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Abstract—Satellite and unmanned aerial vehicle (UAV) net-
works have been introduced as enhanced approach to provide
dynamic control, massive connections and global coverage for
future wireless communication systems. This paper considers
a coordinated satellite-UAV communication system, where the
UAV performs the environmental reconnaissance task with the
assistance of satellite in a hostile jamming environment. To fulfill
this task, the UAV needs to realize autonomous trajectory control
and upload the collected data to the satellite. With the aid of
the uploading data, the satellite builds the environment situation
map integrating the beam quality, jamming status, and traffic
distribution. Accordingly, we propose a closed-loop anti-jamming
dynamic trajectory optimization approach, which is divided into
three stages. Firstly, a coarse trajectory planning is made accord-
ing to the limited prior information and preset points. Secondly,
the flight control between two adjacent preset points is formulated
as a Markov decision process, and reinforcement learning (RL)
based automatic flying control algorithms are proposed to explore
the unknown hostile environment and realize autonomous and
precise trajectory control. Thirdly, based on the collected data
during the UAV’s flight, the satellite utilizes an environment
situation estimating algorithm to build an environment situation
map, which is used to reselect the preset points for the first stage
and provide better initialization for the RL process in the second
stage. Simulation results verify the validity and superiority of the
proposed approach.

Index Terms—Jamming, Satellite-UAV coordination communi-
cation, Trajectory optimization, Reinforcement learning, Graph
theory.
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I. INTRODUCTION

A. Motivations

Satellite communication systems (SCS) and unmanned
aerial vehicles (UAV) have played significant roles in the field
of wireless communications [2], [3]. When the terrestrial base
stations (BS) are unavailable in the hostile areas, the assistance
of SCS is essential for UAV to carry out the environmental
reconnaissance and data collection task. Efficient trajectory
control enables the UAV to achieve higher reconnaissance
performance [4]. However, the trajectory control problem in
the hostile environments faces the following challenges: i)
With the assistance of SCS, beam selection will seriously
affect the UAV trajectory planning. The beam quality and data
collection should be jointly considered in the trajectory control
process; ii) In the hostile environment, the threat of malicious
jamming remains a severe challenge, which can significantly
reduce UAV’s uploading data; iii) Due to the uncertain en-
vironmental states and huge action search space, the overall
information for trajectory control is difficult to obtain, and
the previous and centralized approaches can not work in the
hostile environment. Motivated by the above observations, this
paper investigates the satellite-assisted UAV trajectory control
problem in the hostile jamming environments.

B. Related Works

Due to the advantages of fast deployment and low cost,
UAV is believed to be a potentially promising choice for data
collection and emergency communications [5]. The surging
UAV applications inspire researchers to model and analyze
UAV communication patterns [6]. In the hostile environment,
the terrestrial BS is unable to provide access service to the
UAV, thus the UAV has to rely on information support from the
SCS, especially low earth orbit (LEO) SCS [7]. However, due
to the long distance and large delay, it is difficult for the LEO
SCS to perform near-surface and low latency reconnaissance
tasks. Due to their respective limitations, SCS and UAVs can
be combined to form a coordinated satellite-UAV network [8].
The coordination between satellites, UAVs, and terrestrial sys-
tems has drawn increasing attention. The authors in [9] studied
a satellite-UAV mobile edge caching IoT system, in which
UAV was used to enhance the data cashing ability. The authors
in [10] studied the statistical framework of QoS requirements
for airborne wireless networks, including satellites, airships,
and UAVs. In [11], multiple satellites cooperatively served the
UAVs and mobile terminals, and NOMA technology was used
to access satellite networks. In [12], the authors investigated



the integration of SCS and aerial communications for UAVs
and other flying vehicles. In [13], the authors solved the
overload problems of ground BS by using UAV as a mobile BS
and optimizing the bandwidth, users’ partitioning, and UAV’s
trajectory. However, the existing works mainly focus on the
cooperative scenarios between the SCS and terrestrial systems
or UAV and terrestrial systems, while there exists few works
on cooperative communications between satellites and UAVs.

UAV trajectory control is an important issue to improve
the system performance and data quality, which is closely
related to the UAV’s kinematic parameters [14]. In [15], the
authors designed a coarse trajectory for energy minimization
considering UAV’s velocities and latency constraints. The UAV
trajectory optimization was studied in [16] which can learn the
environment characteristic quickly. In [17], the authors studied
UAV trajectory optimization at the edges of three neighboring
cells to offload data for BSs. The authors in [18] investigated
an efficient UAV-enabled power transfer scheme via trajectory
design. The authors in [19] proposed a decoupled heuristic
solution to minimize the total time spent on travelling and
hovering for UAV flight. In most works, the data collection
points are determined and known to UAVs in advance [17],
[20], [21]. However, the uncertain data collection points are
rarely investigated in the existing works, which is a challenge
that must be faced in the hostile jamming environments.

Joint optimization problems for UAV communications have
also been studied extensively. The authors in [22] optimized
the UAV trajectory and in-flight power to enhance the coverage
of hybrid satellite terrestrial networks. The authors in [23]
investigated the joint optimization problem of power control
and trajectory design in UAV-aided hybrid satellite terrestrial
networks. In [8], the authors studied multi-domain resource al-
location for the coordinated satellite-UAV network to improve
the performance of wide-area massive access. The authors in
[20] proposed a new design framework to jointly optimize the
UAV energy consumption and communication throughput by
UAV trajectory control. Collaborative multi-agent task is also
an important research direction in the trajectory design of UAV
[24], [25]. The authors in [21] investigated the multi-UAV
communication scheduling and the joint optimization problem
of power control and trajectory design. On the one hand,
the joint optimization works considering the anti-jamming
requirement are rarely investigated in the state-of-the-art. In
addition, beam switching is also a condition that seriously af-
fects UAV trajectory planning, because UAVs cannot complete
data uploading in the area with a poor beam quality. Thus,
the beam selection and trajectory control should be jointly
optimized rather than in a separated or partial optimization
pattern [18], [21], especially in the satellite-UAV coordination
networks.

The above-mentioned works mainly solved the trajectory
design by centralized optimization rather than decentralized
planning and automatic adjustment, and these works mainly
makes pre-deployment before flight. However, it should be
noted that the global information is generally difficult to obtain
in the hostile environments, which needs to take all of the
environment situation into consideration. Thus, it is unavail-
able to apply the centralized planning approach. However,

reinforcement learning (RL) approach is able to grasp the
uncertain environment by the exploration-exploitation mech-
anism, which can be used to adjust flying trajectory auto-
matically. RL algorithm has been widely used in the field of
wireless communications. In [26], Q-Learning was used to
analyze spectrum availability and make optimal anti-jamming
policies. An actor-critic deep RL approach was proposed in
[27], [28] to solve the time-slot allocation problem in UAV-
Aided Networks. The authors in [29] used RL algorithm for
anti-jamming defense across multiple regions. Besides, Q-
learning was used in [30] to form dynamic anti-jamming
coalition for the devices of satellite-enabled army internet
of things. In [31], the authors utilized RL scheme to solve
the anti-jamming routing problem for internet of satellite. In
[32], Q-Learning was used to deal with the joint anti-jamming
problem of routing selection, channel allocation and power
control. In this paper, RL is applied to realize the automatic
UAV flight, obtain the situation information of hostile environ-
ment, and perform effective anti-jamming defense. Differently
from our previous work [1], which only considered point-to-
point automatic flight in a hostile environment, this paper
investigates a closed-loop complete trajectory optimazation
problem, including coarse trajectory design, point-to-point fine
trajectory control and environment situation mapping.

C. Contributions and Organizations

In this paper, considering the challenges of uneven traf-
fic distribution, unknown jamming state and uncertain beam
quality, the satellite-assisted UAV trajectory control problem
is decoupled into three closed-loop sub-problems for effective
solutions. The main contributions are summarized as follows:

• The satellite-assisted UAV trajectory control problem is
first formulated. Specifically, the UAV performs data col-
lection and environment mapping task with the assistance
of satellite, and it attempts to improve data quality and
transmission performance by trajectory control.

• The initial trajectory control problem is decoupled
into three closed-loop sub-problems, namely, preliminary
planning of coarse trajectory, point-to-point precise tra-
jectory control and environmental situation assessment.
Consequently, we propose an anti-jamming dynamic tra-
jectory optimization approach to deal with the challenges
of uncertain traffic data, unknown jamming state and
uneven beam quality and to achieve efficient trajectory
optimization;

• Computational complexity, convergence analysis and op-
timality analysis are given in details. Simulation results
validate the effectiveness of the proposed approach, and
show the influence of different factors regarding the
algorithm performance.

The remaining part of this paper is organized as follows.
Section II gives the system model and problem formulation.
The proposed anti-jamming dynamic trajectory optimization
approach is elucidated in Section III. Simulation results and
discussion are shown in Section IV. Section V draws the
conclusions.
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Fig. 1: The anti-jamming trajectory control scene. The UAV per-
forms environmental reconnaissance and data collection task with
the assistant of LEO SCS in the hostile jamming environment.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

1) Task model: The anti-jamming trajectory control scene
for UAV is shown in Fig. 1. The large UAV, equipped with
electronic reconnaissance equipment, is specially used for
intercepting and recording enemy electromagnetic radiation
signals from the ground [33]. Then, the reconnaissance data is
uploaded to satellites for processing and analyzing. The UAV
is able to achieve automatically trajectory control with the
assistance of satellites1. The satellite provides access channels
to UAV, and transmits the environmental situation assessment
to the UAV via downlink. Meanwhile, the UAV collects data
in the hostile jamming environment and uploads collected
data to the satellite via the uplink. However, ground-based
jammers in hostile environments pose a serious threat to UAV
flight. It will launch jamming attacks to disrupt the UAV’s data
uploading and hinder the UAV’s in-flight reconnaissance task.
Thus, UAV attempts to improve data quality and anti-jamming
performance by trajectory control.

In this paper, the target are is meshed into grids [33]. The
size of each grid is set according to the coverage range of a
spot beam. Each grid’s position is fixed and indexed by i. We
consider that the hot grids show aggregation characteristics,
where UAV may collect larger traffic data [34]. In the i-th grid,
the collected traffic data is D(i, t) at time t, which follows the
Poisson distribution with a Poisson parameter λi,t [35]:

Pr {D (i, t) = x} =
(λi,t)

x

(x)!
e−λi,t , (1)

where Pr {D (i, t) =x} is the probability that this grid gener-
ates x bits data. The traffic of each grid is generated randomly

1 Note that this task is not a one-time mission, but one that will obtain situational
information of the target area through multiple reconnaissance flights over a
period.

according to the local traffic law. λhi,t is regarded as the mean
traffic of high traffic grids, and the other’s Poisson parameter
is set as λli,t. Moreover, λi,t is diverse in different grids and
varies over time, and it is only related to the local traffic law
of each grid. As shown in Fig. 2(a), the traffic distribution
in different grids is uneven, and the hot points have larger
traffic data [30]. UAV need to reach as many hot points as
possible during the autonomous flying. However, as shown in
Fig. 2(b)-(d), UAV cannot upload data in a grid with poor beam
quality, even in a hot point. Thus, data collection and beam
quality should be considered comprehensively in trajectory
control, and the UAV tends to access the grids with large traffic
and higher signal-to-jamming-plus-noise ratio (SJNR)2, which
means good signal strength and a low probability of jamming.

(a) (b)

(c) (d)

Fig. 2: The environment setting obtained by averaging 1000 trials.
(a) Traffic distribution setting; (b) Beam quality setting; (c) Jamming
status setting; (d) The corresponding SJNR.

2) Satellite beam model: The LEO satellite constellation
completes the global coverage with an orbit height of Hs,
which consists of No circle polar orbits with each orbit
placing Ns satellites. As shown in Fig. 3(a), the earth ra-
dius is RE , and the minimum elevation angle from ground
observation point to the satellite is ϑ. By using geometrical
relationship, the lower half angle of maximum visibility is
ϕ = arcsin [cosϑ×RE/ (RE +Hs)]. The geocentric angle
corresponding to ϕ is:

α = arccos [cosϑ×RE/ (RE +Hs)]− ϑ. (2)

The coverage radius of single satellite is RX = RE sinα, and
the linear velocity and angular velocity of satellite are vl =√
GM/ (RE +Hs) and va = vl/ (RE +Hs) respectively,

where G and M are the gravitational constant and earth’s

2 Although we can set different distribution maps of traffic, beam quality, and
jamming state, in general, the jammers will be deployed close to the important
grids with high flow, and in these grids, the quality of our satellites is usually
poor. Of course, we can normalize the importance of grids by setting different
weights, which is also applicable to the proposed approach below.
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Fig. 3: (a) The satellite movement model; (b) The satellite beam model which is simplified to square beam; (c) The coverage model of
LEO satellite constellation.

mass. The longest continuous coverage time of a satellite to a
user is:

Tc = 2α/va. (3)

Satellites use directional antennas and their transmitted signal
is modeled using a beam. The square beam shown in Fig. 3(b)
is used to illustrate the circular beam for simplified calculation.
The satellite coverage are is meshed into NB × NB beam
squares, and the length of each beam square is approximated
as:

RB =
√

2RX/NB . (4)

The coverage model of LEO satellite constellation is shown
in Fig. 3(c). As satellites sweeping the covered area, the user
needs to switch frequently between the different beam cells or
even different satellites. The switching time per beam in the
direction of satellite moving is:

Tb = Tc/NB . (5)

The minimum distance required for beaming switch is:

RS = (2−
√

2)RB . (6)

3) Transmission channel model: According to [36], the
shadowed-Rician model is a popular satellite link model with
a significantly reduced computational complexity to describe
the accurate amplitude fluctuation of signal envelope. Conse-
quently, the probability density function of the channel gain
of the transmission link from the i-th grid to the satellite (i.e.,
hi ) is expressed as Y1=

∣∣hi∣∣2:

fY1
(x) = αi exp (−βix)1F1 (mi; 1; δix) , (7)

where 1F1 (mi; 1; δix) is the confluent hypergeometric func-
tion, βi = 1/2χi, αi = (2χimi/(2χimi + µi))

mi/2χi,
δi = µi/2χi (2χimi + µi). mi ∈ (0,∞) is the Nakagami-
m parameter, µi is the mean power of the line-of-sight (LOS)
component, 2χi is the mean value of the multi-path power.

Ground-based jammers jammers are randomly distributed in
the target region. If a jammer lies in the i-th grid, i.e., δ(Ji =
1) = 1, it launches jamming attacks towards UAVs according

to jamming probability of Prd. According to [37], Nakagami-
m fading distribution is used to model the air-ground links,
including the data collecting links and the jamming links. The
probability density function of the channel gain of the jamming
link in the i-th grid (i.e., hJ ) is defined as Y2=|hJ |2:

fY2
(x) =

xθi−1 exp(− x
ηi

)

Γ(θi)ηiθi
, (8)

where Γ (·) is the Gamma function, and the average power is
ηiθi.

UAV is equipped with a single antenna, while satellites are
equipped with multiple antennas. The received signal at the
satellite is:

yi(t) =
√
GsGudi

−βhi,tk si(t)e
j2πfk

d (t)t + σ2 + σ2
B + σ2

J ,

σ2
B =

∑
b 6=k

√
GsGudi

−βhi,tb s
′
i(t)e

j2πfb
d(t)t, (9)

σ2
J = Prdδ(Ji,t = 1)d−βJ hJpJ ,

where si(t) is the signal transmitted from UAV in the i-
th grid at time t. E[|si(t)|2] = pU , and pU is the UAV
transmitting power. Gs is the antenna gain at satellite, Gu
is the antenna gain at UAV. di is the transmission distance
from the i-th grid to satellites [38]. β is the large-scale fading
coefficient. hi,tk is the channel gain using the k-th beam. σ2

is the channel noise, and σ2
B is the inter-beam interference

introduced by other beams, b 6= k. The Doppler shift caused
by the satellite movement which is assumed to be fully
compensated by carrier frequency offset and correction [39].
Gs, di, Gu are all constants, thus, without loss of generality,
we set

√
GsGud

−β
i = 1 [38]. The maximum transmission rate

of the satellite uplink is defined as:

C(i, t) = Bi,tlog2 (1 + ri,t) δ(ri,t ≥ rth), (10)

ri,t =
hi,tk pU

Prdδ(Ji,t = 1)hJd
−β
J pJ + σ2 + σ2

B

, (11)

where ri,t denotes the SJNR at the satellite receiver from
the i-th beam cell at time t, and pJ represent the jamming



power. Bi,t represents the maximum access channel bandwidth
provided by the i-th beam cell at time t. When there is no
channel remaining in this beam cell, i.e., Bi,t = 0, or the
channel fading of this beam is very severe, i.e., ri,t < rth,
the UAV cannot upload data, i.e., δ (ri,t ≥ rth) = 0. Oth-
erwise, this beam cell could provide available service, and
δ (ri,t ≥ rth) = 1.

4) UAV movement model: We consider a 3D coordinate
system where the UAV flies at a fixed altitude Hu with a speed
of vu. To reduce the computational complexity and implement
the coarse trajectory design, the Manhattan network model
is used to model the meshed target region. The target area
is set as NB × NB meshed grids. The grid is set by jointly
considering the satellite beam coverage and switching strategy.
Each grid represents a beam cell, which will be covered by
another beam at every Tb. The coordinates projected on the
horizontal plane of the location at current moment and next
moment are defined as lt = [xt, yt] and lt+1 = [xt+1, yt+1].
UAV can choose four motion selection: forward, backward,
left, and right [33]. Then, UAV goes into the adjacent grid,
limited by ‖lt − lt+1‖ = 1, where ‖lt − lt+1‖ represents the
Manhattan distance from lt to lt+1,

Llt,lt+1
= ‖lt − lt+1‖ = |xt − xt+1|+ |yt − yt+1| , (12)
x ∈ [1, NB ], y ∈ [1, NB ].

B. Problem Formulation

Energy consumption is an important factor for UAV trajec-
tory optimization. The total energy consumption of the UAV
includes two components [19]. The first one is the propulsion
energy, which is required for supporting its mobility. The
other component is the data uploading energy, which is mainly
related to the uploading data and corresponding channel state.

As remarked in [15], [40], the energy consumption is related
to UAV’s velocity and flying time. However, in this paper,
the UAV’s velocity is fixed, thus, the energy consumption is
positively correlated with the flight distance. To simplify the
calculation, the propulsion energy consumption that the UAV
flies from grid i to grid j is defined as:

Svij=e1Lij , (13)

where e1 is a constant, and Lij is the Manhattan distance that
the UAV passes through from grid i to grid j.

The current location of the UAV is lt, and the data uploading
energy consumption in this grid is:

Sclt = e2D̂lt , (14)

where D̂lt is the uploading data traffic at lt-th grid. In our
assumption, UAV’s transmission power is constant, and the
energy consumption of data uploading is actually correspond-
ing to the during of data uploading. Thus, it is related to
the amount of uploading data. Without loss of generality,
we set it to a constant regarding to per uploading bit which
is represented by e2. In addition, location and link state
affect the amount of data that can be uploaded. UAV has a
cache stack with a maximal capacity of |K| for temporarily
storing collected data. If the current collected data is not fully

uploaded to the satellite, the rest will be stored in the cache
stack waiting for the next transmission. Moreover, data will
be discarded if it has been cached for a long time. At time
t+ 1, the location of UAV is lt+1. At the beginning when the
UAV flies into lt+1, the cached data K(lt+1) is:

K(lt+1)=max
{

0,min
{
K(lt)+D(lt, t)−D̂lt , |K|

}}
, (15)

where D(lt, t) represents the collected data in the lt-th grid at
time t. Then D̂lt is:

D̂lt =min


bTlt/Tbc∑
g=1

TbC̄ (lt, g),K(lt−1)

 , (16)

Tlt ∈

{
RS
vu
,
RB
vu

,

√
2RB
vu

}
, (17)

where Tlt is the duration time in the lt-th grid which can take
three values, correspond to the three cases of poor beam qual-
ity, average beam quality, and good beam quality respectively.

bTlt/Tbc is the beam switching counts,
∑bTlt/Tbc
g=1 TbC̄ (lt, g)

is the corresponding total uploading data after multiple beam
switching, where C̄ (lt, g) is the average transmission rate in
the lt grid in a period of time g.

The UAV tries to upload the maximum data under the
constraint of energy consumption,

P : max
[l1,l2,...lt,...,l1]

∑
t

D̂lt , (18)

s.t.
∑
t

(
Svlt−1,lt + Sclt

)
≤ E0,

where [l1, l2, . . . lt, . . . , l1] is the closed-loop flight trajectory,
and E0 is the total energy.

Due to the uncertainty of the hostile environment, problem
P is difficult to address via a centralized solution, not to
mention that the accurate D̂lt is difficult to obtain, due to
the uneven traffic distribution, unknown jamming stage and
uncertain beam quality. Meanwhile, the increasing network
size will greatly increase the computational complexity.

Remark 1: Dividing the problem P into two-step problems,
P1, P2 can effectively reduce the computational complexity.

Assuming that the global information is known, and the
modified Dijkstra algorithm is adopted, its computational
complexity is O(N2), where N is the grids number. Then,
if we use the two-step method: firstly, Z preset points are se-
lected and the coarse trajectory design is performed; secondly,
perform point-to-point flying autonomously. Then, the com-
putational complexity has been reduced to O

(
N2/(Z − 1)

)
.

Although the global information is not known in this paper, it
can be expected that the overall computational complexity will
be significantly reduced by the two-step approach. Therefore,
the problem P can be divided into P1 and P2 to reduce
computational complexity. As described below, P1 is used to
select the preset points and design the coarse trajectory, thus
dividing the target region into smaller regions according to ad-
jacent preset points. Then, P2 is used to solve the autonomous
trajectory planning problem between preset points.



1) Preliminary planning of coarse trajectory (P1): The
preliminary planning of coarse trajectory can be formulated as
a traveling salesman problem (TSP) [15], [41], [42]. It targets
finding the shortest path visiting all the points in different
locations exactly once. In this sub-problem, the UAV needs
to find a designed trajectory visiting all the preset points
lp = [l1p, l

2
p, . . . , l

N
p ] and flies back to the starting point with the

lowest flying energy cost. Specifically, the UAV first needs to
initialize a preliminary rough trajectory ξ = Φ

(
l1p, l

2
p, . . . , l

N
p

)
and gradually modifies this trajectory to minimize the expected
cost. Φ represents a rearrangement transformation.

Let wij be a binary decision variable which is equal to 1 if
the UAV flies from preset point lip to ljp, and 0 otherwise.
The objective is to minimize the total propulsion energy
consumption while visiting all preset points,

P1 : min
ξ=Φ(l1p,l2p,...,lNp )

Ev, (19)

s.t. Ev =
∑
lip∈lp

∑
ljp∈lp,j 6=i

wijS
v
ij , (19a)

∑
ljp∈lp

xij = 1,∀lip ∈ lp, (19b)

∑
ljp∈lp

xji = 1,∀lip ∈ lp, (19c)

where (19b) and (19c) ensure that each point can only be
accessed once.

2) Point-to-point precise trajectory control (P2): In the
meshed area, the selection of the next grid is not only required
by data collection, but also limited by beam quality. However,
in the hostile environment, only the stage information from
the adjacent grid is observable. Furthermore, the next grid
selection is only relevant to the current grid and the available
action space, not to the previous selection. Thus, to realize the
automatic exploration of the uncertain hostile environment, the
point-to-point precise trajectory control problem from the n-th
preset point ξn to the next ξn+1 is formulated as a Markov
decision problem (MDP) with state space S, action space A,
reward function R [31]. The state space is defined as the
current location:

{sk ∈ S |S = ξn, l
n
1 , . . . , l

n
k , . . . , l

n
K, ξn+1 } , (20)

where ξn and ξn+1 belong to the preset points set, ξn, ξn+1 ∈
ξ, ξ = Φ (lp), and they are the source point and destination
point of this point-to-point trajectory control problem. lnk is the
intermediate point between the source and destination points,
and K = Xn × Yn, Xn ≤ NB , Yn ≤ NB is the total grid
number of the sub-network with ξn and ξn+1 as vertices.

The action space in this paper is defined as:

{ak ∈ A |A = a1, a2, a3, a4 } , (21)

where a1, a2, a3, a4 are expressed as the action of “Forward”,
“Backward”, “Left”, and “Right”.

The reward function is defined as the traffic data uploaded
in the current grid lnk :

R(lnk ) = D̂lnk
. (22)

Due to the declining beam quality or the jamming impact,
UAV needs to frequently switch beam grid and get into the
grid with better channel state. The second sub-problem is that
the UAV needs to maximize uploading data

∑N−1
n=1 Rn through

the trajectory control in a piecewise way,

P2 : max
{ψn}N−1

n=1

N−1∑
n=1

Rn, (23)

s.t. Rn =

(
R (ξn) +

Kn∑
k=1

R (lnk ) +R (ξn+1)

)
, (23a)

ψn =
[
ξn, l

n
1 , l

n
2 , . . . l

n
k . . . l

n
Kn
, ξn+1

]
, (23b)

ξn, ξn+1 ∈ ξ, n ≤ N − 1, (23c)

Kn ≤ Lthξn,ξn+1
, (23d)

where ψn =
[
ξn, l

n
1 , l

n
2 , . . . l

n
k . . . l

n
Kn
, ξn+1

]
is the UAV

precise trajectory from source ξn to the destination ξn+1.
Due to the energy reserve, UAV can fly up to Lthξn,ξn+1

between the preset points ξn and ξn+1, i.e., Lξn,ξn+1
≤

Lthξn,ξn+1
. Finally, according to P1 and P2, we can ob-

tain a closed-loop flight trajectory, i.e., [l1, ..., lt, ..., l1] =
[ξ1, l

1
1, l

1
2 . . . ξ2, l

2
1, l

2
2 . . . ξ3 . . . ξN . . . ξ1].

3) Environmental assessment and preset points selection
(P3): The current environmental situation is assessed accord-
ing to the historical data and satellite sensing results,

D̃(lip) = E
[
D
(
lip, t
)]t

Π
, (24)

C̃(lip) = E
[
r
(
lip, t
)]t

Π
, (25)

where E is an operation of segment averaging,

E [Y (t)]
t
Π =

1

Π

t∑
x=t−Π+1

Y (x). (26)

where Π is the truncated length to improve the adaptability to
environmental changes.

Then, in order to select the grids that can upload more data,
N < N2

B preset points lp = [l1p, l
2
p, . . . , l

N
p ] are selected as the

new preset points for the next flight,

P3 : max
{lip}Ni=1

N∑
i=1

min
{
D̃
(
lip
)
, C̃
(
lip
)
Tlip

}
. (27)

Meanwhile, the assessment results are used to provide better
initialization of Q value for the RL approach.

Remark 2: With formulation of P3, the three-step problems,
i.e., P1, P2, P3, will form a closed loop by means of iterative
optimization and obtain the sub-optimal solution.

There is a high correlation between the grids in our environ-
ment setting. In a certain local area, there are only finite hot
grids which can generate high traffic data. Because the hot
grids show aggregation characteristics, if on a given flight,
the UAV finds a better grid with more uploading data, it will
gradually approach the extreme point of the local area, and
it finally converges to the local optimum. In the subsequent
flights, environmental estimation is further optimized based
on the collected data. Meanwhile, the preset points selection
is constantly optimized according to the environment situation
assessment. Thus, the performance of the proposed approach



could be continuously improved according to the Pareto crite-
rion. Therefore, the proposed closed-loop scheme can converge
to a sub-optimal solution at least. As the number of flights
increases, the UAV will have more accumulated knowledge of
the environment, and the optimized trajectory will gradually
move towards the sub-optimal solution.

In summary, the original problem P is decomposed
into three closed-loop sub-problems: preliminary planning
of coarse trajectory (P1), the sub-problem of point-to-point
precise trajectory control (P2), and the sub-problem of envi-
ronmental assessment and preset points selection (P3).

Specifically, to address the problem P , the UAV firstly de-
signs a preliminary planning of coarse trajectory (P1); Next, it
makes a point-to-point autonomous precise flight control (P2);
Then, based on the collected data, P3 is formulated to assess
the environment situation, and further optimize the selection
of preset points for P1, and provide better initialization for
the P2.

Additionally, in the initial stage, the UAV has no prior
details about the hostile environment, thus, only satellite
observation can be used to determine some preset points to
plan the coarse trajectory. The UAV flies according to the
preset trajectory but chooses a specific path autonomously
between two preset points based on the actual situation and
knowledge obtained by the environmental assessment.

Remark 3: The actual solution to the trajectory planning
problem in a hostile environment studied can be composed of
the following four stages:

(1) Build the hostile environment modeling based on exist-
ing data and experience;

(2) Off-line training under the reinforcement learning
paradigm;

(3) Actual flight control according to the trained trajectory
control strategy, meanwhile, collect the data during flight;

(4) The new collected data is used to further improve
environment modeling and optimize the learning model to get
better strategies.

Each actual flight provides further experience and a better
strategy for the next flight. In this paper, reinforcement learn-
ing is used for offline learning training, which is indicated in
problem P2 and Algorithm 3 and 4. Through problem P3 and
Algorithm 5, the existing collected data is used for improving
hostile environment modeling, and spectrum situation map is
drawn for better learning and training.

III. ANTI-JAMMING DYNAMIC TRAJECTORY
OPTIMIZATION APPROACH

As shown in Fig. 4, the proposed anti-jamming dynamic
trajectory optimization algorithm, which is shown in Algo-
rithm 1, consists of three sub-algorithms: the coarse trajectory
planning algorithm (Algorithm 2), the automatic flying con-
trol algorithm (Algorithm 3), and the environment situation
estimating algorithm (Algorithm 5). We will describe these
algorithms in detail as follows.

A. Coarse trajectory planning algorithm (Algorithm2)
Due to the lack of prior knowledge of the environment, the

UAV first needs to initialize a preliminary coarse trajectory

Algorithm 1: Anti-jamming dynamic trajectory opti-
mization algorithm (ADTO)
Input: The target region, and the initial satellite

sensing results.
Output: The optimized trajectory {ψ∗n}

N−1
n=1 , and the

environment situation assessment Θ.
1 Initialize the preset data points l0p and the default

trajectory
{
ψ0
n

}N−1

n=1
. Initialize the environment

situation assessment Θ = 0.
2 for Each UAV flight do
3 Execute Algorithm 2, and obtain the preliminary

planning of rough trajectory ξf = Φ(lp).
4 Execute Algorithm 3, and obtain the precise flying

trajectory
{
ψfn
}N−1

n=1
, and calculate the

corresponding total uploading data
∑N−1
n=1 Rfn.

5 If the new trajectory obtains more benefits, update
the trajectory, otherwise, maintain the original
trajectory.

6 Execute Algorithm 5, assess the environment
situation Θ based on the collected data during
flight.

7 Reselect the preset data points lp for the Algorithm
2 and provide better initial Q for Algorithm 3.

8 end

ξ = Φ
(
l1p, l

2
p, . . . , l

N
p

)
and gradually modifies this trajectory

in order to minimize the expected energy cost. Meanwhile, it
is also a requirement to deal with the challenge of increasing
scale of grids networks. The preliminary coarse trajectory
problem, i.e., P1, is modeled as a TSP problem which
is a well-known NP hard problem. TSP problem aims to
find a Hamilton graph with a minimum weight for all the
preset points lp = [l1p, l

2
p, . . . , l

N
p ], which are determined by

raw satellite observations. Different from traditional dynamic
programming whose computational complexity will become
unacceptable as the increasing points, this paper utilizes a sim-
ulated annealing (SA) based search approach. At the current
temperature Te, a new trajectory ξ̂ is generated by random
perturbation transform Υ,

ξ̂ = Υ (ξ) , (28)

where Υ consists of three patterns: randomly switching the
order of two points, shifting the order of points, and inverting
the intermediate points.

Then, the increment of the new trajectory ∆(ξ̂ ← ξ) is
calculated as,

∆(ξ̂ ← ξ) = Ev(ξ̂)− Ev(ξ). (29)

If the new trajectory has lower energy consumption, then, the
new trajectory is updated as the current trajectory. Otherwise,
the acceptance probability Pre of the new trajectory is calcu-
lated:

Pre = exp(−∆(ξ̂ ← ξ)

Te
). (30)

According to the greedy criterion, a random probability value
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Fig. 4: The UAV trajectory control framework. In a hostile environment, the beam quality, jamming status, and traffic distribution of the
current region are uncertain to UAV. To address this problem, the UAV firstly designs a preliminary planning of coarse trajectory (Algorithm
2); Next, it makes a point-to-point autonomous precise flight control (Algorithm 3); Then, based on the collected data, satellite could assess the
environment situation, and further optimize the selection of preset points for Algorithm 2, and provide better initialization for the Algorithm
3.

rand is generated. If rand < Pre, this path is taken as
the current path; Otherwise, the original path is maintained.
Then the current temperature drops and the iterative process
continues,

Te = Te × Tα, (31)

where Tα is the temperature attenuation coefficient. The
coarse trajectory planning algorithm (CTPA) is summarized
in Algorithm 2.

B. Automatic flying control algorithm (Algorithm3)

Due to the unknown jamming environment, the trajectory
control for UAV is difficult to address by the traditional ap-
proaches, such as convex optimization theory which is widely
used in the existing works. As mentioned early in Section
II, the point-to-point precise trajectory control problem, i.e.,
P2, can be modeled as an MDP problem, with state space
S, action space A, reward function R. Thus, a Q learning
based algorithm is proposed to explore the unknown jamming
environment and search for the optimal possible trajectory.

The Q function of the UAV is expressed as Q(st, at), which
is updated as follows:

Qt+1 (st, at) = (1− α)Qt (st, at)

+ α

(
R(st′) + γmax

at′
Qt (st

′, at
′)

)
, (32)

where α=1/ (ω (st, at) lg (ω (st, at))) is the learning rate [31],
∞∑
l=0

αl =∞,
∞∑
l=0

α2
l <∞, (33)

where ω(st, at) is the times that the action at is se-
lected in st. st′ is the next state after performing action
at, and at

′ is next possible action to perform. π(at) ∈
[π(t, a1), π(t, a2), . . . , π(t, a4)] is the mixed strategy of the
action selection, and π(at) represents the probability to choose
the action at∈[a1, a2, a3, a4]. Specially, π(at) is given by:

π(at) =
eQt(st,at)/τ∑4
t′=1 e

Qt(st,at′ )/τ
, (34)

where, τ is the Boltzmann model parameter,

τ = max{τ0e(−υt), τ̂}, (35)

τ0 is related to the exploration time, and τ̂ is the ending
condition in the exploration stage. υ affects the transition from
exploration to exploitation.

To deal with the trajectory control problem studied in this
paper, we have made modifications to the classical Q learning
algorithm.

(1) Firstly, Q learning is generally used to deal with one-
dimensional state and action space. Therefore, the position
coordinates and state numbers of the UAV need to be converted
from two-dimension to one-dimension. Moreover, after the
action at is performed, the inverse transformation from one-
dimension to two-dimension is needed to realize the state
transfer st → s′t. Therefore, the state space, action performing,



Algorithm 2: Coarse trajectory planning algorithm
(CTPA)

Input: The preset points set lp = [l1p, l
2
p, . . . , l

N
p ].

Output: The preliminary planning of rough trajectory
ξ∗ = Φ (lp).

1 Initializes the location of the preset point and its
weight matrix of propulsion energy consumption
according to Eq. (13).

2 Initialize the annealing parameters including initial
temperature Te0, iteration number MT ,Me, and
temperature attenuation coefficient Tα.

3 Initializes a trajectory ξ0, calculate the flying energy
cost Ev0 , Te = Te0.

4 for m = 1 to MT do
5 for e = 1 to Me do
6 Calculate the flying energy cost Evm,e of the

current trajectory ξm,e according to Eq. (19a).
7 Obtain a new trajectory ξ̂m,e = Υ (ξm,e).
8 Calculate the flying energy cost Êvm,e of the

new trajectory.
9 if Êvm,e < Evm,e then

10 Update ξ̂m,e as the current trajectory,
ξm,e ← ξ̂m,e.

11 else if Êvm,e ≥ Evm,e then
12 Calculate Pre according to Eq. (30).
13 if rand < Pre then
14 Update ξm,e ← ξ̂m,e.
15 end
16 end
17 end
18 end
19 The temperature drops, Te = Te × Tα.
20 end

and state transition are all two-dimension.
(2) Secondly, in order to pay more attentions to the long-

term reward of the whole path, we set a delayed return
mechanism for the reward function. If agent successfully finds
a path reaching to the destination grid, an additional reward
is assigned to each pair of states and actions along that path.

(3) Thirdly, to reduce complexity, we adopt a block strategy.
In the process of point-to-point trajectory control, we take
out the square region with source grid and destination grid
as vertices for pathfinding learning, which greatly reduces
the computational complexity and improves the efficiency and
effectiveness of the proposed scheme.

The Q learning based automatic flying control algorithm is
summarized in Algorithm 3.

In addition, in order to deal with the challenge of the larger
scale network, we propose another deep reinforcement learn-
ing (DRL) based ACFA algorithm. Although we have made
improvements in Algorithm 3 to reduce the computational
complexity, Q learning may not converge when the action-
state space surges. In this case, we adopt DRL based scheme
and utilized deep neural network instead of Q table to store
learning experience, so as to effectively extract feature from

Algorithm 3: Automatic flying control algorithm
(AFCA)
Input: The source location ξn, and the destination

location ξn+1.
Output: UAV trajectory ψn from the preset point ξn

to ξn+1, and the total uploading data Rn.
1 Take out the square region with ξn and ξn+1 as the

vertices for pathfinding learning.
2 Initialize Qt(st, at)=0, π(at)=1/4.
3 for epoch = 1 to K do
4 t = 1, st = ξn, ψn = [ξn].
5 while st 6= ξn+1 & t ≤ Lthξn,ξn+1

do
6 In the current location st, UAV chooses action

at from A according to π(at), and gets into
the next location st′ after the transformation
of coordinates and dimensions. Updates
ψn = [ξn, . . . , st, st

′].
7 UAV uploads data traffic in the next location

st
′ and obtains the reward R(st

′). Calculate
the uploading data Rn ← Rn +R(st

′).
8 UAV updates Qt+1(st, at) and π(at) according

to Eq. (32) and (34).
9 t← t+ 1, st ← st

′.
10 end
11 If a feasible trajectory is found, each selected

action on the trajectory will be given a delayed
return R0 to their Q value.

12 end

the complex environments and realize effective exploration of
the large-scale network.

Based on our previous work in [31], we train the DRL
network parameters according to proximal policy optimization
(PPO) paradigm. The network structure and hyperparameters
are set the same as [31]. The state action and reward function
are the same as Algorithm 3, and we expanded the action
space to the eight actions of “forward, backward, left, right,
right forward, left forward, right backward, left backward”.

DRL based approach can deal with the larger networks and
longer paths, but it also has higher complexity. The DRL based
automatic flying control approach is given in Algorithm 4.

C. Environment Situation Estimating Algorithm (Algorithm5)

An environment situation estimating algorithm is proposed
to address P3, which is summarized in Algorithm 5. Based
on the current selected preset points lp = [l1p, l

2
p, . . . , l

N
p ],

the specific UAV flight trajectory can be obtained according
to Algorithm 2 and Algorithm 3, and the data collected
during the flight can be uploaded to the satellite. Based on
the uploading data, the satellite can evaluate the situation
information of the current environment according to Eq. (24)
and (25). Based on the situation information and historical
experience, satellite reselects the preset point l∗p according to
D̃ for larger traffic points, which is input to Algorithm 2.
Meanwhile, it provides better initialized Q value according
to C̃ for Algorithm 3. Finally, the satellite could get the final



Algorithm 4: DRL based automatic flying control
algorithm (D-AFCA)

Input: The source location ξn, the destination location
ξn+1, and DRL hyperparameters.

Output: The trained parameters by DRL model, UAV
trajectory ψn from the preset point ξn to
ξn+1, and the total uploading data Rn.

1 Initialize hyperparameters for the DRL neural network.
2 for epoch e = 1 to E do
3 Initialize the environment state s0 as the source

grid ξn.
4 for time step k = 1 to Lthξn,ξn+1

do
5 Obtain policy π(sk) using the DRL policy

network.
6 Sample the action ak according to the ε-greedy

policy of π(sk).
7 Update the next state st+1 with regard to

p(sk+1|sk, ak).
8 Estimate the instantaneous reward rk = R(sk).
9 Store the experience {sk, sk+1, rk, ak}.

10 k ← k + 1.
11 end
12 Record the completed trajectory with the

corresponding total uploading data.
13 Update hyperparameters according to the PPO

method.
14 e← e+ 1.
15 end

Algorithm 5: Environment situation estimating algo-
rithm (ESEA)

Input: The rough trajectory ξ∗ = Φ (lp) obtained by
Algorithm 2, and the precise trajectory
{ψ∗n}

N−1
n=1 obtained by Algorithm 3, and the

corresponding collected data.
Output: The assessed results of the hostile

environment situation Θ = [D̃, C̃], and the
final preset points set l∗p.

1 Initializes the environment situation matrix Θ = 0.
2 for Each grid on the UAV’s flight trajectory lt do
3 Updates the average traffic flow and average beam

quality of the current grid, D̃, C̃ according to Eq.
(24) and (25).

4 Reselect the preset data points set l∗p based on the
estimated situation to achieve the expected larger
collected data, lower jamming impact, and better
beam quality.

5 end

converged environment situation map, and the UAV can obtain
the sub-optimal trajectory control scheme.

D. Complexity and Convergence Analysis

The proposed ADTO algorithm consists of three sub-
algorithms: the CTPA algorithm (Algorithm 2), the AFCA

algorithm (Algorithm 3), and the ESEA (Algorithm 5). Firstly,
Algorithm 2 provides a rough trajectory which including all
of the preset points only. Then, Algorithm 3 realizes the
automatically flying trajectory control between two preset
points of the rough trajectory obtained by Algorithm 2. Fi-
nally, Algorithm 5 estimates the environment situation by the
uploaded data which is collected during the flight, and adjusts
the preset points which are used as the new input to Algorithm
2. Meanwhile, the environment situation results can provide
better initialized Q value for Algorithm 3.

1) The computational complexity of the ADTO algorithm:
As for each flight, the computational complexity O1 of the
proposed ADTO algorithm mainly focuses on the three sub-
algorithm (Algorithm 2, 3, 5), i.e., O1 = (O2 +O3 +O5).
The scalar multiplication cost of Algorithm 2 is mainly focus
on Step 6, 8, 12, thus, O2 = O (MT (1 +Me(2N − 1))),
where 2(N − 1) is the computational cost of the Step 6
and 8, and N is the cardinality of ξ, i.e., N = |ξ|. The
scalar multiplication cost of Algorithm 3 mainly focuses
on the Step 7, whose scalar multiplication cost is O3 =
O
(
KLthbTl/Tbc

)
, where K is the iteration number, Lth is the

maximum pathfinding length, and bTl/Tbc ≤
√

2RB/vu/Tb
is the beam switching times and it is the scalar multiplication
cost of D̂l. The scalar multiplication cost of Algorithm 4 is
O5 = O

(
2Π
∑N−1
n=1 |ψn|

)
, where Π is the scalar multiplica-

tion cost of operation of segment averaging E, and |ψn| is the
cardinality of the n-th precise trajectory.

2) The convergence analysis of the ADTO algorithm: Sim-
ilarly, due to the finite iteration times, the convergence of the
proposed ADTO algorithm also depends on the convergence
of the three sub-algorithms.

As for the Algorithm 2, if a new better trajectory appears,
it will be updated as the current trajectory. Then, the utility
will be improved according to the Pareto criterion. Due to
the limited trajectory choice and finite return utility, the final
trajectory and utility will converge to the stable value. Mean-
while, as the iteration increases, the temperature decreases
and the acceptance probability Pre decreases as well. After
enough iterations, the very low acceptance probability keeps
the current trajectory unchanged.

As for the Algorithm 3, the learning process could get
stable due to the fixed source point ξn and destination points
ξn+1 and the limited flying distance Lth < ∞. According
to the accumulated experience during the learning process,
the UAV will choose the probabilistic sub-optimal trajectory
to maximize the expected uploading data. The convergence
of this Q-Learning based trajectory control algorithm can be
proved. Based on [43], if Eq. (33) is met, the proposed Q-
Learning based algorithm can converge to a stable point.

As for the Algorithm 5, the size of the grid network is
limited, so is the collected data from each flight. Algorithm
4 is an evaluation algorithm, which is mainly based on the
analysis of collected data. Therefore, the specific evaluation
conclusions can be obtained under the premise of limited data
sources. However, the assessment results tends to be more
accurate as the increasing of the collected data. This trend
will be accomplished in finite iterations, because the hostile



TABLE I: The parameters of Shadowed-Rician model and Jamming link model.

Shadowed-Rician model χ m µ Nakagami-m model θ η
Heavy shadowing model 0.063 0.739 8.97× 10−4 Heavy jamming 4 2

Average shadowing model 0.126 10.1 0.835 Average jamming 3 1
Light shadowing model 0.79 97 6.45 Light jamming 1 1

TABLE II: Simulation parameters.

Parameters Value
Earth radius RE = 6371km

Minimum elevation angle ϑ = 10◦

Orbit height Hs = 500km
Constellation parameters No = 10,Ns = 21

Beam square number NB = 12
Length of each beam square RB = 50.89km

Beaming switch distance RS = 29.81km
Coverage time Tc = 6.41min

Beam switching time Tb = 0.53min
Mean traffic in hot grids λh ∈ [550, 1100]Mbit

Mean traffic in others λl ∈ [50, 100]Mbit
UAV flying height Hu = 10km
UAV flying speed vu = 15km/min

Channel noise σ = 0.1W
Channel bandwidth B = 2MHz

Maximum sub-satellite half angle φ = 63.79◦

Geocentric angle α = 12.21◦

UAV transmission power pU = 1W
SJNR threshold rth = 0.1
Jamming power pJ = 3W

Jammer probability PrJ = 0.9
Path loss exponent β = 2

Flying energy coefficient e1 = 0.1W
Uploading energy coefficient e2 = 0.01W/Mbit

Cache stack capacity |K| = 1500Mbit
Flight distance threshold Lth = 15
SA parameters Te0, Tα 1000, 0.95
RL parameters τ0, τ̂ , γ 107, 0.1, 0.6

environment is unknown but not unknowable.
In summary, the proposed ADTO algorithm consists three

sub-algorithms, and the whole algorithm framework runs iter-
atively according to Pareto criterion. According to the limited
utility and Pareto principle, the proposed ADTO algorithm is
convergent and stable.

3) The optimality analysis of the ADTO algorithm: Based
on Remark 1 and Remark 2, due to the environment setting,
the proposed closed-loop three-step approach can converge to
a sub-optimal solution. As the number of flights increases,
the UAV will have more accumulated knowledge of the
environment, and the optimized trajectory will gradually move
towards the approximately optimal solution.

IV. SIMULATION RESULTS

In this section, simulation is carried out to validate the
effectiveness of the proposed approach with MATLAB 2016a
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Fig. 5: The convergence behaviours of the proposed CTPA algorithm
and DP based algorithm.

and Python 3.9.6. Each grid has three shadowing model
options and three jamming link status which are shown in
Table I. Other parameters are shown in Table II.

Since the TSP problem is a NP hard problem, there is
no effective optimal solution. Dynamic programming (DP)
algorithm is an efficient traditional algorithm to solve the TSP
problem. We compare the proposed CTPA approach with the
DP based algorithm. As shown in Fig. 5, the proposed CTPA
algorithm continuously improves performance as the number
of iterations, and the energy consumption is significantly
reduced. However, the DP based algorithm not only requires
global information, but also dramatically increases the energy
consumption and complexity due to the increasing points. In
addition, as the increasing number of the preset points, the
proposed CTPA algorithm has lower energy consumption than
DP based algorithm.
ε greedy based RL algorithm for anti-jamming trajectory

control and the proposed AFCA algorithm are compared in this
section. As indicated in Fig. 6, the proposed AFCA algorithm
has better performance in utility and convergence. The auto-
matically precise control trajectory between two preset points
and the corresponding section assessment results obtained by
this learning process are shown in Fig. 7. We can see that
the environment dynamic is almost obtained by UAV during
the automatic learning process, and it automatically makes the
probabilistically sub-optimal trajectory control with a better
channel state to reach the destination.

In Fig. 8, we compare the Q learning based approach,
DRL based approach and the mean theoretical value. We
adopt the PPO paradigm in the DRL based approach, and
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Fig. 6: The comparison of different solving approaches in point to
point flight.

Fig. 7: The partly environmental information obtained during this
point to point flight, and the corresponding flight trajectory.

the mean theoretical value is obtained by the exhaustively-
search-then-select-the-best method. As shown in Fig. 8, when
the network size is small, the Q learning based algorithm and
DRL based algorithm have similar performance, and they are
all below or equal to the theoretical best value due to that
the path length is short and the action-state space is limited.
In addition, compared with DRL based approach, Q learning
based approach has lower computational complexity.

However, when the network size increases and the path
length becomes longer, it is difficult for Q learning algorithm
to get a convergent effective solution. As shown in Fig. 9,
DRL based approach can still get a convergent solution, and
the convergence speed is weakly correlated with the network
size. Because DRL algorithm uses deep neural network instead
of Q table to store the experience information, it can extract
the features of complex environment more effectively.

The collected data obtained during the UAV flight is up-
loaded to the satellite. The satellite assessment process of
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Fig. 8: The comparison between Q learning based AFCA approach
and DRL based AFCA approach.
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Fig. 9: The influence of grid number on DRL based AFCA algo-
rithm.

environment situation based on the data analysis are shown
in Fig. 10. Specifically, Fig. 10(a)-(c) show the intermediate
assessment results of channel state, and (d)-(f) are the assess-
ment results of traffic distribution, which could be used to
further guide the next flight in the current hostile environment.

The normalized estimation deviation during the assessing
process is shown in Fig. 11, where each trajectory optimization
not only aims to better complete the current task, but also
undertakes the task of exploring the environment and obtaining
more comprehensive and accurate environmental information.

Fig. 12 compare the uploading data of our proposed ADTO
algorithm and other compared schemes. It is indicated that the
proposed ADTO algorithm can achieve higher uploading data
than the centralized design schemes. In fact, this trajectory is
not only highly coincident with the hot points with high traffic,
but also seeks to avoid areas with severe jamming and poor
beam quality to pursue higher transmission efficiency. Due to
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Fig. 10: The assessment process of environment situation. (a)-(c) show the intermediate assessment results of channel state, and (d)-(f) are
the assessment results of traffic distribution. Although there are certain grids that have not been reached, they are all non-hot grids. Hot
grids are easy to spot due to their aggregation. Moreover, due to the possibility of random exploration in Algorithms 2 and 3, the UAV will
eventually pass through all the grids after enough flights.
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Fig. 11: The normalized estimation deviation during the trajectory
planning process obtained by the ESEA algorithm.

the uncertainty of the hostile environment, the channel state of
each grid is difficult to obtain, thus the centralized optimization
scheme can only carry out the beforehand optimization of UAV
trajectory to maximize the collected data, or make a fixed flight
trajectory according to the satellite observation information.

The influence of jamming probability Prd and flying dis-
tance threshold Lth are indicated in Fig. 13. If the UAV is
provided with more energy reserves to support flight, it can
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Fig. 12: The comparison on uploading data of different trajectory
design schemes.

fly autonomously over a wider area, which is conducive to
the reconnaissance analysis of the environmental situation. As
the Lth increases, the estimation error decreases gradually.
Meanwhile, the increase of jamming probability will seriously
affect the autonomous flight and data collection, which further
reduces the estimation accuracy of environmental situation.
Therefore, larger energy reserve and lower jamming prob-
ability are beneficial to improve environmental situational



6 8 10 12 14 16

Flight distance threshold (L
th

)

1.5

2

2.5

3

3.5

4

4.5
T

h
e
 a

c
c
u
m

u
la

ti
o
n
 o

f 
e
s
ti
m

a
ti
o
n
 d

e
v
ia

ti
o
n

10
15

Pr
d
=0.9

Pr
d
=0.7

Pr
d
=0.5

Pr
d
=0.3
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awareness.
As shown in Fig. 14, the cache stack capacity of UAV

has an important impact on data collection task. If the data
to be collected in the current environment is significantly
greater than the data transmission rate, the cache stack has
to abandon a lot of data due to the capacity limit. Therefore,
sufficient cache stack capacity is of great significance for the
effectiveness and real-time performance of data collection task
in hostile jamming environment.

V. CONCLUSION

This paper investigated the satellite-assisted UAV trajectory
control problem in the hostile jamming environments. Due to
the uncertain hostile environment, the anti-jamming trajectory
control approach was proposed based on the limited and
partial information, and decoupled as a closed-loop three-step
approach: preliminary planning of coarse trajectory, point-to-
point precise trajectory control and environmental situation

assessment. The simulation results proved that the proposed
algorithm can finally find the sub-optimal trajectory, and the
UAV can complete the data collection of hot points and upload
more data during the flight. Based on these data, the satellite
can get the available situation map of the hostile environments.
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