z = Tr[exp(−∑
i j Ai jc

†
i c j )]; here c†

i and ci are the cre-
ation and the annihilation operators, respectively. In particular,
the thermal state of the Hamiltonian (17) is Gaussian. The
unitary evolution generated by a quadratic Hamiltonian leaves
the Gaussian character of the state unchanged. In such a case
the state of the supersystem SE is at all times fully determined
by the two-point correlation matrix CSE with the elements [14]

CSE
i j = Tr(c†

i c jρSE ). (19)

This is a consequence of Wick’s theorem stating that in
noninteracting systems all higher-order correlations can be
expressed by means of two-point correlations. Analogously,
the reduced states of the system (environment) are given by

submatrices CS (CE ) containing the elements CSE
i j correspond-

ing to the system (environment). Moreover, the evolution of
the supersystem is described by a corollary of the the von
Neumann equation [15],

i
d

dt
CSE = [HSE , CSE ], (20)

where HSE is the matrix of the coefficients HSE
i j . Since the

dimension of the correlation matrix CSE increases only lin-
early with the size of the environment, the computational
complexity of the problem is greatly reduced and numerical
studies of baths with hundreds or thousands of modes are
feasible [3,16].

Using the correlation matrix all the contributions to the
entropy production can be calculated. For fermionic systems
the von Neumann entropy Sα (α ∈ {SE , S, E , k}) is given
by [16]

Sα = −
∑

σ

[
Cα

σ ln Cα
σ + (

1 − Cα
σ

)
ln

(
1 − Cα

σ

)]
, (21)

where Cα
σ are eigenvalues of the matrix Cα . Using Eqs. (7),

(17), and (19) heat can be evaluated as

Q = −Tr
[
(HE − μ)

(
CE − Ceq

E

)]
, (22)

where HE is the submatrix of HSE corresponding to the
Hamiltonian ĤE ; here we use 〈N̂E 〉 = Tr(N̂EρE ) = Tr(CE ).
Finally, though a direct analytic formula for the relative en-
tropy D(ρE ||ρeq

E ) has been derived [17], it can be more easily
evaluated using Eq. (8) as D(ρE ||ρeq

E ) = −βQ − �SE .
While our paper focuses on fermionic systems, a sim-

ilar formalism can be applied to the bosonic case; see
Refs. [6,7,17] for details.

IV. RESULTS

A. Noninteracting resonant level

1. Post-thermalization

Let us now present the original results concerning the be-
havior of the entropy production and its information-theoretic
constituents during thermalization of some exemplary open
quantum systems. We start our discussion with a single
fermionic level coupled to a fermionic bath, referred to as the
noninteracting resonant level model (NRL). The Hamiltonian
of the system, environment, and the interaction Hamiltonian
read respectively as

ĤS = εd c†
d cd , (23)

ĤE =
∑

k

εkc†
kck, (24)

ĤI =
∑

k

(�c†
d ck + H.c.), (25)

where εi is the particle energy; here Ĥk = εkc†
kck . Energy

levels of the bath εk are assumed to be uniformly distributed
over the interval [−W/2,W/2]. The tunnel coupling � is
parameterized by the coupling strength 	 = 2π�2/�ε, where
�ε = W/(K − 1) is the distance between the energy levels
in the bath. The dynamics and the thermodynamics of the
model are described using the correlation matrix method. The
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FIG. 1. The evolution of the entropy production and its con-
stituents for NRL with the initially unoccupied system, 	 = 0.1,
εd = μ = 0, β = 1, W = 20, and K = 800.

evolution of the correlation matrix is simulated iteratively
using the equation

CSE (t + �t ) = e−iHSE �tCSE (t )eiHSE �t . (26)

We use the time interval �t = 0.05/	. The initial
state is defined by the correlation matrix CSE (0) =
diag[CSE

dd (0), CSE
11 (0), . . . , CSE

KK (0)]. The environmental
levels are chosen to be initially thermalized: CSE

kk (0) =
f [β(εk − μ)], where f (x) = 1/[1 + exp(x)] is the Fermi
distribution function. The system is initialized in the empty
state [CSE

dd (0) = 0] and the coupling to the environment is
switched on in the moment t = 0; this can be interpreted as a
quench of the system energy from ∞ to εd . In our analysis we
take εd = μ to keep the entropy production small, i.e., smaller
than the maximum value of ISE permitted by the Araki-Lieb
inequality (3). The evolution of the entropy production and its
constituents is presented in Fig. 1. Since we choose εd = μ the
small amount of heat is generated only due to switching on of
the system-environment coupling, and the entropy production
is dominated by the change of the von Neumann entropy
of the system �SS . Analyzing the information-theoretic
contributions to the entropy production one can clearly
observe the phenomenon of post-thermalization described in
the Introduction (Sec. I): Whereas the system-environment
mutual information ISE initially dominates, it later decreases
to a residual value and is exceeded by the relative entropy
D(ρE ||ρeq

E ). The decay of ISE , growth of D(ρE ||ρeq
E ) and the

corresponding decrease of the von Neumann entropy of the

FIG. 2. The evolution of the system-environment mutual infor-
mation ISE for different values of 	. Other parameters as in Fig. 1.

environment SE occurs at the timescale about three times
longer than the thermalization time 1/	. Figure 1(b) enables
us to provide a qualitative interpretation of this phenomenon:
The decay of ISE is associated with the reconversion of the
system-environment mutual information into the mutual
information between the environmental degrees of freedom
Ienv, which is a dominant contribution to D(ρE ||ρeq

E ).

2. Dependence on the system-environment coupling

Let us now analyze the influence of the coupling strength
to the environment 	. As shown in Fig. 2 the residual value
of ISE increases with 	. It is intuitive, since the equilibrium
correlation between the system and the environment increases
with the coupling strength. One may, therefore, be tempted
to speculate that by increasing 	 the residual value of ISE

can be kept above the relative entropy D(ρE ||ρeq
E ). However,

this is not the case since the amount of heat generated by the
switching on of the coupling, and therefore the entropy pro-
duction, also increases with 	. This is illustrated by Fig. 3
which shows the dependence of the long-time values of the en-
tropy production and its constituents on the coupling strength.
As one can see, although ISE may reach the Araki-Lieb bound

2ln2

FIG. 3. The entropy production and its constituents for 	t = 10
as a function of 	. Other parameters as in Fig. 1.
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FIG. 4. The evolution of the entropy production and its con-
stituents for NRL in the bound-state regime with the initially
unoccupied system, δ = 0, 	 = 0.1, β = 1, W = 10, and K = 400.

for very large 	, it is always exceeded by the the relative
entropy D(ρE ||ρeq

E )

3. Suppression of post-thermalization by the system-environment
bound state

We will now demonstrate that the post-thermalization can
be suppressed, and the system-environment mutual informa-
tion can be kept above the relative entropy D(ρE ||ρeq

E ), in
the strongly non-Markovian regime in which the system-
environment bound state [18–20] is formed. This takes place
when the energy level of the system εd is placed near a sin-
gularity of the density of states of the environment [18], e.g.,
near the band edge [20]. Here we take εd = μ = W/2 − δ,
where δ is the distance from the band edge. The evolu-
tion of the entropy production and its constituents for δ = 0
is presented in Fig. 4. As one can see, the decay of the
system-environment mutual information is suppressed and ISE

dominates over D(ρE ||ρeq
E ) also at long times. This is accom-

panied by a highly non-Markovian behavior of the entropy
production exhibiting temporal oscillations and temporary
negative values of its time derivative. Such oscillatory behav-
ior, present even in the long time limit, is characteristic for the
bound states [18,19,21].

The evolution of the system-environment mutual informa-
tion for different values of δ is presented in Fig. 5. As shown,
for large-enough distance from the band edge one recovers
the post-thermalization. Indeed, one may observe a transition
from large to small residual values of ISE when δ is swept
from 0.5	 to 1.5	 (Fig. 6). It is also worth noting that the

FIG. 5. The evolution of (a) the system-environment mutual in-
formation ISE and (b) the occupancy of the system for different
distances from the band edge δ. Other parameters as in Fig. 4.

formation of the bound state is accompanied by an imperfect
thermalization of the system [18,19]: The occupancy of the
resonant level does not reach the equilibrium value nd = 1/2
[Fig. 5(b)].

B. Interacting resonant level

Our previous discussion was concerned with a noninter-
acting system described by a quadratic Hamiltonian. Let us
now investigate whether the presence of nonquadratic interac-
tions changes the picture. To this goal we will analyze the

FIG. 6. The entropy production and its constituents for 	t = 10
as a function of δ. Other parameters as in Fig. 4.
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interacting resonant level model (IRL) where, in compari-
son with NRL, the interaction Hamiltonian includes also a
Coulomb interaction between the system and the bath:

ĤI =
∑

k

(�c†
d ck + H.c.) + V n̂d N̂E , (27)

where V is the Coulomb coupling strength between the system
and the environment and n̂d is the particle number operator of
the system. This system can be mapped on two other relevant
open quantum systems, namely the Ohmic spin-boson model
and the anisotropic Kondo model [22].

Since the Hamiltonian of the model is not quadratic, the
correlation matrix method is no longer applicable and the nu-
merical simulation of the evolution of the full density matrix
is required. Specifically, we use the iterative equation

ρSE (t + �t ) = e−iĤSE �tρSE (t )eiĤSE �t . (28)

In our simulation we take �t = 0.2/	. The necessity to
consider the full density matrix severely limits the size of
numerically tractable bath to just a few sites. However, as we
will show, even in such a case a proper thermalization can be
observed. To make the electrostatic energy independent of the
size of the bath (for the initially empty system) we choose
μ = 0 and parametrize the Coulomb coupling strength by
the relation V = U/(K/2 − 1). We also take εd = −U such
that the system relaxes to the state with occupancy nd = 1/2
independently of U . Furthermore, due the small size of the
bath a relatively large coupling strength 	 is taken such that
the system thermalizes before the Poincaré recurrence time
is reached, for which the exponential relaxation breaks down
and the system tends to return to the initial state [6]. Ad-
ditionally, a relatively small bandwidth W is required such
that the bath level separation is small enough to resemble the
continuous density of states of the environment. The evolution
of the entropy production and its constituents for a relatively
large U = 3 is presented in Fig. 7. As shown, although some
deviations from the exponential relaxation are observed, the
behavior of the entropy production is relatively similar to
the observed for NRL. The amount of generated heat is here
larger due to the increased coupling strength. Most impor-
tantly, however, the decay of the system-environment mutual
information is no longer observed and it dominates the relative
entropy D(ρE ||ρeq

E ) also at long times. The dependence of the
evolution of the system-environment mutual information on
the Coulomb coupling is presented in Fig. 8. As one can see,
the residual value of ISE increases with U . For the noninter-
acting system the post-thermalization is clearly observed. This
demonstrates that the suppression of decay of ISE for the inter-
acting system is not a result of the finite size of the bath, small
bandwidth or large 	 but rather a consequence of the Coulomb
coupling itself. To explain the origin of this phenomenon let
us note that the presence of Coulomb interaction makes the
system-environment state non-Gaussian: It is no longer fully
characterized by a two-point correlation matrix, but rather
the higher-order many-body correlations are also important.
The degree of non-Gaussianity can be characterized using the
concept of the Gaussian von Neumann entropy SG

α defined
as the von Neumann entropy calculated with Eq. (21) for a
correlation matrix of a generic (possibly non-Gaussian) state.

FIG. 7. The evolution of the entropy production and its con-
stituents for IRL with the initially unoccupied system, 	 = 1, U = 3,
εd = −U , μ = 0, β = 1, W = 3, and K = 7.

It was shown that SG
α − Sα = D(ρα||ρG

α ) � 0, where ρG
α is the

reference Gaussian state, i.e., the Gaussian state with a same
correlation matrix as ρα [23]; the relative entropy D(ρα||ρG

α )
is commonly used to quantify the non-Gaussianity of the state.
Let us also decompose the system-environment mutual infor-
mation into the Gaussian and the non-Gaussian contributions
IG
SE and ING

SE ,

ISE = IG
SE + ING

SE , (29)

where IG
SE = SG

S + SG
E − SG

SE . The evolution of these contri-
butions for U = 3 is presented in Fig. 9. As shown, the

FIG. 8. The evolution of the system-environment mutual infor-
mation ISE for different values of U . Other parameters as in Fig. 7.
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FIG. 9. The evolution of the Gaussian and the non-Gaussian con-
tribution to the system-environment mutual information. Parameters
as in Fig. 7.

Gaussian contribution IG
SE follows the same behavior as the

system-environment mutual information for the noninteract-
ing case: It first increases but later decays to some residual
value. However, this is compensated by the increase of the
non-Gaussian contribution ING

SE (absent in the noninteracting
system) such that a relatively high value of ISE is preserved.
This qualitatively explain the difference with NRL: Whereas
two-point system-environment correlations eventually decay
in both cases, for IRL the correlation between the system
and the environment is preserved in the form of higher-order
many-body correlations.

Let us here make a brief comment about the potential
role of initial conditions. Since in interacting systems non-
Gaussian correlations are responsible for the preservation of
the system-environment mutual information, one may won-
der whether the presence of initial non-Gaussian correlations
may influence the post-thermalization even in the noninter-
acting case; to be precise, the initial non-Gaussianity may
be present only in the system, since the thermal state of a
noninteracting environment has to be Gaussian. As shown in
the Appendix, however, even for initially non-Gaussian states
the post-thermalization is still observed in noninteracting sys-
tems. It therefore appears that interactions not only lead to
generation of the higher-order system-environment correla-
tions but are also necessary for their preservation.

C. Central spin model

Finally, let us show that the decay of the system-
environment mutual information is strongly suppressed in the
model of a single coupled to the spin bath (the central spin
model); we focus on spins 1/2 for the sake of simplicity. It is
described by the Hamiltonian

ĤS = hd ŝz
d , (30)

ĤE =
∑

k

hk ŝz
k, (31)

ĤI =
∑

k

(Jŝ+
d ŝ−

k + H.c.), (32)

FIG. 10. The evolution of the entropy production and its con-
stituents for the central spin model with the system initialized in the
|↓〉 state, 	 = 1, hd = 0, β = 1, W = 3, and K = 7.

where h j is the value of the magnetic field acting on the
spin j, ŝz

j is the spin z-operator acting on the spin j, and
ŝ±

j = ŝx
j ± iŝy

j are the spin raising (ŝ+
j ) and lowering (ŝ−

j )
operators. To make the structure of the system-environment
Hamiltonian analogous to the previously analyzed fermionic
models, the local magnetic fields in the bath hk are taken to be
uniformly distributed over the interval [−W/2,W/2] and the
exchange coupling is parameterized by the coupling strength
	 = 2πJ2/�h with �h = W/(K − 1). Furthermore, to keep
the amount of the generated heat small we take hd = 0. The
bath is initialized in the canonical state, which corresponds to
taking μ = 0 in Eq. (6). As in the previous case, the dynamics
of the system is described by Eq. (28) with �t = 0.2/	.
As shown in Fig. 10, similarly to the interacting resonant
level model, the decay of the system-environment mutual
information is suppressed and it exceeds the relative entropy
D(ρE ||ρeq

E ) also at long times. This can be explained by
employing the correspondence between spins and fermions.
Using Jordan-Wigner transformation, the considered setup—
with a system coupled to each spin of the bath—can be
mapped onto an interacting fermionic Kondo model [24].
As shown in the previous subsection, interactions lead to
generation of nontrivial higher-order correlations which are
responsible for the preservation of the system-environment
mutual information.

Finally, let us note that a mapping to noninteracting
fermions is, on the other hand, provided for one-dimensional
spin chains with Ising or XY interactions, where each spin
is coupled to at most two neighbors. In such a case (with
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a small part of the chain defined as the system and the rest
taken as the bath) the post-thermalization can be still ob-
served. This implies that information dynamics of spin models
may be strongly affected by the topology of the underlying
Hamiltonian. Interestingly, however, the presence of post-
thermalization in spin chain models may also depend on the
initial state of the system. Since this issue goes beyond the
main focus of the paper, it is discussed in more detail in
the Appendix.

V. CONCLUSIONS

It is now well established that the entropy production
is related to generation of correlations between the initially
independent degrees of freedom in the system and the envi-
ronment. This study demonstrates that the nontrivial processes
of information conversion, changing the microscopic charac-
ter of the entropy production, can occur even at timescales
longer than the thermalization time, when the entropy pro-
duction, macroscopically defined by Eq. (1), is already well
saturated. The evolution of the microscopic form of the
entropy production may be related to the reconversion of
the system-environment correlations into the intraenviron-
ment correlations. This process may be suppressed by the
the non-Markovian dynamics, presence of nonquadratic in-
teractions, or for specific types of the bath, such as spin
baths.

Apart from deepening our understanding of the micro-
scopic nature of the entropy production, our work may be
relevant for the study of dynamics of closed quantum many-
body systems, e.g., thermalization after the quench. Many
studies focus on the prethermalization [25,26], i.e., relaxation
to a quasistationary nonequilibrium state before reaching the
thermal equilibrium. Our study points out, instead, that even
when the system seams to be already well thermalized, some
nontrivial microscopic processes may occur, changing the
character of many-body correlations. Indeed, the entangle-
ment growth taking place after the local equilibration has
been previously observed for quenched holographic systems
[27]. Such processes may potentially provide additional infor-
mation about the intrasystem interactions. Though our study
focuses on the mutual information, it may be worth inves-
tigating whether the post-thermalization can be revealed by
experimentally measurable quantities, e.g., out-of-time-order
correlators [11,12].

Another topic worth exploring may be the connection
between the behavior of the system-environment mutual in-
formation and the Markovian or the non-Markovian character
of the reduced dynamics [28]. There is not necessarily a
contradiction between the observed long timescale of decay
of ISE and the validity of the Born-Markov approxima-
tion used when deriving master equations [28] because the
latter only uses the assumption of weak correlations to
predict the system evolution. Nevertheless, the results of
Sec. IV A 3 suggest that the non-Markovian dynamics may
be associated with the suppression of decay of the system-
environment mutual information. Whether this conclusion can
be generalized beyond the specific case analyzed is an open
question.
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APPENDIX: ROLE OF INITIAL STATE

This Appendix explores a potential role played by the ini-
tial state of the system in the post-thermalization. Specifically,
Sec. A 1 deals with noninteracting fermionic systems while
Sec. A 2 with spin chains.

1. Fermionic two-level system

As shown in Sec. IV B, interactions in fermionic systems
can lead to the emergence of higher-order (non-Gaussian) cor-
relations which may preserve the system-environment mutual
information, thus suppressing the post-thermalization. One
may wonder whether a similar behavior may be observed even
in noninteracting systems given an initial non-Gaussian state.
To be specific, initial non-Gaussianity may be present only to
the system since the thermal state of a quadratic Hamiltonian
of the environment is Gaussian. Furthermore, non-Gaussianity
cannot be realized in the noninteracting resonant level consid-
ered in Sec. IV A, in which the system consists of a single
fermionic level. Indeed, in that case the state of the system is
always a mixture of the empty and the occupied state, which
is Gaussian; this is due to the parity superselection rule which
prohibits coherent superpositions of states with even and odd
parity [29]. Therefore, to explore the role of non-Gaussianity
we consider a system consisting of a two coupled levels A
and B; the whole model is described by the Hamiltonian
ĤSE = ĤS + ĤE + ĤI where

ĤS = εAc†
AcA + εBc†

BcB + T (c†
AcB + c†

BcA), (A1)

ĤE =
∑

k

εkc†
kck, (A2)

ĤI = �
∑

k

(c†
Bck + c†

kcB). (A3)

As previously, energy levels of the bath εk are uniformly
distributed over the interval [−W/2,W/2] and � is parame-
terized as 	 = 2π�2(K − 1)/W . We take the initial state to
be described by a random density matrix

ρS (0) =

⎛
⎜⎝

ρ00,00 0 0 ρ00,11

0 ρ01,01 ρ01,10 0
0 ρ10,01 ρ10,10 0

ρ11,00 0 0 ρ11,11

⎞
⎟⎠. (A4)

Here states of the system are denoted as {00, 01, 10, 11},
where the first (second) digit describes the occupation of the
level A (B). Random elements of the density matrix obey the
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FIG. 11. The evolution of the system-environment mutual in-
formation (a) and its non-Gaussian part (b) for the two-site model
with several random realizations of the initial state of the system.
Parameters: εA = εB = 0, T = 1, 	 = 1, μ = 0, β = 1, W = 3, and
K = 7.

conditions TrρS (0) = 1, |ρ00,11| = |ρ11,00| � √
ρ00,00ρ11,11

and |ρ01,10| = |ρ10,01| � √
ρ01,01ρ10,10. In Fig. 11 we present

a behavior of the system-environment mutual information ISE

[Fig. 11(a)] and the non-Gaussian contribution to the mu-
tual information ING

SE defined in Sec. IV B [Fig. 11(b)] for
several randomly generated initial states of the system. It
appears that the mutual information converges to an approxi-
mately the same residual value independent of the initial state.
Furthermore, the non-Gaussian contribution to the mutual in-
formation is first generated but later approaches zero, being
reconverted into intraenvironment non-Gaussian correlations.
Therefore, the post-thermalization is observed also for non-
Gaussian initial states. This suggests that interactions not only
lead to generation of higher-order correlations between the
system and the environment but are also essential for their
preservation. This somewhat resembles the result of Gluza
et al. [30] showing that fermionic states tend to loss their
non-Gaussian features when evolving under quadratic Hamil-
tonians.

2. Spin chain

In Sec. IV C we explained the lack of post-thermalization
in the central spin model using the correspondence to
interacting fermionic models provided by Jordan-Wigner
transformation. Nevertheless, a mapping to noninteracting
fermions is applicable for a different topology of the underly-

FIG. 12. The evolution of the entropy production and its con-
stituents for the XY spin chain with the system initialized in the |↓〉
state (a) and (|↓〉 + |↑〉)/

√
2 state (b). Parameters: J = 0.2, γ = 0.5,

hd = hE = 0, β = 1, and K = 7.

ing Hamiltonian, namely when the total system-bath ensemble
consists of a one-dimensional XY spin chain. This suggests
that the post-thermalization may be still observed in certain
spin systems. There is, however, an important difference be-
tween spin systems and fermionic ones. For a single spin, one
may realize an arbitrary coherent superposition of |↑〉 and |↓〉
states. Jordan-Wigner transformation provides then mapping
onto a coherent superposition of the occupied and the empty
state, which is forbidden by the parity superselection rule.
Therefore, even though a spin Hamiltonian can be always
mapped onto a (either interacting or noninteracting) fermionic
Hamiltonian, not all spin states correspond to physically per-
missible fermionic states. Here we explore how coherence of
the initial spin state may effect the post-thermalization. To this
end, we consider the XY spin chain with

ĤS = hd ŝz
d , (A5)

ĤE = hE

K∑
k=1

ŝz
k + γ

K−1∑
k=1

(ŝ+
k ŝ−

k+1 + ŝ−
k ŝ+

k+1), (A6)

ĤI = J (ŝ+
d ŝ−

1 + ŝ−
d ŝ+

1 ). (A7)

In contrast to the central spin model, the sites in the environ-
ment are now mutually coupled and the system is attached
only to a single spin of the environment. Using Jordan-Wigner
transformation the model can be mapped onto a noninteract-
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ing fermionic chain with

ĤS = hd c†
d cd , (A8)

ĤE = hE

K∑
k=1

c†
kck + γ

K−1∑
k=1

(c†
kck+1 + c†

k+1ck ), (A9)

ĤI = J (c†
d c1 + c†

1cd ). (A10)

Figure 12 presents the behavior of the entropy production
and its constituents for two initial states: |↓〉 [Fig. 12(a)]
and (|↓〉 + |↑〉)/

√
2 [Fig. 12(b)]. As one can observe, for the

initial |↓〉 state the system undergoes the post-thermalization,
with the system-environment mutual information being
reconverted into the relative entropy D(ρE ||ρeq

E ). We note that

a qualitative interpretation of post-thermalization as a result of
reconversion of the system-environment mutual information
ISE into the intraenvironment correlation Ienv does not apply
to the spin chain model due to presence of initial correlations
between the spins in the environment. In contrast, for the
initial superposition (|↓〉 + |↑〉)/

√
2 the system-environment

mutual information remains the predominant contribution to
the entropy production even at long times. Therefore, in spin
models the presence of post-thermalization may depend on
the initial state of the system. While a clear explanation of
this phenomenon is lacking, the preservation of ISE is clearly
related to the presence of unphysical correlations between
states with even and odd parity in the corresponding fermionic
state obtained by means of Jordan-Wigner transformation.
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