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ABSTRACT

Privacy preserving protocols typically involve the use of Zero Knowledge (ZK)

proofs, which allow a prover to prove that a certain statement holds true, to a ver-

i�er, without revealing the witness (secret information that allows one to verify

whether said statement holds true) to the veri�er. This mechanism allows for the

participation of users in such protocols whilst preserving the privacy of sensitive

personal information. In some protocols, the need arises for the reuse of the in-

formation (or witnesses) used in a proof. In other words, the witnesses used in a

proof must be related to those used in previous proofs. We propose Stateful Zero

Knowledge (SZK) data structures, which are primitives that allow a user to store

state information related to witnesses used in proofs, and then prove subsequent

facts about this information. Our primitives also decouple state information from

the proofs themselves, allowing for modular protocol design. We provide formal

de�nitions for these primitives using a composable security framework, and go on

to describe constructions that securely realize these de�nitions.

These primitives can be used as modular building blocks to attenuate the secu-

rity guarantees of existing protocols in literature, to construct privacy preserving

protocols that allow for the collection of statistics about secret information, and to

build protocols for other schemes that may bene�t from this technique, such as

those that involve access control and oblivious transfer. We describe several such

protocols in this thesis. We also provide computational cost measurements for our

primitives and protocols by way of implementations, in order to show that they are

practical for large data structure sizes. We �nally provide a notation and a compiler

that takes as input a ZK proof represented by said notation and outputs a secure SZK

protocol, allowing for a layer of abstraction so that practitioners may specify the

security properties and the data structures they wish to use, and be presented with

a ready to use implementation without needing to deal with the theoretical aspects

of these primitives, essentially bridging the gap between theoretical cryptographic

constructions and their implementation.

This thesis conveys the results of FNR CORE Junior project, Stateful Zero

Knowledge.
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RÉSUMÉ

Les protocoles de préservation de la vie privée impliquent généralement l’utilisation

de preuves à divulgation nulle de connaissance, qui permettent à un prouveur

de prouver à un véri�cateur qu’une certaine déclaration est vraie, sans révéler le

witness (informations secrètes nécessaires pour véri�er si la déclaration est vraie) au

véri�cateur. Ce mécanisme permet aux utilisateurs de participer à ces protocoles

tout en préservant la con�dentialité des informations personnelles sensibles. Dans

certains protocoles, le besoin se fait sentir de la réutilisation d’informations (ou

témoins) utilisées dans une preuve. En d’autres termes, les témoins utilisés dans une

preuve doivent être liés à ceux utilisés dans les preuves précédentes.

Nous proposons des structures de données Zero Knowledge, qui sont des prim-

itives qui permettent à un utilisateur de stocker des informations d’état, puis de

prouver des faits sur ces informations. Nos primitives découplent également les

informations d’état des preuves elles-mêmes, permettant une conception de pro-

tocole modulaire. Nous fournissons des dé�nitions formelles pour ceux-ci à l’aide

d’un cadre de sécurité composable, et poursuivons en décrivant des constructions

qui réalisent ces dé�nitions en toute sécurité. Ces primitives peuvent être utilisées

comme blocs de construction modulaires pour atténuer les garanties de sécurité des

protocoles existants dans la littérature et pour construire des protocoles de préser-

vation de la vie privée qui permettent la collecte de statistiques sur les données et

les protocoles pour d’autres schémas, tels que le contrôle d’accès. Nous fournissons

des mesures de coût de calcul pour nos primitives et protocoles en les implémen-

tant, et en�n fournissons une notation et un compilateur qui prend en entrée une

preuve ZK représentée par la notation et génère un protocole SZK sécurisé pour

celle-ci, permettant une couche d’abstraction telle que les développeurs peuvent

spéci�er les propriétés de sécurité et les structures de données qu’ils souhaitent

utiliser, et se voir présenter une implémentation prête à l’emploi sans avoir à traiter

des aspects théoriques de ces primitives, comblant essentiellement le fossé entre les

constructions cryptographiques théoriques et leurs implémentations.

Cette thèse transmet les résultats du projet FNR CORE Junior, Stateful Zero

Knowledge.
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ZUSAMMENFASSUNG

Datenschutzprotokolle beinhalten typischerweise die Verwendung von Zero

Knowledge Proofs, die es einem Beweiser ermöglichen, einem Prüfer zu beweisen,

dass eine bestimmte Aussage wahr ist, ohne dem Prüfer die Aussage selbst zu

o�enbaren. Dieser Mechanismus ermöglicht es Benutzern, an solchen Protokollen

teilzunehmen und gleichzeitig die Vertraulichkeit sensibler persönlicher Infor-

mationen zu wahren. In einigen Protokollen entsteht die Notwendigkeit für die

Wiederverwendung von Informationen (oder Zeugen), die in einem Beweis ver-

wendet werden. Mit anderen Worten, die in einem Beweis verwendeten Zeugen

müssen mit denen verwandt sein, die in früheren Beweisen verwendet wurden.

Wir schlagen Zero-Knowledge-Datenstrukturen vor, die es einem Benutzer er-

möglichen, Zustandsinformationen in Bezug auf Zeugen zu speichern und dann

Fakten über diese Informationen zu beweisen. Unsere Grundelemente entkoppeln

auch Zustandsinformationen von den Beweisen selbst, was ein modulares Pro-

tokolldesign ermöglicht. Wir stellen formale De�nitionen dafür bereit, indem wir

ein zusammensetzbares Sicherheitsframework verwenden, und somit Konstruktio-

nen zu beschreiben, die diese De�nitionen sicher realisieren. Diese Grundelemente

können als modulare Bausteine verwendet werden, um die Sicherheitsgarantien

bestehender Protokolle in der Literatur abzuschwächen und um die Privatsphäre

wahrende Protokolle zu konstruieren, die das Sammeln von Statistiken über Daten

und Protokolle für andere Schemata, wie z. B. Zugangskontrolle, ermöglichen. Wir

stellen Rechenkostenmessungen für unsere Primitive und Protokolle bereit, indem

wir sie implementieren. Wir stellen schließlich eine Notation und einen Compiler

bereit, der einen durch die Notation repräsentierten ZK-Beweis als Eingabe nimmt

und ein sicheres SZK-Protokoll dafür ausgibt, was eine solche Abstraktionsebene

ermöglicht. Entwickler können die Sicherheitseigenschaften und Datenstrukturen

angeben, die sie verwenden möchten, und erhalten eine gebrauchsfertige Imple-

mentierung.

Diese Diplomarbeit vermittelt die Ergebnisse des FNR CORE Junior Projekts,

Stateful Zero Knowledge.
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Part I

INTRODUCTION





1MOTIVAT ION

"So this was a major breach of trust and I’m really sorry that this

happened. You know we have a basic responsibility to protect peo-

ple’s data and if we can’t do that then we don’t deserve to have the

opportunity to serve people."

These were Mark Zuckerberg’s words [72] to a news anchor in the aftermath of

the Cambridge Analytica scandal, in early 2018. The fact that an entity had been

allowed to harvest data relating to several individuals, without their consent, had

just come to light.

Alexander Kogan had
earlier claimed to
Facebook Inc., that the
data he had been
collecting was meant to
be used for purely
academic purposes.

the cambridge analytica incident Cambridge Analytica, an or-

ganization established in 2013 that positioned itself as a political consultancy and

voter pro�ling �rm was tasked with aiding the Ted Cruz and the Donald Trump

political campaigns in 2016 [87], by building psychographic models of their elec-

torates. The �rm was of the opinion that targeted advertising campaigns tailored to

the personality traits of voters, could help in�uence their political leanings. When

the �rm realized that the data required to build these models was hard to come

by, they turned to Alexander Kogan, a data scientist, who went on to produce a

Facebook application which sent surveys and quizzes to willing participants on

a social network, in order to implicitly elicit information on their psychological

traits. They also collected information on the "likes" of these users on the social

network, and used it to map them to speci�c personality traits. While doing so,

Cambridge Analytica went so far as to gather personally identi�able information

from these users, including their dates of birth, cities of residence, and likes and

interests, amongst other information [94].

However, much to the consternation of the world, the application leveraged the

power of Facebook’s Open Graph Platform to additionally gather such information

from the "friends" of the application’s users on the social network. This allowed

Cambridge Analytica to collect personally identi�able information from about 87

million people, and in some cases, without their consent.

Zuckerberg: "Well, clearly I wish we’d taken those steps earlier. I mean,

that, that I think is probably the biggest mistake that we made here ...

the feedback from the community and the world has overwhelmingly

been, that, if you balance these two values of being able to take your

data and some data from friends to be able to have social experiences

on other apps on the one hand, this ideal of kind of data portability.

And on the other hand, making sure that your data’s always locked

down. Guaranteeing that it never goes anywhere. You know I think

we’ve started o� a little bit on the idealistic, and maybe naive side, right,

of thinking that that vision around data portability and enabling social

apps was gonna be what our community preferred, and I think what

we’ve learned over time very clearly is that the most important thing

always is making sure that people’s data is locked down." [72]

3
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Facebook’s aspirations, in this case, re�ect those of most other "data behemoths"

on the internet: using customer data to enhance user experiences and boost cus-

tomer retention and sales. However, in hindsight, Zuckerberg admits to the fact

that the privacy of users and sanctity of data is of sublime importance when it comes

to handling such information.

clairvoyance through profiling There is also an ugly side to the

extent of personal information that may be gleaned from user behaviour, with their

consent, producing arguably more harrowing results. Take for instance the case of

a retailing giant, who assigns identi�cation numbers to its customers in order to

collect purchase information, along with a host of other demographic information

[45]:

An employee from the marketing department of the retailer, to a

statistician: "If we wanted to �gure out if a customer is pregnant, even

if she didn’t want us to know, can (sic) you do that?" [45]

The retailer in question was able to build pro�les of their customers and use

statistical data analysis techniques to predict changes in their lives and habits.

“As soon as we get them buying diapers from us, they’re going to

start buying everything else too. If you’re rushing through the store,

looking for bottles, and you pass orange juice, you’ll grab a carton.

Oh, and there’s that new DVD I want. Soon, you’ll be buying cereal

and paper towels from us, and keep coming back.” [45]

This allowed the retailer to determine when and how targeted advertising and

discounts would produce the best results.

a damocles sword? Companies that manage colossal amounts of data re-

lating to their users also have greater responsibilities to protect this data, and attacks

can have catastrophic results. An IT operator responsible for the collection and

analysis of frequent �yer information for airline companies fell prey to a cyberattack

in 2021 [47]. Though the operator claimed that this breach didn’t result in the

leakage of sensitive information apart from names and membership numbers, the

company does hold personal customer data, passport information, and itineraries.

1.1 our contribution

1.1.1 Privacy Preserving Protocols To The Rescue

The cryptographic primitives and protocols laid out in this thesis aim to provide a

solution to the aforementioned problems of excessive user pro�ling and exposure

of personal information. We propose an alternative means of allowing entities

to compute aggregate statistics on customer data (in order to be able to carry out

customer retention activities, such as o�ering discounts to customers for purchasing

several items belonging to a particular category from a department store, frequent

�yer discounts, and the like), whilst essentially handing power and control back to

the users: the users of these services are allowed to hold their own data and reveal
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only the output of an aggregate statistical function against this data to the other

party, whilst proving that their copy of this data is accurate. We do this by means of

novel cryptographic primitives we refer to as Stateful Zero Knowledge (SZK) data

structures. The verifier learns no
information on the
secret held by the
prover, hence the
eponymous term "Zero
Knowledge".

The notion of a ZK proof allows one party (commonly referred to as a prover) to

prove that a certain statement holds true, without revealing the witnesses for this

statement to another party (commonly referred to as a verifier). This cryptographic

primitive can be used to build privacy preserving protocols, which are said to be

"privacy preserving" in the sense that the user’s privacy and data is protected when

it interacts with other parties in the protocol. These primitives and protocols allow

for stronger privacy guarantees, whilst still allowing organizations to carry out

customer retention and incentivization practices.

Our SZK data structures allow users to store witnesses (secret information known

only to the prover) that have already been used in a proof, so that they may be used

to prove additional facts about this secret information. For instance, one of our

protocols features a loyalty program scheme, where users may prove that they have

been allotted the correct number of loyalty points for a purchase. They may then go

on to compute aggregate statistics on their purchases and prove that these statistics

have been computed correctly, without revealing the actual purchase history to a

retailer. In existing schemes, ZK proofs and the witnesses they use are closely tied

to each other, but our primitives decouple proofs from data structures that store

witnesses, providing us with modular constructions.

1.1.2 The Case For Composability

Throughout this thesis, we employ a composability framework (namely that of

the Universal Composability (UC) Framework [29]); this provides for some useful

properties. In a nutshell, we gain the following: The reader is advised
to refer to Section 2.2
for a detailed account
of the UC framework
and related concepts.

1. Security properties hold when a protocol designed in accordance with the

UC framework is executed concurrently in the presence of multiple instances

of the same protocol or other protocols.

2. The protocol may be designed modularly so that modules of the protocol

may be replaced by others that securely realize them. This concept is described

in detail in Section 2.2.

3. Security analysis is clear-cut: the security of each module may be analysed

independently rather than in situ, thanks to the "Composability Theorem",

also described in Section 2.2.

1.1.3 Bridging The Gap

"A colleague once told me that the world was full of bad security

systems designed by people who read Applied Cryptography." - Bruce

Schneier, author of the book "Applied Cryptography" [89].

The security of implementations of cryptographic software proves to be a bone of

contention for cryptographers and developers alike. Though most cryptographic
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libraries have been implemented true to their theoretical roots, numerous security

issues do arise when developers misuse these libraries whilst implementing software

[65, 96].

"I don’t see a reason to have a(sic.) x of about the same size as the p. It

should be su�cient to have one about the size of q or the later used k

plus a large safety margin. Decryption will be much faster with such

an x." - a comment in the code for a critical GPG library. [62]

There have also been cases of security vulnerabilities in cryptographic libraries

themselves, arising from the fact that the reasons behind the con�guration rec-

ommendations for important cryptographic parameters and other such design

choices are often lost in translation whilst programmers build libraries based on

mathematical constructions. The developer of the GnuPG library saw it �t to adjust

certain parameters in an implementation for an ElGamal encryption function in

order to optimize the library, but these changes came at a cost: they signi�cantly

downgraded the security guarantees of the libgcrypt library [79].Open source
cryptography

development teams are
often understa�ed and

underfunded. In 2015,
GnuPG was being

maintained by a single
developer, whilst the

OpenSSL project was
also su�ering from

similar problems when
the Heartbleed

vulnerability was
discovered [8].

Nadi et al. [77] learnt from surveys of developers that they prefer "high level task

based cryptography APIs" over low level functions [77]. With this in mind, we are

of the opinion that a compiler would aid the adoption of the protocols in this thesis,

and help developers build secure privacy preserving protocols without having to

deal with the minute details, in the sense that we abstract away the cryptography so

that developers may focus on the other aspects of building such protocols, while

they may rest assured that if they are able to specify their security requirements

via our notation, the compiler provides them with a secure implementation. This

also does away with the need for developers to be acquainted with the state of

the art with respect to the low level primitives used in our protocols. Part IV of

this thesis describes our notation and compiler, which provides proof of concept

implementations of our data structures, but we intend to extend this compiler with

production ready libraries in the future.

1.2 organization

• In the following chapters of Part I, we go on to describe the technical prelim-

inaries of this thesis.

• In Part II, we use the UC framework to describe formal de�nitions for various

SZK data structures and the security properties they guarantee. We also depict

constructions that securely realize the de�nitions laid out in Part II, and

present computational cost measurements from implementations of some

of these data structures.

• In Part III, we describe real world applications for our data structures, by

way of privacy preserving protocols, such as the privacy preserving loyalty

program protocol described earlier in this chapter. We also describe existing

protocols in literature whose security properties have been attenuated by the

addition of SZK data structures, and present computational cost measure-

ments from implementations of some of these protocols.
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• Part IV provides descriptions of aspects related to the implementations of

our data structures and of the protocols described in Part III. We also de-

scribe a notation for SZK protocols and an SZK compiler, which takes an

SZK data structure description in said notation as input, and produces an

implementation for the data structure as output.





2TECHNICAL PREL IM INARIE S

2.1 introduction

This chapter deals with a discussion of the cryptographic preliminaries which serve

as the theoretical basis for our primitives and protocols described in Part II and

in Part III respectively. Sections 2.3 through 2.8 also appear in public deliverables

submitted to the FNR [36, 37].

2.2 universally composable security

We employ the UC framework [29] to de�ne our primitives and protocols, and to

analyse their security. Security analysis using the framework essentially involves

comparing the views of a real protocol in execution in a real world to that of an

idealized version of the protocol, de�ned to be secure by de�nition, in an ideal
world, when observed by a party we refer to as the environment. The environment is

allowed to interact
with all other parties in
the real and the ideal
worlds.

1. We �rst de�ne an Ideal Protocol, consisting of all parties in a protocol in

addition to an Ideal Functionality. The Ideal Protocol is de�ned in such a way

that it is secure by de�nition, and so that it guarantees the security properties

we wish to achieve. The Ideal Protocol gathers inputs from all parties, securely

computes their outputs on their behalf, and sends the outputs back to each

party.

2. On the other hand, we also consider a Real Protocol, composed of all parties

but with the exclusion of an Ideal Functionality. All parties use their local

inputs to participate in the protocol and produce their outputs.

3. The environment interacts with the adversary in the real world, who has

the power to control network communication and to corrupt parties. To

account for the presence of this adversary, we introduce a Simulator, who is

allowed to behave as the adversary does, within the ideal protocol.

4. The view of the environmentZ (transcripts of messages from all parties) in

the ideal world and that of the real world are now compared. If the environ-

ment cannot distinguish between the view of the ideal world and that of the

real world, we state that the real protocol securely realizes the ideal protocol.

We consider only static
corruptions in our
models.

As de�ned in [29],

De�nition 2.2.1 Two binary distribution ensembles X and Y are indistin-
guishable if for any c, d ∈ N , there exists k0 ∈ N , such that for all k > k0
and all a ∈ ∪k≤kd{0, 1}k , we have:

|Pr(X(k, a) = 1)− Pr(Y (k, a) = 1)| < k−c

9
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Using de�nition 2.2.1, letREALϕ,A,Z(k, a) represent the computational output

ofZ when the adversaryA and all other parties execute the protocol ϕ in the real

world, and let IDEALFϕ,S,Z(k, a) represent that ofZ when the simulatorS and all

dummy parties execute the ideal protocolFϕ in the ideal world, where k represents

the security parameter, and a represents the input toZ .

We state that protocol ϕ securely realizesFϕ, if for all polynomial timeA there

exists a polynomial time S such that for all polynomial timeZ ,

REALϕ,A,Z(k, a) ≈ IDEALFϕ,S,Z(k, a) [36].

2.2.1 The Composition Theorem

2.2.1.1 Protocol Emulation

A protocol is said to UC-emulate another, if interacting with one protocol in the

presence of an adversary is indistinguishable from interactions with the other and

another adversary.

From [29], we have,

De�nition 2.2.2 Protocol π UC-emulates protocol φ if for any adversary
A there exists an adversary S , such that for any environmentZ and on any
input, the probability thatZ outputs 1 after interacting withA and parties
running π di�ers by at most a negligible amount from the probability that
Z outputs 1 after interacting with S and φ.

A protocol is said to UC-realize an ideal functionality, if the protocol emulates

the functionality.

2.2.1.2 Hybrid Protocols

The UC framework also allows for the de�nition of hybrid protocols, where parties

within a protocol may make subroutine calls to ideal functionalities.

Consider a protocol π, which makes subroutine calls to another protocol φ. The

composition theorem states that if ψ emulates φ, the protocol πψ/φ, obtained by

replacing calls to φ by calls to ψ, emulates π.

Therefore, if a protocol ϕG securely realizes an ideal functionalityF in the G-

hybrid model where ϕ is allowed to invoke the ideal functionality G, then for any

protocolψ, which securely realizes G, the composed protocolϕψ which is obtained

by replacing every invocation of an instance of G with an invocation of an instance

of ψ, securely realizesF [36].

2.2.2 A Note On Notation

Throughout this thesis, we make use of a notation to describe aspects of our formal

descriptions of UC framework models.

interfaces Interfaces denote points where parties may interact with ideal

functionalities and send messages to or receive messages from functionalities,
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depending on the tasks that must be performed with respect to the overar-

ching protocol. We denote every message with a name consisting of three

segments:

segment 1 The name of the functionality or the protocol the message

corresponds to. All messages that relate to a speci�c functionality or

protocol will share the same values in the �rst segment.

For instance, “pplp” for a privacy preserving loyalty program protocol.

segment 2 The name of the interface. For instance, "setup" for an inter-

face associated with the task of setting up parameters in a protocol.

segment 3 A third �eld which allows for messages of di�erent types to

be sent to the same interface. We typically use 5 di�erent entries for

this �eld:

1. "ini" for the �rst message sent to an interface,

2. "sim" for messages to the simulator,

3. "rep" for responses from the simulator,

4. "req" for requests for algorithm descriptions to the simulator,

5. "alg" for messages containing algorithm descriptions in response

to a previously received req message.

6. "end" for the last message denoting the end of the execution of a

task.

These �elds are combined to produce the name of a message. For example:

pot.setupprices.ini

refers to the �rst message sent to the setupprices interface of a priced oblivious
transfer protocol.

This notation allows us to discern the functionality a message relates to, the

task it is responsible for, and the phase within that task.

identifiers As we model protocols in the framework around Interactive Tur-

ing Machine Instances (ITIs), the need arises for a means of distinguishing

between machines that belong to the same protocol instance, and between

machines that are “local” to one another, because the UC framework mod-

els communication over networks, i.e., ITIs belonging to di�erent parties

would need to resort to communicate over a network where the simulator

may delay or modify messages. However, ITIs belonging to the same party

may communicate directly with one another, and we refer to this mode of

communication as local.
We assign a session identi�er sid and a party identi�er pid to each ITI. We

use a pid to represent ITIs that belong to the same party. An sid is used to

distinguish between ITIs that represent di�erent protocol instances, and a

functionality may only send or receive messages associated with the same

sid. An Ideal Functionality
is considered to be
"local" to all other
parties in an Ideal
Protocol.

• We use a session identi�er sid to denote ITIs that belong to the same

protocol instance.
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• We use a party identi�er pid to denote ITIs that belong to the same

party within a protocol. Thus, ITIs with the same pid can transfer

messages between each other without having to resort to sending them

over a network.

• Communication over the network may be controlled by the adversary:

the adversary may delay, modify or drop messages altogether.

• ITIs with di�ering pid values must communicate over the network (as

they represent distinct parties within a protocol).

query identifiers In some cases we may wish to model the fact that an

interface may be invoked more than once and the simulator may generate

appropriate albeit delayed responses; we must employ a mechanism that

allows for delayed responses to ensure that these responses can be correlated

to the requests that generated them, even when the original order of requests

is not maintained. In this case, we use a query identi�er or a qid .

message structure Building upon the conventions described earlier in this

section, every message to or from a party follows the following structure:

(pot.setupprices.ini, sid ,<message>)

Repeated messages to an interface include a qid:

(pot.setupprices.sim, sid , qid ,<message>)
(pot.setupprices.rep, sid , qid ,<message>)

aborts An ideal functionality may halt its execution after receiving a message

from a party. In this case, the functionality sends a special abortion message

to the initiating party. However, if the functionality aborts after receiving a

message from the simulator, the abortion message is sent to the party which

was meant to receive a response from the functionality.

To reiterate the bene�ts of using this framework:

composition Thanks to the composition theorem, security properties are

retained when a new protocol is composed of others de�ned using the frame-

work.

modularity The framework allows for the construction of "hybrid" proto-

cols, composed of other protocols de�ned in the UC framework, as building

blocks. This allows us to replace these building blocks by any protocol that

securely realizes these constructions. This in turn provides for future-proof

constructions, in the sense that building blocks may be replaced by more

e�cient protocols, without the need for reanalysing the security of the over-

arching protocol.

security analysis As hybrid protocols are composed of building blocks

where security holds upon composition, this also means that the security of

these protocols may be studied independently.
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2.3 bilinear maps

Let G, G̃ and Gt be groups of prime order p.

A bilinear map is a map e from G and G̃ to G̃ (e : G× G̃→ Gt), where the

following properties hold:

bilinearity e(gx, g̃y) = e(g , g̃)xy ,

non-degeneracy For all generators g ∈ G and g̃ ∈ G̃, e(g , g̃) generates

Gt,

efficiency There exists an e�cient algorithm G(1k ) that outputs the pairing

group setup grp ← (p,G, G̃,Gt, e, g , g̃) and an e�cient algorithm to

compute e(a, b) for any a ∈ G, b ∈ G̃.

2.4 security assumptions

2.4.1 `-Diffie-Hellman Exponent

We use the `-DHE assumption, adapted to asymmetric pairing groups, as in [43].

Let (p,G, G̃,Gt, e, g , g̃)← G(1k) and α← Zp.

Given (p,G, G̃,Gt, e, g , g̃) and a tuple (g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`) such

that gi = g(αi)
and g̃i = g̃(αi)

, for any p.p.t. adversaryA,

Pr[g(α`+1) ← A(p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`)] ≤ ε(k).

2.4.2 Cube Diffie-Hellman

Let (p,G, G̃,Gt, e, g , g̃)← G(1k) and x← Zp.

Given (p,G, G̃,Gt, e, g , g̃ , gx, g̃x), for any p.p.t. adversaryA,

Pr[e(g , g̃)x3 ← A(p,G, G̃,Gt, e, g , g̃ , gx, g̃x)] ≤ ε(k) [64].

2.5 signature schemes

A signature scheme consists of the algorithms KeyGen, Sign and VfSig. KeyGen(1k )
outputs a secret key sk and a public key pk , which include a description of the

message spaceM. Sign(sk ,m) outputs a signature sig on the message m ∈M.

VfSig(pk , sig ,m) outputs 1 if sig is a valid signature on m and 0 otherwise. This

de�nition can be extended to blocks of messages m̄ = (m1, . . . ,mn). In this case,

KeyGen(1k ,n) receives the maximum number n of messages as input. A signature

scheme must be existentially unforgeable [52].

De�nition 2.5.1 [Existential Unforgeability] LetOs be an oracle that, on
input sk and a message m ∈ M, outputs Sign(sk ,m), and let Ss be a set
that contains the messages sent toOs. For any ppt adversaryA,

Pr

[
(sk , pk) $←− KeyGen(1k ); (m, sig) $←− A(pk)Os(sk ,·) :
1 = VfSig(pk , sig ,m) ∧ m ∈M ∧ m /∈ Ss

]
≤ ε(k) .
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2.6 commitments

A commitment scheme consists of algorithms CSetup, Com and VfCom. CSetup(1k )
generates the parameters parc , which include a description of the message space

M. Com(parc , x ) outputs a commitment com to x ∈ M and an opening

open . VfCom(parc , com, x , open) outputs 1 if com is a commitment to x with

opening open or 0 otherwise.

A commitment scheme must be hiding and binding. The hiding property ensures

that a commitment com to x does not reveal any information about x , whereas

the binding property ensures that com cannot be opened to another value x ′.

De�nition 2.6.1 [Hiding Property] For any PPT adversaryA,

Pr


parc

$←− CSetup(1k ); (x0, st) $←− A(parc);
x1

$←−M;
b $←− {0, 1}; (com, open) $←− Com(parc , xb);
b′ $←− A(st , com) : x0 ∈M ∧ b = b′

 ≤ 1
2

+ε(k) .

De�nition 2.6.2 [Binding Property] For any PPT adversaryA,

Pr



parc
$←− CSetup(1k );

(com, x , open, x ′, open ′) $←− A(parc) :
x ∈M ∧ x ′ ∈M
∧ 1 = VfCom(parc , com, x , open) ∧
1 = VfCom(parc , com, x ′, open ′) ∧ x 6= x ′


≤ ε(k) .

We use a commitment scheme that is additively homomorphic. Given two com-

mitments com1 and com2 to messages x1 and x2 with openings open1 and open2,

there exists an operation · such that com ← com1 · com2 is a commitment to

x = x1 + x2 with opening open = open1 + open2. If x2 = 0, then com is a

rerandomization of com1, which we denote by com ← CRerand(com1, open2).

2.7 vector commitments

2.7.1 Hiding Vector Commitments

Hiding vector commitments [32, 69] allow us to commit to a vector of messages and

to open the commitment to one of the messages in such a way that the size of the

opening (also referred to as the witness) is independent of the length of the vector.

A hiding vector commitment (VC) scheme consists of the following algorithms.

VC.Setup(1k , `) . On input the security parameter 1k and an upper bound `
on the size of the vector, generate the parameters of the commitment scheme

par , which include a description of the message spaceM and a description

of the randomness spaceR.



2.7 vector commitments 15

VC.Commit(par , x , r) . On input a vector x ∈ Mn
(n ≤ `) and r ∈ R,

output a commitment vc to x.

VC.Prove(par , i, x , r) . Compute a witness w for x[i].

VC.Verify(par , vc , x, i, w ) . Output 1 if w is a valid witness for x being at

position i and 0 otherwise.

VC.ComUpd(par , vc , j, x, r, x ′ , r ′ ) . On input a commitment vc with

value x at position j and randomness r, output a commitment vc′ with

value x′ at position j and randomness r′. The other positions remain un-

changed.

VC.VerComUpd(par , vc , vc ′ , w , j, x, r, x ′ , r ′ ) . On input commitments

vc and vc′, a witness w , a position j, the valuesx andx′ and the randomness

r and r′, output 1 if w is a valid witness for x being at position j in the

commitment vc and if vc′ is an update of vc that replacesx by x′ at position

j and r by r′.

VC.WitUpd(par , w , i, j, x, r, x ′ , r ′ ) . On input a witness w for a position

i valid for a commitment vc with value x at position j and randomness r,

output a witness w ′ for position i valid for a commitment vc′ with value x′

at position j and randomness r′.

De�nition 2.7.1 A vector commitment scheme must be correct, hiding, and binding.

correctness. Correctness requires that for par ← VC.Setup(1k, `), x =
(x[1], . . . ,x[n]) ← Mn

, r ← R, vc ← VC.Commit(par ,x, r), i ←
[1, n] and w ← VC.Prove(par , i,x, r), VC.Verify(par , vc,x[i], i,w)
outputs 1 with probability 1.

hiding. The hiding property requires that any ppt adversaryA has negligible

advantage in the following game. A chooses a vector and sends it to the

challenger. The challenger picks a random vector, commits to one of the

vectors and sends the commitment toA.A guesses which vector was used to

compute the commitment. More formally, for ` polynomial in k we require

Pr

 par ← VC.Setup(1k, `); (x0, st)← A(par); r ← R;
x1

$←M`; b← {0, 1}; vc ← VC.Commit(par ,xb, r);
b′ ← A(st , vc) : b = b′ ∧ x0 ∈M`

 = 1
2

+ε(k) .
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When updating a commitment, we require that A cannot distinguish

whether a commitment vc is an update of a commitment to a vector speci�ed

by the adversary or a commitment to a random vector, i.e., that

Pr


par ← VC.Setup(1k, `); (x, j, x′, r, st)← A(par);
r′ ← R; x′ $←M`;
vc ← VC.Commit(par ,x′, r′) :
1 = A(st , vc) ∧ x ∈M` ∧ j ∈ [1, `] ∧ x′ ∈M ∧ r ∈ R

 =

Pr


par ← VC.Setup(1k, `); (x, j, x′, r, st)← A(par);
r′ ← R;
vc ← VC.ComUpd(par ,VC.Commit(par ,x, r), j,x[j], r, x′, r′) :
1 = A(st , vc) ∧ x ∈M` ∧ j ∈ [1, `] ∧ x′ ∈M ∧ r ∈ R


binding. The binding property requires that no adversary can output a vector

commitment vc, a position i ∈ [1, `], two valuesx andx′ and two respective

witnesses w and w ′ such that VC.Verify accepts both, i.e., for ` polynomial

in k:

Pr

 par ← VC.Setup(1k, `); (vc, i, x, x′,w ,w ′)← A(par) :
VC.Verify(par , vc, x, i,w) = 1 ∧ x 6= x′ ∧
VC.Verify(par , vc, x′, i,w ′) = 1 ∧ i ∈ [1, `] ∧ x, x′ ∈M

 ≤ ε(k) .

We use VC schemes that are additively homomorphic. Given two commitments

vc1 and vc2 to vectors x1 and x2 with randomness r1 and r2, there exists an

operation · such that vc ← vc1 · vc2 is a commitment to x = x1 + x2 with

r = r1 + r2. (If vc2 is a commitment to the vector x[i] = 0 for all i ∈ [1, `],
then vc is a rerandomization of vc1, which we denote by vc = VC.Rerand(vc1,
r2).) In addition, if w1,i is a witness for x1[i] being a position i in the vector x1
committed in vc1, and w2,i is an opening for x2[i] being a position i in the vector

x2 committed in vc2, then wi ← w1,i · w2,i is an opening for x1[i] + x2[i] being

at position i in the vector x committed in vc.

2.7.1.1 Construction

We show a hiding vector commitment scheme that is secure under the Di�e-

Hellman Exponent (DHE) assumption [69]. Let k ∈ N denote the security param-

eter.

VC.Setup(1k , `) . Generate groups (p,G, G̃,Gt, e, g , g̃) ← G(1k), pick

α ← Zp, and compute (g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`), where gi =
g(αi)

and g̃i = g̃(αi)
. Output the parameters par = (p,G, G̃,Gt, e, g , g̃ ,

g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`,M = Zp,R = Zp).

VC.Commit(par , x , r) . Let |x| = n ≤ `. Output

vc = gr ·
n∏
j=1

gx[j]
`+1−j = gr · gx[1]

` · · · gx[n]
`+1−n .
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VC.Prove(par , i, x , r) . Let |x| = n ≤ `. Output

w = gri ·
n∏

j=1,j 6=i
gx[j]
`+1−j+i .

VC.Verify(par , vc , x, i, w ) . Output 1 if e(vc, g̃i) = e(w , g̃) · e(g1, g̃`)x,

else output 0.

VC.ComUpd(par , vc , j, x, r, x ′ , r ′ ). Output the commitment

vc′ = vc ·
gr′ · gx′`+1−j
gr · gx`+1−j

= vc · gr′−r · gx′−x`+1−j .

VC.VerComUpd(par , vc , vc ′ , w , j, x, r, x ′ , r ′ ) . Runv ← VC.Verify(par ,
vc, x, j,w). Ifv ← 0, outputv, else run v̄c ← VC.ComUpd(par , vc, j, x, r, x′, r′).

If v̄c = vc′, output 1, else output 0.

VC.WitUpd(par , w , i, j, x, r, x ′ , r ′ ) . If i = j, output w . Otherwise out-

put the witness

w ′ = w ·
gr′i · gx

′
`+1−j+i

gri · gx`+1−j+i
= w · gr′−ri · gx′−x`+1−j+i .

Theorem 2.7.2 This vector commitment scheme is correct, hiding, and binding as
defined in 2.7.1 under the `-DHE assumption.

proof of theorem 2.7.2. Correctness can be checked as follows.

e(vc, g̃i)/e(w , g̃) = e(gr+
∑n
j=1 x[j](α`+1−j), g̃(αi))

e(g(r(αi)+
∑n
j=1,j 6=i x[j](α`+1−j+i)), g̃)

= e(gr(α
i)+

∑n
j=1 x[j](α`+1−j+i), g̃)

e(g(r(αi)+
∑n
j=1,j 6=i x[j](α`+1−j+i)), g̃)

= e(g , g̃)x[i](α`+1)

= e(g1, g̃`)x[i] .

This vector commitment scheme ful�ls the hiding property in an information-

theoretic way.

We show that this vector commitment scheme ful�ls the binding property under

the `-DHE assumption. Given an adversaryA that breaks the binding property

with non-negligible probability ν, we construct an algorithm T that breaks the

`-DHE assumption with non-negligible probability ν. First, T receives an instance

(e,G, G̃,Gt, p, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`) of the `-DHE assumption.

T sets par ← (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`) and sends

par to A. A returns (vc, i, x, x′,w ,w ′) such that VC.Verify(par , vc, x, i,w)
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= 1, VC.Verify(par , vc, x′, i,w ′) = 1, i ∈ [1, `], x, x′ ∈ M, and x 6= x′. T
computes g`+1 as follows:

e(w , g̃)e(g1, g̃`)x = e(w ′, g̃)e(g1, g̃`)x
′

e(w/w ′, g̃) = e(g1, g̃`)x
′−x

e((w/w ′)1/(x′−x), g̃) = e(g1, g̃`)

e((w/w ′)1/(x′−x), g̃) = e(g`+1, g̃) .

The last equation implies that g`+1 = (w/w ′)1/(x′−x)
.T returns (w/w ′)1/(x′−x)

as a solution for the `-DHE problem.

2.7.2 Non Hiding Vector Commitments

A non-hiding vector commitment (NHVC) scheme [32, 69] allows one to succinctly

commit to a vector x = (x[1], . . . ,x[n]) ∈Mn
such that it is possible to compute

an openingw to x[i], with the size ofw independent of i andn. The scheme consists

of the following algorithms.

VC.Setup(1k , `) . On input the security parameter 1k and an upper bound `
on the size of the vector, generate the parameters of the vector commitment

scheme par , which include a description of the message spaceM.

VC.Commit(par , x) . On input a vector x ∈Mn
(n ≤ `), output a commit-

ment vc to x.

VC.Prove(par , i, x) . Compute an opening w for x[i].

VC.Verify(par , vc , x, i, w ) . Output 1 if w is a valid opening for x being at

position i and 0 otherwise.

VC.ComUpd(par , vc , j, x, x ′ ) . On input a commitment vc with value x
at position j, output a commitment vc′ with value x′ at position j. The

other positions remain unchanged.

VC.WitUpd(par , w , i, j, x, x ′ ) . On input an opening w for position i valid

for a commitment vc with value x at position j, output an opening w ′ for

position i valid for a commitment vc′ with value x′ at position j.

A non-hiding VC scheme must be correct and binding [32].

correctness. Correctness requires that for par ← VC.Setup(1k, `), x←
(x[1], . . . ,x[n]) ∈ Mn

, vc ← VC.Commit(par ,x), i ← [1, n] and

w ← VC.Prove(par , i,x), VC.Verify(par , vc,x[i], i,w) outputs 1 with

probability 1.

binding. The binding property requires that no adversary can output a vector

commitment vc, a position i ∈ [1, `], two valuesx andx′ and two respective

witnesses w and w ′ such that VC.Verify accepts both, i.e., for ` polynomial

in k:

Pr

 par ← VC.Setup(1k, `); (vc, i, x, x′,w ,w ′)← A(par) :
1 = VC.Verify(par , vc, x, i,w) ∧ x 6= x′ ∧
1 = VC.Verify(par , vc, x′, i,w ′) ∧ i ∈ [1, `] ∧ x, x′ ∈M

 ≤ ε(k) .
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2.7.2.1 Construction

We use an NHVC scheme secure under the `-DHE assumption [69].

VC.Setup(1k , `) . Generate groups (p,G, G̃,Gt, e, g , g̃) ← G(1k), pick

α ← Zp and compute (g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`), where gi =
g(αi)

and g̃i = g̃(αi)
. Output par ← (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . ,

g`, g̃`, g`+2, . . . , g2`,M = Zp).

VC.Commit(par , x) . Let |x| = n ≤ `. Output vc =
∏n
j=1 gx[j]

`+1−j .

VC.Prove(par , i, x) . Let |x| = n ≤ `. Output w =
∏n
j=1,j 6=i gx[j]

`+1−j+i .

VC.Verify(par , vc , x, i, w ) . Output 1 if e(vc, g̃i) = e(w , g̃) · e(g1, g̃`)x,

else 0.

VC.ComUpd(par , vc , j, x, x ′ ) . Output vc′ = vc · gx′−x`+1−j .

VC.WitUpd(par , w , i, j, x, x ′ ) . If i = j, output w , else w ′ = w ·
gx′−x`+1−j+i .

Theorem 2.7.3 The NHVC scheme is correct and binding under the `-DHE as-
sumption.

proof of theorem 2.7.3. Correctness can be checked as follows:

e(vc, g̃i)/e(w , g̃) =

= e(g
∑n
j=1 x[j](α`+1−j), g̃(αi))

e(g(
∑n
j=1,j 6=i x[j](α`+1−j+i)), g̃)

= e(g(
∑n
j=1 x[j](α`+1−j+i), g̃)

e(g(
∑n
j=1,j 6=i x[j](α`+1−j+i)), g̃)

= e(g , g̃)x[i](α`+1)

= e(g1, g̃`)x[i] .

We show that this NHVC scheme ful�ls the binding property under the `-DHE

assumption. Given an adversary A that breaks the binding property with non-

negligible probability ν, we construct an algorithm T that breaks the `-DHE as-

sumption with non-negligible probability ν. First, T receives an instance (e,G, G̃,
Gt, p, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`) of the `-DHE assumption. T sets

par ← (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`) and sends par
toA.A returns (vc, i, x, x′,w ,w ′) such that VC.Verify(par , vc, x, i,w) = 1,

VC.Verify(par , vc, x′, i,w ′) = 1, i ∈ [1, `], x, x′ ∈ M, and x 6= x′. T com-

putes g`+1 as follows:

e(w , g̃)e(g1, g̃`)x = e(w ′, g̃)e(g1, g̃`)x
′

e(w/w ′, g̃) = e(g1, g̃`)x
′−x

e((w/w ′)1/(x′−x), g̃) = e(g1, g̃`)

e((w/w ′)1/(x′−x), g̃) = e(g`+1, g̃) .

The last equation implies that g`+1 = (w/w ′)1/(x′−x)
.T returns (w/w ′)1/(x′−x)

as a solution for the `-DHE problem. This concludes the proof of Theorem 2.7.3.
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2.7.3 Sub Vector Commitments

A subvector commitment (SVC) scheme allows us to succinctly compute a commit-

ment svc to a vector x = (x[1], . . . ,x[`]) ∈M`
. A commitment svc to x can be

opened to a subvector xI = (x[i1], . . . ,x[in]), where I = {i1, . . . , in} ⊆ [1, `]
is the set of indices that determine the positions of the committed vector x that are

opened. The size of an opening wI for xI is independent of both the size of I and

of the length ` of the committed vector. We extend the de�nition of SVC in [64]

with algorithms to update commitments and openings.

SVC.Setup(1k , `) . On input the security parameter 1k and an upper bound

` on the size of the vector, generate the parameters par , which include a

description of the message spaceM.

SVC.Commit(par , x) . On input a vector x ∈ M`
, output a commitment

svc to x.

SVC.Open(par , I , x) . On input a vector x and a set I = {i1, . . . , in} ⊆
[1, `], compute an opening wI for the subvector xI = (x[i1], . . . ,x[in]).

SVC.Verify(par , svc , xI , I , wI ) . Output 1 if wI is a valid opening for the

set of positions I = {i1, . . . , in} ⊆ [1, `] such that xI = (x[i1], . . . ,
x[in]), where x is the vector committed in svc. Otherwise output 0.

SVC.ComUpd(par , svc , x , i, x) . On input a commitment svc to a vector

x, output a commitment svc′ to a vector x′ such that x′[i] = x and, for all

j ∈ [1, `] \ {i}, x′[j] = x[j].

SVC.OpenUpd(par , wI , x , I , i, x) . On input an opening wI for a set I
valid for a commitment to a vector x, output an opening w ′I valid for a

commitment to a vector x′ such that x′[i] = x and, for all j ∈ [1, `] \ {i},

x′[j] = x[j].

An SVC scheme must be correct and binding [64]. We recall the correctness and

binding properties [64] and de�ne correctness for the update algorithms.

correctness. Correctness requires that for any par ← SVC.Setup(1k, `), x
← (x[1], . . . ,x[`]) ∈ M`

, svc ← SVC.Commit(par ,x), I = {i1, . . . ,
in} ⊆ [1, `] and wI ← SVC.Open(par , I,x), SVC.Verify(par , svc,xI ,
I,wI) outputs 1 with probability 1, where xI = (x[i1], . . . ,x[in]).

For the update algorithms, correctness requires that, for any par , x, svc,

I and wI computed as shown above, and for any i ∈ [1, `], x ∈ M, svc′
← SVC.ComUpd(par , svc,x, i, x) and w ′I ← SVC.OpenUpd(par ,wI ,
x, I, i, x), SVC.Verify(par , svc′,x′I , I,w ′I) outputs 1 with probability 1,

where x′I = (x′[i1], . . . ,x′[in]) and x′ is such that x′[i] = x and for all

j ∈ [1, `] \ {i}, x′[j] = x[j].

binding. This property requires that no adversary can output a commitment

svc, two sets of positions I = {i1, . . . , in} ⊆ [1, `] and J = {j1, . . . ,
jn′} ⊆ [1, `], two subvectors xI = (x[i1], . . . ,x[in]) and xJ = (x′[j1],
. . . ,x′[jn′ ]) and two openings wI and wJ such that SVC.Verify accepts
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both, but there exists an index i ∈ I ∩ J such that x[i] 6= x′[i], i.e., for `
polynomial in k:

Pr



par ← SVC.Setup(1k, `); (svc, I, J,xI ,xJ ,wI ,wJ)← A(par) :
1 = SVC.Verify(par , svc,xI , I,wI) ∧
1 = SVC.Verify(par , svc,xJ , J,wJ)∧
I = {i1, . . . , in} ⊆ [1, `] ∧ J = {j1, . . . , jn′} ⊆ [1, `]∧
xI = (x[i1], . . . ,x[in]) ∈Mn ∧
xJ = (x′[j1], . . . ,x′[jn′ ]) ∈Mn′ ∧
∃ i ∈ I ∩ J such that x[i] 6= x′[i]


≤ ε(k) .

2.7.3.1 Construction

We use an SVC scheme secure under the CubeDH assumption [64], which we

extend with update algorithms for commitments and openings.

SVC.Setup(1k , `) . Generate (p,G, G̃,Gt, e, g , g̃) ← G(1k). For all i ∈
[1, `], pick zi ← Zp and compute gi ← gzi and g̃i ← g̃zi . For all i ∈ [1, `]
and i′ ∈ [1, `] such that i 6= i′, compute hi,i′ ← gzizi′ . Output par ←
(p,G, G̃,Gt, e, g , g̃ , {gi, g̃i}∀i∈[1,`], {hi,i′}∀i,i′∈[1,`],i 6=i′).

SVC.Commit(par , x) . Output svc =
∏`
i=1 gx[i]

i .

SVC.Open(par , I , x) . Output wI =
∏
i∈I
∏
i′ /∈I hx[i′]

i,i′ .

SVC.Verify(par , svc , xI , I , wI ) . Parse I as {i1, . . . , in} ⊆ [1, `] and xI
as (x[i1], . . . ,x[in]). Output 1 if

e

(
svc∏
i∈I gx[i]

i

,
∏
i∈I

g̃i

)
= e(wI , g̃)

SVC.ComUpd(par , svc , x , i, x) . Output svc′ = svc · gx−x[i]
i .

SVC.OpenUpd(par , wI , x , I , i, x) . If i ∈ I , output wI , else w ′I = wI ·∏
j∈I hx−x[i]

j,i .

This scheme is correct and binding under the CubeDH assumption [64].

2.8 ideal functionalities
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We use the following ideal functionalities as building blocks to construct our

primitives and protocols:

2.8.1 Common Reference String

Our constructions use the functionalityFCRS.Setup
CRS for common reference string

generation in [29].FCRS.Setup
CRS interacts with any partiesP that obtain the common

reference string, and consists of one interface crs.get. A partyP uses the crs.get
interface to request and receive the common reference string crs fromFCRS.Setup

CRS .

In the �rst invocation,FCRS.Setup
CRS generates crs by running algorithm CRS.Setup.

The simulator S also receives crs . We describeFCRS.Setup
CRS below.

description of F CRS.Setup
CRS . FCRS.Setup

CRS is parameterized by a ppt algo-

rithm CRS.Setup.FCRS.Setup
CRS interacts with any parties P that obtain the com-

mon reference string:

1. On input (crs.get.ini, sid) from any partyP :

• If (sid , crs) is not stored, run crs ← CRS.Setup and store (sid , crs).

• Create a fresh qid and store (qid ,P).

• Send (crs.get.sim, sid , qid , crs) to S .

S. On input (crs.get.rep, sid , qid) from the simulator S :

• Abort if (qid ,P) is not stored.

• Delete the record (qid ,P).

• Send (crs.get.end, sid , crs) toP .

2.8.2 Key Registration

We depict the ideal functionalityFREG for key registration in [29].FREG interacts

with any party T that registers a message v and with any partyP that retrieves the

registered message.FREG consists of two interfaces reg.register and reg.retrieve.

T uses reg.register to register a message v with FREG. P uses reg.retrieve to

retrieve v fromFREG. We depictFREG below.

description of FREG . FREG is parameterized by a message spaceM.

1. On input (reg.register.ini, sid , v) from a party T :

• Abort if sid 6= (T , sid ′), or if v /∈M or if there is a tuple (sid , v ′, 0)
stored.

• Store (sid , v , 0).

• Send (reg.register.sim, sid , v) to S .

S. On input (reg.register.rep, sid) from the simulator S :

• Abort if (sid , v , 0) is not stored or if (sid , v , 1) is already stored.

• Store (sid , v , 1) and parse sid as (T , sid ′).
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• Send (reg.register.end, sid) to T .

2. On input (reg.retrieve.ini, sid) from any partyP :

• If (sid , v , 1) is stored, set v ′ ← v ; else set v ′ ← ⊥.

• Create a fresh qid and store (qid ,P, v ′).

• Send (reg.retrieve.sim, sid , qid , v ′) to S .

S. On input (reg.retrieve.rep, sid , qid) from the simulator S :

• Abort if (qid ,P, v ′) is not stored.

• Delete the record (qid ,P, v ′).

• Send (reg.retrieve.end, sid , v ′) toP .

2.8.3 Authenticated Channel

Our constructions use the functionalityFAUT for an authenticated channel in [29].

FAUT interacts with a sender T and a receiverR, and consists of one interface

aut.send.T uses the aut.send interface to send a message m toFAUT.FAUT leaks

m to the simulator S and, after receiving a response from S ,FAUT sends m toR.

S cannot modify m . The session identi�er sid contains the identities of T andR.

We describeFAUT below.

Figure 2.6: Description ofFAUT.

FAUT is parameterized by a message spaceM.

1. On input (aut.send.ini, sid ,m) from a party T :

• Abort if sid 6= (T ,R, sid ′) or if m /∈M.

• Create a fresh qid and store (qid ,R,m).

• Send (aut.send.sim, sid , qid ,m) to S .

S. On input (aut.send.rep, sid , qid) from S :

• Abort if (qid ,R,m) is not stored.

• Delete the record (qid ,R,m).

• Send (aut.send.end, sid ,m) toR.

2.8.4 Secure Message Transmission

Our constructions use the functionality FSMT for secure message transmission

described in [29].FSMT interacts with a sender T and a receiverR, and consists

of one interface smt.send. T uses the smt.send interface to send a message m to

FSMT.FSMT leaks l(m), where l :M→ N is a function that leaks the message

length, to the simulator S . After receiving a response from S ,FSMT sends m toR.

S cannot modify m . The session identi�er sid contains the identities of T andR.



24 technical preliminaries

Figure 2.7: Description ofFSMT.

FSMT is parameterized by a message spaceM and by a leakage function

l :M→ N, which leaks the message length.

1. On input (smt.send.ini, sid ,m) from a party T :

• Abort if sid 6= (T ,R, sid ′) or if m /∈M.

• Create a fresh qid and store (qid ,R,m).

• Send (smt.send.sim, sid , qid , l(m)) to S .

S. On input (smt.send.rep, sid , qid) from S :

• Abort if (qid ,R,m) is not stored.

• Delete the record (qid ,R,m).

• Send (smt.send.end, sid ,m) toR.

2.8.5 Oblivious Transfer

Our constructions use the ideal functionality FOT for oblivious transfer. FOT
interacts with a sender E and a receiverR, and consists of three interfaces: ot.init,

ot.request and ot.transfer.

1. E uses the ot.init interface to send the messages 〈mn〉Nn=1 to FOT. FOT
stores 〈mn〉Nn=1 and sends the number N of messages toR. The simulator

S also learns N .

2. R uses the ot.request interface to send an index σ ∈ [1,N ], a commitment

comσ and an opening openσ toFOT.FOT parses the commitment comσ

as (parcom, comσ,COM.Verify) and veri�es the commitment by running

COM.Verify.FOT stores [σ, comσ] and sends comσ to E .

3. E uses the ot.transfer interface to send a commitment comσ toFOT. If a

tuple [σ, comσ] is stored,FOT sends the message mσ toR.

FOT is similar to existing functionalities for OT [27], except that it receives a com-

mitment comσ to the index σ and an opening openσ for that commitment. In ad-

dition, the transfer phase is split up into two interfaces ot.request and ot.transfer,

so that E receives comσ in the request phase. These changes are needed to use in

our POT protocol the method in [20] to ensure that, when purchasing an item, the

buyer sends the same index σ toFOT and to other functionalities. It is generally

easy to modify existing UC OT protocols so that they realize our functionality

FOT.

Figure 2.8: Description ofFOT.

FunctionalityFOT runs with a sender E and a receiverR, and is parame-

terized with a maximum number of messagesNmax and a message space

M.

1. On input (ot.init.ini, sid , 〈mn〉Nn=1) from E :
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a) Abort if sid /∈ (E ,R, sid ′), or if (sid , 〈mn〉Nn=1, 0) is already

stored, or if N >Nmax.

b) Abort if for n = 1 to N , mn /∈M.

c) Store (sid , 〈mn〉Nn=1, 0).

d) Send (ot.init.sim, sid ,N ) to S.

S. On input (ot.init.rep, sid) from S:

a) Abort if (sid , 〈mn〉Nn=1, 0) is not stored, or if

(sid , 〈mn〉Nn=1, 1) is already stored.

b) Store (sid , 〈mn〉Nn=1, 1) and initialize an empty table Tblot.

c) Send (ot.init.end, sid ,N ) toR.

2. On input (ot.request.ini, sid , σ, comσ, openσ) fromR:

a) Abort if (sid , 〈mn〉Nn=1, 1) is not stored.

b) Abort if σ /∈ [1,N ].
c) Parse comσ as (parcom, comσ, COM.Verify).

d) Abort if COM.Verify is not a ppt algorithm, or if 1 6=
COM.Verify(parcom, comσ, openσ, σ).

e) Create a fresh qid and store (qid , σ, comσ).

f) Send (ot.request.sim, sid , qid , comσ) to S.

S. On input (ot.request.rep, sid , qid) from S:

a) Abort if (qid , σ, comσ) is not stored.

b) Append [σ, comσ] to Tblot.

c) Delete the record (qid , σ, comσ).

d) Send (ot.request.end, sid , comσ) to E .

3. On input (ot.transfer.ini, sid , comσ) from E :

a) Abort if there is no entry [σ, comσ] in Tblot.

b) Create a fresh qid and store (qid , comσ).

c) Send (ot.transfer.sim, sid , qid) to S .

S. On input (ot.transfer.rep, sid , qid , b), if E is corrupt, or

(ot.transfer.rep, sid , qid), if E is honest, from S:

a) Abort if (qid , comσ) is not stored.

b) If E is corrupt and b = 0, set v ←⊥.

c) Else, set v ← mσ .

d) Delete the record (qid , comσ).

e) Send (ot.transfer.end, sid , v) toR.
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2.8.6 Secure Pseudonymous Channel

We depict an ideal functionality FNYM for an idealized secure pseudonymous

channel. We useFNYM to describe some of our constructions in order to abstract

away the details of real-world pseudonymous channels. FNYM is similar to the

functionality for anonymous secure message transmission in [25]. FNYM inter-

acts with senders Tk and a replierR and consists of two interfaces nym.send and

nym.reply. Tk uses nym.send to send a message m and a pseudonym P toR.R
uses nym.reply to send a message m and a pseudonym P .FNYM checks if there is

a party Tk associated with pseudonym P that is awaiting a reply, and in that case

sends m and P to Tk. Therefore,R replies to messages from Tk by specifying P .

We depictFNYM below.

Figure 2.9: Description ofFNYM.

FNYM is parameterized by a message spaceM, a leakage function l , which

leaks the message length, and a universe of pseudonyms Up.

1. On input (nym.send.ini, sid ,m,P) from Tk:

• Abort if sid 6= (R, sid ′), or if m /∈M, or if P /∈ Up.

• Create a fresh qid and store (qid ,P , Tk,m).

• Send (nym.send.sim, sid , qid , l(m)) to S .

S. On input (nym.send.rep, sid , qid) from S :

• Abort if (qid ,P , Tk,m) is not stored.

• Store (sid ,P , Tk).

• Delete the record (qid ,P , Tk,m).

• Parse sid as (R, sid ′).

• Send (nym.send.end, sid ,m,P) toR.

2. On input (nym.reply.ini, sid ,m,P) fromR:

• Abort if sid 6= (R, sid ′), or if m /∈M, or if P /∈ Up.

• Abort if there is not a tuple (sid ,P ′, Tk) stored such that P ′ =
P .

• Create a fresh qid and store (qid ,P , Tk,m).

• Delete the tuple (sid ,P , Tk).

• Send (nym.reply.sim, sid , qid , l(m)) to S .

S. On input (nym.reply.rep, sid , qid) from S :

• Abort if (qid ,P , Tk,m) is not stored.

• Delete the record (qid ,P , Tk,m).

• Send (nym.send.end, sid ,m,P) to Tk.
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2.8.7 Public Bulletin Board

We depict a functionalityFBB for a public bulletin board BB [97]. A BB is used to

ensure that all the readers receive the same version of the database, which is needed

to provide unlinkability.FBB interacts with a writerW and readersRk.W uses

the bb.write interface to send a message m toFBB.FBB increments a counter ct
of the number of messages stored in BB and appends [ct ,m] to BB.Rk uses the

bb.getbb interface on input an index i . If i ∈ [1, ct ],FBB takes the message m
stored in [i ,m] in BB and sends m toRk. We depictFBB below.

Figure 2.10: Description ofFBB.

FBB is parameterized by a universe of messages Um.FBB interacts with a

writerW and readersRk.

1. On input (bb.write.ini, sid ,m) fromW :

• Abort if sid /∈ (W, sid ′).

• Abort if m /∈ Um.

• If (sid ,BB, ct) is not stored, set BB← ⊥ and ct ← 0.

• Increment ct , append [ct ,m] to BB and update ct and BB in

(sid ,BB, ct).

• Create a fresh qid and store qid .

• Send (bb.write.sim, sid , qid ,m) to S .

S. On input (bb.write.rep, sid , qid) from S :

• Abort if qid is not stored.

• Delete qid .

• Send (bb.write.end, sid) toW .

2. On input (bb.getbb.ini, sid , i) fromRk:

• Create a fresh qid and store (qid ,Rk, i).

• Send (bb.getbb.sim, sid , qid) to S .

S. On input (bb.getbb.rep, sid , qid) from S :

• Abort if (qid ′,Rk, i) such that qid ′ = qid is not stored.

• If (sid ,BB, ct) is stored and i ∈ [1, ct ], take [i ,m] from BB
and set m ′ ← m , else set m ′ ← ⊥.

• Send (bb.getbb.end, sid ,m ′) toRk.

2.8.8 Interactive Zero-Knowledge Proofs of Knowledge

We use two versions ofFR
ZK, one for protocols that require unlinkability and an-

other for protocols that do not require unlinkability. Both versions follow the

functionality for zero-knowledge in [29].
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In the version ofFR
ZK for protocols that require unlinkability, the functionality

interacts with proversPk and a prover is identi�ed by a pseudonym P towards the

veri�er V . In the version ofFR
ZK for protocols that do not require unlinkability, the

functionality interacts with one proverP and the identi�erP is revealed to V .

Let R be a polynomial time computable binary relation. For tuples (wit , ins)
∈ R we call wit the witness and ins the instance. FR

ZK consists of one interface

zk.prove. A prover uses zk.prove to send a witness wit and an instance ins toFR
ZK.

FR
ZK checks if (wit , ins) ∈ R, and, in that case, sends ins to V . We depict below

theFR
ZK without unlinkability.

Figure 2.11: Description ofFR
ZK (without unlinkability).

FR
ZK is parameterized by a description of a relation R.FR

ZK interacts with a

proverP and a veri�er V .

1. On input (zk.prove.ini, sid ,wit , ins) fromP :

• Abort if sid 6= (P,V, sid ′) or if (wit , ins) /∈ R.

• Create a fresh qid and store (qid , ins).

• Send (zk.prove.sim, sid , qid , ins) to S .

S. On input (zk.prove.rep, sid , qid) from S :

• Abort if (qid , ins) is not stored.

• Parse sid as (P,V, sid ′).

• Delete the record (qid , ins).

• Send (zk.prove.end, sid , ins) to V .

In the version for protocols that require unlinkability, the prover also sends a

pseudonym P , which is sent byFR
ZK toV . We depict belowFR

ZK with unlinkability.

Figure 2.12: Description ofFR
ZK (with unlinkability).

FR
ZK (with unlinkability) is parameterized by a description of a relation R

and by a universe of pseudonyms Up.FR
ZK interacts with proversPk and a

veri�er V .

1. On input (zk.prove.ini, sid ,wit , ins,P) fromPk:

• Abort if sid 6= (V, sid ′), or if (wit , ins) /∈ R, or if P /∈ Up.

• Create a fresh qid and store (qid , ins,P).

• Send (zk.prove.sim, sid , qid , ins) to S .

S. On input (zk.prove.rep, sid , qid) from S :

• Abort if (qid , ins,P) is not stored.

• Parse sid as (V, sid ′).

• Delete the record (qid , ins,P).

• Send (zk.prove.end, sid , ins,P) to the veri�er V .
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2.8.8.1 Construction

To instantiate FR
ZK (with or without unlinkability), we use the scheme in [24].

In [24], a UC ZK protocol proving knowledge of exponents (w1, . . . , wn) that

satisfy the formula φ(w1, . . . , wn) is described as

Kw1, . . . , wn : φ(w1, . . . , wn) (2.1)

The formula φ(w1, . . . , wn) consists of conjunctions and disjunctions of “atoms”.

An atom expresses group relations, such as

∏k
j=1 g

Fj
j = 1, where the gj ’s are

elements of prime order groups and theFj ’s are polynomials in the variables (w1,
. . . , wn).

A proof system for (2.1) can be transformed into a proof system for more expres-

sive statements about secret exponents sexps and secret bases sbases :

Ksexps, sbases : φ(sexps, bases ∪ sbases) (2.2)

The transformation adds an additional base h to the public bases. For each gj ∈
sbases , the transformation picks a random exponent ρj and computes a blinded

base g′j = gjhρj . The transformation adds g′j to the public bases bases , ρj to the

secret exponents sexps , and rewrites g
Fj
j into g′j

Fjh−Fjρj .

The proof system supports pairing product equations

∏k
j=1 e(gj , g̃j)Fj = 1 in

groups of prime order with a bilinear map e , by treating the target group Gt as the

group of the proof system. The embedding for secret bases is unchanged, except for

the case in which both bases in a pairing are secret. In this case, e(gj , g̃j)Fj must

be transformed into e(g′j , g̃′j)Fje(g′j , h̃)−Fj ρ̃je(h, g̃′j)−Fjρje(h, h̃)Fjρj ρ̃j .

The instantiation with unlinkability uses a pseudonymous channel for com-

munication between prover and veri�er. The one without unlinkability uses an

authenticated channel.

2.8.9 Non-Interactive Zero-Knowledge

We describe a functionalityFR
NIZK for non-interactive zero-knowledge proofs of

knowledge. FunctionalityFR
NIZK interacts with any partiesP that obtain the param-

eters par and compute and verify proofs. The interaction between the functionality

FR
NIZK and these parties takes place through the following interfaces:

1. Any partyP employs the nizk.setup interface to obtain the parameters par .

2. Any partyP employs the nizk.prove interface to obtain a proof π on input

a witness wit and an instance ins such that (wit , ins) ∈ R.

3. Any party P employs the nizk.verify interface to verify a proof π for an

instance ins .

FR
NIZK uses a table Tbl. Tbl consists of entries of the form [ins, π, u], where

ins is an instance, π is a proof, and u is a bit that indicates whether π is a valid proof

for the instance ins or not.FR
NIZK also uses a set S that contains all the parties that

have obtained the parameters par .

FR
NIZK is similar to the ideal functionality for non-interactive zero-knowledge

in [53].FR
NIZK asks the simulatorS to provide simulation and extraction algorithms
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at setup. In [53], the functionality asks the simulator to provide simulated proofs

and to extract witnesses when the nizk.prove and nizk.verify interfaces are invoked.

We choose the �rst alternative because it hides from the simulator when the parties

compute and verify proofs and the proof instances.

The functionalityFR
NIZK does not allow the computation and veri�cation of

proofs using parameters par that were not generated by the functionality. As can

be seen, the interfaces nizk.prove and nizk.verify do not receive the parameters of

the scheme as input and, in order to compute and verify proofs, the functionality

employs the parameters that it stores. Therefore, a construction that realizes this

functionality must ensure that the honest parties employ the same parameters. To

achieve this, some form of trusted setup is required. We depictFR
NIZK below.

Figure 2.13: Description ofFR
NIZK.

NIZK.SimProve and NIZK.Extract are ppt algorithms.FR
NIZK is parame-

terized with a description of a relation R.FR
NIZK interacts with any parties

P that obtain the parameters par and compute and verify proofs.

1. On input (nizk.setup.ini, sid) from any partyP :

• Generate a random qid and store (qid ,P).

• If the tuple (sid , par , td ,NIZK.SimProve,NIZK.Extract)
is not stored, send the message (nizk.setup.req, sid , qid ,P)
to S , else send (nizk.setup.sim, sid , qid ,P) to S .

S. On input (nizk.setup.alg, sid , qid , par , td ,NIZK.SimProve,
NIZK.Extract) from S :

• Abort if (qid ,P) is not stored.

• If (sid , par , td ,NIZK.SimProve,NIZK.Extract) is not

stored, do the following:

– Store (sid , par , td ,NIZK.SimProve,NIZK.Extract).

– Create an empty set S.

• Set S← S ∪ P .

• Delete (qid ,P).

• Send (nizk.setup.end, sid , par) toP .

S. On input (nizk.setup.rep, sid , qid) from S :

• Abort if (qid ,P) is not stored or if (sid , par , td ,
NIZK.SimProve,NIZK.Extract) is not stored.

• Set S← S ∪ P .

• Delete (qid ,P).

• Send (nizk.setup.end, sid , par) toP .

2. On input (nizk.prove.ini, sid ,wit , ins) from a partyP :

• Abort ifP /∈ S or if (wit , ins) /∈ R.
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• Run π ← NIZK.SimProve(sid , par , td , ins).

• Append [ins, π, 1] to Table Tbl.

• Send (nizk.prove.end, sid , π) toP .

3. On input (nizk.verify.ini, sid , ins, π) from a partyP :

• Abort ifP /∈ S.

• If there is an entry [ins, π, u] in Tbl, set v ← u.

• Else, do the following:

– Extract wit ← NIZK.Extract(sid , par , td , π, ins).

– If (wit , ins) /∈ R, set v ← 0, else set v ← 1.

– Append [ins, π, v] to Tbl.

• Send (nizk.verify.end, sid , v) toP .

We now discuss the three interfaces of the ideal functionalityFR
NIZK.

1. The nizk.setup.ini message is sent by any partyP . If the algorithms are not

stored,FR
NIZK asks the simulator S for the parameters par , the trapdoor td

and the algorithms NIZK.SimProve and NIZK.Extract. Otherwise,FR
NIZK

asks the simulator to allow the setup phase to be completed for party P .

When the simulator provides the parameters, trapdoor and algorithms, the

functionality stores them if they were not stored before. When the simula-

tor provides the algorithms or when it simply prompts the completion of

the setup phase for party P , the functionality records that P obtains the

parameters and sends the parameters toP .

2. The nizk.prove.ini message is sent by any honest partyP on input a witness

wit and an instance ins .FR
NIZK aborts ifP did not obtain the parameters.

This is required becauseFR
NIZK enforces that the computation of a proof

is a local process (note that FR
NIZK does not communicate with the sim-

ulator when computing a proof), so parties in the real world must have

obtained the parameters before computing a proof. FR
NIZK runs the algo-

rithm NIZK.SimProve on input par , td and ins to get a simulated proof

π. NIZK.SimProve does not receive the witness wit as input, and therefore

a proof of knowledge scheme that realizes this functionality must ful�ll the

zero-knowledge property.FR
NIZK stores [ins, π, 1] in Tbl and sends π toP .

3. The nizk.verify.ini message is sent by any honest partyP on input a proof

π and an instance ins . FR
NIZK aborts if P did not obtain the parameters

because the veri�cation of a proof is enforced to be a local process. If there is

an entry [ins, π, u] already stored in Tbl, then the functionality returns the

bit u. Therefore, any non-interactive zero-knowledge proof of knowledge

scheme that realizes this functionality must be consistent. Otherwise, the

functionality runs the algorithm NIZK.Extract to get a witness wit such

that (wit , ins) ∈ R. Therefore, any scheme that realizes FR
NIZK must be

extractable. If extraction fails, the functionality sets the veri�cation result to 0,

i.e., extraction must succeed unless the proof is incorrect. The functionality

records the veri�cation result in Tbl and returns this result.
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2.8.10 Non-Interactive Commitments

Our constructions use the functionalityFNIC for non-interactive commitments

in [20]. As explained in [20],FNIC requires a trapdoor, which implies that it pro-

vides the hiding security property.FNIC interacts with partiesPi and consists of

the following interfaces:

1. Any partyPi uses the com.setup interface to set up the functionality.

2. Any partyPi uses the com.commit interface to send a message m and obtain

a commitment com and an opening open . A commitment com = (com ′,
parcom,COM.Verify), where com ′ is the commitment, parcom are the

public parameters, and COM.Verify is the veri�cation algorithm.

3. Any partyPi uses the com.validate interface to send a commitment com
to the functionality in order to check that com contains the correct public

parameters and veri�cation algorithm.

4. Any partyPi uses the com.verify interface to send (com,m, open) to the

functionality in order to verify that com is a commitment to the message m
with the opening open .

FNIC can be realized by a perfectly hiding commitment scheme, such as the Peder-

sen commitment scheme. [20].

Figure 2.14: Description ofFNIC.

COM.TrapCom, COM.TrapOpen and COM.Verify are ppt algorithms.

1. On input (com.setup.ini, sid) from a partyPi:
• If (sid , parcom,COM.TrapCom,COM.TrapOpen,

COM.Verify, tdcom) is already stored, include Pi in the set

P, and send (com.setup.end, sid ,OK ) as a public delayed

output toPi.
• Otherwise proceed to generate a random qid , store (qid ,Pi)

and send the message (com.setup.req, sid , qid) to S .

S. On input (com.setup.alg, sid , qid ,m) from S :

• Abort if no pair (qid ,Pi) for somePi is stored.

• Delete record (qid ,Pi).

• If (sid , parcom,COM.TrapCom,COM.TrapOpen,
COM.Verify, tdcom) is already stored, include Pi in the set

P and send (com.setup.end, sid ,OK ) toPi.
• Otherwise proceed as follows.

– m is (parcom,COM.TrapCom,COM.TrapOpen,
COM.Verify, tdcom).

– Initialize both an empty table Tblcom and an empty

set P, and store (sid , parcom,COM.TrapCom,
COM.TrapOpen,COM.Verify, tdcom).
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– Include Pi in the set P and send (com.setup.end,
sid ,OK ) toPi.

2. On input (com.validate.ini, sid , com) from any partyPi:

• Abort ifPi /∈ P.

• Parse com as (com ′, parcom ′,COM.Verify′).

• Set v ← 1 if parcom ′ = parcom and COM.Verify′ =
COM.Verify. Otherwise, set v ← 0.

• Send (com.validate.end, sid , v) toPi.

3. On input (com.commit.ini, sid ,m) from any partyPi:

• Abort ifPi /∈ P or if m /∈M, whereM is de�ned in parcom .

• Compute (com, info) ← COM.TrapCom(sid , parcom,
tdcom).

• Abort if there is an entry [com,m ′, open ′, 1] in Tblcom such

that m 6= m ′.
• Run open ← COM.TrapOpen(sid ,m, info).

• Abort if 1 6= COM.Verify(sid , parcom, com,m, open).

• Append [com,m, open, 1] to Tblcom.

• Set com ← (com, parcom,COM.Verify).

• Send (com.commit.end, sid , com, open) toPi.

4. On input (com.verify.ini, sid , com,m, open) from any partyPi:

• Abort ifPi /∈ P or if m /∈M or if open /∈ R, whereM and

R are de�ned in parcom .

• Parse com as the tuple (com ′, parcom ′,COM.Verify′).

Abort if the parameters parcom ′ 6= parcom or

COM.Verify′ 6= COM.Verify.

• If there is an entry [com ′,m, open, u] in Tblcom, set v ← u.

• Else, proceed as follows:

– If there is an entry [com ′,m ′, open ′, 1] in Tblcom such

that m 6= m ′, set v ← 0.

– Else, proceed as follows:

* Setv ← COM.Verify(sid , parcom, com ′,m, open).

* Append [com ′,m, open, v] to Tblcom.

• Send (com.verify.end, sid , v) toPi.
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2.9 putting it all together

When we construct protocols in the hybrid model, situations arise where we must

ensure that the same inputs are being sent to two or more ideal functionalities being

used as building blocks in a larger protocol. For instance, if we would like to prove

facts about a speci�c secret value, whilst also writing this information to a data

structure, for security guarantees to hold we would need to ensure that the same

secret information is being sent to both an ideal functionality for a zero knowledge

proof, and to another for the data structure. In these cases, we use a technique

described in [20]:

1. A party �rst uses com.commit to get a commitment com to an input value

m with opening open ,

2. The party then sends (com,m, open) as input to each of the functionalities

that need to receive m ,

3. Each functionality runs COM.Verify to verify the commitment,

4. Other parties in the protocol receive the commitment com from each of the

functionalities and use the com.validate interface to validate com .

If com received from all functionalities is the same, the binding property provided

byFNIC ensures that all functionalities have received the same input m .



Part II

STATEFUL ZERO -KNOWLEDGE DATA
STRUCTURES

We introduce formal security de�nitions for our Stateful Zero Knowl-

edge (SZK) data structures, in the Universal Composability (UC) frame-

work, followed by constructions that securely realize these de�nitions.

For each data structure, we also list the security properties they guar-

antee, and variants of these de�nitions that may �nd use in speci�c

cases when it comes to using these data structures as building blocks

in larger privacy preserving protocols.





3INTRODUCTION

In Part II, we describe six data structures that may be broadly classi�ed based on

the security properties they guarantee, as follows:

1. Databases where entries are hidden from the veri�er.

a) Updatable Committed Databases (CDs)

b) Unlinkable Committed Databases (UCDs)

c) Non-interactive Committed Databases (NICDs)

2. Databases where entries are hidden from the veri�er, but the veri�er may

update a prover’s copy of its data structure.

a) Unlinkable Updatable Hiding Databases (UUHDs)

3. Databases where entries are visible to both the prover and the veri�er.

a) Updatable Databases (UDs)

b) Unlinkable Updatable Databases (UUDs)

These data structures come with their own distinct operations, which typically

allow parties to read, write, update, or prove facts about data.
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4UPDATABLE COMMITTED DATABASES

Work by Jan Camenisch, Maria Dubovitskaya, and Alfredo Rial. This primitive
was published in a paper presented at the 34th IEEE CSF Symposium in 2019 [21].
Though the author was not involved in the work done towards this paper, it forms a
part of the preliminary results for our FNR project and is a component in the protocol
in Chapter 11.

A CD is de�ned as the task of maintaining a database Tblcd consisting of entries

of the form [i, v], where i ranges from 0 to Nmax , between two parties: a proverP
and a veri�er V . i represents a position whilst v represents the value stored at that

position in Tblcd. The initial values of Tblcd are known to both parties.

4.1 operations

write. During a write operation, P updates an entry in the database, whilst

hiding the entry being written to and its position from V .

read. During a read operation,P proves knowledge of an entry in the database,

whilst hiding the entry being read and its position from V .

4.2 security properties

zero-knowledge. WheneverP performs a read or a write operation against

the database, the values and their positions are hidden from V . V receives

hiding commitments to these positions and their values, but the hiding

property ensures that V does not learn this information.

binding. P may only read entries that have been written to the database.

Additionally,FCD also guarantees that a value read from Tblcd at position i is

equal to the value previously written to i, and that all database entries are hidden

from V .

4.3 ideal functionality

The commitment
parameters parcom
and the commitment
verification algorithm
COM.Verify are
contained within
comi, comr , and
comw .

Figure 4.1: Ideal FunctionalityFCD

FCD is parameterized by a universe of valuesUv and by a maximum database

size Nmax .FCD interacts with a proverP and a veri�er V .

1. On input (cd.setup.ini, sid ,Tblcd) from V :

• Abort if sid /∈ (P,V, sid ′) or if (sid ,Tblcd) is already stored.

• Abort if Tblcd does not consist of entries of the form [i, v], or

if the number of entries in Tblcd is not Nmax .
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• Abort if for i = 1 to Nmax , v /∈ Uv for any entry [i, v] in

Tblcd.

• Initialize a counter cv ← 0 for the veri�er and store (sid , cv)
and (sid ,Tblcd).

• Send (cd.setup.sim, sid ,Tblcd) to S .

S. On input (cd.setup.rep, sid) from S :

• Abort if (sid ,Tblcd) is not stored, or if (sid ,Tblcd, cp) is

already stored.

• Initialize a counter cp ← 0 for the prover and store (sid ,
Tblcd, cp).

• Send (cd.setup.end, sid ,Tblcd) toP .

2. On input (cd.read.ini, sid , comi, i, openi, comr, vr, openr)
fromP :

• Abort if (sid ,Tblcd, cp) is not stored.

• Abort if i /∈ [1,Nmax ], or if vr /∈ Uv , or if [i, vr] is not stored

in Tblcd.

• Parse the commitment comi as (com ′i, parcomi,
COM.Verifyi).

• Parse the commitment comr as (com ′r, parcomr,
COM.Verifyr).

• Abort if COM.Verifyi or COM.Verifyr are not ppt algo-

rithms.

• Abort if 1 6= COM.Verifyi(parcomi, com ′i, i, openi).

• Abort if 1 6= COM.Verifyr(parcomr, com ′r, vr, openr).

• Create a fresh qid and store (qid , comi, comr, cp).

• Send (cd.read.sim, sid , qid , comi, comr) to S .

S. On input (cd.read.rep, sid , qid) from S :

• Abort if (qid , comi, comr, cp′) is not stored.

• Abort if cp′ 6= cv , where cv is stored in (sid , cv).

• Delete the record (qid , comi, comr, cp ′).

• Send (cd.read.end, sid , comi, comr) to V .

3. On input (cd.write.ini, sid , comi, i, openi, comw, vw, openw)
fromP :

• Abort if (sid ,Tblcd, cp) is not stored.

• Abort if i /∈ [1,Nmax ], or if vw /∈ Uv .

• Parse the commitment comi as (com ′i, parcomi,
COM.Verifyi).
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• Parse the commitment comw as (com ′w, parcomw,
COM.Verifyw).

• Abort if COM.Verifyi or COM.Verifyw are not ppt algo-

rithms.

• Abort if 1 6= COM.Verifyi(parcomi, com ′i, i, openi).

• Abort if 1 6= COM.Verifyw(parcomw, com ′w, vw, openw).

• Increment the counter cp in (sid ,Tblcd, cp) and store [i, vw]
in Tblcd.

• Create a fresh qid and store (qid , comi, comw, cp).

• Send (cd.write.sim, sid , qid , comi, comw) to S .

S. On input (cd.write.rep, sid , qid) from S :

• Abort if (qid , comi, comw, cp ′) is not stored.

• Abort if cp′ 6= cv + 1, where cv is stored in (sid , cv).

• Increment the counter cv in (sid , cv).

• Delete the record (qid , comi, comw, cp ′).

• Send (cd.write.end, sid , comi, comw) to V .

FCD features three interfaces:

1. The setup interface cd.setup allows V to initialize Tblcd to values that are

known to both V and P .FCD initializes two counters cp and cv in order

to count the number of write operations sent by P and those received by

V respectively. This allows FCD to enforce the fact that both parties are

using the same version of the Tblcd.FCD stores Tblcd, sends Tblcd to the

simulator S , and outputs Tblcd toP . The fact that FCD
accepts commitments to
the positions and data
read from and written
to the database via the
cd.read and cd.write
interfaces, and passes
them as output to V ,
facilitates modular
protocol design, as
explained in
Section 2.9.

2. The read interface cd.read allowsP to perform a read operation.P sends a

database position i and the value to be read at that position vr, and commit-

ments and openings to both values (comi, openi, comr, openr) as input to

FCD via cd.read. If [i, vr] is a valid entry in the database,FCD veri�es both

commitments and sends them to S . These commitments are then passed as

output to V .

3. The write interface cd.write allowsP to perform a write operation.P sends

a database position i and the value to be written to that position vw, and

commitments and openings to both values (comi, openi, comw, openw)
as input to FCD via cd.write. FCD veri�es both commitments and sends

them to S , after updating the value stored at position iw with vw in Tblcd.

The commitments are then passed as output to V .

4.4 construction

ΠCD uses a hiding vector commitment (VC) scheme (see Section 2.7.1). A vector

commitment vc is used to store the database Tblcd. A position in the vector com-
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mitment acts as a position in Tblcd, and the value committed to in that position

acts as the value stored in Tblcd in that position.

Figure 4.2: Construction ΠCD

ΠCD uses a hiding vector commitment scheme and the ideal functionalities

FVC.Setup
CRS ,FAUT,FRr

ZK andFRw
ZK . The database size Nmax is the maximum

length of a committed vector, and the universe of values Uv is given by the

message space of the VC scheme.

1. On input (cd.setup.ini, sid ,Tblcd), V andP do the following:

• V uses the crs.get interface of FVC.Setup
CRS to obtain the VC

parameters par .

• V initializes a counter cv ← 0 that counts the write operations

received.

• V stores Tblcd in a vector x: for i = 1 to Nmax , x[i] = v,

where [i, v] ∈ Tblcd.

• V commits to x: set r ← 0 and run vc ← VC.Commit(par ,
x, r).

• V stores (sid , cv , par , vc).

• V uses the aut.send interface ofFAUT to send Tblcd toP .

• P follows the same steps as V to get par , set x and compute

vc.

• P initializes a counter cp ← 0 that counts write operations

started.

• P stores (sid , cp, par , vc,x, r).

• P outputs (cd.setup.end, sid ,Tblcd).

2. On input (cd.read.ini, sid , comi, i , openi, comr, vr, openr), P
and V do the following:

• P parses comi as (com ′i, parcomi,COM.Verifyi).

• P parses comr as (com ′r, parcomr,COM.Verifyr).

• P takes the stored tuple (sid , cp, par , vc,x, r).

• If (sid , i ,w) is not stored, P computes a VC witness w for

position i : run w ← VC.Prove(par , i ,x, r) and store (sid ,
i ,w).

• P sets witr ← (w , i , openi, vr, openr).

• P sets insr ← (par , vc, parcomi, com ′i, parcomr, com ′r,
cp).
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Rr is

Rr = {(witr, insr) :
1 = COM.Verifyi(parcomi, com ′i, i , openi)∧ (4.1)

1 = COM.Verifyr(parcomr, com ′r, vr, openr) ∧ (4.2)

1 = VC.Verify(par , vc, vr, i ,w)} (4.3)

In equation 4.1, P proves that com ′i is a commitment to i with opening openi.
Similarly, in equation 4.2,P proves that com ′r is a commitment to vr with opening

openr. In equation 4.3, P proves that vr is stored in the position i of the vector

commitment vc.

• P uses the zk.prove interface to send witr and insr toFRr
ZK.

• V receives insr = (par ′, vc′, parcomi, com ′i, parcomr,
com ′r, cp).

• V takes the stored tuple (sid , cv , par , vc).

• V aborts if cp 6= cv , or if par ′ 6= par , or if vc′ 6= vc.

• V sets comi ← (com ′i, parcomi,COM.Verifyi).

• V sets comr ← (com ′r, parcomr,COM.Verifyr).

• V outputs (cd.read.end, sid , comi, comr).

3. On input (cd.write.ini, sid , comi, i , openi, comw, vw, openw),

P and V do the following:

• P takes the stored tuple (sid , cp, par , vc,x, r).

• P parses comi as (com ′i, parcomi,COM.Verifyi).

• P parses comw as (com ′w, parcomw,COM.Verifyw).

• If (sid , i ,w) is not stored, P computes a VC witness w for

position i : run w ← VC.Prove(par , i ,x, r) and store (sid ,
i ,w).

• P updates the vector commitment vc to vc′: pick random

r′ ← R and run vc′ ← VC.ComUpd(par , vc, i , vr, r, vw,
r′), where vr ← x[i ].

• P increments the counter of write operations started cp′ ←
cp + 1.

• P sets witw ← (w , i , openi, vr, vw, openw, r, r′).

• P sets insw ← (par , vc, vc′, parcomi, com ′i, parcomw,
com ′w, cp ′).

• P updates the vector x to x′: set x′ ← x and x′[i ]← vw.

• P updates the stored tuple to (sid , cp′, par , vc′,x′, r′).

• P updates the stored witnesses: for j = 1 to Nmax , if (sid , j,
w) is stored, run w ′ ← VC.WitUpd(par ,w , j, i , x, r, x′, r′)
and update to (sid , j,w ′).
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Rw is

Rw = {(witw, insw) :
1 = COM.Verifyi(parcomi, com ′i, i , openi)∧ (4.4)

1 = COM.Verifyw(parcomw, com ′w, vw, openw)∧ (4.5)

1 = VC.VerComUpd(par , vc, vc′,w , i , vr, r, vw, r′)} (4.6)

In equation 4.4 and equation 4.5, the prover proves that com ′i and com ′w are

commitments to i and vw respectively. In equation 4.6, the prover proves that vr
is stored in the position i in the vector commitment vc, and that vc′ is a vector

commitment that stores the same values as vc, except that it stores vw in the position

i and that its random value is r′ instead of r.

• P uses the zk.prove interface to send witw and insw toFRw
ZK .

• V gets insw = ( ˆpar , v̂c, vc′, parcomi, com ′i, parcomw, com ′w,
cp).

• V takes the stored tuple (sid , cv , par , vc).

• V aborts if cp 6= cv + 1, or if ˆpar 6= par , or if v̂c 6= vc.

• V sets cv ′ ← cv + 1 and updates the stored tuple to (sid , cv ′, par ,
vc′).

• V sets comi ← (com ′i, parcomi,COM.Verifyi).

• V sets comw ← (com ′w, parcomw,COM.Verifyw).

• V outputs (cd.write.end, sid , comi, comw).

1. In the setup interface cd.setup,P and V use the functionalityFCRS.Setup
CRS

to generate parameters for the VC scheme par . V receives as input a table

Tblcd and computes a commitment vc to Tblcd with 0 randomness. V then

sets up a counter cv and sends a copy of the initial state of Tblcd to P via

the functionalityFAUT.P sets up a counter cp, and both parties generate a

vector commitment vc to Tblcd (with randomness set to 0).

2. In the read interface cd.read,P receives a position i and the value stored at

that position in Tblcd vr with commitments and openings (comi, openi)
and (comr, openr) to i and to valr respectively, as input.P uses the ideal

functionalityFRr
ZK to prove to V that comi and comr commit to i and vri

such that vr is the message committed at position i in the commitment vc.

This proves that [i, vr] ∈ Tblcd.

3. In the write interface cd.write,P receives a position i and the value to be writ-

ten to this position in Tblcd, vw, with commitments and openings (comi,
openi) and (comw, openw) to i and to vw respectively, as input.P updates

the commitment vc to a commitment vc′ that commits to vw at position i,
while all other entries remain unchanged.P uses the functionalityFRw

ZK to

prove to V that comi and comw commit to i and to vw, and that vc′ is an
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update of vc where vw is committed to, at position i in Tblcd. We note that

vc′ contains randomness chosen byP and thus, after the �rst execution of

the write interface, the committed table will be hidden from V .

4.5 security analysis

Theorem 4.5.1 ΠCD securely realizesFCD in theFVC.Setup
CRS ,FAUT,FRr

ZK
andFRw

ZK -hybrid model if the VC scheme is hiding and binding.

The proof of Theorem 4.5.1 is described in [21].

4.6 instantiation and efficiency analysis

We refer the reader to [21] for instantiation details and a discussion on computational

costs.

4.7 variants

• The setup interface cd.setup may be modi�ed to allow P to initialize a

database instead of V .

• The read and write interfaces cd.read and cd.write may be modi�ed to allow

P to read and write multiple database entries simultaneously, by receiving tu-

ples of the form (i, vi, comi, openi , comr ,i , openr ,i)∀i∈S (S ⊆ [1,Nmax ])
as input. This would allowP to read and write more than one database entry

at a time whilst reducing communication rounds.

• The database Tblcd may be modi�ed to contain entries of the form [i, vi,1,
. . . , vi,m], i.e., a database where a tuple of values is stored in each entry. In the

cd.write and cd.read interfaces,P sends (i, vi,1, . . . , vi,m) toFCD, along

with commitments and openings to the position and values of the entry

read or written. The position j ∈ [1,m] of each value read or written is not

hidden from V . This variant ofFCD is useful for protocols where a party

needs to read a tuple of values and prove that they are stored in the same

entry and that each value is stored at a certain position j within the entry.
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Joint work with Alfredo Rial. This primitive was described in a public deliverable
submitted to the FNR. [36].

FUCD runs between multiple proversPk and a veri�erV , and holds one database

per prover DB consisting of entries of the form [i, vi,1, . . . , vi,L], where i ranges

from 0 to N . The initial values of DB are known to all parties.FUCD also allows

provers to use a pseudonym to identify themselves, allowing for unlinkability be-

tween database operations. i represents a position whilst (vi,1, . . . , vi,L) represents

the values stored at that position in DB.

5.1 operations

write. During a write operation, Pk updates an entry in its database, whilst

hiding the entry being written to and its position from V .

read. During a read operation,Pk proves knowledge of an entry in its database,

whilst hiding the entry being read and its position from V .

5.2 security properties

unlinkability. Pk uses a unique pseudonym Y to identify itself towards

FUCD whilst interacting with the ucd.read and ucd.write interfaces;this

allows for unlinkability of operations.

zero-knowledge. WheneverPk performs a read or a write operation against

the database, the values and their positions are hidden from V . V receives

hiding commitments to these positions and their values, but the hiding

property ensures that V does not learn this information.

binding. Pk may only read entries that have been written to the database.

5.3 ideal functionality

Figure 5.1: Ideal FunctionalityFUCD

FUCD is parameterized by a database size N , an entry size L, an initial

database DB′, a universe of pseudonyms Uy , and a universe of values Uv .

1. On input (ucd.read.ini, sid ,Y , (i, comi , openi , 〈vi,j , comi,j ,
openi,j〉∀j∈[1,L])) fromPk:

• Abort if sid /∈ (V, sid ′), or if Y /∈ Uy .
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• Abort if there is a tuple (sid ,Y ′,P ′k, flag) stored such that

Y ′ = Y andP ′k 6= Pk, or such thatP ′k = Pk and flag 6= 1.

• If a tuple (sid ,Pk,DB) is not stored, set setup ← 1, take

the initial database DB′ and store (sid ,Pk,DB′). Else, set

setup← 0.

• Abort if [i, vi,1, . . . , vi,L] /∈ DB.

• Parse the commitment comi as (com ′i , parcom,
COM.Verify).

• Abort if 1 6= COM.Verify(parcom, com ′i , i, openi).

• For all j ∈ [1,L]:

– Parse the commitment comi,j as (com ′i,j , parcom,
COM.Verify).

– Abort if 1 6= COM.Verify(parcom, com ′i,j , vi,j ,
openi,j).

• Set flag← 0 and store (sid ,Y ,Pk, flag).

• Create a fresh qid and store (qid ,Y , setup, (comi ,
〈comi,j〉∀j∈[1,L])).

• Send (ucd.read.sim, sid , qid , (comi , 〈comi,j〉∀j∈[1,L])) to

S .

S. On input (ucd.read.rep, sid , qid) from S :

• Abort if (qid ′,Y , setup, (comi , 〈comi,j〉∀j∈[1,L])) such

that qid = qid ′ is not stored.

• Delete the tuple (qid ′,Y , setup, (comi , 〈comi,j〉∀j∈[1,L])).

• Send (ucd.read.end, sid ,Y , setup, (comi ,
〈comi,j〉∀j∈[1,L])) to V .

2. On input (ucd.write.ini, sid ,Y , (i, comi , openi , 〈vi,j , comi,j ,
openi,j〉∀j∈[1,L])) fromPk:

• Abort if sid /∈ (V, sid ′), or if Y /∈ Uy .

• Abort if there is a tuple (sid ,Y ′,P ′k, flag) stored such that

Y ′ = Y andP ′k 6= Pk, or such thatP ′k = Pk and flag 6= 1.

• If a tuple (sid ,Pk,DB) is not stored, set setup ← 1, take

the initial database DB′ and store (sid ,Pk,DB′). Else, set

setup← 0.

• Abort if i /∈ [1,N ], or if, for j = 1 to L, vi,j /∈ Uv .

• Parse the commitment comi as (com ′i , parcom,
COM.Verify).

• Abort if 1 6= COM.Verify(parcom, com ′i , i, openi).

• For all j ∈ [1,L]:
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– Parse the commitment comi,j as (com ′i,j , parcom,
COM.Verify).

– Abort if 1 6= COM.Verify(parcom, com ′i,j , vi,j ,
openi,j).

• Set flag← 0 and store (sid ,Y ,Pk, flag).

• Write [vi,1, . . . , vi,L] into the entry i inDB stored in (sid ,Pk,
DB).

• Create a fresh qid and store (qid ,Y , setup, (comi ,
〈comi,j〉∀j∈[1,L])).

• Send (ucd.write.sim, sid , qid , (comi , 〈comi,j〉∀j∈[1,L])) to

S .

S. On input (ucd.write.rep, sid , qid) from S :

• Abort if (qid ′,Y , setup, (comi , 〈comi,j〉∀j∈[1,L])) such

that qid = qid ′ is not stored.

• Delete the tuple (qid ′,Y , setup, (comi , 〈comi,j〉∀j∈[1,L])).

• Send (ucd.write.end, sid ,Y , setup, (comi ,
〈comi,j〉∀j∈[1,L])) to V .

3. On input (ucd.accept.ini, sid ,Y ) from V :

• Abort if a tuple (sid ,Y ′,Pk, flag) such that Y ′ = Y and

flag = 0 is not stored.

• Update flag← 1 in the tuple (sid ,Y ′,Pk, flag) with Y ′ =
Y .

• Create a fresh qid and store (qid ,Pk,Y ).

• Send (ucd.accept.sim, sid , qid) to S .

S. On input (ucd.accept.rep, sid , qid) from S :

• Abort if a tuple (qid ′,Pk,Y ) such that qid = qid ′ is not

stored.

• Delete the record (qid ′,Pk,Y ) such that qid = qid ′.
• Send (ucd.accept.end, sid ,Y ) toPk.

FUCD features three interfaces:

1. The read interface ucd.read allows Pk to perform a read operation. Pk
sends a database entry (i, 〈vi,j〉∀j∈[1,L]), and commitments and openings

to the database position i and the values in the entry (comi , openi) and

(〈comi,j , openi,j〉∀j∈[1,L]) respectively, as input toFUCD via ucd.read. If

(i, 〈vi,j〉∀j∈[1,L]) is a valid entry in the database, FCD veri�es all commit-

ments and sends them to S . These commitments are then passed as output

to V .Pk also uses a pseudonym Y to identify itself towardsFUCD.
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2. The write interface ucd.write allowsPk to perform a write operation.Pk
sends a database entry (i, 〈vi,j〉∀j∈[1,L]), and commitments and openings

to the database position i and the values in the entry (comi , openi) and

(〈comi,j , openi,j〉∀j∈[1,L]) respectively, as input to FUCD via ucd.read.

FUCD veri�es all commitments and sends them to S , after updating the

value stored at position i with the new database entry in DB. The com-

mitments are then passed as output to V .Pk also uses a pseudonym Y to

identify itself towardsFUCD.

3. The accept interface ucd.accept allows V to notify Pk, identi�ed by a

pseudonym Y , of the fact that a read or a write operation has been registered

successfully, and of that fact that FUCD is now ready to receive another

operation. Hence, every read or write operation must be followed by the

execution of the ucd.accept interface.

The setup phase has been incorporated into the read and the write interfaces: when

Pk executes one of these interfaces for the �rst time, the value of the variable setup
is set to 1.FUCD is also parameterized by an initial database DB. This allows V to

ensure that all parties are using the right initial database.

5.4 variants

• The read and write interfaces ucd.read and ucd.write may be modi�ed to

allowPk to read and write multiple database entries simultaneously, by receiv-

ing tuples of the form (i, comi , openi , 〈vi,j , comi,j , openi,j〉∀j∈[1,L])∀i∈S
(S ⊆ [1,N ]) as input. This would allow Pk to read and write more than

one database entry at a time whilst reducing communication rounds.



6NON- INTERACT IVE COMMITTED DATABASES

Joint work with Alfredo Rial. This primitive was described in a public deliverable
submitted to the FNR. [36].

A Non-Interactive Committed Database allows a proverP to maintain databases

Tblct consisting of entries of the form [i, v], where i ranges from 0 to Nmax and ct
represents the number of times the database has been written to, and interact with

multiple veri�ers V .P may then perform read operations, which involve proving

knowledge of a position and its associated value inTblct , or write operations, where

P proves that an entry in Tblct−1 has been updated to produce Tblct . i represents

a position whilst v represents the value stored at that position in Tblct .

6.1 operations

write. During a write operation,P updates an entry in the most recent version

of a database to produce a new one, whilst hiding the entry being written to

and its position from V .

read. During a read operation,P proves knowledge of an entry in the database,

whilst hiding the entry being read and its position from V .

6.2 security properties

zero-knowledge. WheneverP performs a read or a write operation against

a database, the values and their positions are hidden fromV .V receives hiding

commitments to these positions and their values, but the hiding property

ensures that V does not learn this information. The proofs computed by

the algorithm NICD.SimProve do not receive as input the position i or

the value v1 of the database entry read, and thus they do not contain any

information on [i , v1].

binding. P may only read entries that have been written to the database.

consistency. All the veri�ers verify read and write operations with respect to

the same database, i.e., after ct write operations, the prover cannot produce

di�erent versions Tblct and Tbl′ct of the database for di�erent veri�ers.

6.3 ideal functionality

The interaction between the functionalityFNICD, the proverP and the veri�ers V
takes place through the following interfaces:

1. The prover P and the veri�ers V use the nicd.setup interface to obtain

parameters.

51
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2. The proverP uses the nicd.write interface to prove that two commitments

com and com2 commit to a position i and to a value v2 such that the entry

for position i in Tblct−1 is updated to contain v2 in Tblct . Tblct−1 is the

last database stored byFNICD before Tblct , i.e., the prover can only modify

the last version of the database.

3. A veri�er V uses the nicd.writevf interface to verify that, on input a counter

value ct , two commitments com and com2 commit to the position and the

value that were updated in Tblct with respect to Tblct−1.

4. The prover P uses the nicd.read interface to obtain a proof π that two

commitments com and com1 commit to a position i and to a value v1 such

that there exists an entry [i , v1] in a table Tblct .

5. A veri�er V uses the nicd.readvf interface to verify a proof π on input a

counter value ct and two commitments com and com1 to a position and a

value.

FNICD uses a table Tblr. Tblr consists of entries of the form [com, com1, π,
ct , u], where π is a proof, ct is a counter value, and u is a bit that indicates whether

π is a valid proof that the commitments com and com1 commit to a position i
and to a value v1 such that there exists an entry [i , v1] in Tblct .

FNICD uses a set S that contains all the parties that have obtained parameters.

Additionally,FNICD uses sets Sct that contain all the veri�ers that have veri�ed a

write operation for commitments com and com2 and counter value ct . We depict

FNICD below.

Figure 6.1: Ideal FunctionalityFNICD

NICD.SimProve and NICD.Extract are ppt algorithms.FNICD is param-

eterized by a universe of values Uv and by a database size Nmax . FNICD
interacts with a proverP and veri�ers V .

1. On input (nicd.setup.ini, sid) from any party T :

• Abort if sid 6= (P, sid ′), where sid is the identi�er of the

prover.

• Generate a random qid and store (qid , T ).

• If (sid , par , td ,NICD.SimProve,NICD.Extract) is not

stored, send (nicd.setup.req, sid , qid , T ) to S , else send

(nicd.setup.sim, sid , qid , T ) to S .

S. On input (nicd.setup.alg, sid , qid , par , td ,NICD.SimProve,
NICD.Extract) from S :

• Abort if (qid , T ) is not stored.

• If (sid , par , td ,NICD.SimProve,NICD.Extract) is not

stored, do the following.

– Store (sid , par , td ,NICD.SimProve,NICD.Extract).

– Create an empty table Tblr.
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– Set ct ← 0, create a tableTblct with entries [i ,⊥] for i =
1 to Nmax , create a set Sct that contains all the identities

of veri�ers, set infoct ← ⊥, com ← ⊥ and com2 ← ⊥,

and store (sid , ct ,Tblct ,Sct , infoct , com, com2).

– Create an empty set S.

• Set S← S ∪ T .

• Delete (qid , T ).

• Send (nicd.setup.end, sid , par) to T .

S. On input (nicd.setup.rep, sid , qid) from S :

• Abort if (qid , T ) is not stored or if (sid , par , td ,
NICD.SimProve,NICD.Extract) is not stored.

• Set S← S ∪ T .

• Delete (qid , T ).

• Send (nicd.setup.end, sid , par) to T .

2. On input (nicd.write.ini, sid , com, i , open, com2, v2, open2)
from the proverP :

• Abort ifP /∈ S, or if i /∈ [1,Nmax ], or if v2 /∈ Uv .

• Parse the commitment com as (com ′, parcom,COM.Verify)
and the commitment com2 as (com ′2, parcom2,
COM.Verify2).

• Abort if parcom 6= parcom2, or if COM.Verify 6=
COM.Verify2, or if COM.Verify is not a ppt algorithm.

• Abort if 1 6= COM.Verify(parcom, com ′, i , open).

• Abort if 1 6= COM.Verify(parcom, com ′2, v2, open2).

• Take the stored tuple (sid , ct ,Tblct , Sct , infoct , com,
com2) with the highest value of ct .

• Abort if there is a tuple (sid , ct ′, com, i , com2, v2) such that

ct ′ = ct + 1.

• Set ct ′ ← ct + 1 and store (sid , ct ′, com, i , com2, v2).

• Send (nicd.write.sim, sid , ct ′, com, com2) to S .

S. On input (nicd.write.rep, sid , ct , infoct) from S :

• Abort if (sid , ct ′, com, i , com2, v2) such that ct = ct ′ is

not stored or if (sid , ct ,Tblct , Sct , infoct , com, com2) is al-

ready stored.

• Set Tblct ← Tblct−1, write [i , v2] into Tblct , set Sct ← ∅
and store (sid , ct ,Tblct ,Sct , infoct , com, com2).

• Send (nicd.write.end, sid , ct) toP .

3. On input (nicd.writevf.ini, sid , ct , com, com2) from V :
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• Abort if V /∈ S or if V /∈ Sct−1.

• If (sid , ct ′,Tblct ,Sct , infoct , com ′, com ′2) such that ct ′ =
ct is not stored, set v ← ⊥. Else, if com ← com ′ and

com2 ← com ′2, set v ← 1, else set v ← 0.

• Generate random qid and store (qid , ct ,V, v).

• Send (nicd.writevf.sim, sid , qid , ct) to S .

S. On input (nicd.writevf.rep, sid , qid) from S :

• Abort if (qid , ct ,V, v) is not stored.

• If v = 1, include V in the set Sct stored in the tuple (sid , ct ,
Tblct ,Sct , infoct , com, com2).

• Delete record (qid , ct ,V, v).

• Send (nicd.writevf.end, sid , ct , v) to V .

4. On input (nicd.read.ini, sid , ct , com, i , open, com1, v1, open1)
from the proverP :

• Abort if P /∈ S or if (sid , ct ′,Tblct , Sct , infoct , ¯com,
¯com2) such that ct = ct ′ is not stored.

• Abort if i /∈ [1,Nmax ], or if v1 /∈ Uv , or if [i , v1] is not stored

in Tblct .

• Parse the commitment com as (com ′, parcom,COM.Verify)
and the commitment com1 as (com ′1, parcom1,
COM.Verify1).

• Abort if parcom 6= parcom1, or if COM.Verify 6=
COM.Verify1, or if COM.Verify is not a ppt algorithm.

• Abort if 1 6= COM.Verify(parcom, com ′, i , open).

• Abort if 1 6= COM.Verify(parcom, com ′1, v1, open1).

• Run π ← NICD.SimProve(sid , par , td , parcom, com ′,
com ′1, infoct , ct).

• Append [com, com1, π, ct , u] to Table Tblr.

• Send (nicd.read.end, sid , π) toP .

5. On input (nicd.readvf.ini, sid , com, com1, ct , π) from a veri�er

V :

• Abort if (sid , ct ′,Tblct ,Sct , infoct , ¯com, ¯com2) is not

stored or if V /∈ Sct .

• If there is an entry [com, com1, π, ct , u] in Tblr, set v ← u.

• Else, do the following:

– Parse the commitment com as (com ′, parcom,
COM.Verify) and the commitment com1 as (com ′1,
parcom1,COM.Verify1).
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– Extract (i , v1) ← NICD.Extract(sid , par , td , π,
parcom, com ′, com ′1, infoct , ct).

– If [i , v1] /∈ Tblct , set v ← 0, else set v ← 1.

– Append [com, com1, π, ct , v] to Tblr.

• Send (nicd.readvf.end, sid , v) to V .

For the interfaces nicd.read and nicd.readvf ,FNICD follows the same approach

used in FR
NIZK in Section 2.8.9. FNICD runs algorithms NICD.SimProve and

NICD.Extract in order to compute read proofs and extract from read proofs.

However, for interfaces nicd.write and nicd.writevf ,FNICD follows a di�erent

approach. In the nicd.write interface,FNICD receives as input two commitments

com and com2 along with a position and a value and the corresponding commit-

ment openings from the prover. FNICD creates Tblct by updating Tblct−1 and

stores com and com2. In the nicd.writevf interface, FNICD receives two com-

mitments com ′ and com ′2, and if com = com ′ and com2 = com ′2, it informs

FNICD that those commitments commit to the position and value written by the

prover.

In both nicd.write and nicd.writevf ,FNICD communicates with the simulator.

Therefore, although the functionality does not imply communication between

prover and veri�ers, the computation and veri�cation of proofs is not a local process.

In interface nicd.write, the simulator inputs database information infoct . In the

security proof for our construction forFNICD, infoct is the vector commitment

that commits to the database.FNICD needs infoct to give it as input to algorithms

NICD.SimProve and NICD.Extract as part of the instance of proofs.

There are two reasons why we chose this approach for nicd.write and nicd.writevf:

• FNICD must ensure that all the veri�ers have the same version of the database,

i.e., the prover should not be allowed to evolve the database di�erently for

each of the veri�ers. To ensure that all veri�ers have the same database, in the

nicd.write or nicd.writevf interfaces, any construction forFNICD must im-

plement a mechanism that allows veri�ers to check that they share a common

version of the database. In our construction, this implies checking that the

same vector commitment is used to verify write proofs. This mechanism in-

evitably implies that the veri�cation of write proofs cannot be a local process.

For example, veri�ers could communicate with each other, or they could

retrieve the vector commitment from a trusted registration functionality,

which is the approach taken in our construction. Because the process is not

local,FNICD needs to inform the simulator so thatFNICD is realizable.

• It would be possible to designFNICD in such a way thatFNICD allows the

prover to compute several write proofs for the same write operation, each

proof for a di�erent commitment pair com and com2. However, in practice

this does not provide any extra functionality or property. We remark that

each write operation modi�es a single position in the table, and that thus the

di�erent commitment pairs com and com2 would have to commit to the

same position and values. Additionally, giving di�erent commitments com
and com2 to each veri�er does not provide any unlinkability between prover
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and veri�er because, to achieve unlinkability, a number of other changes

would be required.

6.4 construction

We propose a construction ΠNICD forFNICD. ΠNICD uses a hiding vector com-

mitment scheme (see Section 2.7.1). It uses the functionalityFCRS.Setup
CRS for a com-

mon reference string (see Section 2.8.1), which is parameterized by the setup algo-

rithm VC.Setup = CRS.Setup of the vector commitment scheme. VC.Setup
outputs the parameters par . It also uses the registration functionalityFREG (see

Section 2.8.2).

A vector commitment vc is used to store the database. A position in the vector

commitment acts as a position in the database, and the value committed to in that

position acts as the value stored in the database in that position. To compute a

read proof and a write proof, the prover uses the functionalitiesFRr
NIZK andFRw

NIZK
respectively (see Section 2.8.9). The relation Rr is de�ned as follows.

Rr ={(witr, insr) :
1 = COM.Verify(parcom, com, i , open)∧ (6.1)

1 = COM.Verify(parcom, com1, v1, open1)∧ (6.2)

1 = VC.Verify(par , vc, v1, i ,w)} (6.3)

where the witness witr is (w , i , open, v1, open1) and the instance insr is (par ,
vc, parcom, com, com1, ct). The counter ct counts the number of write proofs

sent by the prover. In equation 6.1, the prover proves that com is a commitment to

i with opening open . Similarly, in equation 6.2, the prover proves that com1 is a

commitment to v1 with opening open1. In equation 6.3, the prover proves that

the value v1 is stored in the position i of the vector commitment vc.

The relation Rw is de�ned as follows.

Rw ={(witw, insw) :
1 = COM.Verify(parcom, com, i , open)∧ (6.4)

1 = COM.Verify(parcom, com2, v2, open2)∧ (6.5)

1 = VC.VerComUpd(par , vc, vc′,w , i , v1, r, v2, r
′)} (6.6)

where the witness witw is (w , i , open, v1, v2, open2, r, r
′) and the instance insw

is (par , vc, vc′, parcom, com, com2, ct). In equation 6.4 and equation 6.5, the

prover proves that com and com2 are commitments to i and v2 respectively. In

equation 6.6, the prover proves that v1 is stored in the position i in the vector

commitment vc, and that vc′ is a vector commitment that stores the same values as

vc, except that it stores v2 in the position i and that its random value is r′ instead

of r.

We recall that the sizes of a vector commitment vc and of a witness w are inde-

pendent of the length of the vector. Therefore, there exist e�cient zero-knowledge

protocols that realizeFRr
NIZK andFRw

NIZK whose communication complexity does

not depend on the length of the vector. We depict ΠNICD below.

description of ΠNICD . ΠNICD uses a hiding vector commitment scheme

and the ideal functionalitiesFVC.Setup
CRS ,FREG,FRr

NIZK andFRw
NIZK. The constant
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Nmax denotes the size of the database, and the universe of state values Uv is given

by the message space of the vector commitment scheme.

Figure 6.2: Construction ΠNICD

1. On input (nicd.setup.ini, sid), a party T does the following:

• If par is not stored, T does the following:

– T sends (crs.get.ini, sid) to FVC.Setup
CRS and re-

ceives (crs.get.end, sid , par) from the function-

ality FVC.Setup
CRS . To compute par , FVC.Setup

CRS runs

VC.Setup(1k,Nmax ).

– T sends (nizk.setup.ini, sid) to FRr
NIZK and receives

(nizk.setup.end, sid , par r) fromFRr
NIZK.

– T sends (nizk.setup.ini, sid) to FRw
NIZK and receives

(nizk.setup.end, sid , parw) fromFRw
NIZK.

• T sets par ← (par , par r, parw), stores par and outputs

(nicd.setup.end, sid , par).

2. On input (nicd.write.ini, sid , com, i , open, com2, v2, open2),

the proverP does the following:

• P aborts if par is not stored.

• P aborts if i /∈ [1,Nmax ], or if v2 /∈ Uv .

• P parses the commitments com as (com ′, parcom,
COM.Verify) and com2 as (com ′2, parcom2,
COM.Verify2).

• P aborts if parcom 6= parcom2, or if COM.Verify 6=
COM.Verify2, or if COM.Verify is not a ppt algorithm.

• P aborts if 1 6= COM.Verify(parcom, com ′, i , open).

• P aborts if 1 6= COM.Verify(parcom, com ′2, v2, open2).

• If there is no tuple (0, vc,x, r) stored,P initializes a counter

ct ← 0 and a vector x such that x[i ] = ⊥ for i = 1 to Nmax .

P sets r ← 0 and runs vc ← VC.Commit(par ,x, r). (The

symbol⊥ represents that no value is committed at a speci�c

position and its actual value depends on the concrete imple-

mentation of the VC scheme.)P stores (ct , vc,x, r).

• P takes the tuple (ct , vc,x, r) with the highest value of ct .

• P picks random r′ ← R and runs vc′ ← VC.ComUpd(par ,
vc, i , v1, r, v2, r

′), where v1 ← x[i ].
• P runs w ← VC.Prove(par , i ,x, r).

• P sets witw ← (w , i , open, v1, v2, open2, r, r
′), where

v1 ← x[i ].
• P sets insw ← (par , vc, vc′, parcom, com ′, com ′2, ct + 1).
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• P sends (nizk.prove.ini, sid ,witw, insw) to FRw
NIZK and re-

ceives (nizk.prove.end, sid , πw ) fromFRw
NIZK.

• P sets ct ′ ← ct + 1, sets sidREG ← (sid , ct ′), sends

(reg.register.ini, sidREG, 〈vc′, com, com2, πw 〉) to FREG
and receives (reg.register.end, sidREG) fromFREG.

• P sets x′ ← x and x′[i ]← v2.

• P stores (ct ′, vc′,x′, r′).

• Send (nicd.write.end, sid , ct ′) toP .

3. On input (nicd.writevf.ini, sid , ct , com, com2), a veri�er V does

the following:

• V aborts if par is not stored.

• If there is no tuple (0, vc) stored, V initializes a counter ct ←
0 and a vector x such that x[i ] = ⊥ for i = 1 to Nmax .V sets

r ← 0 and runs vc ← VC.Commit(par ,x, r). (The symbol

⊥ represents that no value is committed at a speci�c position

and its actual value depends on the concrete implementation

of the vector commitment scheme.) V stores (ct , vc).

• Abort if (ct − 1, vc) is not stored.

• V sets sidREG ← (sid , ct), sends (reg.retrieve.ini, sidREG)
toFREG and receives the message (reg.retrieve.end, sidREG,
v ′) fromFREG.

• If v ′ 6= ⊥, V sets 〈vc′, ¯com, ¯com2, πw 〉 ← v ′, else sets v ←
⊥ and outputs the message (nicd.writevf.end, sid , ct , v).

• If com 6= ¯com or if com2 6= ¯com2, V sets v ← 0 and

outputs (nicd.writevf.end, sid , ct , v).

• V parses the commitments com as (com ′, parcom,
COM.Verify) and com2 as (com ′2, parcom2,
COM.Verify2).

• V sets insw ← (par , vc, vc′, parcom, com ′, com ′2, ct).

• V sends (nizk.verify.ini, sid , insw, πw ) to FRw
NIZK and re-

ceives (nizk.verify.end, sid , v) fromFRw
NIZK.

• If v = 1, V stores (ct , vc′).

• V outputs (nicd.writevf.end, sid , v).

4. On input (nicd.read.ini, sid , ct , com, i , open, com1, v1, open1),

the proverP does the following:

• P aborts if par is not stored, or if (ct ′, vc,x, r) such that ct
= ct ′ is not stored.

• P aborts if i /∈ [1,Nmax ], or if v1 /∈ Uv , or if x[i ] 6= v1.
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• P parses the commitments com as (com ′, parcom,
COM.Verify) and com1 as (com ′1, parcom1,
COM.Verify1).

• P aborts if parcom 6= parcom1, or if COM.Verify 6=
COM.Verify1, or if COM.Verify is not a ppt algorithm.

• P aborts if 1 6= COM.Verify(parcom, com ′, i , open).

• P aborts if 1 6= COM.Verify(parcom, com ′1, v1, open1).

• P runs w ← VC.Prove(par , i ,x, r).

• P sets witr ← (w , i , open, v1, open1).

• P sets insr ← (par , vc, parcom, com ′, com ′1, ct).

• P sends (nizk.prove.ini, sid ,witr, insr) to FRr
NIZK and re-

ceives (nizk.prove.end, sid , π) fromFRr
NIZK.

• P outputs (nicd.read.end, sid , π).

5. On input (nicd.readvf.ini, sid , com, com1, ct , π), a veri�er V
does the following:

• V aborts if par is not stored or if (ct ′, vc) such that ct = ct ′
is not stored.

• V parses the commitments com as (com ′, parcom,
COM.Verify) and com1 as (com ′1, parcom1,
COM.Verify1).

• V sets insr ← (par , vc, parcom, com ′, com ′1, ct).

• V sends (nizk.verify.ini, sid , insr, π) toFRr
NIZK and receives

(nizk.verify.end, sid , v) fromFRr
NIZK.

• V outputs (nicd.readvf.end, sid , v).

6.5 security analysis

Theorem 6.5.1 ΠNICD securely realizes FNICD in the FVC.Setup
CRS , FREG,

FRr
ZK andFRw

ZK -hybrid model if the VC scheme is hiding and binding.

The proof of Theorem 6.5.1 is described in Section A.1.

6.6 variants

• The read and write operations ofFNICD can be modi�ed to allowP to read

several database entries simultaneously. To this end, the nicd.read interface

is modi�ed so that the prover inputs a tuple (comi, i , openi, comi,1, vi,1,
openi,1)∀i∈S (S ⊆ [1,Nmax ]) of database entries to be read. The algorithm

NICD.SimProve receives as input the tuple (comi, comi,1)∀i∈S of com-

mitments. The nicd.readvf is modi�ed so that the veri�er inputs the tuples



60 non-interactive committed databases

(comi, comi,1)∀i∈S, and algorithm NICD.Extract also receives those tuples

as input. For the write operation, the nicd.write interface is modi�ed so that

the prover sends a tuple (comi, i , openi, comi,2, vi,2, openi,2)∀i∈S. The

nicd.writevf interface is modi�ed so that the veri�er sends a tuple (comi,
comi,2)∀i∈S.

• FNICD can be modi�ed to store a databaseTblct of the form [i, vi,1, . . . , vi,m],
i.e., a database where a tuple of values is stored in each entry. In the read

and write operations, the prover and the veri�ers would include commit-

ments and openings to each of the values in a database entry. The position

j ∈ [1,m] of each value read or written is not hidden from V . This variant

ofFNICD is useful for protocols where a party needs to read a tuple of values

and prove that they are stored in the same entry and that each value is stored

at a certain position j within the entry.
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Joint work with Alfredo Rial. This primitive was published in a paper presented at
the Privacy Enhancing Technologies Symposium in 2021 [41]. The primitive finds use
as a building block in the protocol described in Chapter 13.

An Unlinkable Updatable Hiding Database is a protocol between an updater U
and multiple readersRk. A UUHD consists of an update phase and a read phase.

In an update phase, U updates the database stored by a readerRk identi�ed by a

pseudonym P . We consider a simple database DB with entries of the form [i, vri ],
where i is the position and vri the value stored at position i. U does not learn the

contents of DB and cannot link it to previous updates. However, U is ensured that

he is updating the last version of DB given toRk. In the read phase,Rk commits

to some data from the database and proves to U that it is stored in DB. Later,Rk
can use these commitments to prove in zero-knowledge other statements about the

data in DB.

7.1 operations

update. During an update operation, U updates an entry in the last version of

a database DB stored byRk, whilst the contents of DB and the identity of

Rk remain hidden from U .

read. During a read operation,Rk proves knowledge of an entry in the database,

whilst hiding the entry being read and its position from U .

7.2 security properties

unlinkability. The read operations remain unlinkable towardsU . The func-

tionalityFUUHD reveals to U a pseudonym P rather than the identi�erRk,

andFUUHD checks that P is unique for each read operation.

hiding. U does not learn the contents of any DB. U sets the initial values of

each DB but as read operations are unlinkable, U cannot keep track of the

updates performed on each DB and thus does not know their contents.

Additionally, when reading,Rk sends U commitments to database entries,

which are hiding as guaranteed byFNIC. WhenFUUHD is used as building

block of a protocol,Rk can prove in ZKs statements about the committed

values rather than revealing them.

unforgeability. Rk cannot modify her database DB or read from DB en-

tries that were not stored or updated by U . Additionally,Rk cannot make

U update an old version of DB.

61
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7.3 ideal functionality

Figure 7.1: Ideal FunctionalityFUUHD

FUUHD is parameterized by a DB size N , a universe of pseudonyms Up, a

universe of values Uv and an operator� : Uv × Uv → Uv .

1. On input (uuhd.read.ini, sid ,P , (i, vri , ccomi , copeni , ccomri ,
copenri)i∈S) fromRk:

• Abort if sid /∈ (U , sid ′), or if P /∈ Up.

• Abort if there is a tuple (sid ,P ′,R′k, flag) stored such that

P ′ = P , or such thatR′k = Rk and flag 6= ⊥.

• If a tuple (sid ,Rk,DB) is not stored, set flag ← 1, else set

flag← 0.

• If flag = 0 and S 6= ∅, for all i ∈ S, do the following:

– Abort if i /∈ [1,N ], or if vri /∈ Uv , or if [i,Uv] is not

stored in DB.

– Parse the commitment ccomi as (ccom ′i , parcom,
COM.Verify).

– Parse the commitment ccomri as (ccomr ′i , parcom,
COM.Verify).

– Abort if COM.Verify is not a ppt algorithm.

– Abort if 1 6= COM.Verify(parcom, ccom ′i , i, copeni).

– Abort if 1 6= COM.Verify(parcom, ccomr ′i , vri ,
copenri).

• Create a fresh qid and store (qid ,P ,Rk, flag, (ccomi ,
ccomri)i∈S).

• Send (uuhd.read.sim, sid , qid , (ccomi , ccomri)i∈S) to S .

S. On input (uuhd.read.rep, sid , qid) from S :

• Abort if (qid ′,P ,Rk, flag, (ccomi , ccomri)i∈S) such that

qid = qid ′ is not stored.

• Store the tuple (sid ,P ,Rk, flag).

• Delete the tuple (qid ,P ,Rk, flag, (ccomi , ccomri)i∈S).

• Send (uuhd.read.end, sid ,P , flag, (ccomi , ccomri)i∈S) to

U .

2. On input (uuhd.update.ini, sid ,P , (i, vui)i∈[1,N ]) from U :

• Abort if a tuple (sid ,P ′,Rk, flag) such that P ′ = P and

flag 6= ⊥ is not stored.

• Abort if, for i ∈ [1,N ], vui /∈ Uv .

• If flag = 1, set DB← (i, vui)i∈[1,N ] and store a tuple (sid ,
Rk,DB).
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• If flag = 0, take the stored tuple (sid ,Rk,DB), parse DB as

(i, vri)i∈[1,N ] and update DB← (i, vri � vui)i∈[1,N ] in the

tuple (sid ,Rk,DB).

• Update flag← ⊥ in the tuple (sid ,P ′,Rk, flag) with P ′ =
P .

• Create a fresh qid and store (qid ,Rk,P , (i, vui)i∈[1,N ]).

• Send (uuhd.update.sim, sid , qid) to S .

S. On input (uuhd.update.rep, sid , qid) from S :

• Abort if a tuple (qid ′,Rk,P , (i, vui)i∈[1,N ]) such that qid =
qid ′ is not stored.

• Delete the record (qid ′,Rk,P , (i, vui)i∈[1,N ]) such that

qid = qid ′.
• Send (uuhd.update.end, sid ,P , (i, vui)i∈[1,N ]) toRk.

7.4 construction

We propose a construction ΠUUHD forFUUHD. ΠUUHD uses a hiding vector com-

mitment (VC) scheme as its main building block (see Section 2.7.1). A VC scheme

allows us to compute a vector commitment vc to a vector x of values, where each

value x[i] is stored at a given position i. Additionally, vc can be opened to x[i]
with communication cost independent of the vector length. We use a VC scheme

that is additively homomorphic. ΠUUHD also uses a pseudonymous channel that

provides unlinkability in communications between anyRk and U .

A VC vc is used to store the database DB by committing to a vector x such that

x[i] = vri . In its �rst interaction with the updater U , the readerRk obtains a VC

vc to an initial DB. U signs vc and gives the signature sig toRk. In subsequent

interactions,Rk may want to read entries fromDB, to makeU update the database,

or both. To read entries [i, vri ],Rk gets as input the commitments and openings

(ccomi , copeni , ccomri , copenri)i∈S.Rk usesFRr
ZK to prove in ZK that ccomi

and ccomri commit to an entry [i, vri ] in DB.U receives a randomized version vc′
of vc. To update DB with (i, vui)i∈[1,N ], U computes a VC vc2 to (i, vui)i∈[1,N ]
and then uses the homomorphic property of the VC scheme to set vcu ← vc′ ·vc2.

The VC vcu that commits to the updated database is signed and sent toRk.

To preventRk from reading an old database, ΠUUHD uses a double-spending

detection mechanism. A commitment com is signed along with every vc. com
commits to a random value s = s1 + s2, where s1 and s2 are random values

contributed byRk andU respectively. In a read operation,Rk reveals a randomized

version com ′ of com and opens com ′ to s. U checks that s has never been received

before. The message space of the commitment scheme should be su�ciently large

in order to avoid collisions of random values.

To provide unlinkability, in addition to rerandomizing vc′ and com ′,Rk com-

municates with U through a secure pseudonymous channel modelled byFNYM
(see Section 2.8.6).FCRS.Setup

CRS (see Section 2.8.1) is used byRk andU to retrieve the

VC parameters and the commitment parameters. (We note that the commitments
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(ccomi , copeni , ccomri , copenri)i∈S received as input byRk are computed out-

side the protocol byFNIC and may have other parameters.)FREG (see Section 2.8.2)

is used to register the signing public key of U .

Figure 7.2: Description of ΠUUHD

ΠUUHD is parameterized by a database size N , a universe of values Uv ,

which is given by the message space of the VC scheme, and a universe of

pseudonyms Up, which parameterizesFNYM.

1. On input (uuhd.read.ini, sid ,P , (i, vri , ccomi , copeni , ccomri ,
copenri)i∈S),Rk and U do the following:

• If a tuple (sid , par , parc , pk , vc,x, r, com, s, open, sig) is

not stored:

– Rk uses the crs.get interface of FCRS.Setup
CRS to obtain

the VC parameters par and the commitment parameters

parc .

– Rk picks a random value s1 ← M, computes a com-

mitment (com1, open1) ← Com(parc , s1) and stores

(sid , par , parc , com1, s1, open1).

– Rk picks a random pseudonym P ← Up and uses the

nym.send interface ofFNYM on input P to send com1
to U .

– If P was received before, U aborts.

– U sets a �ag flag ← 1 (because a single commitment

com1 is received) and (ccomi , ccomri)i∈S ← ⊥.

– U stores (sid ,P , flag, com1).

• If a tuple (sid , par , parc , pk , vc,x, r, com, s, open, sig) is

stored:

– Rk picks r2 ← R, sets r′ ← r + r2 and executes vc′ ←
VC.Rerand(vc, r2) to rerandomize vc.

– For all i ∈ S,Rk does the following:

* Abort if x[i] 6= vri .

* Compute an opening wi ← VC.Prove(par , i,x,
r′).

* Parse the commitment ccomi as (ccom ′i , parcom,
COM.Verify).

* Parse the commitment ccomri as (ccomr ′i , parcom,
COM.Verify).

– Rk picks random open2, sets open ′ ← open + open2
and runs the algorithm com ′ ← CRerand(com, open2)
to rerandomize com .
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– Rk sets the witness witr ← (sig , vc, com, r2, open2,
〈i, vri ,wi, copeni , copenri〉i∈S) and insr ← (pk ,
par , parc , vc′, com ′, parcom, 〈ccom ′i , ccomr ′i 〉i∈S).

– Rk replaces vc by vc′ and r by r′ in the stored tuple (sid ,
par , parc , pk , vc,x, r, com, s, open, sig).

Rr is

Rr ={(witr, insr) :
1 = VfSig(pk , sig , 〈vc, com〉)∧ (7.1)

vc′ = VC.Rerand(vc, r2)∧ (7.2)

com ′ = CRerand(com, open2) ∧ (7.3)

{1 = COM.Verify(parcom, ccom ′i , i, copeni)∧ (7.4)

1 = COM.Verify(parcom, ccomr ′i , vri , copenri) ∧ (7.5)

1 = VC.Verify(par , vc′, vri , i,wi) }∀i∈S } (7.6)

In equation 7.1,Rk proves that vc and com were signed by U . In equation 7.2 and

equation 7.3,Rk proves that vc′ and com ′ are rerandomizations of vc and com .

In equation 7.4 and equation 7.5,Rk proves that ccom ′i and ccomr ′i commit to

i and vri respectively. In equation 7.6,Rk proves that x[i] = vri , where x is the

vector committed to in vc′.

– Rk randomly picks a pseudonym P ← Up and uses the

zk.prove interface to send witr, insr and P toFRr
ZK.

– U receives insr and P . U aborts if P has already been

received in the past.U checks if the signing public key, VC

parameters and commitment parameters in insr are equal

to those stored in the tuple (sid , par , parc , pk , sk). U
sets a �ag flag← 0 and stores (sid ,P , flag, vc′, com ′).

– U sends a message (Open com ′) to U by using the

nym.reply interface ofFNYM on input P . (Here we con-

sider that any construction forFRr
ZK usesFNYM, soU can

reply throughFNYM.)

– Rk picks a random value s1 ← M, computes a com-

mitment (com1, open1) ← Com(parc , s1) and stores

(sid , com1, s1, open1).

– Rk uses the nym.send interface of FNYM on input P
to send the message and the opening (s, open ′) of com ′
and a new commitment com1 to U .

– U veri�es the opening by running VfCom(parc , com ′,
s, open ′). U checks if s has not been received in the past,

which ensures that the reader uses the last version of the

database x in vc. U replaces com ′ by com1 in the stored

tuple (sid ,P , flag, vc′, com1).
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• U outputs (uuhd.read.end, sid ,P , flag, (ccomi ,
ccomri)i∈S).

2. On input (uuhd.update.ini, sid ,P , (i, vui)i∈[1,N ]), U andRk do

the following:

• U aborts if there is not a tuple (sid ,P ′, flag, . . .) such that

P = P ′.
• If (sid , par , parc , pk , sk) is not stored, U obtains par and

parc from FCRS.Setup
CRS . U computes a signing key pair (pk ,

sk) ← KeyGen(1k ) and uses the reg.register interface of

FREG to register pk . U stores (sid , par , parc , pk , sk).

• If flag = 1,

– U takes the stored tuple (sid ,P , flag, com1).

– U sets a vector x[i] ← vui (for all i ∈ [1,N ]) and com-

putes a vector commitment vc ← VC.Commit(par ,
x, 0) with 0 as randomness.

– U picks a random value s2, computes a commitment

(com2, 0) ← Com(parc , s2) with 0 as opening, and

computes com ← com1 · com2.

– U computes a signature sig ← Sign(sk , 〈vc, com〉) on

vc and com .

– U uses nym.reply on input P to send (x, s2, sig) toRk.

– Rk takes the stored (sid , par , parc , com1, s1, open1).

– Rk computes vc ← VC.Commit(par ,x, 0) with 0 as

randomness.

– Rk computes (com2, 0) ← Com(parc , s2) with 0 as

opening and sets com ← com1 · com2.

– Rk uses the reg.retrieve interface of FREG to retrieve

the public key pk of U and veri�es the signature sig by

running VfSig(pk , sig , 〈vc, com〉).

– Rk stores (sid , par , parc , pk , vc,x, r ← 0, com, s←
s1 + s2, open ← open1, sig).

• If flag = 0,

– U takes the stored tuple (sid ,P , flag, vc′, com1).

– U sets a vector xu[i]← vui (for all i ∈ [1,N ]), computes

a commitment vc2 ← VC.Commit(par ,xu, 0) with 0
as randomness and sets vcu ← vc′ · vc2.

– U picks a random value s2, computes a commitment

(com2, 0) ← Com(parc , s2) with 0 as opening, and

computes comu ← com1 · com2.

– U sets a signature sig ← Sign(sk , 〈vcu, comu〉) on vcu
and comu.
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– U uses nym.reply on input P to send (xu, s2, sig) to

Rk.

– Rk takes the stored tuple (sid , com1, s1, open1).

– Rk computes (com2, 0) ← Com(parc , s2) with 0 as

opening and sets comu ← com1 · com2.

– Rk takes vc from the stored tuple (sid , par , parc ,
pk , vc,x, r, com, s, open, sig), computes vc2 ←
VC.Commit(par ,x, 0) with 0 as randomness and sets

vcu ← vc · vc2.

– Rk veri�es the signature sig by running VfSig(pk , sig ,
〈vcu, comu〉).

– Rk updates the tuple (sid , par , parc , pk , vc ← vcu,
x ← x + xu, r, com, s ← s1 + s2, open ← open1,
sig).

• Rk outputs (uuhd.update.end, sid ,P ,x).

discussion. In ΠUUHD, an update operation always follows a read operation,

and vice versa. We remark that, when only an update is required, the tuple (i,
vri , ccomi , copeni , ccomri , copenri)i∈S can be empty, and when only a read

operation is needed, the tuple (i, vui)i∈[1,N ] can equal (i, 0)i∈[1,N ].
In ΠUUHD, U updates databases without knowing their content. The update

operator is the sum. In our instantiation, the sum is done modulo p. We assume

that p is large enough so that the sums accumulated are always smaller.

ΠUUHD ensures thatRk cannot modify a database and thatRk cannot use old

versions of the database. However, ΠUUHD does not prevent a user from creating

several reader identities and thus holding several databases. For applications where

it is desirable that each user has only one database, ΠUUHD can be modi�ed so that

communication takes place through an authenticated channel when the initializa-

tion of a database is requested. Authentication allows U to reject those users who

already have a database.

ΠUUHD does not prevent adversarial readers from sharing their databases.

ΠUUHD can be extended with existing mechanisms to discourage transferabil-

ity of anonymous credentials [26].

7.5 security analysis

Theorem 7.5.1 ΠUUHD securely realizes FUUHD in the FCRS.Setup
CRS ,

FREG,FNYM andFRr
ZK-hybrid model if the VC scheme is hiding and bind-

ing, the commitment scheme is hiding and binding, and the signature scheme
is existentially unforgeable.

The proof of Theorem 7.5.1 is described in Section A.2.
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7.6 instantiation and efficiency analysis

We describe an instantiation of ΠUUHD that uses the VC scheme in Section 2.7.1.1,

the Pedersen commitment scheme [80], the signature scheme in [2] and the UC

ZK proof protocol in [24].

7.6.1 Commitment Scheme

We use the Pedersen commitment scheme [80]. CSetup(1k ) takes a group G of

prime order pwith generator g , picks random α, computes h ← gα and sets the

parameters parc ← (G, g , h), which include a description of the message space

M← Zp. Com(parc , x ) picks random open ← Zp and outputs a commitment

com ← gx hopen
to x ∈M and an opening open . VfCom(parc , com, x , open)

outputs 1 if com = gx hopen
. This scheme is perfectly hiding and computationally

binding. In [20], it is shown that Pedersen commitments realizeFNIC. Therefore,

we use Pedersen commitments to instantiate both the commitments computed in

ΠUUHD and those computed byFNIC and received as input to ΠUUHD.

7.6.2 Signature Scheme

We use the structure-preserving signature (SPS) scheme in [2]. In SPSs, the public

key, the messages, and the signatures are group elements inG and G̃, and veri�cation

must involve the evaluation of pairing product equations. We employ SPSs to sign

group elements, whilst still supporting e�cient ZK proofs of signature possession.

In this SPS scheme, a elements in G and b elements in G̃ are signed.

KeyGen(grp , a, b) . Let grp ← (p,G, G̃,Gt, e, g , g̃) be bilinear map param-

eters. Pick at random u1, . . . , ub, v, w1, . . . wa, z ← Z∗p and computeUi
= gui , i ∈ [1..b], V = g̃v , Wi = g̃wi , i ∈ [1..a] and Z = g̃z . Return

the veri�cation key pk ← (grp, U1, . . . , Ub, V,W1, . . . ,Wa, Z) and the

signing key sk ← (pk , u1, . . . , ub, v, w1, . . . , wa, z).

Sign(sk , 〈m1 , . . . , ma+b 〉) . Pickr ← Z∗p, setR← gr,S ← gz−rv
∏a
i=1m

−wi
i ,

and T ← (g̃
∏b
i=1m

−ui
a+i)1/r

, and output the signature sig ← (R,S, T ).

VfSig(pk , sig , 〈m1 , . . . , ma+b 〉) . Output 1 if e(R, V )e(S, g̃)
∏a
i=1 e(mi,

Wi) = e(g, Z) and e(R, T )
∏b
i=1 e(Ui,ma+i) = e(g, g̃).

7.6.3 ZK Functionality

To instantiateFR
ZK, we use the scheme in [24] as described in Section 2.8.8.1.

7.6.3.1 UC ZK Proof for the Read Relation

To instantiateFRr
ZK with the protocol in [24], we need to instantiate Rr with our

chosen VC, commitment and signature schemes. Then we need to express Rr

following the notation for UC ZK proofs described above. We use a ZK proof

similar to the one in [63].
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In Rr, we need to prove that the position i committed to in ccom ′i equals the

position opened in the VC vc via the veri�cation equation e(vc, g̃i) = e(w , g̃) ·
e(g1, g̃`)x. In our VC scheme, α is secret, which makes the relation between g̃i =
g̃αi and i not e�ciently provable. To solve this problem, the updater computes

SPSs that bind g i with g̃i. Given the parameters par = (p,G, G̃,Gt, e, g , g̃ , g1,
g̃1, . . . , g`, g̃`, g`+2, . . . , g2`,M = Zp,R = Zp), and the key pair (sk , pk), the

updater, for i ∈ [1, `], computes sig i ← Sign(sk , 〈gsid , g̃i, g̃ i〉).

Let h̃ ← G̃. Let (g , h) ∈ G2
and (g̃ , h̃) ∈ G2

be two sets of parameters of the

Pedersen commitment scheme for the commitments (ccom ′i , ccomr ′i ) and com
respectively. Rr involves proofs about secret bases, and we use the transformation

described above for these proofs. The base h is also used to randomize secret bases

in G, and h̃ is added to randomize bases in G̃.

Let (U1, U2, V,W1, Z) be the public key of the signature scheme for signing 1

element of G and 2 elements of G̃. Let (Ri, Si, Ti) be a signature on (gsid , g̃i, g̃ i).

Let (R,S, T ) be a signature on vc, com and g̃sid
. We describe the ZK proof for When verifying a

proof, the updater can
distinguish between the
two types of signatures
because sid is signed in
di�erent positions.

Rr as follows:

Kvc, com, R, S, T, {i, copeni , vri , copenri , g̃i,wi, Ri, Si, Ti}∀i∈S :
e(R, V )e(S, g̃)e(vc,W1)e(g , Z)−1 = 1 ∧ (7.7)

e(R, T )e(U1, com)e(U2, g̃sid )e(g , g̃)−1 = 1 ∧ (7.8)

{ccom ′i = g ihcopeni ∧ ccomr ′i = gvri hcopenri ∧ (7.9)

e(Ri, V )e(Si, g̃)e(gsid ,W1)e(g, Z)−1 = 1 ∧ (7.10)

e(Ri, Ti)e(U1, g̃i)e(U2, g̃)ie(g, g̃)−1 = 1 ∧ (7.11)

e(vc, g̃i)−1e(wi, g̃)e(g1, g̃`)vri = 1}∀i∈S (7.12)

Equation 7.7 and equation 7.8 prove knowledge of a signature (R,S, T ) on vc,

com and g̃sid
. Equation 7.9 proves knowledge of the openings of the Pedersen com-

mitments ccom ′i and ccomr ′i . Equation 7.10 and Equation 7.11 prove knowledge of

a signature (Ri, Si, Ti) on a message (gsid , g̃i, g̃ i). Equation 7.12 proves that the

value vri in ccomr ′i is equal to the value committed to in position i of the vector

commitment vc.

To prove knowledge of the secret bases (vc, com, R, S, T, {g̃i,wi, Ri, Si,
Ti}∀i∈S), the equations need to be modi�ed following the transformation de-

scribed above. This means that each of the bases is rerandomized and added to

the instance. Therefore, a reader rerandomizes com and vc, and the fact that they

are a rerandomization of the values signed in the signature (R,S, T ) is proven via

equation 7.7 and equation 7.8. In the case of vc, we use g instead of h as the base

used for randomization.

7.6.4 Efficiency Analysis

7.6.4.1 Storage Costs

Rk stores the common reference string, which consists of the VC and commitment

parameters. The VC parameters grow linearly with the maximum size N of the

database.Rk also stores the public key pk , which is of constant size. Throughout

protocol execution, Rk stores the last updated values of sig , vc and com , the

committed values and their openings. In conclusion, the storage cost forRk grows



70 unlinkable updatable hiding databases

linearly with N . U stores the common reference string and the signing key pair and

thus its storage cost also grows linearly with N .

7.6.4.2 Communication Costs

In a read operation,Rk and U run a ZK proof for Rr where witr and insr grow

linearly with the number |S| of positions read, but are independent of N . Therefore,

the communication cost grows linearly with |S|but is independent of N .Rk sends a

Pedersen commitment com1 and an opening (s, open ′) toU , which have constant

size. In an update, U sendsRk an update xu for vc′, a signature on vc′ and com ′
and the random value s2. The signature and s2 are of constant size. Although

the size of xu could be N , in practice, xu only needs to contain the values for

positions that are updated. Consequently, the communication cost of read and

update operations grows linearly with the number of positions read or updated

and is independent of N .

7.6.4.3 Computation Costs

In a read operation,Rk needs to compute VC openings wi for the positions read.

If wi is computed for the �rst time, the computation cost grows linearly with N .

However, by using the homomorphic property of the VC scheme, when vc is

updated, each opening wi can be updated with cost that grows linearly with the

number of updated positions but is independent of N . The remaining steps in the

computation and veri�cation of the proof for Rr are also independent of N .Rk
computes a commitment com1, which entails constant cost. In the �rst update

operation, U computes a commitment vc to an initial database with cost linear to

N . Subsequently, U updates vc by using the homomorphic property of the VCIn practice, if the
database is initialized
to a vector of zeroes, the

cost is constant.

scheme. The computation cost grows with the number of positions updated.

In summary, the communication cost is independent of N and the amortized

computation cost is also independent of N , which makes our instantiation of

ΠUUHD practical for large databases.

7.6.5 Implementation and Efficiency Measurements

We have implemented our instantiation of ΠUUHD in the Python programming

language, using the Charm cryptographic framework [4], on a computer equipped

with an Intel Core i5-7300U CPU clocked at 2.60 GHz, and 8 gigabytes of RAM.

The BN256 curve is used for the pairing group setup. To compute the UC ZK

proofs for Rr, we use the compiler in [24]. The cost of a proof depends on the

number of elements in the witness and on the number of equations composed

by Boolean ANDs. The computation cost for the prover of a Σ-protocol for Rr

involves one evaluation of each of the equations and one multiplication per value in

the witness. The compiler in [24] extends a Σ-protocol and requires, additionally,

a computation of a multi-integer commitment that commits to the values in the

witness, an evaluation of a Paillier encryption for each of the values in the witness,

a Σ-protocol to prove that the commitment and the encryptions are correctly

generated, and 3 exponentiations in the DSA group. The computation cost for the

veri�er, as well as the communication cost, also depends on the number of values

in the witness and on the number of equations. Therefore, as the number of values
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in the witness and of equations is independent of N in our proof for relation Rr,

the computation and communication costs of our proof do not depend on N .

interface N = 100 N = 1000

First Update 0.6731 6.1561

Computation of vc or wi 0.0076 0.0712

1 - entry update of vc or wi 0.0001 0.0001

1 - entry Read (1024-bit key) 1.4378 1.3991

5 - entry Read (1024-bit key) 4.7172 5.0626

1 - entry Read (2048-bit key) 6.2507 6.4053

5 - entry Read (2048-bit key) 22.3381 22.0744

Table 7.1: ΠUUHD execution times in seconds.

Table 7.1 lists the execution times of the interfaces of the protocol, in seconds,

evaluated against N and the key length of the Paillier encryption scheme. In a �rst

update, the public parameters of all building blocks are computed, and the database

is set up by computing vc. In the second row of Table 7.1, we show the cost of just

computing vc, which is virtually the same as that of computing an opening wi, and

these costs are very small. In a 1-entry update, one database entry is modi�ed and vc
is updated, and the cost of updating an opening wi is virtually the same. As can be

seen, the cost of the �rst update grows linearly with N , as does the cost of setting

up vc or wi, whereas the cost of updating vc or wi is very small and independent of

N . The timings for the read interface depend greatly upon the security parameters We note that the cost of
setting up vc or wi is
constant when the
database is initialized
to 0 in every position,
which is the case in our
PPLP protocol.

for the Paillier encryption scheme, and also increase linearly with the number of

entries read |S|. However, the timings are independent of N .

7.7 variants

FUUHD can be modi�ed to store a database DB of the form [i, vri,1, . . . , vri,m],
i.e., a database where a tuple of values is stored in each entry. In the uuhd.update
interface, U sends (i, vui,1, . . . , vui,m)∀i∈[1,N ], and each value vui,j (j ∈ [1,m])
can be updated or not independently of other values in the same entry. In the

uuhd.read interface,Rk sends (i, vri,1, . . . , vri,m)i∈S along with commitments

and openings to the position and values of each of the entries read, i.e., all the values

in an entry are read. The position j ∈ [1,m] of each value vri,j is not hidden

from U . This variant ofFUUHD is useful for protocols where a party needs to read

a tuple of values and prove that they are stored in the same entry and that each

vri,j is stored at a certain position j within the entry. To construct this variant, vc
commits to a vector x of length N ×m such that x[(i − 1)m + j] = vri,j for

all i ∈ [1,N ] and j ∈ [1,m]. In the update phase, each vector component can be

updated independently of others regardless of whether they belong to the same

database entry or not. To read the database entry i,Rk needs to compute openings

(w(i−1)m+1, . . . ,wim) to open the positions [(i−1)m+1, im] of the committed

vector x.Rk must also prove that those positions belong to the database entry i. To

this end, the relation Rr is modi�ed to involve a witness witr ← (sig , vc, com,
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r2, open2, 〈i, copeni , {w(i−1)m+j , vri,j , ori ,j }∀j∈[1,m]〉i∈S) and insr ← (pk ,
par , parc , vc′, com ′, parcom, 〈ccom ′i , {ccomr ′j }∀j∈[1,m]〉i∈S).

Rr ={(witr, insr) :
1 = VfSig(pk , sig , 〈vc, com〉)∧
vc′ = VC.Rerand(vc, r2)∧
com ′ = CRerand(com, open2) ∧
{1 = COM.Verify(parcom, ccom ′i , i, copeni)∧
{1 = COM.Verify(parcom, ccomr ′j , vri,j , ori ,j )∧
1 = VC.Verify(par , vc, vri,j , (i− 1)m+ j,w(i−1)m+j)}∀j∈[1,m] }∀i∈S }

It is worth noting thatFUUHD cannot be modi�ed so that it authenticates readers

towards the updater. If readers were authenticated, then the updater would be able

to track all the changes performed on each of the databases, and thus the contents

of the databases would not be hidden from the updater.



8UPDATABLE DATABASES

Joint work with Alfredo Rial. This primitive was published in a paper presented
at AFRICACRYPT in 2020 [38]. The primitive finds use as a building block in the
protocol in Chapter 11. Reproduced with permission from Springer Nature.

We de�ne UD as a two-party task between a readerR and an updater U . U sets a

database DB and may update it at any time during protocol execution. DB consists

of N entries of the form [i, vri ] (∀i ∈ [1, N ]), where i is the position and vri is

the value stored at that position. BothR and U know the content of DB.R reads

in ZK an entry [i, vri ] from DB.FUD ensures that it is not possible to falsely prove

that [i, vri ] is stored in DB.FUD stores a counter cr forR and a counter cu for

U . These counters are used to check thatR and U have the same version of DB.

When U initiates the ud.update interface, cu is incremented. WhenFUD sends

the update toR,FUD checks that cu = cr + 1 and then increments cr . In the

ud.read interface,FUD checks that the counters of both parties are equal, which

ensures that they have the same DB.

8.1 operations

update. During an update operation, U updates an entry in a database DB.

read. During a read operation,R proves knowledge of an entry in the database,

whilst hiding the entry being read and its position from U .

8.2 security properties

zero-knowledge. A read operation does not reveal the database entry read

to U .

unforgeability. Rk cannot read an entry if that entry was not stored in DB
by U .

8.3 ideal functionality

Figure 8.1: Ideal FunctionalityFUD

FUD is parameterized by a universe of values Uv and by a database size N .

1. On input (ud.update.ini, sid , (i, vui)∀i∈[1,N ]) from U :

• Abort if sid /∈ (R,U , sid ′).

• For all i ∈ [1,N ], abort if vui /∈ Uv .

• If (sid ,DB, cu) is not stored:

73
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– For all i ∈ [1,N ], abort if vui = ⊥.

– Set DB← (i, vui)∀i∈[1,N ] and cu ← 0 and store (sid ,
DB, cu).

• Else:

– For all i ∈ [1,N ], if vui 6= ⊥, update DB with [i, vui ].
– Increment cu and update DB and cu in (sid ,DB, cu).

• Create a fresh qid and store (qid , (i, vui)∀i∈[1,N ], cu).

• Send (ud.update.sim, sid , qid , (i, vui)∀i∈[1,N ]) to S .

S. On input (ud.update.rep, sid , qid) from S :

• Abort if (qid ′, (i, vui)∀i∈[1,N ], cu ′) such that qid = qid ′ is

not stored.

• If (sid ,DB, cr) is not stored, set DB← (i, vui)∀i∈[1,N ] and

cr ← 0 and store (sid ,DB, cr).

• Else:

– Abort if cu ′ 6= cr + 1.

– For all i ∈ [1,N ], if vui 6= ⊥, update DB with [i, vui ].
– Increment cr and update cr and DB in (sid ,DB, cr).

• Delete the record (qid , (i, vui)∀i∈[1,N ], cu ′).

• Send (ud.update.end, sid , (i, vui)∀i∈[1,N ]) toR.

2. On input (ud.read.ini, sid , i, vri , comi , openi , comri , openri)
fromR:

• Abort if (sid ,DB, cr) is not stored.

• Abort if i /∈ [1,N ], or if vri /∈ Uv , or if [i, vri ] /∈ DB.

• Parse the commitment comi as (com ′i , parcom,
COM.Verify).

• Parse the commitment comri as (comr ′i , parcom,
COM.Verify).

• Abort if COM.Verify is not a ppt algorithm.

• Abort if 1 6= COM.Verify(parcom, com ′i , i, openi).

• Abort if 1 6= COM.Verify(parcom, comr ′i , vri , openri).

• Create a fresh qid and store (qid , comi , comri , cr).

• Send (ud.read.sim, sid , qid , comi , comri) to S .

S. On input (ud.read.rep, sid , qid) from S :

• Abort if (qid ′, comi , comri , cr ′) such that qid = qid ′ is not

stored, or if cr ′ 6= cu , where cu is in (sid ,DB, cu).

• Delete the record (qid , comi , comri , cr ′).

• Send (ud.read.end, sid , comi , comri) to U .
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8.4 construction

We propose a construction ΠUD for FUD. ΠUD is based on non-hiding vector

commitments (NHVC) [32, 69] (see Section 2.7.2). An NHVC scheme allows us

to compute a commitment vc to a vector x = (x[1], . . . ,x[N ]). To open the

value x[i] to committed at position i, an opening wi is computed. The size of wi is

independent ofN .

ΠUD works as follows: U sends a database DB toR, and both U andRmap

DB to a vector x and compute a commitment vc to x. To update an entry [i,
vri ] to [i, vr′i], U sends [i, vr′i] to R, and both U and R update vc to obtain a

commitment vc′ to a vector x′ such that x′[i] = vr′i, while the other positions

remain unchanged. Therefore, updates do not need any revocation mechanism.

To prove in ZK that an entry [i, vri ] is in DB, a party computes an opening wi for

position i and computes a ZK proof of knowledge of (wi, i, vri ) that proves that

x[i] = vri .

We describe the interfaces of ΠUD in more detail:

1. In the ud.update interface,U usesFAUT (see Section 2.8.3) to send toR the

update (i, vui)∀i∈[1,N ]. In the �rst execution of this interface, U andR run

VC.Commit to commit to (i, vui)∀i∈[1,N ]. The functionality FVC.Setup
CRS

(see Section 2.8.1) for a common reference string is used to compute the

parameters of the NHVC scheme. In the following executions, U andR
update vc by using VC.ComUpd. IfR already stores openings wi,R runs

VC.WitUpd to update them.

2. In the ud.read interface,R usesFR
ZK (see Section 2.8.8) to prove that comi

and comri commit to a position i and a value vri such that x[i] = vri , where

x is the vector committed in vc. The witness of R includes an opening wi.
R runs VC.Prove to compute it if it is not stored.

Figure 8.2: Description of ΠUD

N denotes the database size. The universe of values Uv is given by the

message space of the NHVC scheme.

1. On input (ud.update.ini, sid , (i, vui)∀i∈[1,N ]):

• If (sid , par , vc,x, cu) is not stored:

– U uses crs.get to obtain the parameters par from

FVC.Setup
CRS . To compute par , FVC.Setup

CRS runs

VC.Setup(1k,N ).

– U initializes a counter cu ← 0 and a vector x such

that x[i] = vui for all i ∈ [1,N ]. U runs vc ←
VC.Commit(par ,x) and stores (sid , par , vc,x, cu).

• Else:

– U sets cu ′ ← cu + 1, x′ ← x and vc′ ← vc. For

all i ∈ [1,N ] such that vui 6= ⊥, U computes vc′ ←
VC.ComUpd(par , vc′, i,x′[i], vui) and x′[i]← vui .

– U replaces the stored tuple (sid , par , vc,x, cu) by (sid ,
par , vc′,x′, cu ′).
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• U uses aut.send to send the message 〈(i, vui)∀i∈[1,N ], cu ′〉 to

R.

• If (sid , par , vc,x, cr) is stored and cu ′ 6= cr + 1,R aborts.

• For j = 1 to N , if (sid , j,wj) is stored, R sets w ′j ←
wj and, for all i ∈ [1,N ] such that vui 6= ⊥, w ′j ←
VC.WitUpd(par ,w ′j , j, i,x[i], vui).R replaces (sid , j,wj)
by (sid , j,w ′j).

• R performs the same operations as U to set or update a tuple

(sid , par , vc,x, cr).

• R outputs (ud.update.end, sid , (i, vui)∀i∈[1,N ]).

2. On input (ud.read.ini, sid , i, vri , comi , openi , comri , openri):

• R parses comi as (com ′i , parcom,COM.Verify).

• R parses comri as (comr ′i , parcom,COM.Verify).

• R aborts if COM.Verify is not a ppt algorithm.

• R aborts if 1 6= COM.Verify(parcom, com ′i , i, openi).

• R aborts if 1 6= COM.Verify(parcom, comr ′i , vri , openri).

• R takes the stored tuple (sid , par , vc,x, cr) and aborts if

x[i] 6= vri .

• If (sid , i,wi) is not stored,R runs wi ← VC.Prove(par , i,
x) and stores (sid , i,wi).

The relation R is

R ={(wit , ins) :
1 = COM.Verify(parcom, com ′i , i, openi) ∧
1 = COM.Verify(parcom, comr ′i , vri , openri) ∧
1 = VC.Verify(par , vc, vri , i,wi)}

• R sets the witness wit ← (wi, i, openi , vri , openri) and

the instance ins ← (par , vc, parcom, com ′i , comr ′i , cr).R
uses zk.prove to send wit and ins toFR

ZK.

• U receives ins = (par ′, vc′, parcom, com ′i , comr ′i , cr)
fromFR

ZK.

• U takes the stored tuple (sid , par , vc,x, cu) and aborts if

cr 6= cu , or if par ′ 6= par , or if vc′ 6= vc.

• U sets the commitments comi ← (com ′i , parcom,
COM.Verify) and comri ← (comr ′i , parcom,
COM.Verify). (COM.Verify is part of the description

of R.)

• U outputs (ud.read.end, sid , comi , comri).
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8.5 security analysis

Theorem 8.5.1 ΠUD securely realizes FUD in the (FVC.Setup
CRS , FAUT,

FR
ZK)-hybrid model if the NHVC scheme is binding.

The proof of Theorem 8.5.1 is described in Section A.3.

8.6 instantiation and efficiency analysis

To instantiate ΠUD, we use an NHVC scheme secure under the `-DHE assump-

tion [69], as described in Section 2.7.2.1.

8.6.1 Commitment Scheme

We use the Pedersen commitment scheme [80] as described in Section 7.6.

8.6.2 Signature Scheme

We use the structure-preserving signature (SPS) scheme in [2], as described in

Section 7.6.

8.6.3 ZK Functionality

To instantiateFR
ZK, we use the scheme in [24] as described in Section 2.8.8.1.

8.6.3.1 UC ZK Proof for the Read Relation

To instantiateFRr
ZK with the protocol in [24], we need to instantiate Rr with our

chosen NHVC, commitment and signature schemes. Then we need to express Rr

following the notation for UC ZK proofs described above.

In R, we need to prove that the position i committed to in com ′i equals the posi-

tion opened in the NHVC vc via the veri�cation equation e(vc, g̃i) = e(w , g̃) ·
e(g1, g̃`)x. In our NHVC scheme, α is secret, which makes the relation between

g̃i = g̃αi and i not e�ciently provable. To solve this problem, the public parame-

ters are extended with SPSs that bind g i with g̃i. Given the parameters par = (p,
G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`,M = Zp,R = Zp), and the

key pair (sk , pk), for i ∈ [1, `],FCRS.Setup
CRS computes sig i ← Sign(sk , 〈gsid , g̃i,

g̃ i〉), where sid is the session identi�er. We note that, in many
practical settings, U
can compute the
parameters and
signatures. We remark
that these signatures do
not need to be updated
when the database is
updated.

Let (U1, U2, V,W1, Z) be the public key of the signature scheme. Let (R,S,
T ) be a signature on (gsid , g̃i, g̃ i). Let (g , h) be the parameters of the Pedersen

commitment scheme. R involves proofs about secret bases, and we use the transfor-

mation described above for those proofs. The base h is also used to randomize secret
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bases in G, and another base h̃ ← G̃ is added to randomize bases in G̃. Following

the notation in [24], we describe the proof as follows.

Ki, openi , v, openri , g̃i,w , R, S, T :
comi = g ihopeni ∧ comri = gvhopenri ∧ (8.1)

e(R, V )e(S, g̃)e(gsid ,W1)e(g, Z)−1 = 1 ∧ (8.2)

e(R, T )e(U1, g̃i)e(U2, g̃)ie(g, g̃)−1 = 1 ∧ (8.3)

e(vc, g̃i)−1e(w , g̃)e(g1, g̃`)v = 1 (8.4)

Equation 8.1 proves knowledge of the openings of the Pedersen commitments

comi and comri . Equation 8.2 and Equation 8.3 prove knowledge of a signature

(R,S, T ) on a message 〈gsid , g̃i, g̃ i〉. Equation 8.4 proves that the value v in comri
is equal to the value committed in the position i of the vector commitment vc.

8.6.4 Efficiency Analysis

We analyse the storage, communication, and computation costs of our instantiation

of ΠUD.

8.6.4.1 Storage Costs

R and U store a common reference string, whose size grows linearly with N .

Throughout protocol execution, R and U also store the last updated values of

vc and the committed vector.R stores the openings wi. In conclusion, the storage

cost is linear in N .

8.6.4.2 Communication Costs

In the ud.update interface, U sends (i, vui)∀i∈[1,N ] toR. The communication

cost is linear in the number of entries updated, except for the �rst update in which

all entries must be initialized. In the ud.read interface,R sends an instance and a ZK

proof to U . The size of the witness and of the instance is constant and independent

of N . Therefore, the communication cost of the proof is constant. In conclusion,

after the �rst update phase, the communication cost does not depend on N .

8.6.4.3 Computation Costs

In the ud.update interface, U andR update vc with cost linear in the number

of updates (except for the �rst update where all positions are initialized).R also

updates the stored openings wi with cost linear in the number of updates. In the

ud.read interface, if wi is not stored,R computes it with cost that grows linearly

with N . However, if wi is stored, the computation cost of the proof is constant and

independent of N .

We note that it is possible to defer opening updates to the ud.read interface,

so as to only update openings that are actually needed to compute ZK proofs.

Thanks to that, the computation cost in the ud.update interface is constant. In

the ud.read interface, if wi is stored but needs to be updated, the computation

cost grows linearly with the number of updates but is independent of N . The only
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interface N = 100 N = 1000

First Update 0.6844 5.9952

Computation of vc or wi 0.0032 0.03787

1 - entry update of vc or wi 0.0001 0.0001

Read 0.7496 0.7545

Table 8.1: ΠUD execution times in seconds (1024-bit key).

overhead introduced by deferring opening updates is the need to store the tuples

(i, vui)∀i∈[1,N ] sent by U .

In summary, after initializing vc and the openings wi, the communication and

computation costs are independent of N , which makes our instantiation of ΠUD
practical for large databases.

8.6.5 Implementation and Efficiency Measurements

We have implemented our instantiation of ΠUD in the Python programming lan-

guage, using the Charm cryptographic framework [4], on a computer equipped

with an Intel Core i5-7300U CPU clocked at 2.60 GHz, and 8 gigabytes of RAM.

The BN256 curve was used for the pairing group setup.

To compute the UC ZK proofs for R, we use the compiler in [24]. The pub-

lic parameters of the proof system contain a public key of the Paillier encryption

scheme, the parameters for a multi-integer commitment scheme and the speci�ca-

tion of a DSA group. (We refer the reader to [24] for a description of how these

primitives are used in the compiler.) The cost of a proof depends on the number

of elements in the witness and of the number of equations composed by Boolean

ANDs. The computation cost for the prover of a Σ-protocol for R involves one

evaluation of each of the equations and one multiplication per value in the witness.

The compiler in [24] extends a Σ-protocol and requires, additionally, a computa-

tion of a multi-integer commitment that commits to the values in the witness, an

evaluation of a Paillier encryption for each of the values in the witness, a Σ-protocol

to prove that the commitment and the encryptions are correctly generated, and 3

exponentiations in the DSA group. The computation cost for the veri�er, as well as

the communication cost, also depends on the number of values in the witness and

on the number of equations. Therefore, as the number of values in the witness and

of equations is independent of N in our proof for relation R, the computation

and communication costs of our proof do not depend on N .

Tables 8.1 and 8.2 list the execution times of the update and read interfaces of

the protocol, in seconds. The execution times of the interfaces of the protocol have

been evaluated against the size N of the database, and against the security parameter

of the Paillier encryption algorithm.

In a �rst update, the public parameters of all the building blocks are computed,

and the database is set up by computing vc. In the second row of Tables 8.1 and

8.2, we show the cost of just computing vc, which is virtually the same as that of

computing an opening wi. The computation time of vc and wi is very small. In a 1-

entry update, one database entry is modi�ed and vc is updated. The cost of updating
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interface N = 100 N = 1000

Interface N = 100 N = 1000

First update 0.7940 6.0822

Computation of vc or wi 0.0032 0.03787

1-entry update of vc or wi 0.0001 0.0001

Read 3.8945 3.5911

Table 8.2: ΠUD execution times in seconds (2048-bit key).

an opening wi is virtually the same. As can be seen, the cost of the �rst update grows

linearly with the size N of the database, as does the cost of setting up vc or wi,
whereas the cost of updating vc or wi is very small and independent of N . The

execution times for the read interface depend greatly upon the security parameters

for the Paillier encryption scheme. However, the execution time is independent of

the database size N .

8.7 variants

• It is straightforward to modify the ud.read interface of FUD to allowR
to read a tuple (i, vri , comi , openi , comri , openri)∀i∈S (S ⊆ [1,N ]) of

database entries simultaneously. This variant of FUD allows us to reduce

communication rounds when a party in a protocol that usesFUD needs to

read more than one value simultaneously, e.g. a buyer that purchases several

items at once and reads the prices of those items from the database.

• FUD can also be modi�ed to store a databaseDBof the form [i, vri,1, . . . , vri,m],
i.e., a database where a tuple of values is stored in each entry. In the ud.update
interface, U sends (i, vui,1, . . . , vui,m)∀i∈[1,N ], and each value vui,j (j ∈
[1,m]) can be updated or not independently of other values in the same

entry. In the ud.read interface, R sends (i, vri,1, . . . , vri,m) along with

commitments and openings to the position and values, i.e., all the values in

an entry are read. The position j ∈ [1,m] of each value vri,j is not hidden

from U . This variant ofFUD is useful for protocols where a party needs to

read a tuple of values and prove that they are stored in the same entry and

that each vri,j is stored at a certain position j within the entry, e.g. a user

that consumes some utility and reads a pricing function that is represented

by a tuple of values.

• FUD can also be modi�ed to interact with two parties such that both of them

can read and update the database, or such that a party reads and updates and

the other party receives read and update operations.

8.8 applications

Consider the following relation R′:

R′ ={(wit , ins) : [i, v] ∈ DB ∧ 1 = predi(i) ∧ 1 = predv(v)}
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where the witness is wit = (i, v) and the instance is ins = DB. predi and predv
represent predicates that i and v must ful�l, e.g., predicates that require i and v to

belong to a range or set of values.

We would like to construct a ZK protocol for R′ that separates each of the

equations of R′. We show how this protocol is constructed by using FUD and

FNIC as building blocks, along with the functionalitiesFRi
ZK andFRv

ZK.

1. On input DB, the veri�er uses the ud.update interface to send DB toFUD,

which sends DB to the prover.

2. On input (i, v), the prover checks if [i, v] ∈ DB.

3. The prover runs the com.setup interface of FNIC. The prover uses the

com.commit interface ofFNIC on input i to obtain a commitment comi

with opening openi. Similarly, the prover obtains fromFNIC a commitment

comv to v with opening openv .

4. The prover uses ud.read to send (i, v, comi, openi, comv, openv) toFUD.

FUD sends comi and comv to the veri�er.

5. The veri�er runs the com.setup interface of FNIC. The veri�er uses the

com.validate interface of FNIC to validate the commitments comi and

comv . Then the veri�er stores comi and comv and sends a message to the

prover to acknowledge receipt of the commitments.

6. The prover parses the commitment comi as (com′i, parcom,COM.Verify).

The prover sets the witness wit ← (i, openi) and the instance ins ←
(parcom, com′i). The prover uses the zk.prove interface to send wit and

ins toFRi
ZK, where Ri is

Ri = {(wit , ins) : 1 = COM.Verify(parcom, com′i, i, openi) ∧ 1 = predi(i)}

7. The veri�er receives ins fromFRi
ZK. The veri�er checks if the commitment in

ins is equal to the stored commitment comi. If they are equal, the binding

property guaranteed byFNIC ensures thatFUD andFRi
ZK have also received

the same position i as input.

8. The last two steps are replicated to prove that v ful�ls 1 = predv(v) by

usingFRv
ZK.

We believe that a modular design has two main advantages: �rstly, it allows for

simpler security analysis. A security proof of a protocol described in the hybrid

model is much simpler than a proof that requires reductions to the security proper-

ties of di�erent cryptographic primitives. Moreover, each of the building blocks

realizes a simpler task and thus requires a simpler protocol with a less involved secu-

rity analysis. Secondly, it facilitates the study in isolation of how to create e�cient

and secure ZK data structures. Namely, di�erent constructions forFUD can easily

be compared in terms of security and e�ciency.
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applications to pot. The Priced Oblivious Transfer (POT) protocols

in [18, 85] are based on previously proposed Oblivious Transfer (OT) protocols.

However, they do not use OT as a building block. Instead, the OT protocol is

modi�ed ad-hoc to create the POT protocol, and its security has to be reanalysed

when analysing the security of the POT protocol.

FUD can be used to design a POT protocol modularly. The database DB consists

of entries [i, pi], where pi is the price to be paid for messagemi. To purchasemi,

the buyer uses the ud.read interface ofFUD to read the entry [i, pi]. The provider

receives the commitments ci to i and cri to pi. cri is used as input to a functionality

FRv
ZK where the buyer proves that he subtracts the price pi from his account. ci is

used as input to a functionality for oblivious transfer (modi�ed to receive committed

inputs as described in [20]) to allow the buyer to retrievemi.

Therefore,FUD allows for the design of a POT protocol that uses a functionality

for OT as building block. Thanks to that, the POT protocol can be instantiated with

multiple OT schemes and their security does not need to be reanalysed. Moreover,

FUD allows the provider to update prices at any time.

applications to ppb. In the Privacy Preserving Billing (PPB) protocols

in [83, 84], a meter reading comprises a consumption c and the time interval i of

consumption. A tari� policy associates a di�erent function p = fi(c) to each time

interval (and possibly to each consumption interval).FUD can be used to design a

PPB protocol modularly, where the database DB consists of entries [i, fi]. The PPB

protocol works as follows:

• The meter outputs a signed meter reading (c, i).

• The user reads [i, fi] viaFUD, and the provider receives commitments ci to

i and cri to fi.

• ci is used as input to a functionality FRi
ZK to prove that i equals the value

signed in the meter reading.

• cri is used as input to a functionalityFRv
ZK to prove that p = fi(c).

If fi is represented by a tuple of values (e.g. the coe�cients of a polynomial) the

variant ofFUD for databases of the form [i, vri,1, . . . , vri,m] should be used. If

the formula fi also changes with the consumption interval, the database can also

store the minimum and maximum values of the consumption interval to allow the

user to prove that she uses the right formula. UsingFUD allows for the design of

PPB protocols modularly and allows the provider to modify the pricing policies

e�ciently and at any time.
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Joint work with Alfredo Rial. This primitive was published in a paper presented at
the 25th Australasian Conference on Information Security and Privacy in 2020 [39].
The primitive finds use as a building block in the protocol in Chapter 12. Reproduced
with permission from Springer Nature.

We de�ne UUD as a task between multiple readersRk and an updater U . U
sets a database DB and may update it at any time during protocol execution. DB
consists of N entries of the form [i, vi,1, . . . , vi,L], where i identi�es the database

entry and (vi,1, . . . , vi,L) are the values stored in this entry. AnyRk and U know

the content of DB. A readerRk can read DB by computing a zero-knowledge (ZK)

proof of knowledge of an entry [i, vi,1, . . . , vi,L].FUUD hides fromU which entry

was read but ensures that it is not possible to falsely prove that an entry is stored in

DB.FUUD allowsRk to remain pseudonymous and unlinkable when reading DB.

FUUD stores counters crk forRk and a counter cu for U . These counters are

used to check thatRk has the last version of DB. When U sends an update, cu is

incremented. WhenRk receives DB,FUUD sets crk ← cu . WhenRk reads DB,

FUUD checks that crk = cu , which ensures thatRk and U have the same DB.

9.1 operations

update. During an update operation, U updates an entry in a database DB.

read. During a read operation,Rk proves knowledge of an entry in the database,

whilst hiding the entry being read, its position, and the identity ofRk from

U .

9.2 security properties

unlinkability. FUUD reveals to U a pseudonym P rather than the identi�er

Rk.Rk can choose di�erent random pseudonyms so that read operations

are unlinkable.

zero-knowledge. A read operation does not reveal the database entry read

to U .

unforgeability. Rk cannot read an entry if that entry was not stored in DB
by U .

83
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9.3 ideal functionality

Figure 9.1: Ideal FunctionalityFUUD

FUUD is parameterized by a universe of pseudonymsUp, a universe of values

Uv and by a database size N .

1. On input (uud.update.ini, sid , (i, vi,1, . . . , vi,L)∀i∈[1,N ]) from

U :

• Abort if sid /∈ (U , sid ′).

• For all i ∈ [1,N ] and j ∈ [1,L], abort if vi,j /∈ Uv .

• If (sid ,DB, cu) is not stored:

– For all i ∈ [1,N ] and j ∈ [1,L], abort if vi,j = ⊥.

– Set DB ← (i, vi,1, . . . , vi,L)∀i∈[1,N ] and cu ← 0 and

store (sid ,DB, cu).

• Else:

– For all i ∈ [1,N ] and j ∈ [1,L], if vi,j 6= ⊥, update DB
by storing vi,j at position j of entry i.

– Increment cu and update DB and cu in (sid ,DB, cu).

• Create a fresh qid and store qid .

• Send (uud.update.sim, sid , qid , (i, vi,1, . . . , vi,L)∀i∈[1,N ])
to S .

S. On input (uud.update.rep, sid , qid) from S :

• Abort if qid is not stored.

• Delete qid .

• Send (uud.update.end, sid) to U .

2. On input (uud.getdb.ini, sid) fromRk:

• Create a fresh qid and store (qid ,Rk).

• Send (uud.getdb.sim, sid , qid) to S .

S. On input (uud.getdb.rep, sid , qid) from S :

• Abort if (qid ′,Rk) such that qid ′ = qid is not stored.

• If (sid ,DB, cu) is not stored, set DB← ⊥.

• Else, set crk ← cu , store (Rk,DB, crk) and delete any previ-

ous tuple (Rk,DB′, cr ′k).

• Delete (qid ,Rk).

• Send (uud.getdb.end, sid ,DB) toRk.

3. On input (uud.read.ini, sid ,P , (i, comi , openi , 〈vi,j , comi,j ,
openi,j〉∀j∈[1,L])) fromRk:
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• Abort if P /∈ Up, or if [i, vi,1, . . . , vi,L] /∈ DB, or if (Rk,
DB, crk) is not stored.

• Parse the commitment comi as (com ′i , parcom,
COM.Verify).

• Abort if 1 6= COM.Verify(parcom, com ′i , i, openi).

• For all j ∈ [1,L]:

– Parse the commitment comi,j as (com ′i,j , parcom,
COM.Verify).

– Abort if 1 6= COM.Verify(parcom, com ′i,j , vi,j ,
openi,j).

• Create a fresh qid and store (qid ,P , (comi ,
〈comi,j〉∀j∈[1,L]), crk).

• Send (uud.read.sim, sid , qid , (comi , 〈comi,j〉∀j∈[1,L])) to

S .

S. On input (uud.read.rep, sid , qid) from S :

• Abort if (qid ′,P , (comi , 〈comi,j〉∀j∈[1,L]), cr ′k) such that

qid ′ = qid is not stored or if cr ′k 6= cu , where cu is in (sid ,
DB, cu).

• Delete the record (qid ,P , (comi , 〈comi,j〉∀j∈[1,L]), cr ′k).

• Send (uud.read.end, sid ,P , (comi , 〈comi,j〉∀j∈[1,L])) to

U .

9.4 construction

We describe a construction ΠUUD forFUUD. ΠUUD is based on subvector com-

mitments (SVC) [64] (see Section 2.7.3), which we extend with a UC ZK proof of

knowledge of a subvector. An SVC scheme allows us to compute a commitment

svc to a vector x = (x[1], . . . ,x[N ]). svc can be opened to a subvector xI =
(x[i1], . . . ,x[in]), where I = {i1, . . . , in} ⊆ [1,N ]. The size of the opening wI
is independent of N and of |I|. SVC were recently proposed as an improvement

of vector commitments [32, 69], where the size of wI is independent of N but

dependent on |I|. In Section 2.7.3, we extend the de�nition of SVC in [64] to

include algorithms to update commitments and openings when part of the vector

is updated.

ΠUUD works as follows: U uses a bulletin board BB to publish the database

DB and anyRk obtains DB from BB. A BB ensures that all readers obtain the

same version of DB, which we need to guarantee unlinkability. Both U and any

Rk map a DB with N entries of the form [i, vi,1, . . . , vi,L] to a vector x of length

N × L such that x[(i − 1)L + j] = vi,j for all i ∈ [1,N ] and j ∈ [1,L], and

they compute a commitment svc to x. To update a database entry, U updates BB,

and U and anyRk update svc. Therefore, updates do not need any revocation

mechanism. To prove in ZK that an entry [i, vi,1, . . . , vi,L] is in DB,Rk computes

an opening wI for I = {(i−1)L+1, . . . , (i−1)L+L} and uses it to compute a
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ZK proof of knowledge of the subvector (x[(i− 1)L + 1], . . . ,x[(i− 1)L + L]).

This proof guarantees that I is the correct set for index i.
We describe in more detail each of the interfaces of ΠUD:

1. In the uud.update interface, U uses FBB (see Section 2.8.7) to publish

the DB and to update it. When DB is published for the �rst time, U runs

SVC.Commit to commit to DB. The functionality FSVC.Setup
CRS (see Sec-

tion 2.8.1) for a common reference string is used to compute the param-

eters of the SVC scheme. When DB is updated, U updates svc by using

SVC.ComUpd.

2. In the uud.getdb interface, anyRk retrieves DB and its subsequent updates

throughFBB.Rk follows the same steps as U to compute and update svc.

Additionally, ifRk already stores openings wi,Rk runs SVC.OpenUpd to

update them.

3. In the uud.read interface,Rk usesFR
ZK (see Section 2.8.8) to prove that the

commitments (comi , 〈comi,j〉∀j∈[1,L]) commit to an entry i and values

vi,1, . . . , vi,L such that x[(i − 1)L + j] = vi,j for all j ∈ [1,L], where

x is the vector committed to in svc. R requires proving knowledge of an

opening wI for the set I = {(i− 1)L + 1, . . . , (i− 1)L + L} of positions

where the values for the database entry i are stored.Rk runs SVC.Open to

compute wI if it is not stored. R also requires a proof to associate iwith I ,

which we denote by I = f(i), where f is a function that on input i outputs

the indices I = {(i− 1)L + 1, . . . , (i− 1)L + L}.

Figure 9.2: Construction ΠUUD

N denotes the database size and L the size of any entry. The function f(i) =
((i−1)L+1, . . . , (i−1)L+L) maps i ∈ [1,N ] to a set of indices where

the database entry i is stored. The universe of values Uv is given by the

message space of the SVC scheme.

1. On input (uud.update.ini, sid , (i, vi,1, . . . , vi,L)∀i∈[1,N ]), U does

the following:

• If (sid , par , svc,x, cu) is not stored:

– U uses crs.get to obtain the parameters par from

FSVC.Setup
CRS . To compute par , FSVC.Setup

CRS runs

SVC.Setup(1k,N × L).

– U initializes a counter cu ← 0 and a vector x such that

x[(i− 1)L + j] = vi,j for all i ∈ [1,N ] and j ∈ [1,L].
U runs svc ← SVC.Commit(par ,x) and stores (sid ,
par , svc,x, cu).

• Else:

– U sets cu ′ ← cu+1, x′ ← x and svc′ ← svc. For all i ∈
[1,N ] and j ∈ [1,L] such that vi,j 6= ⊥, U computes

svc′ ← SVC.ComUpd(par , svc′,x′, (i−1)L+j, vi,j)
and sets x′[(i− 1)L + j]← vi,j .
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– U replaces the stored tuple (sid , par , svc,x, cu) by

(sid , par , svc′,x′, cu ′).

• U uses the bb.write interface to append (i, vi,1, . . . ,
vi,L)∀i∈[1,N ] to the bulletin board.

• U outputs (uud.update.end, sid).

2. On input (uud.getdb.ini, sid),Rk does the following:

• If (sid , par , svc,x, crk) is not stored,Rk obtains par from

FSVC.Setup
CRS and initializes a counter crk ← 0.

• Rk increments crk and uses the bb.getbb interface to read

the message (i, vi,1, . . . , vi,L)∀i∈[1,N ] stored at position crk
in the bulletin board.Rk continues incrementing the counter

and reading the bulletin board until the returned message is⊥.

• Rk sets a tuple (i, vi,1, . . . , vi,L)∀i∈[1,N ], such that vi,j (for

i ∈ [1,N ] and j ∈ [1,L]) is the most recent update for

position j of the database entry i received from the bulletin

board. If (sid , par , svc,x, crk) is not stored, (i, vi,1, . . . ,
vi,L)∀i∈[1,N ] contains the current database to be used to set

x, otherwise it contains the update that needs to be performed

on x.

• For i = 1 to N , if (sid , i,wI) is stored,Rk sets x′ ← x and

w ′I ← wI and, for all i ∈ [1,N ] and j ∈ [1,L] such that

vi,j 6= ⊥, w ′I ← SVC.OpenUpd(par ,w ′I ,x′, I, (i− 1)L +
j, vi,j) and x′[(i− 1)L + j] = vi,j .Rk replaces (sid , i,wI)
by (sid , i,w ′I).

• Rk performs the same operations as U to set or update svc
and x, and stores a tuple (sid , par , svc,x, crk).

• R outputs (uud.getdb.end, sid ,x).

3. On input (uud.read.ini, sid ,P , (i, comi , openi , 〈vi,j , comi,j ,
openi,j〉∀j∈[1,L])):

• Rk parses comi as (com ′i , parcom,COM.Verify).

• Rk aborts if 1 6= COM.Verify(parcom, com ′i , i, openi).

• For all j ∈ [1,L]:

– Rk parses the commitment comi,j as (com ′i,j , parcom,
COM.Verify).

– Rk aborts if 1 6= COM.Verify(parcom, com ′i,j , vi,j ,
openi,j).

• Rk takes the stored tuple (sid , par , svc,x, crk) and aborts

if, for any j ∈ [1,L], x[(i− 1)L + j] 6= vi,j .

• If (sid , i,wI) is not stored,Rk computes I ← f(i), runs wI
← SVC.Open(par , I,x) and stores (sid , i,wI).
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The relation R is

R ={(wit , ins) :
1 = COM.Verify(parcom, com ′i , i, openi) ∧
〈1 = COM.Verify(parcom, com ′i,j , vi,j , openi,j)〉∀j∈[1,L] ∧
1 = SVC.Verify(par , svc, 〈vi,j〉∀j∈[1,L], I,wI) ∧ I = f(i)}

• Rk sets the witness wit ← (wI , I, i, openi , 〈vi,j ,
openi,j〉∀j∈[1,L]) and the instance ins ← (par , svc,
parcom, com ′i , 〈com ′i,j〉∀j∈[1,L], crk).Rk uses zk.prove to

send wit , ins and P toFR
ZK.

• U receives P and ins = (par ′, svc′, parcom, com ′i ,
〈com ′i,j〉∀j∈[1,L], crk) fromFR

ZK.

• U takes the stored tuple (sid , par , svc,x, cu) and aborts if

crk 6= cu , or if par ′ 6= par , or if svc′ 6= svc.

• U sets comi ← (com ′i , parcom,COM.Verify) and

sets 〈comi,j ← (com ′i,j , parcom,COM.Verify)〉∀j∈[1,L].
(COM.Verify is in the description of R.)

• U outputs (uud.read.end, sid ,P , (comi ,
〈comi,j〉∀j∈[1,L])).

9.5 security analysis

Theorem 9.5.1 ΠUUD securely realizes FUUD in the (FSVC.Setup
CRS , FBB,

FR
ZK)-hybrid model if the SVC scheme is binding.

The proof of Theorem 9.5.1 is described in Section A.4.

9.6 instantiation and efficiency analysis

We describe an instantiation of ΠUUD that uses the SVC scheme in Section 2.7.3,

the Pedersen commitment scheme [80], the signature scheme in [2] and the UC

ZK proof protocol in [24].

9.6.1 Commitment Scheme

We use the Pedersen commitment scheme [80] as described in Section 7.6.

9.6.2 Signature Scheme

We use the structure-preserving signature (SPS) scheme in [2], as described in

Section 7.6.
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9.6.3 ZK Functionality

To instantiateFR
ZK, we use the scheme in [24] as described in Section 2.8.8.1.

9.6.3.1 UC ZK Proof for the Read Relation

To instantiateFR
ZK with the protocol in [24], we need to instantiate R with our

chosen SVC and commitment schemes. Then we need to express R following the

notation for UC ZK proofs described above.

In R, we need to prove that I = f(i) = {(i − 1)L + 1, . . . , (i − 1)L +
L}, i.e., we need to prove that the set I of positions opened contains the po-

sitions where the database entry i is stored. To prove this statement, the pub-

lic parameters of the SVC scheme are extended with SPSs that bind g i with

(g(i−1)L+1, g̃(i−1)L+1, . . . , g(i−1)L+L, g̃(i−1)L+L), i.e., i is bound with the bases

of the positions in I . Given the parameters par ← (p,G, G̃,Gt, e, g , g̃ , {gi,
g̃i}∀i∈[1,`], {hi,i′}∀i,i′∈[1,`],i 6=i′), we create the key pair (sk , pk)← KeyGen(〈p,
G, G̃,Gt, e, g , g̃〉,L+1,L+1) and, for i ∈ [1, `], we compute sig i ← Sign(sk ,
〈g(i−1)L+1, . . . , g(i−1)L+L, g i, g̃(i−1)L+1, . . . , g̃(i−1)L+L, g̃sid 〉), where sid is

the session identi�er. We remark that these signatures do not need to be updated

when the database is updated.

Let (U1, . . . , UL+1, V,W1, . . . ,WL+1, Z) be the public key of the signa-

ture scheme. Let (R,S, T ) be a signature on (g(i−1)L+1, . . . , g(i−1)L+L, g i,
g̃(i−1)L+1, . . . , g̃(i−1)L+L, g̃sid ). Let (g , h) be the parameters of the Pedersen

commitment scheme. R involves proofs about secret bases, and we use the transfor-

mation described above for those proofs. The base h is also used to randomize secret

bases in G, and another base h̃ ← G̃ is added to randomize bases in G̃. Following

the notation in [24], we describe the proof as follows.

Ki, openi , 〈vi,j , openi,j , g(i−1)L+j , g̃(i−1)L+j〉∀j∈[1,L],wI , R, S, T :
com ′i = g ihopeni ∧ 〈com ′i,j = gvi,jhopeni,j 〉∀j∈[1,L] ∧ (9.1)

e(R, V )e(S, g̃)(
∏

j∈[1,L]

e(g(i−1)L+j ,Wj))e(g ,WL+1)ie(g, Z)−1 = 1 ∧

(9.2)

e(R, T )(
∏

j∈[1,L]

e(Uj , g̃(i−1)L+j))e(UL+1, g̃sid )e(g , g̃)−1 = 1 ∧

(9.3)

e

 vc∏
j∈[1,L] gvi,j

(i−1)L+j
,
∏

j∈[1,L]

g̃(i−1)L+j

 = e(wI , g̃) (9.4)

Equation 9.1 proves knowledge of the openings of the Pedersen commitments

com ′i and 〈com ′i,j〉∀j∈[1,L]. Equation 9.2 and Equation 9.3 prove knowledge of a

signature (R,S, T ) on a message (g(i−1)L+1, . . . , g(i−1)L+L, g i, g̃(i−1)L+1, . . . ,

g̃(i−1)L+L, g̃sid ). Equation 9.4 proves that the values 〈vi,j〉∀j∈[1,L] in 〈com ′i,j〉∀j∈[1,L]
are equal to the values committed in the positions I = f(i) = {(i − 1)L +
1, . . . , (i− 1)L + L} of the vector commitment vc.

When a range of indices [imin, imax] always stores (i.e., even after database

updates) the same tuple [vi,1, . . . , vi,L], we can improve storage e�ciency as fol-
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lows: we compute signatures on tuples (g(i′−1)L+1, . . . , g(i′−1)L+L, g imin , g imax ,
g̃(i′−1)L+1, . . . , g̃(i′−1)L+L, g̃sid ) that bind all the indices in [imin, imax] with the

bases for the positions where the tuple is stored. (i′ is used to denote the position

in the SVC where the tuple is stored.) Then, in the UC ZK proof for R, we add a

range proof to prove that i ∈ [imin, imax], where i is committed to in com ′i , to

prove that we are opening the right subvector for i.

9.6.4 Efficiency Analysis

We analyse the storage, communication, and computation costs of our instantiation

of ΠUUD.

9.6.4.1 Storage Costs

AnyRk and U store the common reference string, whose size grows quadratically

with N . Throughout protocol execution,Rk and U also store the last updated

values of vc and the committed vector.Rk stores the openings wI . In conclusion,

the storage cost is quadratic in N × L.

9.6.4.2 Communication Costs

In the uud.update interface, U sends the tuples (i, vi,1, . . . , vi,L)∀i∈[1,N ], which

are retrieved byRk in the uud.getdb interface. The communication cost is linear in

the number of entries updated, except for the �rst update in which all entries must

be initialized. In the uud.read interface,Rk sends an instance and a ZK proof toU .

The size of the witness and of the instance grows linearly with L but is independent

of N . In conclusion, after the �rst update phase, the communication cost does not

depend on N .

9.6.4.3 Computation Costs

In the uud.update and uud.getdb interfaces,U andRk update vc with cost linear

in the number t of updates, except for the �rst update where all positions are

initialized.Rk also updates the stored openings wI with cost linear in t × L. In

the uud.read interface, if wI is not stored,Rk computes it with cost that grows

linearly with N × L. However, if wI is stored, the computation cost of the proof

grows linearly with L but is independent of N .

It is possible to defer opening updates to the uud.read interface, so as to only

update openings that are actually needed to compute ZK proofs. Thanks to that, the

computation cost in the uud.getdb interface is independent of N . In the uud.read
interface, if wI is stored but needs to be updated, the computation cost grows

linearly with t× L, but it is independent of N . The only overhead introduced by

deferring opening updates is the need to store the tuples (i, vi,1, . . . , vi,L)∀i∈[1,N ].
In summary, after initialization of vc and the openings wI , the communication

and computation costs are independent of N , so in terms of communication and

computation our instantiation of ΠUUD is practical for large databases.
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interface

N = 50

L = 10

N = 100

L = 5

N = 100

L = 15

N = 150

L = 10

N = 200

L = 5

N = 200

L = 15

Setup 61.35 61.37 553.71 554.52 249.61 2205.72

Update 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001

Getdb 0.0004 0.0004 0.0006 0.0004 0.0003 0.0004

Computation of vc 0.0371 0.0350 0.1093 0.1035 0.0707 0.2145

One value update of vc 1.59e-05 1.59e-05 1.71e-05 1.99e-05 1.69e-05 1.59e-05

Computation of wI 0.3491 0.1753 1.5659 1.0485 0.3513 3.1330

One value update of wI 0.0002 0.0001 0.0003 0.0002 0.0001 0.0003

Read proof (1024-bit key) 3.6737 2.1903 4.9621 3.6811 2.1164 5.0268

Read proof (2048-bit key) 16.6220 10.6786 25.2909 16.8730 9.8916 23.4896

Table 9.1: ΠUUD execution times in seconds.

9.6.5 Implementation and Efficiency Measurements

We have implemented our instantiation of ΠUUD in the Python programming

language, using the Charm cryptographic framework [4], on a computer equipped

with an Intel Core i5-7300U CPU clocked at 2.60 GHz, and 8 gigabytes of RAM.

The BN256 curve was used for the pairing group setup.

To compute UC ZK proofs forRk, we use the compiler in [24]. The public pa-

rameters of the proof system contain a public key of the Paillier encryption scheme,

the parameters for a multi-integer commitment scheme, and the speci�cation of a

DSA group. (We refer the reader to [24] for a description of how these primitives

are used in the compiler.) The cost of a proof depends on the number of elements in

the witness and on the number of equations. The computation cost for the prover

of a Σ-protocol forRk involves one evaluation of each of the equations and one

multiplication per value in the witness. The compiler in [24] extends a Σ-protocol

and requires, additionally, a computation of a multi-integer commitment that com-

mits to the values in the witness, an evaluation of a Paillier encryption for each

of the values in the witness, a Σ-protocol to prove that the commitment and the

encryptions are correctly generated, and 3 exponentiations in the DSA group. The

computation cost for the veri�er, as well as the communication cost, also depends

on the number of values in the witness, and on the number of equations. Therefore,

as the number of values in the witness and the number of equations is independent

of N in our proof for relation R, the computation and communication costs of

our proof do not depend on N .

Table 9.1 lists the execution times of the uud.update and uud.getdb interfaces,

the computation costs for read proofs, and the costs for computing and updating wI
and vc, in our implementation, in seconds. The execution times of the interfaces

of the protocol have been evaluated against the size N of the database, and the

size of each entry L of the database. In the setup phase, the public parameters of

all the building blocks are computed, and the database is set up by computing

vc. In the second and third rows of Table 9.1, we depict the execution times for

the uud.update and uud.getdb interfaces for the updater U , and a reader Rk
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respectively, after the update of a single value in an entry of the database. In the

fourth row of Table 9.1, we show the cost of computing vc, and as can be seen from

these values, the computation times for vc depend on the total number of values

N × L in the database. However, the cost of updating vc is very small, and linear

in the number t of updates, and this in turn results in small computation costs

for the uud.update interface, independent of N . The cost of computation of wI
also depends on the total number of values N × L in the database, while the cost

of updating wI is linear in t× L, and thus the execution times for the uud.getdb
interface (which involves the updates of stored witnesses, in addition to the update

of vc as in the case of the uud.update interface) are also small.

In the last two rows of Table 9.1, we show the computation costs for a read

proof. These values have been evaluated against varying key lengths for the Paillier

encryption scheme used in the proof system in our instantiation of ΠUUD. The

execution times for the read interface depend greatly upon the security parameters

of the Paillier encryption scheme, and increase linearly with the entry size of the

database L. However, the execution times are independent of the database size N .

9.7 variants

• It is straightforward to modify the uud.read interface to allowRk to read

several database entries simultaneously. This variant allows us to reduce

communication rounds whenRk needs to read more than one entry simul-

taneously.

• FUUD can also be modi�ed to interact with two parties such that both of

them can read and update the database, or such that a party reads and updates

and the other party receives read and update operations.



10SUMMARY

Table 10.1 provides an overview of the data structures set out in this thesis, the

security properties they guarantee, and the operations they support. The notation

proposed in Part IV can be used to produce speci�cations of these data structures

and the statements to be proved during the course of execution of their operations,

and the SZK compiler described in Part IV can be used to produce an implementa-

tion of the data structure and proof functionalities in question, on receiving the

speci�cation as input.

security property cd ucd nicd uuhd ud uud

Zero Knowledge

Binding

Unlinkability

Consistency

Hiding

Unforgeability

operations

Read

Write

Update

Table 10.1: An overview of our data structures and the security properties they provide.

Part III exempli�es the possibility of using these data structures for real world

applications by describing several privacy preserving protocols that use them as

building blocks.
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Part III

STATEFUL ZERO -KNOWLEDGE PROTOCOLS

We describe privacy preserving protocols that use the Stateful Zero

Knowledge (SZK) data structures from Part II as building blocks.





11PR ICED OBL IV IOUS TRANSFER WITH STAT I ST ICS
AND DYNAMIC PR IC ING

Joint work with Maria Dubovitskaya and Alfredo Rial. This protocol was published
in a paper presented at INDOCRYPT in 2019 [35]. This protocol makes use of the
functionalities FCD and FUD from Chapter 4 and Chapter 8 respectively. Repro-
duced with permission from Springer Nature.

11.1 introduction

A POT [3] protocol is a cryptographic protocol between a seller or vendor V and a

buyer B that can be used to protect privacy in e-commerce applications. V sells N
items (represented as messages) 〈mn〉Nn=1 with prices 〈pn〉Nn=1 assigned to them.

At any transfer phase, B chooses an index σ ∈ [1,N ] and purchases the message

mσ . Security forB ensures that V does not learn the index σ or the price pσ paid by

B. Security for V ensures that B pays the correct price pσ for the message mσ and

that B does not learn any information about the messages that are not purchased.

Typically, POT schemes use a prepaid mechanism [3, 10, 18, 82, 85, 86]. Bmakes

an initial deposit dep to V , revealing the amount dep to V . B and V can use an

existing payment mechanism of their choice to carry out this transaction. After the

deposit phase, whenB purchases a message mσ , the price pσ is subtracted from the

deposit, but the POT protocol ensures that:

1. V does not learn the new value dep′ = dep − pσ of the deposit, and,

2. dep′ ≥ 0.

lack of modular design. POT schemes [3, 10, 18, 82, 85, 86] have so far

been built by extending an existing OT scheme. OT is a protocol between a sender E
and a receiverR. E inputs N messages 〈mn〉Nn=1. At each transfer phase,R obtains

the message mσ for her choice σ ∈ [1,N ]. E does not learn σ, whileR does not

learn any information about other messages.

In OT schemes that have been used to build POT schemes, the interaction between

E andR consists of an initialization phase followed by several transfer phases. In the

initialization phase, E encrypts messages 〈mn〉Nn=1 and sends the list of ciphertexts

toR. In each transfer phase,R, on input σ, computes a blinded request for E . E
sends a response that allowsR to decrypt the ciphertext that encrypts mσ .

Roughly speaking, to construct a POT scheme from an OT scheme, the OT scheme

is typically extended as follows: �rst, in the initialization phase, the computation

of the ciphertexts is modi�ed in order to bind them to the prices of the encrypted

messages, e.g. by using a signature scheme. Second, a deposit phase, where B sends

an initial deposit to V , is added. As a result of this deposit phase, V and B output

a commitment or encryption to the deposit dep. Third, in each transfer phase,

the request computed in the OT scheme is extended by B in order to send to V an
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encryption or commitment to the new value dep′ of the deposit and to prove to V
(e.g. by using a zero-knowledge proof) that dep′ = dep − pσ and that dep ′ ≥ 0.

The main drawback of the design of existing POT schemes is a lack of modularity.

Though each POT scheme is based on an underlying OT scheme, the latter is not used

as a black-box building block. Instead, every OT scheme is modi�ed and extended

ad-hoc to create the POT scheme, blurring the line between the components that

were present in the original OT scheme and the components which were added to

create the POT scheme.

This lack of modularity results in two disadvantages: �rst, existing POT schemes

cannot easily be modi�ed to use another OT scheme as a building block, for example,

a more e�cient one. Second, every time a new POT scheme is designed, the proofs

need to be built from scratch. This means that the security of the underlying OT

scheme will be reanalysed instead of relying on its security guarantees. This is error-

prone.

lack of purchase statistics. POT schemes [3, 10, 18, 82, 85, 86] ef-

fectively prevent V from learning what messages are purchased by B. Although

this is a nice privacy feature for B, customer and sales management becomes more

di�cult for V . For example, V is not able to learn which items are in more demand

by buyers and which ones sell poorly. As another example, V cannot use marketing

techniques like o�ering discounts that depend on the previous purchases of a buyer.

It would be desirable that, whilst protecting the privacy of each individual purchase,

V could obtain aggregate statistics about B’s purchases.

lack of dynamic pricing. In existing POT schemes [3, 10, 18, 82, 85,

86], the price of a message is static, i.e. each message is associated with a price in

the initialization phase and that price cannot change afterwards. In practical e-

commerce settings, this is undesirable because sellers would like to be able to change

the price of a product easily. However, modifying existing POT schemes to allow

sellers to change the prices of messages at any time throughout protocol execution

is not straightforward and would require rerunning the initialization phase.

11.1.1 Our Contribution

functionality FPOTS . We use the Universal Composability (UC) frame-

work [29] to describe an ideal functionalityFPOTS for priced oblivious transfer

with purchase statistics and dynamic pricing. We modify a standard POT function-

ality to enable aggregate statistics and dynamic pricing.

Existing functionalities for POT [18, 85] consist of three interfaces: an initialization

interface where V sends the messages 〈mn〉Nn=1 and the prices 〈pn〉Nn=1 to the

functionality; a deposit interface where B sends a deposit dep to the functionality,

which reveals dep to V ; and a transfer interface whereB sends an index σ ∈ [1,N ]
to the functionality and receives the message mσ from the functionality if the

current deposit is higher than the price of the message. The functionality stores the

updated value of the deposit.

Our functionality FPOTS modi�es the initialization interface so that V only

inputs the messages 〈mn〉Nn=1. Additionally, this interface can be invoked multiple

times to send di�erent tuples 〈mn〉Nn=1 of messages, where each tuple is associated
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with a unique epoch identi�er ep. The idea is that messages of di�erent epochs

but with the same message index correspond to the same type or category of items.

(This happens, e.g. when using POT to construct a conditional access system for pay-

TV [10].)FPOTS also modi�es the transfer interface in order to store the number

of times B purchases items of each of the types or categories.

Moreover, FPOTS adds three new interfaces: a “setup price” interface where

V inputs the prices, an “update price” interface where V modi�es the price of a

message, and a “reveal statistic” interface whereFPOTS reveals to V the value of a

statistic about the purchases of B.

We propose a scheme ΠPOTS that realizesFPOTS. ΠPOTS is designed modularly

and provides purchase statistics and dynamic pricing, as described below.

modular design. In the UC framework, protocols can be described modu-

larly by using a hybrid model where parties invoke the ideal functionalities of the

building blocks of a protocol. For example, consider a protocol that uses as building

blocks a zero-knowledge proof of knowledge and a signature scheme. In a modular

description of this protocol in the hybrid model, parties in the real world invoke

the ideal functionalities for zero-knowledge proofs and for signatures.

We describe ΠPOTS modularly in the hybrid model. Therefore, V and B in

the real world invoke only ideal functionalities for the building blocks of ΠPOTS.

Interestingly, one of the building blocks used in ΠPOTS is the ideal functionality

for oblivious transferFOT. Thanks to that, ΠPOTS separates the task that is carried

out by the underlying OT scheme from the additional tasks that are needed to create

a POT scheme.

The advantages of a modular design are twofold. First, ΠPOTS can be instanti-

ated with any secure OT scheme, i.e., any scheme that realizesFOT. The remaining

building blocks can also be instantiated with any scheme that realizes their corre-

sponding ideal functionalities, leading to multiple possible instantiations of ΠPOTS.

Second, the security analysis in the hybrid model is simpler and does not require a

reanalysis of the security of the building blocks.

One challenge when describing a UC protocol in the hybrid model is that the

need arises to ensure that two or more ideal functionalities receive the same input.

For example, in ΠPOTS, it is necessary to enforce that B sends the same index

σ ∈ [1,N ] to the transfer interface ofFOT and to another functionalityFUD that

binds σ to the price pσ . Otherwise, if an adversarial buyer sends di�erent indexes

σ and σ′ toFOT andFUD, B could obtain the message mσ and pay an incorrect

price pσ′ . To address this issue, we use the method proposed in [20] and described

in Section 2.9, which uses a functionalityFNIC for non-interactive commitments.

purchase statistics. In ΠPOTS, V can input multiple tuples 〈mn〉Nn=1
of messages. We consider that messages associated with the same index σ belong to

the same category.

ΠPOTS allowsB to reveal toV information related to how many purchases were

made for each of the item categories. B stores a table Tblst of counters of how

many purchases were made for each category. Tblst contains position-value entries

[σ, vσ], where σ ∈ [1,N ] is the category index and vσ is the counter. Any time a

message mσ is purchased, the counter for category σ is incremented in Tblst. At

any time throughout the execution of ΠPOTS,B can choose a statistic ST, evaluate

it on input Tblst and reveal to V the result.
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Additionally, B must prove to V that the result is correct, and thus we need

a mechanism that allows V to keep track of the purchases made by B, without

learning them. For this purpose, ΠPOTS uses the functionality for a committed

databaseFCD described in Chapter 4.FCD stores the table Tblst of counters and

allows B to read the counters from Tblst and to write updated counters into Tblst
each time a purchase is made. V does not learn any information read or written but

is guaranteed of the correctness of that information.FCD allows B to hide from V
not only the value of counters read or written, but also the positions where they are

read or written into Tblst. This is a crucial property to construct ΠPOTS, because

the position read or written is equal to the index σ, which needs to be hidden from

V in order to hide what message is purchased. The method in [20] is used to ensure

that the index σ is the same both for the counter vσ incremented inFCD and for

the message mσ obtained throughFOT. In [21], an e�cient construction forFCD
based on vector commitments (VC) [32, 69] is provided, where a VC commits to a

vector x such that x[σ] = vσ for σ ∈ [1,N ]. In this construction, after setup, the

e�ciency of the read and write operations does not depend on the size of the table,

which yields e�cient instantiations of ΠPOTS when N is large.

We note that V could be more interested in gathering aggregated statistics about

multiple buyers rather than a single buyer. Interestingly, ΠPOTS opens up that

possibility. The functionalitiesFCD used between V and each of the buyers can

be used in a secure multiparty computation (MPC) protocol for the required

statistic. In this MPC, each buyer usesFCD to read and prove correctness of the

information about her purchases. With the instantiation ofFCD based on a VC

scheme, V and the buyers would run a secure MPC protocol where V inputs one

vector commitment for each buyer and each buyer inputs the committed vector

and the opening.

dynamic pricing. In existing POT schemes [3, 10, 18, 82, 85, 86], when V
encrypts the messages 〈mn〉Nn=1 in the initialization phase, the price of the encrypted

message is somehow bound to the corresponding ciphertext. This binding is done

in such a way that, when B computes a request to purchase a message mσ , V is

guaranteed that the correct price pσ is subtracted from the deposit while still not

learning pσ . In some schemes, V uses a signature scheme to sign the prices in the

initialization phase, and B uses a zero-knowledge proof of signature possession to

compute the request.

It would be possible to modify the initialization phase of these schemes so that

ciphertexts on the messages 〈mn〉Nn=1 are computed independently of the signatures

on the prices 〈pn〉Nn=1, yet enforcing that requests computed byB use the right price

pσ for the requested index σ. (For example, both the ciphertext and the signature

could embed the index σ, andB, as part of a request, would be required to prove in

zero-knowledge that the indices in the ciphertext and in the signature are equal.)

This would allow V to modify the prices of messages by issuing new signatures,

without needing to re-encrypt the messages. However, this mechanism to update

prices would also require some method to revoke previous signatures, which would

heavily a�ect the e�ciency of the ΠPOTS protocol.

Instead, we use the functionalityFUD for an updatable database described in

Chapter 8.FUD stores a database DB with entries [σ, pσ], where σ ∈ [1,N ] is an

index and pσ is a price. V sets the initial values of DB and is also able to modify

DB at any time. B knows the contents of DB but cannot modify them. When
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purchasing a message of index σ, B reads fromFUD the entry [σ, pσ]. V does not

learn any information about the entry read, yet V is guaranteed that a valid entry is

read. As in the case ofFCD, we stress thatFUD reveals to V neither the position

σ nor the value pσ , and that the method in [20] is used to prove that the index σ
received byFUD and byFOT are the same. In [38], an e�cient construction for

FUD based on a non-hiding VC scheme [32, 69] is provided, where a non-hiding

VC commits to a vectorx such thatx[σ] = pσ forσ ∈ [1,N ]. In this construction,

after setup, the e�ciency of the read and write operations does not depend on the

size of the table, which yields e�cient instantiations of ΠPOTS when N is large.

Though it might seem that dynamic pricing undermines buyer privacy in com-

parison to existing POT schemes, e.g. when an adversarial V o�ers di�erent prices

to each of the buyers and changes them dynamically in order to narrow down the

messages that a buyer could purchase, this is not the case. In existing POT schemes,

a seller is also able to o�er di�erent prices to each buyer, and to change them dy-

namically by restarting the protocol. The countermeasure, for both ΠPOTS and

other POT schemes, is to have lists of prices available through a secure bulletin

board where buyers can check that the prices they are o�ered are equal to those for

other buyers.

11.2 related work

POT was initially proposed in [3]. The POT scheme in [3] is secure in a half-

simulation model, where a simulation-based security de�nition is used to protect

seller security, while an indistinguishability based security de�nition is used to

protect buyer privacy. Later, POT schemes in the full-simulation model [18] and

UC-secure schemes [85] were proposed. The scheme in [18] provides unlinkability

between V and B, i.e., V cannot link interactions with the same buyer.

We de�ne security for POT in the UC model, like [85], and our protocol does not

provide unlinkability, unlike [18] or the PIR-based scheme in [55]. Although unlink-

ability is important in some settings, an unlinkable POT scheme would require the

use of an anonymous communication network and, in the deposit phase, it would

hinder the use of widespread payment mechanisms that require authentication.

Therefore, because one of the goals of this work is to facilitate sellers’ deployment

of POT schemes, we chose to describe a scheme that does not provide unlinkability.

The use of POT as a building block in e-commerce applications in order to protect

buyer privacy has been described, e.g. in the context of buyer-seller watermarking

protocols for copyright protection [82] and conditional access systems for pay-

TV [10]. Our POT protocol is suitable to be used in any of the proposed settings,

and it provides additional functionalities toV . In [86], a transformation that takes a

POT scheme and produces a POT scheme with optimistic fair exchange is proposed.

This transformation can also be used with our POT scheme.

Oblivious Transfer with Access Control (OTAC) [17, 33] is a generalization of

oblivious transfer where messages are associated with access control policies. In order

to obtain a message, a receiver must prove that she ful�ls the requirements described

in the associated access control policy. In some schemes, access control policies are

public [17, 33, 66, 100], while other schemes hide them from the receiver [16, 19].

POT could be seen as a particular case of OTAC with public access control policies.

In POT, the public access control policy thatBmust ful�l to get a message is de�ned
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as her current deposit being higher than the price of the message. However, existing

OTAC schemes cannot straightforwardly be converted into a POT scheme. This is

due to the fact that in adaptive POT, the ful�lment of a policy by B depends on

the history of purchases and deposits of B, i.e., whether the current deposit of B
allows her to buy a message depends on how much B deposited and spent before.

Therefore, POT schemes need to implement a mechanism that allows V to keep

track of the current deposit of B without learning it, such as a commitment or an

encryption of the deposit that is updated by B at each deposit or purchase phase.

In contrast, existing OTAC schemes do not provide such a mechanism. In theseOur POT protocol uses
functionality FCD to

store the deposit, in
addition to the counters

of purchases.

schemes, a third party named an "issuer" usually certi�es the attributes of a receiver,

and the receiver may then use these certi�cations to prove that she ful�ls an access

control policy.

The oblivious language-based envelope (OLBE) framework in [12] generalizes

POT, OTAC and similar protocols like conditional OT. However, as in the case of

OTAC schemes, the instantiation of POT in the OLBE framework is only straight-

forward for non-adaptive POT schemes, where V does not need to keep track of the

deposit of B.

Privacy protection in e-commerce can also be provided by other protocols that of-

fer anonymity/unlinkability. Here the goal is to protect the identity ofB rather than

the identity of the items purchased. Most solutions involve anonymous payment

methods [22] and anonymous communication networks [42].

11.3 ideal functionality

We depict our functionalityFPOTS for POT with purchase statistics and dynamic

pricing. FPOTS interacts with a seller V and with a buyer B and consists of the

following interfaces:

1. V uses the pot.init interface to send a list of messages 〈mn〉Nn=1 and an

epoch identi�er ep toFPOTS.FPOTS stores 〈mn〉Nn=1 and ep, and sends

N and ep toB. In the �rst invocation of this interface,FPOTS also initializes

a deposit dep′ and a table Tblst with entries of the form [σ, vσ], where

σ ∈ [1,Nmax] is a category and vσ is a counter of the number of purchases

made for that category.

2. V uses the pot.setupprices interface to send a list of prices 〈pn〉Nmaxn=1 to

FPOTS, where Nmax is the maximum number of messages in an epoch.

FPOTS stores 〈pn〉Nmaxn=1 and sends 〈pn〉Nmaxn=1 to B.

3. V uses the pot.updateprice interface to send an index n and a price p to

FPOTS.FPOTS updates the stored list 〈pn〉Nmaxn=1 with p at position n , and

sends n and p to B.

4. B uses the pot.deposit interface to send a deposit dep toFPOTS.FPOTS
updates the stored deposit dep′ ← dep′ + dep and sends dep to V .

5. B uses the pot.transfer interface to send an epoch ep and an index σ to

FPOTS. If dep′ ≥ pσ , FPOTS increments the counter for category σ in

Tblst and sends mσ for the epoch ep to B.
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6. B uses the pot.revealstatistic interface to send a function ST to FPOTS.

FPOTS evaluates ST on input table Tblst and sends the result v and ST to

V . ST may be any function from a universe Ψ .

In previous functionalities for POT [18, 85], V sends the messages and prices

through the pot.init interface. In contrast,FPOTS uses the pot.setupprices and

pot.updateprice interfaces to send and update the prices. This change allows for the

design of a protocol whereV can update prices without rerunning the initialization

phase. We also note that, inFPOTS, all the messages mσ of the same categoryσ have

the same price for any epoch. The idea here is that messages of the same category

represent the same type of content, which is updated by V at each new epoch.

Nevertheless, it is straightforward to modifyFPOTS so that V can send a new list

of prices for each epoch. Our construction in Section 11.4 can easily be modi�ed to

allow di�erent prices for each epoch.

FPOTS initializes a counter ctv and a counter ctb in the pot.setupprices in-

terface. ctv is incremented each time V sends the update of a price, and ctb is

incremented each time B receives the update of a price. These counters are used

by FPOTS to check that V and B have the same list of prices. We note that the

simulator S , when queried by FPOTS, may not reply or may provide a delayed

response, which could prevent price updates sent by V from being received by B.

The session identi�er sid has the structure (V,B, sid ′). This allows any vendor

V to create an instance ofFPOTS with any buyer B. After the �rst invocation of

FPOTS,FPOTS implicitly checks if the session identi�er in a message is equal to

the one received in the �rst invocation.

When invoked by V or B,FPOTS �rst checks the correctness of the input. Con-

cretely,FPOTS aborts if this input does not belong to the correct domain.FPOTS
also aborts if an interface is invoked at an incorrect moment in the protocol. For ex-

ample,V cannot invoke pot.updateprice before pot.setupprices. Similar abortion

conditions are listed whenFPOTS receives a message from the simulator S .

BeforeFPOTS queries S ,FPOTS saves its state, which is recovered when receiv-

ing a response from S . When an interface, e.g. pot.updateprice, can be invoked

more than once, FPOTS creates a query identi�er qid , which allows FPOTS to

match a query to S to a response from S . Creating qid is not necessary if an in-

terface, such as pot.setupprices, can be invoked only once, or if it can be invoked

only once with a concrete input revealed to S , such as pot.init, which is invoked

only once per epoch.

Compared to previous functionalities for POT,FPOTS looks more complex, as

we list all the conditions for abortion and becauseFPOTS saves state information

before querying S and recovers it after receiving a response from S . These opera-

tions are also required but have frequently been omitted in the description of ideal

functionalities in literature. We describeFPOTS below.

Figure 11.1: FunctionalityFPOTS

FunctionalityFPOTS runs with a seller V and a buyer B, and is parameter-

ized with a maximum number of messagesNmax, a message spaceM, a

maximum deposit value depmax, a maximum pricePmax, and a universe

of statistics Ψ that consists of ppt algorithms.

1. On input (pot.init.ini, sid , ep, 〈mn〉Nn=1) from V :
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• Abort if sid /∈ (V,B, sid ′).

• Abort if (sid , ep ′, 〈mn〉Nn=1, 0), where ep′ = ep, is already

stored.

• Abort if N >Nmax, or if for n = 1 to N , mn /∈M.

• Store (sid , ep, 〈mn〉Nn=1, 0).

• Send (pot.init.sim, sid , ep,N ) to S .

S. On input (pot.init.rep, sid , ep) from S :

• Abort if (sid , ep, 〈mn〉Nn=1, 0) is not stored, or if

(sid , ep, 〈mn〉Nn=1, 1) is already stored.

• If a tuple (sid ,Tblst) is not stored, initialize dep′ ← 0 and

a table Tblst with entries [i, 0] for i = 1 toNmax, and store

(sid , dep ′,Tblst).

• Store (sid , ep, 〈mn〉Nn=1, 1).

• Send (pot.init.end, sid , ep,N ) to B.

2. On input (pot.setupprices.ini, sid , 〈pn〉Nmaxn=1 ) from V :

• Abort if sid /∈ (V,B, sid ′) or if (sid , 〈pn〉Nmaxn=1 , ctv ) is al-

ready stored.

• Abort if, for n = 1 toNmax, pn /∈ (0,Pmax].
• Initialize a counter ctv ← 0 and store (sid , 〈pn〉Nmaxn=1 , ctv ).

• Send (pot.setupprices.sim, sid , 〈pn〉Nmaxn=1 ) to S .

S. On input (pot.setupprices.rep, sid) from S :

• Abort if (sid , 〈pn〉Nmaxn=1 , ctv ) is not stored, or if (sid ,
〈pn〉Nmaxn=1 , ctb) is already stored.

• Initialize a counter ctb ← 0 and store (sid , 〈pn〉Nmaxn=1 , ctb).

• Send (pot.setupprices.end, sid , 〈pn〉Nmaxn=1 ) to B.

3. On input (pot.updateprice.ini, sid ,n, p) from V :

• Abort if (sid , 〈pn〉Nmaxn=1 , ctv ) is not stored.

• Abort if n /∈ [1,Nmax], or if p /∈ (0,Pmax].
• Increment ctv , set pn ← p and store them into the tuple

(sid , 〈pn〉Nmaxn=1 , ctv ).

• Create a fresh qid and store (qid ,n, p, ctv ).

• Send (pot.updateprice.sim, sid , qid ,n, p) to S .

S. On input (pot.updateprice.rep, sid , qid) from S :

• Abort if (qid ,n, p, ctv ) is not stored, or if

(sid , 〈pn〉Nmaxn=1 , ctb) is not stored, or if ctv 6= ctb + 1.
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• Increment ctb , set pn ← p, and store them into the tuple

(sid , 〈pn〉Nmaxn=1 , ctb).

• Delete the record (qid ,n, p, ctv ).

• Send (pot.updateprice.end, sid ,n, p) to B.

4. On input (pot.deposit.ini, sid , dep) from B:

• Abort if (sid , dep′,Tblst) is not stored, or if dep′ + dep /∈
[0, depmax].

• Create a fresh qid and store (qid , dep).

• Send (pot.deposit.sim, sid , qid) to S .

S. On input (pot.deposit.rep, sid , qid) from S :

• Abort if (qid , dep) is not stored.

• Set dep ′ ← dep′ + dep and update (sid , dep′,Tblst).

• Delete the record (qid , dep).

• Send (pot.deposit.end, sid , dep) to V .

5. On input (pot.transfer.ini, sid , ep, σ) from B:

• Abort if (sid , ep′, 〈mn〉Nn=1, 1) for ep′ = ep is not stored.

• Abort if (sid , 〈pn〉Nmaxn=1 , ctb) and (sid , 〈pn〉Nmaxn=1 , ctv ) are

not stored, or if ctb 6= ctv .

• Abort if σ /∈ [1,N ], or if dep′ < pσ , where dep′ is stored in

(sid , dep ′,Tblst).

• Create a fresh qid and store (qid , ep, σ,mσ).

• Send (pot.transfer.sim, sid , qid , ep) to S .

S. On input (pot.transfer.rep, sid , qid) from S :

• Abort if (qid , ep, σ,mσ) is not stored.

• Set dep′ ← dep′ − pσ , increment vσ for the entry [σ, vσ] in

Tblst, and update (sid , dep′,Tblst).

• Delete the record (qid , ep, σ,mσ).

• Send (pot.transfer.end, sid ,mσ) to B.

6. On input (pot.revealstatistic.ini, sid , ST) from B:

• Abort if (sid , dep ′,Tblst) is not stored.

• Abort if ST /∈ Ψ .

• Set v ← ST(Tblst).

• Create a fresh qid and store (qid , v,ST).

• Send (pot.revealstatistic.sim, sid , qid) to S .

S. On input (pot.revealstatistic.rep, sid , qid) from S :
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• Abort if (qid , v,ST) is not stored.

• Delete the record (qid , v,ST).

• Send (pot.revealstatistic.end, sid , v,ST) to V .

11.4 construction

intuition. For each epoch ep, V and B use a new instance ofFOT. In the

pot.init interface, V uses ot.init to create a new instance of FOT on input the

messages 〈mn〉Nn=1. In the pot.transfer interface, B uses ot.request on input an

index σ and receives the message mσ through the ot.transfer interface.

To construct a POT protocol based onFOT, V must set the prices, and Bmust

make deposits and pay for the messages obtained. Additionally, our POT protocol

allows V to receive aggregate statistics on purchases.

prices. To set prices, V uses FDB. In the pot.setupprices interface, the seller

V uses ud.update.ini to create an instance ofFDB on input a list of prices

〈pn〉Nmaxn=1 , which are stored in the tableDB inFDB. In the pot.updateprice
interface, V uses ud.update.ini to update a price in the table DB.

deposits. FCD is used to store the current funds dep ′ of B. In the pot.init
interface, V uses cd.setup to create an instance of FCD on input a table

Tblcd that contains a 0 at every position. The position 0 of Tblcd is used

to store dep′. In the pot.deposit interface, B makes deposits dep to V ,

which are added to the existing funds dep′. B usesFRdep
ZK to prove in zero-To carry out the

payment of dep, V
and B use a payment

mechanism outside the
POT protocol.

knowledge toV that the deposit is updated correctly as dep′ ← dep′+ dep.

The interfaces cd.read and cd.write are used to read dep′ and to write the

updated value of dep′ into Tblcd.

payments. In the pot.transfer interface, Bmust subtract the price pσ for the

purchased message mσ from the current funds dep′. B uses ud.read to

read the correct price pσ from DB. Then B uses FRtrans
ZK to prove in zero-

knowledge that dep′ ← dep′ − pσ . The interfaces cd.read and cd.write
ofFCD are used to read dep′ and to write the updated value of dep′ into

Tblcd.

statistics. FCD is used to store counters on the number of purchases of each

item category in the positions [1,Nmax] of table Tblcd. In the pot.transfer
interface,B uses cd.read to read the table entry [σ, count1] in Tblcd, where

σ is the index of the message purchased mσ and count1 is the counter for

that category.B computes count2 ← count1 +1 and usesFRcount
ZK to prove

in zero-knowledge that the counter is correctly incremented. Then B uses

cd.write to write the entry [σ, count2] in Tblcd. In the pot.revealstatistic
interface, B usesFRST

ZK to prove in zero-knowledge to V that a statistic v is

the result of evaluating a function ST on input Tblcd. For this purpose, B
uses cd.read to read the required table entries in Tblcd.
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Figure 11.2: Construction ΠPOTS

ΠPOTS uses FAUT, FSMT, FNIC, FR
ZK, and FOT from Chapter 2, and

FCD andFUD from Chapter 4 and Chapter 8 respectively. ΠPOTS is pa-

rameterized with a maximum number of messagesNmax, a message space

M, a maximum deposit value depmax, a maximum price Pmax, and a

universe of statistics Ψ consisting of ppt algorithms.

1. On input (pot.init.ini, sid , ep, 〈mn〉Nn=1), V and B do the follow-

ing:

• V aborts if sid /∈ (V,B, sid ′).

• V aborts if (sid , ep ′,N ) is already stored for ep ′ = ep, else

stores (sid , ep,N ).

• V aborts if N >Nmax, or if for n = 1 to N , mn /∈M.

• If this is the �rst execution of this interface, V and B do the

following:

– V sets a table Tblcd ofNmax entries where each entry is

of the form [i, 0] for i = 0 toNmax.

– V sends (cd.setup.ini, sid ,Tblcd) to a new instance of

FCD.

– B receives (cd.setup.end, sid ,Tblcd) fromFCD.

– If (sid ,Tblcd) is already stored or if, for i = 0 toNmax,

there exists an entry [i, v] in Tblcd such that v 6= 0, B
aborts, else B stores (sid ,Tblcd).

– B sets sidAUT ← (B,V, sid ′) and sends (aut.send.ini,
sidAUT, 〈setup〉) toFAUT.

– V receives (aut.send.end, sidAUT, 〈setup〉) from

FAUT.

• V sets sidOT ← (sid , ep).

• V sends (ot.init.ini, sidOT, 〈mn〉Nn=1) to a new instance of

FOT.

• B receives (ot.init.end, sidOT,N ) from the instance ofFOT.

• B takes ep from sidOT and stores (sid , ep,N ).

• B outputs (pot.init.end, sid , ep,N ).

2. On input (pot.setupprices.ini, sid , 〈pn〉Nmaxn=1 ), V and B do the

following:

• V aborts if sid /∈ (V,B, sid ′) or if (sid , 〈pn〉Nmaxn=1 ) is already

stored.

• V aborts if, for n = 1 toNmax, pn /∈ (0,Pmax].
• V stores (sid , 〈pn〉Nmaxn=1 ).

• For n = 1 toNmax, V sets a table DB with entries [n, pn ].
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• V sends (ud.update.ini, sid ,DB) to a new instance ofFUD.

• B receives (ud.update.end, sid ,DB) fromFUD.

• B parses DB as [n, pn ], for n = 1 to Nmax, and stores

(sid , 〈pn〉Nmaxn=1 ).

• B outputs (pot.setupprices.end, sid , 〈pn〉Nmaxn=1 ).

3. On input (pot.updateprice.ini, sid ,n, p), V and B do the follow-

ing:

• V aborts if (sid , 〈pn〉Nmaxn=1 ) is not stored.

• V aborts if n /∈ [1,Nmax], or if p /∈ (0,Pmax].
• For i = 1 toNmax, V sets a table DBtemp with entries [i, 0],

and [i, p] where i = n .

• V sends (ud.update.ini, sid ,DBtemp) toFUD.

• B receives (ud.update.end, sid ,DBtemp) fromFUD.

• B sets pn ← p) and updates the stored tuple (sid , 〈pn〉Nmaxn=1 ).

• B outputs (pot.updateprice.end, sid ,n, p).

4. On input (pot.deposit.ini, sid , dep), V and B do the following:

• B aborts if sid /∈ (V,B, sid ′).

• B aborts if (sid , ep,N ) is not stored for any ep.

• B retrieves [0, v] from Tblcd and sets dep1 ← v.

• B aborts if dep1 + dep /∈ [0, depmax].
• If this is the �rst execution of the deposit interface, B does the

following:

– B sends (com.setup.ini, sid) toFNIC.

– B receives (com.setup.end, sid , OK) fromFNIC.

• If (sid , comdep2 , opendep2
) is already stored, B sets

comdep1 ← comdep2 and opendep1
← opendep2

.

Otherwise, B does the following:

– B sends (com.commit.ini, sid , dep1) toFNIC.

– B receives (com.commit.end, sid , comdep1 , opendep1
)

fromFNIC.

• B sets dep2← dep1 + dep.

• B sends (com.commit.ini, sid , dep) toFNIC.

• B receives (com.commit.end, sid , comdep , opendep) from

FNIC.

• B sends (com.commit.ini, sid , dep2) toFNIC.

• B receives (com.commit.end, sid , comdep2 , opendep2
)

fromFNIC.
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• B sets witdep ← (dep, opendep , dep1, opendep1
, dep2,

opendep2
).

• B parses the commitment comdep as (com ′dep , parcom,
COM.Verify), the commitment comdep1 as (com ′dep1

,

parcom,COM.Verify), and the commitment comdep2 as

(com ′dep2
, parcom,COM.Verify).

• B sets insdep ← (parcom, com ′dep , com ′dep1
, com ′dep2

).

• B stores (sid ,witdep , insdep ,writedeposit).

The Rdep is de�ned as follows.

Rdep ={(witdep , insdep) :
1 = COM.Verify(parcom, comdep , dep, opendep)∧
1 = COM.Verify(parcom, comdep1 , dep1, opendep1

) ∧
1 = COM.Verify(parcom, comdep2 , dep2, opendep2

) ∧
dep2 = dep + dep1 ∧ dep2 ∈ [0, depmax]}

• B sets sidZK ← (B,V, sid ′), and sends

(zk.prove.ini, sidZK,witdep , insdep) to a new instance

ofFRdep
ZK .

• V receives (zk.prove.end, sidZK, insdep) fromFRdep
ZK .

• If this is the �rst execution of the deposit interface, V does the

following:

– V sends (com.setup.ini, sid) toFNIC.

– V receives (com.setup.end, sid , OK) fromFNIC.

• V parses insdep as (parcom, com ′dep , com ′dep1
, com ′dep2

).

• V sets the commitment comdep ← (com ′dep , parcom,
COM.Verify), the commitment comdep1 ← (com ′dep1

,

parcom,COM.Verify), and the commitment comdep2 ←
(com ′dep2

, parcom,COM.Verify).

• V aborts if (sid , com ′dep2
) is stored and com ′dep2

6=
comdep1 .

• If (sid , com ′dep2
) is not stored, V does the following:

– V sends (com.validate.ini, sid , comdep1) toFNIC.

– V receives (com.validate.end, sid , bdep1) fromFNIC.

– V aborts if bdep1 6= 1.

• V sends (com.validate.ini, sid , comdep2) toFNIC.

• V receives (com.validate.end, sid , bdep2) fromFNIC.

• V sends (com.validate.ini, sid , comdep) toFNIC.

• V receives (com.validate.end, sid , bdep) fromFNIC.
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• V aborts if bdep2 = bdep = 1 does not hold.

• V stores (sid , insdep).

• V sets sid ′AUT ← (sid) and sends (aut.send.ini, sid ′AUT,
〈writedeposit〉) toFAUT.

• B receives (aut.send.end, sid ′AUT, 〈writedeposit〉) from

FAUT.

• B aborts if (sid ,witdep , insdep ,writedeposit) is not stored.

• B parses insdep as (parcom, comdep , comdep1 , comdep2).

• B parses witdep as (dep, opendep , dep1, opendep1
, dep2,

opendep2
).

• B deletes (sid ,witdep , insdep ,writedeposit) and stores (sid ,
witdep , insdep , revealdeposit).

• If this is the �rst execution of this interface, B does the follow-

ing:

– B sends (com.commit.ini, sid , 0) toFNIC.

– B receives (com.commit.end, sid , com0, open0) from

FNIC.

– B stores (sid , com0, open0).

• B stores (sid , comdep2 , opendep2
).

• B sends to FCD the message (cd.write.ini, sid , com0, 0,
open0, comdep2 , dep2, opendep2

).

• V receives (cd.write.end, sid , com0, comdep2) fromFCD.

• V aborts if (sid , insdep) is not stored.

• V aborts if the commitment comdep2 in insdep is not the same

as that received fromFCD, or if com0 stored in (sid , com0)
is not the same as the commitment received fromFCD.

• V sends the message (aut.send.ini, sidAUT, 〈revealdeposit〉)
toFAUT.

• B receives (aut.send.end, sidAUT, 〈revealdeposit〉) from

FAUT.

• B aborts if (sid ,witdep , insdep , revealdeposit) is not stored.

• B deletes the record (sid ,witdep , insdep , revealdeposit).

• B updates Tblcd with [0, dep2].
• B sets sidSMT ← (B,V, sid ′).

• If this is the �rst execution of this interface, B and V do the

following:

– B sends the following message (smt.send.ini, sidSMT,
〈dep, opendep , 0, open0, dep1, opendep1

〉) to func-

tionalityFSMT.
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– V receives from functionality FSMT the following

message (smt.send.end, sidSMT, 〈dep, opendep , 0,
open0, dep1, opendep1

〉).

– V sends (com.verify.ini, sid , com0, 0, open0) toFNIC.

– V receives (com.verify.end, sid , v0) from FNIC and

aborts if v0 6= 1.

– V sends (com.verify.ini, sid , comdep1 , dep1, opendep1
)

toFNIC.

– V receives (com.verify.end, sid , vdep1) fromFNIC and

aborts if vdep1 6= 1.

– V aborts if dep1 = 0 does not hold.

• Otherwise, B and V do the following:

– B sends the message

(smt.send.ini, sidSMT, 〈dep, opendep〉) toFSMT.

– V receives (smt.send.end, sidSMT, 〈dep, opendep〉)
fromFSMT.

• V sends (com.verify.ini, sid , comdep , dep, opendep) to

FNIC.

• V receives (com.verify.end, sid , v) fromFNIC and aborts if

v 6= 1.

• V aborts if dep /∈ [0, depmax].
• V outputs (pot.deposit.end, sid , dep).

5. On input (pot.transfer.ini, sid , ep, σ), V and B do the following:

• B aborts if sid /∈ (V,B, sid ′).

• B aborts if (sid , ep,N ) is not stored, or if (sid , 〈pn〉Nmaxn=1 ) is

not stored, or if σ /∈ [1,N ].
• B retrieves [0, v] from Tblcd, and sets dep1 ← v.

• B aborts if dep1 < pσ .

• B sets comdep1 ← comdep2 and opendep1
← opendep2

.

• B sets dep2← dep1 − pσ .

• B sends (com.commit.ini, sid , dep2) toFNIC.

• B receives (com.commit.end, sid , comdep2 , opendep2
)

fromFNIC.

• B sends (com.commit.ini, sid , σ) toFNIC.

• B receives (com.commit.end, sid , comσ, openσ) from

FNIC.

• B sends (com.commit.ini, sid , pσ) toFNIC.

• B receives (com.commit.end, sid , compσ , openpσ) from

FNIC.
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• B sets wittrans ← (pσ, openpσ , dep1, opendep1
, dep2,

opendep2
).

• B parses the commitment compσ as (com ′pσ , parcom,
COM.Verify), the commitment comdep1 as (com ′dep1

,

parcom,COM.Verify), and the commitment comdep2 as

(com ′dep2
, parcom,COM.Verify).

• B sets ins trans ← (parcom, com ′pσ , com ′dep1
, com ′dep2

).

• B stores (sid ,wit trans , ins trans , readprice).

The relation Rtrans is de�ned as follows:

Rtrans ={(wit trans , ins trans) :
1 = COM.Verify(parcom, compσ , pσ, openpσ)∧
1 = COM.Verify(parcom, comdep1 , dep1, opendep1

) ∧
1 = COM.Verify(parcom, comdep2 , dep2, opendep2

) ∧
dep2 = dep1 − pσ ∧ dep2 ∈ [0, depmax]}

• B sets sidZK ← (B,V, sid ′), and sends the message

(zk.prove.ini, sidZK,wit trans , ins trans) to a new instance of

FRtrans
ZK .

• V receives (zk.prove.end, sidZK, ins trans) fromFRtrans
ZK .

• V parses ins trans as (parcom, com ′pσ , com ′dep1
, com ′dep2

, pk).

• V sets the commitment compσ ← (com ′pσ , parcom,
COM.Verify), the commitment comdep1 ← (com ′dep1

,

parcom,COM.Verify), and the commitment comdep2 ←
(com ′dep2

, parcom,COM.Verify).

• V sends (com.validate.ini, sid , compσ) toFNIC.

• V receives (com.validate.end, sid , bpσ) fromFNIC.

• V aborts if bpσ 6= 1.

• V sends (com.validate.ini, sid , comdep2) toFNIC.

• V receives (com.validate.end, sid , bdep2) fromFNIC.

• V aborts if bdep2 6= 1.

• V aborts if comdep2 stored in (sid , comdep2) is not the same

as comdep1 in ins trans .

• V stores (sid , ins trans).

• V sets sid ′AUT ← (sid) and sends to functionalityFAUT the

following message

(aut.send.ini, sid ′AUT, 〈readprice〉).

• B receives (aut.send.end, sidAUT, 〈readprice〉) fromFAUT.

• B aborts if (sid ,wit trans , ins trans , readprice) is not stored.
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• B deletes the tuple (sid ,wit trans , ins trans , readprice) and

stores (sid ,wit trans , ins trans , commitdeposit).

• B sends to functionality FUD the following message

(ud.read.ini, sid , comσ, σ, openσ, compσ , pσ, openpσ).

• B receives (ud.read.end, sid , comσ, compσ) fromFUD.

• V aborts if (sid , ins trans) is not stored.

• V aborts if the compσ in ins trans is not the same as that re-

ceived fromFUD.

• V sends (com.validate.ini, sid , comσ) toFNIC.

• V receives (com.validate.end, sid , bσ) fromFNIC.

• V aborts if bσ 6= 1.

• V adds comσ to ins trans and stores (sid , ins trans).

• V sends the message (aut.send.ini, sid ′AUT, 〈commitdeposit〉)
toFAUT.

• B receives (aut.send.end, sid ′AUT, 〈commitdeposit〉) from

FAUT.

• B deletes the tuple (sid ,wit trans , ins trans , commitdeposit)
and stores (sid ,wit trans , ins trans , commitcounter).

• B sends to FCD the message (cd.write.ini, sid , com0, 0,
open0, comdep2 , dep2, opendep2

).

• V receives (cd.write.end, sid , com0, comdep2) fromFCD.

• V aborts if (sid , ins trans) is not stored.

• V aborts if the comdep2 in ins trans is not the same as that

received fromFCD, or if com0 received fromFCD is not the

same as com0 stored by V during the �rst execution of the

deposit interface.

• V sends the message (aut.send.ini, sid ′AUT, 〈commitcounter〉)
toFAUT.

• B receives (aut.send.end, sid ′AUT, 〈commitcounter〉) from

FAUT.

• B aborts if (sid ,wit trans , ins trans , commitcounter) is not

stored.

• B stores (sid , comdep2).

• B updates Tblcd with [0, dep2].
• B retrieves [σ, v] from Tblcd and sets count1 ← v.

• B sets count2 ← count1 + 1.

• B sends (com.commit.ini, sid , count1) toFNIC.

• B receives (com.commit.end, sid , comcount1 , opencount1)
fromFNIC.
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• B sends (com.commit.ini, sid , count2) toFNIC.

• B receives (com.commit.end, sid , comcount2 , opencount2)
fromFNIC.

• B setswitcount ← (σ, openσ, count1, opencount1 , count2,
opencount2).

• B parses the commitment comσ as (com ′σ, parcom,
COM.Verify), the commitment comcount1 as (com ′count1 ,
parcom,COM.Verify), and the commitment comcount2 as (
com ′count2 , parcom,COM.Verify).

• B sets inscount ← (parcom, com ′σ, com ′count1 , com ′count2).

• B deletes the tuple (sid ,wit trans , ins trans , commitcounter)
and stores the tuple (sid ,witcount , inscount , readcounter).

The relation Rcount is de�ned as follows:

Rcount ={(witcount , inscount) :
1 = COM.Verify(parcom, comσ, σ, openσ)∧
1 = COM.Verify(parcom, comcount1 , count1, opencount1) ∧
1 = COM.Verify(parcom, comcount2 , count2, opencount2) ∧
count2 = count1 + 1}

• B sends (zk.prove.ini, sidZK,witcount , inscount) to a new in-

stance ofFRcount
ZK .

• V receives (zk.prove.end, sidZK, inscount) fromFRcount
ZK .

• V parses inscount as (parcom, com ′σ, com ′count1 , com ′count2).

• V sets the commitment comσ ← (com ′σ, parcom,
COM.Verify), the commitment comcount1 ← (com ′count1 ,
parcom,COM.Verify), and the commitment comcount2 ←
(com ′count2 , parcom,COM.Verify).

• V sends (com.validate.ini, sid , comcount1) toFNIC.

• V receives (com.validate.end, sid , bcount1) fromFNIC.

• V aborts if bcount1 6= 1.

• V sends (com.validate.ini, sid , comcount2) toFNIC.

• V receives (com.validate.end, sid , bcount2) fromFNIC.

• V aborts if bcount2 6= 1.

• V aborts if the commitment comσ in ins trans is not the same

as the commitment comσ in inscount .

• V stores (sid , inscount).

• V sends the message (aut.send.ini, sid ′AUT, 〈readcounter〉)
toFAUT.

• B receives (aut.send.end, sid ′AUT, 〈readcounter〉) from

FAUT.
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• B aborts if (sid ,witcount , inscount , readcounter) is not

stored.

• B parses inscount as (parcom, comσ, comcount1 , comcount2).

• B parses witcount as (σ, openσ, count1, opencount1 ,
count2, opencount2).

• B deletes the tuple (sid ,witcount , inscount , readcounter) and

stores the tuple (sid ,witcount , inscount ,writecounter).

• B sends the message (cd.read.ini, sid , comσ, σ, openσ,
comcount1 , count1, opencount1) toFCD.

• V receives (cd.read.end, sid , comσ, comcount1) fromFCD.

• V aborts if inscount is not stored.

• V aborts if the commitments in inscount are not the same as

those received fromFCD.

• V sends the message (aut.send.ini, sid ′AUT, 〈writecounter〉)
toFAUT.

• B receives (aut.send.end, sid ′AUT, 〈writecounter〉) from

FAUT.

• B aborts if (sid ,witcount , inscount ,writecounter) is not

stored.

• B deletes the record (sid ,witcount , inscount ,writecounter)
and stores the tuple (sid ,witcount , inscount , transfer).

• B sends to functionality FCDthe following message

(cd.write.ini, sid , comσ, σ, openσ, comcount2 , count2,
opencount2).

• V receives (cd.write.end, sid , comσ, comcount2) fromFCD.

• V aborts if inscount is not stored.

• V aborts if the commitments in inscount are not the same as

those received fromFCD.

• V sends the message (aut.send.ini, sid ′AUT, 〈transfer〉) to

FAUT.

• B receives (aut.send.end, sid ′AUT, 〈transfer〉) fromFAUT.

• B aborts if (sid ,witcount , inscount , transfer) is not stored.

• B updates Tblcd with [σ, count2].
• B sets sidOT ← (sid , ep), and sends the message

(ot.request.ini, sidOT, σ, comσ, openσ) toFOT.

• V receives (ot.request.end, sidOT, comσ) fromFOT.

• V aborts if comσ received from FOT is not the same as that

contained in inscount .

• V sends the message (ot.transfer.ini, sidOT, comσ) toFOT.

• B receives (ot.transfer.end, sidOT,mσ) fromFOT.
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• B outputs (pot.transfer.end, sid ,mσ).

6. On input (pot.revealstatistic.ini, sid , ST),B andV do the follow-

ing:

• B aborts if sid /∈ (V,B, sid ′).

• B aborts if (sid , ep,N ) is not stored for any ep.

• B aborts if ST /∈ ψ.

• B computes result← ST(Tblcd).

• For each entry [i, vi] in Tblcd, where vi represents a value that

was used by B to compute result, B and V do the following:

– B sends the message (com.commit.ini, sid , i) toFNIC.

– B receives (com.commit.end, sid , comi, openi).

– B sends the message (com.commit.ini, sid , vi) toFNIC.

– B receives (com.commit.end, sid , comvi , openvi).

– B stores (sid , comi, comvi).

– B sends (cd.read.ini, sid , comi, i, openi, comvi , vi,
openvi) toFCD.

– V receives (cd.read.end, sid , comi, comvi) fromFCD.

– V sends the message (com.validate.ini, sid , comi) to

FNIC.

– V receives (com.validate.end, sid , bi) fromFNIC.

– V sends the message (com.validate.ini, sid , comvi) to

FNIC.

– V receives (com.validate.end, sid , bvi) fromFNIC.

– V aborts if bi = bvi = 1 does not hold.

– V sets sidAUT ← (sid) and sends (aut.send.ini,
sidAUT, 〈OK, comi, comvi〉) toFAUT.

– B receives (aut.send.end, sidAUT, 〈OK, comi, comvi〉)
fromFAUT.

– B aborts if (sid , comi, comvi) is not stored.

• B setswitST ← (〈i, openi, vi, openvi〉∀i).

• B parses the commitment comi as (com ′i, parcom,
COM.Verify) and the commitment comvi as (com ′vi ,
parcom,COM.Verify) for all i.

• B sets insST ← (result, parcom, 〈com ′i, com ′vi〉∀i).
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The relation RST is de�ned as follows:

RST ={(witST, insST) :
[ ∀i 1 = COM.Verify(parcom, comi, i, openi)∧
1 = COM.Verify(parcom, comvi , vi, openvi) ]∧
result = ST(〈i, vi〉∀i) }

• B sets sidZK ← (B,V, sid ′) and sends (zk.prove.ini, sidZK,
witST, insST) to a new instance ofFRST

ZK .

• V receives (zk.prove.end, sidZK, insST) fromFRST
ZK .

• V aborts if the commitments received fromFCD are not the

same as those in insST.

• V outputs (pot.revealstatistic.end, sid , result, ST).

11.5 security analysis

Theorem 11.5.1 Construction ΠPOTS realizes functionalityFPOTS in the
(FAUT,FSMT,FNIC||SNIC,FR

ZK,FOT,FCD,FUD)-hybrid model.

To prove that our construction ΠPOTS securely realizes the ideal functionality

FPOTS, we have to show that for any environmentZ and any adversaryA there

exists a simulatorS such thatZ cannot distinguish between whether it is interacting

withA and the protocol in the real world or with S andFPOTS. The simulator

thereby plays the role of all honest parties in the real world and interacts with

FPOTS for all corrupt parties in the ideal world.

Our simulator S runs copies of the functionalitiesFAUT,FSMT,FNIC,FRZK,

FOT, FCD, and FUD. When any of the copies of these functionalities abort, S
implicitly forwards the abortion message to the adversary if the functionality sends

the abortion message to a corrupt party.

security analysis of ΠPOTS when B is corrupt We �rst describe

the simulatorS for the case in which the buyerB is corrupt.S simulates the protocol

by running the seller’s side of protocol ΠPOTS and copies of the ideal functionalities

involved.

Figure 11.8: Security Analysis of ΠPOTS when B is corrupt

• Upon receiving a message fromA, S uses the �rst �eld of that mes-

sage to associate the message with one of the ideal functionalities

FAUT,FSMT,FNIC,FRZK,FOT,FCD, orFUD, and runs a copy of

the corresponding functionality on input that message.

• When a copy of the functionalitiesFAUT,FSMT,FNIC,FRZK,FOT,

FCD, orFUD sends a message to B or to S , S forwards the output

of the functionality toA.
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• When a copy of the functionalitiesFAUT,FSMT,FNIC,FRZK,FOT,

FCD, or FUD sends a message to V , S runs protocol ΠPOTS for

the seller on input that message, except whenFNIC sends a delayed

output (com.setup.end, sid , OK) to V .

• WhenFPOTS sends the message (pot.init.sim, sid , ep,N ) toS ,S
sends the message (pot.init.rep, sid , ep) toFPOTS.

• When FPOTS sends the message (pot.setupprices.sim, sid , 〈p
〉Nmaxn=1 ) to S , S sends the message (pot.setupprices.rep, sid) to

FPOTS.

• When FPOTS sends the message (pot.updateprice.sim, sid , qid ,
n, p) to the simulator S , the simulator S sends the message

(pot.updateprice.rep, sid , qid) to functionalityFPOTS.

• When FPOTS outputs the message (pot.init.end, sid , ep,N ), S
runs the protocol ΠPOTS for the seller on input (pot.init.ini, sid ,
ep, 〈mn〉Nn=1), where 〈mn〉Nn=1 are selected at random.

• When FPOTS outputs the message (pot.setupprices.end, sid ,
〈pn〉Nmaxn=1 ), S runs protocol ΠPOTS for the seller on input (
pot.setupprices.ini, sid , 〈pn〉Nmaxn=1 ).

• When FPOTS outputs the message (pot.updateprice.end,
sid ,n, p), S runs protocol ΠPOTS for the seller on input (
pot.updateprice.ini, sid ,n, p).

• When protocol ΠPOTS for the seller outputs the message

(pot.deposit.end, sid , dep),S sends the message (pot.deposit.ini,
sid , dep) toFPOTS.

WhenFPOTS sends the message (pot.deposit.sim, sid , qid) to S ,

S sends (pot.deposit.rep, sid , qid) toFPOTS.

• When protocol ΠPOTS outputs the message (pot.transfer.end,
sid ,mσ), the simulatorS retrieves the message (ot.request.ini, sid ,
σ, comσ, openσ) sent by the adversaryA to the ideal functionality

FOT. The simulator S sets m ′σ ← mσ for the copy of FOT asso-

ciated with sid ′OT, such that sid ′OT ∈ (sid , ep). The simulator S
sends the message (pot.transfer.ini, sid , ep, σ) to the functionality

FPOTS. When FPOTS sends the message (pot.transfer.sim, sid ,
qid , ep) to S , S sends (pot.transfer.rep, sid , qid) toFPOTS.

• When protocol ΠPOTS for the seller outputs (
pot.revealstatistic.end, sid , v,ST), S sends the message (
pot.revealstatistic.ini, sid ,ST) to FPOTS. When FPOTS sends

the message (pot.revealstatistic.sim, sid , qid) to S , S sends the

message (pot.revealstatistic.rep, sid , qid) toFPOTS.

• S outputs failure ifA produces two openings for a commitment.
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Theorem 11.5.2 When the buyer B is corrupt, the construction ΠPOTS
described in Section 11.5 securely realizes FPOTS in the (FAUT,FSMT,
FNIC||SNIC,FR

ZK,FOT,FCD,FUD)-hybrid model.

proof of theorem 11.5.2. We show by means of a series of hybrid games

that the environmentZ cannot distinguish between the ensemble REALΠPOTS,A,Z
and the ensemble IDEALFPOTS,S,Z with non-negligible probability. We denote

by Pr [Game i] the probability that the environment distinguishes Game i from

the real-world protocol.

Game 0 : This game corresponds to the execution of the real-world pro-

tocol.

Therefore, Pr [Game 0] = 0.

Game 1 : This game proceeds as Game 0, except that Game 1 replaces

the messages 〈m〉Nmaxn=1 that are sent as input to the ot.init interface

by random messages. This change does not alter the view of the

environment because, in the ot.init interface,FOT does not send the

messages to the simulator or to the buyer. Moreover, Game 1 copies

the correct messagemσ to the copy ofFOT before the ot.transfer
interface is executed, so the corrupt buyer receives the correct message.

Hence, [Pr [Game 1]− Pr [Game 0]] = 0.

Game 2 : This game proceeds as Game 1, except for the fact that Game 2
outputs failure when the adversary produces two openings for the

same commitment. However, the probability that the adversary may

produce two such openings is negligible, thanks to the binding prop-

erty enforced byFNIC. Therefore, [Pr [Game 2]−Pr [Game 1]] = 0.

S is indistinguishable from the real world protocol because it runs as the real-

world protocol, except when it outputs failure. The probability that S outputs

failure is negligible thanks to the security properties ensured by the functionalities

FAUT, FSMT, FNIC, FRZK, FOT, FCD, and FUD. FNIC serves to ensure that

all commitments used in the protocol are binding, while FRZK guarantees that

the witness and instance values provided by the buyer for the deposit, transfer,

and revealstatistic phases of the protocol satisfy the relations Rdep ,Rtrans and

Rcount , and RST respectively. Rdep is used to check whether the buyer is updating

deposit values correctly during the deposit phase, while also ensuring that the

commitments comdep , comdep1 , and comdep2 commit to the deposit value dep,

the initial deposit dep1, and the �nal deposit value dep2. The protocol relies on

Rtrans to ensure that the buyer updates deposit and counter values consistently

after a purchase, while also ensuring that the commitments to the message price

pσ , initial and �nal deposit values dep1 and dep2, counter index σ, and initial

and �nal counter values count1 and count2 are valid. RST is used to make sure

that the result of the evaluation of function ST on Tblcd is accurate, and that

the commitments to all the indices and values of the counters in Tblcd used to

determine the result of ST(Tblcd) are valid.FCD ensures that the buyer’s deposit

value dep and all counter values 〈countn〉Nmaxn=1 read from positions in TblS are
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equal to the values previously written to those positions. FUD is used to ensure

that the buyer can prove that she is using the right prices for the right messages (pσ
is used for mσ). Finally,FOT ensures sender security (the buyer does not learn any

information about messages that have not been purchased).

The distribution of Game 2 is identical to that of our simulation. This concludes

the proof of theorem 11.5.2.

security analysis of ΠPOTS when V is corrupt In this section,

we describe the simulatorS for the case in which the sellerV is corrupt.S simulates

the protocol by running copies of the ideal functionalities and protocol ΠPOTS
for the buyer.

Figure 11.11: Security Analysis of ΠPOTS when V is corrupt

• Upon receiving a message fromA, S uses the �rst �eld of that mes-

sage to associate the message with one of the ideal functionalities

FAUT,FSMT,FNIC,FRZK,FOT,FCD, orFUD, and runs a copy of

the corresponding functionality on input that message.

• When a copy of the functionalitiesFAUT,FSMT,FNIC,FRZK,FOT,

FCD, orFUD sends a message toV or toS ,S forwards the output of

the functionality toA, except whenFNIC outputs a delayed message

(com.setup.end, sid , OK).

• When a copy of the functionalitiesFAUT,FSMT,FNIC,FRZK,FOT,

FCD, orFUD sends a message to B, S runs protocol ΠPOTS for the

buyer on input that message.

• When protocol ΠPOTS for the buyer sends a message to any of the

functionalitiesFAUT,FSMT,FNIC,FRZK,FOT,FCD, orFUD, S
runs the copy of the respective functionality on input that message.

• WhenFPOTS sends the message (pot.deposit.sim, sid , qid) to S ,

S sends the message (pot.deposit.rep, sid , qid) toFPOTS.

• When FPOTS sends the message (pot.revealstatistic.sim, sid ,
qid) to S , S sends the message (pot.revealstatistic.rep, sid , qid)
toFPOTS.

• When FNIC outputs the message (com.setup.req, sid , qid), S
runs a copy of SNIC on input that message. When SNIC replies with

(com.setup.alg, sid , qid ,m), S runsFNIC on input that message.

• When protocol ΠPOTS for the buyer outputs the message

(pot.init.end, sid , ep,N ), S sets sid ′OT ← (sid , ep), and re-

trieves (ot.init.ini, sidOT, 〈mn〉Nn=1) sent by A to FOT such

that sid ′OT = sidOT, and sends the message (pot.init.ini,
sid , ep, 〈mn〉Nn=1) to FPOTS. When FPOTS sends the message

(pot.init.sim, sid , ep,N ) to S , S sends the message (pot.init.rep,
sid , ep) toFPOTS.
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• When protocol ΠPOTS for the buyer outputs the message

(pot.setupprices.end, sid , 〈pn〉Nmaxn=1 ), S sends the message

(pot.setupprices.ini, sid , 〈pn〉Nmaxn=1 ) to the functionality FPOTS.

When FPOTS sends the message (pot.setupprices.sim, sid ,
〈pn〉Nmaxn=1 ) to S , S sends the message (pot.setupprices.rep, sid)
toFPOTS.

• When protocol ΠPOTS for the buyer outputs the message

(pot.updateprice.end, sid ,n, p), S sends the message (
pot.updateprice.ini, sid ,n, p) toFPOTS.

• WhenFPOTS sends (pot.updateprice.sim, sid , qid ,n, p) to S ,

S sends the message (pot.updateprice.rep, sid , qid) toFPOTS.

• WhenFPOTS outputs the message (pot.deposit.end, sid , dep),

S sends the message (pot.deposit.ini, sid , dep) to protocol ΠPOTS
for the buyer.

• S selects σ such that σ is associated with the message with the low-

est price pσ and sends the message (pot.transfer.ini, sid , ep, σ) to

ΠPOTS for the buyer.

• WhenFPOTS outputs the message (pot.revealstatistic.end, sid ,
v,ST), S sends the message (pot.revealstatistic.ini, sid , ST) to

protocol ΠPOTS for the buyer.

Theorem 11.5.3 When the seller V is corrupt, the construction ΠPOTS
described in Section 11.5 securely realizes FPOTS in the (FAUT,FSMT,
FNIC||SNIC,FR

ZK,FOT,FCD,FUD)-hybrid model.

proof of theorem 11.5.3. We show by means of a series of hybrid games

that the environmentZ cannot distinguish between the ensemble REALΠPOTS,A,Z
and the ensemble IDEALFPOTS,S,Z with non-negligible probability. We denote

by Pr [Game i] the probability that the environment distinguishes Game i from

the real-world protocol.

Game 0 : This game corresponds to the execution of the real-world pro-

tocol. Therefore, Pr [Game 0] = 0.

Game 1 : This game proceeds as Game 0, except that in Game 1, the sim-

ulator simulates the buyer’s side of the protocol by selecting σ associ-

ated with the message with the lowest price. This does not alter the

view of the environment. Therefore, [Pr[Game 1]−Pr[Game 0] =
0].

Our simulator S is indistinguishable from the real world protocol because it

runs as the real-world protocol, except when it outputs failure. The probability

that S outputs failure is negligible thanks to the security properties ensured by

the functionalitiesFAUT,FSMT,FNIC,FRZK,FOT,FCD, andFUD. Concretely,
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FNIC ensures that commitments are binding, andA does not learn any information

on σ, thanks toFOT. The obliviousness property provided byFCD also ensures

thatA does not learn any information on the counter values countn and deposit

value dep stored in Tblcd.

The distribution of Game 1 is identical to that of our simulation. This concludes

the proof of theorem 11.5.3.

instantiation and efficiency analysis. In previous work [3, 10,

18, 82, 85, 86], the computation and communication cost of POT protocols is dom-

inated by the cost of the underlying OT scheme. This is also the case for ΠPOTS.

However, ΠPOTS has the advantage that it can be instantiated with any OT protocol

that realizesFOT. The OT schemes used to construct UC-secure POT schemes [85],

and other UC-secure OT schemes are suitable. Moreover, when new and more e�-

cient OT schemes are available, they can also be used to instantiate ΠPOTS.

We also note that the overhead introduced by FNIC to allow for the modular

design of ΠPOTS is small.FNIC can be instantiated with a perfectly hiding com-

mitment scheme, such as Pedersen commitments [20]. Therefore, the overhead

consists of computing a commitment to each of the values that need to be sent to

more than one functionality, and ZK proofs of the openings of these commitments.

As discussed above, to construct POT from an OT scheme, V must set the prices,

and B must make deposits and pay for the messages obtained. Additionally, our

POT protocol allows V to receive aggregate statistics on purchases. For these tasks,

ΠPOTS usesFUD andFCD. These functionalities can be instantiated with a non-

hiding and hiding VC scheme respectively [21, 38], equipped with ZK proofs of an

opening for a position of the vector. In [21, 38], concrete instantiations based on the

Di�e-Hellman Exponent (DHE) assumption are provided. These instantiations

involve a common reference string that grows linearly with the length of the com-

mitted vector, which in ΠPOTS is the numberN of messages. A non-hiding VC

and a hiding VC commit to the tables DB and Tblcd respectively. The vector com-

mitments, as well as openings for each position of the vector, are of size independent

ofN . The computation of a commitment and of an opening grows linearly withN .

However, when the committed vector changes, both the vector commitment and

the openings can be updated with cost independent ofN . Therefore, they can be

updated and reused throughout the protocol, yielding amortized cost independent

ofN . The ZK proofs of VC openings o�er computation and communication cost

independent of N . Therefore, with this instantiation, ΠPOTS remains e�cient

when the numberN of messages is large.

We compare below ΠPOTS to the UC-secure scheme in [85], but we note that

this comparison would be similar for other full-simulation secure POT protocols.

We can conclude that ΠPOTS provides additional functionalities such as dynamic

pricing and aggregated statistics with cost similar to POT protocols that do not

provide them.

prices. In [85], in the initialization phase, V encrypts the messages and for each

message, V computes a signature that binds a ciphertext to the price of the

encrypted message. This implies that one signature per message is sent from

V to B, and thus the cost grows linearly with N . In ΠPOTS,FUD is used,

which can be instantiated with a non-hiding VC scheme. In this instantiation,

only one vector commitment which commits to a vector that contains the
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list of prices, needs to be sent from V to B. Nevertheless, adding the size of

the common reference string, the cost also grows linearly withN .

However, non-hiding VC schemes provide dynamic pricing at no extra cost.

The vector commitment can be updated with cost independent ofN . With

a signature scheme, V could also provide a new signature on the price with

cost independent of N . However, V needs to revoke the signature on the

old price. The need for a signature revocation mechanism makes dynamic

pricing costly in this case.

deposit. In [85], in the deposit phase, B sends a commitment to the new value

of the deposit and a ZK proof that the deposit is updated. In ΠPOTS,FCD is

used, which can be instantiated with a hiding vector commitment that stores

the deposit at position 0. The size of commitments, as well as the cost of a ZK

proof of deposit updated, does not depend onN in both cases. However, the

common reference string of the VC scheme grows linearly withN . (We recall

thatFCD not only stores the deposit but also theN counters of purchases.)

By applying the UC with joint state theorem [31], it could be possible to share

the common reference string for the DHE instantiations of the non-hiding

and hiding VC schemes, but this a�ects the modularity of ΠPOTS.

payment. In [85], B proves in ZK that the price of the purchased message is

subtracted from her current funds. This involves a ZK proof of signature

possession, to prove that the correct price is used, and a ZK proof of commit-

ment opening, to prove that the correct value of the deposit is used. The cost

of these proofs is independent ofN . In ΠPOTS, when using non-hiding and

hiding VC schemes to instantiateFUD andFCD, we need two ZK proofs of

a vector commitment opening: one for the non-hiding VC scheme (for the

price) and one for the hiding VC scheme (for the deposit). The amortized

cost of these ZK proofs is also independent ofN . The cost of a ZK proof of

commitment opening for the DHE instantiation is similar to the ZK proof

of signature possession in [85].

statistics. Unlike [85], ΠPOTS allows V to get aggregate statistics about the

purchases ofB.FCD is used to store the counters of the number of purchases

for each category. With the instantiation based on a hiding VC scheme,

updating the counters and reading them to compute a statistic involves ZK

proofs of the opening of positions of a vector commitment, whose amortized

computation and communication cost is independent ofN .

aggregate statistics on multiple buyers. ΠPOTS allows V to

gather statistics about the purchases of each buyer separately. Nonetheless, V is

possibly more interested in gathering aggregate statistics about multiple buyers. This

is also appealing to better protect buyer’s privacy. Fortunately, ΠPOTS enables this

possibility. The functionalitiesFCD used in the execution of ΠPOTS between V
and each of the buyers can be used to run a secure multiparty computation (MPC)

protocol for the required statistic. In this protocol, each buyer reads fromFCD the

counters needed for the statistic. We note thatFCD provides commitments to the

counters read. These commitments can easily be plugged into existing commit-and-

prove MPC protocols [30] to run an MPC between the seller and the buyers. We

note that previous POT protocols do not provide this possibility because buyers
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do not have any means to prove statements on their purchase histories.FCD acts

as a ZK data structure that stores information about what buyers have proven in

zero-knowledge, so that this information can be reused in subsequent ZK proofs.



12OBL IV IOUS TRANSFER WITH ACCES S CONTROL

Joint work with Alfredo Rial. This protocol was published in a paper presented at
the 25th Australasian Conference on Information Security and Privacy in 2020 [39].
This protocol makes use of the functionalityFUUD from Chapter 9. Reproduced with
permission from Springer Nature.

12.1 introduction

Oblivious Transfer with Access Control (OTAC) protocols [17, 33] run between

a sender T and receiversRk. T receives as input a tuple (mi,ACPi)∀i∈[1,N ] of

messages and their associated access control policies. In a transfer phase, a receiver

Rk chooses an index i ∈ [1,N ] and obtains the message mi ifRk satis�es the

policy ACPi. T does not learn i, whereasRk does not learn any information about

other messages.

In the following, we only consider OTAC schemes in which the receivers learn

all policies (ACPi)∀i∈[1,N ], schemes that are stateless, i.e. ful�lment of a policy

byRk does not depend on the history of messages received byRk, and schemes

that are adaptive, i.e. there are several transfers andRk can choose i after receiving

messages in previous transfers. In Section 12.2, we discuss stateful and adaptive

OTAC schemes and OTAC schemes with hidden policies. Additionally, we focus

on OTAC schemes that provide anonymity and unlinkability, i.e., schemes where

T cannot link a transfer to a receiver identityRk and where transfers toRk are

unlinkable with respect to each other.

Existing adaptive and stateless OTAC schemes follow a common pattern in their

design. In the initialization phase, T computes N ciphertexts ci that encrypt mi.

Some OTAC schemes [1, 17, 66] use a signature that binds ACPi to ci, while oth-

ers [81, 98–100] use fuzzy identity-based encryption (IBE) or ciphertext-policy

attribute-based encryption (CP-ABE) to encrypt mi under ACPi. The receivers

obtain (ci,ACPi)∀i∈[1,N ]. To prove ful�lment of policies,Rk proves to an author-

ity that she possesses some attributes and obtains a credential or a secret key for her

attributes. In the transfer phase,Rk interacts with T in such a way thatRk can

decrypt ci for her choice i only if her certi�ed attributes satisfy ACPi. These OTAC

schemes have several shortcomings in their design:

modularity. Though some OTAC schemes are extensions of adaptive Oblivi-

ous Transfer (OT) protocols, they do not use OT protocols as building blocks.

Instead, the OT scheme is modi�ed ad-hoc to produce the OTAC scheme,

blurring the line between elements which were part of the OT scheme and

those which were added to provide access control. This lack of modularity

results in two disadvantages: �rst, when the security of the OTAC scheme is

analysed, the security of the underlying OT scheme needs to be reanalysed.

Second, the OTAC scheme cannot be instantiated with any secure adaptive

OT scheme, and consequently, whenever more e�cient OT schemes are pro-
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posed, the OTAC scheme cannot incorporate them and would need to be

redesigned.

policy updates. All existing OTAC schemes do not allow for policy updates,

i.e., if a policy ACPi needs to be updated, the initialization phase needs to be

rerun. In practical applications of OTAC schemes (e.g. medical or �nancial

databases), it would be desirable to be able to update policies dynamically

throughout protocol execution without needing to re-encrypt messages. To

enable policy updates, we would need to separate the encryptions ci ofmi

from the method used to encode policies ACPi. As explained above, OTAC

schemes use signatures schemes or CP-ABE to bind policies to ciphertexts.

It would be possible to separate, for instance, a signature on the policy ACPi
from the encryption ci of mi, whilst still allowingRk to prove the association

between ci and ACPi in the transfer phase. However, a revocation mech-

anism to revoke outdated signatures would also need to be implemented,

which would decrease e�ciency.

storage cost. All existing OTAC schemes associate each encryption ci with a

policy ACPi. However, in practical applications, multiple database records

are associated with a single policy. Therefore, if we separate the ciphertexts

ci from the method used to encode policies ACPi, it would be possible to

improve e�ciency by associating a policy to multiple ciphertexts.

12.1.1 Our Contribution

We use UUD from Chapter 9 to construct a modular OTAC protocol which enables

dynamic policy updates without the need for a revocation mechanism, and allows

for the association of a policy to multiple messages.

We propose a functionalityFOTAC, which follows previous OTAC functional-

ities [17] but introduces two main modi�cations. First, it splits the initialization

interface into two interfaces: otac.init, in which the senderT receives (mi)∀i∈[1,N ],
and otac.policy, in which T receives (ACPi)∀i∈[1,N ]. This enables T to make

policy updates via otac.policy during protocol execution. Second, previous func-

tionalities include an issuance phase where an issuer certi�esRk attributes. Instead,

FOTAC allows for more open and �exible ways of proving possession of attributes.

T sets and updates a relation RACP that speci�es whatRk must prove to obtain

access to messages. Each policy ACPi is an instance ins for RACP and, in the trans-

fer phase,Rk must provide a witness wit such that (wit , ins) ∈ RACP. wit could

contain, e.g., signatures from an issuer onRk attributes, but in general any data

required by RACP.

We also describe a modular construction ΠOTAC. ΠOTAC uses as building

blockFOT, and thus ΠOTAC can be instantiated by any secure adaptive OT pro-

tocol. To implement access control, ΠOTAC uses FUUD and FRACP′
ZK . T stores

(ACPi)∀i∈[1,N ] in DB in FUUD. Each entry [i, vi,1, . . . , vi,L] stores the index i
and the representation ACPi = (vi,1, . . . , vi,L) of a policy. In a transfer phase,

Rk usesFUUD to read ACPi for her choice i and thenFRACP′
ZK to prove ful�lment

of ACPi. One challenge when de�ning a hybrid protocol is to ensure that two

functionalities receive the same input. For example, in the transfer interface of

ΠOTAC, we need to ensure that the choice i sent to FOT (to obtain mi) and to
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FUUD (to read ACPi) are equal. To this end, we use the method in [20] and de-

scribed in Section 2.9, in which functionalities receive committed inputs produced

by a functionalityFNIC for non-interactive commitments.

Our modular design has the following advantages. First, it simpli�es security

analysis because security proofs in the hybrid model are simpler, and by splitting the

protocol into smaller building blocks, security analysis of constructions for those

building blocks are also simpler. Second, it allows for the construction of multiple

instantiations by replacing each of the functionalities by any protocols that realize

them.

construction ΠUUD . In Chapter 9, we propose a construction ΠUUD for

FUUD. ΠUUD is based on subvector commitments (SVC) [64], which we extend

with a UC ZK proof of knowledge of a subvector. An SVC scheme allows us to

compute a commitment vc to a vector x = (x[1], . . . ,x[N ]). vc can be opened to

a subvector xI = (x[i1], . . . ,x[in]), where I = {i1, . . . , in} ⊆ [1,N ]. The size

of the opening wI is independent of N and of |I|. SVC were recently proposed as an

improvement of vector commitments [32, 69], where the size of wI is independent

of N but dependent on |I|. We extend the de�nition of SVC to include algorithms

to update commitments and openings when part of the vector is updated.

ΠUUD works as follows: U uses a bulletin board BB to publish the database

DB and anyRk obtains DB from BB. A BB ensures that all readers obtain the

same version of DB, which we need to guarantee unlinkability. Both U and any

Rk map a DB with N entries of the form [i, vi,1, . . . , vi,L] to a vector x of length

N ×L such that x[(i−1)L + j] = vi,j for all i ∈ [1,N ] and j ∈ [1,L], and they

compute a commitment vc to x. To update a database entry,U updates BB, andU
and anyRk update vc. Therefore, updates do not need any revocation mechanism.

To prove in ZK that an entry [i, vi,1, . . . , vi,L] is in DB,Rk computes an opening

wI for I = {(i− 1)L + 1, . . . , (i− 1)L + L} and uses it to compute a ZK proof

of knowledge of the subvector (x[(i−1)L+1], . . . ,x[(i−1)L+L]). This proof

guarantees that I is the correct set for index i.
We describe an e�cient instantiation of ΠUUD in Chapter 9 that uses an SVC

scheme based on the Cube Di�e-Hellman assumption [64]. In terms of e�ciency,

the storage cost grows quadratically with the vector length N × L. However, after

initializing vc and the openings wI to the initial DB, the communication and com-

putation costs of the update and read operations are independent of N . Therefore,

our instantiation allows for an OTAC where the database of policies can be updated

and read e�ciently.

We describe a variant of our instantiation where each database entry is [imin,
imax, vi,1, . . . , vi,L], where [imin, imax] ∈ [1,N ] is a range of indices. This allows

for an OTAC with reduced storage cost. If the messages (mimin , . . . ,mimax) are

associated with a single policy ACP, only one database entry is needed to store ACP.

In contrast, previous OTAC that use signatures or CP-ABE need to embed a policy

in every ciphertext.

ΠUUD can be regarded as an e�cient way of implementing a ZK proof for a

disjunction of statements. Namely, proving that an entry [i, vi,1, . . . , vi,L] is inDB
is equivalent to computing an OR proof where the prover proves that she knows at

least one of the entries.
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12.2 related work

Our OTAC is adaptive, i.e.,Rk can choose an index i after having previously received

other messages. In [12], an oblivious language-based envelope protocol (OLBE) is

proposed based on smooth projective hash functions. OLBE can be viewed as a

non-adaptive OTAC.

Our OTAC is stateless, i.e. ful�lment of a policy byRk does not depend on the

history of messages accessed by Rk. In [33], a stateful OTAC is proposed where

policies are de�ned by a directed graph that determines the possible states ofRk,

the transitions between states and the messages that can be accessed at each stage.

Priced Oblivious Transfer (POT) protocols [3, 18, 85] require the user to pay a price

for each message. Typically, they involve a prepaid method, where Rk makes a

deposit and later subtracts the prices paid from it without revealing the current

funds or the prices paid. Recently, a modular POT protocol was proposed [35] based

on an updatable database without unlinkability [38]. Our OTAC di�ers from it in

that it provides unlinkability toRk and in that it considers more complex policies

expressed by tuples of values, while in POT the policy is simply the message price.

Additionally, our OTAC can improve storage e�ciency when the same policy is

applied to several messages.

Our OTAC reveals the policies toRk. In [16, 19], OTAC with hidden policies are

proposed. Our approach based on SVC cannot be followed to modularly design

OTAC with hidden policies that allow for policy updates.

12.3 ideal functionality

FOTAC interacts with a senderU and receiversRk.FOTAC consists of the following

interfaces:

1. U uses the otac.init interface to send the messages 〈mn〉Nn=1.

2. The receiverRk uses the otac.retrieve interface to retrieve N .

3. U uses the otac.policy interface to send (or update) the policies 〈ACPn〉Nn=1
and the relation RACP toFOTAC.

4. Rk uses the otac.getpol interface to obtain 〈ACPn〉Nn=1 and RACP.

5. Rk uses the otac.transfer to send a choice i and a witness wit toFOTAC.

If (wit ,ACPi) ∈ RACP,FOTAC sends mi toRk.

The relation RACP is

RACP′ ={(wit , ins) :
1 = f(wit , 〈vi ,j〉∀j∈[1,L])}

The instance otac.policy = 〈vi ,j〉∀j∈[1,L] of RACP is a policy represented as a tuple

of values. The function f evaluates whether the witness wit satis�es the policy.

wit can contain di�erent elements depending on f . It can, for instance, contain

signatures of the attributes ofRk certi�ed by an issuer.
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Figure 12.1: FunctionalityFOTAC

FOTAC is parameterized by universes of messages Um and policies Upol.

1. On input (otac.init.ini, sid , 〈mn〉Nn=1) from U :

• Abort if sid /∈ (U , sid ′), or if (sid , 〈mn〉Nn=1, 0) is already

stored.

• Abort if for n = 1 to N , mn /∈ Um.

• Store (sid , 〈mn〉Nn=1, 0).

• Send (otac.init.sim, sid ,N ) to S .

S. On input (otac.init.rep, sid) from S :

• Abort if (sid , 〈mn〉Nn=1, 0) is not stored, or if (sid , 〈mn〉Nn=1,
1) is already stored.

• Store (sid , 〈mn〉Nn=1, 1).

• Send (otac.init.end, sid) to U .

2. On input (otac.retrieve.ini, sid) fromRk:

• Create a fresh qid and store (qid ,Rk).

• Send (otac.retrieve.sim, sid , qid) to S .

S. On input (otac.retrieve.rep, sid , qid) from S .

• Abort if (qid ′,Rk) such that qid ′ = qid is not stored.

• If (sid , 〈mn〉Nn=1, 1) is not stored, set N ← ⊥.

• Else, store (sid ,Rk,N ).

• Delete (qid ,Rk).

• Send (otac.retrieve.end, sid ,N ) toRk.

3. On input (otac.policy.ini, sid , 〈ACPn〉Nn=1,RACP) from U :

• Abort if (sid , 〈mn〉Nn=1, 1) is not stored or if the number of

policies is not equal to number of messages received.

• For all n ∈ [1,N ], abort if ACPn /∈ Upol.
• If (sid , 〈ACPn〉Nn=1,RACP, cu) is not stored:

– For all n ∈ [1,N ], abort if ACPn = ⊥.

– Abort if RACP = ⊥.

– Store (sid , 〈ACPn〉Nn=1,RACP, cu).

• Else:

– For all n ∈ [1,N ], if ACPn 6= ⊥, update ACPn in the

stored tuple (sid , 〈ACPn〉Nn=1,RACP, cu).

– If RACP 6= ⊥, update RACP in (sid , 〈ACPn〉Nn=1,
RACP, cu).
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– Increment cu and update cu in (sid , 〈ACPn〉Nn=1,
RACP, cu).

• Create a fresh qid and store qid .

• Send (otac.policy.sim, sid , qid , 〈ACPn〉Nn=1,RACP) to S .

S. On input (otac.policy.rep, sid , qid) from S :

• Abort if qid is not stored.

• Delete qid .

• Send (otac.policy.end, sid) to U .

4. On input (otac.getpol.ini, sid) fromRk:

• Create a fresh qid and store (qid ,Rk).

• Send (otac.getpol.sim, sid , qid) to S .

S. On input (otac.getpol.rep, sid , qid) from S :

• Abort if (qid ′,Rk) such that qid ′ = qid is not stored.

• If (sid , 〈ACPn〉Nn=1,RACP, cu) is not stored, set

〈ACPn〉Nn=1 ← ⊥ and RACP = ⊥.

• Else, set crk ← cu , store (Rk, 〈ACPn〉Nn=1,RACP, crk) and

delete any previous tuple (Rk, 〈ACP′n〉Nn=1,RACP, cr ′k).

• Delete (qid ,Rk).

• Send (otac.getpol.end, sid , 〈ACPn〉Nn=1,RACP) toRk.

5. On input (otac.transfer.ini, sid , i ,wit) fromRk:

• Abort if (sid ,R′k,N ) or (R′k, 〈ACPn〉Nn=1,RACP, crk)
such thatR′k = Rk are not stored.

• Abort if i /∈ [1,N ], or if (wit ,ACPi) /∈ RACP.

• Create a fresh qid and store (qid ,mi , crk), where mi is stored

in the tuple (sid , 〈mn〉Nn=1, 1).

• Send (otac.transfer.sim, sid , qid) to S .

S. On input (otac.transfer.rep, sid , qid) from S :

• Abort if (qid ,mi , crk) is not stored, or if crk 6= cu , where

cu is stored in the tuple (sid , 〈ACPn〉Nn=1,RACP, cu).

• Delete the record (qid ,mi , crk).

• Send (otac.transfer.end, sid ,mi) toRk.
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12.4 construction

ΠOTAC uses an ideal functionalityFOT from Chapter 2 as building block.FOT
is used to implement the otac.init and otac.retrieve interfaces, as well as to allow

Rk to obtain messages obliviously in the otac.transfer interface.

To implement access control, ΠOTAC uses the functionalitiesFUUD from Chap-

ter 9, andFBB andFRACP′
ZK from Chapter 2. In the otac.policy interface, U uses

FUUD to store the policies, and U uses FBB to store the relation RACP. In the

otac.getpol interface,Rk retrieves the policies and the relation fromFUUD and

FBB.

In the otac.transfer interface,Rk reads the policy ACPi = 〈vi ,j〉∀j∈[1,L] for

her choice i by using FUUD. To do this, Rk obtains commitments comi and

〈com i ,j〉∀j∈[1,L] to i and to the values 〈vi ,j〉∀j∈[1,L] that represent the policy.

〈com i ,j〉∀j∈[1,L] are sent as input toFRACP′
ZK so thatRk proves ful�lment of the

policy. comi is sent as input toFOT to obtain the message mi .

RACP′ is a modi�cation of RACP. In RACP′ , the instance 〈vi ,j〉∀j∈[1,L] of RACP
is replaced by 〈com i ,j〉∀j∈[1,L], while the witness is extended to contain wit ′ ←
(wit , 〈vi ,j , open i ,j〉∀j∈[1,L]). I.e., the instance in RACP′ contains commitments

to the policy rather than the policy itself, which allowsRk to hide which instance

is being used from U . The relation RACP′ is

RACP′ ={(wit ′, ins ′) :
〈1 = COM.Verify(parcom, com ′i,j , vi,j , openi,j)〉∀j∈[1,L] ∧
1 = f(wit , 〈vi ,j〉∀j∈[1,L])}

Figure 12.2: Construction ΠOTAC

ΠOTAC is parameterized by universes of pseudonymsUp, messagesUm and

policies Upol.

1. On input (otac.init.ini, sid , 〈mn〉Nn=1):

• U uses the ot.init interface to send the messages 〈mn〉Nn=1 to

FOT.

• U outputs (otac.init.end, sid).

2. On input (otac.retrieve.ini, sid):

• Rk uses the ot.retrieve interface ofFOT to retrieve the num-

ber of messages N .

• Rk outputs (otac.retrieve.end, sid ,N ).

3. On input (otac.policy.ini, sid , 〈ACPn〉Nn=1,RACP):

• U parses 〈ACPn〉Nn=1 as (n, vn,1, . . . , vn,L)∀n∈[1,N ].Upol ad-

mits policies that can be represented by tuples of values.

• U uses the uud.update interface to send (n, vn,1, . . . ,
vn,L)∀n∈[1,N ] toFUUD.

• U uses the bb.write interface ofFBB to write RACP into the

bulletin board.
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• U outputs (otac.policy.end, sid).

4. On input (otac.getpol.ini, sid):

• Rk uses the uud.getdb interface ofFUUD to retrieve the poli-

cies DB = (n, vn,1, . . . , vn,L)∀n∈[1,N ] = 〈ACPn〉Nn=1.

• If (sid , crk, 〈ACPn〉Nn=1,RACP) is not stored, Rk sets crk
← 0.

• Rk increments crk and uses the bb.getbb interface ofFBB to

receive the description of a relation RACP.Rk continues incre-

menting the counter and reading the bulletin board until the

returned message is⊥. ThenRk takes the previous crk and the

last description of a relation RACP received fromFBB, stores

(sid , crk, 〈ACPn〉Nn=1,RACP) and deletes any previous tuple

(sid , crk, 〈ACPn〉Nn=1,RACP).

• Rk outputs (otac.getpol.end, sid , 〈ACPn〉Nn=1,RACP).

5. On input (otac.transfer.ini, sid , i ,wit):

• In the �rst execution of this interface,Rk runs the com.setup
interface ofFNIC.

• Rk picks the policy ACPi = (i , vi ,1, . . . , vi ,L) and RACP
from the stored tuple (sid , crk, 〈ACPn〉Nn=1,RACP).

• Rk aborts if (wit ,ACPi) /∈ RACP.

• Rk uses the com.commit interface ofFNIC to obtain commit-

ments and openings (comi , openi , 〈com i ,j , open i ,j〉∀j∈[1,L]
to i and vi ,1, . . . , vi ,L.

• Rk picks a random pseudonym P ← Up.

• Rk uses the uud.read interface to send (P , (i , comi , openi ,
〈vi ,j , com i ,j , open i ,j〉∀j∈[1,L])) toFUUD.

• U receives (P , (comi , 〈com i ,j〉∀j∈[1,L])) fromFUUD.

• In the �rst execution of this interface, U runs the com.setup
interface ofFNIC.

• U uses the com.validate interface ofFNIC to validate the com-

mitments (comi , 〈com i ,j〉∀j∈[1,L]).

• U uses the nym.reply interface ofFNYM to send toRk a mes-

sage that acknowledges receipt of the commitments. (Here, we

assume thatFUUD uses the nym.send interface ofFNYM to

send a message fromRk to U .)

• Rk sets the instance ins ′ ← (〈com i ,j〉∀j∈[1,L]) and the wit-

ness wit ′ ← (wit , (〈vi ,j , open i ,j〉∀j∈[1,L])).

• Rk uses the zk.prove interface to send wit ′, ins ′ and P to

FRACP′
ZK .
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• U receives ins ′ and P from FRACP′
ZK . U aborts if the commit-

ments in ins ′ or the pseudonym are not equal to the ones

received fromFUUD.

• U uses the nym.reply interface ofFNYM to send toRk a mes-

sage that acknowledges receipt of the ZK proof. (Here, we

assume thatFRACP′
ZK uses the nym.send interface ofFNYM to

send a message fromRk to U .)

• Rk uses the ot.request interface to send P , i , comi , and openi
toFOT.

• U receives P and comi from FOT. U aborts if comi or the

pseudonym is not equal to the commitment received from

FUUD.

• U uses the ot.transfer interface to send P and comσ toFOT.

• Rk receives mi fromFOT.

• Rk outputs (otac.transfer.end, sid ,mi).

12.5 security analysis

Theorem 12.5.1 ΠOTAC securely realizes FOTAC in the (FOT, FNIC, FUUD,
FRACP′

ZK ,FBB,FNYM)-hybrid model.

When U is corrupt, our simulator S proceeds by running the receiver part of

ΠOTAC, with two modi�cations: �rst, the choice i is replaced by a random choice.

This change does not alter the view of the environment becauseFOT does not leak

any information on i to the adversary. Second, because S does not know wit , S
does not runFRACP′

ZK . Instead,S creates the message sent byFRACP′
ZK to the adversary.

This change does not alter the view of the environment becauseFRACP′
ZK does not

leak any information on wit to the adversary.

WhenRk is corrupt, S proceeds by running the sender part of ΠOTAC, with

the following modi�cations: �rst, when the honest U inputs the messages, S sends

N random messages toFOT. When the adversary sends its choice i , S obtains mi
from FOTAC and replaces the random message stored in FOT by mi before the

ot.transfer interface ofFOT is run.





13PR IVACY PRESERV ING LOYALTY PROGRAMS

Joint work with Alfredo Rial. This protocol was published in a paper presented at the
Privacy Enhancing Technologies Symposium in 2021 [41]. This protocol makes use of
the functionalityFUUHD from Chapter 7.

13.1 introduction

Loyalty Programs (LPs) are marketing strategies implemented by vendors (Vs) to

establish lasting relationships with buyers (Bs). LPs o�er accumulating bene�ts

to Bs who purchase certain brands or buy products from certain stores [56]. LPs

bene�t Vs in two ways:

• They improve customer retention.

• By storing Bs’ Purchase Histories (PHs) and Personally Identi�able Infor-

mation (PII), and thanks to data mining techniques, LPs allow Vs to pro�le

Bs. These Buyer Pro�les (BPs) are used for market research and targeted

advertising.

LPs have raised privacy concerns because BPs can reveal sensitive PII, which Vs

could sell to third-party advertisers and to data brokers [58]. These privacy concerns

have been shown to have an impact on participation in LPs [56].

previous work. LPs can be classi�ed depending on the type of PII and PHs

collected, on whether they involve a single or multiple Vs, on the type of rewards

given to Bs, on whether those rewards are transferable to other Bs, and so on. For

privacy’s sake, the key issue is whether V requires the collection of PH or not.

Some Privacy Preserving Loyalty Programs (PPLPs) do not allow Vs to collect

PHs [13, 14, 46, 73]. In [46], blind signatures are used to provide unlinkability

between the issuance and the redemption of loyalty points (lpts). In [73], Bs can

anonymously download a batch of loyalty cards and use them in an unlinkable

manner. In [13], an updatable anonymous credential scheme is proposed that allows

Bs to getV to add lpts at each purchase without revealing the total number of lpts
accumulated. Recently, in [14], the scheme in [13] was improved to add features such

as the recoverability of failed spent lpts or backward unlinkability. Despite o�ering

privacy protection to Bs, these solutions prevent any form of buyer pro�ling, and

thus they limit the bene�ts that Vs obtain from LPs.

Other solutions do allow V to obtain some information on PHs [11, 75, 95].

In [75, 95], B obtains an anonymous credential at registration. At each purchase, B
shows her anonymous credential and chooses whether her purchases are linkable

or unlinkable to previous purchases. In [11], B, at each purchase, obtains a blind

signature. This signature signs purchase data along with a value chosen by B. To

obtain lpts , B can link signatures of di�erent purchases when they sign the same

B-chosen value. B then reveals these signatures to V . Therefore, in [11, 75, 95], at

135
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each purchase,Bs need to decide whether they want the purchases to be linkable to

previous purchases. The PPLPs in [11, 75, 95] have two drawbacks:

privacy of phs. Pro�ling consists of running a classi�cation algorithm over

a B’s PH. A PPLP should minimize the disclosure of PHs. However, in [11,

75, 95], when Bs choose to link their purchases in order to bene�t from the

LP, V receives more information on PHs than is actually required to create a

BP. In [75, 95], all PH is revealed, while in [11] a taxonomy of products and

product types is de�ned and Bs can reveal the exact product purchased or

the product’s category.

unlinkability of purchases. In [11, 75, 95], Bs need to decide whether

purchases are linkable or unlinkable at the moment of purchase. It would be

desirable to have a scheme where purchases are always unlinkable, and yet at

a later stage Bs can be pro�led based on their PH and bene�t from lpts .

13.1.1 Our Contribution

We propose a PPLP that addresses these drawbacks. First, it protects B’s privacy by

avoiding the disclosure of PHs to V . Second, it guarantees that purchases are always

unlinkable. PHs and lpts are stored on B’s side and can later be used for pro�ling

or to redeem lpts .

Our PPLP involves a vendor V and multiple buyers Bk and can be used in e-

commerce and physical shops. Bs are equipped with an electronic device (e.g., a

smartphone). The PPLP consists of the following phases.

registration. Bk signs up for the PPLP.

purchase. Bk’s PH and lpts are stored onBk’s side. Each purchase is unlinkable

to previous ones. Despite unlinkability, at each purchase, V updatesBk’s PH

and lpts without learning any of them.

redemption. Bk proves that she has accumulated a number of lpts .

profiling. Bk reveals to V the result of running a pro�ling algorithm on her

PH (or, in general, any computation run on her PH) and proves that this

result is correct without disclosing her PH. We describe a variant of this phase

where V does not learn the pro�ling result either, but is able to use it to, for

instance, give Bk more lpts .

To describe our PPLP, we use the updatable unlinkable hiding database (UUHD)

functionality described in Chapter 7 A UUHD is a protocol between an updaterU
and multiple readersRk. A UUHD consists of an update phase and a read phase.In our PPLP, V (resp.

Bk) plays the role of U
(resp. Rk).

In an update phase, U updates the database stored by a readerRk identi�ed by a

pseudonym P . We consider simple databases DB with entries of the form [i, vri ],
where i is the position and vri the value stored at position i. U does not learn the

contents of DB and cannot link it to previous updates. However, U is ensured that

she is updating the last version of DB given toRk. In the read phase,Rk commits

to some data from the database and proves to U that it is stored in DB. Later,Rk
can use these commitments to prove in Zero Knowledge (ZK) other statements

about the data in DB. For instance,Rk can prove the correctness of the result of

running an algorithm on input this data. One key property of UUHD is thatRk
is able to prove in ZK statements about both vri and i.
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In Chapter 7, we de�ne security for UUHD in the Universal Composability (UC)

framework [29]. We de�ne an ideal functionalityFUUHD for UUHD that is suitable

for modular design, i.e., that can be used as a building block of a protocol. In the

UC framework, a protocol can be described modularly in the hybrid model, where

parties use ideal functionalities for the building blocks of the protocol. However,

many functionalities in literature cannot be used for modular design whenever we

must guarantee that two or more functionalities receive the same input. To solve

this issue, we use the method in [20], described in Section 2.9, which is based on

sending committed inputs to functionalities.

We propose a construction ΠUUHD for UUHD in Chapter 7. ΠUUHD uses a

vector commitment (VC) scheme as its main building block. A VC scheme allows

us to compute a vector commitment vc to a vector x of values, where each value

x[i] is stored at a given position i. Additionally, vc can be opened to x[i] with

communication cost independent of the vector length. We use a VC scheme that is

additively homomorphic. ΠUUHD also uses a pseudonymous channel that provides

unlinkability in communications between anyRk and U .

A VC vc is used to store the database DB by committing to a vector x such that

x[i] = vri . Initially,Rk obtains a signed vc to an initial database DB from U . To

read DB in an unlinkable manner,Rk rerandomizes vc to vc′, reveals vc′ toU and

proves in Zero Knowledge (ZK) that vc′ is a rerandomized version of a commitment

signed by U . ThenRk can prove statements about the database committed to in

vc′. To updateDB,U uses the homomorphic property of the VC scheme to update

the database in vc′ (without learning its contents) and produce an updated VC vcu,

which U signs and sends toRk. ΠUUHD implements a double-spending detection

mechanism to ensure that in the next read phase,Rk uses vcu and not previous

commitments received from U .

To construct a PPLP based on UUHD, we storeBk’s PH in the form of a database

DB that, for each product (or product category, depending on the detail needed

to create BPs), stores the number of purchases or the amount of money spent by

Bk on that product. Therefore, DB is a vector x where each position i represents a

product and x[i] is the number of purchases or the amount of money spent on that

product. An additional position is used to store the accumulated lpts . When Bk
purchases some products, to update DB, V computes another VC to a vector xu
that stores the information regarding the products purchased and additional lpts .

Then, by using the homomorphic property,V multiplies both vector commitments

to get a VC to x + xu and sends the new VC to Bk.

Our PPLP guarantees unlinkability between purchases and minimizes the PH

disclosure towards V . Thanks to double-spending detection, our PPLP ensures

that Bk uses the last version of the PH at the next update or when reading it for

pro�ling or redeeming lpts . Nevertheless, we note that Bk can refuse to use the

PPLP for certain purchases or create more than one pro�le. This leads generally to

the creation of better pro�les but, if needed, can be discouraged.

ΠUUHD bene�ts from the e�ciency properties of VCs. Particularly, updating

the database is very e�cient thanks to the homomorphic property. In Chapter 7,

we show that the communication cost of read and update operations, as well as

the computation cost of update operations, is independent of the database size N .

Read operations have amortized computation cost which is also independent of N .

Therefore, ΠUUHD is suitable for large databases.
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13.2 related work

vc schemes. VC schemes [32, 69] can be based on di�erent assumptions

such as CDH, RSA and DHE. We could use VCs secure under the more standard

CDH or RSA assumptions, but VCs based on DHE have e�ciency advantages.

A mercurial VC scheme based on DHE was proposed in [69], and subsequently

DHE VC schemes were used in [57, 63, 67]. In our instantiation of ΠUUHD, we

extend the VC scheme with signatures to enable ZK proofs of an opening wi.
Polynomial commitments (PCs) allow us to commit to a polynomial and open

the commitment to an evaluation of the polynomial. PCs can be used as VCs by

committing to a polynomial that interpolates the vector to be committed. In [59], a

construction of PCs from the SDH assumption is proposed. A VC based on the

PC scheme from SDH has the disadvantage that the VC cannot be updated. A

further generalization of VCs and PCs are functional commitments [68].

zk proofs for large datasets. In most ZK proofs, the computation

and communication costs grow linearly with the size of the witness, which is inade-

quate for proofs about datasets of large sizeN . However, some techniques attain

costs sublinear inN . Probabilistically checkable proofs [61] achieve veri�cation cost

sublinear inN , but the cost for the prover is linear inN . In succinct non-interactive

arguments of knowledge [51], veri�cation cost is independent ofN , but the cost for

the prover is still linear inN . ZK proofs for oblivious RAM programs [76] consist

of a setup phase where the prover commits to the dataset, with cost linear in N
for the prover and constant for the veri�er. After setup, multiple proofs can be

computed on the dataset with cost sublinear (proportional to the runtime of an

ORAM program) for prover and veri�er.

Our construction is somehow similar to [76], i.e. a database is committed to, and

ZK proofs are computed. Storage cost is linear inN . However, the veri�cation cost

of a ZK proof is constant and independent ofN . To compute a ZK proof, only the

cost of computing an opening wi is linear inN , but wi can be reused and updated

with cost independent ofN . Therefore, computing a ZK proof has an amortized

cost independent of N , which makes our construction practical for large databases.

updatable anonymous credentials. In Anonymous Credential

(AC) [26] schemes, issuers sign user attributes. Users show that they possess a

signature from an issuer on their attributes and selectively disclose, or prove in ZK

statements, about their attributes. Unlinkability ensures that uses of a credential

cannot be linked to each other or to the issuance of the credential. Recently, an

updatable AC scheme had been proposed in [13] and applied to LPs. An updatable

AC scheme allows users to update their signed attributes blindly, i.e., without the

issuer knowing the attribute values. A UUHD can thus also be used to construct an

updatable AC scheme. In [13], the cost of proving and verifying statements about

attributes grows with the number of attributes signed in a credential. In their LP,

only the number of lpts is signed, and vendors do not receive any information on

buyer pro�les. Our construction ΠUUHD provides ZK proofs of cost independent

ofN . This allows us to design a PPLP where, in addition to lpts ,V signs and updates

the whole purchase history of buyers, which could consist of hundreds or thousands

of products, with a computation and computation cost comparable to [13]. Buyers
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can then be pro�led based on the result of a pro�ling algorithm, without disclosing

further purchase data to V .

13.3 ideal functionality

FLP interacts with a vendorV and multiple buyersBk.FLP maintains one database

DBper buyer. EachDB is of size N = M +1 and stores the PH for M products and

the lpts accumulated byBk.FLP consists of the interfaces lp.register, lp.purchase,

lp.redeem, lp.profile and lp.updatedb.

1. A buyerBk sends the lp.register.ini message on input a pseudonym P .FLP
checks if P is unique and ifBk did not send a registration request in the past.

In this case, after being prompted by the simulator S ,FLP sends P to V .

2. A buyer Bk sends the lp.purchase.ini message on input a pseudonym P .

FLP checks if Bk is already registered, if P is unique and if Bk has not

initiated another purchase, redeem or pro�le phase that is still un�nished.

In this case, after being prompted by S ,FLP sends P to V .

3. A buyer Bk sends the lp.redeem.ini message on input a pseudonym P and

a number of loyalty points p.FLP checks if Bk is already registered, if P is

unique, if Bk has not initiated another purchase, redeem or pro�le phase

that is still un�nished, and ifBk has accumulated at least p loyalty points. In

this case, after being prompted by S ,FLP sends P and p to V .

4. A buyer Bk sends the lp.profile.ini message on input a pseudonym P and a

pro�ling function f .FLP checks if Bk is already registered, if P is unique,

and if Bk has not initiated another purchase, redeem or pro�le phase that is

still un�nished. In this case,FLP evaluates f on input the purchase history

ofBk. After being prompted byS ,FLP sends P and the pro�ling result res
to V .

5. The vendor V sends the lp.updatedb.ini message on input a pseudonym P
and a database (i, vui)i∈[1,N ].FLP checks if there is a request pending for

pseudonym P , which is associated with a buyerBk. For a registration request,

FLP initializes the database DB of Bk to contain 0 at every position. For a

purchase request,FLP uses (i, vui)i∈[1,N ] to update the PH and the loyalty

points stored in DB. For a redeem request,FLP updates DB by subtracting

p loyalty points redeemed byBk. For a pro�le request,FLP does not update

the database. After being prompted by S ,FLP sends P and (i, vui)i∈[1,N ]
to Bk.

FLP guarantees that the requests made by buyers are unlinkable for V . As can

be seen,FLP reveals to V a pseudonym that is unique for every request.FLP also

ensures that the PH and lpts of a buyer are hidden from V . FLP never reveals a

buyer’s database to V and, thanks to unlinkability, V is not able to link the updates

of a database.FLP also ensures unforgeabilty of databases, i.e. buyers are not able

to modify their databases. This guarantees that lpts can only be redeemed if they

were accumulated, and that the pro�ling result is correct.
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Figure 13.1: Ideal FunctionalityFLP

FLP is parameterized by a database size N , a universe of pseudonyms Up, a

function familyF and a universe of values Uv .

1. On input (lp.register.ini, sid ,P) from Bk:

• Abort if sid /∈ (V, sid ′), or if P /∈ Up. Abort if there is a

tuple (sid ,P ′,B′k, . . .) stored such that P ′ = P , or a tuple

(sid ,P ′,B′k, 0) such that B′k = Bk.

• Store (sid ,P ,Bk, 0), create a fresh qid , store (qid ,P ,Bk)
and send (lp.register.sim, sid , qid) to S .

S. On input (lp.register.rep, sid , qid) from S :

• Abort if (qid ′,P ,Bk) such that qid = qid ′ is not stored.

• Store (sid ,P ,Bk, lp.register), delete (qid ,P ,Bk) and send

(lp.register.end, sid ,P) to V .

2. On input (lp.purchase.ini, sid ,P) from Bk:

• Abort if sid /∈ (V, sid ′), or if P /∈ Up. Abort if a tuple (sid ,
P ′,B′k, 1) such that B′k 6= Bk is not stored. Abort if there is

a tuple (sid ,P ′,B′k, . . .) stored such that P ′ = P , or (sid ,
P ′,B′k, 0) such that B′k = Bk.

• Store (sid ,P ,Bk, 0), create a fresh qid , store (qid ,P ,Bk)
and send (lp.purchase.sim, sid , qid) to S .

S. On input (lp.purchase.rep, sid , qid) from S :

• Abort if (qid ′,P ,Bk) such that qid = qid ′ is not stored.

• Store (sid ,P ,Bk, lp.purchase), delete (qid ,P ,Bk) and

send (lp.purchase.end, sid ,P) to V .

3. On input (lp.redeem.ini, sid ,P , p) from Bk:

• Abort if sid /∈ (V, sid ′), or if P /∈ Up. Abort if a tuple (sid ,
P ′,B′k, 1) such that B′k 6= Bk is not stored. Abort if there

is a tuple (sid ,P ′,B′k, . . .) stored such that P ′ = P , or a

tuple (sid ,P ′,B′k, 0) such that B′k = Bk. Take the stored

tuple (sid ,Bk,DB) and take the entry [N , vN ] ∈ DB. Abort

if p /∈ [0, vN ].
• Store (sid ,P ,Bk, 0), create a fresh qid , store (qid ,P ,Bk, p)

and send (lp.redeem.sim, sid , qid) to S .

S. On input (lp.redeem.rep, sid , qid) from S :

• Abort if (qid ′,P ,Bk, p) such that qid = qid ′ is not stored.

• Store (sid ,P ,Bk, lp.redeem, p), delete (qid ,P ,Bk, p) and

send (lp.redeem.end, sid ,P , p) to V .

4. On input (lp.profile.ini, sid ,P , f ) from Bk:
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• Abort if sid /∈ (V, sid ′), or if P /∈ Up, of if f /∈ F . Abort if a

tuple (sid ,P ′,B′k, 1) such thatB′k 6= Bk is not stored. Abort

if there is a tuple (sid ,P ′,B′k, . . .) stored such that P ′ = P ,

or a tuple (sid ,P ′,B′k, 0) such that B′k = Bk.

• Take (sid ,Bk,DB) and compute res ← f ((i, v)i∈S), where

(i, v)i∈S ⊆ DB and S is de�ned in f .

• Store (sid ,P ,Bk, 0), create a fresh qid , store (qid ,P ,Bk,
res) and send (lp.profile.sim, sid , qid) to S .

S. On input (lp.profile.rep, sid , qid) from S :

• Abort if (qid ′,P ,Bk, res) such that qid = qid ′ is not stored.

• Store (sid ,P ,Bk, lp.profile), delete (qid ,P ,Bk, res) and

send (lp.profile.end, sid ,P , res) to V .

5. On input (lp.updatedb.ini, sid ,P , (i, vui)i∈[1,N ]) from V :

• Abort if (sid ,P ′,Bk, lp.x, . . .) such that P ′ = P is not

stored, or if, for i ∈ [1,N ], vui /∈ Uv .

• If lp.x = lp.register, set DB← (i, 0)i∈[1,N ] and store a tuple

(sid ,Bk,DB).

• If lp.x = lp.purchase, take the stored tuple (sid ,Bk,DB),

parse DB as (i, vri)i∈[1,N ] and update DB ← (i, vri +
vui)i∈[1,N ] in the tuple (sid ,Bk,DB).

• If lp.x = lp.redeem, take p from the tuple (sid ,P ′,Bk,
lp.purchase, p). Take the stored tuple (sid ,Bk,DB), parse

DB as (i, vri)i∈[1,N ] and update the database entry [N , vri +
p] in the tuple (sid ,Bk,DB).

• Delete the tuple (sid ,P ′,Bk, lp.x, . . .). If lp.x 6=
lp.purchase, set (i, vui)i∈[1,N ] ← ⊥.

• Create fresh qid , store (qid ,Bk,P , lp.x, (i, vui)i∈[1,N ]) and

send (lp.updatedb.sim, sid , qid) to S .

S. On input (lp.updatedb.rep, sid , qid) from S :

• Abort if a tuple (qid ′,Bk,P , lp.x, (i, vui)i∈[1,N ]) such that

qid = qid ′ is not stored.

• In the tuple (sid ,P ′,Bk, 0) such that P ′ = P , if lp.x =
lp.register, replace 0 by 1, else replace 0 by⊥.

• Delete (qid ′,Bk,P , lp.x, (i, vui)i∈[1,N ]) and send

(lp.updatedb.end, sid ,P , (i, vui)i∈[1,N ]) to Bk.

13.4 construction

ΠLP is described modularly in the hybrid model, where V and Bk use the func-

tionalitiesFUUHD,FRrd
ZK ,FRpr

ZK ,FNYM andFNIC.FRrd
ZK andFRpr

ZK are ZK func-
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tionalities used in the redemption and pro�ling phases respectively. This modular

design allows for multiple constructions of ΠLP
FUUHD is used to store the buyers’ databasesDB. During registration,Bk invokes

the uuhd.read interface for the �rst time, and V invokes the uuhd.update inter-

face on input (i, 0)i∈[1,N ] to initialize DB. In the purchase phase, Bk invokes the

uuhd.read interface without reading the database, andV invokes the uuhd.update
interface on input (i, vui)i∈[1,N ] to update the PH and lpts stored in DB.

To redeem p lpts ,Bk invokes the uuhd.read interface to read the database entry

[N , vN ], which stores the accumulated lpts . Bk usesFRrd
ZK to prove that p ∈ [0,

vN ]. Both FRrd
ZK and FUUHD receive as input commitments output by FNIC to

ensure that the value vN read is used in the ZK proof. V invokes the uuhd.update
interface on input (i, 0)i∈[1,M ]||[N ,−p] to subtract the redeemed loyalty points

from DB.

In the pro�ling phase,Bk invokes the uuhd.read interface to read the subset S of

database entries required by the function f . Bk usesFRpr
ZK to prove correctness of

the evaluation of f . Commitments produced byFNIC are again used to guarantee

that the entries read are used inFRpr
ZK .V invokes the uuhd.update interface without

updating the database to conclude this phase.

Figure 13.2: Construction ΠLP

ΠLP is parameterized by a database size N , a universe of pseudonyms Up, a

function familyF and a universe of values Uv .

1. On input (lp.register.ini, sid ,P), Bk and V do the following:

• Bk sends (uuhd.read.ini, sid ,P ,⊥) toFUUHD.

• V receives (uuhd.read.end, sid ,P , flag,⊥) from FUUHD.

If flag = 1, V stores (sid ,P , lp.register) and outputs

(lp.register.end, sid ,P).

2. On input (lp.purchase.ini, sid ,P), Bk and V do the following:

• Bk sends (uuhd.read.ini, sid ,P ,⊥) toFUUHD.

• V receives (uuhd.read.end, sid ,P , flag,⊥) fromFUUHD. If

flag = 0 and no commitments to read data are received, V
stores (sid ,P , lp.purchase) and outputs (lp.purchase.end,
sid ,P).

3. On input (lp.redeem.ini, sid ,P , p), Bk and V do the following:

• Bk takes the stored (i, vi)i∈[1,N ] and checks that p ∈ [0, vN ].
• Bk uses the com.commit interface ofFNIC on input N and

vN to get two commitments and openings (comN , openN ,

comv , openv ) to N and vN .

Rrd is

Rrd = {(witrd, insrd) : 1 = COM.Verify(parcom, comv , vN , openv )∧p ∈ [0, vN ]}
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Bk proves that vN is committed to in comv and that p ≤ vN . For the latter, Bk
uses a range proof [15].

• Bk sets a witness witrd ← (vN , openv ) and insrd ←
(p, comv , comN ,N , openN ).Bk uses the zk.prove interface

to send witrd, insrd and P toFRrd
ZK .

• V uses the com.verify interface of FNIC on input (comN ,
N , openN ) to verify that comN commits to the position N .

V uses the com.validate interface on input comv to check

that comv is a commitment computed byFNIC. V stores the

commitments (comN , comv ).

• V sends a message (Read DB) to Bk by using the nym.reply
interface of FNYM on input P . (Here we consider that any

construction for FRrd
ZK uses FNYM, so V can reply through

FNYM.)

• Bk stores (sid ,P , p) and sends the message (uuhd.read.ini,
sid ,P , (N , vN , comN , openN , comv , openv )) toFUUHD.

• V receives (uuhd.read.end, sid ,P , flag, (comN , comv ))
from FUUHD. V checks that the commitments (comN ,
comv ) equal the ones received fromFRrd

ZK . V stores (sid ,P ,
lp.redeem, p) and outputs (lp.redeem.end, sid ,P , p).

4. On input (lp.profile.ini, sid ,P , f ), Bk and V do the following:

• Bk takes her purchase history (i, vi)i∈[1,M ]. Let S ⊆ [1,M ]
contain the indices needed to evaluate f . Bk commits to (i,
vi)i∈S, i.e., for all i ∈ S, Bk uses com.commit on input i and

v to get (ci , oi , cri , ori).

• Bk computes res ← f((i, vi)i∈S).

Rpr is

Rpr ={(witpr, inspr) :
{1 = COM.Verify(parcom, ci , i, oi) ∧ i ∈ S∧
1 = COM.Verify(parcom, cri , vi, ori)}∀i∈S ∧ res = f((i, vi)i∈S)}

Bk proves that i and vi are committed in ci and cri , and that i ∈ S.Bk also proves

that res is the result of evaluating f on input (i, vi)i∈S.

• Bk sets a witness witpr ← (〈i, oi , vi, ori〉i∈S) and inspr ←
(〈ci , cri〉i∈S). Bk uses the zk.prove interface to send witpr,

inspr and P toFRpr
ZK .

• V uses com.validate to check that (ci , cri)i∈S are commit-

ments computed byFNIC and stores (ci , cri)i∈S.
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• V sends a message (Read DB) to Bk by using the nym.reply
interface ofFNYM. (Here we consider that any construction

forFRpr
ZK usesFNYM, so V can reply throughFNYM.)

• Bk sendsFUUHD the message (uuhd.read.ini, sid ,P , (i, vi,
ci , oi , cri , ori)i∈S).

• V receives (uuhd.read.end, sid ,P , flag, (ci , cri)i∈S) from

FUUHD. V checks that the commitments (ci , cri)i∈S equal

the ones received fromFRrd
ZK .V stores (sid ,P , lp.profile) and

outputs (lp.profile.end, sid ,P , res).

5. On input (lp.updatedb.ini, sid ,P , (i, vui)i∈[1,N ]), V and Bk do

the following:

• V �nds the tuple (sid ,P ′, lp.x, . . .), such that P ′ = P .

• If lp.x = lp.register, V initializes a database (i, 0)i∈[1,N ] and

sends (uuhd.update.ini, sid ,P , (i, 0)i∈[1,N ]) to FUUHD.

Bk receives (uuhd.update.end, sid , (i, 0)i∈[1,N ]) from

FUUHD, checks that (i, 0)i∈[1,N ] contains 0 in all positions,

stores (i, 0)i∈[1,N ] and outputs (lp.updatedb.end, sid ,P ,
⊥).

• If lp.x = lp.purchase,V sends (uuhd.update.ini, sid ,P , (i,
vui)i∈[1,N ]) toFUUHD. Bk receives (uuhd.update.end, sid ,
(i, vui)i∈[1,N ]) fromFUUHD and checks that (i, vui)i∈[1,N ] is

correct, i.e., the database was updated by using the correct prices

paid byBk for the products purchased and the correct number

of lpts was added. Bk updates her database (i, v ′i)i∈[1,N ] by

setting (i, v ′i + vui)i∈[1,N ] and outputs (lp.updatedb.end,
sid ,P , (i, vui)i∈[1,N ]).

• If lp.x = lp.redeem, V takes p from the tuple (sid ,
P , lp.redeem, p) and sets a database (i, vi)i∈[1,N ] where

vi = 0 for i ∈ [1,M ] and vN = −p. V sends

(uuhd.update.ini, sid ,P , (i, vi)i∈[1,N ]) to FUUHD. Bk re-

ceives (uuhd.update.end, sid , (i, vi)i∈[1,N ]) from FUUHD
and checks that vi = 0 for i ∈ [1,M ] and vN = −p,

where p is stored in the tuple (sid ,P , p). Bk updates her

database (i, v ′i)i∈[1,N ] by setting (N , v ′N + vN ) and outputs

(lp.updatedb.end, sid ,P ,⊥).

• If lp.x = lp.profile, V initializes a database (i, 0)i∈[1,N ] and

sends (uuhd.update.ini, sid ,P , (i, 0)i∈[1,N ]) to FUUHD.

Bk receives (uuhd.update.end, sid , (i, 0)i∈[1,N ]) from

FUUHD and checks that (i, 0)i∈[1,N ] contains 0 in all

positions. Bk outputs (lp.updatedb.end, sid ,P ,⊥).

13.5 security analysis
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Theorem 13.5.1 ΠLP securely realizes FLP in the FUUHD, FRrd
ZK , FRpr

ZK , FNYM
andFNIC-hybrid model.

ΠLP provides the unlinkability and hiding properties of FLP, which protect

buyers’ privacy. Regarding unlinkability,FUUHD,FRrd
ZK ,FRpr

ZK andFNYM reveal

to V a pseudonym and not the identi�erBk.Bk chooses a di�erent pseudonym for

each phase. Regarding the hiding property, in the purchase phase V does not learn

any information on the PH or on the lpts of Bk. In the redemption phase, V only

learns that Bk accumulated at least p points. In the pro�ling phase, V only learns

the result of evaluating f on input the PH of Bk. We recall thatFNIC ensures that

commitments are hiding.

ΠLP prevents an adversarialBk from forging her PH or her lpts .FUUHD ensures

that only V sets up and modi�es databases.FUUHD also ensures that Bk cannot

reuse her PH or her lpts . Additionally, the binding property ensured by FNIC
guarantees that commitments sent to FUUHD and to the ZK functionalities are

opened to the same value. Therefore, Bk can only prove knowledge of the PH or

lpts that were stored by V .

13.6 implementation and efficiency measurements

We have implemented ΠLP in the Python programming language, using the Charm

cryptographic framework [4], on a computer equipped with an Intel Core i5-7300U

CPU clocked at 2.60 GHz, and 8 gigabytes of RAM. Although we have used a

single core implementation of the protocol for our evaluations, we comment that

the protocol may bene�t from parallelization in the setup phase. The BN256 curve

has been used for the pairing group setup. We use the compiler in [24] to compute

UC ZK proofs for Rrd and Rpr, and the Paillier encryption scheme uses a 2048-bit

key in both cases. We also employ the range proof scheme described in [15] in the

redemption and pro�ling phases, which requires the computation and storage of

a CRS of about 152 bytes. For the purposes of evaluating the pro�ling phase, we

have used a pro�ling function f which checks whether the sum of the amounts

paid by Bk for products represented by a speci�ed set of database entries surpasses

a speci�ed threshold value. Table 13.1 depicts the average computation times for

all phases of the protocol over 10 trial runs, against a database size N = {100,
1000}, which we consider adequate for shops of average size (particularly when

each entry is associated with a product category rather than an individual product).
1

The timings include the database update operation performed by V for each of the

phases. The last three rows of Table 13.1 list the average computation times for the

pro�ling phase when a set S of 1, 5 and 10 database entries have been passed as input

to the pro�ling function. The execution times for the pro�ling phase grow with the

size of S. However, the computation cost is independent ofN . We remark that the

purchase and redemption phases do not depend on S, and that the pro�ling phase

does not have real-time requirements. Figure 13.5 represents the relation between

the execution time of the pro�ling phase and the size of S.

1 The number of SKUs of a typical supermarket, which is a kind of shop that frequently uses

loyalty programs, is anywhere from 15000 to 60000 (https://www.fmi.org/our-research/
supermarket-facts)

https://www.fmi.org/our-research/supermarket-facts
https://www.fmi.org/our-research/supermarket-facts
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phase N=100 N=1000

Registration 0.6404 0.6396

Purchase 0.8776 0.8270

Redemption 2.6733 2.6656

Pro�ling (1-entry) 2.7701 2.7977

Pro�ling (5-entries) 14.0836 14.2737

Pro�ling (10-entries) 28.7699 28.2452

Table 13.1: PPLP phase execution times in seconds.
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Figure 13.5: Pro�ling phase input entry size vs. execution time.



14SEALED B ID AUCTIONS WITH B IDDER STAT I ST ICS

Work in progress. This protocol makes use of the functionalityFCD from Chapter 4.

14.1 introduction

Auctions typically involve a seller (or a vendor) and multiple bidders, and can be

classi�ed into several categories. Of these, the most prominent classes are those

of English auctions, where bidders make increasing bids towards one or more

goods that are being sold by a seller; and Dutch auctions, where the bids decrease.

These auction types are also commonly referred to as open cry dynamic auctions,

as bids are publicly revealed and bidders may submit more than one bid. Other

classi�cations include �rst price and second price auctions, depending on whether

the winner of an auction pays the amount of the highest bid or that of the second

highest bid respectively.

The term "Sealed bid auctions", on the other hand, refers to the class of auctions

where bidders are allowed to cast only a single sealed bid during a bidding phase,

and an auctioneer opens and examines these bids to determine the outcome of an

auction; these bids are not revealed to the other bidders. Sealed bid auctions [44]

are of particular interest because they require only a single round of computation,

and because they make use of "sealed bids", where each bidder submits a signed

encrypted bid to an authority, and all bids are revealed to the authority at the same

time.

The concept of Vickrey auctions was �rst proposed in [93], and refers to a variant

of a sealed bid auction, where the product that is being auctioned is sold to the

bidder with the highest bid value, provided this bidder pays the bid value of the

second-highest bid. Some Vickrey auction protocols in literature use threshold

trust to provide security guarantees [49, 60]; in other words, the protocol is secure

as long as a speci�c number of auctioneer servers are honest. [70] describes two

cryptographic auction schemes which do away with the need to maintain threshold

trust between the bidders and the servers responsible for computing the outcome of

auctions, whilst also introducing an auction authority. The protocol described in

[78] additionally introduces an auction issuer who de�nes the program or garbled

circuit that the auctioneer must execute in order to determine the winner in an

auction. For privacy to hold, the auctioneer and the auction issuer must not collude.

However, an impediment that stands in the way of the widespread use of crypto-

graphic auctions is fraudulent bidding. [9] mentions collusion between bidders as

one of the drawbacks of Vickrey auctions. For instance, the term shill bidding [91]

refers to a technique by which a party makes use of fake bidders to in�uence the

winning price in an auction. Bid rigging [88] is another issue wherein several bidders

147
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may collude to in�uence the selling price of an auction. Whilst several algorithms

for the detection of collusive bidders who participate in fraudulent bidding do exist

for some classes of auctions, the same approach cannot be applied to sealed bid

auctions where bids are encrypted. One such algorithm for online English auctions

has been described in [92], where a shill score is computed for one or more bidders

after studying bidding patterns over a series of auctions.

14.1.1 Our Contribution

We propose a protocol for sealed bid auctions where we useFCD for a committed

database to allow bidder pro�ling algorithms (or aggregate statistical functions) to

be run by bidders on their bid histories, without revealing the histories to other

parties. The bidder may then prove that they have not been engaging in fraudulent

bidding activities, to the vendor (the bidder could also exchange this result with an

authority for a signed certi�cate, for instance, to be used with other vendors).

• We propose a functionalityFSBA for Sealed Bid Auctions, modelled around

the protocols described in [70]. We also modify the protocol in [70] by

introducing a non-interactive zero knowledge proof, allowing the auctioneer

to prove to the bidders that the outcome of an auction has been computed

correctly. Our FSBA is additionally parameterized by a function which is

used to determine the outcome of the auction, allowing it to be used for

various auction classes. This functionality can be used as a modular building

block to build larger auction protocols.

• We propose a functionality FSBAS for a Sealed Bid Auction with Bidder

Statistics, allowing bidders to reveal the result of a running a pro�ling or

statistical function against their bid histories to a vendor.

• We propose a hybrid protocol ΠSBAS for a Sealed Bid Auction with Bidder

Statistics that securely realizesFSBAS, constructed usingFCD andFSBA.

Though our protocol allows for the execution of pro�ling and statistical func-

tions against the bid history of a single bidder, we remark that these functionalities

can also be used in MPC commit and prove protocols thanks to the fact that we

have modi�ed them to receive commitments as input, in order to detect bidder

collusion between multiple bidders by running fraud detection algorithms against

their histories.

14.2 ideal functionality for sealed bid auctions

Functionality FSBA interacts with bidders Bk, a vendor V , and an auctioneer

A. It consists of eight interfaces: sba.setup, sba.bidrequest, sba.bid, sba.close,

sba.checkclosed, sba.result, sba.bidrequest, and sba.verify.

1. The auctioneerA uses the sba.setup interface to initialize the auction, and

sends a sba.setup.end message to the vendor V . As in Section 2.8.9, the

sba.setup interface is also used to obtain the parameters par, trapdoor td,

and the algorithms SBA.SimProve and SBA.Extract from S . An empty

set S is created to store the identities of bidders who have received these



14.2 ideal functionality for sealed bid auctions 149

parameters, as the veri�cation of proofs is a local process (implying that the

bidders must receive these parameters before they may execute the sba.verify
interface).

2. A bidder Bk uses the sba.bidrequest interface to submit a bid value bid , a

commitment combid and an opening openbid to bid toFSBA.FSBA parses

the commitment combid as (com ′bid , parcom , COM.Verify), and veri�es

this commitment by running COM.Verify. FSBA then stores bid and its

commitment combid . The simulator S learns the identity of the bidder, but

not bid .

3. The vendor V uses the sba.bid interface to mark a bid as "received". V sends

a commitment combid to a previously submitted bid bid toFSBA.FSBA
then records the bid bid associated with the commitment combid as received.

We split the bid phase into two interfaces in order to allow V to ensure that

a bidder Bk writes the correct bid value to functionality FCD in a hybrid

protocol.

4. The vendor V uses the sba.close interface to trigger the bid opening phase.

FSBA will not accept any new bids from a bidder during the bid opening

phase.

5. A bidderBk or the auctioneerAuses the sba.checkclosed interface to check

whether the bid opening phase has been triggered by V . If the bid opening

phase has been triggered,FSBA sends all commitments received from execu-

tions of the sba.bid interface to Bk or toA.

6. A uses the sba.result interface to compute and send the outcome of the

auction to the vendorV .FSBA determines the result of the auction by means

of a function F.FSBA also computes a simulated proof π in order to prove

that the result of the auction has been computed correctly. The identity of

the winning bidder Bwin , the bid amount to be paid by the winning bidder

result, and the proof π are sent to V .

7. A bidder Bk uses the sba.bidrequest interface to retrieve the results of the

auction. If the outcome of the auction has already been computed and stored,

FSBA sends the results of the auction v and a proof π to Bk.

8. A bidderBk uses the sba.verify interface to determine whether the winning

bid has been determined correctly and in accordance with F by the auctioneer

A.

For a Vickrey auction,
bidx represents the
second-highest bid
value while
y = x + 1.

Figure 14.1: FunctionalityFSBA

FunctionalityFSBA interacts with biddersBk, a vendor V , and an auction-

eerA. It is parameterized by a maximum permissible bid value bidmax, and

a function F from a universe of functions Ψ used to determine the outcome

of the auction. SBA.SimProve and SBA.Extract are ppt algorithms.

1. On input (sba.setup.ini, sid) fromA:

• Abort if sid /∈ (A,V, sid ′).
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• Abort if (sid , par, td, SBA.SimProve,SBA.Extract) is al-

ready stored.

• Abort if (sid , setup, 0) is already stored.

• Store (sid , setup, 0).

• Send (sba.setup.req, sid) to S .

S. On input (sba.setup.alg, sid , par, td, SBA.SimProve,
SBA.Extract) from S :

• Abort if (sid , setup, 0) is not stored, or if (sid , setup, 1) is

already stored.

• Store (sid , par, td,SBA.SimProve, SBA.Extract).

• Create an empty set S.

• Store (sid , setup, 1).

• Send (sba.setup.end, sid) to V .

2. On input (sba.bidrequest.ini, sid , bid , combid , openbid ) from

Bk:

• Abort if (sid ,Bk, bid ′, combid ′ , 0), for any value of bid ′ is

already stored.

• Abort if bid /∈ [0, bidmax].
• Parse the commitment combid as (com ′bid , parcom,

COM.Verify).

• Abort if 1 6= COM.Verify(parcom, com ′bid , bid , openbid ).

• Store (sid ,Bk, bid , combid , 0).

• Send (sba.bidrequest.sim, sid , combid ) to S .

S. On input (sba.bidrequest.rep, sid , combid ) from S :

• Abort if (sid ,Bk, bid , combid , 0) is not stored, or if

(sid ,Bk, bid ′, com ′bid , request) is already stored.

• Abort if (sid , setup, 1) is not stored.

• Abort if (sid , (combidi)∀i, 1) is already stored.

• Set S← S ∪ Bk.

• Store (sid ,Bk, bid , combid , request).

• Send (sba.bidrequest.end, sid , combid ) to V .

3. On input (sba.bid.ini, sid , combid ) from V :

• Abort if (sid ,Bk, bid ′, combid ′ , request), where combid ′ =

combid is not stored, or if (sid ,Bk, bid , combid , sim) is al-

ready stored.

• Store (sid ,Bk, bid , combid , sim).

• Send (sba.bid.sim, sid , combid ) to S .
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S. On input (sba.bid.rep, sid , combid ) from S :

• Abort if (sid ,Bk, bid , combid , sim) is not stored, or if

(sid ,Bk, bid ′, combid ′ , 1) is already stored.

• Store (sid ,Bk, bid , combid , 1).

• Send (sba.bid.end, sid , combid ) to Bk.

4. On input (sba.close.ini, sid) from V :

• Abort if (sid , setup, 1) is not stored.

• Abort if (sid , (combidi)∀i, 0) or (sid , (combidi)∀i, 1) is al-

ready stored.

• Retrieve and shu�e (combidi)∀i from all values of combid
received from executions of the bid interface and store

(sid , (combidi)∀i, 0).

• Send (sba.close.sim, sid , (combidi)∀i) to S .

S. On input (sba.close.rep, sid) from S :

• Abort if (sid , (combidi)∀i, 0) is not stored, or if

(sid , (combidi)∀i, 1) is already stored.

• Store (sid , (combidi)∀i, 1).

• Send (sba.close.end, sid) to V .

5. On input (sba.checkclosed.ini, sid) from Bk orA:

• Create a fresh qid and store (sid , qid ,Bk) or (sid , qid ,A).

• Send (sba.checkclosed.sim, sid , qid) to S .

S. On input (sba.checkclosed.rep, sid , qid) from S :

• Abort if (sid , qid ,Bk) or (sid , qid ,A) is not stored.

• Delete (sid , qid ,Bk) or (sid , qid ,A).

• If (sid , (combidi)∀i, 1) is not stored,

– Set v ← 0.

• Otherwise,

– Set v ← (combidi)∀i.
– Store (sid , retrieved,Bk) or (sid , retrieved,A), if it is

not already stored.

• Send (sba.checkclosed.end, sid , v) to Bk or toA.

6. On input (sba.result.ini, sid) fromA:

• Abort if (sid , result ,Bwin , π, u, 0) is already stored.

• Abort if (sid , retrieved,A) is not stored.
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• Compute (result ,Bwin) such that 〈result ,Bwin〉 =

〈bidx,By〉 is the result of computing F against all values

stored in the tuples (sid ,Bi, bid i, combidi , 1)∀i.
• Run π ← SBA.SimProve(sid , par, td, (combidi)∀i).

• Set u← 1 and store (sid , result ,Bwin , π, u, 0).

• Send (sba.result.sim, sid , result ,Bwin , π) to S .

S. On input (sba.result.rep, sid) from S :

• Abort if (sid , result ,Bwin , π, u, 0) is not stored, or if

(sid , result ,Bwin , π, u, 1) is already stored.

• Set v ← (result ,Bwin).

• Store (sid , result ,Bwin , π, u, 1).

• Send (sba.result.end, sid , v, π) to V .

7. On input (sba.retrieveresult.ini, sid) from Bk:

• Abort if (sid , retrieved,Bk) is not stored.

• Create a fresh qid and store (sid , qid ,Bk).

• Send (sba.retrieveresult.sim, sid , qid) to S .

S. On input (sba.retrieveresult.rep, sid , qid) from S :

• Abort if (sid , qid ,Bk) is not stored.

• Delete (sid , qid ,Bk).

• If (sid , result ,Bwin , π, u, 1) is not stored,

– Set v ← 0.

• Otherwise,

– Set v ← (result ,Bwin , π).

– Store (sid , resultretrieved,Bk) if it is not already stored.

• Send (sba.retrieveresult.end, sid , v) to Bk.

8. On input (sba.verify.ini, sid , π) from Bk:

• Abort if (sid , resultretrieved,Bk) is not stored.

• Abort if Bk /∈ S.

• If (sid , result ,Bwin , π, u, 1) is stored, set v ← u. Otherwise,

do the following:

– Extract ((bid i)∀i) ← SBA.Extract(sid , par, td,
(combidi)∀i, π).

– Retrieve the tuple (sid ,Bk, bid , combid , 1).

– If bid /∈ ((bid i)∀i), set v ← 0, otherwise set v ← 1.

• Send (sba.verify.end, sid , v) to Bk.
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14.3 ideal functionality for sealed bid auctions with bid-

der statistics

Functionality FSBAS interacts with bidders Bk, a vendor V , and an auctioneer

A. It consists of six interfaces: sbas.setup, sbas.register, sbas.bid, sbas.result,

sbas.verify, and sbas.revealstatistic.

1. The auctioneerA uses the sbas.setup interface to initialize an auction spec-

i�ed by an auction identi�er aid. FSBAS ensures that an auction cannot

commence until the result of all other auctions have been computed, and

sends a sbas.setup.end message to the vendor V .

2. A bidder Bk uses the sbas.register interface to generate a table Tbl contain-

ing Nmax entries of the form [i, v], where i represents a position in the table

and v represents the value stored at that position.FSBAS initializes Tbl to

[i, 0] for all entries.

3. A bidder Bk uses the sbas.bid interface to send a bid value bid toFSBAS,

whilst also specifying an aid . FunctionalitySBAS then stores bid and

records this bid in Tbl in the entry that represents aid, i.e., Tbl is updated

to store [aid, bid ]. The simulator S learns the identity of the bidder, but

not bid .

4. The vendorV uses the sbas.result interface to trigger the bid opening phase,

and to compute the result of the auction identi�ed byaid.FSBAS will not ac-

cept any new bids from a bidder during the bid opening phase.FSBAS uses F
against all received bids to compute the result of the auction 〈result,Bwin〉,
and sends it to V .

5. A bidder Bk uses the sbas.verify interface to retrieve the result of an auc-

tion identi�ed by aid, and to verify this result. FSBAS sends the result of

veri�cation v to Bk.

6. A bidderBk uses the sbas.revealstatistic interface to compute the result of

an aggregate or pro�ling function ST against its bidding history, stored in

Tbl.FSBAS sends the result of running ST against the Tbl associated with

Bk, v, to V .

We use auction identi�ers (aid) to allowFSBAS to execute multiple auctions

after initialization, but we enforce the fact that all auctions must be completed

before a new one can commence. We associate a table Tbl with every bidder after

they execute the sbas.register interface; this table is used to store their bid histories:

every position in Tbl represents an aid, whilst the value at the position stores

the bid value cast by the bidder Bk in this auction.FSBAS is parameterized by a

function F which is used to determine the outcome of an auction, allowing it to

be used with a wide variety of auction types. In the sbas.revealstatistic interface,

FSBAS executes an aggregate or pro�ling function ST against the bid history of a

bidder stored in its Tbl.
When invoked by V ,A, or Bk,FSBAS �rst checks the correctness of the input.

FSBAS aborts if this input does not belong to the correct domain. FSBAS also

aborts if an interface is invoked at an incorrect moment in the protocol. For example,
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A cannot invoke sbas.result before sbas.setup. Similar abortion conditions are

listed whenFSBAS receives a message from the simulator S .

BeforeFSBAS queriesS ,FSBAS saves its state, which is recovered upon receiving

a response from S . When an interface, e.g. sbas.revealstatistic, may be invoked

more than once, FSBAS creates a query identi�er qid , which allows FSBAS to

match a query to S to a response from S .

Figure 14.2: FunctionalityFSBAS

Functionality FSBAS runs with bidders Bk, a vendor V , and an auction-

eerA. It is parameterized by a maximum permissible bid value bidmax, a

function F, and a function ST from a universe of functions Φ.

1. On input (sbas.setup.ini, sid , aid) fromA:

• Abort if sid /∈ (V,A, sid ′).

• Abort if (sid , aid , 0) is already stored, or if aid /∈ [1,Nmax].
• Store (sid , aid , 0).

• Send (sbas.setup.sim, sid , aid) to S .

S. On input (sbas.setup.rep, sid , aid) from S :

• Abort if (sid , aid , 0) is not stored, or if (sid , aid , 1) is already

stored.

• If aid 6= 1, do the following:

– Abort if (sid , aid ′, result,Bwin , 1) where aid ′ =
aid − 1 is not stored.

• Store (sid , aid , 1).

• Send (sbas.setup.end, sid , aid) to V .

2. On input (sbas.register.ini, sid) from Bk:

• Abort if (sid , registered,Bk, 0) is already stored.

• Store (sid , registered,Bk, 0).

• Send (sbas.register.sim, sid ,Bk) to S .

S. On input (sbas.register.rep, sid ,Bk) from S :

• Abort if (sid , aid ′, 1), where aid ′ = 1 is not stored.

• Abort if (sid , registered,Bk, 0) is not stored, or if

(sid , registered,Bk,Tbl, 1) is stored.

• Initialize a table Tbl with entries [i, 0] for i = 1 to Nmax.

• Store (sid , registered,Bk,Tbl, 1).

• Send (sbas.register.end, sid) to Bk.

3. On input (sbas.bid.ini, sid , aid , bid) from Bk:

• Abort if (sid , aid ,Bk, bid ′, 0) for any value of bid ′ is already

stored.
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• Abort if bid /∈ [0, bidmax].
• Abort if (sid , registered,Bk,Tbl, 1) is not stored.

• Store (sid , aid ,Bk, bid , 0).

• Send (sbas.bid.sim, sid , aid ,Bk) to S .

S. On input (sbas.bid.rep, sid , aid ,Bk) from S :

• Abort if (sid , aid ,Bk, bid , 0) is not stored, or if

(sid , aid ,Bk, bid ′, 1) is already stored.

• Abort if (sid , aid , 1) is not stored.

• Abort if (sid , aid , (bid i)∀i) is already stored.

• Store (sid , aid ,Bk, bid , 1).

• Retrieve the tuple (sid , registered,Bk,Tbl, 1), and update

the entry [aid , bid ] in Tbl.

• Send (sbas.bid.end, sid , aid) to V .

4. On input (sbas.result.ini, sid , aid) fromA:

• Abort if (sid , aid , result ,Bwin , 0) is already stored.

• Store (sid , aid , (bid i)∀i) from all entries of

(sid , aid ,Bk, bidk, 1) received from executions of the

bid interface.

• Retrieve (result ,Bwin) such that 〈result ,Bwin〉 =

〈bidx,By〉 is the result of computing F against all val-

ues stored in the tuples (sid , aid ,Bi, bid i, 1)∀i.
• Store (sid , aid , result ,Bwin , 0).

• Send (sbas.result.sim, sid , aid , result) to S .

S. On input (sba.result.rep, sid , aid) from S :

• Abort if (sid , aid , result ,Bwin , 0) is not stored, or if

(sid , aid , result ,Bwin , 1) is already stored.

• Store (sid , aid , result ,Bwin , 1).

• Set v ← (result ,Bwin).

• Send (sbas.result.end, sid , aid , v) to V .

5. On input (sbas.verify.ini, sid , aid) from Bk:

• Abort if (sid , aid , result ,Bwin , 1) is not stored.

• If F(〈bid i,Bi〉∀i) 6= (result ,Bwin), set v ← 0. Otherwise,

set v ← 1.

• Create a fresh qid and store (sid , aid , qid ,Bk, v).

• Send (sbas.verify.sim, sid , qid) to S .

S. On input (sbas.verify.rep, sid , qid) from S :
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• Abort if (sid , aid , qid ,Bk, v) is not stored.

• Delete the tuple (sid , aid , qid ,Bk, v).

• Send (sbas.verify.end, sid , aid , v) to Bk.

6. On input (sbas.revealstatistic.ini, sid , ST) from Bk:

• Abort if (sid , registered,Bk,Tbl, 1) is not stored.

• Abort if ST /∈ Φ.

• Set v ← ST(Tbl) where Tbl is retrieved from the stored tuple

(sid , registered,Bk,Tbl, 1).

• Create a fresh qid and store (sid , qid ,ST,Bk, v).

• Send (sbas.revealstatistic.sim, sid , qid) to S .

S. On input (sbas.revealstatistic.rep, sid , qid) from S :

• Abort if (sid , qid , ST,Bk, v) is not stored.

• Delete the record (sid , qid , ST,Bk, v).

• Send (sbas.revealstatistic.end, sid , v,ST) to V .

14.4 construction

intuition.

bidder registration A initializes a new copy ofFCD for eachBk, and uses

FCD to send an empty initial Tbl to the bidder executing the sbas.register
interface.

bidding A initializes a new copy of FSBA for every aid . A bidder Bk uses

the sba.checkclosed interface of the FSBA associated with aid to check

whether bids are still being accepted. If the auction is still open,Bk usesFRbid
ZK

to prove toV in zero knowledge that the bid bid lies in the range [0, bidmax],
and that combid commits to bid with opening openbid . Bk then uses the

cd.write interface of its copy ofFCD to write bid to its committed database.

V receives commitments to both aid and to bid , and checks if combid is

the same commitment as that received from FRbid
ZK . This ensures that the

Bk has written the right value to its committed database. To prove that it

has written bid to the right position in its committed database, Bk opens

comaid to aid by revealing the opening openaid to V .

auction results V uses the sba.close interface of the copy ofFSBA associ-

ated with aid to close an auction before requestingA to determine the out-

come of said auction.A then uses the sba.checkclosed interface ofFSBA to

check if the auction has been closed before using sba.result to compute the

result of the auction. The result of the auction (in accordance with F) is sent

to V (in a construction forFSBA, this result would typically be published

to a bulletin board).
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bidder statistics and profiling Bk executes an aggregate or pro�ling

function ST against its bid history stored in its committed database, and

uses the cd.read interface of FCD to read all entries that are required for

the evaluation of ST; V receives commitments to these entries. Bk then

usesFRstatZK to prove to V in zero knowledge that the result of ST has been

computed correctly. V checks if the commitments received fromFCD and

those fromFRstatZK are the same. In this case, V learns no information on the

bid history of Bk, but is still able to learn the result of ST.

Figure 14.3: Description of ΠSBAS.

Construction ΠSBAS runs with bidders Bk, a vendor V , and an auctioneer

A. It is parameterized by a maximum permissible bid value bidmax, and a

function ST from a universe of functions Φ. ΠSBAS uses the functionalities

FSBA,FNIC,FCD,FSMT,FAUT, andFRZK as building blocks.

1. On input (sbas.setup.ini, sid , aid),A and V do the following:

• A aborts if sid /∈ (V,A, sid ′).

• If aid 6= 1,A does the following:

– A aborts if (sid , aid ′, result,Bwin) where aid ′ = aid−
1 is not stored, or if (sid , aid , result,Bwin) is already

stored.

• A sets a session identi�er sidaid ← (sid , aid) and sends the

message (sba.setup.ini, sidaid ) to a new instance ofFSBA.

• V receives the message (sba.setup.end, sidaid ) fromFSBA.

• V sends the message (com.setup.ini, sid) to a new instance

ofFNIC.

• V receives the message (com.setup.end, sid ,Ok) fromFNIC.

• V stores (sid , aid , setup).

• V outputs (sbas.setup.end, sid , aid).

2. On input (sbas.register.ini, sid), a bidder Bk and V do the follow-

ing:

• Bk aborts if sid /∈ (A,V, sid ′).

• Bk uses the aut.send interface ofFAUT to send the message

(register) to V .

• V receives the message (register) from FAUT, and aborts if

(sid , registered,Bk) is already stored.

• V sets up a table Tbl of Nmax entries of the form [i, 0].
• V stores (sid , registered,Bk).

• V sets sidBk ← (V,Bk, sid), and sends the message

(cd.setup.ini, sidBk ,Tbl) toFCD.

• Bk receives the message (cd.setup.end, sidBk ,Tbl) from

FCD.
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• Bk sends the message (com.setup.ini, sid) to a new instance

ofFNIC.

• Bk receives the message (com.setup.end, sid ,Ok) from

FNIC.

• Bk stores (sid ,Tbl), and outputs the message

(sbas.register.end, sid).

3. On input (sbas.bid.ini, sid , aid , bid), Bk and V do the following:

• Bk aborts if bid /∈ [0, bidmax].
• Bk aborts if (sid ,Tbl) is not stored.

• Bk aborts if (sid , aid , (combid )∀i) is already stored.

• Bk retrieves the entry [aid , j] from Tbl, and aborts if j 6= 0.

• Bk sends the message (sba.checkclosed.ini, sidaid ) toFSBA.

• Bk receives the message (sba.checkclosed.end, sidaid , v)
fromFSBA.

• If v 6= 0,

– Bk parses v as (combid )∀i.
– Bk stores (sid , aid , (combid )∀i).

• Otherwise,

– Bk sends the message (com.commit.ini, sid , bid) to

FNIC.

– Bk receives the message (com.commit.end, sid ,
combid , openbid ) fromFNIC.

– Bk sets witbid ← (bid , openbid ).

– Bk parses the commitment combid as (com ′bid , parcom,
COM.Verify).

– Bk sets insbid ← (parcom, com ′bid ).

– Bk stores (sid ,witbid , insbid ).

The relationRbid is de�ned as follows:

Rbid ={(witbid , insbid ) :
1 = COM.Verify(parcom, combid , bid , openbid )∧
bid ∈ [0, bidmax]}

– Bk sends (zk.prove.ini, sidBk ,witbid , insbid ) to a new

instance ofFRbid
ZK .

– V receives the message (zk.prove.end, sidBk , insbid )
fromFZK.

– V parses insbid as (parcom, com ′bid ).
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– V sets the commitment combid ← (com ′bid , parcom,
com.verify).

– V uses com.validate to validate combid .

– V aborts if (sid , combid ) is already stored.

– V stores (sid , combid ).

– V uses aut.send to send the message (writebid) to Bk.

– Bk sends the message (com.commit.ini, aid) toFNIC.

– Bk receives the message (com.commit.end, comaid ,
openaid ) fromFNIC.

– Bk stores (sid , comaid , openaid ).

– Bk sends the message (cd.write.ini, sidBk , comaid , aid ,
openaid , combid , bid , openbid ) to FCD, in order to

write an entry [aid , bid ] to the table ofFCD.

– V receives the message (cd.write.end, sidBk , comaid ,
combid ) fromFCD.

– V aborts if the commitment combid stored in

(sid , insbid ) is not the same as the commitment received

fromFCD.

– V uses aut.send to send the message (revealauctionid)
to Bk.

– Bk updates Tbl with [aid , bid ].
– Bk uses smt.send to send (aid , openaid ) to V .

– V uses com.verify to verify (comaid , aid , openaid ), and

stores (sid , aid , insbid ).

– V uses aut.send to send the message (submitbid) to Bk.

– Bk sends the message (sba.bidrequest.ini, sidaid , bid ,
combid , openbid ) toFSBA.

– V receives the message (sba.bidrequest.end, sidaid ,
combid ) fromFSBA.

– V aborts if the commitment combid stored in

(sid , aid , insbid ) is not the same as the commitment

received fromFSBA.

– V sends the message (sba.bid.ini, sidaid , combid ) to

FSBA.

– Bk receives the message (sba.bid.end, sidaid , combid )
fromFSBA.

• Bk outputs the message (sbas.bid.end, sid , aid).

4. On input (sbas.result.ini, sid , aid),A and V do the following:

• V sends the message (sba.close.ini, sidaid ) toFSBA.
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• V receives the message (sbas.close.end, sidaid ) fromFSBA.

• V uses the aut.send interface of FAUT to send the message

(aid , computeresult) toA.

• A sends the message (sba.checkclosed.ini, sidaid ) toFSBA.

• A receives the message (sba.checkclosed.end, sidaid , v)
fromFSBA.

• A aborts if v = 0.

• A sends the message (sba.result.ini, sidaid ) toFSBA.

• V receives the message (sba.result.end, sidaid , v, π) from

FSBA.

• V parses v as (result,Bwin) and stores (sid , aid , result,
Bwin).

• V outputs (sbas.result.end, sid , aid).

5. On input (sbas.verify.ini, sid , aid), Bk does the following:

• Bk sends the message (sba.retrieveresult.ini, sidaid ) to

FSBA.

• Bk receives the message (sba.retrieveresult.end, sidaid , v)
fromFSBA.

• Bk aborts if v = 0.

• Bk parses v as (result,Bwin , π), and sends the message (
sba.verify.ini, sidaid , π) toFSBA.

• Bk receives the message (sba.verify.end, sidaid , v
′) from

FSBA.

• Bk outputs (sba.verify.end, sid , aid , v′).

6. On input (sbas.revealstatistic.ini, sid ,ST), Bk and V do the fol-

lowing:

• Bk aborts if (sid ,Tbl) is not stored.

• Bk aborts if ST /∈ Φ.

• Bk computes result← ST(Tbl) where Tbl is retrieved from

the stored tuple (sid ,Tbl).

• For each entry [i, v] in Tbl, where v represents a value that was

used by Bk to compute result, Bk and V do the following:

– Bk uses the com.commit interface of FNIC to obtain

commitments comi and openings openi to i.

– Bk uses the com.commit interface of FNIC to obtain

commitments comv and openings openv to v.

– Bk stores (sid , i, comi, v, comv).

– Bk sends the message (cd.read.ini, sidBk , comi, i,
openi, comv, v, openv) toFCD.
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– V receives the message (cd.read.end, sidBk , comi,
comv) fromFCD.

– V uses the com.validate interface of FNIC to validate

comi.

– V uses the com.validate interface of FNIC to validate

comv .

– V uses the aut.send interface ofFAUT to send the mes-

sage (continue, comi, comv) to Bk.

• Bk sets witstat ← (〈i, openi, v, openv〉∀i).

• Bk parses comi as (com ′i, parcom,COM.Verify) and comv

as (com ′v, parcom,COM.Verify) for all i.

• Bk sets insstat ← (result, parcom,ST, 〈com ′i, com ′v〉∀i).

The relation Rstat is de�ned as follows:

Rstat ={(witstat, insstat) :
[1 = COM.Verify(parcom, comi, i, openi) ∧
1 = COM.Verify(parcom, comv, v, openv) ]∀i∧
result = ST(〈i, v〉∀i)}

• Bk sends the message (zk.prove.ini, sidBk , insstat,witstat)
to a new instance ofFRstat

ZK .

• V receives the message (zk.prove.end, sidBk , insstat) from

FRstat
ZK .

• V aborts if the commitments (comi, comv)∀i received from

FCD are not the same as those in insstat.
• V outputs (sbas.revealstatistic.end, sid , result,ST).





Part IV

IMPLEMENTATIONS

We elucidate aspects of our implementations of Stateful Zero Knowl-

edge (SZK) data structures and protocols, introduce an extension of

a notation for Zero Knowledge (ZK) proofs with support for State-

ful Zero Knowledge (SZK), and describe a compiler which produces

implementations based on protocols speci�ed by means of the afore-

mentioned notation.





15DATA STRUCTURE AND PROTOCOL
IMPLEMENTATIONS

We have implemented some primitives outlined in Part II and a protocol from

Part III in order to gauge their e�ciency, and to show that these schemes are practi-

cal even for large database sizes. We used the Charm Cryptographic Prototyping

Framework [4] to develop proof of concept implementations for these schemes as

Charm provides a Python wrapper that allows us to use Python’s features (such

as lists and native JSON support), whilst low level cryptographic operations are

carried out in C using the Relic toolkit [7].

These implementations were developed modularly so that modules could be

reused as components of the code generator in our SZK compiler. The modules

include:

• An implementation of a Vector Commitment scheme [32],

• An implementation of the Pedersen Commitment scheme [80],

• An implementation of an Integer Commitment scheme [34],

• An implementation of a Structure Preserving Signature scheme [2],

• Implementations of the ideal functionalities in Chapter 2, and,

• Implementations of ZK functionalities based on the compiler in [24].

In order to facilitate the replication of our results and to make it easier for re-

searchers to extend our code, we have published a script with the source code in

[40] which can be used to reproduce our testing environment in a virtual machine,

doing away with the need for the installation and con�guration of the libraries

required for the execution of our code.

All e�ciency measurements were carried out on a computer equipped with an

Intel Core i5-7300U CPU clocked at 2.60 GHz, and 8 gigabytes of RAM. The

BN256 curve was used for the pairing group setup in all cases, unless otherwise

speci�ed. These measurements (in Section 7.6.5, Section 8.6.5, Section 9.6.5, and

Section 13.6) all show that our primitives are practical for large database sizes.
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16A COMPILER FOR STATEFUL ZERO KNOWLEDGE

Joint work with Alfredo Rial. Work in progress; to be submitted in 2022.

16.1 introduction

As discussed in Chapter 1, the fact that the implementation of the constructions

in this thesis requires knowledge of several cryptographic concepts could prove

to be a hindrance to the adoption of our data structures and techniques (in the

construction and development of privacy preserving protocols) by developers who

are not well versed with these mathematical aspects.

16.2 our contribution

We provide a notation allowing practitioners to specify the data structures they

would wish to implement (after determining which of these data structures o�ers

the security guarantees they desire), and the operations they would wish to run

against these structures, whilst also specifying the proof statements they would

wish to evaluate during the execution of each operation. We then go on to provide a

compiler which takes this notation as input, and produces the following as output:

• UC-secure code that implements the requested data structure,

• Functions that execute the requested operations on the generated data struc-

ture, and,

• UC-secure code that implements ZK functionalities that prove statements

speci�ed in the input statement, based on the content of the generated data

structures.

As this compiler was designed with our protocols in mind, we o�er support for

pairing product equations and bilinear maps. We also allow for the de�nition of

task based cryptographic operations via macros in the sense that programmers

can specify prede�ned function strings representing common cryptographic tasks

such as encryption and signing, without needing to worry about the internals. The

compiler converts these strings into pairing product equations, as depicted in �gure

Figure 16.2.

Figure 16.1: Pederson Commitment Macro Expansion

pedcom(par,message, opening)⇒ e(gmessage.paropening, g̃)
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Formal Speci�cation

YAML Speci�cation

Lexer and Parser

PPE Representation

Code Generation

Figure 16.2: The architecture of our SZK compiler.

16.3 related work

Notations for ZK proofs allow you to represent the relation being proved concisely.

A few widely used notations can be found in [23, 28]. In [24], ZK compilers [5, 6, 48,

50, 74] take as input the speci�cation of a ZK proof and output an executable imple-

mentation of the corresponding ZK proof protocol. Some compilers use notations

for cryptographic protocols [5, 6, 24], whilst others take as input computations

represented in restricted high-level languages [50, 74]. The notation in [28] is used

in [5] as input to the compiler. [6] extends [5] to provide a veri�ed compiler. [71]

features a Python library for prototyping composable zero-knowledge proofs in

the discrete-log setting.

Our compiler di�ers from these compilers by virtue of the fact that we additionally

provide implementations of an SZK data structure as output. As the data structure

has been decoupled from the proof functionality, this would allow us to extend

an existing ZK compiler. However, as our proof statements involve pairing prod-

uct equations and bilinear maps, we chose to build a compiler from scratch. Our

compiler also realizes a hybrid protocol that uses ideal protocols for ZK, SZK and

non-interactive commitments as building blocks which together implement the

speci�ed ZK proof.
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16.4 architecture

The architecture of our compiler is depicted in Figure 16.2. Data structure require-

ments, operations, and statements to be proved are speci�ed using our formal

notation. In order to be fed as input to the compiler, these speci�cations must be

represented in a data transfer format (YAML), before being sent to a lexer and a

parser. The resulting syntax tree is then used to build pairing product equations

for the proof statements, and the code generator �nally produces implementations

for the data structure and operations speci�ed, and implementations for the proof

statements. We describe each section in detail.

16.4.1 Formal Notation

We extend the notation described in [24]. The intuition behind this decision stems

from the fact that this notation guarantees that a UC secure protocol for a relation

exists, if it can be speci�ed using the notation.

CD

(1)

[purchase

(2)

: {read

(3)

: Kw1, . . . , wn : φ(w1, . . . , wn)

(4)

}]

segment 1 To specify the data structure to be used, we use its 2-4 letter acronym.

Thus, the possible options are CD, UCD, UUD, UUHD, NICD, or UD.

segment 2 To de�ne the operations to be performed against the data structure,

we use a label. This label can be derived from the nature of the task to be

performed, i.e., "deposit" or "pro�le".

segment 3 Within each operation, we specify whether a database read, a write,

or an update is being performed. The permissible options will depend on

the type of database in question.

segment 4 Within each operation, we use the notation from [24] to denote the

relation to be proved. We use the literals "i","v","in" and "vn" to expose the

database entries being read, written or updated, so that they may be included

in the relation. To reiterate, in [24], a UC ZK protocol proving knowledge

of exponents (w1, . . . , wn) that satisfy the formula φ(w1, . . . , wn) is de-

scribed as Kw1, . . . , wn : φ(w1, . . . , wn). The formula φ(w1, . . . , wn)
consists of conjunctions and disjunctions of atoms. An atom expresses group
relations, such as

∏k
j=1 g

Fj
j = 1, where the gj ’s are elements of prime

order groups and the Fj ’s are polynomials in the variables (w1, . . . , wn).

This proof system can be transformed into a proof system for more ex-

pressive statements about secret exponents sexps and secret bases sbases :

Ksexps, sbases : φ(sexps, bases ∪ sbases). The transformation adds

a base h to the public bases. For each gj ∈ sbases , the transformation

picks a random exponent ρj and computes a blinded base g′j = gjhρj . The

transformation adds g′j to the public bases bases , ρj to the secret exponents

sexps , and rewrites g
Fj
j into g′j

Fjh−Fjρj . The proof system supports pair-

ing product equations

∏k
j=1 e(gj , g̃j)Fj = 1 in groups of prime order with
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a bilinear map e , by treating the target group Gt as the group of the proof

system. The embedding for secret bases is unchanged, except for the case in

which both bases in a pairing are secret. In this case, e(gj , g̃j)Fj must be

transformed into e(g′j , g̃′j)Fje(g′j , h̃)−Fj ρ̃je(h, g̃′j)−Fjρje(h, h̃)Fjρj ρ̃j .

16.4.2 Specification Language

In order to pass protocol speci�cations to the compiler, they must be transcribed

into a format that can be read by our code. We have used the YAML markup

language for data serialization, and this choice was driven by the fact that YAML

gives us the following bene�ts:

• Most developers would already be familiar with YAML as it �nds use in

several programming languages.

• YAML features several enhancements over alternatives (JSON, XML). For

instance, YAML allows for the use of comments.

• Modularity: YAML is platform independent, which means that these �les

may be consumed by other programming languages.

• The markup language is more readable compared to JSON.

Figure 16.4: A sample YAML SZK protocol description �le

data_structure: uuhd

operations:
- label: purchase
db_operation: update
witness_vars: [i,v,x,o]
instance_vars: [com,h]
statements: v=(2*i)+x && com=pedcom(h,x,o)

- label: redeem
db_operation: update
witness_vars: [v_2,v_1,y,o]
instance_vars: [com,h]
statements: v_2=v_1-y && com=pedcom(h,y,o)

Our YAML speci�cation �les are structured as follows:

data structure The data structure �eld contains a value specifying the SZK

data structure to be used, and corresponds to segment 1 in our formal nota-

tion.

operations The operations �eld must be an array containing the speci�cations

for one or more operations.

label The label �eld, within an operation, corresponds to segment 2 in our for-

mal speci�cation, and must contain a name denoting the database operation

or task to be performed.
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db operation This �eld corresponds to segment 3 in our formal speci�cation,

specifying the database operation (read, write, or update) to be invoked

within an operation.

witness vars The values meant to be secret within the proof protocol must

be listed in this �eld.

instance vars The values meant to be publicly known within the proof pro-

tocol must be listed in this �eld.

statements The statements �eld corresponds to segment 4 in our formal spec-

i�cation. It must contain the relations to be used for the ZK proof within an

operation. We use double ampersand symbols (&&) to specify conjunctions

of statements.

16.4.2.1 Macros

In order to further facilitate the high level use of our compiler, the compiler also

provides support for macros: YAML �les containing the description of a function

for a high level cryptographic task, and the equivalent pairing product equation for

the task. For instance, the following YAML �le contains the description of a macro

for Pedersen commitments:

Figure 16.5: A macro �le for pedersen commitments

macro_title: "Pedersen Commitment"
macro_author: "Test"
macro_label: "pedcom"
argument_count: 3
expansion: $r = e((g^$2)*($1^$3),gt)

These macros serve to provide an additional layer of abstraction, if required.

16.4.3 Lexer and Parser

For the front end of our compiler, we use the Python programming language. We

employ Lark [90], an LALR(1) parsing library for tokenization and the construction

of abstract syntax trees using an EBNF grammar speci�cation.

We enforce the fact that all exponents in PPEs must be secret values, and reserve

the literals e(), g, gt, i, v, i_n, and v_n for use with PPEs.

16.4.4 Code Generation

The backend of our compiler generates Python code for use with the Charm crypto-

graphic framework [4], which in turn uses the Relic toolkit [7] to execute low level

cryptographic operations in C for increased e�ciency. The backend additionally

generates a Vagrant script: a set of instructions that may be used by the Vagrant

virtual machine management tool [54] to set up a virtual machine containing a

pre-con�gured environment where the aforementioned libraries have been installed,

to save developers from having to deal with the installation and secure con�guration
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of these libraries. Thanks to the modularity of our SZK data structures, the code

for all six of our data structures remains static and does not depend on the input

to the compiler. However, the backend converts PPEs into functions. One such

function is depicted in Figure 16.4.4. All secret values for each PPE must be passed

as arguments to a PPE function, and the side argument allows us to evaluate either

the LHS or the RHS of a PPE.Passing witness values
as arguments to PPE

functions facilitates the
evaluation of these

functions with
randomized witnesses

during the course of
execution of a ZK proof.

Figure 16.6: A PPE function in Python

def compute_ppe_1(self, d_1, d_2, d_3, d_4, side):
"""Pairing product equation 1."""
if side == " l h s ":

return (
(pair(self.r_d, self.v) ** self.one)

* (pair(self.s_d, self.gt) ** self.one)

* (pair(self.vcomd, self.w_1) ** self.one)

* (pair(self.comd, self.w_2) ** self.one)

* (pair(self.g, self.z) ** -1)
)

else:
return (

(pair(self.h, self.v) ** d_1)

* (pair(self.h, self.gt) ** d_2)

* (pair(self.g, self.w_1) ** d_3)

* (pair(self.ped_h, self.w_2) ** d_4)
)

The function in Figure 16.4.4 corresponds to a PPE function generated by the

compiler based on a PPE function proving that ccomi is a commitment to i. The

equivalent PPE is

e(ccomi, g̃) = e(pedg, g̃)i.e(pedh, g̃)copeni

Figure 16.7: A generated PPE function for a pedersen commitment in

Python

def compute_ppe_3(self, index, i, copen_i, side):
"""Pairing product equation 3."""
if side == " l h s ":

return pair(self.ccom_i, self.gt) ** self.one
else:

return (pair(self.ped_g, self.gt) ** i) * (
pair(self.ped_h, self.gt) ** copen_i

)

The code generator then plugs these functions in to a Σ-protocol as described

in [24], and generates code for the computation and veri�cation of integer com-

mitments and Paillier encryptions of all witness values, and code for the Digital

Signature Algorithm, as required by the framework. The output of the code gener-

ator comprises the code for a data structure, and code for the requested UC-ZK

protocols, and functions for each protocol operation: these functions perform
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a database read, write, or update, and then pass the values and/or commitments

received as output to the ZK proof functions.

16.5 considerations

• As our compiler has been designed with the intention of allowing developers

to build protocols that leverage our SZK data structures, it has been imple-

mented to allow for simple proof statements similar to those used by the

protocols described in this thesis, involving range proofs, proofs that prove

that a value has been updated correctly, and so on. The compiler has not

been tested with complex proof statements, though thanks to its modular

design this would only require tweaking the code generator.

• The compiler does not currently support multiple database operations

within a protocol operation (for instance, a transfer operation in our POTS

protocol requires multiple read and write operations), as this would add

complexity to our formal notation, requiring a means of declaring variables

and using them to store values between subsequent database operations.

However, it is possible to overcome this limitation by means of a workaround:

a developer would merely need to use the compiler to generate code for one

protocol operation for each database operation required, and then connect

these function calls by adding variables to store state between them.

16.6 future work

1. The Relic toolkit is not recommended for use in production environments,

and is solely meant for proof of concept implementations. We intend to

replace libraries in our code generator with those meant for production

ready implementations.

2. The backend will be enhanced to support the declaration of aliases: variables

that can be used to connect database entries between database operations.

In other words, aliases would allow us to read a value from a database and

then use this value in a write operation, for instance. This would allow for

the generation of complex protocol operations involving multiple database

operations, as discussed in Section 16.5.





Part V

CONCLUS ION





16.7 conclusion 177

16.7 conclusion

• In Part II we have provided formal de�nitions and constructions for our

Stateful Zero Knowledge (SZK) data structures.

• In Part III we use SZK data structures as building blocks to construct privacy

preserving protocols, and compare them to existing protocols. In some of

our protocols, we provide additional features whilst maintaining e�ciency

when compared to similar protocols that do not provide such features.

• In Part II and in Part III, we also describe instantiations for some of our

primitives and protocols, and implement them. The measurements from

our implementations attest to the fact that these primitives and protocols

remain e�cient even with large input sizes.

• In Part IV, we describe a notation for specifying SZK protocols, and list the

implementation details for a compiler which can be used to produce proof

of concept implementations of SZK protocols.

Our protocols have been designed modularly, allowing for improvements when

building blocks within these protocols are replaced by more e�cient instantia-

tions. By decoupling witnesses from proof protocols, we allow users participating

in protocols to maintain control over their data whilst still allowing other enti-

ties (supermarkets, credential issuers, vendors) to compute aggregate statistics on

this data, without loss of privacy. Our primitives can be used to build more such

protocols with a variety of desirable security properties such as unlinkability and

unforgeability. Our compiler can also be extended to produce production ready

implementations. We hope that these features will be appealing to both users, and

entities that wish to collect statistics on user information alike, whilst preserving

privacy and that our compiler will aid in the adoption and development of such

protocols.

16.8 future work

• We intend to construct SZK data structures modelled around other data

structures, such as lists and trees.

• Our compiler will be extended to support complex proof speci�cations.

• Our compiler will be extended to produce production ready implementa-

tions.

• Our Privacy Preserving Loyalty Program (PPLP) program in Part III involves

the use of a database maintained by a user, akin to a loyalty card. A future

research direction could involve the development of mobile computing li-

braries that support such implementations on mobile devices.

• Another protocol involving privacy preserving location based services will

also be designed.
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ASECURITY ANALYS I S

a.1 security analysis of our construction for nicd

Theorem A.1.1 The construction ΠNICD securely realizes FNICD in the
FVC.Setup

CRS ,FREG,FRr
NIZK andFRw

NIZK-hybrid model if the vector commit-
ment scheme is hiding and binding.

To prove that our construction ΠNICD securely realizes the ideal functionality

FNICD, we have to show that for any environmentZ and any adversaryA there

exists a simulator S such thatZ cannot distinguish whether it is interacting with

A and the protocol in the real world or with S andFNICD. The simulator thereby

plays the role of all honest parties in the real world and interacts withFNICD for all

corrupt parties in the ideal world.

Our simulator S runs copies of the functionalities FVC.Setup
CRS , FREG, FRr

NIZK
andFRw

NIZK. When any of the copies of those functionalities aborts,S implicitly for-

wards the abortion message to the adversary if the functionality sends the abortion

message to a corrupt party.

Our simulator S uses simulators SRr
NIZK and SRw

NIZK for the constructions that

realize FRr
NIZK and FRw

NIZK, respectively. We note that the simulators for all con-

structions that realizeFRr
NIZK andFRw

NIZK communicate with each of those func-

tionalities through the same interfaces. We use SRr
NIZK and SRw

NIZK to reply the

corresponding functionality when the functionality requests algorithms.

In Section A.1.1, we analyse the security of construction ΠNICD when (a subset

of) veri�ers V is corrupt. In Section A.1.2, we analyse the security of construction

ΠNICD when the proverP and (a subset of) veri�ers V are corrupt.

a.1.1 Security Analysis when (a subset of) Verifiers is Corrupt

We �rst describe the simulator S for the case in which (a subset of) veri�ers is

corrupt.

Figure A.2: Security Analysis of ΠNICD when (a subset of) Veri�ers is Cor-

rupt

A queries F VC.Setup
CRS . On input (crs.get.ini, sid) fromA, S runs a

copy ofFVC.Setup
CRS on that input. When the copy ofFVC.Setup

CRS sends

(crs.get.sim, sid , qid , par), S forwards that message toA.

A receives par . On input (crs.get.rep, sid , qid) fromA, S runs a

copy ofFVC.Setup
CRS on that input. When the copy ofFVC.Setup

CRS sends

(crs.get.end, sid , par), S sends (crs.get.end, sid , par) toA.

181
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A queries FRr
NIZK . On input (nizk.setup.ini, sid) fromA, S runs a

copy ofFRr
NIZK on that input.

• When the copy ofFRr
NIZK sends (nizk.setup.req, sid , qid ,P),

S runs a copy of SRr
NIZK on input that message, and when

SRr
NIZK sends the message (nizk.setup.alg, sid , qid , par r,

tdr,NIZK.SimProver,NIZK.Extractr), S runs FRr
NIZK on

input that message.

• When the copy of FRr
NIZK sends (nizk.setup.sim, sid , qid ,

P), S sends that message to A, and when A sends

(nizk.setup.rep, sid , qid), S runsFRr
NIZK on input that mes-

sage.

Finally, when FRr
NIZK sends (nizk.setup.end, sid , par r), S sends

FRr
NIZK toA.

A queries FRw
NIZK . In this case S proceeds as in the case for FRr

NIZK,

but replacingFRr
NIZK and SRr

NIZK byFRw
NIZK and SRw

NIZK respectively.

S sets up FNICD . WhenA has received par , par r and parw, S sends

(nicd.setup.ini, sid) toFNICD.

• If FNICD was set up before, FNICD sends (nicd.setup.sim,
sid , qid , T ) to S and S sends (nicd.setup.rep, sid , qid) to

FNICD.

• If FNICD was not set up before, FNICD sends

(nicd.setup.req, sid , qid , T ) to S and S sends

(nicd.setup.alg, sid , qid , par , td ,NICD.SimProve,
NICD.Extract) toFNICD. The values in this last message are

set as follows:

– par ← (par , par r).

– td ← tdr.

– NICD.SimProve← NIZK.SimProve′.
– NICD.Extract← NIZK.Extract′.

NIZK.SimProve′ and NIZK.Extract′ are algorithms that exe-

cute NIZK.SimProver and NIZK.Extractr, but before doing

so, they parse par to give as input par r as parameters, and they

add par to the instance given as input.

honest party runs nicd.setup interface . (FNICD already

set up) On input from FNICD the message (nicd.setup.sim, sid ,
qid , T ), S does the following:

• S runs a copy ofFVC.Setup
CRS on input (crs.get.ini, sid). When

the copy of FVC.Setup
CRS sends (crs.get.sim, sid , qid , par), S

forwards that message toA.
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• On input (crs.get.rep, sid , qid) from A, S runs a copy of

FVC.Setup
CRS on that input.

• S runs a copy ofFRr
NIZK on input (nizk.setup.ini, sid). When

the copy of FRr
NIZK sends (nizk.setup.sim, sid , qid ,P), S

sends that message toA.

• WhenA sends (nizk.setup.rep, sid , qid), S runsFRr
NIZK on

input that message.

• S runs a copy ofFRw
NIZK on input (nizk.setup.ini, sid). When

the copy of FRw
NIZK sends (nizk.setup.sim, sid , qid ,P), S

sends that message toA.

• WhenA sends (nizk.setup.rep, sid , qid), S runsFRw
NIZK on

input that message.

After A has sent the three messages described above, S sends

(nicd.setup.rep, sid , qid) toFNICD.

honest party runs nicd.setup interface. (FNICD not set

up) On input fromFNICD the message (nicd.setup.req, sid , qid ,
T ) ,S proceeds as above for the case in whichFNICD was already set

up to communicate withA. After that, S replies (nicd.setup.alg,
sid , qid , par , td ,NICD.SimProve,NICD.Extract) to FNICD,

where the values of this message are set as described above for the

case in which the setup is triggered byA.

honest prover registers write operation. On input the

message (nicd.write.sim, sid , ct , com, com2) fromFNICD,S pro-

ceeds as follows:

• Parse com as (com ′, parcom,COM.Verify).

• Parse com2 as (com ′2, parcom2,COM.Verify2).

• If there is no tuple (0, vc,x, r) stored, S initializes a counter

ct ← 0 and a vector x such that x[i ] = ⊥ for i = 1 to Nmax .

S sets r ← 0 and runs vc ← VC.Commit(par ,x, r). (The

symbol⊥ represents that no value is committed at a speci�c

position and its actual value depends on the concrete imple-

mentation of the VC scheme.) S stores (ct , vc,x, r).

• Take the tuple (ct − 1, vc,x, r).

• Pick random vector x′ and random r′ and compute vc′ ←
VC.Commit(par ,x′, r′).

• Set insw ← (par , vc, vc′, parcom, com ′, com ′2, ct).

• Run πw ← NIZK.SimProvew(sid , parw, tdw, insw).

• Append [insw, πw , 1] to Table Tbl of the copy ofFRw
NIZK.

S sets sidREG ← (sid , ct), sends (reg.register.ini, sidREG, 〈vc′,
com, com2, πw 〉) toFREG. WhenFREG sends (reg.register.sim,
sidREG, 〈vc′, com, com2, πw 〉), S forwards it toA.
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A allows honest prover to finalize write operation.

WhenA sends (reg.register.rep, sidREG), S runs FREG on that

input. When FREG outputs the message (reg.register.end,
sidREG), S stores (ct , vc′,x′, r′) and sends (nicd.write.rep, sid ,
ct , vc′) toFNICD.

honest verifier initiates write operation retrieval.

On input the message (nicd.writevf.sim, sid , qid , ct) from

FNICD, S sets sidREG ← (sid , ct) and runs FREG on input

(reg.retrieve.ini, sidREG). When FREG sends (reg.retrieve.sim,
sidREG, qid , 〈vc′, com, com2, πw 〉), the functionality FREG
sends that message toA.

honest verifier concludes write operation retrieval.

On input (reg.retrieve.rep, sidREG, qid) fromA, S runs FREG
on that input. When FREG outputs (reg.retrieve.end, sidREG,
〈vc′, com, com2, πw 〉), S sends (nicd.writevf.rep, sid , qid) to

FNICD.

A retrieves write operation. On input (reg.retrieve.ini,
sidREG) fromA, S runsFREG on that input. WhenFREG sends

(reg.retrieve.sim, sidREG, qid , v ′), S forwards that message to

A. WhenA sends (reg.retrieve.rep, sidREG, qid), S runsFREG
on that input. WhenFREG outputs (reg.retrieve.end, sid , v ′), S
forwards that message toA.

A verifies write proof. On input (nizk.verify.ini, sid , insw,
πw ) from A, S runs FRw

NIZK on input that input. When FRw
NIZK

sends (nizk.verify.end, sid , v), S sends that message toA.

A verifies read proof. On input (nizk.verify.ini, sid , insr, π)
fromA, S does the following:

• Parse insr as (par , vc, parcom, com ′, com ′1, ct).

• Set com ← (com ′, parcom,COM.Verify) and com1 ←
(com ′1, parcom1,COM.Verify1).

• Send the message (nicd.readvf.ini, sid , com, com1, ct , π)
to FNICD and receive the message (nicd.readvf.end, sid , v)
fromFNICD.

S sends (nizk.verify.end, sid , v) toA.

Theorem A.1.2 When (a subset of) verifiers V is corrupt, ΠNICD securely
realizesFNICD in theFVC.Setup

CRS ,FREG,FRr
NIZK andFRw

NIZK-hybrid model
if the vector commitment scheme is hiding.

proof of theorem A.1.2. We show by means of a series of hybrid games

that the environmentZ cannot distinguish between the ensemble REALNICD,A,Z
and the ensemble IDEALFNICD,S,Z with non-negligible probability. We denote
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by Pr [Game i] the probability that the environment distinguishes Game i from

the real-world protocol.

Figure A.4: Proof of Theorem A.1.2

Game 0 : This game corresponds to the execution of the real-world pro-

tocol. Therefore, we have that Pr [Game 0] = 0.

Game 1 : This game proceeds as Game 0, except that in Game 1 the write

proof computed byFRw
NIZK is replaced by a proof computed without

giving the witness witw as input toFRw
NIZK. Otherwise, the computa-

tion of the proof does not change. This change does not alter the view

of the environment. Therefore, |Pr [Game 1]− Pr [Game 0]| = 0.

Game 2 : Game 2 follows Game 1, except that Game 2 replaces the vec-

tor commitments computed by the honest prover by vector commit-

ments to random vectors.

The probability that the environment can distinguish Game 2 from Game 1 is

bound by the following claim.

Theorem A.1.3 LetM be the number of write proofs sent by the honest prover.
Under the hiding property of the vector commitment scheme, |Pr [Game 2]−
Pr [Game 1]| ≤M · Advhid−vc

A .

The proof of this theorem is similar to the proof of Theorem ??.

The distribution of Game 2 is identical to our simulation. This concludes the

proof of Theorem A.1.2.

a.1.2 Security Analysis when the Prover and some Verifiers are Corrupt

We now describe the simulator S for the case in which the prover and (a subset of)

veri�ers are corrupt.

Figure A.6: Security Analysis of ΠNICD when the Prover and some Veri�ers

are Corrupt

A queries F VC.Setup
CRS . S operates as in the case where only (a subset

of) the veri�ers are corrupt.

A receives par . S operates as in the case where only (a subset of) the

veri�ers are corrupt.

A queries FRr
NIZK . S operates as in the case where only (a subset of)

the veri�ers are corrupt.

A queries FRw
NIZK . S operates as in the case where only (a subset of)

the veri�ers are corrupt.

S sets up FNICD . S operates as in the case where only (a subset of) the

veri�ers are corrupt.
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honest party runs nicd.setup interface. (FNICD already

set up) The simulator S operates as in the case where only (a subset

of) the veri�ers are corrupt.

honest party runs nicd.setup interface. (FNICD already

set up) The simulator S operates as in the case where only (a subset

of) the veri�ers are corrupt.

A computes write proof. On input (nizk.prove.ini, sid ,witw,
insw) fromA, S runsFRw

NIZK on input (nizk.prove.ini, sid ,witw,
insw). WhenFRw

NIZK sends (nizk.prove.end, sid , πw ), S forwards

that message toA. (IfFRw
NIZK aborts, S forwards the abortion mes-

sage toA.)

A registers write operation. On input

(reg.register.ini, sidREG, 〈vc′, com, com2, πw 〉) from A, S
runs FREG on that input. When FREG sends (reg.register.sim,
sidREG, 〈vc′, com, com2, πw 〉), S forwards that message to A.

WhenA sends (reg.register.rep, sidREG), S proceeds as follows:

• If there is no tuple (0, vc,x, r) stored, S initializes a counter

ct ← 0 and a vector x such that x[i ] = ⊥ for i = 1 to Nmax .

S sets r ← 0 and runs vc ← VC.Commit(par ,x, r). (The

symbol⊥ represents that no value is committed at a speci�c

position and its actual value depends on the concrete imple-

mentation of the VC scheme.) S stores (ct , vc,x, r).

• S takes the tuple (ct−1, vc,x, r). (If this tuple does not exist,

S sends (reg.register.end, sidREG) toA and the operations

described below will be carried out once the tuple is stored.)

• S sets insw ← (par , vc, vc′, parcom, com ′, com ′2, ct).

• S runsFRw
NIZK on input (nizk.verify.ini, sid , insw, πw ) and

receives (nizk.verify.end, sid , v).

• If v = 1, S parses the witness witw as (w , i , open,
v1, v2, open2, r, r

′). (The witness is either extracted by

FRw
NIZK, or was previously received by S from A when

A computed a write proof.) If x[i ] 6= v1, i.e. if the

value x[i ] previously stored by the simulator is not equal

to the value v1 in the witness, S outputs failure. Other-

wise S sends (nicd.write.ini, sid , com, i , open, com2, v2,
open2) toFNICD. WhenFNICD sends (nicd.write.sim, sid ,
ct ′, com, com2), S sends (nicd.write.rep, sid , ct , vc′) to

FNICD and receives (nicd.write.end, sid , ct) from FNICD.

S sets x′ ← x, sets x′[i ]← v2, and stores (ct , vc′,x′, r′).

S sends (reg.register.end, sidREG) toA.

honest verifier initiates write operation retrieval.

S operates as in the case where only (a subset of) the veri�ers are

corrupt.
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honest verifier concludes write operation retrieval.

S operates as in the case where only (a subset of) the veri�ers are

corrupt.

A retrieves write operation. S operates as in the case where

only (a subset of) the veri�ers are corrupt.

A computes read proof. When A sends (nizk.prove.ini, sid ,
witr, insr), S runsFRr

NIZK on input that message. IfFRr
NIZK sends

(nizk.prove.end, sid , π), i.e., ifFRr
NIZK does not abort, then S does

the following:

• S takes the tuple (ct , vc,x, r). If the tuple is not stored, or if

vc does not equal the value in insr, S sends (nizk.prove.end,
sid , π) to A and performs the operations described below

when such a tuple is stored.

• S parses witr as (w , i , open, v1, open1).

• If x[i ] 6= v1, S outputs failure. Otherwise S sends

(nicd.read.ini, sid , ct , com, i , open, com1, v1, open1)
to FNICD and receives (nicd.read.end, sid , π). S sends

(nizk.prove.end, sid , π) toA.

A verifies write proof. S operates as in the case where only (a

subset of) the veri�ers are corrupt.

A verifies read proof. S operates as in the case where only (a sub-

set of) the veri�ers are corrupt.

Theorem A.1.4 When the proverP and (a subset of) verifiersV are corrupt,
the construction ΠNICD securely realizes FNICD in the FVC.Setup

CRS , FREG,
FRr

NIZK andFRw
NIZK-hybrid model if the vector commitment scheme is binding.

proof of theorem A.1.4. We show by means of a series of hybrid games

that the environmentZ cannot distinguish between the ensemble REALNICD,A,Z
and the ensemble IDEALFNICD,S,Z with non-negligible probability. We denote

by Pr [Game i] the probability that the environment distinguishes Game i from

the real-world protocol.

Figure A.8: Proof of Theorem A.1.4

Game 0 : This game corresponds to the execution of the real-world pro-

tocol. Therefore, we have that Pr [Game 0] = 0.

Game 1 : Game 1 follows Game 0, except that Game 1 outputs failure

when the adversary sends a witness-instance pair to compute a write

or a read proof that ful�l the corresponding relation Rr or Rw, but

such that, for the position i in the witness, the value v1 in the witness



188 security analysis

is not equal to the value x[i ] that the simulator had recorded as stored

in the position i .

Theorem A.1.5 Under the binding property of the vector commitment
scheme, we have that |Pr [Game 1]− Pr [Game 0]| ≤ Advbin−vc

A .

The proof of this theorem is similar to the proof of Theorem ??.

The distribution of Game 1 is identical to our simulation. This concludes the

proof of Theorem A.1.4.

a.2 security analysis of our construction for uuhd

Theorem A.2.1 ΠUUHD securely realizes FUUHD in the FCRS.Setup
CRS ,

FREG,FNYM andFRr
ZK-hybrid model if the VC scheme is hiding and bind-

ing, the commitment scheme is hiding and binding, and the signature scheme
is existentially unforgeable.

To prove that ΠUUHD securely realizes FUUHD, we must show that for any

environmentZ and any adversaryA there exists a simulator S such thatZ cannot

distinguish whether it is interacting withA and the protocol in the real world or

with S andFUUHD. S thereby plays the role of all honest parties in the real world

and interacts withFUUHD for all corrupt parties in the ideal world.

Our simulator S runs copies of the functionalitiesFCRS.Setup
CRS ,FREG,FNYM

and FRr
ZK. When any of the copies of those functionalities aborts, S implicitly

forwards the abortion message toA if the functionality sends the abortion message

to a corrupt party.

In Section A.2.1, we analyse the security of ΠUUHD when (a subset of) readersRk
are corrupt. In Section A.2.2, we analyse the security of ΠUUHD when the updaterU
is corrupt. We do not analyse in detail the security of ΠUUHD whenU and (a subset

of) readersRk are corrupt. We note that, in ΠUUHD, honest readers communicate

with U but not with other readers. Therefore, for this case the simulator and the

security proof are very similar to the case where only U is corrupt.

The use ofFCRS.Setup
CRS to generate the parameters guarantees that they are gener-

ated honestly and thatRk and U do not know any trapdoor. WhenRk is corrupt,

the binding property of the VC scheme guarantees thatRk is not able to open a

VC vc to a value vri at position i if vri 6= x[i], where x is the vector committed by

the honest U in vc. The binding property of the commitment scheme guarantees

that the commitment com cannot be opened to a random value s di�erent from

the one committed, which ensures thatRk cannot open the same commitment

twice without being detected. The unforgeability property of the signature scheme

ensures thatRk can only use vc and com that were signed by U .

When U is corrupt, the hiding property of the VC scheme guarantees that the

database in vc remains hidden from U . The use ofFNYM guarantees unlinkability

between read operations, so thatU cannot keep track of the updates for a particular

reader. The hiding property of the commitment scheme hides the random value s
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committed in com during the update phase, which is needed to provide unlinkabil-

ity between the update phase and the next read phase. The use ofFREG guarantees

thatU does not set up a di�erent public key for each reader, which would also break

unlinkability.

a.2.1 Security Analysis when the Readers are Corrupt

We describe S for the case in which (a subset of)Rk are corrupt.

Figure A.11: Security Analysis of ΠUUHD when the Readers are Corrupt

A requests parameters. On input (crs.get.ini, sid) fromA, S
runs a copy of FCRS.Setup

CRS on that input. When the copy of

FCRS.Setup
CRS sends (crs.get.sim, sid , qid , 〈par , parc〉), S forwards

that message toA.

A receives parameters. On input (crs.get.rep, sid , qid) from

A, S runs a copy of FCRS.Setup
CRS on that input. When the

copy ofFCRS.Setup
CRS sends (crs.get.end, sid , 〈par , parc〉), S sends

(crs.get.end, sid , 〈par , parc〉) toA.

A sends a zk proof. On input the message (zk.prove.ini, sid ,
witr, insr,P) fromA, S stores (witr, insr,P) and runsFRr

ZK on

that input. WhenFRr
ZK sends the message (zk.prove.sim, sid , qid ,

insr), S forwards that message toA.

honest U receives zk proof. On input (zk.prove.rep, sid ,
qid) fromA, S runs a copy ofFRr

ZK on that input. When the copy

of FRr
ZK sends (zk.prove.end, sid , insr,P), S parses the stored

witr as (sig , vc, com, r2, open2, 〈i, vri ,wi, oi , ori〉i∈S) and does

the following:

• If the pseudonym P was received before, S aborts. (We recall

that the honest updater also aborts if a pseudonym is reused.)

• Else, ifA did not receive a signature sig on (vc, com), S out-

puts failure.

• Else,S �nds the stored tuple (vc,x, r, com, s, open) that con-

tains vc and com . If, for any i ∈ S, x[i] 6= vri , S outputs

failure.

• Else, S takes com ′ from insr and runs FNYM on input

(nym.reply.ini, sid , (Open com ′),P). When FNYM sends

(nym.reply.sim, sid , qid , l(Open com ′)), S forwards that

message toA.

A receives (Open com ′ ) message. When A sends

(nym.reply.rep, sid , qid), S runs a copy of FNYM on that

input. When the copy of FNYM sends (nym.send.end, sid ,
(Open com ′),P), S forwards that message toA.
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A sends commitment (and opening). On input

(nym.send.ini, sid ,m,P) from A, S runs a copy of FNYM
on that input. When the copy ofFNYM sends (nym.send.sim, sid ,
qid , l(m)), S forwards that message toA.

honest U receives commitment (and opening). On

input fromA the message (nym.send.rep, sid , qid), the simulator

S runs a copy of FNYM on that input. When the copy of FNYM
sends (nym.send.end, sid ,m,P), S parses m as either com1 or

(com1, s, open ′) and proceeds as follows.

• If m = com1, S aborts if P was already received, else stores

(witr ← ⊥, insr ← ⊥,P) and sends (uuhd.read.ini, sid ,
P ,⊥) toFUUHD.

• If m = (com1, s, open ′), the simulator S �nds the stored

tuple (witr, insr,P) with the same pseudonym previously

received whenA sends a ZK proof. If no such tuple exists, S
aborts. Otherwise S parses insr as (pk , par , parc , vc′, com ′,
parcom, 〈c′i , cr ′i 〉i∈S) and aborts if (s, open ′) is not a valid

opening for com ′. If the opening is valid, S parses witr as

(sig , vc, com, r2, open2, 〈i, vri ,wi, oi , ori〉i∈S) and �nds

the stored tuple (vc,x, r, com, s′, open) that contains vc and

com .

– If s = s′, S aborts (in this case,A double-spent a VC).

– If s 6= s′, S outputs failure.

– If s′ = ⊥, S stores (s, open ′ − open2) in that

tuple and sends (uuhd.read.ini, sid ,P , (i, vri , ci , oi ,
cri , ori)i∈S) to FUUHD. When FUUHD sends the mes-

sage (uuhd.read.sim, sid , qid , (ci , cri)i∈S), S sends

(uuhd.read.rep, sid , qid) toFUUHD.

honest U sends update. When FUUHD sends the message

(uuhd.update.sim, sid , qid) to S , S sends (uuhd.update.rep,
sid , qid) to FUUHD. When FUUHD sends (uuhd.update.end,
sid ,P , (i, vui)i∈[1,N ]), S sets xu[i]← vui (for all i ∈ [1,N ]) and

picks a random value s2. S picks the stored tuple (witr, insr,P)
and the tuple (vc,x, r, com, s, open) that contains vc and com in

witr. S follows ΠUUHD to compute the new values of vc, x, and

com and updates the tuple (vc,x, r, com, s, open) accordingly (r
is updated by using witr). If a signing key pair (pk , sk) is not stored,

S computes and stores (pk , sk) and registers pk with the copy of

FREG. S computes a signature sig on vc and com and runsFNYM
on input (nym.reply.ini, sid , 〈xu, s2, sig〉,P). When FNYM
sends (nym.reply.sim, sid , qid , l(〈xu, s2, sig〉)), S forwards that

message toA.



A.2 security analysis of our construction for uuhd 191

A receives update. When A sends (nym.reply.rep, sid , qid), S
runs FNYM on that input. When FNYM sends (nym.reply.end,
sid , 〈xu, s2, sig〉,P), S forwards that message toA.

A requests public key. On input (reg.retrieve.ini, sid) fromA,

S runs a copy of FREG on that input. When the copy of FREG
sends (reg.retrieve.sim, sid , qid , pk), S forwards that message to

A.

A receives public key. On input (reg.retrieve.rep, sid , qid)
from A, S runs a copy of FREG on that input. When the

copy of FREG sends (reg.retrieve.end, sid , pk), S sends

(reg.retrieve.end, sid , pk) toA.

Theorem A.2.2 When (a subset of)Rk are corrupt, ΠUUHD securely real-
izesFUUHD in theFCRS.Setup

CRS ,FREG,FNYM andFRr
ZK-hybrid model if the

VC scheme is binding, the commitment scheme is binding, and the signature
scheme is existentially unforgeable.

proof of theorem A.2.2. We show by means of a series of hybrid games

that Z cannot distinguish between the real-world protocol and our simulation

with non-negligible probability. Pr [Game i] is the probability thatZ distinguishes

Game i from the real-world protocol.

Figure A.13: Proof of Theorem A.2.2

Game 0 : This game corresponds to the execution of the real-world pro-

tocol. Therefore, we have that Pr [Game 0] = 0.

Game 1 : Game 1 follows Game 0, except that Game 1 outputs failure

whenA sends a signature sig on vc and com andA did not receive

a signature on those values before.

The probability that Game 1 outputs failure is bound by theorem A.2.3.

Theorem A.2.3 Under the existential unforgeability property of the signa-
ture scheme, we have that |Pr [Game 1]− Pr [Game 0]| ≤ Advunf−sig

A .

We omit a formal proof of theorem A.2.3. In a nutshell, we can construct an

algorithmB that, given anA that makes Game 1 output failure with non-negligible

probability, wins the existential unforgeability game with that probability. B re-

ceives the public key from the challenger and registers it withFREG. To compute

signatures on vc and com , B uses the signing oracle. WhenA sends a signature

sig on vc and com as part of the witness witr sent to FRr
ZK such that B did not

compute before a signature on those values,B submits sig along with (vc, com)
in order to win the existential unforgeability game.
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Game 2 : Game 2 follows Game 1, except that Game 2 outputs fail-

ure when A sends a witness (sig , vc, com, r2, open2, 〈i, vri ,wi,
oi , ori〉i∈S) and an instance (pk , par , parc , vc′, com ′, parcom,
〈c′i , cr ′i 〉i∈S) such that wi opens the commitment vc′ to a value

vri 6= x[i] at position i, where x is the vector committed in vc (vc′
is a rerandomisation of vc).

The probability that Game 2 outputs failure is bound by theorem A.2.4.

Theorem A.2.4 Under the binding property of the VC scheme, we have that
|Pr [Game 2]− Pr [Game 1]| ≤ Advbin−vc

A .

We omit a formal proof of theorem A.2.4. We can construct an algorithmB that,

given anA that makes Game 2 output failure with non-negligible probability, wins

the binding game of the VC scheme with that probability.B receives the parameters

of the VC scheme from the challenger and stores them in the copy ofFCRS.Setup
CRS .

WhenA sends an opening wi that opens vc′ to vri as described above,B computes

another opening w ′i that opens vc′ to x[i]. We note that witr contains r2, so B
knows the randomness change of vc′ with respect to vc and is able to compute w ′i .
B sends vc′ along with i, wi, vri , w ′i , and x[i] to win the binding game of the VC

scheme.

Game 3 : Game 3 follows Game 2, except that Game 3 outputs failure

whenA sends an opening (s, open ′) for a commitment com ′ such

that a previous opening (ŝ, ˆopen ′) was received for a commitment

ˆcom ′ and both com ′ and ˆcom ′ are rerandomisations of com .

The probability that Game 3 outputs failure is bound by theorem A.2.5.

Theorem A.2.5 Under the binding property of the commitment scheme, we
have the following: |Pr [Game 3]− Pr [Game 2]| ≤ Advbin−com

A .

We omit a formal proof of theorem A.2.5. We can construct an algorithmB that,

given anA that makes Game 3 output failure with non-negligible probability, wins

the binding game of the commitment scheme with that probability. B receives

the parameters of the commitment scheme from the challenger and stores them in

the copy ofFCRS.Setup
CRS . WhenA sends an opening (s, open ′) for a commitment

com ′ such that a previous opening (ŝ, ˆopen ′) was received for a commitment

ˆcom ′ and both com ′ and ˆcom ′ are both rerandomisations of a commitment com ,

B computes (s, open ′ − open2) and (ŝ, ˆopen ′ − ˆopen2). The values open2
and ˆopen2 are the randomness used to rerandomize com into com ′ and ˆcom ′
respectively, which B obtains through the witnesses witr sent to FRr

ZK. B sends

com along with (s, open ′ − open2) and (ŝ, ˆopen ′ − ˆopen2) to win the binding

game of the commitment scheme.

The distribution of Game 3 is identical to our simulation. This concludes the

proof of Theorem A.2.2.
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a.2.2 Security Analysis when the Updater is Corrupt

We describe S for the case in which U is corrupt.

Figure A.19: Security Analysis of ΠUUHD when the Updater is Corrupt

A requests or receives parameters. S runs as in the case

where (a subset of)Rk are corrupt.

A registers public key. On input (reg.register.ini, sid , pk)
fromA, S runs a copy ofFREG on that input. When the copy of

FREG sends (reg.register.sim, sid , pk), S forwards that message

toA.

A ends registration of public key. On input

(reg.register.rep, sid) from A, S runs a copy of FREG on

that input. When the copy ofFREG sends (reg.register.end, sid),

S forwards that message toA.

honest Rk starts zk proof. On input (uuhd.read.sim, sid ,
qid , (ci , cri)i∈S) from FUUHD, S sends (uuhd.read.rep, sid ,
qid) to FUUHD and receives (uuhd.read.end, sid ,P , flag, (ci ,
cri)i∈S) fromFUUHD. If flag = 0, S does the following:

• S computes a VC vc′ to a random vector and a commitment

com ′ to a random value swith opening open ′.
• Parse the commitment ci as (c′i , parcom,COM.Verify).

• Parse the commitment cri as (cr ′i , parcom,COM.Verify).

• S sets the instance as insr ← (pk , par , parc , vc′, com ′,
parcom, 〈c′i , cr ′i 〉i∈S) and stores (qid , insr,P) and (sid ,P ,
insr, s, open ′).

• S sends (zk.prove.sim, sid , qid , insr) toA.

A receives zk proof. On input (zk.prove.rep, sid , qid) fromA,

S does the following:

• S sends an abortion message to A if (qid , insr,P) is not

stored.

• S deletes the record (qid , insr,P).

• S sends (zk.prove.end, sid , insr,P) toA.

A requests opening. On input (nym.reply.ini, sid ,
(Open com ′),P) fromA,S runsFNYM on input (nym.reply.ini,
sid , (Open com ′),P). When FNYM sends the message

(nym.reply.sim, sid , qid , l(Open com ′)), S forwards that

message toA.

honest Rk receives request. On input (nym.reply.rep, sid ,
qid) fromA, S runs a copy ofFNYM on that input. WhenFNYM
sends (nym.send.end, sid , (Open com ′),P), S continues with

the case “HonestRk sends commitment (and opening)”.
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honest Rk sends commitment (and opening). On in-

put the message (uuhd.read.sim, sid , qid , (ci , cri)i∈S) from

FUUHD, S sends (uuhd.read.rep, sid , qid) to FUUHD and

receives (uuhd.read.end, sid ,P , flag, (ci , cri)i∈S) from FUUHD.

S computes a commitment com1 to a random value. If flag = 1, S
sets m ← com1. Else, after following the case “HonestRk starts

ZK proof”, S picks the stored tuple (sid ,P , insr, s, open ′) and

sets m ← 〈com1, s, open ′〉. S runs a copy of FNYM on input

(nym.send.ini, sid ,m,P). When FNYM sends (nym.send.sim,
sid , qid , l(m)), S forwards that message toA.

A receives commitment (and opening). On input

(nym.send.rep, sid , qid) from A, S runs a copy of FNYM
on that input. When the copy ofFNYM sends (nym.send.end, sid ,
m,P), S forwards that message toA.

A sends update. On input (nym.reply.ini, sid ,m,P) fromFNYM,

S runs a copy of FNYM on that input. When the copy of FNYM
sends (nym.reply.sim, sid , qid , l(m)), S forwards that message to

A.

honest Rk receives update. On input (nym.reply.rep, sid ,
qid) from A, S runs a copy of FNYM on that input. When the

copy of FNYM sends (nym.send.end, sid ,m,P), S parses m as

(x, s2, sig), picks the stored tuple (sid ,P , insr, s, open ′) and

follows the steps described in ΠUUHD to verify sig . Then S sends

(uuhd.update.ini, sid ,P ,x) toFUUHD. WhenFUUHD sends the

message (uuhd.update.sim, sid , qid),S sends (uuhd.update.rep,
sid , qid) to the functionalityFUUHD.

Theorem A.2.6 When U is corrupt, ΠUUHD securely realizesFUUHD in
theFREG,FCRS.Setup

CRS ,FNYM andFRr
ZK-hybrid model if the VC scheme is

hiding and the commitment scheme is hiding.

proof of theorem A.2.6. We show by means of a series of hybrid games

thatZ cannot distinguish between the real-world protocol and our simulation with

non-negligible probability.

Figure A.21: Proof of Theorem A.2.6

Game 0 : This game corresponds to the execution of the real-world pro-

tocol. Therefore, we have that Pr [Game 0] = 0.

Game 1 : Game 1 follows Game 0, except that Game 1 does not run

a copy of FRr
ZK. Instead, Game 1 sets the messages (zk.prove.sim,

sid , qid , insr) and (zk.prove.end, sid , insr,P) directly. This

change does not alter the view of Z . Therefore, |Pr [Game 1] −
Pr [Game 0]| = 0
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Game 2 : Game 2 follows Game 1, except that Game 2 replaces the VC

vc′ in insr by a commitment to a random vector.

The probability that Game 1 and Game 2 are distinguished byZ is bound by

theorem A.2.7.

Theorem A.2.7 Let M be the number of read operations sent by honest
readers after their first read operation. Under the hiding property of the vector
commitment scheme, |Pr [Game 2]− Pr [Game 1]| ≤M · Advhid−vc

A .

proof of theorem A.2.7. We de�ne a sequence of games. In Game 1.i,
for the last i read operations (after their �rst read operation) sent by honest readers,

the vector commitment vc′ is replaced by a vector commitment to a random vector.

Therefore, Game 1.0 corresponds to Game 1, while Game 1.M corresponds to

Game 2.

We construct an algorithm B that, given an A that distinguishes Game 1.i
from Game 1.(i+ 1) with non-negligible probability, breaks the hiding property

of the vector commitment scheme with non-negligible probability. B works as

follows. When the challenger sends the parameters par ,B stores par as common

reference string in the copy ofFCRS.Setup
CRS .B replaces the vector commitment vc′

by a vector commitment to a random vector in the last i+ 1 read operations by the

honest readers. For the read operation i,B sends to the challenger the vector x that

should be committed in vc′. The challenger sends back a commitment vc′. As can

be seen, if vc′ is a commitment to a random vector, the situation corresponds to

Game 1.(i+1), while otherwise the situation corresponds to Game 1.i. Therefore,

ifA distinguishes Game 1.i from Game 1.(i+ 1) with non-negligible probability,

B can useA’s guess to break the hiding property of the VC scheme. This concludes

the proof of Theorem A.2.7.

Figure A.23: Proof of Theorem A.2.7

Game 3 : Game 3 follows Game 2, except that Game 3 replaces the com-

mitment com ′ in insr by a commitment to a random value. The

probability that Game 2 and Game 3 are distinguished byZ is bound

by theorem A.2.8.

Theorem A.2.8 LetM be the number of read operations sent by honest read-
ers. Under the hiding property of the commitment scheme, |Pr [Game 3]−
Pr [Game 2]| ≤M · Advhid−com

A .

proof of theorem A.2.8. We de�ne a sequence of games. In Game 2.i, for

the last i read operations sent by honest readers, the commitment com ′ is replaced

by a commitment to a random value. Therefore, Game 2.0 corresponds to Game 2,

while Game 2.M corresponds to Game 3.

We construct an algorithmB that, given anA that distinguishes Game 2.i from

Game 2.(i+ 1) with non-negligible probability, breaks the hiding property of the
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commitment scheme with non-negligible probability.B works as follows. When

the challenger sends the parameters parc ,B stores parc as common reference string

in the copy ofFCRS.Setup
CRS .B replaces the commitment com ′ by a commitment to

a random value in the last i+ 1 read operations by the honest readers. For the proof

i, B sends to the challenger the value s that should be committed in com ′. The

challenger sends back a commitment com ′. As can be seen, if com ′ is a commitment

to a random value, the situation corresponds to Game 2.(i+ 1), while otherwise

the situation corresponds to Game 2.i. Therefore, if A distinguishes Game 2.i
from Game 2.(i+ 1) with non-negligible probability,B can use theA’s guess to

break the hiding property of the commitment scheme. This concludes the proof of

Theorem A.2.8.

The distribution of Game 3 is identical to our simulation. This concludes the

proof of Theorem A.2.6.

a.3 security analysis of our construction for ud

Theorem A.3.1 ΠUD securely realizes FUD in the (FVC.Setup
CRS , FAUT,

FR
ZK)-hybrid model if the NHVC scheme is binding.

To prove that ΠUD securely realizesFUD, we must show that for any environ-

mentZ and any adversaryA there exists a simulator S such thatZ cannot distin-

guish whether it is interacting withA and the protocol in the real world or with

S and FUD. S thereby plays the role of all honest parties in the real world and

interacts withFUD for all corrupt parties in the ideal world.

S runs copies of the functionalitiesFVC.Setup
CRS ,FAUT andFR

ZK. In the descrip-

tions of our simulators below, for brevity, we omit part of the communication be-

tweenS andA. Whenever a copy of those functionalities sends a message (∗.∗.sim)
to S , S implicitly forwards that message toA and runs again a copy of that func-

tionality on input the response provided byA. When any of the copies of those

functionalities aborts, S implicitly forwards the abortion message toA if the func-

tionality sends the abortion message to a corrupt party.

In Section A.3.1, we analyse the security of ΠUD when R is corrupt. In Sec-

tion A.3.2, we analyse the security of ΠUD when U is corrupt.

a.3.1 Security Analysis when the Reader is Corrupt

We describe the simulator S for the case in whichR is corrupt.

Figure A.26: Security Analysis of ΠUD when the Reader is Corrupt

initialization of S . S sets cu ← 0. S runs the crs.get interface

of an instance ofFVC.Setup
CRS to get the parameters par .

honest U sends an update. On input from functionality FUD
the message (ud.update.sim, sid , qid , (i, vui)∀i∈[1,N ]), S sends

the message (ud.update.rep, sid , qid) toFUD. WhenFUD sends
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(ud.update.end, sid , (i, vui)∀i∈[1,N ]), if (sid , par , vc,x, cu) is

not stored, S does the following:

• S initializes a counter cu ← 0.

• S initializes a vector x such that x[i] = vui for i ∈ [1,N ].
• S runs vc ← VC.Commit(par ,x) and stores (sid , par , vc,

x, cu).

Else:

• S sets cu ′ ← cu + 1, sets x′ ← x and vc′ ← vc.

• For all i ∈ [1,N ] such that vui 6= ⊥, the simulator S com-

putes x′[i]← vui and vc′ ← VC.ComUpd(par , vc′, i,x[i],
vui).

• S replaces the stored tuple (sid , par , vc,x, cu) by (sid , par ,
vc′,x′, cu ′).

S uses the aut.send interface of FAUT to send 〈(i, vui)∀i∈[1,N ],
cu ′〉 toA.

A requests and receives par . When A invokes the crs.get in-

terface, S runs a copy of FVC.Setup
CRS on that input to send par to

A.

A sends a proof. WhenA invokes the zk.prove interface on input

the witness wit and the instance ins , S runs a copy of FR
ZK on

that input. Then S parses ins as (par ′, vc′, parcom, c′i , cr ′i , cr)
and wit as (wi, i, oi , vri , ori). S sets the commitments ci ← (c′i ,
parcom,COM.Verify) and cri ← (cr ′i , parcom,COM.Verify).

S sends the message (ud.read.ini, sid , i, vri , ci , oi , cri , ori) to

FUD. When FUD sends the message (ud.read.sim, sid , qid , ci ,
cri), S does the following:

• S retrieves the stored tuple (sid , par , vc,x, cu). If cr 6= cu ,

or if par ′ 6= par , or if vc′ 6= vc, S sendsFUD a message that

makesFUD abort.

• Else, if x[i] 6= vri , S outputs failure.

• Else, S sends (ud.read.rep, sid , qid) toFUD.

Theorem A.3.2 When R is corrupt, ΠUD securely realizes FUD in the
(FVC.Setup

CRS ,FAUT,FR
ZK)-hybrid model if the NHVC scheme is binding.

proof of theorem A.3.2. We show by means of a series of hybrid games

that the environmentZ cannot distinguish the real-world protocol from the ideal-

world protocol with non-negligible probability. We denote by Pr [Game i] the

probability that the environment distinguishes Game i from the real-world proto-

col.
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Figure A.28: Proof of Theorem A.3.2

Game 0 : This game corresponds to the execution of the real-world pro-

tocol. Therefore, we have that Pr [Game 0] = 0.

Game 1 : Game 1 follows Game 0, except that Game 1 runs an initial-

ization phase to set a counter cu and the parameters par . Game 1
stores and updates a tuple (sid , par , vc,x, cu). These changes do

not alter the view of the environment. Therefore, |Pr [Game 1] −
Pr [Game 0]| = 0.

Game 2 : Game 2 follows Game 1, except that, when the adversary sends

a valid proof with witness wit and instance ins , Game 2 outputs

failure if the values i and vri in the witness are such that x[i] 6= vri ,

where x[i] is in the stored tuple (sid , par , vc,x, cu).

The probability that Game 2 outputs failure is bound by the following claim.

Theorem A.3.3 Under the binding property of the NHVC scheme, we have
that |Pr [Game 2]− Pr [Game 1]| ≤ Advbin−nhvc

A .

proof of theorem A.3.3. We construct an algorithm B that, given an

adversary that makes Game 2 fail with non-negligible probability, breaks the bind-

ing property of the NHVC scheme with non-negligible probability.B behaves as

Game 2 with the following modi�cations:

• When the challenger sends the parameters par , B stores par as common

reference string in the copy ofFVC.Setup
CRS .

• When the adversary sends a valid proof with witness wit = (wi, i, oi , vri ,
ori) and instance ins = (par , vc, parcom, c′i , cr ′i , cr) such that the values

i and vri in the witness ful�l x[i] 6= vri , where x[i] is in the stored tuple

(sid , par , vc,x, cu), B runs w ′i ← VC.Prove(par , i,x) and sends (vc,
i, vri ,x[i],wi,w ′i) to the challenger.

This concludes the proof of Theorem A.3.3.

The distribution of Game 2 is identical to our simulation. This concludes the

proof of Theorem A.3.2.

a.3.2 Security Analysis when the Updater is Corrupt

We describe the simulator S for the case in which U is corrupt.

Figure A.30: Security Analysis of ΠUD when the Updater is Corrupt

initialization of S . S sets cr ← 0. S runs the crs.get interface

of an instance ofFVC.Setup
CRS to get the parameters par .

A requests and receives par . S proceeds as in the case where

R is corrupt.
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A sends update. WhenA invokes the aut.send interface on input

the message 〈(i, vui)∀i∈[1,N ], cu ′〉, S runs a copy ofFAUT on that

input. If (sid , par , vc,x, cr) is not stored.

• S initializes a counter cr ← 0.

• S initializes a vector x such that x[i] = vui for i = [1,N ].
• S runs vc ← VC.Commit(par ,x), and stores (sid , par , vc,

x, cr).

Else:

• S sends an abortion message if cu ′ 6= cr + 1, or if, for all i /∈
[1,N ], vui /∈ Uv .

• Otherwise S sets x′ ← x and vc′ ← vc. For all i ∈ [1,N ]
such that vui 6= ⊥, S computes x′[i] ← vui and vc′ ←
VC.ComUpd(par , vc′, i,x[i], vui).

• S replaces the stored tuple (sid , par , vc,x, cr) by (sid , par ,
vc′,x′, cu ′).

S sends (ud.update.ini, sid , (i, vui)∀i∈[1,N ]) to FUD. When

FUD sends (ud.update.sim, sid , qid , (i, vui)∀i∈[1,N ]), S sends

(ud.update.rep, sid , qid) toFUD.

honest R sends a proof. On input from FUD the message

(ud.read.sim, sid , qid , ci , cri),S sends (ud.read.rep, sid , qid) to

FUD and receives the message (ud.read.end, sid , ci , cri) from

FUD. S does the following:

• S retrieves the stored tuple (sid , par , vc,x, cr).

• S parses ci as (c′i , parcom,COM.Verify).

• S parses cri as (cr ′i , parcom,COM.Verify).

• S sets ins ← (par , vc, parcom, c′i , cr ′i , cr).

• S sets the message corresponding to the zk.prove interface of

FR
ZK to send ins toA. Note thatS does not know the witness,

so it does not run a copy of the functionality. Instead, S sets

the message as if it was sent by a copy ofFR
ZK.

Theorem A.3.4 When U is corrupt, ΠUD securely realizes FUD in the
(FVC.Setup

CRS ,FAUT,FR
ZK)-hybrid model.

proof of theorem A.3.4. The only di�erence between the real world

protocol and S is that S does not runFR
ZK because S does not know the witness

of the proof. BecauseFR
ZK does not leak the witness to the adversary, this change

does not alter the view of the environment.
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a.4 security analysis of our construction for uud

Theorem A.4.1 ΠUUD securely realizes FUUD in the (FSVC.Setup
CRS , FBB,

FR
ZK)-hybrid model if the SVC scheme is binding.

To prove that ΠUUD securely realizesFUUD, we must show that for any envi-

ronment Z and any adversary A there exists a simulator S such that Z cannot

distinguish whether it is interacting withA and the protocol in the real world or

with S andFUUD. S thereby plays the role of all honest parties in the real world

and interacts withFUUD for all corrupt parties in the ideal world.

S runs copies of the functionalitiesFSVC.Setup
CRS ,FBB andFR

ZK. In the descrip-

tions of our simulators below, for brevity, we omit part of the communication be-

tweenS andA. Whenever a copy of those functionalities sends a message (∗.∗.sim)
to S , S implicitly forwards that message toA and runs again a copy of that func-

tionality on input the response provided byA. When any of the copies of those

functionalities aborts, S implicitly forwards the abortion message toA if the func-

tionality sends the abortion message to a corrupt party.

In Section A.4.1, we analyse the security of ΠUUD when (a subset of) readersRk
are corrupt. In Section A.4.2, we analyse the security of ΠUUD when U is corrupt.

We do not analyse in detail the security of ΠUUD when U and (a subset of) readers

Rk are corrupt. We note that, in ΠUUD, honest readers communicate with U but

not with other readers. Therefore, for this case the simulator and the security proof

are similar to the case where only U is corrupt.

a.4.1 Security Analysis when the Readers are Corrupt

We describe S for the case in which (a subset of) readersRk are corrupt.

Figure A.33: Security Analysis of ΠUUD when the Readers are Corrupt

initialization of S . S runs the crs.get interface of an instance of

FSVC.Setup
CRS to get the parameters par .

honest U sends an update. On input (uud.update.sim, sid ,
qid , (i, vri i,1, . . . , vri i,L)∀i∈[1,N ]) from the functionality FUUD,

S runs the bb.write interface of a copy ofFBB on input (i, vri i,1,
. . . , vri i,L)∀i∈[1,N ] to write the update into the bulletin board

in FBB. S follows the same steps described in ΠUUD in order

to set and update a tuple (sid , par , svc,x, cu). Then S sends

(uud.update.rep, sid , qid) toFUUD.

A requests database. When A invokes the bb.getbb interface

on input an index i , S sends (uud.getdb.ini, sid) to FUUD.

WhenFUUD sends (uud.getdb.sim, sid , qid),S sends the message

(uud.getdb.rep, sid , qid) to FUUD. When FUUD sends the mes-

sage (uud.getdb.end, sid ,DB), S runs the bb.getbb interface of

FBB on input i to send the update (i, vri i,1, . . . , vri i,L)∀i∈[1,N ] to
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A. We recall that the update was already stored inFBB when it was

sent by the honest U .

A requests and receives par . When A invokes the crs.get in-

terface, S runs a copy of FSVC.Setup
CRS on that input to send par to

A.

A sends a proof. When A invokes the zk.prove interface on

input a pseudonym P , a witness wit and an instance ins , S
runs a copy of FR

ZK on that input. Then S parses ins as (par ′,
svc′, parcom, c′i , 〈cri

′
i,j〉∀j∈[1,L], crk) and wit as (wI , I, i, oi ,

〈vri i,j , ori i,j〉∀j∈[1,L]). S sets ci ← (c′i , parcom,COM.Verify)
and 〈cri i,j ← (cri

′
i,j , parcom,COM.Verify)〉∀j∈[1,L]. S sends

(uud.read.ini, sid ,P , (i, ci , oi , 〈vri i,j , cri i,j , ori i,j〉∀j∈[1,L]))
to the functionality FUUD. When FUUD sends the message

(uud.read.sim, sid , qid , (ci , 〈cri i,j〉∀j∈[1,L])), S does the

following:

• S retrieves the stored tuple (sid , par , svc,x, cu). If crk 6=
cu , or if par ′ 6= par , or if svc′ 6= svc, S sends FUUD a

message that makesFUUD abort.

• Else, if for any j ∈ [1,L], x[(i−1)L+j] 6= vri i,j ,S outputs

failure.

• Else, S sends (uud.read.rep, sid , qid) toFUUD.

Theorem A.4.2 When (a subset of) readersRk are corrupt, ΠUUD securely
realizes FUUD in the (FSVC.Setup

CRS ,FBB,FR
ZK)-hybrid model if the SVC

scheme is binding.

proof of theorem A.4.2. We show by means of a series of hybrid games

that the environmentZ cannot distinguish the real-world protocol from the ideal-

world protocol with non-negligible probability. We denote by Pr [Game i] the

probability that the environment distinguishes Game i from the real-world proto-

col.

Figure A.35: Proof of Theorem A.4.2

Game 0 : This game corresponds to the execution of the real-world pro-

tocol. Therefore, we have that Pr [Game 0] = 0.

Game 1 : Game 1 follows Game 0, except that Game 1 runs an initial-

ization phase to set a counter cu and the parameters par . Game 1
stores and updates a tuple (sid , par , svc,x, cu). These changes do

not alter the view of the environment. Therefore, |Pr [Game 1] −
Pr [Game 0]| = 0.

Game 2 : Game 2 follows Game 1, except that, when the adversary sends

a valid proof with witness wit and instance ins , Game 2 outputs
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failure if, for any j ∈ [1,L], x[(i − 1)L + j] 6= vri i,j , where x is

in the stored tuple (sid , par , svc,x, cu).

The probability that Game 2 outputs failure is bound by the following claim.

Theorem A.4.3 Under the binding property of the SVC scheme, we have
that |Pr [Game 2]− Pr [Game 1]| ≤ Advbin−svc

A .

proof of theorem A.4.3. We construct an algorithmB that, given an ad-

versary that makes Game 2 fail with non-negligible probability, breaks the binding

property of the SVC scheme with non-negligible probability.B behaves as Game 2
with the following modi�cations:

• When the challenger sends the parameters par , B stores par as common

reference string in the copy ofFSVC.Setup
CRS .

• When the adversary sends a valid proof with witness wit = (wI , I, i,
oi , 〈vri i,j , ori i,j〉∀j∈[1,L]) and instance ins = (par , svc, parcom, c′i ,
〈cri

′
i,j〉∀j∈[1,L], crk) such that, for any j ∈ [1,L], x[(i − 1)L + j] 6=

vri i,j , where x is in the stored tuple (sid , par , svc,x, cu),B runs wI ←
SVC.Open(par , I,x) and sends (svc, I, I, 〈vri i,j〉∀j∈[1,L], 〈x[(i−1)L+
j]〉∀j∈[1,L],wI ,w ′I) to the challenger.

This concludes the proof of Theorem A.4.3.

The distribution of Game 2 is identical to our simulation. This concludes the

proof of Theorem A.4.2.

a.4.2 Security Analysis when the Updater is Corrupt

We describe S for the case in which U is corrupt.

Figure A.37: Security Analysis of ΠUUD when the Updater is Corrupt

initialization of S . S runs the crs.get interface of an instance of

FSVC.Setup
CRS to get the parameters par .

A requests and receives par . S proceeds as in the case where

Rk is corrupt.

A sends update. When A invokes the bb.write interface on input

(i, vri i,1, . . . , vri i,L)∀i∈[1,N ], S sends (uud.update.ini, sid ,
(i, vri i,1, . . . , vri i,L)∀i∈[1,N ]) to FUUD. When FUUD sends

(uud.update.sim, sid , qid , (i, vri i,1, . . . , vri i,L)∀i∈[1,N ]), S
sends (uud.update.rep, sid , qid) to FUUD. When FUUD sends

(uud.update.end, sid), S follows the same steps described in

ΠUUD in order to set and update a tuple (sid , par , svc,x, cu).

Finally, S runs the bb.write interface of a copy ofFBB on input (i,
vri i,1, . . . , vri i,L)∀i∈[1,N ].
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honest Rk requests database. When FUUD sends

(uud.getdb.sim, sid , qid), the simulator S runs the bb.getbb
interface of FBB on input a random index i . Then S sends

(uud.getdb.rep, sid , qid) toFUUD.

honest Rk sends a proof. On input (uud.read.sim, sid , qid ,
(ci , 〈cri i,j〉∀j∈[1,L])) from FUUD, S sends (uud.read.rep, sid ,
qid) toFUUD and receives the message (uud.read.end, sid ,P , (ci ,
〈cri i,j〉∀j∈[1,L])) from the functionalityFUUD. S does the follow-

ing:

• S retrieves the stored tuple (sid , par , svc,x, cu).

• S parses ci as (c′i , parcom,COM.Verify) and 〈cri i,j〉∀j∈[1,L]
as 〈(cri

′
i,j , parcom,COM.Verify)〉∀j∈[1,L].

• S sets ins ← (par , svc, parcom, c′i , 〈cri
′
i,j〉∀j∈[1,L], cu).

• S sets the message corresponding to the zk.prove interface of

FR
ZK to send P and ins toA. Note that S does not know the

witness, so it does not run a copy of the functionality. Instead,

S sets the message as if it was sent by a copy ofFR
ZK.

Theorem A.4.4 When U is corrupt, ΠUUD securely realizesFUUD in the
(FSVC.Setup

CRS ,FBB,FR
ZK)-hybrid model.

proof of theorem A.4.4. There are two di�erences between the real

world protocol and S . First, S uses a random index i to run the bb.getbb interface

of FBB. This change does not alter the view of the environment because FBB
does not disclose i to the adversary. Second, S does not runFR

ZK because S does

not know the witness of the proof. BecauseFR
ZK does not leak the witness to the

adversary and the pseudonym and the instance are not modi�ed, this change does

not alter the view of the environment.
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