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Maxwell’s demons work by rectifying thermal fluctuations. They are not expected to function at
macroscopic scales where fluctuations become negligible and dynamics become deterministic. We propose
an electronic implementation of an autonomous Maxwell’s demon that indeed stops working in the regular
macroscopic limit as the dynamics becomes deterministic. However, we find that if the power supplied to
the demon is scaled up appropriately, the deterministic limit is avoided and the demon continues to work.
The price to pay is a decreasing thermodynamic efficiency. Our Letter suggests that novel strategies may be
found in nonequilibrium settings to bring to the macroscale nontrivial effects so far only observed at
microscopic scales.
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Introduction.—A famous thought experiment proposed
by James C. Maxwell in 1867 introduced an agent with
the ability to perceive the velocity of individual molecules
in a gas, and open or close molecular valves based on its
observations [1]. Such agent, or Maxwell’s demon (MD),
could in that way create gradients of temperature or
pressure without expending any work, in apparent contra-
diction with the second law of thermodynamics. Indeed,
the intention of Maxwell was to illustrate the statistical
nature of this law, that according to him was only valid at
macroscopic scales where we have “no power of handling
or perceiving separate molecules” [1]. Later developments
proved Maxwell to be partially wrong: the second law is
statistical, but it is also valid at microscopic scales. Thus, a
MDmust necessarily dissipate energy and produce entropy,
in such a way that the second law is still respected at a
global level of description that includes the MD.
Nevertheless, the resolution of the issue led to a revolution
in our understanding of thermodynamics, that unveiled its
deep connection with the abstract notion of information
[2,3]. In modern terms, MDs or “information engines” are
understood as active feedback control loops acting on a
fluctuating system, and the second law has been success-
fully extended to those settings [4–11].
A first experimental realization of a MD was achieved

15 years ago in a molecular system powered by light [12].
After that, MDs were implemented in a great variety of
systems such as trapped atoms [13–16], colloidal particles
[17,18], single electron circuits [19–22], nuclear spins [23],
electrophotonic systems [24], superconducting qubits
[25–27], DNA hairpin pulling experiments [28], and cavity
QED setups [29]. All those implementations share a
common feature with the “very observant and neat-
fingered” agent Maxwell imagined: they work at the
microscopic level. They are able to detect fluctuations at

the level of individual particles, molecules, electrons, or
photons, depending on the setup. This is only natural, given
that the task of a MD is to rectify thermal fluctuations, and
those fluctuations are negligible at macroscopic scales (as is
known from equilibrium thermodynamics, relative fluctua-
tions of macroscopic observables decrease as 1=

ffiffiffiffi
Ω

p
, where

Ω is an adimensional scale parameter [30]). One exception
are systems with continuous phase transitions, during
which the symmetry of a system is spontaneously broken
in favor of one of several metastable states that are
macroscopically distinct. Since the final metastable state
is selected by thermal fluctuations, continuous phase
transitions can be employed to transfer information from
the micro to the macro level [31], and macroscopic MDs
can be devised based on this principle [32]. A simpler way
to make the rectification effects of a MD detectable at the
macroscopic level is to run a macroscopic number of
individual MD in parallel. In fact, the implementation in
[12] can be interpreted in this way.
In this Letter, we propose an alternative way to construct

macroscopic MDs by realizing that thermodynamic resour-
ces can be employed to actively amplify thermal fluctua-
tions from the micro to the macro level. Specifically, we
propose a practical electronic implementation of an autono-
mousMD that, to the best of our knowledge, is the first one
to have a well-defined macroscopic limit (which is non-
trivial, in the sense that it cannot be considered a simple
aggregation of individual devices). In addition, it only
involves regular CMOS technology, the one powering
modern computers. By only changing the width of the
conduction channel of the MOS transistors, the proposed
design can work from the single-electron regime all the way
up to macroscopic regimes of operation. We find that when
all additional parameters are fixed, the rectification effects
associated with the action of the MD disappear above a
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finite scale Ω�. However, as we show analytically and
numerically, when the power available to the MD is
appropriately scaled, the rectification effects survive in
the macroscopic limit. In that case, the price to pay is a
decreasing thermodynamic efficiency, that we show scales
as η ∼ 1=Ω2 logðΩÞ.
A full-CMOSMaxwell’s demon.—Our design is based on

the common implementation of a CMOS inverter, or NOT
gate, shown in Fig. 1(a). It is composed of a nMOS
transistor and a pMOS transistor operating in the sub-
threshold regime [33]. In a three-terminal nMOS (pMOS)
transistor, electrical conduction between drain (D) and
source (S) terminals is exponentially enhanced (reduced)
for increasing gate (G) to source voltage. As a conse-
quence, when a voltage bias is applied by connecting the
drain terminals to voltage sources V1 and V2 ¼ −V1, the
input-output transfer function of the inverter has the typical
shape shown in Fig. 1(a). For positive values of the input,
conduction through the nMOS transistor dominates and the
output voltage approaches V2. The situation is reversed for
negative input voltages, and the output voltage approaches
V1. If no bias is applied, V1 ¼ V2 ¼ 0, the circuit attains
thermal equilibrium and the steady state fluctuations in the
output voltage v are given by PeqðvÞ ∝ e−βUðvÞ, where β ¼
1=kbT is the inverse temperature and UðvÞ ¼ v2=2C the
electrostatic energy. C is the output capacitance of
the inverter, and is related to the physical scale of the
transistors. Then, the mean output voltage is hvi ¼ 0, with
a standard deviation σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kbT=C
p

. Let us consider the
following feedback protocol, carried on by some external
agent or device [see Fig. 1(b)]. At time t, the output voltage
v is measured and a voltage vin ¼ −αv is applied to the
input, with α > 0. If a positive fluctuation v > 0 is
observed at time t, at subsequent times conduction through
the upper pMOS transistor will be enhanced with respect to
conduction through the nMOS transistor (since the input
voltage at the gates will be negative). Therefore, the excess
charge corresponding to the observed positive voltage

fluctuation will be most likely dissipated through the
pMOS transistor, generating a net upward current. In a
similar way, when a negative fluctuation v < 0 is observed,
it will most probably be compensated by conduction events
through the bottom nMOS transistor, also generating a net
upward current. Thus, by the repeated application of the
feedback protocol, charge can be made to flow in the
upward direction. We can say that by controlling the input
voltage, the MD opens or closes electronic doors according
to the observed output voltage, forcing the electrons to flow
in one direction, in full analogy to the original notion of a
MD. A net upward electric current could also be observed
even if a small downward bias ΔVS ¼ V1 − V2 > 0 is
applied. In that case, the entropy production rate _ΣS ¼
ΔVShISi=T is negative (hISi is the average steady state
electric current through the inverter, and therefore
ΔVShISi < 0 is the rate of heat dissipation). According
to the second law of thermodynamics, and our modern
understanding of Maxwell’s demons, that negative entropy
production must be compensated by a positive entropy
production in the device implementing the feedback control
protocol (the MD). To study this, one must consider an
explicit mechanism for the control device and turn to an
autonomous picture that includes the MD. We do so by
noticing that the operation vin → −αv can be approxi-
mately implemented by an additional CMOS inverter, as
shown in Fig. 1(c). This additional inverter is powered by a
voltage bias ΔVD ¼ V3 − V4, which generates a current
ID. If we break the left-right symmetry of the full circuit by
choosing ΔVD > ΔVS, we can consider that the second
inverter (the demon) continuously monitors the output of
the first inverter, and adjusts its input accordingly.
Whenever the demon produces an average current hISi
against the bias ΔVS, its efficiency is

η ¼ − _ΣS= _ΣD ≥ 0; ð1Þ
where ΣD ¼ ΔVDhIDi=T is the rate of entropy production
at the demon side. The total entropy production is
_Σ ¼ ΣS þ ΣD ≥ 0, which implies that η ≤ 1.

FIG. 1. (a) Typical deterministic transfer function for the common implementation of a subthreshold CMOS inverter. (b) An external
agent measures the fluctuating output voltage v of a CMOS inverter and adjusts the input voltage as vin ¼ −αv, with α > 0. The
histogram shows the Gaussian fluctuations at equilibrium (V1 ¼ V2 ¼ 0). (c) A similar feedback protocol is implemented with an
additional CMOS inverter.
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We show next how to model the full circuit in Fig. 1(c)
both at the deterministic and stochastic levels. Importantly,
and at variance with the idealized feedback protocol
described above, our modeling fully accounts for the
intrinsic thermal noise at the demon side, and the delay
between measurement and feedback.
Deterministic description.—All voltages will be ex-

pressed in units of the thermal voltage VT ¼ kbT=qe,
where qe is the absolute value of the electron charge.
We consider powering voltages V1 ¼ −V2 ¼ ΔVS=2
and V3 ¼ −V4 ¼ ΔVD=2. The deterministic equations of
motion for the voltages v and vin—the 2 degrees of freedom
in the circuit of Fig. 1(b)—are

Cdtv ¼ Ipðv; vin;ΔVSÞ − Inðv; vin;ΔVSÞ;
C dtvin ¼ Ipðvin; v;ΔVDÞ − Inðvin; v;ΔVDÞ; ð2Þ

where Iðn=pÞðv; vin;ΔVÞ are the electric currents through
the (n/p)MOS transistors for given voltages v and vin [of
course, at steady state In ¼ Ip and we have single current
through each inverter, see Fig. 1(a)]. In the subthreshold
regime of operation, the pMOS current is given by [33]

Ipðv; vin;ΔVÞ ¼ I0eðΔV=2−vin−V thÞ=nð1 − e−ðΔV=2−vÞÞ; ð3Þ

where I0 (the specific current), V th (the threshold voltage)
and n ≥ 1 (the slope factor), are phenomenological param-
eters characterizing the transistor. Assuming, for simplicity,
that these parameters are the same for all transistors, the
nMOS current is given by Inðv;vin;ΔVÞ¼Ipð−v;−vin;ΔVÞ.
Close to thermal equilibrium (i.e., for low biases ΔVS and
ΔVD), the previous deterministic dynamics has the unique
fixed point v ¼ vin ¼ 0, but the system becomes bistable
whenα2 ≡ αSαD > 1, where αS=D ≡ ð1 − eΔVS=D=2Þ=n. This
is easily understood by noticing that, for small inputs, each
inverter works as a linear amplifier with gain αS=D. The
bistability can be exploited to store the value of a bit. Indeed,
for symmetric powering ΔVS ¼ ΔVD ¼ ΔV the circuit in
Fig. 1 is the typical CMOS implementation of SRAM
memory cells. Note that the fixed points of Eqs. (2) always
satisfy V1 > v > V2 and V3 > vin > V4, implying that all
electric currents are positive and thus that no rectification is
possible at the deterministic level.
Stochastic description.—Conduction through the MOS

transistors is not deterministic. The number of charges
transported through the channel of a MOS transistor during
a given time interval is a stochastic quantity that, in the
subthreshold regime of operation, displays shot noise [34].
This can be described by an effective model that assigns
two Poisson processes to every transistor, corresponding to
elementary conduction events in the forward and backward
directions. The two Poisson rates can be computed from the
I-V curve characterization of the device and the require-
ment of thermodynamic consistency [35]. The dynamics

becomes a Markov jump process in the space fvg of
possible circuit states and the probability distribution PtðvÞ
over those states evolves according to the Markovian
master equation

dtPtðvÞ ¼
X
ρ

λρðv−ΔρveÞPtðv−ΔρveÞ− λρðvÞPtðvÞ; ð4Þ

where v ¼ ðv; vinÞ is a vector with the 2 degrees of freedom
of the circuit, λρðvÞ are the Poisson jump rates assigned to
the different transistors (that are indexed by ρ), and the
vectors Δρ encode the change in v for each jump. For
example, for forward transitions through the pMOS and
nMOS transistors of the first inverter, we have Δρ ¼ ð1; 0Þ
and Δρ ¼ ð−1; 0Þ, respectively. The elementary voltage
ve ≡ qe=C is the magnitude by which the voltages change
in each jump. The two Poisson rates for the pMOS I-V
curve in Eq. (3) are

λpþðv; vin;ΔVÞ ¼ τ−10 eðΔV=2−vinÞ=n;

λp−ðv; vin;ΔVÞ ¼ λpþðv; vin;ΔVÞe−ðΔV=2−vÞ e−ve=2; ð5Þ

where τ0 ¼ ðI0e−V th=n=qeÞ−1 sets the system timescale. The
explicit construction of the master equation for the circuit in
Fig. 1(c) is explained in [36].
The steady state PssðvÞ of Eq. (4) can be obtained by

spectral methods or by generating stochastic trajectories via
the Gillespie algorithm. From it, one can compute the
average electric currents through the different transistors in
the circuit. Typical steady state distributions are shown in
the Supplemental Material [37].
Macroscopic limit.—We now study the stochastic behav-

ior of the circuit as the physical dimensions of the
transistors are increased. There are two relevant length
scales: the width W and the length L of the conduction
channel in each transistor [38]. For fixed L, both the
parameter I0 appearing in Eq. (3) (that enter the Poisson
rates through the timescale τ0) and the capacitance C are
proportional to W. Thus, the Poisson rates λn=p� ðvÞ increase
asW, while the elementary voltage ve ¼ qe=C decreases as
W−1 [36]. We therefore consider v−1e ∝ W as the scale
parameter. From the previous observations, it follows that
the probability distribution PtðvÞ satisfies a large deviations
(LD) principle in the limit ve → 0. This means that
fluctuations away from the deterministic behavior are expo-
nentially suppressed in v−1e . Mathematically, the LD princi-
ple implies the existence of the limit fðv; tÞ ¼ limve→0 −
ve log½PtðvÞ�, also expressed as

PtðvÞ ≍ e−ðfðv;tÞþoðveÞÞ=ve ; ð6Þ

where fðv; tÞ is the rate function (i.e., the rate at which
the probability of fluctuation v decreases with v−1e ). Indeed,
by plugging the previous ansatz in the master equation (4)
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and keeping only the dominant terms in ve → 0, we find
that the rate function must satisfy

dtfðv; tÞ ¼
X
ρ

ωρðvÞ½1 − eΔρ·∇fðv;tÞ�; ð7Þ

where ωρðvÞ ¼ limve→0 veλρðvÞ are the scaled Poisson
rates. The minima vðtÞ of the rate function fðv; tÞ at time
t are the most probable values. They evolve according to
the closed deterministic dynamics of Eq. (2) [39]. This
shows how the deterministic dynamics emerges from the
stochastic one.
Equation (7) cannot be solved exactly, even at steady

state. In order to make analytical progress, we perform a
Gaussian approximation around v ¼ 0, the most probable
value in the monostable phase (α2 < 1). In this way we
can compute the average steady state current through the
first inverter to first nontrivial order in ve → 0 (see
Supplemental Material [37]). While its full expression is
complicated, to first order in ΔVS it reads

hISi ≃
qe
2τ0

½ΔVS − veðeΔVD=2 − 1Þ�: ð8Þ

The first term corresponds to the deterministic current IS ¼
qeΔVS=2τ0 þOðΔV2

SÞ which is incompatible with recti-
fication (it is always positive for ΔVS > 0). The second
term describes the effect of the fluctuations and the feed-
back control, and it is always negative. Then, we see that
the minimum value of ve for which rectification is possible
(i.e., hISi < 0) is v�e ¼ ΔVS=αD. Thus, the rectification
effects associated to the action of the MD disappear above a
scale 1=v�e, that increases with the amplification factor αD
of the MD, and decreases with the opposing bias ΔVS.
Similarly, the minimum value of ΔVD necessary for
rectification is

ΔV�
D ¼ 2 logð1þ ΔVS=veÞ: ð9Þ

The previous expression is plotted with a dashed line in
Fig. 2. The deviations from the exact hISi ¼ 0 boundary are
due to non-Gaussian effects and the fact that Eq. (8) is only
valid for first order in ΔVS.
Scaling analysis.—Although we did not assume any-

thing about the magnitude of ΔVD, the Gaussian approxi-
mation leading to Eq. (8) is only valid for α2 < 1. This
imposes a maximum value for ΔVD given any nonzero
value ofΔVS. To take this into account, in the following we
will consider a constant value of α2, and rewrite Eq. (8) as

hISi ¼
qe
2τ0

�
ΔVS − ve

α2

eΔVS=2 − 1

�
: ð10Þ

Recalling that the timescale τ0 is proportional to ve, we see
that if we scale the system bias as ΔVS ¼ cve (for a

constant c > 0), the rectification power at the system side
becomes independent of the scale

T _ΣS ¼ ΔVShISi ∼ −α2=c for ve → 0: ð11Þ

This result is remarkable since it implies that the mean
value hISi remains negative in the macroscopic limit, and
therefore does not reduce to the positive value obtained
from the deterministic treatment. See the Supplemental
Material [37] for an estimation of the order of magnitude of
hISi for modern fabrication processes. The link between the
macroscopic and deterministic limits is broken by the
powering of the demon, needed to amplify thermal fluc-
tuations. Indeed, in order to maintain the value of α2

constant, ΔVD must be ΔVD ¼ 2 logð1þ 2α2=cveÞ. Then,
the current through the demon inverter is hIDi ≃ ðqe=τ0Þ×
ðeΔVD=2 − 1Þ ¼ 2qeα2=cveτ0, and the dissipation power at
the demon side scales as

T _ΣD ¼ ΔVDhIDi ∼ logðv−1e Þ=v2e for ve → 0: ð12Þ

As a consequence, the thermodynamic efficiency scales as
η ∼ v2e= logðv−1e Þ. This scaling is verified numerically by
generating stochastic trajectories via the Gillespie algo-
rithm and computing the average currents hIS=Di. The
results are shown in Fig. 3. We see that a similar scaling is
obtained even when the system is working at the critical
point α2 ¼ 1 or in the bistable phase α2 > 1. Thus, the
rectification effects can survive the macroscopic limit if
the power available to the MD is appropriately scaled, at the
price of a decreasing efficiency. Finally, the scaling with
temperature can be analyzed by recalling that all voltages
are expressed in units of VT ¼ kbT=qe. Then, from
Eq. (10) we see that hISi < 0 only for VT > V�

T, where

FIG. 2. Average electric current hISi (in units of qe=τ0) at
steady state for the circuit of Fig. 1(c) as a function of the
powering voltage biases ΔVS and ΔVD (ve ¼ 0.1, n ¼ 1). The
solid gray line marks the boundary between the hISi < 0 (blue)
and hISi > 0 (red) regions, and the dashed line corresponds to the
approximate analytical result of Eq. (9).
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V�
T ¼ ΔVS= logð1þ α2ve=ΔVSÞ sets the temperature

below which the demon stops working.
Discussion.—Our results unveil a general mechanism via

which the usual correspondence between the macroscopic
and deterministic limits can be broken. As one increases
the scale of a system, thermal fluctuations of macroscopic
observables (in this case the voltage of a conductor)
decrease, and this can be compensated by increasing the
power dedicated to amplify them. In this way, microscopic
thermal fluctuations can be transported to the macroscale
where they can be employed to produce phenomena (in this
case the inversion of a current) that are not allowed by the
deterministic dynamics obtained from the macroscopic
limit taken at fixed powering. In principle, the same
mechanism could be implemented in other nonequilibrium
systems, for example, chemical reaction networks. Finally,
the scaling we obtained for the thermodynamic efficiency
relies heavily on the details of the amplification step
provided by the second inverter, which might not be
optimal.
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I. DETERMINATION OF THE STEADY STATE DISTRIBUTION

To compute the steady state distribution for given parameters we first construct the generator M of the master
equation given in the main text. For this, we truncate the state space to (2N + 1)2 states by restricting v and vin
to the ranges −N ≤ v/ve ≤ N and −N ≤ vin/ve ≤ N . Then we encode the probability distribution Pt(v, vin) into
a vector |Pt⟩, and construct the matrix M such that the master equation reads dt|Pt⟩ = M |Pt⟩. The steady state
distribution is then obtained as the normalized right eigenvector of M with zero eigenvalue. Steady state distributions
for different values of α2 are shown in Figure 1.

FIG. 1: Histograms of the steady state distribution Pss(v) for ve = 0.1, ∆VS = 0.4 and: (a) ∆VD = 2 (α2 < 1, monostable
phase), (b) ∆VD ≃ 3.415 (α2 = 1, critical point), and (c) ∆VD = 5 (α2 > 1, bistable phase). Lateral and upper plots show
the partial distributions for v and vin, respectively. The arrows indicate the direction and magnitude of the flow u(v) =∑

ρ ∆ρ ωρ(v)Pss(v) at each point in the state space.

II. GAUSSIAN APPROXIMATION OF THE STEADY STATE DISTRIBUTION AND COMPUTATION
OF THE AVERAGE CURRENT

The steady state rate function satisfies:

0 =
∑
ρ

ωρ(v)
[
1− e∆ρ·∇fss(v)

]
. (1)

We consider the second order expansion fss(v) = vTC−1v/2 + O(|v|3) around v = 0, the deterministic fixed point
for α < 1. Then, from the previous equation one can show that the matrix C must satisfy the Lyapunov equation

0 = CA+ATC +B, (2)

where the matrices A and B are given by {A}ij =
∑

ρ ∂viωρ(0)(∆ρ)j and {B}ij =
∑

ρ ωρ(0)(∆ρ)i(∆ρ)j in terms of

the transition rates. Eq. (2) can be solved explicitly for n = 1, obtaining

C11 =
1 + e∆VD/2 + e∆VS − e(∆VD+∆VS)/2

2(e∆VD/2 + e∆VS/2 − e(∆VD+∆VS)/2)

C22 =
1 + e∆VD + e∆VS/2 − e(∆VD+∆VS)/2

2(e∆VD/2 + e∆VS/2 − e(∆VD+∆VS)/2)

C12 = C21 =
e(∆VD+∆VS)/2 − 1

2(e(∆VD+∆VS)/2 − e∆VS/2 − e∆VD/2)
.

(3)



2

The large deviations principle Pss(v) ≍ e−v−1
e fss(v) implies that for small ve typical fluctuations are Gaussian with

covariance matrix
〈
vvT

〉
= veC. Then, to first non-trivial order in ve → 0, the average steady state current through

the first inverter can be computed as

⟨IS⟩ ≃
∫ ∫

d2v
e−v−1

e fss(v)

Zss
qe

(
λ
p/n
+ (v)− λ

p/n
− (v)

)
︸ ︷︷ ︸

I(v)

≃ I(0) + Tr[HI(0)⟨vvT ⟩]/2,

(4)

where Zss =
∫
dv exp(−v−1

e fss(v)), λ
p
±(v) are the Poisson rates of the (p/n)MOS transistor, and HI(v) is the Hessian

of I(v). In this way we can obtain the following expression for ⟨IS⟩:

⟨IS⟩ =
qe
τ0

(
e∆VS/2 − 1

)
+
qe
τ0

ve
(
2e(∆VD+∆VS)/2 − e∆VD+∆VS/2 + e∆VD/2+∆VS − e∆VD/2 + e∆VD − 2e∆VS/2

)(
e∆VD/2 − 1

) (
4e∆VS/2

)
− 4e∆VD/2

+O
(
v2e
)
,

(5)
which to lower order in ∆VS reduces to the one given in the main text.

III. ESTIMATIONS FOR MODERN FABRICATION PROCESSES

In modern fabrication processes the gate capacitance can be as low as C = 50 aF [1, 2]. This corresponds to an
elementary voltage ve = q/C ≃ 3.2 mV. For room temperature, the thermal voltage is VT = kbT/qe ≃ 26 mV.
Thus, for those parameters the scale parameter is Ω = VT /ve ≃ 8 (this motivates the value Ω = 10, or equivalently
ve = 0.1VT , used for the numerical results in the main text). Also, for the same fabrication processes [1, 2], the factor
I0e

−Vth/n appearing in the I-V curve and Poisson rates of our model is in the order of 1 − 10 nA. According to the
results in the main text, this is the same order of magnitude of the rectified current ⟨IS⟩ ≤ 0.
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