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Abstract

We study electronic transport in Weyl semimetals with spatially varying nodal tilt pro-
files. We find that the flow of electrons can be guided precisely by judiciously chosen
tilt profiles. In a broad regime of parameters, we show that electron flow is described
well by semiclassical equations of motion similar to the ones governing gravitational
attraction. This analogy provides a physically transparent tool for designing tiltronic de-
vices like electronic lenses. The analogy to gravity circumvents the notoriously difficult
full-fledged description of inhomogeneous solids. A comparison to microscopic lattice
simulations shows that it is only valid for trajectories sufficiently far from analogue black
holes. We finally comment on the Berry curvature-driven transverse motion and relate
the latter to spin precession physics.
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1 Introduction

Over the last two decades, the combination of solid state and relativistic physics has proven
to be a particularly fruitful direction of research. The underlying key observation is that low-
energy states in entire classes of solids can be described by variants of the Dirac equation,
which had initially been developed for relativistic quantum mechanics. This principle has
most prominently been exemplified by the (2 + 1)-dimensional material graphene [1]. In
recent years, a similar analogy has been identified for certain (3+ 1)-dimensional materials,
now known as Dirac and Weyl semimetals [2].

Despite connecting two extremely different physical situations, this mapping between equa-
tions implies that certain phenomena known from high-energy physics are mirrored in solids,
and vice-versa. This includes the analogues of Klein tunneling in graphene [3] and of the chiral
anomaly in Weyl semimetals [4–10], as well as a connection between gravitational anomalies
and transport in solids [11–14].

Even more recently, it has been proposed that Weyl semimetals with spatially inhomoge-
neous nodal tilts can be mapped to spacetimes with black holes [15–28]. On a pictorial level,
this mapping is one between tilted Weyl nodes in solids, and tilted lightcones in spacetimes
with black holes. More formally, the mapping is based on an identification of effective tetrads
in inhomogeneous Weyl Hamiltonians. An alternative avenue for wavepacket dynamics mim-
icking gravitational motion are tight-binding hopping amplitudes with specific spatial struc-
ture [29–31]. These studies are part of a broader stream of works connecting gravitational
physics with, for example, condensed-matter systems or ultracold quantum gases [32–40].

Using the mapping between low-energy Hamiltonians and Dirac equations, it has been
proposed that various types of effective spacetimes can be engineered in solids with inhomo-
geneous tilts [18, 23]. By extension, it has been reasoned that one might be able to engineer
electronic lensing devices that mimic gravitational lensing in suitably designed analogue space-
times [18, 19, 41], in particular ones with analogues of black holes. At the same time, it has
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also been found that the analogy to black hole spacetimes ceases to describe the full physics
when the wavepacket reaches the analogue event horizon. As discussed in [26, 27], addi-
tional states at low energies but large momenta appear close to the event horizon, and these
states have been identified as being crucial for transport. This begs the question about the
conditions that apply when using the analogy between inhomogeneous Weyl semimetals and
analogue spacetimes, especially in connection to tiltronic devices such as electronic lenses. In
the present study, we provide a detailed analysis of electron lensing in Weyl semimetals with
inhomogeneous tilts. In particular, we discuss physics that goes beyond the mapping between
semiclassical trajectories obtained for a linearized continuum model, and geodesics.

First, the dispersion of any lattice model with Weyl nodes necessarily ceases to be linear at
higher energies. By taking into account model-specific nonlinearities of the dispersion near the
Weyl nodes, we show that wavepacket trajectories in solids exhibit important deviations from
the geodesics that the naive mapping between inhomogeneously tilted Weyl semimetals and
black hole spacetimes translates them to. Electrons can for example enter the region within
the analogue event horizon and leave again.

Second, we analyze a fully microscopic tight-binding model that includes not only band
curvature effects, but also more than one Weyl node, and interfaces with leads. These sim-
ulations show that electron trajectories exhibit a characteristic bending analogue to gravi-
tational lensing when they are sufficiently far from the overtitled region forming the black
hole analogue. When they approach this region, the trajectories exhibit a range of fascinat-
ing behaviors, including for example slingshot trajectories. Intriguingly, we can still connect
this behavior to, for example, the presence of an analogue photon sphere in the semiclassical
equations of motion.

Overall, we thus find the analogy between overtilted Weyl nodes and black holes to work
best for wavepackets far from the overtilted region. The more closely the black hole analogue
region is probed, the less it behaves like a black hole. We therefore dub the overtilted region
a black hole mirage.

We organized our analysis as follows. In section 2, we review the semiclassical equations of
motion describing electron transport in Weyl semimetals. Section 3 analyzes these equations
of motion for a cylindrical tilt profile, and identifies the electronic analogues of lensed and
captured trajectories of light close to black holes, as well as a generalized counterpart of the
photon sphere in a system with axial symmetry. The impact of lattice physics is commented
on in section 4, both on the level of using the lattice dispersion in the semiclassics, and for the
fully microscopic tight-binding analysis. We conclude the analysis in section 5 by discussing
electronic motion parallel to the cylinder axis, which is governed by Berry curvature physics,
and connect this transverse motion to the dynamics of the electron spin. We finally conclude
with an outlook on experimental prospects in section 6.

2 Weyl semimetals with spatially varying tilt profiles: review of
semiclassical dynamics

To set the notation and make the paper self-contained, we begin by reviewing the semiclas-
sical equations of motions for Weyl semimetals. Physically, we consider a (3+1)-dimensional
material whose band structure exhibits a number of Weyl nodes close to the Fermi level. We
furthermore assume that there are no additional trivial electron or hole pockets present. The
low-energy Hamiltonian is then a collection of Weyl Hamiltonians, one for each node. Mea-
suring the momentum k as well as the energy relative to the respective node, those read

H1(k) = (u · k)σ0 +χ vF k ·σ , (1)
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where vF is the Fermi velocity, χ = ±1 is the node’s chirality, σ0 denotes the 2 × 2 identity
matrix, and σ is the vector of Pauli matrices.

Our model also features a nodal tilt characterized by u. More precisely, eq. (1) describes
a Weyl node with a spatially constant tilt. In the remainder, we will be interested in spatially
varying tilt profiles, u → u(r ) (and therefore H1(k) → H1(r , k)). For a general tilt profile,
states with arbitrary momentum difference get coupled. We, however, focus on tilt profiles that
are smooth on the relevant electronic length scales. Those particularly include the scales set by
the inverse momentum distance between Weyl nodes, and the inverse of the implicitly present
momentum cutoff for linearization in eq. (1) (this is addressed in more detail in section 4).
In this case, we can use the linearized Hamiltonian for individual nodes with the Hermitian
replacement [26,27]

u · k → u(r ) · (−i∇) +
1
2
(−i∇ · u(r )) . (2)

Such a Hamiltonian models a well-defined nodal band structure with a locally varying tilt.
We therefore employ the same semiclassical equations of motion as used for wavepackets nar-
rowly peaked in position and momentum space for constant tilts [42], but replace u → u(r ).
Note that we here also assume u(r ) to vary on scales much larger than the width of the
wavepacket, such that corrections to the semiclassical equations involving the quantum met-
ric can be ignored [43, 44]. This replacement for example means that the eigenenergies are
E±(r , k) = u(r ) ·k± vF |k|. For |u(r )|/vF < 1 (|u(r )|/vF > 1), the system locally behaves like
a Weyl semimetal of type I (type II).

For concreteness, we focus on wavepackets built from states in the E+(r , k)-band in the
remainder of the paper. In the absence of external electromagnetic fields, those are governed
by the semiclassical equations of motion

ṙ =∇k E+(r , k) + k̇ ×Ω(k) = u(r ) + vF k̂ + k̇ ×Ω(k) ,

k̇ = −∇r E+(r , k) = −∇r (u(r ) · k) , (3)

where Ω(k) = χ k/(2 k3) is the momentum-space Berry curvature and k = |k|. Note that the
tilt term is proportional to the identity matrix and therefore does not affect the eigenstates,
nor the momentum-space Berry curvature, and there are no real-space Berry curvature contri-
butions [42].

Specific inhomogeneous tilt profiles with spherical symmetry have recently been argued
to realize analogues of spacetimes with black holes [17–27, 29]. The connection between
the two fields also entails that semiclassical trajectories of wavepackets in inhomogeneously
tilted Weyl semimetals can be mapped to geodesics of the corresponding curved spacetime
(see appendix A).

Realizing the analogue of an astrophysical black hole requires a rotationally symmetric tilt
profile. Here, we aim at exploring transport in such systems, and want to analyze to which
degree the analogy with curved spacetimes can be used to describe this transport. A spherically
symmetric strain profile, however, seems rather hard to realize in a three-dimensional solid. A
more realistic scenario is tilt profiles with axial symmetry, which could in principle result from
the strain pattern close to a hole drilled through the material. A microscopic displacement
field h can for example give rise to nodal tilts u of the form ui∝ (∂ih j) k0 j , where 2k0 is the
Weyl node separation [45].

We therefore from now on specialize to tilt profiles with axial symmetry, i.e., u(r ) = u(ρ)ρ̂.
Here and below, hats denote unit vectors, x̂ = x/|x |, ρ is the radius in cylindrical coordinates
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(ρ,φ, z), and ρ = (x , y, 0)T . The semiclassical equations are then given by

ṙ = u(ρ) + vF k̂ + k̇ × Ω , (4)

k̇ = −
∂ u
∂ ρ
(k · ρ̂) ρ̂ −

uLz

ρ2
φ̂ , (5)

where L= r × k with Lz = ρ k · φ̂ is the orbital angular momentum. By combining the above
equations, we obtain

ṙ = u(ρ) + vF k̂ −
χ

2k3

�

k · ρ̂
ρ

�

∂ u
∂ ρ
−

u
ρ

�

Lz ẑ + kz

�

u Lz

ρ2
ρ̂ − (k · ρ̂)

∂ u
∂ ρ
φ̂

��

. (6)

This highlights the two contributions to the motion of semiclassical wavepackets. The first
and second terms combined correspond to the group velocity ∇k E+(r , k), which depends on
position via the tilt. The remaining terms, proportional to χ, derive from the Berry curvature.
This geometric contribution to the wavepacket dynamics is also known as the anomalous ve-
locity.

It is finally helpful to note that the semiclassical equations of motion entail several con-
served quantities. First, Ė±(r , k) = 0, physically resulting from the Hamiltonian being time-
independent. Second, the rotational symmetry around the z-axis implies that J̇z = 0, where
J = L+ s is the total angular momentum, and s = χ k̂/2 is the spin, defined by the expecta-
tion value of the spin operator σ of a state with momentum k in the E+-band as si = 1/2 〈σi〉.
Third, translation invariance along z entails k̇z = 0. Lastly, the equations of motion are invari-
ant after a combined transformation of u→−u, k →−k and t →−t.

3 Cylindrical tilt profiles and perpendicular injection: lensing,
capture, and separatrix of trajectories

In the following, we consider general axial symmetric tilt profiles u(ρ) = u(ρ) ρ̂ of the form
u(ρ) = −vF (ρt/ρ)α. The radius ρ = ρt at which u(ρ) = −vF marks the analogue of an event
horizon between a type I and a type II region, while the parameter α determines how fast
the tilt decays outside the event horizon analogue [17, 20, 26, 27]. We furthermore focus on
incoming wavepackets with initial kz = 0, i.e., injected perpendicular to the cylindrical axis. In
this case, sz = 0 and thus ṡz = 0, which together with J̇z = 0 entails L̇z = 0, and the equations
of motion along ρ and φ are decoupled from the one along z.

For such a tilt profile, trajectories described by the semiclassical equations of motion in
eq. (3) can be categorized into two distinct classes, lensing and capture. A lensed trajectory
begins far from the region with strong tilt, approaches this region (but never too closely), and
then escapes to infinity. A captured trajectory instead falls into the region with strong tilt; the
fate of such a wavepacket propagating in a lattice model is commented on in section 4. These
two regimes are separated by a specific trajectory denoted as the “separatrix” that orbits the
region of strong tilt.

We begin by noting that the distinction between lensing and capturing is defined by the
motion in the (ρ,φ)-plane, onto which we focus in this section. The motion along z, governed
solely by Berry curvature effects for kz = 0, is commented on in section 5.
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Figure 1: In panel (a) and (b), we display the trajectories given by the solutions
of r (t) and k(t) for the tilt profile u = −vF

p

ρt/ρ. Panel (c) shows the velocity
components. Only positive evolution times are considered (the directed trajectories
are depicted by arrows). The radial escape trajectory starts at a distance 1.0001ρt
from the tilt center, and initial momenta are chosen as kx = ky , kz = 0. In (d), we
display more details on the curvature of the real-space trajectory.

In the (ρ,φ)-plane, the equations of motion read

ρ̇ = u(ρ) + vF
k · ρ̂

k
, (7a)

ρ φ̇ = vF
k · φ̂

k
, (7b)

d(k · ρ̂)
d t

− (k · φ̂) φ̇ = −
∂ u
∂ ρ
(k · ρ̂) , (7c)

d(k · φ̂)
d t

+ (k · ρ̂) φ̇ = −
u(ρ)
ρ
(k · φ̂) . (7d)

Using k(ρ)2 = (k · ρ̂)2 + L2
z /ρ

2 (for kz = 0) and the dispersion, we express ρ̇ as func-
tion of the conserved energy E+, the conserved angular momentum Lz , and ρ. After some
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Figure 2: Panel (a) displays the dimensionless effective potential for tilt profiles
u(ρ) = −vF (ρt/ρ)α with different α. For all potentials, the analog horizon is lo-
cated at ρ = ρt . The maxima of the effective potential (the separatrix radii) are
located at ρs = ρt(1+α)1/2α, which we visualize in (b).

manipulations, we find

ρ̇2 =
1
k2

�

E2
+ − ϵp,eff(ρ)

�

, (8)

ϵp,eff(ρ) =
L2

z

ρ2

�

v2
F − u(ρ)2

�

. (9)

The radial equation of motion in eq. (8) thus takes the form of an equation of effective energy
conservation for a classical free particle with a conserved effective total energy ϵtot,eff = E2

+
composed of an effective kinetic energy ϵk,eff = meff ρ̇

2/2 with an effective mass meff = 2 k2,
and an effective potential ϵp,eff(ρ). Note that this analogy is not perfect because k is not a
conserved quantity. It is sufficient, however, to make the distinction between captured and
lensed trajectories: this distinction is based on ρ̇ vanishing, or not.

For a general u(ρ), the effective potential ϵp,eff(ρ) can have both minima and maxima.
In case of a Schwarzschild-like tilt profile u(ρ) = −vF

p

ρt/ρ, note that for Weyl fermions
(m = 0), the standard Newtonian term −mρt v

2
F/(2ρ) is vanishing and only the repulsive po-

tential energy∝ 1/ρ2 and the attractive cubic term contribute to the effective potential [46].
For the general tilt profiles u(ρ) = −vF (ρt/ρ)α considered here, we find that ϵp,eff(ρ) has
exactly one maximum, see fig. 2. This physically transparent picture explains that depending
on the total energy E+ and the maximal value of the effective potential ϵmax

p,eff, the trajectory of
a particle moving towards the origin can be of three possible types.

1. Lensing: for E2
+ < ϵ

max
p,eff, the wavepacket approaches the origin until it reaches its periap-

sis (the point of closest approach to the strongly tilted region) atρp, set by E2
+ = ϵp,eff(ρp).

There, ρ̇ = 0, which allows to express ρp in terms of conserved quantities via the implicit

equation E+ρp = |Lz|
q

v2
F − u(ρp)2. The wavepacket is then deflected to infinity.

2. Capture: for E2
+ > ϵ

max
p,eff, ρ̇ never vanishes. For initial negative ρ̇, the semiclassical

equations then predict the wavepacket continues falling towards the origin.

3. Separatrix: for E2
+ = ϵ

max
p,eff, the wavepacket approaches the origin until it reaches the top

of the effective potential, where it remains. As we will show below, the wavepacket then
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still performs an angular motion, and is thus bound in an (unstable) orbit around the
origin, at ρ = ρs = ρt(1+α)1/2α (see fig. 2).

Note that the separatrix marks a critical radius of closest approach for inward-moving
wavepackets (see also discussion in section 3.3 below). Emission of an outward-moving
wavepacket is possible for all initial radii outside the analogue event horizon located at ρ = ρt .
As shown by eq. (7a), our choice of tilt profiles entails ρ̇ < 0 for ρ < ρt as then u < −vF .
For an initial radius ρinitial > ρt , wavepackets can escape at least radially: if k · ρ̂ > 0 and
k ·φ̂ = 0, we find that eq. (7a) implies ρ̇ = u(ρ)+vF > 0, ρ̈ = u′(ρ)ρ̇ > 0 and eq. (7b) leads to
φ̇ = 0. This corresponds to an escape of the wavepacket along a straight radial trajectory (see
fig. 1 (a)). We want to stress here that the radial acceleration away from the origin is entirely
caused by the decreasing meff(t) = 2k(0)2 exp

�

−2
∫ t

0 u′(ρ(τ))dτ
�

, which can be eliminated
from the equations of motion by using an affine parametrization instead of a temporal one
(for more details, see appendix A).

To further describe the two-dimensional motion in the (ρ,φ)-plane, it is convenient to
combine the equations for φ̇ and ρ̇. Using that k · φ̂ = Lz/ρ, we find

dφ
dρ
=
φ̇

ρ̇
= ±

vF Lz

ρ2
q

E2
+ − ϵp,eff(ρ)

, (10)

where the sign corresponds to the sign of ρ̇.

3.1 Lensing and deflection angle

For E2
+ < ϵ

max
p,eff, when the wavepacket first approaches the origin and then escapes to infinity,

eq. (10) predicts the asymptotic outgoing motion of the wavepacket to exhibit a deflection
angle as compared to the asymptotic incoming motion, see fig. 3. This deflection angle is the
key ingredient that allows to build electronic lensing devices.

Using eq. (10), the deflection angle can be calculated very much in the spirit of lensing
around black holes [47]. As detailed in appendix B, we find

π+ϕ = 2

∫ ∞

ρp

vF dρ
r

1
ρ2

p

�

v2
F − u(ρp)2

�

ρ4 −ρ2
�

v2
F − u(ρ)2

�

, (11)

where ϕ is the angle of deflection. In fig. 3, we show that numerical evaluation of the integral
in eq. (11) coincides with the deflection angles of trajectories which we obtained by numerical
solutions of eq. (3) with different initial conditions. Analytical progress can be made for lensed
trajectories with periapsides sufficiently far from the tilt center such that ρp/ρt ≫ 1. The
calculation detailed in appendix B shows that the deflection angle to leading order in ρt/ρp
is then given by

ϕ ≈
u(ρp)2

v2
F

p
π Γ

�3
2 +α

�

Γ (1+α)
. (12)

For the concrete example of the Schwarzschild-like tilt profile with α = 1/2, i.e.,
u(ρ)=−vF

p

ρt/ρ, this implies ϕ ≈ 2 u(ρp)2/v2
F .

3.2 Capture

For a trajectory starting outside the separatrix with E2
+ > ϵ

max
p,eff and ρ̇ < 0 initially, the semiclas-

sical equations of motion predict the wavepacket to always fall towards the origin. Similarly,
any trajectory with E2

+ < ϵ
max
p,eff starting inside the separatrix can only remain inside, and spirals
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Figure 3: In panel (a), we depict a lensing trajectory (black line), which is charac-
terized by two linear segments (blue and yellow dashed), which define the azimuth
angles contributing to the deflection angle ϕ = φ2 − φ1. The deflection angle re-
sulting from different periapsides and tilt profiles is presented in panel (b). A com-
parison between numerical integration of eq. (11) and the approximate analytic re-
sult in eq. (12) is indicated by solid and dotted lines, respectively. Both equations
are contrasted with extracted angles and periapsides from trajectories obtained by
numerically integrating the semiclassical equations of motion, eq. (3), for different
initial conditions (disks). The color distinguishes between different tilt profile decays
α.

inward to the origin. During this plunge towards the center, the velocity and acceleration di-
verge, and the equations of motion in eq. (7) break down. It has for example been discussed
in Refs. [26,27] that additional electronic states at low energies but large momenta appear in
lattice systems which have to be taken into account for a faithful description of transport. We
postpone the further discussion of trajectories in the capturing regime to section 4.

3.3 Separatrix

If E2
+ = ϵ

max
p,eff, wavepackets starting outside the separatrix approach the origin up to the sep-

aratrix at ρs = ρt(1+ α)1/2α, and then remain at that distance. This is further shown by the
radial acceleration, which then reads

ρ̈|ρ=ρs
= −

1
k2

�

1
2

∂ ϵp,eff

∂ ρ
+ ρ̇ k̇ k

�

ρ=ρs

= 0 . (13)

Using eq. (8) and the fact that ϵp,eff(ρ) has a maximum on the separatrix, we find that both
the radial velocity ρ̇ and the radial acceleration ρ̈ vanishes. The wavepacket then orbits the
origin at the radius ρs. However, since the effective potential has a maximum at ρs, the orbit
is unstable. Any perturbation will make the wavepacket either plunge towards the center or
escape to infinity.

The semiclassical equations of motion for a spherically symmetric tilt profile are obtained
by replacing u(ρ)ρ̂ → u(r)r̂ = −vF

p

rH/r r̂ . They are equivalent to the equations of motion
for Weyl fermions in a Schwarzschild spacetime with an event horizon at rH (we show this,
neglecting anomalous velocity terms, in appendix A). In this context, the separatrix does not
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lie on a cylinder, but on a sphere, known as the photon sphere. The latter is a set of unstable
bound orbits which bifurcate the rest of the geodesic solutions into purely lensing or captured
trajectories around a black hole. It has been shown to be a fundamental feature of black hole
spacetimes, and it is an active topic of investigation to this day, both in theoretical [48–50] as
we all as gravitational wave detection measurements [51]. Experimentally, the photon sphere
is the key visible feature in the recent black hole images taken through the Event Horizon
Telescope [52], making it one of the few directly observed aspects of black holes. Our analysis
generalizes the photon sphere of cosmological black holes to the more general concept of
a separatrix between lensed and captured trajectories, here applied to black hole analogues
realized in Weyl semimetals with inhomogeneous nodal tilts. Since the separatrix has the
shape of a cylinder for tilt profiles with axial symmetry, we call it the analog photon cylinder.

4 Lattice simulations: validity of semiclassics, and fate of
wavepackets inside the separatrix

In this section we perform large-scale microscopic computations to check the regime of validity
of the semiclassical theory presented in section 3, and to understand the fate of wavepackets
crossing the separatrix. For computational reasons, we focus on an effective two-dimensional
lattice model in terms of a hybrid real and momentum space representation of the Hamiltonian.
This implies that possible transverse deflections from Berry curvature contributions cannot be
analyzed in a straightforward way.

4.1 Effective two-dimensional lattice model

Our starting point is a minimal model for a tilted Weyl semimetal with two Weyl cones. The
low-energy continuum form of the Hamiltonian is given by Ĥ =

∑

k ĉ†
k H2(k)ĉk with a two-

component annihilation operator ĉk = (ĉ↑,k , ĉ↓,k)T and a Hamiltonian matrix,

H2(k) =
�

ux kx + uy ky + uz(kz + k0)
�

σ0 + vF kxσx + vF kyσy +
1

2m∗
(k2 − k2

0)σz . (14)

The parameter k0 > 0 separates the two Weyl nodes, one located at (kx = 0, ky = 0, kz = −k0)
and zero energy, the other at (0, 0, k0) at energy 2uzk0. The additional 1/2m∗ term gives rise
to curvature along the z direction.

In the following discussion, we regularize the continuum model on a square lattice with
lattice constant a. In order to discuss the trajectories of electrons with momenta close to a
single Weyl node, from now on we set kz = −k0. This is justified because kz is conserved by
translational invariance along the z direction for an axially symmetric tilt profile. We can then
focus on a two-dimensional lattice model that coincides with the low energy Hamiltonian in
eq. (14) for wave numbers kx , ky ≪ 1/a, namely

Hlatt(k) = a−1
�

(ux sin(kx a) + uy sin(ky a))σ0 + vF sin(kx a)σx + vF sin(ky a)σy

�

+
1

m∗a2

�

2− cos(kx a)− cos(ky a))
�

σz . (15)

Then, ∆Elatt
± = 4(m∗a2)−1 and 8(m∗a2)−1 determine the gap sizes of the Dirac fermion dou-

blers at the corners of the Brillouin zone. In fig. 4, we show how the fermion doublers at the
boundary of the Brillouin zone become massive for different choices of ∆Elatt

± , and that the
Weyl cone at kx = ky = 0 is tilted through ux and uy .
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Figure 4: Dispersion relation in the first Brillouin zone of the effective 2D lattice
model. In all figures, we fix kz = −k0, such that the effective 2D lattice model re-
duces to a single Weyl node at zero energy, which coincides with the low energy
continuum model in eq. (1). The cone can then be tilted along kx and ky through
ux and uy , respectively. In the top row, u = 0 and we show the gapping of the Dirac
fermion doublers on the corners of the Brillouin zone. In the bottom row, we fix
∆Elatt
± m∗a2 = 2, ux = 0.5vF , uy = 0 and rotate the coordinate system.

We continue by transforming the Bloch Hamiltonian in eq. (15) to real space in the (x , y)-
plane. This results in the following effective 2D lattice Hamiltonian

ÒHlatt =
1
a

∑

i∈{x ,y}

∑

r ′−r=î

�

ĉ†
r

�

iuiσ0/2+ ivFσi/2−
1

2m∗a
σz

�

ĉr ′ + h.c.
�

+
2

m∗a2

∑

r

ĉ†
r
σz ĉr . (16)

We now promote the constant tilt to a slowly-varying tilt profile ui → ui(r − r0) discretized
on the lattice, where r0 denotes the spatial displacement of the tilt center. We note that the
class of tilt profiles considered in section 3 preserves kz as a good quantum number. To avoid
placing the singularity at a particular lattice node, we consider the average tilt between two
lattice nodes, i.e.,

ÒHlatt =
1
a

∑

i∈{x ,y}

∑

r ′−r=î

ĉ†
r

�

iui

�

r + r ′

2
− r0

�

σ0/2+ ivFσi/2−
1

2m∗a
σz

�

ĉr ′ + h.c.

+
2

m∗a2

∑

r

ĉ†
r
σz ĉr . (17)

Finally, we define the real-space Hamiltonian matrix Hr ,r ′ implicitly through the identity
ÒHlatt =

∑

r ,r ′ ĉ
†
r
Hr ,r ′ ĉr ′ .
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We want to compare wavepacket dynamics in the microscopic lattice model with the results
obtained from the semiclassical equations of motion in eq. (3). For the sake of clarity, these
equations were previously evaluated using a linearized dispersion in section 3. Linearization of
the bands, however, is only valid at low energies. In the lattice model, the curvature of the Weyl
cone can become important. Deviations are expected between the outcomes obtained from
the linearized and lattice model at finite energies even on the level of semiclassics. Therefore,
we first investigate the validity of the predictions derived from the linearized dispersion by
comparing trajectories and lensing angles to those obtained from the full lattice dispersion.
For m∗avF = 1, the energy of the lattice model in eq. (17) reads

Elatt
± =

∑

i

ui(ρ,φ)
a

sin(kia)± ϵlatt(k) , (18)

ϵlatt(k) =
vF

a

q

6− 4 cos(ky a) + 2cos(kx a)(cos(ky a)− 2) , (19)

where ux = u(ρ) cosφ and uy = u(ρ) sinφ. All trajectories presented in section 4 are obtained
by numerically integrating the coupled equations of motion in eq. (3). For simplicity, we here
assume a vanishing Berry curvature Ω= 0, because we have checked that it affects the planar
motion only negligibly.

The lattice dispersion is in general not axially symmetric around the z-axis. This can be
further investigated by the Taylor expansion about a general momentum κ

ϵlatt(k) = veff(κ) · (k −κ) + ϵlatt(κ) +O
�

(k −κ)2
�

, (20)

where we introduced the effective velocity field

veff(κ) =
v2

F

aϵlatt(κ)

�

sin(κx a)(2− cos(κy a))x̂ + sin(κy a)(2− cos(κx a)) ŷ
�

. (21)

The constant ϵlatt(κ) is not important for the dynamics and thus neglected. One can confirm
that veff ≈ vF κ̂ up to third order around κ = 0, and therefore veff = vF k̂ in the vicinity of
ϵlatt = 0. The anisotropy of the dispersion and velocity field increases towards the boundary
of the Brillouin zone. For the linear dispersion, the solutions of vg(rt , k) = u(rt)+vF k̂ = 0 are
clearly momentum independent for a cylindrically symmetric tilt u(r ) = u(ρ)ρ̂ and
u(ρ) = −vF (ρ/ρt)α, giving rise to a horizon: particles can only enter and never leave the
regime ρ < ρt . Instead, for the lattice model, the condition vg(rt , k) = u(rt) + veff(k) = 0
has momentum-dependent solutions rt(k). The horizon associated with a vanishing group
velocity is thus washed out to constraints on positions that are not allowed to be crossed by
specific trajectories with momentum k. For axial tilt profiles, only kz is a conserved quan-
tity, and the constraints are thus dynamic. Although the horizon “melts” due to the curvature
at higher energies, the associated length scales ρt and ρs still mark the mesoscopic length
scale where equation of motion semiclassics breaks down. This is most prominently visible in
section 4.3, where we compare semiclassical trajectories and microscopic simulations.

The isotropic linear approximation remains valid as long as |veff(k(t)) − vF k̂(t)| ≪ vF .
Since the separatrix of the linearized model is an unstable orbit, it cannot be recovered by the
trajectories from the lattice dispersion. For strong lensing the linearized approximation can
only hold if the evolution of k(t) resides in the isotropic region of veff at very low energies
κ≈ 0.

The lattice dispersion has especially noticeable consequences for trajectories crossing the
separatrix, as is shown in panel (a) of fig. 5. At small energies, Em∗a2 ≲ 0.01, the trajectories
obtained using the linearized dispersion match extremely well with the ones found using the
full lattice dispersion. Note that we terminate the semiclassical trajectory for Em∗a2 = 0.01 at
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Figure 5: In panel (a) and (b) we display semiclassical trajectories obtained by the
linearized (dashed line) and lattice (solid lines) dispersion relation for α = 1/2 at
different energies. Initial coordinates are chosen at x = 0, and initial momenta
are ky = 0, with kx > 0 matching the energies indicated in the legend. For the
linearized trajectory, we fixed ky = 0 and kxρt = 2. Panel (a) shows that capture
at low energies turns into slingshot trajectories when we use the lattice dispersion.
For even larger energies, the trajectories continuously become weakly lensed ones.
Panel (b) displays the energy-dependence of lensed trajectories, which shows only
minute deviations. In (c), we show the lensing angle for initial conditions kx = −ky ,
and for (d) for ky = 0. The universal asymptotic decay of eq. (12) is recovered for
all energies.

the center of the tilt, as the equations of motion suffer from numerical instabilities (stiffness)
in the vicinity of the divergence. Since the total energy must be conserved, we introduce a
threshold on the energy error of the simulated trajectories which detects these instabilities.
For all simulations, we accept times which satisfy |(Elatt

± (t)− Elatt
± (0))|< 10−5|Elatt

± (0)|.
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Figure 6: The left panel depicts the microscopic setup described in the main text for
Lx = L y = 19. The lattice sites of the center region are represented by black dots,
and hopping events are depicted by black lines. The purple and green triangles and
lines represent sites and hopping events of the semi-infinite leads, which are coupled
to the edge sites of the center region. We inject particles from the blue lead, which
may leak out in the purple lead regions. The remaining panels display the charge
density in color (arbitrary units) for a Weyl semimetal without tilt, superimposed
with streamlines corresponding to the charge current vector field of a scattering state
with energy Em∗a2 = 0.8 and initial momentum kx a = 0.832 for different system
dimensions. The injected ray of particles remains focused within the scattering region
when the system lengths exceed 400 sites.

Finally, panel (b) of fig. 5 shows lensing trajectories obtained using the lattice dispersion
and the same energies as in panel (a). We find that the lattice dispersion only affects these
trajectories quantitatively. For trajectories traversing far away from the tilt center, the linear
isotropic dispersion is thus always a good approximation. We show this explicitly in fig. 5 pan-
els (b)-(d), for which we present trajectories and deflection angles across all relevant energy
scales of the lattice model. The numerical solutions we obtained from the equations of motion
of the lattice model yield the same universal asymptotic scaling ϕ ∝ (u(ρp)/vF )2 we found
in case of the linearized dispersion at kz = 0 (see eq. (12)).

In conclusion, we find that the semiclassical equations of motion using the lattice dispersion
deform capture into slingshot trajectories at energies away from E = 0, while preserving the
asymptotic behavior for large ρp ≫ ρt . We note that under special circumstances (when
the wavepacket is injected straight into the tilt center, see section 4.3), numerical instabilities
can still occur at high energies. At energies Em∗a2 ∼ 0.1 and boundary conditions that are
not directed straight into the tilt center, we do not find capture trajectories, or numerical
instabilities. However, we still note the presence of slingshot trajectories. Here, we define a
slingshot trajectory as having a lensing angleϕ > π/2. The presence of slingshot trajectories at
high energies serves as a fingerprint for a separatrix and captured trajectories at low energies.
For the comparison between semiclassical trajectories with the microscopic simulations, we
thus use the full lattice dispersion in eq. (3) instead of the linearized dispersion.

4.2 The microscopic setup

For a fully microscopic analysis, we use the KWANT library [53] to model a rectangular setup
consisting of (Lx , L y) lattice sites, coupled to six semi-infinite leads. Within the leads, we
assume a vanishing tilt profile. We choose one semi-infinite lead along the −x̂ direction nar-
row compared to the diameter of the scattering region (≈ 0.1L y), which allows us to inject
wavepackets with a well-defined average initial position and spread along the ŷ-direction. The
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other leads along ± ŷ and ±x̂ fully cover the remaining edge sites, such that injected waves
may move freely and escape the central region.

For a given system size and power-law decay α, unwanted interference effects caused by
reflections from the boundary are suppressed if the radius of the tilt profile satisfies ρt ≪ Lma,
where Lma is the minimum distance between the tilt center and the boundary site where the
injected wave leaks outside the central region. Each one of the semi-infinite leads has 2Nl
bands, where Nl is the number of sites connecting lead l with the central scattering region.
Up to finite-size effects, the bands are the transverse projections of the dispersion presented
in fig. 4. Since we set u = 0 in the leads, the resulting dispersion relations of all leads are
equivalent upon exchanging kx ↔ ky appropriately. Note that the chosen device setup does
not feature topological bound modes since all edge sites are connected to a lead. A small
device setup for Lx = L y = 19 is depicted schematically in fig. 6 (left). For small systems,
the injected wave is spread across the full scattering region after reaching the center of the
scattering region, which is visible in the charge current density, plotted in fig. 6 (center). If
the system length exceeds 400 sites, an injected wave with energy Em∗a2 = 0.8 stays focussed
across the center region, visible in fig. 6 (right). To approach the semiclassical limit, the length
scales set by the tilt must be much smaller than the lattice spacing ρt ≫ a in the microscopic
setup.

Observables such as the charge density and current are computed from the vector consist-
ing of the wavefunction components of a scattering state |ψ〉, i.e., ψr = 〈r |ψ〉. We define the
more general observables

ni,r =ψ
†
rσiψr , Ji,r ,r ′ = i

�

ψ†
r ′(Hr ,r ′)

†σiψr −ψ†
rσiHr ,r ′ψr ′

�

, (22)

corresponding the local density and current with respect to the Pauli matrix σi , respectively.
Because of the finite system size, the wavepacket will never reach its asymptotic deflection an-
gle. To compensate this limitation, we compare the local charge density with the semiclassical
trajectories for different initial conditions, rather than deflection angles. This will be discussed
in the next section.

4.3 Numerical results

In this section, we study numerically the behavior of injected waves upon fixing ρt and reduc-
ing the distance between the injected wavepacket and the tilt center. The analysis is based on
the computation of the local charge density for different scattering states, which are compared
to numerical solutions of the semiclassical equations of motion [using the lattice dispersion
relation, eq. (19)] with equivalent initial conditions. In particular, the initial momenta for the
semiclassical equations of motions are taken from the injecting lead modes, and for the initial
positions we take the edge sites of the injecting lead. To avoid overcrowded figures, we overlay
only seven semiclassical trajectories on top of the charge density. Numerical instabilities in the
solution of the semiclassical equations can also be caught by limiting the trajectory velocity,
vmax < 100 vF . The tilt velocity at u(ρt) = −vF is fixed to the group velocity at energy E = 0.
We acknowledge that this imposes a slight inconsistency: in the lattice computations (semi-
classical and microscopic), the slope of the Weyl cone is not constant and gains a momentum
dependence at higher energies. Consequently, states at different momenta experience a dif-
ferent type II region in general. However, a detailed investigation of the trajectory-dependent
tilt length scales is beyond the scope of this section, and we continue by using static reference
length scales derived from the low-energy theory with constant slope. Furthermore, the width
of the injected wave is on the same order of magnitude as the length scale of the tilt profile. We
thus expect scattering events for short distances between the average position of the injected
wave and the center of the tilt profile.
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Figure 7: Lensing scenarios for different initial conditions. The length scales set by
the tilt, ρt and ρs = 3ρt/2, are marked by purple disks. The energy is fixed to
Em∗a2 = 0.8, such that the initial momenta are ky = 0 and kx a = 0.823. We find
excellent agreement between semiclassical trajectories and microscopic simulations
for large distances between tilt center and injected wave. We find quantitative devi-
ations between semiclassical trajectories and microscopic simulations if the distance
between wave packet and tilt center is on the order of ρs.

Figure 7 displays the local charge density of a scattering state, subject to a tilt profile with
α = 1/2 at a high energy (Em∗a2 = 0.8). The tilt length scales ρt (event horizon analogue)
and ρs = 3ρt/2 (separatrix for α = 1/2) are marked by white semi-transparent disks. Here
and in the following, we omit to superimpose the current vector field, because the streamlines
would be largely overlapping with the semiclassical trajectories outlined as white arrows. We
find excellent agreement when the distance between the center of the wavepacket and the tilt
center is much larger than the separatrix radius ρs. In the vicinity of the separatrix, we find
quantitative deviations between semiclassical trajectories and the trajectory of the microscopic
simulation. For even smaller distances (not shown in fig. 7), the wavepacket is heavily scat-
tered and splits into jets. To investigate these scattering events in greater detail, we consider
a tilt profile that decays faster, which allows us to separate the length scales between tilt and
width of the wavepacket.

In fig. 8, we display various simulations for a tilt profile with α = 1, at a lower energy
Em∗a2 = 0.4. Overall, we find qualitatively the same physical trajectories for all α, but a fast
tilt decay allows us to increase the radiusρt significantly without the introduction of unwanted
boundary reflections due to the non-vanishing tilt at the system-lead interface. For large dis-
tances between wavepacket and tilt center, ρ≫ ρt , we again observe that the injected waves
establish smooth deflections (panels (a), (b) and (c)). The deflection observed in the mi-
croscopic simulation is in excellent agreement with the semiclassical predictions. For smaller
distances, ρ ∼ ρt , shown in panels (d) to (i), the injected wave separates into jets, which
traverse very similar to the predictions from semiclassical trajectories. At locations where dif-
ferent jets are crossing, we observe additional interference patterns. We further observe clear
slingshot trajectories in panels ( f ), (g) and (h), which signal the presence of a separatrix at low
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Figure 8: Local charge density of scattering states for different initial conditions with
α = 1. The length scales set by the tilt, ρt and ρs =

p
2ρt , are marked by purple

disks. The energy is fixed to Em∗a2 = 0.4, such that the initial momenta are ky = 0,
kx a = 0.403. We find excellent agreement between semiclassical trajectories (white
semi-transparent lines) obtained by numerical solutions of the equations of motion,
and the microscopic trajectory (color gradient) mapped out by the local charge den-
sity of the scattering states.

energies. In panels (k) and (l), we display results of a third regime where the distance between
injected wave and tilt center vanishes. In panel (l), we note that only 4 of the 7 semiclassical
trajectories escape the overtilted regime. The remaining 3 trajectories are suffering from the
aforementioned numerical instabilities and the evaluation is stopped in the vicinity of the tilt
center (where the velocity exceeds 100 vF ). Although the dominant jets of the injected wave
that escape the tilt center clearly follow semiclassical trajectories, we additionally observe a
circular domain of size ≈ 0.8ρt surrounding the tilt center where the injected wave is heavily
scattered. Although the size and shape of the scattering domain suggests that it relates to the
radius of an effective analog horizon at high energy scales, we stress that any such statement
is a conjecture at this point, and remains to be investigated in future works.
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In conclusion, our microscopic lattice simulations show that trajectories satisfying the semi-
classical equations of motion provide an excellent description of the motion of wavepackets
sufficiently far from the strongly tilted region. This means that the physically transparent
picture of motion in a gravitational field can be used to engineer electronic lenses realizing
the solid state analogue of gravitational lensing. At high energies, the low energy description
breaks down partially, and quantitative agreement is only recovered if we account for the lat-
tice dispersion in eq. (3). At the same time, our simulations show that this analogy breaks
down when the wavepacket comes too close to the strongly overtilted region mimicking the
black hole (the critical distance here is of the order of the separatrix discussed in section 3).
On these lengths scales, lattice effects break the analogy to black hole physics. Put in simple
terms, the effective black hole fades away if it is probed closely, much like a mirage.

5 Motion along the cylinder axis: Berry curvature, spin dynamics
and transverse shift

In section 3, we analyzed semi-classical equations of motion in Weyl semimetals with tilt pro-
files having axial symmetry, and focused on the dynamics in the (ρ,φ)-plane perpendicular
to the cylinder axis. This was motivated by the observation that for initial momentum kz = 0
along the z-direction, ż decouples from the other coordinates. We want to conclude by also
analyzing the motion along z based in the semiclassical equations of motion for a linearized
spectrum (keeping kz = 0, which implies initial ż = 0 asymptotically far from the strongly
tilted region).

From eq. (4), we find

ż = −
χ

2k3

�

∂ u
∂ ρ
−

u
ρ

�

(k · ρ̂)
Lz

ρ
. (23)

This equation shows that for kz = 0, the motion along z is exclusively due to the anomalous
velocity originating from the finite Berry curvature of Weyl semimetals, i.e., the term k̇ × Ω
in eq. (4) (this is the only term that explicitly depends on the chirality χ). Depending on
the origin of k̇, this term has been connected to a chirality-dependent Hall effect [54, 55],
a Hall effect induced by strain and an applied electric field [56] and the topological Imbert-
Federov effect [57]. Transverse shifts have also be found in impurity scattering [58]. We note
that other Berry curvature components, e.g. Ωr k and Ωr r , could also lead to transverse shifts
when the Fermi velocity changes [54, 55]. The Hall effect and transverse response has also
been reported in tilted Weyl semimetals with applied electromagnetic fields [59, 60] and for
tunneling across potential barriers [61]. In the gravitational context, the transverse shift of
photons travelling in a curved spacetime is known as the gravitational spin Hall effect [62–64].
Our analysis extends the discussion of transverse shift to the case of inhomogeneously tilted
Weyl nodes.

To connect with section 3, we stress that eq. (23) shows the radial position of the separatrix
not to be affected by Berry curvature effects. The motion of a wavepacket on the separatrix,
however, is strongly affected: depending on the chirality, the wavepacket will either spiral
upwards or downwards along the z direction while staying at a fixed radius (this is shown
explicitly in fig. 10).

For the case of lensing, a wavepacket approaching from and escaping to infinity undergoes
a finite shift along the z-axis during its interaction with the tilt profile as shown in fig. 9. The
asymptotic value of the transverse shift can be calculated from ∆z =

∫

dρ ż/ρ̇. An explicit
evaluation for lensed trajectories that stay sufficiently far away from the tilt center such that
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Figure 9: Transverse shift for χ = +1. In panels (a) and (b), we show the x , y and
y, z projections of an example trajectory, corresponding to α = 1/2, ρp/ρt = 2.23
and ∆z = −0.512. In (c), we show the transverse shifts −∆z for chirality χ = +1,
and compare results obtained by numerically integrating the semiclassical equations
of motion (dots) with numerical integration of eq. (C.6) (solid lines) and the approx-
imation in eq. (24) (dotted line) for different α (different colors).

ρp/ρt ≫ 1 is given in appendix C. We find

∆z ≈ −
χ

Lz
ρp

u(ρp)2

v2
F

p
π Γ

�

α+ 1
2

�

2 Γ (α)
. (24)

The transverse motion due to Berry curvature effects also manifests in transport as non-
equilibrium “anomalous currents” when the system is coupled to external magnetic fields and
mechanical rotation. These lead to the chiral magnetic and the chiral vortical effects in Weyl
systems and have been extensively studied in the literature [65–72].

5.1 Transverse shift, spin precession, and local Lorentz boosts

As mentioned in the last paragraphs, the motion along z results from the anomalous velocity
k̇ ×Ω(k) in eq. (3). The physics of the anomalous velocity is in fact intricately related to the
topological spin-transport of massless particles [73–77]. To appreciate this connection, we
recall that the semiclassical equations of motion we analyze here are the ones of a massless
spinning particle, i.e a Weyl fermion [78,79].

An elementary calculation shows that the spin evolves as

d s
d t
=
χ

2
(k × k̇)

k3
× k =ωsp × s , (25)

where we have introduced a frequency ωsp = (k × k̇)/k2. The dynamics of s thus takes the
form of a precession. Specifically for the case of an axially symmetric tilt, one finds (for kz = 0)

ωsp =
(k · ρ̂)
ρ k2

�

∂ u
∂ ρ
−

u
ρ

�

Lz ẑ . (26)

Using the explicit form of the Berry curvature allows one to directly connect the anomalous
velocity ṙA to this precession as

ṙA = k̇ ×Ω= −
χ

2 k
ωsp . (27)
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Figure 10: Trajectories for different chiralities with initial coordinates chosen
from the separatrix. We take α = 1/2, and choose (x , y, z)/ρt = (3/2,0, 0),
(kx , ky , kz)ρt = (

p
2/3, 1/3,0). The black and gray cylinder represent the ana-

log horizon and photon cylinder. The purple and green trajectory corresponds to
χ = +1,−1, respectively, and orthographic projections from ±ẑ are shown in the top
row. In panels (a) and (b), we show that planar components of the coordinates are
identical for the two chiralities, and oscillate around the ẑ axis. The transverse mo-
tion, the planar spins, and the planar angular momenta are sensitive to the chirality
of the Weyl node (panels (c) and (d)). The oscillation of planar moments results in
a precession of the spin around the ẑ axis (panel (c)). The planar angular moments
also show an oscillatory behavior, but increase in magnitude (panel (d)).

Thus the transverse shift from the anomalous velocity is intricately related to the spin preces-
sion. The spin dynamics induced through the tilt profile contributes to the evolution of the
orbital angular momentum through the anomalous velocity term. The dynamics of position,
momentum, spin and orbital angular momentum of both chiralities for a tilt profile with axial
symmetry are shown in fig. 10 for a trajectory from the separatrix and in fig. 11 for a lensing
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scenario, both with kz = 0. The sz , Lz components are conserved and the spin and angular
moment dynamics is restricted to the planar components sx , sy and Lx , L y in both cases. For a
trajectory chosen from the separatrix, shown in fig. 10 (panel (a)), the two chiralities wind in
opposite directions along the z-axis. The spin precession, caused by the planar precession of k,
is explicitly shown in panels (b) and (c). The dynamics of orbital angular momenta is shown
in panel (d). Since the orbital angular momentum is not conserved along the planar direc-
tions, the absolute magnitude of L increases with time. The dynamics of a lensing trajectory
(see fig. 11) indicates that there is a slim window, confined around the periapsis, where non-
conserved components of momentum, spin, and angular momentum undergo a rapid change.
The transverse shift along z-direction asymptotes to the value calculated in eq. (24) and pre-
sented in fig. 9. A notable feature in fig. 11 panels (a), (c) and (d) are the crossings of z, sx ,
sy , Lx and L y for trajectories of opposite chiralities. As can be seen in panels (c) and (d), an
incoming trajectory with spin along one of the planar components undergoes an overall flip
and obtains a higher orbital angular momentum as it escapes out to infinity.

The connection between the anomalous velocity and spin precession has long been dis-
cussed in the context of relativistic quantum mechanics. For Weyl fermions, relativistic
quantum-mechanical particles with spin, the fundamental dynamical quantities have precisely
been identified as being momentum and spin [80,81]. When deriving semiclassical equations
of motion for position and momentum as seen from a lab-frame, an anomalous velocity term re-
lated to the spin evolution is obtained [74]. More generally, Lorentz covariance of the relativis-
tic Weyl equation, its inheritance to the Weyl Hamiltonian and the ensuing consequences in the
semiclassical dynamics have been topics of fundamental importance [66,73–75,78,79,82,83].
They have been extensively studied in their relation to topological spin transport [77,84], the
spin Hall effect of fermions [85], photons [63, 64, 86] and phonons [87], the Imbert-Federov
effect, and transverse shifts [88].

An alternative viewpoint on the connection between the anomalous velocity and spin
physics is offered by local Lorentz boosts. A key ingredient in the spin dynamics is a nonzero k̇,
see eq. (25). In our case, k̇ is generated by the spatial variation of the tilt profile. The key ob-
servation is now that a Weyl Hamiltonian with a tilt u is equivalent to applying Lorentz boosts
with velocity u on a usual untilted Weyl system. This fact has already been used in previous
studies of transport phenomena in tilted WSMs [89–91]. A particle moving in a spatially vary-
ing tilt profile can therefore be understood as undergoing a local Lorentz boost with u(r ) at
every point r as it moves through the tilt profile. Such a continuous sequence of non-collinear
Lorentz boosts results in a rotation which underlies the Thomas precession of an electron, and
its relation to Berry curvature in semiclassical dynamics has been noted earlier [74].

6 Summary and Conclusions

In summary, we have studied electron trajectories in Weyl semimetals with a spatially varying
tilt profile. We have used and compared three different approaches to calculating such tra-
jectories for a cylindrically symmetric tilt profile: (i) in the limit where the spectrum near the
Weyl node can be approximated as linear, the semiclassical equations of motion can be mapped
onto geodesic equations for relativistic particles moving in an effective curved spacetime. Go-
ing beyond this linear approximation, we have investigated (ii) a high-energy regularization of
semiclassical trajectories using a particular lattice model. Finally, (iii) we have compared these
semiclassical trajectories to fully quantum-mechanical scattering states which we calculated
numerically for a microscopic lattice model.

For an axially symmetric tilt profile featuring an effective event horizon, the geodesic equa-
tions predict the existence of an analog of a “photon sphere” of a black hole, i.e., an unstable
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Figure 11: Lensing trajectories for different chiralities. We take α= 1/2, and choose
(x , y, z)/ρt = (0,−20,0) and (kx , ky , kz)ρt = (0.167, 1, 0). The black and gray cylin-
der represent the analog horizon and photon cylinder. The purple and green trajec-
tory corresponds to χ = +1,−1, respectively, and orthographic projections from ±ẑ
are shown in the top row. In panels (a) and (b), we see that the planar components of
position and momenta are identical for the two chiralities. The signs of the transverse
motion along ẑ, the planar components of spin, and the orbital angular momentum
are directly connected to the chirality of the Weyl node. The planar spin components
of a trajectory approaching the origin are flipped in the vicinity of the periapsis, and
the orbital angular momentum is increased (panels (c) and (d)).

orbit which separates captured trajectories from lensed trajectories, which we term the “pho-
ton cylinder”. We have confirmed that the solution of the geodesic equations provides an
excellent match with the quantum-mechanical solutions as long as the particles stay far away
from this photon cylinder. In particular, we showed that the deflection angle computed from
trajectories based on the lattice dispersion feature the same universal asymptotic scaling of the
deflection angle across all relevant energy scales. Upon closer approach to the photon cylinder,
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geodesics start to become inaccurate, but semiclassical trajectories still provide an excellent
approximation provided that they are calculated using the lattice dispersion instead of the
linearized spectrum. The fact that the tilt profile acts like an analog black hole on electron
trajectories far away from it, but that this analog black hole disappears upon closer approach
has led us to dub this phenomenon a “black-hole mirage”.

Our results extend beyond black-hole analogies in semimetals, since we consider more
general tilt profiles which do not reflect Schwarzschild-like metrics. For the linearized disper-
sion, the general tilt profile gives rise to a horizon, which is “melted” by curvature effects in the
lattice model. One of our main conclusions is that the semiclassical approximation based on
the linear dispersion breaks down well before the particles reach the mesoscopic length scale
ρt set by the tilt profile, while the semiclassical approximation based on the lattice dispersion
still remains accurate.

Finally, we have studied the effect of the Berry curvature which is necessarily present in
systems with Weyl nodes. Focusing on cylindrically symmetric tilt profiles and wavepackets
with incident velocity normal to the symmetry axis (kz = 0), we have shown that the in-plane
projection of the trajectories is unaffected by the Berry curvature term. In general, the presence
of Berry curvature leads to an out-of-plane deflection of the trajectories which is proportional
to the chirality of the Weyl cone. Most of the results we presented considered systems with only
one Weyl node at the Fermi level. Such band structures can be realized in materials with broken
inversion and time-reversal symmetry, in which case a pair of Weyl nodes can be located at
different momenta and different energies. However, even in the case of two Weyl nodes at the
same energy, i.e., when inversion symmetry is intact, our results remain essentially unchanged.
Since the in-plane motion is unaffected by the Berry curvature for kz = 0, it remains identical
to the case of a single Weyl cone. If the two nodes are tilted with the same tilt profile u(ρ), as
considered in the main text, the out-of-plane motion will be opposite for electrons of opposite
chiralities. This means that a cylindrically symmetric tilt profile can act as a chirality-based
electron beam splitter. If the nodes are instead tilted in opposite directions, u(ρ)→ χ u(ρ),
eq. (11) and eq. (23) show that the out-of-plane motion will be identical for electrons of
opposite chiralities, while the lensing angle remains unchanged.

Spatially-varying tilt profiles can be experimentally realized using, e.g., a magnetic field
texture or locally applied strain. For such devices it would be necessary to investigate to which
extent impurity scattering affects the bulk transport in these systems. We showed that electron
trajectories can be controllably deflected in such tilt profile, potentially enabling “tiltronics”
applications.

Note added – While preparing this manuscript we became aware of a related work [92]
that considers an alternative approach to gravitational lensing in a similar system. As far as
our analyses overlap, they reach similar conclusions.
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A Relationship between the geodesic equation and semiclassical
equations of motion without anomalous terms.

In this appendix the relation between a Weyl semimetal Hamiltonian with spatially inhomo-
geneous tilt, and Weyl fermions in curved spacetimes is reviewed [17–27, 29]. The mapping
at the level of the Hamiltonian can be established by identifying the tetrad corresponding
to the metric with the effective tetrad in a Weyl semimetal [17, 18, 20, 26]. Here we take
the simpler approach of demonstrating the equivalence at the level of the dispersion relation,
specifically for a metric gµν with signature (−+++) written in Painlevé-Gullstrand form. The
four vector is denoted by xµ = (c t, x ) (c is the speed of light). We are specifically interested in
the Schwarzschild black hole metric written in Painlevé-Gullstrand coordinates (t, r ), which
satisfies:

ds2 = gµνd xµd xν = −
�

1−
u(r )2

c2

�

c2d t2 − 2u(r ) · dr d t + dr 2 . (A.1)

Here, u(r ) has an interpretation of a local free-fall velocity field under the gravitation of a
black hole. The matrix representation of the metric gµν can be identified as

g =
1
c







u(r )2/c − c −ux(r ) −uy(r ) −uz(r )
−ux(r ) c 0 0
−uy(r ) 0 c 0
−uz(r ) 0 0 c






. (A.2)

For massless Weyl particles, the energy momentum relation is given by gµνkµkν = 0, where
kµ = (−E/c, k) is the momentum four-vector and gµν is the inverse metric. For the acoustic
metric, we find

0= gµνkµkν = k2 −
(E − u(r ) · k)2

c2
. (A.3)

The two solutions are the dispersion relation of a tilted Weyl cone

E± = u(r ) · k ± c|k| . (A.4)

The tilt in the Weyl cone due to the nodal tilt profile is then interpreted as the tilt of the local
lightcone structure at each point in a curved spacetime [17]. Expressed in spherical coordi-
nates of the Schwarzschild spacetime, the velocity field reads explicitly u(r ) = −c

p

rH/r r̂ ,
where rH = GM/c2 is the radius of the event horizon, G denotes the universal gravitational
constant and M corresponds to the mass of a black hole. In electronic systems, the analogy
is readily established by replacing c → vF , and a reinterpretation of rH → rt , which marks
the boundary between a type I and type II region where the Weyl cone is overtilted. In the
main text, we consider tilt profiles with axial symmetry, but we argue below that the in-plane
motion resulting from the geodesic equation is indeed identical if Berry curvature terms do
not contribute to the semiclassical equations of motion.

While the above equivalence between dispersions was shown for a specific metric, we
demonstrate the equivalence between Hamilton’s equations and the geodesic equation, in the
absence of electromagnetic fields and for massless particles. The Hamiltonian is given by [46]

H({xα(τ)}, {kβ(τ)}) =
1
2

gµν({xα(τ)})kµ(τ)kν(τ) , (A.5)

24

https://scipost.org
https://scipost.org/SciPostPhys.14.5.119


SciPost Phys. 14, 119 (2023)

where {xµ(τ)} and {kµ(τ)} are the canonical variables for the coordinates and momenta, and
we assume that the metric gµν depends only on the coordinates {xµ}. Hamilton’s equations
are

d xµ

dτ
=
∂H
∂ kµ

= gµνkν , (A.6)

dkµ
dτ
= −

∂H
∂ xµ

= −
1
2
(∂µgνσ)kνkσ , (A.7)

where we use the notation ∂µgνσ = ∂ gνσ

∂ xµ . For later convenience, the first equation is equivalent
to

kµ = gµν
d xν

dτ
. (A.8)

The total derivative of the first equation reads

d2 xµ

dτ2
= gµν

dkν
dτ
+ (∂λgµν)

d xλ

dτ
kν = gµν

dkν
dτ
+ (∂λgµν)

d xλ

dτ
gνσ

d xσ

dτ
.

Using the second equation, we get

d2 xµ

dτ2
= −

1
2

gµν(∂νgσλ)kσkλ + (∂λgµν)gνσ
d xλ

dτ
d xσ

dτ
. (A.9)

After inserting eq. (A.8), we arrive at

d2 xµ

dτ2
= −

1
2

gµν(∂νgσλ)gσαgλβ
d xα

dτ
d xβ

dτ
+ (∂λgµν)gνσ

d xλ

dτ
d xσ

dτ
. (A.10)

From gµνgνσ = δσµ follows ∂σgµν = −gµα(∂σgαβ)gβν, which leads to

d2 xµ

dτ2
=

1
2

gµνgσγgσα(∂νgγκ)g
κλgλβ

d xα

dτ
d xβ

dτ
− gµα(∂λgαβ)g

βνgνσ
d xλ

dτ
d xσ

dτ
(A.11a)

=
1
2

gµν(∂νgαβ)
d xα

dτ
d xβ

dτ
− gµα(∂λgασ)

d xλ

dτ
d xσ

dτ
(A.11b)

=
1
2

gµν
�

(∂νgαβ)− 2(∂αgνβ)
�d xα

dτ
d xβ

dτ
(A.11c)

=
1
2

gµν
�

(∂νgαβ)− (∂αgνβ)− (∂β gνα)
�d xα

dτ
d xβ

dτ
(A.11d)

= −Γµ
αβ

d xα

dτ
d xβ

dτ
, (A.11e)

where Γµ
αβ
= gµν(∂αgνβ + ∂β gνα − ∂νgαβ)/2 are the Christoffel symbols. This equation is

directly the related to the acceleration, which is given as the covariant derivative

aµ(τ) =
d xα

dτ
∇α

d xµ

dτ
=

d xα

dτ

�

∂α
d xµ

dτ
+ Γµ

αβ

d xβ

dτ

�

=
d2 xµ

dτ2
+ Γµ

αβ

d xα

dτ
d xβ

dτ
. (A.12)

We therefore recognize that (i) Hamilton’s equations are equivalent to the geodesic equation
and (ii) curves which satisfy the geodesic equation are those with a vanishing acceleration
aµ(τ) = 0. To further establish a connection between Hamilton’s equations and the semiclas-
sical equations of motion, we need to change the parametrization from τ to t, which, as we
demonstrate in the following, results in τ → t and H → E in Hamilton’s equations for the
spatial components of xµ and kµ.
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Assuming g00 ̸= 0, the equation

H
�

E, {x i}, {ki}
�

=
E2

2c2
g00 −

E
c

g0iki +
1
2

g i jkik j = 0 , (A.13)

has two solutions for the energy E({x i}, {ki}). From Hamilton’s equations, we have

d t
dτ
=

1
c

d x0

dτ
=

1
c
∂H
∂ k0

= −
∂H
∂ E

, (A.14)

which contributes to the partial derivative of eq. (A.13) with respect to ki , i.e.

0=
∂H
∂ E

∂ E
∂ ki
+
∂H
∂ ki

= −
d t
dτ
∂ E
∂ ki
+
∂H
∂ ki

. (A.15)

Using eq. (A.6), we arrive at

d x i

dτ
=
∂ E
∂ ki

d t
dτ

, (A.16)

in equivalence to the semiclassical equations of motion for the spatial components

d x i

d t
=

d x i

dτ

�

d t
dτ

�−1

=
∂ E
∂ ki

. (A.17)

Similarly, from the partial derivative of eq. (A.13) with respect to x i , we get

0= −
∂ E
∂ ki

d t
dτ
+
∂H
∂ x i

, (A.18)

resulting in the semiclassical equations of motion for the momenta

dki

d t
=

dki

dτ

�

d t
dτ

�−1

= −
∂ E
∂ x i

. (A.19)

For a spherically symmetric tilt profile u(r ) = u(r)r̂ , the in-plane dynamics (θ = π/2)
is identical to the dynamics found for the axially symmetric case. This can be seen if the
Hamiltonian in eq. (A.5) is expressed in spherical coordinates. The transformation is read-
ily performed by g → J T gJ , where J is the Jacobian of the coordinate transformation
(x , y, z)→ (r sin(θ ) cos(φ), r sin(θ ) sin(φ), r cos(θ )). We get

g →







u(r)2/c2 − 1 −u(r)/c 0 0
−u(r)/c 1 0 0

0 0 r2 0
0 0 0 r2 sin2(θ )






, (A.20)

which results in

ds2→−
�

1−
u2(r)

c2

�

c2d t2 − 2u(r)drd t + dr2 + r2(dθ2 + dφ2 sin2(θ )) . (A.21)

Using the inverse of the transformed metric, eq. (A.5) yields

H→ 1
2

�

k2
1 +

k2
2

r2
+

k2
3

r2 sin(θ )2
−
(E − k1u(r))2

c2

�

, (A.22)
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where ki are the canonical momenta. They are related to kr , kθ and kφ through the dispersion
relation, the solutions of setting eq. (A.22) equal to zero, i.e.

E± = k1u(r)± c
Ç

k2
1 +

�

k2
2 + k2

3 csc2(θ )
�

/r2 . (A.23)

We identify k1 = kr and k2
2 + k2

3 csc(θ ) = r2(k2
θ
+ k2

φ
), where kr = k · r̂ , kθ = k · θ̂ , kφ = k · φ̂.

By definition, k2
x + k2

y + k2
z = k2

r + k2
θ
+ k2

φ
, and u(r ) · k = u(r)kr . Due to rotational symmetry,

angular momentum is conserved. We impose L = Lz ẑ, with Lz = rkφ , which allows us to set
dθ/dτ = k2/r2 = 0 (and therefore k2 = 0) and thus constraints the motion onto the x , y
plane, i.e.

dφ
dτ
=

k3

r2
, (A.24)

dr
dτ
= kr

�

1−
u(r)2

c2

�

+ E
u(r)
c2
= ±

1
c

√

√

√

E2 −
k2

3

r2

�

c2 − u(r)2
�

. (A.25)

Furthermore, from Hamilton’s equations we find that k3 is a conserved quantity, and identify
k3 = Lz as the angular momentum. Compared to eq. (8), note the absence of the factor
(d t/dτ)−1 = (∂H/∂ E)−1 = ±c/

Æ

k2
r + L2

z /r
2, which results in a dynamic effective mass when

the equations are written in real time. Combining the above equations we get

dφ
dr
= ±

c Lz

r2
Æ

E2 − ϵp,eff(r)
, (A.26)

which matches with eq. (10) after replacing c → vF and r → ρ. In spherically symmetric
spacetimes, the separatrix always lies on a sphere, which in the context of black holes is known
as the “photon sphere”. For individual trajectories, the separatrices are great circles on the
photon sphere. When we include Berry curvature effects, we find that the separatrix is still
located on the photon sphere, but moves away from a great circle.

B Calculation of deflection angle for a power law tilt profile

In this appendix, we calculate the deflection angle for the case of lensing in the presence of a
tilt profile of the form u(ρ) = −vF (ρt/ρ)α. The deflection angle is to be calculated from

dφ = ±
vF Lz dρ

ρ2
q

E2
+ − ϵp,eff(ρ)

. (B.1)

In the following, the deflection angle will be expressed in terms of the tilt at the periapsis
ρ = ρp, the point of closest approach to the center of the tilt profile. The tilt at the periapsis
is given by u2

p = u(ρp)2 = v2
F (ρt/ρp)2α. The periapsis can be simply expressed in terms of the

parameters Lz and E+, making use of the condition

dρ
dφ

�

�

�

�

ρ=ρp

= 0 , (B.2)

which implies that

0=
�

dρ
dφ

�2
�

�

�

�

ρ=ρp

=
�

E+
Lz

�2

ρ4
p −ρ

2
p

�

v2
F − u2

p

�

, (B.3)
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and thus
�

E+
Lz

�2

=
1
ρ2

p

�

v2
F − u2

p

�

. (B.4)

Therefore, the integral for the deflection angle ϕ can be written as in eq. (11), namely,

π+ϕ =

∫ φ1+π+ϕ

φ1

dφ =

 

−
∫ ρp

∞
+

∫ ∞

ρp

!

vF
È

1
ρ2

p

�

v2
F − u2

p

�

ρ4 −ρ2
�

v2
F − u(ρ)2

�

dρ

= 2

∫ ∞

ρp

vF
È

1
ρ2

p

�

v2
F − u2

p

�

ρ4 −ρ2
�

v2
F − u(ρ)2

�

dρ , (B.5)

where ϕ = φ1−φ2 as shown in fig. 3. We can now expand the integrand for lensing trajecto-
ries. To leading order in ρt/ρp≪ 1, we find

π+ϕ ≈ 2

∫ ∞

ρp

dρ





ρp

ρ
q

ρ2 −ρ2
p

+
ρp

�

u2
p ρ

2 − u2ρ2
p

�

v2
F ρ

�

ρ2 −ρ2
p

�3/2



 . (B.6)

The first term gives exactly π. For the second term, we change the integration variable to the
dimensionless s = ρ/ρp to obtain the final expression for the lensing angle

ϕ ≈
u2

p

v2
F

∫ ∞

1

ds
s2 − s−2α

s (s2 − 1)3/2
=

u2
p

v2
F

p
π Γ

�3
2 +α

�

Γ (1+α)
, (B.7)

valid for ρt/ρp≪ 1.

C Calculation of the transverse shift for a power law tilt profile

In this appendix, we compute the transverse shift∆z for kz = 0 (as fixed throughout the main
text). The starting point are eq. (6) and eq. (7a), from which we obtain

dz
dρ
=

ż
ρ̇
= −

χ

2 k3

k·ρ̂
ρ

�

∂ u
∂ ρ −

u
ρ

�

Lz

u+ vF
k·ρ̂

k

. (C.1)

To make progress, we furthermore use

E+ = u k · ρ̂ + vF k , (C.2)

k2 = (k · ρ̂)2 + L2
z /ρ

2 , (C.3)

to express k · ρ̂ and k in terms of the conserved quantities E+ and Lz .
We find the pairs of solutions (k · ρ̂, k)→ (k(σ)ρ , k(σ)) with σ = ±1 and

k(σ)ρ =
E+ u−σ

q

L2
z u2 v2

F−L2
z v4

F+E2
+ v2

F ρ
2

ρ

u2 − v2
F

, (C.4)

k(σ) =

√

√

√

�

k(σ)ρ
�2
+

L2
z

ρ2
. (C.5)
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Figure 12: Coordinates of an arbitrary lensing trajectory. Spatial coordinates are
plotted in panel (a), while panel (b) displays the two roots k(σ)ρ , together with kρ
of the trajectory. At the periapsis (marked by a black line), kρ switches between the
two branches.

The two signs of σ define the expressions of k(σ)ρ and k(σ), while approaching (σ = +1) and
escaping (σ = −1) from the strongly tilted region (see fig. 12). Recalling that the point of
closest approach for a lensed trajectory is the periapsis ρp, the total transverse shift is given
by

∆z = −
∫ ρp
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. (C.6)

Next, we use that u(ρ) = −vF (ρt/ρ)α, as well as E+ =
|Lz |
ρp

Ç

v2
F − u2

p [see eq. (B.4)]. We
furthermore expand the integrand for lensed trajectories that stay far from the tilt center, i.e.,
trajectories for which ρt/ρ≪ 1, which implies u, up ≪ vF . To leading order, the integral can
then be approximated as

∆z ≈ χ
∫ ∞

ρp

dρ
u2 (1+α)ρ2

p (ρ
2 − 2ρ2

p)

Lz v2
F ρ

3
q

ρ2 −ρ2
p

. (C.7)

It is finally helpful to bring the integration variable to a dimensionless form by setting s = ρ/ρp,
which yields
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∆z ≈ χ
(1+α)
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�
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�2α ∫ ∞
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ds
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�

s2 − 2
�

p
s2 − 1

= −χ
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�
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πα

2
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�
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= −χ
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p
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π Γ

�

α+ 1
2

�

2 Γ (α)
, (C.8)

valid for ρt/ρp≪ 1.
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