
1

Outage Constrained Robust Beamforming
Optimization for Multiuser IRS-Assisted

Anti-Jamming Communications With Incomplete
Information

Yifu Sun, Kang An, Junshan Luo, Yonggang Zhu, Gan Zheng, Fellow, IEEE, and Symeon Chatzinotas, Senior
Member, IEEE

Abstract—Malicious jamming attacks have been regarded as
a serious threat to Internet of Things (IoT) networks, which can
significantly degrade the quality of service (QoS) of users. This
paper utilizes an intelligent reflecting surface (IRS) to enhance
anti-jamming performance due to its capability in reconfiguring
the wireless propagation environment via dynamicly adjusting
each IRS reflecting elements. To enhance the communication
performance against jamming attacks, a robust beamforming
optimization problem is formulated in a multiuser IRS-assisted
anti-jamming communications scenario with or without imperfect
jammer’s channel state information (CSI). In addition, we further
consider the fact that the jammer’s transmit beamforming can
not be known at BS. Specifically, with no knowledge of jammers
transmit beamforming, the total transmit power minimization
problems are formulated subject to the outage probability re-
quirements of legitimate users with the jammer’s statistical CSI,
and signal-to-interference-plus-noise ratio (SINR) requirements
of legitimate users without the jammer’s CSI, respectively.
By applying the Decomposition-based large deviation inequal-
ity (DBLDI), Bernstein-type inequality (BTI), Cauchy-Schwarz
inequality, and penalty non-smooth optimization method, we
efficiently solve the initial intractable and non-convex problems.
Numerical simulations demonstrate that the proposed anti-
jamming approaches achieve superior anti-jamming performance
and lower power-consumption compared to the non-IRS scheme
and reveal the impact of key parameters on the achievable system
performance.

Index Terms—Internet of Things (IoT), anti-jamming commu-
nications, intelligent reflecting surface (IRS), robust beamforming
optimization, imperfect channel state information (CSI) .
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INTERNET of Things (IoT) technology realizes massive
connectivity for the unprecedented proliferation of devices,

where a massive number of wireless devices are deployed
to connect to a base station (BS) that is capable of sensing,
communications and computations [1], [2]. However, due to
the inherent propagation properties of wireless channels, IoT
networks are increasingly vulnerable to jamming attacks [3].
In such attacks, a malicious third-party node injects jam-
ming power into the legitimate users, hindering the legitimate
transmissions by decreasing the signal-to-interference-plus-
noise ratio (SINR) [4]. Thus, anti-jamming ability is an vital
requirement for IoT networks.

In the past decades, various technologies have been devel-
oped to tackle the jamming attacks in IoT networks, such as
channel hopping, power control, adaptive nulling antennas.
Channel hopping is based on the concept that the cooper-
ative communications parties switch their current working
channel in a pseudorandom fashion to avoid the jamming
signal’s [5]–[12]. In [5], [8]–[10], game theory based channel
hopping approaches were presented to obtain he optimal
channel selection strategies, which model and analyze the
interaction between users and jammers. For example, the
authors in [5] proposed a defending strategy against jam-
ming attacks in health monitoring IoT networks, where the
orthogonal frequency-division multiplexing (OFDM) system
and slow fading channels were considered. The authors in
[11], [12] employed reinforcement learning (RL) to achieved
the optimal channel hopping scheme without the knowledge
of the jamming model. However, channel hopping does not
optimally utilize the available spectrum and experiences the
difficulty in reconstructing the communication links. Besides
channel hopping, power control is another efficient anti-
jamming approaches [13]–[16]. In [13]–[15], game-theoretic
based optimal power control policies were obtained to combat
the jamming attacks directly. An optimal transmit power
scheme was provided in [16] to optimize the system rate
by meeting the requirements of quality of service (QoS) for
users. Netherless, owing to the limitation of user’s energy
supply, power control is only suitable for cases where the
jamming power is limited. Moreover, adaptive nulling antennas
technique can also be used to eliminate jamming signal, where
the users employ a spatial filter to position the jamming signal
is in the null space of the received signal [17], [18].
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To address the abovementioned shortcomings, inteligent
reflecting surface (IRS), which is also known as large in-
telligent surface (LIS) or reconfigurable intelligent surface
(RIS), has been proposed as a promising technique to improve
the anti-jamming performance in the IoT networks [19]. In
particular, IRS is a reconfigurable metasurface consisting of
many low-cost passive reflecting elements, where each element
can independently reconfigure the propagation environment
of the electromagnetic waves by imposing an phase shift
and/or amplitude to the incident signal [20], [21]. As a result,
IRS can enhance the the spectral and energy efficiency via
jointly designing the active beamforming at the BS and passive
beamforming at the IRS [22]–[25]. The works in [23] and [25]
investigated the enhancement of IRS-assisted communications
systems in fifth-generation (5G) communication. Specifically,
aiming to improve the coverage and energy-efficiency of
wireless network, the transmit beamforming and phase shift
were jointly optimized to minimize the transmit power. In
[26]–[29], the authors used IRS to maximize the secrecy rate in
the presence of unauthorized eavesdroppers. In [30], aimming
to maximize the weighted sum rate in the IRS-aided THz
MIMO-OFDMA IoT networks, the authors proposed a robust
beamforming and reflection matrix design scheme to optimize
hybrid analog/digital beamforming. The authors in [31] first
utilized the IRS to improve the anti-jamming performance of
wireless communication, where the system achievable rate was
maximized against jamming attacks. However, the aforemen-
tioned contribution [31] was based on the assumption that the
perfect jammer’s CSI and transmit beamforming are available
to the transmitter. Unfortunately, due to the lack of cooperation
between the legitimate users and jammers, it is challenging to
obtain the perfect jammer’s CSI and transmit beamforming
[32]. To address this issue, in our previous work [33], we
investigated an IRS-enhanced secure communication system
for protecting the wireless transmission from both jamming
and eavesdropping attacks, where the third-party nodes CSI
is not perfectly known at the BS and the jammers transmit
beamforming can not be obtained by the syetem. Nevertheless,
[33] only considered the single-user case with bounded CSI
error model, which is not applicable to the multi-user anti-
jamming communications case with the statistical CSI model.

Currently, there are limited contributions related to the IRS-
based wireless networks with imperfect CSI [34]–[39]. In [34]
and [35], the authors investigated the robust beamforming
design based on both the statistical CSI and the bounded
CSI error models. In [38], under the imperfect CSI of the
direct and cascaded channels, the authors investigated the
robust beamforming design in a secrecy multiple-input single-
output (MISO) network aided by the intelligent reflecting sur-
face (IRS) with simultaneous wireless information and power
transfer (SWIPT), where the minimum robust information
rate among the legitimate information receivers (IRs) was
maximized. In addition, under the assumption that the bounded
CSI can be obtained by the access point (AP), the authors in
[39] investigated robust and secure MISO downlink commu-
nications assisted by a self-sustainable intelligent reflection
surface (IRS), which can simultaneously reflect and harvest
energy from the received signals.

Motivated by these aforementioned observations, this paper
investigates the robust beamforming at both BS and IRS in
multiuser anti-jamming communications system. The main
contributions of this paper are summarized as follows:
• A generalized model of robust optimization design in

IRS-based multiuser anti-jamming system is proposed for
the cases with statistical jammer’s CSI or without jam-
mer’s CSI. In addition, we further consider the fact that
the jammer’s transmit beamforming can not be known
at BS. Specifically, the active transmit beamforming at
base station (BS) and the passive reflecting beamforming
at IRS are jointly optimized to minimize total transmit
power with incomplete information, while meeting the
unit-modulus constraints, the requirement of each user’s
QoS requirements.

• For the case that jammer’s statistical CSI is available, we
aim to minimize the transmit power subject to the outage
probability constraints and reflection phase constraints.
Owing to the intractable optimization problem caused by
the incompleted information, we first utilize the use-and-
then-forget (Uatf) method and Cauchy-Schwarz inequal-
ity to address the issue that jammer’s transmit beamform-
ing are unknown at BS, and then use two inequalities
to approximate the outage probability constraints so that
the CSI uncertainty is tackled. Next, under the alternative
optimization (AO) framework, the transmit beamforming
and the reflecting beamforming are optimized iteratively
by utilizing a penalty non-smooth optimization.

• For the case that jammer’s CSI is unavailable, we for-
mulate a robust beamforming optimization problem that
minimizes the transmit power subjects to the SINR re-
quirement and unit-modulus constraints. To achieve low
computational complexity for practical implementation,
we convert the transmit power minimization problem
into the weighted channel gain maximization problem.
Then, by applying AO, the high-quality beamforming
is efficiently obtained through a penalty non-smooth
optimization method.

• Numerical results demonstrate that, with the assistance
of the IRS, the proposed approaches can achieve superior
anti-jamming performance in terms of the minimum total
transmit power and jamming margin1 compared with
the schemes without IRS. In addition, the number of
IRS elements should be carefully chosen for achieving
a satisfactory trade-off between the total transmit power
and the feasibility probability of the formulated problem.
Specifically, when the jammer’s CSI estimation error is
fixed, increasing the number of phase shifts can reduce
the total transmit power, while a large number of IRS
element will lead to a high infeasibility probability.
Moreover, the high level of the CSI error will result
in low system performance, and DBLDI-based approach
outperforms the other two approaches in this scenario.

1Jamming margin denotes the maximum jamming power that the system
can tolerate [40]. Specifically, minimizing transmit power means that we can
use lower power to combat the same level of jamming power compared with
Non-IRS scheme, and thus the jamming margin is improved when the user’s
energy supply is fixed.
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Compared to the related work [39], the differences between
our paper and [39] are three-fold. First, the two paper ad-
dress different issues, which leads to different challenges in
addressing the two problems. Specifically, [39] considered the
system model that a BS transmits the independent data streams
to multi-users in the presence of the potential eavesdroppers,
while our paper considered that a BS with the assistance of an
IRS wishes to reliably convey information to single-antenna
multi-users in the presence of a malicious jammer. The dif-
ferent issues lead to different challenges, namely, the different
security constraints and different assumptions. In particular,
[39] considered the bounded CSI can be obtained by the BS,
whereas our paper not only adopted the assumption that the
jammers statistical CSI can be obtained but also considered the
fact that the BS has no knowleage of jamming beamforming,
which constitutes another unique challenge for address our
considered issue. Second, the optimization objectives and the
CSI error model of two paper are different, where [39] aimed
to maximize the system achievable rate subject to the transmit
power constraints, while our paper tries to minimize the total
transmit power. Besides, the former assumed that the CSI
error model is deterministic, namely the bounded CSI which
characterizes the channel quantization error, while our paper
assumed that the CSI error follows a circularly symmetric
complex Gaussian distribution, i.e., the statistical CSI. Third,
the solutions adopted in two paper are different. [39] first
adopted the S-Procedure to address the CSI uncertainty, and
then the successive convex approximation (SCA) with semi-
definite relaxation (SDR) was proposed to the formulated
problem with the rank-one constraint. However, our paper
first utilize Uatf method and Cauchy-Schwarz inequality to
address the issue that jammers transmit beamforming which is
unknown at BS, and then use two inequalities to approximate
the outage probability constraints so that the CSI uncertainty
is tackled. Next, under the AO framework, the transmit
beamforming and the reflecting beamforming are optimized
iteratively by utilizing a penalty non-smooth optimization.

The remainder of this work is organized as follows. In Sec-
tion II, we introduce the system model and the channel model.
Section III presents the robust beamforming design for anti-
jamming communications with the jammer’s statistical CSI.
Section IV presents the robust beamforming design without the
jammer’s CSI. In Section V, we compare the computational
complexities of the proposed methods. Numerical results are
provided in Section VI, where the best deployment of the IRS’s
location is also examined. We conclude this paper in Section
VII.

Notation: XH , XT , X∗ , and ‖X‖F denote conjugate
transpose, transpose, conjugate, and Frobenius norm of a
matrix X. The notations E{·}, Tr{·}, Re{·}, and λ{·} denote
the expectation, trace, real part, and eigenvalue of a complex
number or matrix, respectively. Cm×n represents the complex
space of m×n dimensions. The symbol Hn×n is the Hermitian
matrix of n×n dimensions. [·]n,n represents the nth diagonal
element of a matrix. X � 0 means that the matrix X is positive
semi-definite. X⊗Y denotes the Kronecker product between
two matrices X and Y. 〈X,Y〉 represents Tr{XHY}. The dis-
tribution of a circularly symmetric complex Gaussian (CSCG)
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Fig. 1: System model of an IRS-assisted anti-jamming mul-
tiuser communications.

random vector with mean vector x and covariance matrix Σ
is denoted by CN (x,Σ).

II. SYSTEM MODEL

In this section, we first establish the system model of
the IRS-assisted multiuser anti-jamming communications, and
then introduce the channel model as well as the jammer’s CSI
uncertainty.

A. Signal Model

As shown in Fig. 1, this paper considers an IRS-assisted
anti-jamming multiuser communication system, where a multi-
antenna BS with the assistance of an IRS wishes to reliably
convey information to K single-antenna users in the presence
of a malicious multi-antenna jammer. It is assumed that the BS
is equipped with M active antennas, and transmits the desired
signal to all the users. An IRS with N passive reflecting
elements is utilized to enhance the desired signal power and
mitigate the jamming interference. Additionally, a jammer
equipped with L antennas is located near the legitimate users
degrading the QoS of users. For brevity, we define the users
set as K= {1, 2, · · · ,K} and the IRS reflecting elements set
as N = {1, 2, · · · , N}. The channel coefficients between the
BS and the k-th user, between the BS and the IRS, between
the IRS and the k-th user, between the jammer and the k-th
user, and between the jammer and the IRS are denoted by
hT,k ∈ CM×1,GT ∈ CN×M ,hR,k ∈ CN×1,hJ,k ∈ CL×1,
and GJ ∈ CN×L, respectively.

The transmitted signal at the BS intended for the k-th user
is sT,k with unit average power E

{
|sT,k|2

}
= 1, which is

weighted by the transmit beamforming vector wT,k ∈ CM×1.
Thus, the overall transmitted signal x can be given by

x =

K∑
k=1

wT,ksT,k. (1)

Let us assume that a multi-antenna jammer attempts to in-
terrupt the communications by sending the jamming signal
wJsJ ∈ CL×1 to the user’s group, where E

{
|sJ,k|2

}
=

1 and it cannot be obtained by the BS. Each IRS ele-
ment receives the superimposed signal from the BS and
the jammer, and reflects it to all the users. Let Φ =
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diag
(
A1e

jθ1 , A2e
jθ2 , · · · , ANejθN

)
denote the reflection co-

efficient matrix, where θn ∈ [0, 2π) and An ∈ [0, 1] denote
the phase shift and the amplitude reflection coefficient of the
nth element of the IRS, respectively. Here, we set An = 1,∀n
as in [23], [33], [39], [41] for simplicity.23 Due to the high
path-loss, the signal which has been reflected by the IRS
twice or more times can be ignored. It is assumed that the
feedback channels between the BS and the IRS controller is
dedicated [34], [44]. As such, for the k-th user, the received
signal consists of the signal coming from the BS, the jamming
signal from the jammer and the reflected superimposed signal
from the IRS4, which is given by (2) in at the top of the next
page. In (2), the term nk ∼ CN (0, σ2

k) denotes the additive
white Gaussian noise (AWGN) with a zero-mean and variance
σ2
k. For subsequent analysis, we further adopt the the cascaded

channel in the works [34] and [35] to denote the channel from
the BS and the jammer to user via the IRS, i.e. HT,k =
diag(hHR,k)GT , HJ,k = diag(hHR,k)GJ ,∀k ∈ K. Denote by
WT= {wT,1,wT,2, · · · ,wT,K} the precoder matrix at the
BS, by v = {v1, v2, · · · , vN}H =

{
ejθ1 , ejθ2 , · · · , ejθN

}H
the phase shift vector at the IRS. Then, we have the SINR at
k-th user, which is expressed as

SINRk (WT ,v) =∣∣∣(hHT,k + vHHT,k)wT,k

∣∣∣2∑
m∈K,m6=k

∣∣∣(hHT,k + vHHT,k)wT,m

∣∣∣2 + Jk + σ2

, (3)

where the term Jk =
∣∣∣(hHJ,k + vHHJ,k)wJ

∣∣∣2 denotes the
received jamming power at the k-th user.

B. Channel Model and CSI Assumption

In the subsection, considering the small-scale fading, we
assume the Rician fading channel model for all the channels
involved. For example, the cascaded channel coefficient of BS-

2Although there are many practical models showing that the phase and
amplitude of IRS elements are dependent on each othe [42], [43], this
paper still set the reflection coefficient An = 1, ∀n, as commonly adopted
in the literature, e.g., [23], [33], [39], [41]. The reason account for adopting
the model is two-fold. First, [43] has demonstrated the negative impact of
the correlation between θn and An on the system performance, and thus
in practice, each element of the IRS is usually designed to maximize the
signal reflection [23], [33], [39], [41]. Second, by referring to [43], the
amplitude reflection can be controlled as approximate constant by designing
the parameters the unit cells of RIS for practical implement. Thus, it is
reasonable to assume that An = 1, ∀n. The impact induced by the correlation
between θn and An on the proposed model will be left for our future work.

3Theoretically, the reflection amplitude of each element can be adjusted for
different purposes such as channel estimation, anti-jamming, and performance
optimization. However, in practice, it is costly to implement independent
control of the reflection amplitude and phase shift simultaneously, and
thus each element is usually designed to maximize the signal reflection
for simplicity [23], [33], [39], [41]. As for the implement of both the
amplitude and the phase, e.g., by equipping the reflecting elements with locally
tunable integrated circuits (ICs) that provide a continuously tunable complex
impedance [42], the full characterization of this case requires a full journal
paper to be conceived in our future research.

4This paper considers the reflecting channel from the jammer to IRS, while
the works in [31] ignored the fact that the jamming signal can also be reflected
by the IRS in practice.

IRS- k-th user link HT,k is expressed as

HT,k =

√
βHT,k

1 + βHT,k
HLoS
T,k +

√
1

1 + βHT,k
HNLoS
T,k , (4)

where βHT,k denotes the Rician factor; HLoS
T,k is the line-of-

sight (LoS) component; and HNLoS
T,k is the Rayleigh fading

component. The cascaded channel link above is dominated by
the LoS component, which remains unchanged for a relatively
long time due to their stationary position [45]. To account for
large-scale fading, the distance dependent path loss model is
adopted, i.e.,

LP = L0(
d

D0
)−ι, (5)

where L0 is the path loss at the reference distance D0; d is
the individual link distance; and the ι denotes the path loss
exponent.

In the IRS-assisted anti-jamming communication system,
there are two type of channels: the legitimate channels (i.e.
hT,k and HT,k) and the jamming channels (i.e. hJ,k and
HJ,k). For the legitimate channels, we can estimate the CSI ac-
curately through calculating the angles of arrival and departure,
or sending the pilot [41]. However, due to the lack of cooper-
ation between the BS and the jammer, the jammer’s channels
and transmit beamforming are more challenging to acquire. In
the following, we first deal with the outage-constrained robust
beamforming problem with the incomplete information. Then,
we further consider the robust beamforming design without
jammer’s information.

III. OUTAGE CONSTRAINED ROBUST BEAMFORMING
DESIGN WITH INCOMPLETE INFORMATION

In this section, we assume that the CSI of all legitimate
channels involved is perfectly available, and the jammer’s sta-
tistical CSI can be obtained due to the slow-varying property
of channels [46]. Thus, the robust beamforming design is
proposed under the statistical jammer’s CSI model.

A. Problem Formulation

The objective of our robust design is to minimize the total
transmit power by jointly optimizing the active beamforming
at the BS and the passive beamforming at the IRS, while
ensuring the outage probability of each user is below the
threshold for all possible jammer’s CSI error realizations. By
defining ρk ∈ (0, 1] and γk > 0 as the outage probability
and SINR target for user k respectively, the total power
minimization problem should be expressed as

F : min
WT ,v

‖WT ‖2F (6a)

s.t. Pr{HJ,k,hJ,k} {SINRk (WT ,v) ≥ γk}
≥ 1− ρk,∀k ∈ K, (6b)
0 ≤ θn ≤ 2π,∀n = 1, 2, . . . N, (6c)
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yr,k = (hHT,k + hHR,kΦGT )wT,ksT,k︸ ︷︷ ︸
desired signal

+
∑

m∈K,m6=k

(hHT,k + hHR,kΦGT )wT,msT,m︸ ︷︷ ︸
inter−user interference

+ (hHJ,k + hHR,kΦGJ)wJsJ︸ ︷︷ ︸
jamming signal

+nk.
(2)

where the jammer’s statistical CSI5 for k-th user follows CSSG
distribution6 , which can be represented as

HJ,k = ĤJ,k + ∆HJ,k, vec (∆HJ,k) ∼ CN (0,ΣHJ,k),

ΣHJ,k � 0, (7)

hJ,k = ĥJ,k + ∆hJ,k,∆hJ,k ∼ CN (0,ΣhJ,k),ΣhJ,k � 0,
(8)

where ΣHJ,k ∈ CNL×NL and ΣJ,k ∈ CL×L are the error
covariance matrices.

Obviously, the problem F cannot be solved directly due
to the coupled variables WT and v in the outage probability
constraints (6b). Additionally, the probabilistic problem does
not have simple closed-form expressions, and the jammer’s
transmit beamforming cannot be obtained by BS. To solve the
problem F , an AO algorithm is proposed by utilizing use-
and-then-forget (Uatf) method, Cauchy-Schwarz inequality,
DBLDI, BTI, and penalty non-smooth optimization method
[32], [49], [50]. For the convenience of further derivations,
we first present two useful lemmas of DBLDI and BTI.

Lemma 1: (Decomposition-Based Large Deviation Inequal-
ity [49] ) Assume e ∈ n×1 ∼ CN (0, In) be a standard
complex Gaussian random vector, Q ∈ Hn×n, r ∈ Cn×1, and
s ∈ R. Then, for any ρ ∈ (0, 1], we have the DBLDI-based
approximation, i.e.,

Pr
{
eHQe + 2Re

{
rHe

}
+ s ≥ 0

}
≥ 1− ρ

⇔Tr {Q} − 2
√

ln (1/ρ)

(
1√
2
‖r‖+ β‖Q‖F

)
+ s ≥ 0

5Although many existing works with IRS have considered deterministic CSI
error model, namely the bounded CSI model, it only characterizes the channel
quantization error which naturally belongs to a bounded region [34]. In this
regards, we adopt the statistical CSI model due to the fact that the practical
illegitimate CSI generally follows the CSSG distribution. As for the angular
model, it only suitable for the geometric model, while this paper considered
the Rician fading channel model.

6The reason why the assumption that the RIS-related error covariances
follow the CSCG distribution is adopted can be divided into three-fold.
First, according to the Secition II-B in [47], when the inter-element spacing
between RIS units are set as the half-wavelength, the RIS-related CSI error
covariances are i.i.d. CSCG distributed in the continuous phase-shift case.
Second, according to [32], the statistical CSI of jammer is mainly depend
on the direction of user-jammer channel, the antenna number of the jammer,
and the path loss determined by the transmission distance, and and all of
which is fixed in long-term time and can be pre-obtained by the jammer via
the rotational invariance techniques and the law of cosines [48]. Thus, it is
reasonable to consider that the jammer’s statistical CSI can be obtained by
the BS. In addition, due to the location error and white noise, the statistical
CSI follows CSCG distribution around the accurate CSI with fixed location
[32]. Third, as the widely adopted reason in the existing works, e.g., [38],
in the time division duplex (TDD) setting, noise and limited training will
cause the uplink channel estimation error. The conventional MMSE method
is generally adopted to estimate the cascaded channel, and thus the channel
estimation generally follows the CSCG distribution.

⇔


Tr {Q} − 2

√
ln (1/ρ) (x+ y) + s ≥ 0

1√
2
‖r‖2 ≤ x

β‖Q‖F ≤ y(
1− 1/

(
2β2
))
β =

√
ln (1/ρ),

(9)

where x and y are slack variables, and the term “A ⇔ B”
denotes A is equivalent to B.

Proof : Please refer to [49] for the proof of Lemma 1.
Lemma 2: (Bernstein-type Inequality [51]) Assume e ∈

Cn×1 ∼ CN (0, In) be a standard complex Gaussian random
vector. Given Q ∈ Hn×n, r ∈ Cn×1, and s ∈ R, for any
ρ ∈ (0, 1], the BTI-based approximation method holds:

Pr
{
eHQe + 2Re

{
rHe

}
+ s ≥ 0

}
≥ 1− ρ

⇔Tr {Q} −
√

2 ln (1/ρ)x+ ln (ρ)λ+max (−Q) + s ≥ 0

⇔


Tr {Q} −

√
2 ln (1/ρ)x+ ln (ρ) y + s ≥ 0√

‖Q‖2F + 2‖r‖22 ≤ x
yI + Q � 0, y ≥ 0,

(10)

where x and y are slack variables, and λ+max (−Q) =
max (λmax (−Q) , 0).

Proof : Please refer to [51] for the proof of Lemma 2.
Note that it has been shown in [49] and [51] that these two

Lemmas and approximations are equivalent, which suggests
that the approximations are tight. In addition, since the ap-
proximation based on DBLDI only contains SOC constraints,
it can be solved more efficiently than the BTI-based approxi-
mation. In particular, when the size of linear matrix inequality
(LMI) constraints is large, it is more costly to use the BTI-
based approximation method in terms of the computational
complexity and feasibility rate [49].

In the following subsections, an AO algorithm is proposed
to solve the optimal WT and v in an iterative manner.
Specifically, we first design the transmit beamforming at the
BS, and then optimize the reflecting beamforming by using
the two lemmas above.

B. Tractable Countermeasure for Transmit Beamforming De-
sign

In this subsection, we aim to optimize the transmit beam-
forming WT so that the total transmit power is minimized
with given phase shift v. Since the jamming power Jk =∣∣∣(hHJ,k + vHHJ,k)wJ

∣∣∣2 in (3) involves no terms of WT ,
we can regard it as a fixed power. Thus, the probabilistic
constraints (6b) will be transformed into a SINR constraints,
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and the problem F corresponding to WT is rewritten as

QW1 : min
WT

‖WT ‖2F (11a)

s.t.

∣∣∣(hHT,k + vHHT,k)wT,k

∣∣∣2∑
m∈K,m 6=k

∣∣∣(hHT,k + vHHT,k)wT,m

∣∣∣2 + Jk + σ2

≥ γk,∀k ∈ K. (11b)

It is found that problem QW1 can be efficiently solved by
applying semidefinite program (SDP) [52], or second-order
cone program (SOCP) [53]. In addition, the optimal solution to
problem QW1 is obtained when all the SINR constraints (11b)
are met with equalities [23]. Thus, by using SDP approaches
and introducing the new variables h̃T,k = (hHT,k + vHHT,k)

H

and PJk = Jk + σ2
k, the initial non-convex problem QW1 can

be converted into a SDP problem, namely

QW2 : min
ΓT

K∑
k=1

Tr {ΓT,k} (12a)

s.t. Tr

h̃
T,k

h̃HT,k

 1

γk
ΓT,k −

∑
m∈K,
m 6=k

ΓT,m




− PJk ≥ 0,∀k ∈ K, (12b)
ΓT,k � 0, ∀k ∈ K, (12c)
rank (ΓT,k) = 1, ∀k ∈ K, (12d)

where ΓT = {ΓT,1,ΓT,2, · · · ,ΓT,K} and ΓT,k=wT,kw
H
T,k.

Note that problem QW2 is still intractable due to the rank-
one constraints (12d). The semidefinite relaxation (SDR) and
Gaussian randomization (GR) approaches are commonly used
method to tackle the rank-one constraints. However, the SDR
may result in a lower bound of transmit power, and the GR
method needs to generate sufficiently large number of random
vectors for constructing a feasible rank-one beaforming wT,k.
Apparently, the SDR with GR leads to a suboptimal or even
far from the optimal solution. Hence, this paper utilizes the
penalty non-smooth optimization method to deal with the rank-
one constraints (12d), which has better performance than the
SDR with GR [50].

It is observed that there are two additional constraints (12c)
and (12d) introduced by the definition ΓT,k=wT,kw

H
T,k in

problem QW2 . Based on ΓT,k � 0, we obtain Tr {ΓT,k} ≥
λmax (ΓT,k). If it also holds Tr {ΓT,k} − λmax {ΓT,k} ≤ 0,
we can prove that Tr {ΓT,k}=λmax {ΓT,k}, which suggests
that ΓT,k only have one non-zero eigenvalue. Therefore, the
rank-one constraints (12d) can be equivalently expressed as

rank (ΓT,k) = 1⇔ Tr {ΓT,k} − λmax {ΓT,k} ≤ 0. (13)

Clearly, the rank-one constraints (12d) can be guaranteed by
(13) in all cases. However, due to the property that Tr {ΓT,k}−
λmax {ΓT,k} is concave, (13) is still a non-convex constraints.
In particular, the term λmax {Γt,k} in (13) is convex related
with the Hermitian matrix.

To address the issue above, we adopt the exact penalty
method. Specifically, we first introduce the weight coefficients

µ= {µ1, µ2, · · · , µk} to enlarge the size of the feasible solu-
tion set spanned by constraint (13). Then we add the new goal
into the objective function (12a) based on the penalty method.
Accoding to [50], problem QW2 is equivalently rewritten as

QW3 : min
ΓT

K∑
k=1

((µk+1) Tr {ΓT,k}−µkλmax {ΓT,k}) (14)

s.t. (12b), (12c),

where µk > 0,∀k ∈ K.
Proof : Please refer to [50] for the proof of the equivalency

between problem QW2 and problem QW3 .
When µk is large enough, we can obtain Tr {ΓT,k} ≈

λmax {ΓT,k}. However, the spectral function λmax {ΓT,k} is
not smooth (i.e., not differentiable). To proceed further, we
use the subgradient of λmax {ΓT,k} and have

∂λmax {ΓT,k} = wT,k,maxw
H
T,k,max, (15)

where wT,k,max is the eigenvector corresponding to the max-
imum eigenvalue of λmax {ΓT,k}. As such, it follows that

λmax {Γ} − λmax {ΓT,k} ≥
〈
wT,k,maxw

H
T,k,max,Γ− ΓT,k

〉
,

∀Γ � 0.
(16)

Proposition 1: Given the initial weight coefficients µk and the
initial feasible solution set Γ

(0)
T , we can achieve the optimal

solution to problem QW3 by solving the following problem
QW iteratively.

QW : min
ΓT

K∑
k=1

{(µk + 1) Tr {ΓT,k}

−µk
〈
w

(n−1)
T,k,maxw

(n−1),H
T,k,max ,ΓT,k

〉}
(17a)

s.t. Tr

h̃
T,k

h̃HT,k

 1

γk
ΓT,k −

∑
m∈K,
m 6=k

ΓT,m




− PJk ≥ 0,∀k ∈ K, (17b)
ΓT,k � 0, ∀k ∈ K, (17c)

where the superscript n−1 is the (n−1)th iteration.
Proof : Please refer to Appendix A.
As a result, the optimal rank-one solution {ΓT,k} to prob-

lem QW2 is achieved by using the proposition 1 [50]. Finally,
the optimal {wT,k} can be obtained from {ΓT,k} by applying
the eigenvalue decomposition.

C. Phase Shift Optimization with Probabilistic Constraints

For given transmit beamforming WT , the subproblem of
phase shift v is simplified to a feasibility-check problem,
which is recast as

QV1 : Find v (18a)

s.t. Pr{HJ,k,hJ,k}

{
h̃HT,kξT,kh̃T,k − Jk − σ2

k ≥ 0
}

≥ 1− ρk,∀k ∈ K, (18b)
|vn| = 1,∀n, (18c)
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where ξT,k = ΓT,k/γk −
∑K
m∈K,m6=k ΓT,m. Nevertheless,

problem QV1 cannot be solved due to the following details.
First, the configuration of wJ inside Jk is unknow. Second, the
probabilistic constraints (18b) and unit-modulus constraints
(18c) are concave. To make problem QV1 feasible, we first
utilize the so-called use-and-then-forget method that is widely
used in massive MIMO [32], i.e., wJ is known only during
the process of solving QV1 . Then, we apply Lemma 1 and
2 to convert (18b) into the SOCs or/and LMIs, and use the
quadratic form to transform (18c) into a convex constraints.
Finally, we obtain a relaxed and feasible problem by using
the Cauchy-Schwarz inequality to address the unknown wJ .
As such, we can utilize the penalty non-smooth optimization
method and CVX tool [54] to solve problem QV1 efficiently.

Before applying the lemmas to approximate the proba-
bilistic constrains, (18b) should be transformed into a stan-
dard quadratic form Pr

{
eHQe + 2Re

{
rHe

}
+ s ≥ 0

}
. By

introducing the statistical CSI error into Jk and defining
ΓJ = wJwH

J , (18b) is then rewritten in (19) at the top of the
next page. For the convenience of derivations, it is assumed
that ΣHJ,k = ε2HJ,kI and ΣhJ,k = ε2hJ,kI, then we have
vec (∆HJ,k) = εHJ,keHJ,k and ∆hJ,k = εhJ,kehJ,k where
eHJ,k, ehJ,k ∼ CN (0, I). For the first term ζ1 inside (19), by
applying mathematical transformations, ζ1 is then rewritten as

ζ1 =∆hHJ,k (−ΓJ) ∆hJ,k + 2Re
{
vH∆HJ,k (−ΓJ) ∆hJ,k

}
+ vH∆HJ,k (−ΓJ) ∆HH

J,kv

=ε2
hJ,k

eHhJ,k (−ΓJ) ehJ,k

+ 2Re
{

vec (∆HJ,k) (v∗ ⊗ (−ΓJ)) ∆h∗
J,k

}
+ vec (∆HJ,k)

(
VT ⊗ (−ΓJ)

)
vec∗ (∆HJ,k)

=− ε2
hJ,k

eHhJ,kΓJehJ,k − ε2HJ,k
eHJ,k

(
VT ⊗ ΓJ

)
e∗

HJ,k

− 2Re
{
εHJ,kεhJ,ke

∗
HJ,k

(v∗ ⊗ ΓJ) eH
hJ,k

}
=eH

k
Qkek, (20)

where ek = [eHhJ,k, e
T
HJ,k

]H , V = vvH and

Qk = −
[

Σ1/2
hJ,k

ΓJΣ1/2
hJ,k

εHJ,kεhJ,k (v∗ ⊗ ΓJ)

εHJ,kεhJ,k
(
vT ⊗ ΓJ

)
ε2
HJ,k

(
VT ⊗ ΓJ

) ]
.

Proof : Please refer to Appendix B for detailed derivations
of (20).

Next, the second term ζ2 inside (19) is reformulated as

ζ2 =− 2Re
{(

ĥHJ,k + vHĤJ,k

)
ΓJ∆hJ,k

+
(
ĥHJ,k + vHĤJ,k

)
ΓJ∆HH

J,kv
}

=− 2Re
{(

ĥHJ,k + vHĤJ,k

)
ΓJ∆hJ,k

+vecT
(
v
(
ĥHJ,k + vHĤJ,k

)
ΓJ

)
vec∗ (∆HJ,k)

}
=− 2Re

{
εhJ,k

(
ĥHJ,k + vHĤJ,k

)
ΓJehJ,k

+εHJ,kvecT
(
v
(
ĥHJ,k + vHĤJ,k

)
ΓJ

)
e∗HJ,k

}
=2Re

{
rH
k

ek
}
, (21)

where

rk = −

 εhJ,kΓJ

(
ĥJ,k + ĤH

J,kv
)

εHJ,kvec∗
(
v
(
ĥHJ,k + vHĤJ,k

)
ΓJ

)  .
Therefore, the outage constrains (18b) is equivalent to a

standard quadratic form, which is given by

Pr
{
eH

k
Qkek+2Re

{
rH
k

ek
}

+sk ≥ 0
}
≥ 1−ρk, (22)

where

sk =
(
ĥHJ,k + vHĤJ,k

)
(−ΓJ)

(
ĥJ,k + ĤH

J,kv
)

+ (hHT,k + vHHT,k)ξT,k(hT,k + HH
T,k v)− σ2.

Applying Lemma 1 and 27, the approximation of outage
constraints (18b) is given, respectively, as

AD : Tr {Qk}−2
√

ln (1/ρk) (xk+yk)+sk≥0, (23a)
1√
2
‖rk‖ ≤ xk, (23b)

βk‖Qk‖F ≤ yk, (23c)(
1− 1/

(
2βk

2
))
βk =

√
ln (1/ρk), (23d)

and

AB : Tr{Qk}−
√

2 ln (1/ρk)xk+ln (ρk) yk+sk≥0, (24a)√
‖Qk‖2F + 2 ‖rk‖22 ≤ xk, (24b)

ykI + Qk � 0, yk ≥ 0, (24c)

where AD and AB denote the DBLDI-based approximation
and BTI-based approximation, respectively. xk and yk are the
slack variables.

According to (49) in [34], we simplify Tr {Qk}, ‖rk‖2, and
‖Qk‖

F
as follows:

Tr {Qk} = −Tr
{[
εhJ,kΓ

1/2
J

εHJ,k

(
v∗ ⊗ Γ1/2

J

)]
•
[

εhJ,kΓ
1/2
J

εHJ,k
(
vT ⊗ Γ1/2

J

) ]}
= −ε2

hJ,k
Tr {ΓJ} − ε2HJ,k

Tr (V) Tr (ΓJ)

= −
(
ε2
hJ,k

+ ε2
HJ,k

N
)

Tr {ΓJ} , (25a)

‖rk‖22 =
∥∥∥εhJ,k (ĥHJ,k + vHĤJ,k

)
ΓJ

∥∥∥2
2

+
∥∥∥εHJ,kvec∗

(
v
(
ĥHJ,k+vHĤJ,k

)
ΓJ

)∥∥∥2
2

=
(
ε2
hJ,k

+ε2
HJ,k

N
)∥∥∥(ĥHJ,k+vHĤJ,k

)
ΓJ

∥∥∥2
2
,

(25b)

‖Qk‖2
F

= ε4
hJ,k
‖ΓJ‖2

F
+ ε4

HJ,k

∥∥VT
∥∥2

F
‖ΓJ‖2

F

+ 2(εHJ,kεhJ,k)
2 ‖v∗‖2

F
‖ΓJ‖2

F

=
(
ε2
hJ,k

+ ε2
HJ,k

N
)2
‖ΓJ‖2

F
. (25c)

7Although similar BTI-based method has been employed in [34], the
solution in [34] is not applicable to this paper which mainly focuses on the
anti-jamming communication. We will evaluate the performance of BTI in the
section VI.
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Pr{HJ,k,hJ,k}

−Jk + h̃HT,kξt,kh̃T,k − σ2
k︸ ︷︷ ︸

ŝk

≥ 0

= Pr
{

(hHJ,k + vHHJ,k) (−ΓJ) (hHJ,k + HH
J,k v)+ŝk ≥ 0

}
=Pr

{((
ĥJ,k + ∆hJ,k

)H
+ vH

(
ĤJ,k + ∆HJ,k

))
(−ΓJ)

((
ĥJ,k + ∆hJ,k

)
+
(
ĤH
J,k + ∆HH

J,k

)
v
)

+ŝk ≥ 0

}

=Pr


(
∆hHJ,k + vH∆HJ,k

)
(−ΓJ)

(
∆hJ,k + ∆HH

J,kv
)︸ ︷︷ ︸

ζ1

+ 2Re
{(

ĥHJ,k + vHĤJ,k

)
(−ΓJ)

(
∆hJ,k + ∆HH

J,kv
)}

︸ ︷︷ ︸
ζ2

+
(
ĥHJ,k + vHĤJ,k

)
(−ΓJ)

(
ĥJ,k + ĤH

J,kv
)

+ŝk︸ ︷︷ ︸
sk

≥ 0

 . (19)

Problem QV1 is then reformulated, respectively, for DBLDI-
based approximation and BTI-based approximation, as

QV 1
D : Find v,x,y

s.t. −
(
ε2
hJ,k

+ε2
HJ,k

N
)

Tr {ΓJ}−2
√

ln (1/ρk)(xk + yk)

+ sk ≥ 0,∀k ∈ K, (26a)√(
ε2
hJ,k

+ε2
HJ,k

N
)∥∥∥(ĥHJ,k+vHĤJ,k

)
ΓJ

∥∥∥
2
≤
√

2xk

∀k ∈ K, (26b)

βk

(
ε2
hJ,k

+ ε2
HJ,k

N
)
‖ΓJ‖F ≤ yk, ∀k ∈ K, (26c)

|vn| = 1,∀n, (26d)

where
(
1− 1/

(
2βk

2
))
βk =

√
ln (1/ρk), and

QV 1
B : Find v,x

s.t. −
(
ε2
hJ,k

+ε2
HJ,k

N
)

Tr {ΓJ}−
√

2 ln (1/ρk)xk

+ ln (ρk) yk + sk ≥ 0,∀k ∈ K, (27a)∥∥∥∥∥∥∥
(
ε2
hJ,k

+ ε2
HJ,k

N
)

vec (ΓJ)√
2
(
ε2
hJ,k

+ε2
HJ,k

N
)(

ĥHJ,k+vHĤJ,k

)
ΓJ

∥∥∥∥∥∥∥
2

≤xk

∀k ∈ K, (27b)
|vn| = 1,∀n, (27c)

where yk=λ+max

((
ε2
hJ,k

+ ε2
HJ,k

N
)

Γj

)
in problem QV 1

B .
However, due to the unknown wJ and the non-convexity

of constraints, the problem QV 1
D and QV 1

B are still unsolved.
Inspired by [32], we first utilize the Cauchy-Schwarz in-
equality to obtain the bound of constraints, such that the
problem’s infeasiblity caused by the unknown wJ can be
addressed. Specifically, the bound of sk, constraints (26b) ,
and constraints (27b) are given by

sk =
(
hHJ,k + vHĤJ,k

)
(−ΓJ)

(
hJ,k + ĤH

J,kv
)

+ŝk

= −
∣∣∣(hHJ,k + vHĤJ,k

)
wJ

∣∣∣2+ŝk

≥ −PJ
∥∥∥hHJ,k + vHĤJ,k

∥∥∥2
2

+ŝk (28a)

√(
ε2
hJ,k

+ ε2
HJ,k

N
)∥∥∥(ĥHJ,k + vHĤJ,k

)
ΓJ

∥∥∥
2

≤
√(

ε2
hJ,k

+ ε2
HJ,k

N
)
‖ΓJ‖F

∥∥∥ĥHJ,k + vHĤJ,k

∥∥∥
2

= PJ

√(
ε2
hJ,k

+ ε2
HJ,k

N
)∥∥∥ĥHJ,k + vHĤJ,k

∥∥∥
2
, (28b)∥∥∥∥∥∥∥

(
ε2
hJ,k

+ ε2
HJ,k

N
)

vec (ΓJ)√
2
(
ε2
hJ,k

+ ε2
HJ,k

N
)(

ĥHJ,k + vHĤJ,k

)
ΓJ

∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥
√

2
(
ε2
hJ,k

+ ε2
HJ,k

N
)(

ĥHJ,k + vHĤJ,k

)
ΓJ

∥∥∥∥∥
2

2

+
∥∥∥(ε2

hJ,k
+ ε2

HJ,k
N
)

ΓJ

∥∥∥2
F
≤ P 2

J

(
ε2
hJ,k

+ ε2
HJ,k

N
)2

+ P 2
J

∥∥∥∥∥
√

2
(
ε2
hJ,k

+ ε2
HJ,k

N
)(

ĥHJ,k + vHĤJ,k

)∥∥∥∥∥
2

2

, (28c)

where PJ denotes the power value of ‖wJ‖22, which can be
obtained by using the signal strength and channel gains [32],
[48]. However, owing to the CSI uncertainties of jammer’s
channels caused by the uplink-downlink channel reciprocity
mismatch [55], [56], PJ can not be accurately acquired.
Following [57], we adopt

∣∣∣PJ − P̂J ∣∣∣/PJ ≤ εPJ to denote the

estimation error of ‖wJ‖22, where P̂J is the estimation value.
As such, combining with the fact Tr {ΓJ} = ‖ΓJ‖F = PJ ,
the problem QV 1

D and QV 1
B can be reformulated as the worst-

case problems, i.e.,

QV 2
D : Find v,x,y

s.t. −P̃J
(
ε2
hJ,k

+ε2
HJ,k

N
)
−2
√

ln (1/ρk)(xk + yk)

+ s̃k ≥ 0,∀k ∈ K, (29a)

P̃J

√(
ε2
hJ,k

+ ε2
HJ,k

N
)∥∥∥ĥHJ,k + vHĤJ,k

∥∥∥
2
≤
√

2xk

∀k ∈ K, (29b)

βkP̃J

(
ε2
hJ,k

+ ε2
HJ,k

N
)
≤ yk, ∀k ∈ K, (29c)

|vn| = 1,∀n, (29d)
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and

QV 2
B : Find v,x

s.t. −P̃J
(
ε2
hJ,k

+ε2
HJ,k

N
)
−
√

2 ln (1/ρk)xk

+ ln (ρk) yk + s̃k ≥ 0,∀k ∈ K, (30a)(
P̃J

∥∥∥∥∥
√

2
(
ε2
hJ,k

+ ε2
HJ,k

N
)(

ĥHJ,k + vHĤJ,k

)∥∥∥∥∥
2

)2

+
(
P̃J

(
ε2
hJ,k

+ ε2
HJ,k

N
))2
≤x2k, ∀k ∈ K, (30b)

|vn| = 1,∀n, (30c)

where s̃k = −P̃J
∥∥∥hHJ,k + vHĤJ,k

∥∥∥2
2

+ŝk, and P̃J =

P̂J

/
(1− εPJ). Although this operation leads to a suboptimal

solution, from a practical implementation point of view, a
tradeoff should be made between the feasibility and optimal-
ity8.

Then, we introduce two auxiliary matrixes and an auxiliary
vector to deal with the non-convexity of constraints induced
by v, which are expressed as

Rk=

[
HT,kξT,kH

H
T,k−P̃JĤJ,kĤ

H
J,k R̃k

R̃H
k 0

]
, (31a)

CJ,k = P̃ 2
J

 ĤJ,kĤ
H
J,k ĤJ,khJ,k(

ĤJ,khJ,k

)H ∥∥∥hHJ,k∥∥∥2
2

 ,v̂=

[
v
1

]
(31b)

where R̃k = HT,kξT,khT,k − P̃JĤJ,kĥJ,k. With Rk, CJ,k

and v, sk and ‖rk‖22 are modified as follows:

sV̂k = Tr
{

RkV̂
}

+ hHT,kξT,khT,k − P̃JhHJ,khJ,k − σ2
k, (32)

(‖rk‖22)V̂ =
(
ε2
hJ,k

+ ε2
HJ,k

N
)

Tr
{

CJ,kV̂
}
, V̂=v̂v̂H (33)

In order to obtain better converged solution of v, we further
introduce slack variables α = {α1, α2, · · · , αK}T into (29a)
and (30a), which enforces outage probability to be larger
than the target so that the transmit power is reduced [23].
Accordingly, QV 2

D and QV 2
B are respectively reformulated as

QV 3
D : max

V̂,x,y,α

K∑
k=1

αk

s.t. −P̃J
(
ε2
hJ,k

+ε2
HJ,k

N
)
−2
√

ln (1/ρk)(xk + yk)

+ sV̂k − αk ≥ 0,∀k ∈ K, (34a)

(‖rk‖22)V̂ −
(

4Re
{
x
(n−1)
k xk

}
− 2x

(n−1),2
k

)
≤ 0

∀k ∈ K, (34b)

β2
kP̃

2
J

(
ε2
hJ,k

+ ε2
HJ,k

N
)2
−
(

2Re
{
y
(n−1)
k yk

}
−y(n−1),2k

)
≤ 0,∀k ∈ K, (34c)

8Since the impact of power estimation error on the system performance
has been widely investigated in [13] and [58], this paper fixed εPJ = 0.1 in
the original paper for simplicity. As for the practical issuses that the uplink-
downlink channel reciprocity mismatch, the impact analysis and calibration
have been investigated in [55] and [56], and the full characterization of this
case in our model requires a full journal paper to be conceived in our future
research.

Algorithm 1: DBLDI (BTI)-based Alternative Optimiza-
tion (AO) Algorithm.

1 Input:
{

hT,k, ĥJ,k,HT,k, ĤJ,k, γk, P̃J , εhJ,k, εHJ,k

}
and B = 50.

2 Set the tolerance of accuracy ε1 = 10−4 and ε2 = 10−4;
3 Initialize the feasible solutions v(0), ε(0) = ε1;
4 Set the iteration number n1 = 1 and n2 = 1;
5 while ε(n1−1) ≥ ε1 & n1 ≤ B do
6 Initialize

{
Γ
(n2−1)
T,k

}
and w

(n2−1)
T,k,max corresponding to

λmax

{
Γ
(n2−1)
T,k

}
;

7 while Tr
{

Γ
(n2−1)
T,k

}
− λmax

{
Γ
(n2−1)
T,k

}
≥ ε2 &

n2 ≤ B do
8 Solve Problem QW with given v(n1−1) and

obtain the solutions
{

Γ
(n2)
T,k

}
;

9 if
{

Γ
(n2)
T,k

}
≈
{

Γ
(n2−1)
T,k

}
then

10 µk = 2µk;
11 else
12 n2 = n2 + 1;
13 end
14 end
15 end
16 Extract W

(n1)
T from Γ

(n2)
T by using the eigenvalue

decomposition, and set n2 = 1;
17 Compute v(n1) through QVD (QVB) with similar

procedure of step 5-15;

18 Update ε(n1) =
∥∥∥W(n1)

T

∥∥∥2
F
−
∥∥∥W(n1−1)

T

∥∥∥2
F

;

19 Set n1 = n1 + 1;
20 end

Output: Transmit beamforming WT and phase shift v.

V̂ � 0,
[
V̂
]
n,n

=1,∀n, (34d)

αk ≥ 0,∀k ∈ K, (34e)

rank
(
V̂
)

= 1, (34f)

and

QV 3
B : max

V̂,x,α

K∑
k=1

αk

s.t. −P̃J
(
ε2
hJ,k

+ε2
HJ,k

N
)
−
√

2 ln (1/ρk)xk

+ ln (ρk) yk + sV̂k − αk ≥ 0,∀k ∈ K, (35a)(
ε2
hJ,k

+ ε2
HJ,k

N
)2
P̃ 2
J −

(
2Re

{
x
(n−1)
k xk

}
−x(n−1),2k

)
+ 2(‖rk‖22)V̂ ≤ 0, ∀k ∈ K, (35b)

(34d), (34e), (34f),

where x
(n−1)
k and y

(n−1)
k are the optimal solution of the

(n − 1)th iteration. Similarly, we use penalty non-smooth
optimization method to deal with the rank-one constraints
(34f), which is given by

rank
(
V̂
)

=1⇒ Tr
{

V̂
}
−
〈
v̂(n−1)

max
v̂(n−1),H

max
, V̂
〉
≤τ, (36)
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where v(n−1)
max

is the eigenvector corresponding to the max-
imum eigenvalue of λmax

{
V(n−1)}, the superscript n− 1

denotes the (n−1)th iteration, and τ > 0 is a penalty parameter.
Proof : Please refer to Appendix C.
To this end, the phase shift optimization problem QV1 is

reformulated, respectively, as

QVD : max
V̂,x,y,α,τ

K∑
k=1

αk − χτ (37)

s.t. (34a), (34b), (34c), (34d), (34e), (36),

and

QVB : max
V̂,x,α,τ

K∑
k=1

αk − χτ (38)

s.t. (35a), (35b), (34d), (34e), (36),

where χ is a weight coefficient. Problem QVB and QVD can be
solved efficiently through CVX tool, and thus v is achieved
from V̂ by using eigenvalue decomposition.

In summary, we can obtain the optimal WT and v by
alternately using the approaches proposed in section III-B and
III-C until convergence. Specifically, in each aspect of the
proposed AO approach, an attentive solution to WT and v
can be obtained by iteratively solving QW and QVD (QVB) until
convergence, respectively. Then, under the AO framework, the
whole iterative algorithm will converge to a stationary solution
with satisfactory performance as in [23], [33], [39], [41]. The
details of the proposed AO algorithms are summarized in
Algorithm 1.

D. Convergence, Optimality, and Initial Point Analysis

In this section, we first analyse the convergence and the
optimality of different aspects of the proposed approaches,
and then that of whole AO algorithm has been presented. In
addition, since a feasible initial point is required for QW and
QVD (QVB), we provided the initial point search algorithm.

First, the problem F can be divided into two subproblems,
i.e., QW and QVD (QVB), which is given by (17) and (37)((38)).
Then, we analyse the convergence and the optimality of QW
and QVD (QVB), respectively. As for QW , the relationship
between nth and (n−1)th iteration can be derived, which is
given by E.q. (A.3) in Appendix A. Evidently, we can achieve
a better solution

{
Γ
(n)
T,k

}
by solving problem QW iteratively.

To the end, since
{

Γ
(n)
T,k

}
are bounded by the constraint

(17b), the solution
{

Γ
(n)
T,k

}
will converge to an attentive point,

which is the optimality of QW in each iteration. Similarly,
as for QVD (QVB), through the substitution of (36) into the
objective function of QVD (QVB), the relationship between nth

and (n−1)th iteration can be obtained, which are given by

K∑
k=1

α
(n)
k − χ

(
Tr
{

V̂(n)
}
− λmax

{
V̂(n)

})
≥

K∑
k=1

α
(n)
k − χ

(
Tr
{

V̂(n)
}
− λmax

{
V̂(n−1)

}
−
〈
v̂(n−1)

max
v̂(n−1),H

max
, V̂(n) − V̂

〉)
≥

K∑
k=1

α
(n−1)
k −χ

(
Tr
{

V̂(n−1)
}
−λmax

{
V̂(n−1)

})
.

(39)

Obviously, a better solution V(n) can be obtained by solving
problem QVD (QVB) iteratively. Then, since V(n) is bounded by
the constraints of QVD (QVB), the solution V(n) to QVD (QVB)
can also converge to an attentive point, which is the optimality
of QVD (QVB) in each iteration.

Then, we analyse the convergence and the optimality of
whole AO algorithm. Since WT and v are optimized in an
iterative manner by using the proposed AO algorithm, we can
obtain that [23]

P
(
W

(1)
T ,v(1)

)
≥P

(
W

(2)
T ,v(2)

)
≥· · ·≥P

(
W

(n)
T ,v(n)

)
, (40)

where P (WT ,v) = ‖WT ‖2F denotes the objective value of
problem F . Since WT are bounded by the constraint (17b) and
v are bounded by the constraints (34a)-(34d), P

(
W

(n)
T ,v(n)

)
is guaranteed to converge to a stationary solution with satis-
factory performance, which is regarded as the optimality of
the AO approach. In addition, the convergence of proposed
algorithms is illustrated in Fig. 3, which further demonstrates
that the proposed algorithms can converge to a stationary
solution with satisfactory performance.

Algorithm 2: Initial Point Search Algorithm.

Input:
{

hT,k, ĥJ,k,HT,k, ĤJ,k, γk, P̃J , εhJ,k, εHJ,k

}
and B = 50.

1 Set the tolerance of accuracy ε3 = 10−4;
2 Initialize the algorithm with random points

V̂(0),x(0),y(0),α
(0)

, ε(0) = ε3;
3 Set the iteration number n3 = 1;
4 while ε(n3−1) ≥ ε3 & n3 ≤ B do
5 Set n3 = n3 + 1;
6 Solve the problem QVD initial (QVB initial);

7 Update V̂(n3),x(n3),y(n3),α
(n3)

;
8 end
9 Set n3 = 1;

Output: V̂(0),x(0),y(0),α
(0)

.

Then, we provide the method for searching the feasible
initial point of QW and QVD (QVB). As in [23], [33], [39],
we first utilize the random method to randomly generate the
the initial points, which may results in low convergence rate
and sometimes infeasibility [59]. Thus, accroding to [59], a
low-complexity algorithm can be used to search for the initial
points. Specifically, we introduce two positive variables δ1 and
δ2 to measure how far the constraints of QW and QVD (QVB)
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are from being satisfied, respectively, and the initialization
problems are

QWinitial : max
ΓT

δ1 s.t. (17b)∗, (17c), (41)

and

QVD initial : max
V̂,x,y,α,

δ2

s.t. (34a)∗, (34b)∗, (34c)∗, (34d), (34e)∗, (36)∗, (42)

QVB initial : max
V̂,x,α,

δ2

s.t. (35a)∗, (35b)∗, (34d), (34e)∗, (36)∗, (43)

where the constraint (X)
∗ ∈ {constraintsof (X)} corre-

sponds to the modified version of (X) with δ1 or δ2. To
obtain the constraints (X)

∗, we first rewrite the constraint
(X) as f(x) ≤ 0, and then replace it with f(x) ≤ δ1 or
f(x) ≤ δ2. Finally, the feasible initial points Γ

(0)
T can be

obtained by directly solving QWinitial, and V̂(0),x(0),y(0),α
(0)

can be obtained by solving QVD initial (QVB initial) based on the
similar iterative approximation method, which is summarized
in Algorithm 2.

IV. PRACTICAL BEAMFORMING DESIGN WITHOUT
JAMMER’S INFORMATION

In this section, we consider the fact that it may be difficult
to obtain the jammer’s CSI due to the lack of cooperation. To
solve this problem, a low complexity beamforming design is
proposed. Specifically, we divide the joint beamforming design
into two subproblems, i.e. transmit beamforming optimization
and phase shift design. For optimizing the transmit beamform-
ing, we apply the proposed method in section III-B, since Jk
can be regarded as a fixed jamming power in one iteration.
In terms of phase shift design, we convert the feasibility-
check problem into the weighted channel gain maximization
problem. Then, under the AO framework, we can use the
penalty non-smooth optimization method to solve this problem
efficiently.

With the optimal transmit beamforming WT obtained from
section III-B, we try to optimize phase shift v under the
case that jammer’s CSI is unavailable. Our purpose is to
constructively maximize the desired signal power and destruc-
tively decrease the jamming power. Thus, under the worst-
case case that the jammer’s CSI is completely unknown, we
can only maximize the desired signal power for practical
implementation [23]. Accordingly, the desired signal power
maximization is equivalent to the combined channel gain
maximization. Therefore, the subproblem corresponding to v
can be rewritten as

QV 1
P : max

v

K∑
k=1

∣∣(hHT,k + vHHT,k)wT,k

∣∣2 (44a)

s.t. |vn| = 1,∀n. (44b)

Note that the combined channel gain of each user is difficult
to maximize at the same time, the phase shifts at the IRS have
to be adjusted on a user basis. Thus, we adopt the weighted

channel gain to replace the sum of the combined channel gain,
which resolves the problem above. By introducing the weights

1
γkPJk

,∀k ∈ K, problem QV 1
P is transformed into

QV 2
P : max

v

K∑
k=1

1

γkPJk

∣∣(hHT,k + vHHT,k)wT,k

∣∣2 (45a)

s.t. |vn| = 1,∀n. (45b)

It is observed that problem QV 2
P is non-convex problem. Then,

we expand (45a) as

vHHT,kH
H
T,kv+vHHT,khT,k+hHT,kH

H
T,kv+

∥∥hHT,k∥∥22. (46)

By introducing an auxiliary matrix ET,k, the problem QV 2
P is

equivalently written as

QV 3
P : max

V̂

K∑
k=1

1

γkPJk
Tr
{

Et,kV̂
}

(47)

s.t. (34d), (34f),

where

ET,k =

[
HT,kH

H
T,k HT,khT,k

hHT,kH
H
T,k

∥∥∥hHT,k∥∥∥2
]

Next, (36) is applied to deal with (34f), and thus problem QV 3
P

is reformulated as

QVP : max
V̂,τ

K∑
k=1

1

γkPJk
Tr
{

Et,kV̂
}
− χτ (48)

s.t. (34d), (36).

As problem QVP is a standard SDP, it can be optimally solved
by CVX tool. Compared to the AO algorithm proposed in sec-
tion III, the low complexity algorithm has lower computational
complexity and better convergence performance, which will be
analyzed in the following sections. However, it may lead to a
suboptimal solution, which will be subsequently presented in
the section VI. In addition, the convergence and the optimality
of the proposed practical scheme can be proved, which is
similar to Section III-D and omitted here for simplicity.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, the computational complexities of the pro-
posed algorithms are analyzed in details. Since the three
convex formulations only involve LMI and SOC constraints,
they can be solved by a standard interior point methods
(IPMs) [49]. According to [49], the worst-case runtime is
used to compare the computational complexitiy, which can
be expressed as

O

n
√√√√ p∑

j=1

αj + 2κ


p∑
j=1

α3
j
+n

p∑
j=1

α2
j︸ ︷︷ ︸

due to LMI

+ n

m∑
i=1

ξ2i︸ ︷︷ ︸
due to SOC

+n2


 ,

where n is the number of variables, p is the number of LMI
of size αj , and κ is the number of SOC of size ξi. Thus,
the computational complexities of the proposed algorithms are
presented as follows:
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(0,0)
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(100,0) Users

(125,-5)
Jammer

Fig. 2: Simulation deployment.

• DBLDI-based AO algorithm: The complexity of
DBLDI-based AO per iteration contains two
parts, i.e. the transmit beamforming part oWT

and phase shift part oΦ−DBLDI. For the transmit
beamforming, the complexity of problem QW is oWT

=

O
(
n1
√
K (M+1)

(
K
(
M3+1

)
+n1K

(
M2+1

)
+n21

))
where n1 = O

(
KM2

)
. In terms of phase shift,

the complexity of problem QVD is oΦ−DBLDI =

O
(
n2
√
N+1+8K

(
(N+1)

3
+2K+n2

(
(N+1)

2
+5K

)
+n2

2

))
where n2 =O

(
(N + 1)

2
)

. Thus, the approximate
complexity of DBLDI-based AO is oWT

+ oΦ−DBLDI.
• BTI-based AO algorithm: The approximate

complexity of BTI-based AO is oWT
+ oΦ−BTI,

where the complexity of oWT
is the same

as DBLDI-based AO, and that of oΦ−BTI is
O
(
n2
√
N+1+6K

(
(N+1)

3
+2K+ n2

(
(N+1)

2
+4K

)
+n2

2

))
. It is found that the complexity of BTI-based AO

is lower than that of DBLDI-based AO per iteration due
to the fact that problem QVB has one less SOC than QVD.

• Low complexity algorithm (LCA) without
jammer’s CSI: The approximate complexity
of LCA is oWT

+ oΦ−LC, where oΦ−LC =

O
(
n2
√
N + 1

(
(N + 1)

3
+ n2(N + 1)

2
+ n22

))
.

Obviously, the LCA has lowest complexity as compared
with the other two algorithms.

VI. SIMULATION RESULTS

In this section, numerical results are provided to validate the
performance of the proposed algorithms. According to [31]
and [33], the jammer is always deployed close to the users
and interrupts the communications by sending the jamming
signal to the the nearest user such that the maximal damage
effect can be achieved. Thus, as shown in Fig. 2, we consider
a 2D coordinate system, where the location of BS and IRS is
(0m, 0m) and (10m, 5m), respectively, the users are uniformly
distributed in a circle centered at (100m, 0m) with radius of
5m and the jammer is located at (125m, -5m). In addition,
the jammer’s beamforming is set to wJ =

√
PJ

ĥJ,knear

‖ĥJ,knear‖
2

in

general, where knear denotes the nearest user to jammer [33].
By reffering to [27], [31], [33], the number of BS antennas and
jammer’s antennas are set to M = 8 and L = 2, respectively.
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Fig. 3: Transmit power versus iteration number for different
algorithms, when PJ = 50 dBm and [δHJ , δhJ ] = [0.2, 0.45].

The number of reflecting elements of the IRS is N = NxNy ,
where Nx is the number of IRS elements along with x-axis
and Ny is that along y-axis. For brevity, we fix Nx = 10 and
linearly increase Ny with N . We set the path loss exponent of
BS-user link, jammer-user link, BS-IRS link, IRS-user link,
and jammer-IRS link as ιBU = ιJU = 4 and ιBI = ιIU =
ιJI = 2 [60]. Based on the 3GPP UMi model [60], the path
loss reference L0 is -10 dB with the reference distance D0 =
1 m. In terms of the small scale fading, we set the Rician
factors of all links involved are set to 1 [27]. For the jammer’s
statistical CSI error, the variance of vec(∆HJ,k) and ∆hJ,k

are defined as ε2
HJ,k

= δ2
HJ

∥∥∥ĤJ,k

∥∥∥2
F

and ε2
hJ,k

=δ2
hJ

∥∥∥ĥJ,k∥∥∥2
2
,

respectively. δhJ ∈ [0, 1) and δHJ ∈ [0, 1) denote the CSI
uncertainties. Other system settings as follows: the maximun
outage probabilities are set to ρ1 = · · · = ρK = 0.05, the
SINR targets are γ1 = · · · = γK = 10 dB, the noise power is
set to σ1 = · · · = σK = 10−9 W [33], the maximum iteration
number Tmax = 50, the convergence tolerance ε = 10−4, and
the jamming power PJ ranges from 20 dBm to 80 dBm. The
following simulation results are averaged over 300 random
channel realizations.

First, the convergence of proposed three algorithms is illus-
trated in Fig. 3. Here, the jamming power is set as PJ = 50
dBm and the channel uncertainty coefficient is chosen as
[δHJ , δhJ ] = [0.2, 0.45]. It is apparent that for different M
and N , all the proposed algorithms converge within 15 itera-
tions. It is also observed that the LCA outperforms the other
two algorithms significantly in terms of convergence, which
suggests that LCA has the lowest implementation complexity.
In addition, the rate of convergence increases with the number
of IRS elements N , while that decreases with the number of
transmit antennas M .

For the computational complexity, we evaluate that of pro-
posed algorithms in terms of CPU time [61]. Fig. 4 compares
the average CPU time of different algorithms versus the
number of IRS elements N for different M . We obtain the
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results by using a computer with a 2.90GHz R7-4800H CPU
and 16GB RAM. Here, we still set PJ = 50 dBm and
[δHJ , δhJ ] = [0.2, 0.45]. The LCA requires much less CPU
time than that required by the other two algorithms. This is
due to the fact that the problem QVP in LCA has less SOCs and
its convergence speed is faster. Moreover, owing to the fact
that the BTI-based AO requires more iterations to converge
than the DBLDI-based AO, the CPU time of DBLDI-based
AO is less than that of BTI-based AO for all considered M
and N . Finally, we can observe the CPU time increases with
the number of transmit antennas M and IRS elements N .
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Fig. 4: Average CPU time versus the number of IRS elements
N , when PJ = 50 dBm and [δHJ , δhJ ] = [0.2, 0.45].
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Fig. 5: Transmit power versus the jamming power PJ , when
M = 8 and [δHJ , δhJ ] = [0.2, 0.45].

Fig. 5 shows the minimum transmit power for anti-jamming
versus the jamming power PJ . For M = 8 and [δHJ , δhJ ] =
[0.2, 0.45]. It is found that the proposed three algorithms
can significantly decrease the minimum transmit power as
compared with non-IRS scheme. In addition, for fixed system
energy supply, the jamming margin can be improved by jointly
designing the active and passive beamforming. Pariticularly,
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Fig. 6: Feasibility rate versus channel uncertainty level δHJ ,
when PJ = 50 dBm, M = 8 and δhJ = 0.

when the transmit power is fixed as 34dBm, the non-IRS
scheme can only combats the jamming power about 30 dBm,
while the proposed algorithms can resist that about 55 dBm,
and thus the jamming margin is significantly improved. Hence,
compared to the scheme without IRS, proposed algorithms
have better anti-jamming performamce and lower power con-
sumption. With the presence of statistical channel, both the
DBLDI-based AO and the BTI-based AO require more trans-
mit power than that required by the scheme with perfect
CSI, and the DBLDI-based AO requires less than the BTI-
based AO. This phenomenon implies that the DBLDI-based
AO is more suitable to the case with jammer’s statistical
CSI in the IRS-assisted anti-jamming system. Apparently, the
performance of LCA is worse than the perfect CSI scheme, but
better than the BTI-based AO. This is because the high level
of channel uncertainties leads to the worst performance to the
BTI-based AO, which also suggests that the LCA achieves a
satisfactory complexity-preformance trade-off.

In what follows, we investigate the impact of channel
uncertainty on the system performance. Fig. 6 and 7 show the
feasibility rate versus the level of channel uncertainty δHJ
and δhJ , respectively. In Fig. 6, we only consider the reflected
channel uncetainty, i.e., δhJ = 0. On the contrary, Fig. 7
only assumes direct channel uncetainty, i.e., δHJ = 0. The
feasibility rate is defined as the ratio of the number of feasible
channel realization to the total number of channel realization,
where feasible channel means there exists a feasible solution
to problem QVD and QVB under this realization [34]. From
Fig. 6 and 7, we can observe that the feasibility rate decreases
with the increase of both channel uncertainty level and the
number of IRS elements N , and δHJ has a greater impact on
feasibility rate than δhJ . This is owing to the fact that δHJ
is associated with N , which will lead to the increase of total
channel estimation errors. Thus, both the RIS units number
N and channel uncertainty level need to be carefully limited
for the satisfactory feasibility perfromance. In addition, the
DBLDI-based AO outperforms the BTI-based AO in terms of
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feasibility rate for the fixed channel uncertainty level.
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Fig. 7: Feasibility rate versus channel uncertainty level δhJ ,
when PJ = 50 dBm, M = 8 and δHJ = 0.
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when PJ = 50 dBm and M = 8.

Fig. 8 depicts that the transmit power of proposed al-
gorithms versus the number of IRS elements for different
channel uncertainty levels, where the values of uncertainty
are employed according to feasibility analysis in Fig. 6 and
7. It obvious to find that the transmit power decreases with
the number of IRS elements N when N ≤ 80, along with a
slightly reversed trend for N > 80. This is due to the fact that
increasing IRS elements N can not only decreases the transmit
power, but also increases both channel estimation error and
jamming power that more transmit power is required. For the
DBLDI-based AO and BTI-based AO, the power consumption
under channel uncertainty is higher than that of perfect CSI,
and the performance loss intensifies with the increase of
channel uncertainty level. The reason can be explained by
the fact that the BS needs to consume additional power to
compensate for the outage loss caused by channel uncertainty.
Moreover, the BTI-based AO is superior of the DBLDI-based
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Fig. 9: Transmit power versus number of transmit antennas
M , when PJ = 50 dBm and N = 80.
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Fig. 10: Transmit power versus BS-IRS horizontal distance
dirs, when PJ = 50 dBm, N = 80, M = 8, and [δHJ , δhJ ] =
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AO for a low channel uncertainty. On the other hand, δHJ
has a greater impact on the transmit power than δhJ , which is
owing to the fact that δHJ is associated with the IRS and the
units at IRS will inrecase the channel uncertainty.

The transmit power versus the number of transmit antennas
is shown in Fig. 9. It is observed that the transmit power
consumption decreases with the number of transmit antennas
even when the channel uncertainty values are large. This is
because the large M increases the degrees of freedom which
can be utilized to design the transmit beamforming at the BS.

Additionally, we examine the optimal deployment of IRS.
Fig. 10 shows the transmit power versus the BS-IRS horizon-
tal distance. The transmit power increases significantly with
the BS-IRS horizontal distance dirs. This is because when
the IRS moves closer to the users, increasing dirs can not
only improve the desired signal power, but also increase the
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reflected jamming power that more transmit power is required
to combat it. Consequently, we can deploy the IRS near the
BS, which facilitates our usage of IRS in practical.

VII. CONCLUSIONS

In this paper, we have studied robust beamforming optimiza-
tion in a multiuser IRS-assisted anti-jamming communications
system, for the cases with imperfect jammer’s CSI and without
jammer’s CSI. Additionally, the fact that the jammer’s transmit
beamforming can not be known at BS were further considered
in this paper. Specifically, with no knowledge of jammer’s
transmit beamforming, we aim to minimize the transmit power
subjects to outage rate constraints under the jammer’s statis-
tical CSI and the SINR constraints with no jammer’s CSI,
respectively. The unknown jammer’s beamformin issue was
tackled by utilizing the use-and-then-forget (Uatf) method and
Cauchy-Schwarz inequality, and then the jammer’s statistical
CSI uncertainties were addressed by using Decomposition-
based large deviation inequality and Bernstein-type inequality.
The case without jammer’s CSI was dealt by the weighted
channel gain method. Finally, applying the penalty non-smooth
optimization method, the optimal rank-one solutions to the
reformulated problems can be obtained in an iterative manner.
Numerical results showed that proposed three algorithms have
higher jamming margin and lower power consumption as
compared with the scheme without IRS. In addition, the
DBLDI-based AO outperformed the BTI-based AO in terms
of transmit power, convergence, feasibility and complexity,
and the LCA achieved a satisfactory complexity-preformance
trade-off for the practical implementation. This paper also
provided some useful insights for the optimal selection of the
number of IRS elements and IRS deployment.

APPENDIX A
PROOF OF PROPOSITION 1

First, problem QW3 is presented for the following derivation,
which is given by

QW3 : min
ΓT

K∑
k=1

((µk+1) Tr {ΓT,k}−µkλmax {ΓT,k}) (A.1)

s.t. (12b), (12c).

Then, given a feasible solution
{

Γ
(n−1)
T,k

}
to problem QW3 ,

we can obtain the optimal solution
{

Γ
(n)
T,k

}
by solving the

following problem,

Q̂W :

K∑
k=1

{
(µk + 1) Tr {ΓT,k} − µkλmax

{
Γ(n)

T,k

}
−µk

〈
w

(n−1)
T,k,maxw

(n−1),H
T,k,max ,ΓT,k − Γ(n)

T,k

〉
(A.2)

s.t. (12b), (12c).

Next, we use (16) to derive the relationship between nth and
(n−1)th iteration, which is written as

K∑
k=1

(
(µk + 1) Tr

{
Γ(n)

T,k

}
− µkλmax

{
Γ(n)

T,k

})
(A.3a)

≤
K∑
k=1

{
(µk + 1) Tr

{
Γ(n)

T,k

}
− µkλmax

{
Γ(n−1)

T,k

}
−µk

〈
w

(n−1)
T,k,maxw

(n−1),H
T,k,max ,Γ

(n)
T,k
− Γ(n−1)

T,k

〉}
(A.3b)

≤
K∑
k=1

(
(µk+1) Tr

{
Γ(n−1)

T,k

}
−µkλmax

{
Γ(n−1)

T,k

})
. (A.3c)

Evidently, we can achieve a better solution
{

Γ
(n)
T,k

}
to prob-

lem QW3 by solving problem Q̂W . Moreover, if we remove
the constant part in the objective function, problem Q̂W is
equivalent to QW . Thus, the optimal solution to problem QW3
can be obtained via solving QW .

Hence, the proof is completed.

APPENDIX B
PROOF OF (20)

For ease of exposition, ζ1 (20) is rewritten as follows:

ζ1 =∆hHJ,k (−ΓJ) ∆hJ,k + vH∆HJ,k (−ΓJ) ∆HH
J,kv

+ 2Re
{
vH∆HJ,k (−ΓJ) ∆hJ,k

}
=− ε2

hJ,k
eHhJ,kΓJehJ,k − ε2HJ,k

eHJ,k
(
VT ⊗ ΓJ

)
e∗

HJ,k

− 2Re
{
εHJ,kεhJ,ke

∗
HJ,k

(v∗ ⊗ ΓJ) eH
hJ,k

}
, (A.4)

It is not difficult to convert the first term inside ζ1 to the second
equality by defining ∆hJ,k = εhJ,kehJ,k.

Then, the derivations of remaining terms inside ζ1 fol-
lows Dζ1 at the top of this page, where the step (c)
in (A.5) is derived from vec

(
AH

)
vec (B) = Tr

{
AHB

}
,

and the step (d) in (A.5) is obtained by Tr {ABCD} =
vec (D)

(
CT ⊗A

)
vec (B).

Hence, the proof is completed.

APPENDIX C
PROOF OF RANK-ONE CONSTRAINTS (36)

As analyzed in Section III-B, the rank-one constraints (34f)
can be equivalently transformed into

rank
(
V̂
)

= 1⇔ Tr
{

V̂
}
− λmax

{
V̂
}
≤ 0. (A.6)

We also adopt the subgradient of λmax

{
V̂
}

to deal with its
non-smoothness, which is given by

∂λmax

{
V̂
}

= v̂maxv̂
H
max

, (A.7)

where v̂max is the eigenvector related with the maximum
eigenvalue of λmax

{
V̂
}

. Thus, by defining the feasible

solution v̂(n−1)
max

obtained at (n− 1)th iteration, the first-order
approximation of λmax

{
V̂
}

can be expressed as

λmax

{
V̂
}
−λmax

{
V̂(n−1)

}
≥
〈
v̂(n−1)

max
v̂(n−1),H

max
, V̂−V̂(n−1)

〉
.

(A.8)
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Dζ1 : vH∆HJ,k (−ΓJ) ∆HH
J,kv + 2Re

{
vH∆HJ,k (−ΓJ) ∆hJ,k

}
a
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{

Tr
{
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∆HH

J,k
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+ 2Re
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∆h

T
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(
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e
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(
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∗
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(A.5)

As such, the term Tr
{

V̂
}
−λmax

{
V̂
}
≤ 0 can be rewritten

as

Tr
{

V̂
}
−λmax

{
V̂
}
≤ τ

⇒Tr
{

V̂
}
−λmax

{
V̂(n−1)

}
−
〈
v̂(n−1)

max
v̂(n−1),H

max
, V̂−V̂(n−1)

〉
≤τ,

(A.9)

where τ is a penalty parameter. Note that the function above
can be further simplified as

Tr
{

V̂
}
−
〈
v̂(n−1)

max
v̂(n−1),H

max
, V̂
〉
≤ τ, (A.10)

which is due to the property that

λmax

{
V̂(n−1)

}
= v̂(n−1),H

max
V̂(n−1)v̂(n−1)

max
. (A.11)

Hence, the proof is completed.
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