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Abstract

With the recent advances of Deep Neural Networks (DNNs) in real-world applications, such as Automated

Driving Systems (ADS) for self-driving cars, ensuring the reliability and safety of such DNN-Enabled

Systems (DES) emerges as a fundamental topic in software testing. Automatically generating new and

diverse test data that lead to safety violations of DES presents the following challenges: (1) there can be

many safety requirements to be considered at the same time, (2) running a high-fidelity simulator is often

very computationally intensive, (3) the space of all possible test data that may trigger safety violations is

too large to be exhaustively explored, (4) depending upon the accuracy of the DES under test, it may be

infeasible to find a scenario causing violations for some requirements, and (5) DNNs are often developed

by a third party, who does not provide access to internal information of the DNNs.

In this dissertation, in collaboration with IEE sensing, we address the aforementioned challenges by

providing scalable and practical automated solutions for testing Deep Learning (DL) models and systems.

Specifically, we present the following in the dissertation.

1. We conduct an empirical study to compare offline testing and online testing in the context of Automated

Driving Systems (ADS). We also investigate whether simulator-generated data can be used in lieu of

real-world data. Furthermore, we investigate whether offline testing results can be used to help reduce

the cost of online testing.

2. We propose an approach to generate test data using many-objective search algorithms tailored for test

suite generation to generate test data for DNN with many outputs. We also demonstrate a way to learn

conditions that cause the DNN to mispredict the outputs.

3. In order to reduce the number of computationally expensive simulations, we propose an automated

approach, SAMOTA, to generate data for DNN-enabled automated driving systems, using many-

objective search and surrogate-assisted optimisation.

4. The environmental conditions (e.g., weather, lighting) often stay the same during a simulation, which

can limit the scope of testing. To address this limitation, we present an automated approach, MORLAT,

to dynamically interact with the environment during simulation. MORLAT relies on reinforcement

learning and many-objective optimisation.

We evaluate our approaches using state-of-the-art deep neural networks and systems. The results show

that our approaches perform statistically better than the alternatives.
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Chapter 1

Introduction

Deep Neural Networks (DNNs) have been widely used in many applications, such as object detection [122],

object classification [70], and speech recognition [27]. With the recent advances in Deep Learning (DL),

DNNs are increasingly applied to safety-critical software systems, such as Automated Driving Systems

(ADS). Examples of ADS systems include driver drowsiness detection systems, lane-keeping systems,

and end-to-end autonomous driving systems. The goal of an ADS is to satisfy requirements in terms of

both functional (e.g., reaching the destination in a given time) and safety (e.g., not colliding with other

vehicles).

It is essential to test such DNN-Enabled Systems (DES) to ensure the safety and reliability of the

system. Failures of DES can have fatal results. For example, in 2016, the autopilot in the Tesla Model S

did not recognise a truck on the road and crashed into it, which resulted in the death of the Tesla driver [71].

However, real-world testing for DNN-enabled systems is time-consuming, expensive, and dangerous.

Furthermore, it is very difficult to set certain conditions in the operational environment. For example,

setting the weather condition to be rainy or cloudy in a controlled environment using industrial-grade

sprinklers and cloud generators requires a big budget.

Due to the limitations of real-world testing, DES testing is often done using high-fidelity simulators

such as CARLA [30] and LGSVL [105]. Simulator-based data generation is cheap, fast, and more diverse

as compared to real-world data. High-fidelity simulators allow engineers to specify and execute driving

scenarios capturing various road traffic situations, different pedestrian-to-vehicle and vehicle-to-vehicle

interactions, different road typologies, weather conditions, and infrastructures. The simulators also

simulate the sensors mounted on the ego vehicle, such as camera sensors, LIDAR, and RADAR. They

allow DES to drive the vehicle by applying driving commands (i.e., throttle, steering, and braking) in the

simulated environment.

However, automatically generating new and diverse test data for testing deep learning models and

systems that lead to requirement violations entails several challenges:

(i) There can be many requirements, often independent from each other, to be considered at the

same time. For example, the requirement for keeping the ego vehicle in the center of the lane is

1



CHAPTER 1. INTRODUCTION

independent from the requirement that the ego vehicle should not collide with other vehicles.

(ii) Running a high-fidelity simulator to check violations is typically computationally intensive; the

higher the fidelity of a simulator, the more time it takes to simulate, which directly impacts the cost

of testing.

(iii) The space of all possible test data that may trigger violations is too large to be exhaustively explored

because there can be many options for different attributes. for example weather conditions can be

rainy, cloudy, foggy or sunny.

(iv) Depending upon the accuracy of the system under test, it may be infeasible to find a scenario causing

violations for some requirements. Considering a limited time budget, if such infeasibility is observed

at run time, it is essential to dynamically and efficiently distribute computation resources to the other

requirements.

(v) DNNs are often developed by a third party, with expertise in machine learning, who does not provide

access to internal information of the DNNs.

In this dissertation, we address the aforementioned challenges of testing deep learning models and

systems. We start with investigating whether simulator-generated data can be used in-lieu of real-world

data. We further define and compare two general modes of testing for DNNs: offline and online testing.

We then present an offline testing approach based on many-objective optimisation to generate test data for

DNNs with many outputs. We also present an online testing approach that leverages surrogate-assisted

optimisation to address the high computational cost of simulation in online testing. Furthermore, we

present another online testing approach that uses Reinforcement Learning (RL) to address the limitation of

existing online testing approaches that do not change the dynamic elements of the environment during the

simulation. The work in this dissertation has been done in collaboration with IEE sensing, who provides

advanced sensing solutions to the automotive industry [1].

Throughout this dissertation, we use different simulators to test different DES. We use the PreS-

can [123] simulator to compare different modes of DNN testing. PreScan is a widely used commercial

simulator in the automotive domain and is used by IEE to test their sensors. We use IEE-Sim, a simulator

developed in-house by IEE to generate facial images, using MakeHuman and blender, with actual key-

points positions (ground truth) to test keypoints detection DNNs. We use CARLA [30] to test end-to-end

DNN-enabled systems. CARLA is a widely used open source simulator designed for training, verification,

and validation of automated driving systems.

1.1 Research Contributions

The research contributions of this dissertation can be summarised as follows:

• We report an empirical study to compare offline testing and online testing in the context of

Automated Driving Systems (ADS). We also investigate whether simulator-generated data is a

reliable substitute for real-world data for the purpose of DNN testing. Furthermore, we investigate

if we can exploit offline testing results to reduce the cost of online testing by running fewer tests.

Part of this work was published at the International Conference on Software Testing, Verification

2
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and Validation (ICST) 2020 [51] and in the Empirical Software Engineering (EMSE) [53] journal.

This work is presented in Chapter 3.

• We present an approach to automatically generate test data for Key-Points detection DNNs (KP-

DNNs) using many-objective optimisation and simulation. Our approach uses many objective search

algorithms tailored for test suite generation to find test cases that mispredict at least one keypoint.

We further investigate and demonstrate a way to learn the conditions that cause severe mispredictions

for individual keypoints. This work was published in the ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA) 2021 [49] and is presented in Chapter 4.

• We present SAMOTA (Surrogate-Assisted Many-Objective Testing Approach), an approach to

automatically and efficiently generate test data for DES testing, in online mode, by carefully

combining (1) many-objective optimisation, to effectively achieve many independent objectives

(i.e., causing safety violations) within a limited time budget, and (2) surrogate-assisted optimization

to efficiently search for critical test data using surrogate models that mimic the simulator. This work

was published in International Conference on Software Engineering (ICSE) 2022 and was awarded

an ACM-SIGSOFT Distinguished Paper Award. This work is presented in Chapter 5.

• We present MORLOT (Many-Objective Reinforcement Learning for Online Testing), an approach

to effectively generate test data for DES testing by combining (1) reinforcement learning, to

dynamically interact with the environment and (2) many-objective optimisation, to efficiently solve

many independent objectives simultaneously. This work is currently under review and is presented

in Chapter 6.

1.2 Dissertation Outline

• Chapter 2 provides background on search-based testing, simulation-based testing, surrogate models,

and reinforcement learning.

• Chapter 3 presents an empirical study to compare offline testing and online testing in the context

of Automated Driving Systems (ADS).

• Chapter 4 presents our approach for testing Key-Points detection DNNs (KP-DNNs) using many-

objective optimisation.

• Chapter 5 presents SAMOTA, our approach for testing end-to-end DNN-enabled systems using

many-objective optimisation and surrogate models.

• Chapter 6 presents MORLOT, our approach for testing end-to-end DNN-enabled systems using

many-objective optimisation and reinforcement learning.

3





Chapter 2

Background

This chapter presents background concepts used throughout the dissertation. Section 2.1 presents the

basic concepts of search-based testing. Section 2.2 presents background on simulation-based testing.

Section 2.3 introduces surrogate models and three widely used surrogate models and section 2.4 introduces

basic concepts about reinforcement learning.

2.1 Search-based Testing

Search-based software testing (SBST) [86] uses meta-heuristic algorithms to automate software testing

tasks, such as test case generation [37] and prioritization [75], for a specific system under test. The key

idea is to formulate a software testing problem as an optimization problem by defining proper fitness

functions. For example, EvoSuite [37] uses a search-based approach to automatically generate unit test

cases for a Java program to satisfy a coverage criterion, such as branch coverage. In this case, the fitness

function is defined based on the coverage achieved by unit test cases.

Recently, SBST has also been used for DNN testing. For example, AsFault [41] automatically

generates virtual roads to make vision-based DNNs go out of lane, and DeepJanus [103] uses multi-

objective search to generate a pair of similar test inputs that cause the DNN under test to misbehave for

one test input but not for the other.

However, when the number of objectives is above three, multi-objective search algorithms, such as

NSGA-II [29], do not scale well [66, 21]. This is where many-objective search algorithms come into

play. For example, NSGA-III [28] is a generic many-objective search algorithm that extends NSGA-II

with the idea of virtual reference points to increase the diversity of optimal solutions even when there are

more than three objectives. Panichella et al. [96] proposed a Many-Objective Sorting Algorithm (MOSA),

another extension of NSGA-II, that is tailored for test suite generation. In contrast to NSGA-III, MOSA

aims to efficiently achieve each objective individually. To do this, MOSA has three main features: (1)

it focuses search towards uncovered objectives, (2) it uses a novel preference criterion to rank solutions

rather than diversifying them, and (3) it saves the best test case for each objective in an archive. MOSA

has shown to outperform alternative search algorithms in the context of coverage-based unit testing for
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traditional software programs [95, 96]. Recently, Abdessalem et al. [4] proposed FITEST, an extension of

MOSA, to further improve the efficiency of many-objective search. The idea is to dynamically reduce the

number of candidates (i.e., the population size) to be considered by focusing on the uncovered objectives

only. Hence, FITEST’s population size decreases as more objectives are achieved, whereas MOSA’s

population size is fixed throughout the search. Notice that MOSA and FITEST are carefully designed for

search-based test suite generation when the number of objectives is above three.

2.2 Simulation-based Testing

Testing cyber-physical, safety-critical systems can be done in two ways: (1) in a real-world environment

and (2) in a virtual environment, relying on simulators. In the former case, software is deployed in

the real-world environment, a form of testing which is often expensive and dangerous. The latter case,

referred to as simulation-based testing, can raise concerns about simulation’s fidelity but has two major

benefits. First, simulation-based testing offers controllability, meaning that test drivers can control static

and dynamic features of the simulation (e.g., topology of roads, face features), and can thus automatically

cover a wide range of scenarios. Second, because we can control simulation parameters and can get

information from the simulator, we know the ground truth and can thus apply search-based solutions to

perform safe and fully automated testing of safety-critical software [2, 5, 12].

In many cyber-physical fields, simulation models are developed before implementing actual products.

These simulation models help engineers in various activities, such as early verification and validation of

the system under test [87, 56]. In such contexts, simulated-based testing is highly recommended as it is

economical, faster, safer and flexible [56].

2.3 Surrogate Models

Evolutionary Algorithms (EAs) have been successfully applied to many complex engineering prob-

lems [36]. However, the fitness function evaluation of such complex problems often involves computation-

ally expensive simulations or calculations [62]. To address this issue, many researchers have investigated

surrogate models that can replace the computationally expensive function evaluations with much less

expensive approximations. Among them, we briefly introduce the most widely used surrogate model

types, i.e., Kriging [118], polynomial regression [119], radial basis function networks [16], and their

ensemble [45].

2.3.1 Kriging

Kriging (also known as gaussian process regression) is one of the most widely used surrogate models

since the 1970s. Similar to regression analysis, it predicts the value of a function as a combination of

linear functions using a stochastic process. While it provides the error value for each prediction, it is

relatively more time-consuming for training than other surrogate models.

2.3.2 Polynomial Regression

As a form of statistical regression analysis, polynomial regression models the relationship between the

independent variable x and the dependent variable y in the form of nth degree polynomial in x. Though it
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is simple and intuitive, the existence of a few outliers can severely distort the approximation in nonlinear

problems [90].

2.3.3 Radial Basis Function Network

A radial basis function network is an artificial neural network that consists of three layers: input, hidden,

and output layers. Radial basis functions are used as activation functions, and the output of the network

is a weighted sum of radial basis functions. It is known to provide both computational efficiency and

reasonable training accuracy [78].

2.3.4 Ensemble

Though many surrogate models have been studied, there is no single surrogate model that consistently

performs well for all problems [60]. To mitigate the issue, the ensemble of different surrogate models

can be considered. Specifically, given an ensemble model m composed of member models m1, . . . ,mk,

the final output of m for an input x, denoted with ŷm(x), is the weighted sum of all k member outputs

as ŷm(x) =
∑k

i=1wi × ŷmi(x) where ŷmi(x) is the output of mi for x and wi is a weight for ŷmi(x).

Following Goel et al. [45], wi is defined as wi =
(
∑k

p=1 ep)−ei

(k−1)
∑k

i=1 ei
where ei is the training error of mi.

Another advantage of using ensemble models is that we can easily compute the uncertainty of a

prediction of an ensemble model. Specifically, the uncertainty of ŷm(x), denoted with δm(x), is defined as

δm(x) = maxi,p(|ŷmi(x)− ŷmp(x)|) for i, p ∈ {1, 2, . . . , k} and i ̸= p. In other words, the uncertainty

is calculated using the maximum difference between the outputs of the k member models.

2.4 Reinforcement Learning

Reinforcement Learning (RL) is about learning how to perform a sequence of actions to achieve a goal by

iterating trials and errors to learn the best action for a given state [121].

In particular, RL involves the interaction between an RL agent (i.e., the learner) and its surrounding

environment, which is formalized by a Markov Decision Process (MDP). At each time step j, the RL agent

observes the environment’s state sj and takes an action aj based on its own policy π (i.e., the mapping

between states and actions). At the next time step j + 1, the agent first gets a reward wj+1 indicating how

well taking aj in sj helped in achieving the goal, updates π based on wj+1, and then continues to interact

with its environment. From the interactions (trials and errors), the agent is expected to learn the unknown

optimal policy π∗ that can select the best action maximizing the expected sum of future rewards in any

state.

An important assumption underlying MDP is that states satisfy the Markov property: states captures

information about all aspects of the past agent–environment interactions that make a difference for the

future [121]. In other words, wj+1 and sj+1 depend only on sj and aj , and are independent from the

previous states sj−1, sj−2, . . . , s1 and actions aj−1, aj−2, . . . , a1. This assumption allows the RL agent

to take an action by considering only the current state, as opposed to all past states (and actions).

In general, there are two types of RL methods: (1) tabular-based and (2) approximation-based.

Tabular-based methods [136, 108] use tables or arrays to store the expected sum of future rewards for

each state. Though they are applicable only if state and action spaces are small enough to be represented

in tables or arrays, they can often find exactly the optimal policy [121]. Discretization can be used to
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control the size of state and action spaces, especially when states and actions are continuous. It is essential

to apply the right degree of discretization since coarse-grained discretization may make it impossible

for the agent to distinguish between states that require different actions, resulting in significant loss

of information. When the state space is enormous and cannot be easily discretized without significant

information loss, approximation-based methods [8] can be used where the expected sum of future rewards

for a newly discovered state can be approximated based on known states (often with the help of state

abstraction when they are too complex to directly compare). While they can address complex problems in

very large state spaces, they can only provide approximate solutions.

One of the most commonly used tabular-based reinforcement learning algorithms is Q-learning due to

its simplicity and guaranteed convergence to an optimal policy [136]. It stores and iteratively updates the

expected sum of future rewards for each state-action pair in a table (a.k.a., Q-table) while going through

trials and errors. A properly updated Q-table can therefore tell what is the best action to choose in a given

state. A more detailed explanation, including how to update a Q-table to ensure the convergence, can be

found in Sutton and Barto [121].
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Chapter 3

Modes of Testing: Online Testing vs Offline
testing

In this chapter, we perform an empirical study to compare offline testing and online testing in the context

of Automated Driving Systems (ADS). In offline testing, DNNs are tested as individual units based on test

datasets obtained without involving the DNNs under test, while in online testing, DNNs are embedded

into a specific application environment and tested in a closed-loop mode in interaction with the application

environment. We aim to answer the following research question: How do offline and online testing results

differ and complement each other? To answer this question, we used open-source DNN models developed

to automate steering functions of self-driving vehicles [128]. To enable online testing of these DNNs,

we integrated them into a powerful, high-fidelity physics-based simulator of self-driving cars [123]. The

simulator allows us to specify and execute scenarios capturing various road traffic situations, different

pedestrian-to-vehicle and vehicle-to-vehicle interactions, and different road topologies, weather conditions

and infrastructures. As a result, in our study offline and online testing approaches were compared with

respect to the data generated automatically using a simulator. To ensure that this aspect does not impact

the validity of our comparison, we investigate the following research question as a pre-requisite of the

above question: Can we use simulator-generated data as a reliable substitute to real-world data for the

purpose of DNN testing?

While the above research questions provide insights on the relationship between offline and online

testing results, it is still unclear how we can use offline and online testing together in practice such that

we can minimize cost and maximize the effectiveness of testing DNNs. As the ML testing workflow in

Figure 3.1 suggests, offline testing precedes online testing and given that offline testing is considerably

less expensive than online testing, it is beneficial if we can exploit offline testing results to reduce the cost

of online testing by running fewer tests. To explore this, we investigate the following research question

to determine if offline testing results can be used to help reduce the cost of online testing? Our goal is

to identify whether we can characterize the test scenarios (conditions) where offline and online testing

results are the same with high probability. To do so, we propose a novel heuristic approach to infer such
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Figure 3.1: Idealized Workflow of ML testing [147]

conditions from limited number of offline and online testing data in an efficient and effective way.

The contributions of this chapter are summarized below:

1. We show that we can use simulator-generated datasets in lieu of real-life datasets for testing DNNs

in our application context. Our comparison between online and offline testing using such datasets

show that offline and online testing results frequently differ, and specifically, offline testing results

are often not able to find faulty behaviors due to the lack of error accumulation over time. As a

result, many safety violations identified by online testing could not be identified by offline testing

as they did not cause large prediction errors. However, all the large prediction errors generated by

offline testing led to severe safety violations detectable by online testing.

2. We provide a three-step approach to infer (learn) conditions characterizing agreement and disagree-

ment between offline and online testing results while minimizing the amount of the data required to

infer the conditions and maximizing the statistical confidence of the results.

3. We were not able to infer any conditions that can characterize agreement between offline and online

testing results with a probability higher than 71%. This means that, in general, we cannot exploit

offline testing results to reduce the cost of online testing in practice.

The rest of the chapter is organized as follows: Section 3.1 introduces offline and online testing,

describes our proposed domain model that is used to configure simulation scenarios for automated

driving systems, and formalizes the main concepts in offline and online testing used in our experiments.

Section 3.2 reports on the empirical evaluation. Section 3.3 provides discussion on online testing using

simulators, offline testing vs online testing and open challenges. Section 3.4 surveys the existing research

on online and offline testing for automated driving systems. Section 3.5 concludes the chapter.

3.1 Offline and Online testing frameworks

This section provides the basic concepts that will be used throughout the chapter.

3.1.1 DNNs in ADS

Depending on the ADS design, DNNs may be used in two ways to automate the driving task of a

vehicle: One design approach is to incorporate DNNs into the ADS perception layer, primarily to do
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Figure 3.2: Overview of DNN-based ADS

semantic segmentation [43], i.e., to classify and label each and every pixel in a given image. The ADS

software controller then decides what commands should be issued to the vehicle’s actuators based on

the classification results produced by the DNN [101]. An alternative design approach is to use DNNs to

perform the end-to-end control of a vehicle [128] (e.g., Figure 3.2). In this case, DNNs directly generate

the commands to be sent to the vehicle’s actuators after processing images received from cameras. Our

approach to compare offline and online testing of DNNs is applicable to both ADS designs. In the

comparison provided in this chapter, however, we use DNN models automating the end-to-end control of

the steering function since these models are publicly available online and have been extensively used in

recent studies on DNN testing [125, 148, 81, 64]. In particular, we investigate the DNN models from the

Udacity self-driving challenge as our study subjects [128]. We refer to this class of DNNs as ADS-DNNs

in the remainder of the chapter. Specifically, an ADS-DNN receives as input images from a front-facing

camera mounted on a vehicle, and generates a steering angle command for the vehicle.

3.1.2 Test Data Sources

We identify two sources for generating test data for testing ADS-DNNs: (1) real-life driving and (2)

driving simulator.

For our ADS-DNN models, a real-life dataset is a video or a sequence of images captured by a camera

mounted on a vehicle’s dashboard while the vehicle is being driven by a human driver. The steering angle

of the vehicle applied by the human driver is recorded for the duration of the video and each image (frame)

of the video in this sequence is labelled by its corresponding steering angle. This yields a sequence of

manually labelled images to be used for testing DNNs. There are, however, some drawbacks with test

datasets captured from real-life [63]. Specifically, data generation is expensive, time consuming and lacks

diversity. The latter issue is particularly critical since driving scenes, driving habits, as well as objects,

infrastructures and roads in driving scenes, can vary widely across countries, continents, climates, seasons,

day times, and even drivers.

Another source of test data generation is to use simulators to automatically generate videos capturing

various driving scenarios. There are increasingly more high-fidelity and advanced physics-based simulators

for self-driving vehicles fostered by the needs of the automotive industry, which increasingly relies on

simulators to improve their testing and verification practices. There are several examples of commercial

ADS simulators (e.g., PreScan [123] and Pro-SiVIC [35]) and a number of open source ones (e.g.,

CARLA [31] and LGSVL [106]). These simulators incorporate dynamic models of vehicles (including
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vehicles’ actuators, sensors and cameras) and humans as well as various environment aspects (e.g., weather

conditions, different road types, different infrastructures). The simulators are highly configurable and can

be used to generate desired driving scenarios. In our work, we use the PreScan simulator to generate test

data for ADS-DNNs. PreScan is a widely-used, high-fidelity commercial ADS simulator in the automotive

domain and has been used by our industrial partner. In Section 3.1.3, we present the domain model that

define the inputs used to configure the simulator, and describe how we automatically generate scenarios

that can be used to test ADS-DNNs. Similar to real-life videos, the videos generated by our simulator are

sequences of labelled images such that each image is labelled by a steering angle. In contrast to real-life

videos, the steering angles generated by the simulator are automatically computed based on the road

trajectory as opposed to being generated by a human driver.

The simulator-generated test datasets are cheaper and faster to produce compared to real-life ones. In

addition, depending on how advanced and comprehensive the simulator is, we can achieve a higher-level

of diversity in the simulator-generated datasets by controlling and varying the objects, roads, weather, and

other various features. However, it is not yet clear whether simulator-generated images can be used in

lieu of real images since the latter may have higher resolution, showing more natural texture, and look

more realistic. In this chapter, we conduct an empirical study in Section 3.2 to investigate if we can use

simulator-generated images as a reliable alternative to real images for testing ADS-DNNs.

3.1.3 Domain Model

Figure 3.3 shows the domain model capturing the test input space of ADS-DNNs. To develop the domain

model, we relied on two sources of information: (1) the properties that we observed in the real-world

ADS-DNN test datasets (i.e., the Udacity testing datasets [129]) and (2) the configurable parameters of

our simulator.

In total, we identified four main objects, i.e., Road, Vehicle, Weather, and Environment, and 32

attributes characterizing them, such as Road.type, Vehicle.speed, Weather.type, and Environment.buildings.

Each attribute has a specific data type; for example, the Weather.type attribute is an enumeration type,

having three different weather values (i.e., Snowy, Sunny, and Rainy) as shown in the definition of

Weather.Type in Figure 3.3. This means that only one of the three values can be assigned to Weather.type.

Note that, to illustrate the lower diversity in real-world datasets, the attributes and their values that are

observed in the real world are highlighted in bold. For example, only the Sunny weather is observed in the

real-world test datasets.

In addition to objects and attributes, our domain model includes some constraints describing valid

value assignments to the attributes. These constraints mostly capture the physical limitations and traffic

rules that apply to our objects. For example, the vehicle speed cannot be higher than 20km/h on steep

curved roads. Constraints may also be used to capture dependencies between attributes that cannot be

specified through the relationships between domain model objects. For example, we define a constraint to

indicate that Weather.condition can only take a value when Weather.type is either Snowy or Rainy. That is,

for Sunny we do not need to specify any weather condition. We have specified these constraints in the

Object Constraint Language (OCL) [47]. The complete OCL constraints are available in the supporting

materials [50].

To produce a simulation scenario (or test scenario) for an ADS-DNN, we instantiate our domain

model in Figure 3.3 by assigning concrete values to the attributes of our domain model such that its OCL
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Scenario
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Figure 3.3: Complete domain model for scenario generation. The attributes and values that are observed
in the real-world test datasets are highlight in bold.

constraints are satisfied. Specifically, we can represent each test scenario as a vector s = ⟨v1, v2, . . . , v32⟩
where vi is the value assigned to the ith attribute of our domain model (recall that it contains 32 attributes).

We can then initialize the simulator based on the test scenario vectors. The simulator will then generate, for

each of the mobile objects defined in a scenario, namely the ego and secondary vehicles and pedestrians,

a trajectory vector of the path of that object (i.e., a vector of values indicating the positions and speeds

of the mobile object over time). The length of the trajectory vector is determined by the duration of the

simulation. The position values are computed based the characteristics of the static objects specified by

the initial configuration, such as roads and sidewalks, as well as the speed of the mobile objects.

3.1.4 Offline Testing

Figure 3.4 represents an overview of offline DNN testing in the ADS context. Briefly, offline testing

verifies the DNN using historical data consisting of sequences of images captured from real-life camera
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Figure 3.4: Offline testing using (1) real-world and (2) simulator-generated data
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Figure 3.5: Online testing of ADS-DNNs using simulators

or based on a camera model of a simulator. In either case, the images are labelled with steering angles.

Offline testing measures the prediction errors of the DNN to evaluate test results.

More specifically, let r be a real-life test dataset composed of a sequence of tuples ⟨(ir1, θr1), (ir2, θr2),
. . . , (irn, θ

r
n)⟩. For j = 1, . . . , n, each tuple (irj , θ

r
j ) of r consists of an image irj and a steering angle θrj

label. A DNN d, when provided with a sequence ⟨ir1, ir2, . . . , irn⟩ of the images of r, returns a sequence

⟨θ̂r1, θ̂r2, . . . , θ̂rn⟩ of predicted steering angles. The prediction error of d for r is, then, computed using two

well-known metrics, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), defined below:

MAE (d, r) =

∑n
i=1 |θri − θ̂ri |

n

RMSE (d, r) =

√∑n
i=1(θ

r
i − θ̂ri )

2

n

To generate a test dataset using a simulator, we provide the simulator with an initial configuration

of a scenario as defined in Section 3.1.3. We denote the offline test dataset generated by a simulator

for a scenario s by sim(s) = ⟨(is1, θs1), (is2, θs2), . . . , (isn, θsn)⟩. The prediction error of d for sim(s) is

calculated by the MAE and RMSE metrics in the same way as MAE (d, r) and RMSE (d, r), replacing r

with sim(s).
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3.1.5 Online Testing

Figure 3.5 provides an overview of online testing of DNNs in the ADS context. In contrast to offline

testing, DNNs are embedded into a driving environment, often in a simulator due to the cost and risk of

real-world testing as we described in Section 3.1.2. DNNs then receive images generated by the simulator,

and their outputs are directly sent to the (ego) vehicle models of the simulator. With online testing, we

can evaluate how predictions generated by an ADS-DNN, for an image generated at time t in a scenario,

impact the images to be generated at the time steps after t. In addition to the steering angle outputs

directly generated by the ADS-DNN, we obtain the trajectory outputs of the ego vehicle, which enable us

to determine whether the vehicle is able to stay in its lane.

More specifically, we embed a DNN d into a simulator and run the simulator. For each (initial

configuration of a) scenario, we execute the simulator for a time duration T . The simulator generates the

trajectories of mobile objects as well as images taken from the front-facing camera of an ego vehicle at

regular time steps tδ, generating outputs as vectors of size m = ⌊ Ttδ ⌋. Each simulator output and image

takes an index between 1 to m. We refer to the indices as simulation time steps. At each time step j, the

simulator generates an image isj to be sent to d as input, and d predicts a steering angle θ̂sj which is sent

to the simulator. The status of the ego vehicle is then updated in the next time step j + 1 (i.e., the time

duration it takes to update the vehicle is tδ) before the next image isj+1 is generated. In addition to images,

the simulator generates the position of the ego vehicle over time. Recall that the main function of our

DNN is automated lane keeping. This function is violated when the ego vehicle departs from its lane. To

measure the lane departure degree, we use the Maximum Distance from Center of Lane (MDCL) metric

for the ego vehicle to determine if a safety violation has occurred. The value of MDCL is computed at the

end of the simulation when we have the position vector of the ego vehicle over time steps, which was

guided by our DNN. We cap the value of MDCL at 1.5m, indicating that when MDCL is 1.5m or larger,

the ego vehicle has already departed its lane and a safety violation has occurred. In addition, we normalize

the MDCL values between 0 and 1 to make it consistent with MAE or RMSE.

In this chapter, we embed the ADS-DNN into PreScan by providing the former with the outputs

from the camera model in input and connecting the steering angle output of the ADS-DNN to the input

command of the vehicle dynamic model.

3.2 Experiments

We aim to compare offline and online testing of DNNs by answering the following research questions:

RQ1: Can we use simulator-generated data as a reliable alternative source to real-world data? Recall

the two sources for generating test data as described in Section 3.1.2. While simulator-generated test data

is cheaper and faster and is more amenable to input diversification compared to real-life test data, the

texture and resolution of real-life data look more natural and realistic compared to the simulator-generated

data. In RQ1, we aim to investigate whether, or not, such differences lead to significant inaccuracies in

predictions of the DNN under test in offline testing. The answer to this question will determine if we can

rely on simulator-generated data for testing DNNs in either offline or online testing modes.

RQ2: How frequently do offline and online testing results differ and do they complement each other?

RQ2 is one of the main research questions we want to answer in this chapter. We want to know how the

results obtained by testing a DNN in isolation, irrespective of a particular application context, compare
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with the results obtained by embedding a DNN into a specific application environment. The answer to

this question will help engineers and researchers better understand the applications and limitations of each

testing mode, and how they could possibly be combined.

RQ3: Can offline testing results be used to help reduce the cost of online testing? In other words,

can we focus online testing on situations where it is needed, i.e., on situations where offline and online

testing are in disagreement? With RQ3, we investigate whether any offline testing results can be lifted to

online testing to help reduce the amount of online testing that we need to do. Our goal is to determine

whether we can characterize the test scenarios where offline and online testing behave the same in terms

of our domain model elements. This provides the conditions under which offline testing is sufficient, thus

avoiding online testing, which is much more expensive.

3.2.1 Experimental Subjects

We use three publicly-available, pre-trained DNN-based steering angle prediction models, i.e., Autumn [9],

Chauffeur [18], and Komanda [67], that have been widely used in previous work to evaluate various DNN

testing approaches [125, 148, 64].

Autumn consists of an image preprocessing module implemented using OpenCV to compute the

optical flow of raw images, and a Convolutional Neural Network (CNN) implemented using Tensorflow

and Keras to predict steering angles. Autumn improved performance by using cropped images from

the bottom half of the entire images. Chauffeur consists of one CNN that extracts the features from

raw images and a Recurrent Neural Network (RNN) that predicts steering angles from the previous 100

consecutive images with the aid of a LSTM (Long Short-Term Memory) module. Similar to Autumn,

Chauffeur uses cropped images, and is also implemented with Tensorflow and Keras. Komanda consists of

one CNN followed by one RNN with LSTM, implemented by Tensorflow, similar to Chauffeur. However,

the underlying CNN of Komanda has one more dimension than Chauffeur that is in charge of learning

spatiotemporal features. Further, unlike Autumn and Chauffeur, Komanda uses full images to predict

steering angles.

The models are developed using the Udacity dataset [129], which contains 33808 images for training

and 5614 images for testing. The images are sequences of frames of two separate videos, one for training

and one for testing, recorded by a dashboard camera with 20 Frame-Per-Second (FPS). The dataset also

provides, for each image, the actual steering angle produced by a human driver while the videos were

recorded. A positive (+) steering angle represents turning right, a negative (-) steering angle represents

turning left, and a zero angle represents staying on a straight line. The steering angle values are normalized

(i.e., they are between −1 and +1) where a +1 steering angle value indicates 25°, and a −1 steering

angle value indicates −25°1. Figure 3.6 shows the actual steering angle values for the sequence of 5614

images in the test dataset. We note that the order of images in the training and test datasets matters and is

accounted for when applying the DNN models. As shown in the figure, the steering angles issued by the

driver vary considerably over time. The large steering angle values (more than 3°) indicate actual road

curves, while the smaller fluctuations are due to the natural behavior of the human driver even when the

vehicle drives on a straight road.

1This is how Tian et al. [125] have interpreted the steering angle values provided along with the Udacity dataset, and
we follow their interpretation. We were not able to find any explicit information about the measurement unit of these values
anywhere else.
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Figure 3.6: Actual steering angles for the 5614 real-world images used for testing

Table 3.1: Accuracies of the subject DNN-based models

Model Reported RMSE Our RMSE Our MAE

Autumn Not Presented 0.049 0.034
Chauffeur 0.058 0.092 0.055
Komanda 0.048 0.058 0.039

Table 3.1 shows the RMSE and MAE values of the models we obtained for the Udacity test dataset,

as well as the RMSE values reported by the Udacity website [128] 2. The differences are attributed

to challenges regarding reproducibility, a well-known problem for state-of-the-art deep learning meth-

ods [100] because they involve many parameters and details whose variations may lead to different results.

Specifically, even though we tried to carefully follow the same settings and parameters as those suggested

on the Udacity website, as shown in Table 3.1, the RMSE and MAE values that we computed differed

from those reported by Udacity. We believe these differences are due to the versions of python and other

required libraries (e.g., tensorflow, keras, and scipy). The precise version information for all these were

not reported by Udacity. Nevertheless, for all of our experiments, we consistently used the most stable

versions of python and the libraries that were compatible with one another. In other words, irrespective

of differences in the RMSE values between the reported and our in Table 3.1, all of our experiments are

internally consistent. To enable replication of our work, we have made our detailed configurations (e.g.,

python and auxiliary library versions), together with supporting materials, available online [50].

While MAE and RMSE are two of the most common metrics used to measure prediction errors for

learning models with continuous variable outputs, we mainly use MAE throughout this chapter because,

in contrast to RMSE, MAE values can be directly interpreted in terms of individual steering angle values.

For example, MAE (d, r) = 1 means that the average prediction error of d for the images in r is 1 (25°).

Since MAE is a more intuitive metric for our purpose, we will only report MAE values in the remainder

of this chapter.

2Autumn’s RMSE is not presented in the final leaderboard.
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3.2.2 RQ1: Comparing Offline Testing Results for Real-life Data and
Simulator-generated Data

Setup

We aim to generate simulator-generated datasets closely mimicking the Udacity real-life test dataset and

verify whether the prediction errors obtained by applying DNNs to the simulator-generated datasets are

comparable with those obtained for their corresponding real-life ones. As explained in Section 3.2.1,

our real-life test dataset is a sequence of 5614 images labelled with their corresponding actual steering

angles. If we could precisely extract the properties of the environment and the dynamics of the ego vehicle

from the real-life datasets, in terms of initial configuration parameters of the simulator, we could perhaps

generate simulated data closely resembling the real-life videos. However, extracting information from

such video images to generate inputs of a simulator is not possible.

Instead, we propose a two-step heuristic approach to replicate the real-life dataset using our simulator.

Basically, we steer the simulator to generate a sequence of images similar to the images in the real-life

dataset such that the steering angles generated by the simulator are close to the steering angle labels in the

real-life dataset.

In the first step, we observe the test dataset and manually identify the information in the images that

correspond to some attribute values in our domain model described in Section 3.1.3. We then create a

“restricted” domain model by fixing the attribute values in our domain model to the values we observed in

the Udacity test dataset. This enables us to steer the simulator to resemble the characteristics of the images

in the test dataset to the extent possible. Our restricted domain model includes the attributes and its values

that are highlighted in bold in Figure 3.3. For example, the restricted domain model does not include

weather conditions other than sunny because the test dataset has only sunny images. This guarantees that

the simulator-generated images based on the restricted domain model represent sunny scenes only. Using

the restricted domain model, we randomly generate a large number of scenarios yielding a large number

of simulator-generated datasets.

In the second step, we aim to ensure that the datasets generated by the simulator have similar steering

angle labels as the labels in the real-life dataset. To ensure this, we match the simulator-generated datasets

with (sub)sequences of the Udacity test dataset such that the similarities between their steering angles

are maximized. Note that steering angle is not a configurable attribute in our domain model, and hence,

we could not force the simulator to generate data with steering angle values identical to those in the test

dataset by restricting our domain model. In other words, we minimize the differences by selecting the

closest simulator-generated datasets from a large pool of randomly generated ones. To do this, we define,

below, the notion of “comparability” between a real-life dataset and a simulator-generated dataset in terms

of steering angles.

Let S be a set of randomly generated scenarios using the restricted domain model, and let r =

⟨(ir1, θr1), . . . , (irk, θrk)⟩ be the Udacity test dataset where k = 5614. We denote by r(x,l) = ⟨(irx+1,

θrx+1), . . . , (i
r
x+l, θ

r
x+l)⟩ a subsequence of r with length l starting from index x+1 where x ∈ {0, 1, . . . , k}.

For a given simulator-generated dataset sim(s) = ⟨(is1, θs1), . . . , (isn, θsn)⟩ corresponding to a scenario
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s ∈ S, we compute r(x,l) using the following three conditions:

l = n (3.1)

x = argmin
x

l∑
j=1

|θsj − θrx+j | (3.2)

∑l
j=1 |θsj − θrx+j |

l
≤ ϵ (3.3)

where argminx f(x) returns3 x minimizing f(x), and ϵ is a small threshold on the average steering angle

difference between sim(s) and r(x,l). We say datasets sim(s) and r(x,l) are comparable if and only if

r(x,l) satisfies the three above conditions (i.e., 3.1, 3.2 and 3.3).

Given the above formalization, our approach to replicate the real-life dataset r using our simulator can

be summarized as follows: In the first step, we randomly generate a set of many scenarios S based on the

reduced domain model. In the second step, for every scenario s ∈ S, we identify a subsequence r(x,l)

from r such that sim(s) and r(x,l) are comparable.

If ϵ is too large, we may find that r(x,l) has steering angles that are too different from those in sim(s).

On the other hand, if ϵ is too small, we may not be able to find a r(x,l) that is comparable to sim(s) for

many scenarios s ∈ S randomly generated in the first step. In our experiments, we select ϵ = 0.1 (2.5°)

since, based on our preliminary evaluations, we can achieve an optimal balance with this threshold.

For each comparable pair of datasets sim(s) and r(x,l), we measure the prediction error difference for

the same DNN to compare the datasets. Specifically, we measure |MAE (d, sim(s))−MAE (d, r(x,l))| of

a DNN d. Recall that offline testing results for a given DNN d are measured based on prediction errors in

terms of MAE. If |MAE (d, sim(s))−MAE (d, r(x,l))| ≤ 0.1 (meaning 2.5° of average prediction error

across all images), we say that r(x,l) and sim(s) yield consistent offline testing results for d.

We note that the real-life images in the Udacity test dataset are multicolored or polychromatic.

However, our preliminary evaluation confirmed that the steering predictions of our DNN subjects do not

change more than 0.006° on average when we convert polychromatic images to monochromatic images in

the Udacity test dataset. Hence, we do not attempt to make the colors of the simulator-generated images

similar to that of the real-life images as color has little impact on the DNN’s predictions.

Results

Among the 100 randomly generated scenarios (i.e., |S| = 100), we identified 92 scenarios that could

match subsequences of the Udacity real-life test dataset. Figure 3.7 shows an example comparable pair

of r(x,l) (i.e., real dataset) and sim(s) (i.e., simulator-generated dataset) identified using our two-step

heuristic. Specifically, Figure 3.7a shows the steering angles for all the images in the example comparable

pair. Figures 3.7b and 3.7c show two matching frames from the pair where the difference in the steering

angles is the smallest (i.e., the 40th frames where |θr − θs| = 0). Figures 3.7d and 3.7e show two

other matching frames from the pair where the difference in the steering angles is the largest (i.e., the

112th frames where |θr − θs| = 0.1115). As shown in the steering angle graph in Figure 3.7a, the

simulator-generated dataset and its comparable real dataset subsequence do not have identical steering

angles. For example, the actual steering angles produced by a human driver have natural fluctuations

whereas the steering angles generated by the simulator are relatively smooth. The differences in steering
3If f has multiple points of the minima, one of them is randomly returned.
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Figure 3.7: Example comparable pair of a simulator-generated and real-life datasets

angles can also be attributed to the complexity of the real-world not reflected in the simulator (e.g., bumpy

roads). Nevertheless, the overall steering angle patterns are very similar. If we look at the matching frames

shown in Figures 3.7b and 3.7c, the matching frames look quite similar in terms of essential properties,

such as road topology and incoming vehicles on the other lane. Regarding the matching frames shown in

Figures 3.7d and 3.7e, they capture the largest difference in steering angles of the comparable pair of real

and simulated datasets. We can note differences between the matching frames regarding some aspects,

such as the shape of buildings and trees. Once again, this is because the complexity and diversity of the

real-world is not fully reflected in the simulator. This point will be further discussed in Section 3.3.1.

Figure 3.8 shows, for each of our DNNs, Autumn, Chauffeur, and Komanda, the distributions of the

prediction error differences for the real datasets (subsequences) and the simulator-generated datasets. For

Autumn, the average prediction error difference between the real datasets and the simulator-generated
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Figure 3.8: Distributions of the differences between the prediction errors obtained for the real datasets
(subsequences) and the simulator-generated datasets

datasets is 0.027. Further, 95.6% of the comparable pairs show a prediction error difference below 0.1

(2.5°). This means that the (offline) testing results obtained for the simulator-generated datasets are

consistent with those obtained using the real-world datasets for almost all comparable dataset pairs.

The results for Komanda are similar: the average prediction error difference is 0.023, and 96.7% of the

comparable pairs show a prediction error difference below 0.1 (2.5°). On the other hand, for Chauffeur,

only 66.3% of the comparable pairs show a prediction error difference below 0.1. This means that

testing results between real datasets and simulator-generated datasets are inconsistent in 33.71% of the

92 comparable pairs. Specifically, for all the inconsistent cases, we observed that the MAE value for

the simulator-generated dataset is greater than its counterpart for the real-world dataset. It is therefore

clear that the prediction error of Chauffeur tends to be larger for the simulator-generated dataset than

for the real-world dataset. In other words, the simulator-generated datasets tend to be conservative for

Chauffeur and report more false positives than for Autumn and Komanda in terms of prediction errors.

We also found that, in several cases, Chauffeur’s prediction errors are greater than 0.2 while Autumn’s

and Komanda’s prediction errors are less than 0.1 for the same simulator-generated dataset. One possible

explanation is that Chauffeur is over-fitted to the texture of real images, while Autumn is not thanks to

the image preprocessing module. Nevertheless, the average prediction error differences between the real

datasets and the simulator-generated datasets is 0.080 for Chauffeur, which is still less than 0.1. This

implies that, although Chauffeur will lead to more false positives (incorrect safety violations) than Autumn

and Komanda, the number of false positives is still unlikely to be overwhelming.

We remark that the choice of simulator as well as the way we generate data using our selected simulator,

based on carefully designed experiments such as the ones presented here, are of great importance. Selecting

a suboptimal simulator may lead to many false positives (i.e., incorrectly identified prediction errors)

rendering simulator-generated datasets ineffective.
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The answer to RQ1 is that, for all the subject DNNs, the prediction error differences between

simulator-generated and real-life datasets are less than 0.1 on average. We conclude that we can

use simulator-generated datasets as a reliable alternative to real-world datasets for testing DNNs.

3.2.3 RQ2: Comparison between Offline and Online Testing Results

Setup

We aim to compare offline and online testing results in this research question. We randomly generate

scenarios and compare the offline and online testing results for each of the simulator-generated datasets.

For the scenario generation, we use the extended domain model (see Figure 3.3) to take advantage of

all the feasible attributes provided by the simulator. Specifically, in Figure 3.3, the gray-colored entities

and attributes in bold are additionally included in the extended domain model compared to the restricted

domain model used for RQ1. For example, the (full) domain model contains various weather conditions,

such as rain, snow, and fog, in addition to sunny.

Let S′ be the set of randomly generated scenarios based on the (full) domain model. For each

scenario s ∈ S′, we prepare the simulator-generated dataset sim(s) for offline testing and measure

MAE (d, sim(s)) for a DNN d. For online testing, we measure MDCL(d, s). Then we compute the

Spearman rank correlation coefficient ρ (rho) between MAE (d, sim(s)) and MDCL(d, s) to assess the

overall correlation between offline and online testing results. When ρ is 0, it means that there is no

monotonic relation between MAE and MDCL. The closer ρ to 1, the closer the relation between MAE

and MDCL to a perfectly monotonic relation. When ρ is 1, it means that MAE systematically increases

(decreases) when MDCL increases (decreases).

We further compare the offline and online testing results for individual scenarios. However, since

MAE and MDCL are different metrics, we cannot directly compare them. Instead, we set threshold values

for MAE and MDCL to translate these metrics into binary results (i.e., acceptable versus unacceptable)

that can be compared. In particular, we interpret the online testing results of DNN d for a test scenario s

as acceptable if MDCL(d, s) < 0.7 and unacceptable otherwise. Note that we have MDCL(d, s) < 0.7

when the departure from the centre of the lane observed during the simulation of s is less than around one

meter. Based on domain expert knowledge, such a departure can be considered safe. We then compute

a threshold value for MAE that is semantically similar to the 0.7 threshold for MDCL. To do so, we

calculate the steering angle error that leads to the vehicle deviating from the centre of the lane by one

meter. This, however, depends on the vehicle speed and the time it takes for the vehicle to reach such

deviation. We assume the speed of the vehicle to be 30 km/h (i.e., the slowest vehicle speed when the

vehicle is driving on normal roads) and the time required to depart from the centre of the lane to be

2.7 seconds (which is a conservative driver reaction time for braking [84]). Given these assumptions,

we compute the steering angle error corresponding to a one meter departure to be around 2.5°. Thus,

we consider the offline testing results of d for s as acceptable if MAE (d, sim(s)) < 0.1 (meaning the

average prediction error is less than 2.5°) and unacceptable otherwise.
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Table 3.2: Number of scenarios classified by offline and online testing results

(a) Autumn

MAE < 0.1 MAE ≥ 0.1 Total

MDCL < 0.7 13 1 14
MDCL ≥ 0.7 40 36 76

Total 53 37 90

(b) Chauffeur

MAE < 0.1 MAE ≥ 0.1 Total

MDCL < 0.7 18 0 18
MDCL ≥ 0.7 57 15 72

Total 75 15 90

(c) Komanda

MAE < 0.1 MAE ≥ 0.1 Total

MDCL < 0.7 13 1 14
MDCL ≥ 0.7 53 23 76

Total 66 24 90

Results

Figure 3.9 shows the comparison between offline and online testing results in terms of MAE and MDCL

values for all the randomly generated scenarios in S′ where |S′| = 90. We generated 90 scenarios because

it is the number of scenarios required to achieve 2-way combinatorial coverage4 for all the attributes in our

extended domain model. The x-axis is MAE (offline testing) and the y-axis is MDCL (online testing). The

dashed lines represent the thresholds, i.e., 0.1 for MAE and 0.7 for MDCL. In the bottom-right corner of

each diagram in Figure 3.9, we show the Spearman correlation coefficients (ρ) between MAE and MDCL.

For our three DNN models, ρ is not zero but less than 0.5, meaning that there are weak correlations

between MAE and MDCL.

In Table 3.2, we have the number of scenarios classified by the offline and online testing results

based on the thresholds. The results show that offline testing and online testing are not in agreement for

45.5%, 63.3%, and 60.0% of the 90 randomly generated scenarios for Autumn, Chauffeur, and Komanda,

respectively. Surprisingly, we have only two cases (one from Autumn and one from Komanda) where the

online testing result is acceptable while the offline testing result is not, and even these two exceptional

cases are very close to the border line as shown in Figure 3.9b, i.e., (0.104, 0.667) for Autumn and

(0.109, 0.695) for Komanda where (x, y) indicates MAE=x and MDCL=y. After analyzing the online

testing results of these two cases in more detail, we found that MDCL was less than the threshold simply

because the road was short, and would have been larger had the road been longer. Consequently, the

results show that offline testing is significantly more optimistic than online testing for the disagreement

scenarios.

Figure 3.10 shows one of the scenarios on which offline and online testing disagreed. As shown in

Figure 3.10a, the prediction error of the DNN for each image is always less than 1°. This means that the

4We use PICT (https://github.com/microsoft/pict) to compute combinatorial coverage.
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Figure 3.9: Comparison between offline and online testing results for all scenarios

DNN appears to be accurate enough according to offline testing. However, based on the online testing

result in Figure 3.10b, the ego vehicle departs from the center of the lane in a critical way (i.e., more

that 1.5m). This is because, over time, small prediction errors accumulate, eventually causing a critical

lane departure. Such accumulation of errors over time is only observable in online testing, and this also

explains why there is no case where the online testing result is acceptable while the offline testing result is

not.

The answer to RQ2 is that offline and online testing results differ in many cases (45.5%, 63.3%, and

60.0% of all scenarios for Autumn, Chauffeur, and Komanda, respectively). We found that offline

testing cannot properly reveal safety violations in ADS-DNNs, because it does not account for their

closed-loop behavior. Given the fact that detecting safety violations in ADS is the ultimate goal of

ADS-DNN testing, we conclude that online testing is preferable to offline testing for ADS-DNNs.
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Figure 3.10: Example inconsistent results between offline and online testing

3.2.4 RQ3: Rule Extraction

Setup

In RQ2, we showed that, for ADS-DNNs, offline prediction errors are not correlated with unsafe deviations

observed during online testing. In other words, offline testing will not reveal some of the safety violations

that can be revealed via online testing. However, offline and online testing are both essential steps in

development and verification of DNNs [147]. A typical workflow for DNN testing is to first apply offline

testing, which is a standard Machine Learning process, and then move to online testing, which is more

expensive and requires engineers to invest significant time on integrating the DNN into a simulated

application environment. The goal of this research question is to provide guidelines on how to combine

offline and online testing results to increase the effectiveness of our overall testing approach (i.e., to reveal

the most faults) while reducing testing cost. To achieve this goal, we identify conditions specified in terms

of our domain model attributes (Figure 3.3) that characterize when offline and online testing agree and

when they disagree. We seek to derive these conditions for different DNN subjects. Provided with these

conditions, we can identify testing scenarios that should be the focus of online testing, i.e., scenarios for

which offline testing is ineffective, but online testing may reveal a safety violation.

In our work, as discussed in Section 3.1.3, each test scenario is specified as a vector of values assigned

to the attributes in our domain model. By applying offline and online testing to all test scenario vectors,

we can determine if it belongs to the category where offline and online testing results are in agreement

or not. Using test vectors and their corresponding categories as a set of labelled data instances, we can

then generate classification rules by applying well-known rule mining algorithms, such as RIPPER [23],

to learn conditions on domain model attributes that lead to agreement or disagreement of offline and

online testing results. To be able to learn these conditions with a high degree of accuracy, however, we

need to gather a large collection of labelled data instances including test vectors ideally covering all

combinations of value assignments to the attributes of our domain model. However, the number of all

combinations of all the attribute values is more than 232 since we have 32 attributes of enumeration types

in our domain model that can take more than two values. Furthermore, the simulation time on a desktop

with a 3.6 GHz Intel i9-9900k processor with 32 GB memory and graphic card Nvidia GeForce RTX

2080Ti is up to 20-30 minutes for each scenario depending upon attributes like road length and speed of

25



CHAPTER 3. MODES OF TESTING: ONLINE TESTING VS OFFLINE TESTING

1. Attribute 
Selection

3. Rule 
Confirmation

2. Rule 
GenerationAll Attributes 

in Domain Model
Selected 

Attributes
Generated 

Rules
Rules with 

High Confidence

Figure 3.11: Overall workflow of the three-step heuristic approach to extract rules.

ego vehicle. Therefore, it is impossible to cover all the combinations of value assignments to our domain

model attributes.

To be able to learn conditions characterizing agreement and disagreement between offline and online

testing in an effective and efficient way, we propose a three-step heuristic approach that focuses on

learning rules with statistically high confidence while minimizing the number of test vectors (i.e., value

assignments to domain model attributes) required for learning. Specifically, we incrementally generate

new test vectors to be labelled by focusing on specific attributes to minimize the amount of data needed

for classification while increasing statistical significance.

Figure 3.11 outlines the workflow of the approach. The first step is attribute selection, which aims

to reduce the search space by identifying a subset of attributes correlated with the differences between

offline and online testing results for a DNN. The second step (rule generation) aims at extracting rules,

for a given DNN, based on the selected attributes. The third step, rule confirmation, seeks to improve the

statistical confidence of the extracted rules. In each of the steps, a minimal number of new data instances

are incrementally generated. The details of the steps are described next:

1. Attribute Selection: In data mining, attribute selection (a.k.a., feature selection) strategies often

rely on generating a large number of labelled data instances randomly to ensure data diversity and

the uniformity of their distribution in the search space. Since labelling data instances (i.e., test

vectors) in our work is expensive, we are limited regarding how many test vectors we can generate

and label for the purpose of attribute selection. Therefore, instead of using a pure random strategy,

as the input for our attribute selection strategy, we use n-way combinatorial testing to generate a

relatively small number of diverse test vectors. The value of n is determined based on our time

budget for labelling data (running test vectors in our work) and the number of attributes in our

domain. In our work, for the purpose of attribute selection, we set n = 2. This led to generating

90 test vectors to be able to cover the pairwise combination of values of the 32 attributes in our

domain model. For each test vector, we determine whether offline and online testing results are

in agreement or not, resulting in the binary classification of our test vectors. We then perform

the attribute selection using the Random Forest algorithm [44]. We use the concept of variable

importance in Random Forests to select important attributes in our domain model since it has been

reported to be accurate in general [7, 44]. Table 3.3 shows the selected attributes for each DNN.

Six, four, and two attributes are selected for Autumn, Chauffeur, and Komanda, respectively.

2. Rule Generation: At this step, we trim the set of test vectors generated in the attribute selection

step by hiding, from each vector, the attributes that were not selected in the previous step. The

result is a set of labelled test vectors that only include values for the important attributes of our

domain (i.e., those attributes selected in the previous step). This set, however, does not necessarily

cover different combinations of the values for the selected attributes. Hence, we enhance this set by

generating a number of new test vectors. We use n-way combinatorial test generation again, but
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Table 3.3: Intermediate Results: Selected Attributes

DNN Selected Attributes

Autumn Road.type, Road.laneLineColor, Road.curbLinePattern,
Vehicle.laneNumber, Vehicle.headLights, Weather.condition

Chauffeur Road.type, Road.roadSpecificProperty, Vehicle.fogLights,
Environment.underlay

Komanda Weather.type, Environment.bulidings

this time we only consider the attributes selected in the previous step in the test generation (i.e., the

attributes that were not selected in step one are simply set a random value). For this step, we choose

n = 3 since we are dealing with a smaller number attributes and are able to generate more value

combinations during the same test time budget. For Komanda, we use all combinations since we

have only two selected attributes. The number of new test vectors therefore varies depending on the

selected attributes for each DNN. The new test vectors, together with the 90 test vectors generated

in the previous step, are used for rule generation. We extract rules using the RIPPER algorithm [23],

yielding a set of rules for our DNN under analysis. Each generated rule is a tuple (if , label) where

if describes conditions on the values of the selected attributes (e.g., Vehicle.speed > 10 ∧ Road.type

= Curved) and label describes a class (i.e., agree or disagree). We can estimate the accuracy of

each rule as the number of test vectors labelled by label and satisfying the if conditions over the

number of test vectors satisfying if . Table 3.4 shows the rules generated for each DNN. As shown

in the table, we obtain three rules for Autumn, four rules for Chauffeur, and two rules for Komanda.

Each rule has an if part, described as a conjunction of predicates defined over our domain model

attributes, and a label part that can be either agree or disagree. For the accuracy values, we also

report the 95% Confidence Interval (CI). For example, for the second rule of Autumn, the accuracy

value 0.88± 0.20 means that the true accuracy value has a 95% probability of being in the interval

[0.68 1.00]. The CI range is quite large since, in our work, we have minimized the total number of

test vectors, and therefore the number of test vectors satisfying the conditions if for each rule can

be small. Hence we may not be able establish reasonably narrow CIs for the accuracy values of the

generated rules. To alleviate this issue, we use a third step to increase the statistical confidence in

the estimated accuracy of the generated rules.

3. Rule Confirmation: The basic idea is to reduce the CI length by providing more data instances

for each rule. For each rule, we repeatedly generate a data instance satisfying the if part of the

rule until the CI length of the estimated accuracy of the rule with a 95% confidence level is less

than a threshold λ. In our experiments, we set λ = 0.2, meaning ±0.1. Note that we generate new

data instances only for the extracted rules to efficiently reduce the CI length of the rules. The final

results after performing the Rule Confirmation step is shown in Table 3.5 and will be discussed in

the next section (Section 3.2.4).

Results

Table 3.5 shows the rules generated for our three DNN subjects after applying the process described in

Section 3.2.4 and Figure 3.11. Note that in contrast to the results reported in Table 3.4, the accuracy
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Table 3.4: Intermediate Results: Generated Rules

DNN Rule Accuracy

Autumn
If Road.curbLanePattern = Dashed then disagree 0.58 ± 0.11
If Road.type = Curved then disagree 0.88 ± 0.20
Other than mentioned above then agree 0.65 ± 0.11

Chauffeur

If Vehicle.fogLights = True, then agree 0.59 ± 0.13
If Road.type = Straight ∧ Environment.underlay = Pavement then agree 0.90 ± 0.18
If Road.type = Curved then agree 0.70 ± 0.28
Other than mentioned above then disagree 0.76 ± 0.09

Komanda
If Weather.type = Rainy ∧ Environment.buildings = False then agree 0.76 ± 0.18
Other than mentioned above then disagree 0.69 ± 0.11

Table 3.5: Rule Extraction Results

DNN ID Rule Accuracy

Autumn
A1 If Road.curbLanePattern = Dashed then disagree 0.61 ± 0.10
A2 If Road.type = Curved then disagree 0.95 ± 0.10
A3 Other than mentioned above then agree 0.61 ± 0.10

Chauffeur

C1 If Vehicle.fogLights = True, then agree 0.58 ± 0.10
C2 If Road.type = Straight ∧ Environment.underlay = Pavement then

agree
0.71 ± 0.10

C3 If Road.type = Curved then agree 0.55 ± 0.10
C4 Other than mentioned above then disagree 0.76 ± 0.09

Komanda
K1 If Weather.type = Rainy ∧ Environment.buildings = False then agree 0.59 ± 0.10
K2 Other than mentioned above then disagree 0.67 ± 0.10

values in Table 3.5 are those obtained after applying the rule confirmation step. For example, for the first

rule for Autumn, the accuracy of 0.61 ± 0.10 means that around 61% of the scenarios that satisfy the

condition Road.curbLanePattern = Dashed are labelled with disagree. Thanks to our rule confirmation

step, we are able to ascertain the accuracy levels of rules within a narrower 95% confidence interval. In

our work, the rule accuracy indicates the predictive power of the rule. For example, the second rule for

Autumn is highly accurate and hence predictive (more than 85% of scenarios). Hereafter, for simplicity,

we use the IDs indicated in Table 3.5 to refer to the rules.

Overall, there is no rule predicting agree with an accuracy above 0.71. This means that there is no

condition with accuracy above 0.71 where offline testing results conform to online testing results. That is,

the test results for scenarios that match the “agree” rule conditions in Table 3.5 may still differ during

offline and online testing with a high probability. Therefore, based on our results, we are not able to

identify conditions that can characterize, with a high accuracy, agreement between offline and online

testing to help lift offline testing results to online testing and reduce the amount of online testing needed.

Our results, further, suggest that, at least for ADS-DNNs, we may not be able to find rules that can, in

general, differentiate between offline and online testing behaviors. As can be seen from the table, there

is not much similarity between the rules we have obtained for different DNNs. This is because these

DNNs have different architectures, use different features of the input images for prediction and are trained

differently.
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However, our observations show that these rules still may provide valuable insights as to how different

DNNs work. When an attribute appears in a rule, it indicates that the attribute has a significant impact on

the DNN output, and hence, this attribute can be used to classify both the situations where offline testing

is as good as online testing (i.e., DNN prediction errors indeed indicate a safety violation) as well as the

dual situations where offline testing is simply too optimistic. For example, the attributes Weather.type and

Environment.buildings appear only in the conditions for the rules of Komanda. On the other hand, for

Chauffeur and Autumn, the attributes appearing in the rule conditions are related to the road shape and the

road lane patterns. This confirms the fact that Komanda uses full images to predict steering angles while

the Chauffeur and Autumn focus on the road-side views in the images, as noted in Section 3.2.1.

Another reason explaining differences across DNNs is that some DNNs are inaccurate for certain

attributes regardless of testing modes, which means that both offline testing and online testing are capable

of detecting the faulty behaviors of these DNNs with a relatively high probability. For example, we

found that Chauffeur is, in general, inaccurate for predicting steering angles for curved roads. Due to this

weakness, both offline and online testing results are in agreement when Road.type is Curved, as shown in

C3.

The last reason for differences is that, as shown in RQ1, Chauffeur works relatively better on real-

world images than on simulated images. Since Chauffeur is not effective with simulated images, it may

yield more prediction errors in offline testing, and hence, offline and online testing results are more likely

to be in agreement as “unacceptable”. This explains why we have three “agree” rules, namely C1, C2 and

C3, for Chauffeur while for other DNNs we have fewer “agree” rules.

The answer to RQ3 is, based on our results, that offline testing results cannot be used to reduce

the cost of online testing as we are not able to identify conditions that characterize, with a high

accuracy, agreement between offline and online testing for all our subject DNNs.

3.2.5 Threats to Validity

In RQ1, we propose a two-step approach that builds simulator-generated datasets comparable to a given

real-life dataset. While it achieves its objective, as shown in Section 3.2.2, the simulated images are still

different from the real images. However, we confirmed that the prediction errors obtained by applying

our subject DNNs to the simulator-generated datasets are comparable with those obtained for their

corresponding real-life datasets. Thus, the conclusion that offline and online testing results often disagree

with each other is valid.

We used a few thresholds that may affect the experimental results in RQ2 and RQ3. To reduce

the chances of misinterpreting the results, we selected intuitive and physically interpretable metrics to

evaluate both offline and online test results (i.e, prediction errors and safety violations), and defined

threshold values based on common sense and experience. Further, adopting different threshold values,

as long as they are within a reasonable range, does not change our findings. For example, if we use

MAE (d , sim(s)) < 0.05 as a threshold in offline testing results instead of MAE (d , sim(s)) < 0.1, the

numbers of scenarios in Table 3.2 change. However, it does not change the correlation analysis results

and the fact that we have many scenarios for which offline and online testing results disagree, nor does it

change the conclusion that offline testing is more optimistic than online testing.
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Different ADS-DNNs may lead to different results. For example, we may able to identify conditions

that can characterize, with a high accuracy, agreement between offline and online testing results to lift

offline testing results to online testing and reduce the amount of online testing needed for a specific

ADS-DNN. To mitigate such a threat, we tried our best to find all candidate ADS-DNNs in the literature

and selected the three subject ADS-DNNs (i.e., Autumn, Chauffeur, and Komanda) that are publicly

available and sufficiently accurate for steering angle predictions.

Though we focused, in our case study, on only two lane-keeping DNNs (steering prediction)—which

have rather simple structures and do not support braking or acceleration, our findings are applicable to all

DNNs in an ADS context as long as the closed-loop behavior of the ADS matters.

3.3 Discussion

3.3.1 Online Testing using Simulators

One important purpose of online testing is to test a trained ADS-DNN with the newest unseen data that

potentially appear in the application environments of the ADS-DNN. However, because simulators cannot

express all the complexity and diversity of the real world, online testing using simulators cannot cover

all possible scenarios in the real world. For example, in the case of online testing using a simulator that

cannot express weather changes, certain safety violations of the ADS-DNN that occurs only in rainy

weather cannot be found.

Nevertheless, considering the problems of online testing in the real world, especially the cost and risk,

online testing using a simulator is inevitable. Indeed, according to our industrial partners in the automotive

industry, due to the excessive amount of manpower and resources required to collect real-world data, it is

impossible to gather sufficient and diverse real-world data. On the other hand, a simulator can generate

sufficiently diverse data at a much lower cost and risk.

Furthermore, simulator-based test input generation has an additional advantage regarding the test

oracle problem [10]. When we use simulators for online testing, the generation of test oracles is completely

automated. For real-life datasets, however, test oracles may need to be manually specified which is labor-

intensive and time-consuming. For example, for ADS-DNNs, the driver’s maneuvers and the data gathered

from the various sensors and cameras during online testing in the real world may not contain sufficient

information to automatically generate test oracles. In contrast, simulators are able to generate labeled

datasets, from which test oracles can be automated, for various controlling, sensing, and image recognition

applications. But, as expected, the accuracy of test results and oracles depends on the fidelity of simulators.

3.3.2 Offline vs. Online Testing: What to Use in Practice?

Experimental results show that offline testing cannot properly detect safety requirements violations

identified in online testing. Offline testing is in fact inadequate to identify faulty behaviors for ADS-DNNs

with closed-loop behavior. In other words, online testing is essential to adequately detect safety violations

in ADS-DNNs, where interactions with the application environment are important. In particular, online

testing using a simulator is highly recommended if a high-fidelity simulator is available.

However, online testing is not essential in all cases. When testing ADS-DNNs without closed-loop

behavior, offline and online testing results are expected to be similar because errors are not accumulating
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over time. For example, in the case of an ADS-DNN that simply warns the driver instead of directly

controlling the steering when necessary, there is no closed-loop since the DNN’s predictions do not

actually control the vehicle, and therefore offline testing would be sufficient.

3.3.3 Open Challenges

There are also challenges that need to be addressed in online testing. For example, the higher the fidelity

of a simulator, the more time it takes to simulate, which has a direct impact on the cost of online testing.

In particular, when using a search-based technique, online testing may take a very long time because

the simulator must be repeatedly executed for various scenarios. Therefore, more research is required to

reduce the cost of online testing.

Research on high-fidelity simulators is also essential. As discussed in Section 3.3.1, online testing

using a simulator cannot completely cover all possible scenarios in the real world. However, by utilizing

a simulator higher fidelity, the risk of uncovered scenarios could be significantly reduced [112, 106].

Research on how to lower the risk through a more systematic approach is also needed.

3.4 Related Work

Table 3.6 summarizes DNN testing approaches specifically proposed in the context of autonomous driving

systems. Approaches to the general problem of testing machine learning systems are discussed in the

recent survey by [147].

In Table 3.6, approaches for online testing are highlighted grey. As the table shows, most of existing

approaches focus on the offline testing mode only, where DNNs are seen as individual units without

accounting for the closed-loop behavior of a DNN-based ADS. Their goal is to generate test data (either

images or 3-dimensional point clouds) that lead to DNN prediction errors. Dreossi et al. [32] synthesized

images for driving scenes by arranging basic objects (e.g., road backgrounds and vehicles) and tuning

image parameters (e.g., brightness, contrast, and saturation). Pei et al. [98] proposed DEEPXPLORE, an

approach that synthesizes images by solving a joint optimization problem that maximizes both neuron

coverage (i.e., the rate of activated neurons) and differential behaviors of multiple DNNs for the synthesized

images. Tian et al. [125] presented DEEPTEST, an approach that generates label-preserving images from

training data using greedy search for combining simple image transformations (e.g., rotate, scale, and for

and rain effects) to increase neuron coverage. Wicker et al. [139] generated adversarial examples, i.e.,

small perturbations that are almost imperceptible by humans but causing DNN misclassifications, using

feature extraction from images. Zhang et al. [148] presented DEEPROAD, an approach that produces

various driving scenes and weather conditions by applying Generative Adversarial Networks (GANs)

along with corresponding real-world weather scenes. Zhou and Sun [155] combined Metamorphic Testing

(MT) and Fuzzing for 3-dimensional point cloud data generated by a LiDAR sensor to reveal erroneous

behaviors of an object detection DNN. Zhou et al. [153] proposed DEEPBILLBOARD, an approach that

produces both digital and physical adversarial billboard images to continuously mislead the DNN across

dashboard camera frames. While this work is different from the other offline testing studies as it introduces

adversarial attacks through sequences of frames, its goal is still the generation of test images to reveal

DNN prediction errors. In contrast, Kim et al. [64] defined a coverage criterion, called surprise adequacy,

based on the behavior of DNN-based systems with respect to their training data. Images generated by
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DEEPTEST were sampled to improve such coverage and used to increase the accuracy of the DNN against

adversarial examples.

Online testing studies exercise the ADS closed-loop behavior and generate test driving scenarios

that cause safety violations, such as unintended lane departure or collision with pedestrians. Tuncali

et al. [126] were the first to raise the problem that previous works mostly focused on the DNNs, without

accounting for the closed-loop behavior of the system. Gambi et al. [40] also pointed out that testing

DNNs for ADS using only single frames cannot be used to evaluate closed-loop properties of ADS. They

presented ASFAULT, a tool that generates virtual roads which cause self-driving cars to depart from their

lane. Majumdar et al. [82] presented a language for describing test driving scenarios in a parametric way

and provided PARACOSM, a simulation-based testing tool that generates a set of test parameters in such a

way as to achieve diversity. We should note that all the online testing studies rely on virtual (simulated)

environments, since, as mentioned before, testing DNNs for ADS in real traffic is dangerous and expensive.

Further, there is a growing body of evidence indicating that simulation-based testing is effective at finding

violations. For example, recent studies for robotic applications show that simulation-based testing of

robot function models not only reveals most bugs identified during outdoor robot testing, but that it can

additionally reveal several bugs that could not have been detected by outdoor testing [117].

There is only one study comparing offline and online testing results by investigating the correlations

between offline and online testing prediction error metrics [22]. The authors found that the correlation

between offline prediction and online performance is weak, which is consistent with the results of this

chapter. They also found two ways for improving the correlations: (1) augmenting the testing data (e.g.,

include images from three cameras, i.e., a forward-facing one and two lateral cameras facing 30 degrees

left and right, instead of having images from one forward-facing camera) and (2) selecting a proper offline

testing metric (e.g., Mean Absolute Error other than Mean Squared Error). Their analysis relies on the

offline and online testing of DNNs trained by simulator-generated images, while our DNNs are trained

with real-world images. Nevertheless, consistent with our results, they concluded that offline testing is not

adequate. Furthermore, beyond simple correlations and in order to draw more actionable conclusions, our

investigation looked at whether offline testing was a sufficiently reliable mechanism for detecting safety

violations in comparison to online testing. Last, we investigated whether offline and online testing results

could agree under certain conditions, so as to take advantage of the lower cost of offline testing in such

situations.

3.5 Conclusion

This chapter presents a comprehensive case study to compare two distinct testing phases of Deep Neural

Networks (DNNs), namely offline testing and online testing, in the context of Automated Driving Systems

(ADS). Offline testing evaluates DNN prediction errors based on test data that are generated without

involving the DNN under test. In contrast, online testing determines safety requirement violations of a

DNN-based system in a specific application environment based on test data generated dynamically from

interactions between the DNN under test and its environment. We aimed to determine how offline and

online testing results differ or complement each other and if we can exploit offline testing results to run

fewer tests during online testing to reduce the testing cost. We additionally investigated if we can use

simulator-generated datasets as a reliable substitute to real-world datasets for DNN testing.
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The experimental results on the three best performing ADS-DNNs from the Udacity Self-Driving Car

Challenge 2 [128] show that simulator-generated datasets yield DNN prediction errors that are similar to

those obtained by testing DNNs with real-world datasets. Also, offline testing is more optimistic than

online testing as many safety violations identified by online testing could not be identified by offline

testing, while large prediction errors generated by offline testing always led to severe safety violations

detectable by online testing. Furthermore, the experimental results show that we cannot exploit offline

testing results to reduce the cost of online testing in practice since we are not able to identify specific

situations where offline testing could be as accurate as online testing in identifying safety violations.

The results of this chapter have important practical implications for DNN testing, not only in an

ADS context but also in other CPS where the closed-loop behavior of DNNs matters. Specifically, both

researchers and practitioners should focus more on online testing as offline testing is not able to properly

determine safety requirement violations of the DNN-based systems under test.
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Chapter 4

Automatic Test Suite Generation for
Key-Points Detection DNNs using
Many-Objective Search

In this chapter, we present an approach to automatically generate test data for Key-Points detection DNNs

(KP-DNNs) using many-objective search. Automatically detecting key-points (e.g., facial key-points

or finger key-points) in an image or a video is a fundamental step for many applications, such as face

recognition [149], facial expression recognition [74], and drowsiness detection [59]. With the recent

advances in Deep Neural Networks (DNNs), Key-Points detection DNNs (KP-DNNs) have been widely

studied [57, 58, 59, 116].

To ensure the reliability of KP-DNNs, it is essential to check how accurate the DNNs are when applied

to various test data. Nevertheless, testing KP-DNNs is still often focused on pre-recorded test data, such

as publicly available datasets [143, 6, 110] that are typically not collected or generated according to any

systematic strategy, and therefore provide limited test results and confidence. Further, since 3rd parties

with ML expertise often provide such KP-DNNs, the internal information of the KP-DNNs is usually

not available to the engineers who integrate them into their application systems [77, 97]. As a result,

black-box testing approaches should be favored, preferably one that is dedicated and adapted to KP-DNNs

to maximize test effectiveness within acceptable time constraints, which is the objective of this chapter.

To automatically generate new and diverse test data, one may opt to use advanced DNN testing

approaches that have been recently proposed by several researchers. For example, Tian et al. [125]

presented DeepTest, an approach that generates new test images from training images by applying

simple image transformations (e.g., rotate, scale, and for and rain effects). Wicker et al. [140] generated

adversarial examples, i.e., small perturbations that are almost imperceptible by humans but causing DNN

misclassifications, using feature extraction from images. Gambi et al. [41] presented AsFault, an approach

that generates virtual road networks in computer simulations using search-based testing for testing a

DNN-based automated driving system. However, none of the existing DNN testing approaches take into
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account the following testing challenges that are specific to KP-DNNs predicting multiple key-points at

the same time. First, accuracy for individual key-points is of great importance, and therefore one should

not simply consider average prediction errors across all key-points. Second, the number of key-points is

typically large, e.g., our evaluation uses a facial KP-DNN that detects 27 key-points in an image. Third,

depending on the performance of the KP-DNN under test, it may be infeasible to generate a test image

causing a significant misprediction for some particular key-points. Therefore, if such infeasibility is

observed at run time, it is essential to dynamically and efficiently distribute the computational resources

dedicated to testing to the other key-points. This implies that using one of the existing DNN testing

approaches is not an option. It also prevents us from running an independent search for each individual

key-point.

To address the above challenges, we recast the problem of KP-DNN testing as a many-objective

optimization problem. Since the severe misprediction of each individual key-point becomes one objective,

many-objective optimization algorithms can potentially be effective and efficient at generating test data

that causes the KP-DNN to mispredict individual key-points. Though our approach is applicable to any

KP-DNNs, we focus our experiments on a particular but common industrial application, Facial KP-DNNs

(FKP-DNN). The experimental subjects are provided by our industry partner IEE in the automotive

domain, who is working on driver gaze detection systems that either warn the driver or take the control of

the vehicle when the driver is apparently not paying attention on the road while driving. Our empirical

investigation shows that our approach is effective at generating test data that cause most of the key-points

(93% on average) to be severely mispredicted. Though many of these mispredictions are not avoidable

because a key-point can be invisible due to, for example, a shadow, characterizing them is important to

analyze risks and a large number of them can still be addressed by retraining or other means. We further

investigate (1) the degree of mispredictions caused by test data generated by alternative search algorithms

and (2) how to learn specific conditions (e.g., head posture) leading to severe mispredictions of individual

key-points. Our ultimate goal is to provide practical recommendations on how to test KP-DNNs and how

to analyze test results to support risk analysis and retraining.

The contributions of this chapter are summarized as follows:

• We formalize the problem definition of KP-DNN testing. Our formalism specifies KP-DNN input

and output variables, as well as the notion of severe misprediction for a key-point, and characterises

the specific testing challenges in this context.

• We propose a way to automatically generate test data for KP-DNNs using many-objective search

algorithms and simulation.

• We investigate how automatically generated test data and results can be effectively used to reveal

and possibly address the root causes of inaccuracy in FKP-DNNs under test.

• We present empirical results and lessons learned drawn from our experience in applying the

approach in an industrial context.

The rest of the chapter is organized as follows. Section 4.1 formalises the problem of KP-DNN testing.

Section 4.2 describes our approach. Section 4.3 evaluates our approach with an industrial case study and

summarizes lessons learned. Section 4.4 positions our work with respect to related work. Section 4.5

concludes the chapter.
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Figure 4.1: The actual positions of 27 facial key-points

4.1 Problem Definition

In this section, we provide a general but precise problem description regarding test data generation

for FKP-DNNs. Though we use a specific application domain for the purpose of exemplification, this

description can easily be generalized to all situations where key-points must be detected in an image, such

as hand key-point detection [115] and human pose key-points detection [93], regardless of the content of

that image.

A FKP-DNN takes as input a facial image (real or simulated) and returns the predicted positions of

its key-points; Figure 4.1 shows an example image with the actual positions of key-points. An image

can be defined by various factors, such as face size, skin color, and head posture. Using a labeled image

that contains the actual positions of key-points, one can measure the degree of prediction errors for an

FKP-DNN under test. The goal of test suite generation for FKP-DNNs is to generate labeled images

that cause an FKP-DNN under test to inaccurately predict the positions of key-points, to an extent which

affects the safety of the system relying on such predictions.

More specifically, let t be a labeled test image composed of a tuple t = (ict,pt) where ict represents

image characteristics, such as face size, skin color, and head posture, and pt represents the actual positions

of key-points in t. pt can be further decomposed as pt = ⟨pt,1, . . . , pt,k⟩ where pt,i for i = 1, . . . , k is the

actual position of the i-th key-point in t and k is the total number of key-points. Depending on ict, some

key-points may not actually be visible in t. For example, if the head is turned 90◦ to the right, the right

eye key-point will be invisible in the image taken from the front camera. In this case, the actual positions

of invisible key-points are null. V (t) is a set of indices for visible key-points in t, and |V (t)| is the total

number of visible key-points in t. An FKP-DNN d can be considered as a function d(t) = ⟨p̂t,1, . . . , p̂t,k⟩
where p̂t,i is the predicted position of the i-th key-point in t. The Normalized Mean Error (NME) of d for

all key-points in t can be defined as follows:

NME (d, t) =
Σi∈V (t)NE (pt,i, p̂t,i)

|V (t)|

where NE (pt,i, p̂t,i) is the Normalized Error of the predicted position p̂t,i with respect to the actual

position pt,i, ranging between 0 and 1. For example, in our case study, if one measures the error using

the Euclidean distance between the actual and predicted positions in an image, then the normalization

can be done by dividing the distance by the height or width of the face1, whichever is larger. Such a

normalization allows error values to be compared for faces of different sizes.
1This can be easily calculated with the actual positions of key-points.

37



CHAPTER 4. AUTOMATIC TEST SUITE GENERATION FOR KEY-POINTS DETECTION DNNS
USING MANY-OBJECTIVE SEARCH

Generating a critical test image t for d such that it maximizes NME (d, t) could be the goal of test case

generation. However, it does not properly account for the fact that accuracy for individual key-points is of

great importance, and therefore that averaging prediction errors across key-points may be misleading. This

is, indeed, a major concern for our industry partner IEE, who is developing DNN-based gaze detection

systems that either warn the driver or take the control of the vehicle when the driver is not paying attention

while driving. By considering individual key-points, we may observe that certain key-points’ predictions

are particularly inaccurate. Such information can be used by IEE to (1) focus the retraining of d on these

key-points for improving its accuracy or (2) select accurate key-points to be primarily relied upon—when

there are alternative choices—by the applications using them to make decisions.

To verify if d correctly predicts individual key-points for t, we need to check if NE (pt,i, p̂t,i) is less

than a small threshold ϵ for all key-points. Therefore, though that may not be possible, test suite generation

aims to generate a minimal set of test cases TS that satisfies NE (pt,i, p̂t,i) ≥ ϵ for all i = 1, . . . , k for

some t ∈ TS . Note that the value of ϵ is usually application specific; for example, IEE uses ϵ = 0.05

because NME > 0.05 is considered critical in their applications.

Test suite generation for FKP-DNNs entails several challenges. First, the test input space is too large

to be exhaustively explored. For IEE, this is clear when considering the features that characterize a

facial image, including head posture and facial characteristics, such as different shapes of eyes, noses,

and mouths. Second, the number of key-points is typically large (e.g., 27 key-points for IEE’s DNN)

and, increasing the complexity of the problem, individual key-points are independent as people may

exhibit different relative positions for the same key-points. Third, depending on the accuracy of the DNN

under test, it may be infeasible to find an image causing the normalized error to exceed the threshold

for some key-points. Considering a limited time test budget, if finding a critical image for a key-point

seems infeasible, it is essential to dynamically and efficiently distribute computation time at run time to

find critical images for the other key-points. Fourth, it is not easy to manually label the actual positions

of key-points for a large number of test images. While there are publicly available real-world datasets

for various key-point detection problems [143, 6, 110], such datasets limit the exploration of the input

space to what data is available since there are no publicly available simulators to generate additional

images. Last but not least, FKP-DNNs, like other DNNs in practice, are often provided by third parties

with expertise in ML, who typically do not provide access to the trained DNN’s internal information.

Therefore, test suite generation for FKP-DNNs should be black-box, in the sense that it should not rely on

DNN internal information.

To address the above challenges, as described in detail in Section 4.2, we suggest to apply many-

objective search algorithms, which can be effective and efficient for achieving many independent objectives

within a limited time budget. These algorithms are a priori a good match to our problem since requirements

for individual key-points (i.e., NE (pt,i, p̂t,i) ≥ ϵ for t ∈ TS ) can be translated into objective functions.

Furthermore, this approach is DNN-agnostic as it considers the DNN under test as a black-box.

4.2 Search-based Test Suite Generation

This section provides a solution to the problem of test suite generation for KP-DNNs, described in

Section 4.1, by applying many-objective search algorithms. Similar to Section 4.1, although our approach

is not specific to the domain of facial key-points, to root the presentation into concrete examples, we

describe the approach in the context of test suite generation for FKP-DNNs.
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Figure 4.2: Overview of automatic test suite generation for FKP-DNNs

Recall that MOSA [96] and FITEST [4] take as input (1) a set of objectives, (2) a set of fitness

functions indicating the degree to which individual objectives have been achieved, and (3) a time budget;

it then returns a set of solutions that maximally achieve each objective individually within the given time

budget. Therefore, we can apply the algorithms to our problem by carefully defining a set of corresponding

objectives and fitness functions.

Based on the problem definition in Section 4.1, we can define that an objective for each key-point

is to find a test image that makes a FKP-DNN under test severely mispredict the key-point position.

Specifically, for a FKP-DNN d, the set of objectives to be achieved by a many-objective search algorithm

is NE (pt,i, p̂t,i) ≥ ϵ for all i = 1, . . . , k where NE (pt,i, p̂t,i) is the normalized error of the predicted

position p̂t,i with respect to the actual position pt,i for the i-th key-point and ϵ is a small threshold

pre-defined by domain experts. Naturally, the set of fitness functions corresponding to the objectives is

NE (pt,i, p̂t,i) for all i = 1, . . . , k.

While it seems intuitive to define the sets of objectives and fitness functions for many-objective search

algorithms, the issue in practice is how to determine the actual positions of key-points in an automated

manner; a simulator plays a key role here.

Figure 4.2 shows the overview of the search-based test suite generation process for a FKP-DNN

using a simulator. It is composed of four main components: a search engine, a simulator, the DNN under

test, and a fitness calculator. The process begins with the search engine generating a set of new input

values for image characteristics ic (e.g., head posture and skin color). The input values are used by the

simulator to generate a new test image t as well as the actual positions of key-points pt = ⟨pt,1, . . . , pt,k⟩
for all i = 1, . . . , k. The FKP-DNN under test d takes t as input and returns the predicted positions of

the key-points d(t) = ⟨p̂t,1, . . . , p̂t,k⟩. Then, the fitness calculator computes the fitness score of t using

NE (pt,i, p̂t,i) for each i = 1, . . . , k. The fitness score is fed back to the search engine to generate new

and better input values over the next iterations. This process continues until either a given time budget

runs out or all the objectives are achieved. The process ends with returning a test suite TS such that each

t ∈ TS satisfies NE (pt,i, p̂t,i) ≥ ϵ for some i = 1, . . . , k. In the following subsections, we will explain

each of the approach components in more detail.

4.2.1 Search Engine

The search engine drives the whole process based on a meta-heuristic search algorithm. For a given set

of objectives with fitness functions and a time budget, it iteratively generates new test inputs for image

characteristics (ic) to ultimately provide engineers with the most effective test suite. Search algorithms,

such as Random Search (RS), MOSA [96], and FITEST [4], vary in the way they generate new test inputs
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based on the fitness results from previous iterations.

For example, MOSA starts with an initial set of randomly generated test cases that forms an initial

population; then, it creates new test cases using crossover and mutation operators that are typically used

in Genetic Algorithms (GA) to find better candidates while promoting their diversity. Unlike GA, the

selection in MOSA is performed by considering both the non-dominance relation and the uncovered

objectives. Specifically, for each uncovered objective u, a test case t will have a higher chance of remaining

in the next generation if t is non-dominated by the others and is the closest to cover u. To form the final

test suite, MOSA uses an archive that keeps track of the best test cases that cover individual objectives.

FITEST is basically the same as MOSA, except that it dynamically reduces the population size with each

iteration, according to the number of uncovered objectives.

Algorithm 1: Pseudo-code of MOSA and FITEST
Input :Set of Objectives O
Output :Archive (Test Cases) A

1 Archive A← ∅
2 Set of Uncovered Objectives U ← O
3 Set of Test Cases P ← initialPopulation(|O|)
4 Set of Covered Objectives C ← calculateObjs(O,P )
5 A← updateArchive(A,P,C)
6 U ← updateUncoveredObjs(U,C)
7 while not(stoping_condition) do
8 Set of Test Cases Q← generateOffspring(P )
9 C ← calculateObjs(O,Q)

10 A← updateArchive(A,Q,C)
11 U ← updateUncoveredObjs(U ,C )
12 P ← getNextGeneration(P ∪Q,U)

13 end
14 return A

More specifically, Algorithm 1 presents the pseudo-code of MOSA and FITEST. It takes as input a

set of objectives O and returns an archive A (i.e., a test suite) that aims to maximally achieve individual

objectives in O. To do that, the algorithm begins with initializing A, the set of uncovered objectives U ,

and the population P (lines 1–3). The algorithm then computes the set of covered objectives C ⊆ O

by calculating the fitness scores of P for O (line 4), updates A to include test cases from P , which are

best at achieving C (line 5), and updates U to remove the covered objectives in C (line 6). Until the

stopping criterion is met, the algorithm repeats the followings: (1) generating a set of new test cases Q

from P using crossover and mutation (line 8), (2) updating C, A, and U for Q, as done for P (lines 9–

11), and (3) generating the next generation P from the current P and Q considering U using selection

(line 12). The algorithm ends by returning A. The main difference between MOSA and FITEST is in

the getNextGeneration function (line 12): MOSA keeps |P | = |O|, whereas FITEST reduces |P | as |U |
decreases.

To improve the performance of MOSA and FITEST, we can also consider their variants, namely

MOSA+ and FITEST+. These variants are identical to the originals, but the crossover strategy is changed

to only consider fitness scores for uncovered (not-yet-achieved) objectives to better guide new test cases

towards them. In other words, the higher the fitness score for uncovered objectives, the more similar

children are to parents. This is done by dynamically updating the distribution index of the Simulated

Binary Crossover (SBX), based on the fitness score of parents, for uncovered objectives.
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In practice, using an effective and efficient search algorithm, for a given problem, is critical for testing

at scale and therefore be applicable in industrial contexts. This is also the case here for generating better

test suites for FKP-DNNs.

4.2.2 Simulator

The simulator is one of the key enablers of our approach because it takes as input ict and generates t

labeled with pt. It should be able to generate diverse test images by manipulating various ics, such that

there is variation in head posture, gender, skin color, and mouth size. At the same time, it should be able

to generate individual test images within reasonable time since this strongly affects the efficiency of the

entire search-based process.

To achieve this, one can use 3D modeling tools, such as MakeHuman [25] and Blender [24]. Make-

Human can be used to create parameterized 3D face models with detailed morphological characteristics,

such as skin color and hair style. Blender, on the other hand, can be used to manipulate the 3D models

according to selected ic values [15]. Since a 3D model is basically a textured polygonal mesh (i.e., a

collection of nodes and edges in 3D) that defines the shape of a polyhedral object, an engineer can mark

the actual positions of key-points in the model by selecting the corresponding nodes in the textured mesh.

Then, using the simulator, it is easy to generate a 2D image capturing the face labeled with the actual

key-point positions.

4.2.3 Fitness Calculator and Fitness Functions

The fitness calculator takes pt,i and p̂t,i and returns NE (pt,i, p̂t,i) for each i = 1, . . . , k. As mentioned

in Section 4.1, one way to calculate NE (pt,i, p̂t,i) is to compute the Euclidean distance between pt,i and

p̂t,i and then normalize it using the height or width of the actual face, whichever is larger. Normalization

enables the comparison of the error values of different 3D models having different face sizes.

4.3 Empirical Evaluation

In this section, we report on the empirical evaluation of our many-objective, search-based test suite

generation approach when applied to an industrial FKP-DNN developed by IEE. We aim to answer the

following research questions.

RQ1: How do alternative many-objective search algorithms fare in terms of test effectiveness? RQ1

aims to check whether using many-objective search algorithms, such as MOSA and FITEST, is indeed a

suitable solution for the problem of test suite generation for FKP-DNNs. To answer this, we investigate

how many key-points are severely mispredicted (according to our earlier definition) by test suites that are

automatically generated by the search algorithms, and how alternative algorithms compare to each other

and to a simple random search.

RQ2: Can we further distinguish search algorithms using the degree of mispredictions caused by

the test suites they generate? Since RQ1 only considers the number of severely mispredicted key-points,

differences in effectiveness across search algorithms may not appear clearly and completely. For example,

two test suites generated by different algorithms may cause the same number of severely mispredicted

key-points. However, since the level of risk entailed by mispredictions may be proportional to the distance

between the actual and predicted key-points, a test suite with a higher degree of mispredictions may be
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more amenable to risk analysis, depending on the application context. Based on this, RQ2 compares how

severely key-points are mispredicted by test suites generated across different search algorithms.

RQ3: Can we explain individual key-point mispredictions in terms of image characteristics? In

addition to the cost-effective, automated testing of FKP-DNNs, engineers need to understand why severe

mispredictions occur for individual key-points. This is critical for engineers to analyze and address the

root causes of mispredictions, or, when the latter is not possible, at the very least assess the risks. For

example, if engineers know that a certain key-point is significantly mispredicted for a specific head posture

range, they can generate more test images in that range and retrain the DNN to improve its prediction

accuracy. To this end, RQ3 aims to investigate whether it is possible to provide accurate and interpretable

explanations of mispredictions based on image characteristics used by the simulator to generate test

images.

4.3.1 Case Study Design

We use a proprietary FKP-DNN, denoted IEE-DNN, developed by IEE to build a driver’s gaze detection

component for autonomous vehicles. To enable simulation-based testing, we also use an in-house

simulator, namely IEE-SIM, developed by IEE to generate large numbers of labeled facial images to train

the IEE-DNN.

DNN

IEE-DNN takes as input a 256x256 pixel image; it returns the predicted positions of 27 facial key-points

in the input image. Figure 4.1 depicts the actual positions of the 27 key-points for a sample image.

The IEE-DNN is based on the stacked hourglass architecture [93] with an adaptive wing loss func-

tion [135]. Specifically, it consists of two hourglass modules, each of which contains four residual modules

for downsampling and another four for upsampling. It is trained on 18,120 syntactic images generated

by the IEE-SIM. Against an independent set of 2,738 syntactic test images, the IEE-DNN achieved a

low NME value of 0.018, on average. Given that the threshold for labelling mispredictions as severe for

individual key-points is 0.05, such NME value implies that, if we just consider the average prediction error

for all key-points, the IEE-DNN is sufficiently accurate according to the test set. Note that our approach is

independent from any specific DNN architecture as it does not require any DNN internal information.

Simulator

IEE-SIM takes as input various image characteristics, such as head posture, light intensity, and the

position of a (virtual) camera, and returns a corresponding facial image with the actual positions of the 27

key-points.

The IEE-SIM is based on MakeHuman [25] and Blender [24]. To decrease its execution time, IEE

engineers carefully designed many 3D face models in advance, by considering the diversity in skin colors

and the shapes and sizes of faces, mouths, and noses. By doing this, we can quickly generate an image

by specifying a pre-defined 3D model ID to use instead of dynamically generating the 3D models from

scratch at run time. As a result, the average execution time for generating one labeled image is around

6 seconds on an iMac (3GHz 6-Core Intel i5 CPU, 40GB memory, and Radeon Pro 570X 4GB graphic

card).
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The main concern of IEE is to verify the accuracy of the IEE-DNN for diverse head postures and

drivers. Therefore, we manipulate four feature values when varying image characteristics: roll, pitch, and

yaw values for controlling head posture and the 3D model ID for indirectly the face features to be used.

The ranges of the roll, pitch, and yaw values are limited between -30◦ and +30◦ to mimic realistic ways

in which drivers position their head. For 3D models, we use the subset of 10 different models that IEE

considered to be of main interest.

4.3.2 RQ1: Effectiveness of Test Suites

Setup

To answer RQ1, we generate a test suite using our approach for a fixed time budget and measure

the Effectiveness Score (ES) of the test suite, defined as the proportion of key-points that are severely

mispredicted by the IEE-DNN according to the test suite over the total number of key-points. ES ranges

between 0 and 1, where higher values, when possible, are desirable.

To better understand how ES varies across different search algorithms, we compare MOSA [96],

FITEST [4], and their variants MOSA+ and FITEST+ (see Section 4.2.1). We use Random Search (RS)

as a baseline. RS randomly generates a test suite for each iteration and keeps the best until the search

process ends; RS provides insights into how easy the search problem is and helps us assess if other, more

complex search algorithms are indeed necessary.

One might consider using NSGA-III as another baseline that tries to achieve many objectives collec-

tively. However, it requires addressing the problem of how to encode test suites into chromosomes, which

is a research subject that is beyond the scope of our chapter.

For MOSA, FITEST, and their variants, the initial population size is the number of objectives. To be

consistent, we set the number of randomly generated test cases at each iteration of RS to be the number of

objectives. For the other parameters, such as mutation and crossover rates in MOSA, FITEST, and their

variants, we use the default values recommended in the original studies.

To account for randomness in search algorithms, we repeat the experiment 20 times. For each run,

we use the same time budget of two hours for all search algorithms, based on our preliminary evaluation

showing that two hours are enough to converge. We apply the non-parametric Mann–Whitney U test [83]

to assess the statistical significance of the difference in ES between algorithms. We also measure Vargha

and Delaney’s ÂAB [132] to capture the effect size of the difference.

Results

Figure 4.3 depicts the differences in ES across search algorithms. RS only achieves ES = 0.41 on

average across 20 runs. Though such ES value may seem a priori high, one must recall that it cannot be

interpreted as a failure rate in the normal sense since certain key-points are impossible to predict, e.g.,

some key-points are hidden by a shadow. In general, it is to be expected that such DNNs will have inherent

limitations that cannot be addressed by retraining or any other means. It is up to the system using a DNN

to adequately address such limitations, for example by not using key-point predictions in shadowed areas

and relying on the other key-points for decisions. Therefore, the purpose of ES values is only to compare

the test effectiveness of different algorithms and not to assess the accuracy of the DNN under test. In

contrast to RS, MOSA, MOSA+, and FITEST+ reach ES = 1 in at least one run, meaning that these
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Figure 4.3: Test effectiveness for different search algorithms

Table 4.1: Statistical Analysis Results

Pair ES MS

A B p-value ÂAB p-value ÂAB

MOSA RS 0.000 1.00 0.000 0.90
MOSA+ RS 0.000 1.00 0.000 0.90
FITEST RS 0.000 1.00 0.000 0.88
FITEST+ RS 0.000 1.00 0.000 0.87
MOSA FITEST 0.000 0.84 0.570 0.54
MOSA+ FITEST 0.000 0.95 0.594 0.54
FITEST+ FITEST 0.750 0.53 0.052 0.51
MOSA FITEST+ 0.005 0.76 0.177 0.55
MOSA+ FITEST+ 0.000 0.86 0.009 0.56
MOSA+ MOSA 0.109 0.64 0.780 0.50

algorithms could generate test suites that cause the IEE-DNN to severely mispredict all 27 key-points.

Across 20 runs, the many-objective search algorithms achieve ES > 0.93 on average, implying that

our approach seems indeed effective at generating test suites that cause severe mispredictions for many

key-points.

Table 4.1 shows the results of statistical comparisons between different search algorithms. Under the

Pair column, sub-columns A and B indicate the two search algorithms being compared. Under the ES

column, sub-columns p-value and ÂAB indicate the statistical significance and the effect size, respectively,

when comparing ES distributions between A and B.

At a level of significance α = 0.01, we can see that MOSA is significantly better than FITEST,

with large effect size (0.84). Comparing MOSA+ and FITEST+ shows the same result, with an even

larger effect size (0.86). This implies that (dynamically) reducing the population size at each iteration

significantly degrades the effectiveness of the search algorithms for test suite generation, as it decreases

their ability to explore the search space. When comparing MOSA (and FITEST) and MOSA+ (and

FITEST+), their differences in ES are statistically insignificant, implying that dynamically controlling the
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similarity between parents and children in crossover does not significantly improve effectiveness. In RQ2,

we will further compare the many-objective search algorithms by considering the degree of misprediction

severity across the test suites they generate.

The answer to RQ1 is that our approach is effective in generating test suites that cause IEE-DNN—

which is already rather accurate (NME = 0.018 for the test dataset) as one might expect from an

industrial model—to severely mispredict more than 93% of all key-points on average. This number

is also much higher than that obtained with random search (41%). While MOSA and MOSA+ are

significantly better than FITEST and FITEST+ in terms of ES, there is no significant difference

between MOSA and MOSA+, which will be investigated further in RQ2.

4.3.3 RQ2: Misprediction Severity for Individual Key-Points

Setup

To answer RQ2, following the same procedure as for RQ1, we measure the Misprediction Severity (MS)

of a test suite for each key-point, defined as the maximum NE value observed when running the test suite.

As for NE , MS ranges between 0 and 1, where 1 implies the maximum prediction error.

Since RQ2 aims to further distinguish the search algorithms by considering the MS values of test suites

they generated in RQ1, we use the test suites from RQ1 and report the average MS of individual key-points

for each algorithm. We apply the non-parametric Wilcoxon signed-rank test to statistically compare MS

distributions for each key-point between search algorithms, and measure Vargha and Delaney’s ÂAB to

capture the effect size of the difference.

Results

Figure 4.4 shows average MS values of the test suites generated by different search algorithms, for

individual key-points. For example, we can see that the average MS value with MOSA+ for the 26th

key-point (i.e., KP26) is around 0.8.

Comparing MOSA, FITEST, and their variants, we can see that the overall patterns shown in the

radar chart are similar. This implies that the many-objective test suite generation algorithms yield similar

patterns in terms of which individual key-points tend to get higher MS values. To further assess the

difference between them, we need to check the results of the statistical tests.

Table 4.1 shows the results of statistical comparisons between different search algorithms. Under

the MS column, sub-columns p-value and ÂAB indicate the statistical significance and the effect size,

respectively, when comparing the MS distributions of two algorithms under columns A and B.

In Table 4.1, with α = 0.01, there is no statistically significant difference in MS between MOSA

and MOSA+, and between FITEST and FITEST+. This implies that, consistent with RQ1, dynamically

adjusting the distribution index in crossover does not increase misprediction severity for individual

key-points.

As for MOSA and FITEST, which were significantly different with respect to ES in RQ1, they are no

longer significantly different regarding MS. This inconsistency between RQ1 and RQ2 happens because,

even though MOSA (and MOSA+) is better than FITEST (and FITEST+) in making the NE values of

more key-points exceed ϵ = 0.05, FITEST (and FITEST+) yields higher NE values than MOSA (and
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Figure 4.4: Misprediction Severity (MS) for individual key-points for different search algorithms

MOSA+) for some key-points. When it comes to MOSA+ and FITEST+, MOSA+ is significantly better

than FITEST+ with a small effect size (0.56). The results between MOSA and FITEST, and MOSA+ and

FITEST+, imply that dynamically reducing the population size during the search increases the degree of

mispredictions for some key-points, but the overall impact is limited.

Interestingly, Figure 4.4 shows that some key-points (i.e., KP7, KP24, KP25, KP26, and KP27) are

more severely mispredicted than the others. A detailed analysis found two distinct reasons that together

affect the accuracy of the DNN: the under-representation of some key-points in the training data and a

large variation in the shape and size of the mouth across different 3D models. For KP7, we found that it is

only included in 79% of the training data. One possible explanation is that, as shown in Figure 4.1, KP7

can easily become invisible depending on the head posture. Interestingly, KP9, which has a symmetrical

position to KP7 in the face, is included in a larger proportion of the training data (84%). Such situations

typically happen when the training set is not built in a systematic fashion. This implies that key-points

that are under-represented in training data, because they happen not to be visible on numerous occasions,

are more likely to be severely mispredicted. On the other hand, KP24, KP25, KP26, and KP27 are more

severely mispredicted than the others, even though they are included in most of the training images (more

than 92%). These four key-points are severely mispredicted because they are related to the mouth, which

shows the largest variation among face features; the mouth can be opened and closed, and is larger than

the eyes. Therefore, the positions of the mouth key-points vary more than other key-points in the face,

even when the head posture is fixed. As a result, learning the position of the mouth key-points is more

difficult than that for other key-points. This implies that, during training, we need to focus more on certain

key-points whose actual positions can vary more than the others across images.
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The answer to RQ2 is that, by additionally considering MS, we cannot further distinguish MOSA

and FITEST, and their variants. Instead, through a detailed analysis of the most severely mispre-

dicted key-points, we identified important insights to prevent severe mispredictions: (1) since some

key-points may not actually be visible in an image, depending on image characteristics (e.g., head

posture), for each key-point, it is important to ensure that the training data contains enough images

where the key-point is visible, (2) more training is required for certain key-points, whose positions

tend to vary significantly more across the face and which are harder to predict than the others.

Such observations can obviously generalize to other types of images and key-points.

4.3.4 RQ3: Explaining Mispredictions

Setup

To answer RQ3, decision trees [14] are learnt to infer how the NE (normalized prediction error) of the

FKP-DNN for individual key-points relate to image characteristics used by the simulator to generate test

images. We use decision trees because they are easy to interpret due to their hierarchical decision-making

process [92], though alternative forms of rule-based learning could be considered as well. Interpretability

is essential for engineers to assess the risks associated with a DNN in the context of a given application

and to devise ways to improve the DNN, for example, through additional training data. Specifically, we

build a decision tree for each key-point to identify conditions describing how NE varies according to

input variables, i.e., roll, pitch, yaw, and 3D model ID. Since our test suite generation approach generates

many test images specified by roll, pitch, yaw, and 3D model, and given that NE values are calculated

for individual key-points during the search process, we can use this information as a set of observations

for building decision trees and explain mispredictions. To mimic a practical scenario in which engineers

use our approach overnight (e.g., ten hours), we use the information collected from five random runs

(i.e., equivalent to ten hours) of MOSA+ (i.e., the most effective search algorithm according to RQ1 and

RQ2). Since the target variable (i.e., NE ) is continuous, we use regression trees to explain and predict the

degree of mispredictions. Specifically, we use REPTree (i.e., fast tree learner using information-gain and

reduced-error pruning) implemented in Weka [141].

To evaluate the (predictive) accuracy of generated regression trees, we measure the Mean Absolute

Error (MAE) using 10-fold cross validation. Note that, to provide interpretable explanations, the simplicity

of the resulting regression trees is just as important as its accuracy. In particular, as the number of nodes

in a regression tree increases, it becomes increasingly difficult for engineers to interpret the results. As a

trade-off between accuracy and simplicity, we set the minimum number of observations per leaf node

to 40, based on preliminary experiments. For the other parameters for REPTree, we use default values

provided by Weka.

Results

Figure 4.5 shows the MAE and size (i.e., number of nodes) distributions for all 27 trees built based on

3854 test images obtained from five runs of MOSA+. The average MAE is 0.01 and the average size is

25.7. We can see that the trees are accurate as there is an average difference of 0.01 between the actual
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Figure 4.5: Regression tree accuracy and size for all key-points

Table 4.2: Representative rules derived from the decision tree for KP26 (M: Model-ID, P: Pitch, R: Roll,
Y: Yaw)

ic-condition NE

M = 9 ∧ P < 18.41 0.04
M = 9 ∧ P ≥ 18.41 ∧R < −22.31 ∧ Y < 17.06 0.26
M = 9 ∧ P ≥ 18.41 ∧R < −22.31 ∧ 17.06 ≤ Y < 19 0.71
M = 9 ∧ P ≥ 18.41 ∧R < −22.31 ∧ Y ≥ 19 0.36

and predicted NE values, which is far below the threshold that IEE finds acceptable (0.05). The trees are

also of reasonable size and therefore easy to interpret as they lead to simple rules, as further shown below.

Table 4.2 shows some representative rules derived from the tree generated for KP26, the most severely

mispredicted key-point in RQ2. All the remaining rules and the trees for the other key-points are available

in the supporting material 2. In Table 4.2, column ic-condition shows conditions on values of the image

characteristics, i.e., Roll (R), Pitch (P), Yaw (Y), and 3D Model ID (M); column NE shows the average

NE value for all test images satisfying the condition. For example, the first row from the table means that,

for test images such that 3D model ID is 9 and pitch is less than 18.41, the average NE is 0.04. Recall

that each 3D model ID corresponds to implicit facial characteristics. For example, for model ID 9, skin

color is brown, face structure is broad, nose type is aquiline, and mouth structure is uneven.

Using such conditions, engineers can easily identify when the FKP-DNN leads to severe mispredic-

tions, for individual key-points. For example, by comparing the first and third conditions in Table 4.2,

we can see that, for the same 3D model, changing the head posture toward specific ranges leads to a

significant increase of the prediction error of the IEE-DNN for KP26. To better visualize the example

above, we present two test images, in Figures 4.6a and 4.6b, satisfying the first and third conditions,

respectively. In each image, the green dots and red triangle indicate the actual and predicted positions

of KP26. While there is a small prediction error (NE = 0.013) in Figure 4.6a, it gets much larger

(NE = 0.89) when turning the head further down and to the right, as shown in Figure 4.6b. Engineers can

further investigate the root causes of severe mispredictions using targeted additional images. For example,

based on Figure 4.6b, we generated a targeted image that differs only in the direction of the shadow (by

changing the position of the light source in the 3D model) and could confirm that the shadow was indeed

2All the decision trees are available on https://figshare.com/s/0433751b88282b07ea12. Unfortunately, the full replication
package could not be made publicly available since the IEE-SIM and the IEE-DNN are proprietary assets.
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(a) An image satisfying the first condition in Table 4.2 (b) An image satisfying the third condition in Table 4.2

Figure 4.6: Test images satisfying different conditions in the regression tree for KP26. Actual and
predicted positions are shown by green-circle and red-triangle dots, respectively.

the root cause of the large NE value.

Knowing under what conditions severe mispredictions are occurring can help engineers in two ways.

First, it helps to assess the risks associated with individual key-points for specific conditions, in the

context of a specific application. For example, if the head posture can be constrained to P < 18.41

in the context of a certain application of the FKP-DNN, the risk of severe misprediction for KP26 is

reduced according to the conditions in Table 4.2. Second, it enables the generation of specific test images,

using the simulator, that are expected to cause particularly severe mispredictions and can be used for

retraining the DNN. For example, from the conditions in Table 4.2, we can generate new images satisfying

M = 9 ∧ P ≥ 18.41 ∧R < −22.31, which will likely lead to high NE values, and can be used to help

retrain and improve the DNN by augmenting its training data set.

The answer to RQ3 is that, by building regression trees using the information that is produced by

executing our test generation approach, we can largely explain the variance in individual key-point

mispredictions in terms of image characteristics that are controllable in the simulator. These

conditions can help engineers assess risks for individual key-points and generate specific images

for retraining of the DNN in a way that is more likely to have an impact on its accuracy.

4.3.5 Threats to Validity

In RQ1, we have used a threshold (ϵ = 0.05) for deciding if a key-point is severely mispredicted or not.

This may affect the results. However, this threshold value was set by IEE domain experts, accounting for

the specific application of their DNN. Furthermore, we checked that using other small threshold values

does not severely affect overall trends but only slightly affect ES values.

We have used 3D face models with various facial characteristics shared by IEE. IEE engineers have

prepared the 3D models by marking key-points’ actual positions manually. The manual marking can be

erroneous and such error can affect the quality of data generated for training and testing the DNN. To

mitigate such threats, IEE engineers have done extensive testing for each 3D model and carefully validated

the generated data.

Though we focused, in our case study, on one FKP-DNN developed by IEE, it is representative

of what one can find in industry [58, 20, 59], in terms of prediction accuracy, inputs and outputs, and
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training procedure. Though there are no publicly available KP-DNNs coupled with a simulator, additional

industrial case studies are, however, required to improve the generalizability of our results.

Since we focused on syntactic images generated by a simulator, the transferability of our results from

simulation to real-world facial key-points detection is not in the scope of this work. Nevertheless, we

want to note that [52] already provided an experimental methodology to quantify such transferability and

reported that simulator-generated data can be a reliable substitute to real-world data for the purpose of

DNN testing.

4.3.6 Lessons Learned

Lesson 1: Automated test suite generation is indeed useful in practice.

Although we have presented here the evaluation results using the latest IEE-DNN version, our approach

has been continuously applied to previous versions during its development process. Indeed, test suites

automatically generated by our approach and the analysis of testing results for mispredicted key-points

have helped assess and improve IEE-DNNs. In particular, our approach led IEE to augment their training

dataset (e.g., diversity and sample size) and thus improve the generalization of the IEE-DNN against

various inputs. In summary, based on the results, IEE has been (1) continuously enriching their dataset by

adding more training images from diverse 3D face models and (2) improving the IEE-DNN’s architecture

by doubling the number of hidden layers to drastically increase its accuracy.

Our approach has been also used for improving the simulator. For example, during a detailed analysis

of the testing results, we revealed a critical issue: the labeled key-point positions on test images, generated

by the IEE-SIM, were not accurate and, after analysis, engineers realized there was a misalignment

between the texture and nodes of the 3D mesh that are used to define the actual position of key-points.

IEE also plans to use our approach in various ways. Since the test suites generated by our approach

cause severe mispredictions for many key-points, retraining the DNN using these test suites—given that

the DNN architecture is now adequate—is expected to help improve the accuracy of the DNN. We will

further investigate to what extent such accuracy can be improved in our future work.

Lesson 2: Understanding mispredictions is critical.

Though explaining DNNs [109] is important in many circumstances, the complex structure of such models

makes it challenging. Instead of analyzing the internals of the IEE-DNN, we simply built decision trees

for inferring conditions characterizing key-point mispredictions in terms of input variables, i.e., roll, pitch,

yaw, and 3D model ID. Even such analysis cannot directly explain the behavior of the IEE-DNN in detail,

knowing such conditions brings several benefits to IEE. First, it helps them demonstrate the robustness of

the DNN under certain conditions which, for generated test images, do not lead to severe mispredictions.

If those conditions match the conditions of the intended application, then engineers can conclude that the

DNN is likely to be safe for use. Second, it facilitates the investigation of the root causes of mispredictions.

This is critical because, similar to the severe misprediction in Figure 4.6b discussed in § 4.3.4, some

mispredictions are not avoidable and can only be addressed by engineering the system using the DNN

for robustness (e.g., by identifying shadowed areas and not using predictions for the key-points in these

areas). Such finding led IEE to better target their development resources to improve the driver’s gaze

detection system rather than just focusing on the IEE-DNN itself.
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Lesson 3: Simulation-based testing brings key benefits.

As discussed in Section 4.2.2, a simulator is one of the key enablers of our approach as it generates labeled

test images in a controlled manner. However, the simulator can also be a limiter as test suites generated by

our approach depend on what the simulator can generate. Ideally, one would like access to a high-fidelity

and configurable simulator that is able to generate diverse images, accounting for all major factors that

affect the behavior of the DNN under test. For example, the IEE-SIM has been developed to support the

configuration of various image characteristics, such as head posture, face size, and skin color, that are

essential because of their effect on facial key-point detection. Thanks to the simulator, we can generate

as many different test images as we need, with known key-points, and drive effectively automated test

generation. Given the usefulness of our approach, the cost of having a simulator, with sufficient fidelity

and configurability, benefits the development and testing of KP-DNNs by enabling efficient automation.

4.4 Related Work

Many automated techniques are available in the literature for testing DNNs. One type of automatic test

data generation techniques is to generate adversarial examples [146] that are imperceptible for humans

but cause the DNN under test to misbehave. Guo et al. [48] proposed DLFuzz, an approach that iteratively

applies small perturbations to original images to maximize neuron coverage (i.e., the rate of activated

neurons) and prediction differences between the original and synthesized images. Zhou et al. [152]

and Kong et al. [68] proposed DeepBillboard and PhysGAN, respectively, two similar approaches that

generate adversarial images that can be placed on drive-by billboards, both digitally or physically, to

induce failures in DNN-based automated driving systems. Wicker et al. [140] presented an approach to

generate adversarial images using feature extraction techniques, such as Scale Invariant Feature Transform

(SIFT), to extract features from original images. Rozsa et al. [107] introduced a Fast Flipping Attribute

(FFA) technique to effectively generate adversarial images for DNNs detecting facial attributes (e.g.,

male or female). However, in contrast to our objective of verifying the safety of DNN predictions for

a large variety of plausible test inputs, adversarial examples mainly target security attacks where an

attacker intentionally introduces human-imperceptible changes (i.e., attacks) to cause the DNN to generate

incorrect predictions.

Another important line of work is to generate new test data from already labeled data (e.g., training

data) by applying label-preserving changes to avoid labeling problems for newly generated test inputs.

Pei et al. [99] proposed DeepXplore, an approach that generates label-preserving test images to maximize

both neuron coverage and differential behaviors of multiple DNNs for the generated images. Tian et al.

[125] introduced DeepTest, an approach that synthesizes label-preserving test images by applying affine

transformations and effect filters, such as rain and snow, to original images in order to maximize neuron

coverage. Zhang et al. [148] presented DeepRoad, an approach that uses Generative Adversarial Networks

(GANs), instead of simple transformations and effect filters, to generate more realistic images. Du et al.

[33] proposed DeepCruiser, an approach that generates label-preserving sequences of test data to test

stateful deep learning systems, based on Recurrent Neural Networks (RNNs) using special coverage

criteria for RNNs converted to Markov Decision Process (MDP). Recently, Xie et al. [144] presented

DeepHunter, an extensible coverage-guided testing framework extending DeepTest to further utilize

multiple coverage criteria, with more label-preserving transformation strategies. While these works
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enable engineers to generate more realistic test data from existing data, generating label-preserving test

images inherently limits the search space when the objective is to identify critical situations in the most

comprehensive way possible. Furthermore, when relying on a simulator, labeling is not a critical issue.

To overcome the limitation of label-preserving test data generation, simulation-based testing is

increasingly used for testing DNNs, especially in the context of DNN-based automated driving systems.

Gambi et al. [41] presented AsFault, a search-based approach to generates different types of road topologies

in a simulated environment to test the lane keeping functionality of self-driving DNNs. Tuncali et al. [127]

introduced Sim-ATAV, a framework for testing closed-loop behaviors of DNN-based systems in simulated

environments using requirement falsification methods. Riccio and Tonella [103] presented DeepJanus,

an approach to generate pairs of similar test inputs, using search-based testing with simulations, that

cause the DNN under test to misbehave for one test input but not for the other. Although the solutions in

this category successfully used simulation to generate critical test data, they are inadequate for the test

suite generation of FKP-DNNs, because they do not consider many independent outputs individually.

Therefore, even when it seems infeasible to find a critical image for a certain key-point, these solutions

cannot dynamically redistribute computational resources to to other key-points.

In summary, existing work does not address the fundamental and specific challenges of test suite

generation for KP-DNNs, as described in Section 4.1. To this end, we propose a solution, based on

many-objective optimization, that automatically generates test suites whose objective is to cause KP-DNNs

to severely mispredict the positions of individual key-points and then use machine learning to explain

such mispredictions.

4.5 Conclusion

In this chapter, we formalize the problem definition of KP-DNN testing and present an approach to

automatically generate test data for KP-DNNs with many independent outputs, a common situation

in many applications. We empirically compare state-of-the-art, many-objective search algorithms and

their variants tailored for test suite generation. We find MOSA+ to be significantly more effective than

random search (baseline) and other many-objective search algorithms, e.g., FITEST, with large effect

sizes. We also observe that our approach can generate test suites to severely mispredict more than 93%

of all key-points on average, while random search, as a comparison, can do so for 41% of them. We

further investigate and demonstrate a way, based on regression trees, to learn the conditions, in terms of

image characteristics, that cause severe mispredictions for individual key-points. These conditions are

essential to engineers to assess the risks associated with using a DNN and to generate new images for

DNN retraining, when possible.
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Chapter 5

Efficient Online Testing for DNN-Enabled
Systems using Surrogate-Assisted and
Many-Objective Optimization

In this chapter, we present a novel approach, called SAMOTA (Surrogate-Assisted Many-Objective

Testing Approach), that combines two distinct techniques: (1) many-objective search [96, 4] to effectively

achieve many independent objectives (i.e., causing safety violations) within a limited time budget and

(2) surrogate-assisted optimization [61] to efficiently search for critical test data using surrogate models

that mimic the simulator, to a certain extent, but are computationally much less expensive. In particular,

following state-of-the-art surrogate-assisted optimization algorithms [134, 145, 78], SAMOTA uses two

search phases: global search (with global surrogate models) that explores the search space by capturing

the global outline of the fitness landscape using global surrogate models, and local search (with local

surrogate models) that exploits the local details around promising areas found by the global search. We

also improve the local search performance using a novel, clustering-based approach that generates one

local surrogate model for test data belonging to the same promising area.

Though SAMOTA can be applied to any DNN-enabled systems (DES) that should be verified with

online testing, we evaluated the efficiency and effectiveness of the approach in the context of ADS.

Specifically, we use CARLA [30], a high-fidelity driving simulator, and Pylot [46], an advanced DNN-

enabled ADS (DADS) composed of multiple DNNs capable of various tasks, such as traffic light detection,

traffic sign detection, object tracking, and object classification. More than 300 computing hours of

experimental results show that SAMOTA is significantly more effective and efficient at detecting unknown

safety violations than state-of-the-art many-objective test suite generation algorithms and random search,

within the same time budget.

The contributions of this chapter are summarized as follows:

- SAMOTA, a novel approach to automatically and efficiently generate test data for online testing by

carefully combining many-objective search and surrogate-assisted optimization;
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- An extensive empirical evaluation of SAMOTA, in terms of efficiency and effectiveness, and its

comparison with state-of-the-art alternatives and random search;

- a publicly available replication package of the evaluation, including the implementation of SAMOTA

(see Section 5.6).

Significance In many cyber-physical domains, it is clearly important to identify potential safety viola-

tions in a DES through online testing, involving a high-fidelity simulator in the loop, especially when

there are complex interactions between the system and its environment. SAMOTA provides an efficient

and effective online testing approach using surrogate models while considering many safety requirements

at the same time. It is a practical enabler for the online testing of complex DES in realistic contexts.

Our research is also an important step towards the scalable testing of DES, a very active research area in

software testing.

Chapter Structure The rest of the chapter is organized as follows. Section 5.1 formalizes the problem

of test suite generation for the online testing of DES. Section 5.2 describes our approach. Section 5.3

evaluates our approach in the context of ADS. Section 5.4 positions our work with respect to related work.

Section 5.5 concludes the chapter. Section 5.6 provides the details on the replication package.

5.1 Problem Definition

In this section, we provide a general but precise problem description regarding test suite generation for

DES in the context of online testing. We use DADS (DNN-enabled ADS) as an example of DES, but the

description can easily be generalized to all DES.

In online testing, the DADS under test are embedded into a driving environment, often in a loop with a

simulator due to the high cost and risk associated with the real-world testing of vehicles. Using a simulator

also enables the generation of various driving scenarios using the simulator’s controllable attributes. In

a simulator, the DADS receives sensor data (e.g., an image capturing a driving scene) generated by the

simulator and produces control commands (e.g., steering angle, throttle, and brake) to drive the ego

vehicle. Since the control commands actually drive the ego vehicle being simulated in online testing,

predictions generated by the DNNs of the DADS at time t impact the sensor data to be generated after t.

Therefore, it is essential to run the simulator for a specific driving scenario and check if a safety violation

occurs. The goal of online test suite generation for DADS is to generate a minimal set of driving scenarios

that cause the system under test to violate as many safety requirements as possible.

More specifically, let s be a driving scenario that defines the road topology, weather condition, and

the trajectory of other mobile objects (e.g., other vehicles and pedestrians) in a virtual environment. The

detailed definition of s (i.e., the definition of test input space) can vary depending on the configurable

attributes of the simulator. By embedding a DADS d into a simulator and running it for s, at time t, the

simulator generates d’s sensor data it, such as an image capturing the driving scene (status) vs,t taken

by the front-facing camera mounted on the ego vehicle’s dashboard. By taking it, d produces controls

d(it) = (st t, act, br t) where st t, act, and br t represent steering, acceleration, and braking commands,

respectively. The simulator then updates vs,t+1 by taking into account d(it). For each vs,t, we can verify

if a safety requirement is violated or not. For example, regarding the safety requirement of lane-keeping
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(i.e., the ego vehicle should be in the center of the lane), we can measure the distance of the ego vehicle

from the center of the lane in vs,t. If the distance is larger than a certain threshold, the safety requirement

is violated. In general, let R be a set of safety requirements and r(vs,t) be the degree of the violation

for a safety requirement r ∈ R in vs,t. We say that d violates r in s if r(vs,t) > ϵr for any t during the

simulation time of s, where ϵr is a threshold for r. Though that may not be possible, test suite generation

attempts to generate a minimal set of test scenarios TS that satisfies r(vs,t) > ϵr for all r ∈ R for some

test scenarios s ∈ TS .

Test suite generation for DADS in online testing entails several challenges. First, the test input space

is too large to be exhaustively explored because there are many attributes having many options that can be

selected for generating a certain scenario. For example, road type has multiple options, such as straight,

curved, and cross junction. Second, there are many safety requirements, usually independent of each other.

For example, complying with traffic lights is independent from keeping the center of a lane. This further

increases the complexity of the problem. Third, running a simulator for a scenario is often time-consuming

due to the intensive computations required to dynamically update mobile objects and render driving scenes

in virtual worlds, with high fidelity; for example, in our case study, one scenario execution in online

testing takes 5-10 minutes. Fourth, depending upon the accuracy of the system under test, it may be

infeasible to find a scenario causing violations for some safety requirements. Considering a limited time

budget, if such infeasibility is observed at run time, it is essential to dynamically and efficiently distribute

computation resources to the other safety requirements. Last but not least, DNNs in DADS are often

developed by a third party, with expertise in ML, who does not provide access to internal information

of the DNNs. Therefore, online testing should be conducted in a black-box manner without relying on

internal information.

To address the challenges mentioned above, as detailed in Section 5.2, we suggest combining two

distinct techniques: (1) many-objective search algorithms to effectively achieve many independent

objectives (i.e., causing safety violations) within a limited time budget and (2) surrogate models that

mimic the simulator, to the extent possible, while being computationally much less expensive. Furthermore,

since it is black-box, this approach is DNN agnostic, e.g., it does not make any assumptions about the

DNN architecture.

5.2 Surrogate-Assisted Many-Objective Search for Test Suite
generation

This section provides a solution to the problem of test suite generation for DADS, described in Section 5.1,

by combining many-objective search and surrogate models. In the following subsections, we first describe

how many-objective search can be used for the problem of test suite generation for DADS. We then

present our novel algorithm for surrogate-assisted many-objective search.

5.2.1 Test Suite Generation using Many-Objective Search

As described in background chapter (section 2.1), MOSA [96] and FITEST [4] have been introduced

in the context of software testing to maximally cover individual test targets (e.g., branches). Therefore,

we can apply the algorithms to our problem by carefully defining a set of corresponding test targets

(objectives) and fitness functions.
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Based on the problem definition in Section 5.1, we can define test objectives as violations of safety

requirements. Specifically, for a set of safety requirements R = {r1, . . . , rn} and a DADS d, the objectives

to be achieved by a many-objective search algorithm are ri(vs,t) > ϵri for all i = 1, . . . , n where ri(vs,t)

is the degree of violation of d for a safety requirement ri in scenario s at time t and ϵri is a violation

threshold pre-defined by domain experts for each requirement ri. In other words, the set of objectives is

defined as O = {o1, . . . , on} where oi is ri(vs,t) > ϵri for i = 1, . . . , n.

Using the set of objectives, we can apply MOSA or FITEST whose pseudo-code is presented in

Algorithm 2. It takes as input a set of objectives O = {o1, . . . , on}, a population size ps, and a set of

thresholds E = {ϵr1 , . . . , ϵrn}; it returns an archive (i.e., a test suite) A that aims to maximally achieve

individual objectives in O.

Algorithm 2: Many-Objective Search for Test Suite Generation
Input :Set of Objectives O

Population Size ps
Set of Error Threshold E

Output :Archive A
1 Archive A← ∅
2 Set of Uncovered Objectives U ← O
3 Set of Test Cases P ← initialPopulation(ps)
4 while not (stopping-condition) do
5 Set of Test Cases Q← generateOffspring(P )
6 Set of Test Cases W ← calculateFitnessSim(P ∪Q)
7 A,U ← updateArchive(A,W,E,O)
8 P ← generateNextGen(W,U)

9 end
10 return A

The algorithm begins with initializing A, a set of uncovered objectives U , and a set of test cases

(i.e., test scenarios in our context) P of the size ps (lines 1–3). Until the stopping criterion is met

(e.g., a predefined computational time budget is exhausted), the algorithm repeats the following: (1)

generating a new set of test cases Q using genetic operators from P using crossover and mutation (line

5), (2) generating another set of test cases W by merging P and Q and calculating their fitness scores

by executing a simulator for every candidates in W (line 6), (3) updating A and U using W and E such

that U excludes the objectives that are covered (achieved) by W for E and A includes the test cases from

A ∪W , which are best at achieving the covered objectives (line 7), and (4) generating the next generation

P from W considering U using selection (line 8). The algorithm ends by returning A (line 10).

The main differences between MOSA and FITEST are in the initialPopulation function (line 3) and

the generateNextGen function (line 8): MOSA initializes P as a set of randomly generated test cases

and keeps |P | = ps (typically ps is set to |O|), whereas FITEST uses an adaptive random generation

technique [19] to promote initial diversity and keeps reducing |P | as |U | decreases.

5.2.2 Surrogate-Assisted Many-Objective Search

Algorithm 2 appears to be suitable for solving the problem of test suite generation for DADS for online

testing. However, iteratively evaluating the fitness scores of candidate test scenarios using simulations may

take a prohibitive amount of time, preventing the generation of an effective test suite within a reasonable
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time budget. To address this, we present a novel algorithm, called Surrogate-Assisted Many-Objective

Test suite generation Algorithm (SAMOTA), that extends Algorithm 2 to effectively utilize surrogate

models.

Following state-of-the-art surrogate-assisted optimization algorithms [134, 120, 78], SAMOTA uses

the idea of iterating two search phases, namely global search and local search. Briefly speaking, global

search (with global surrogate models) first explores the search space by capturing the global outline of

the fitness landscape, and then local search (with local surrogate models) exploits the promising areas

found by the global search. Only the best predicted test cases that are found through cooperation between

global and local search are evaluated through expensive simulations, whose results will be used to build

more accurate surrogate models in the next iteration, thus iteratively finding more promising test cases.

This search process continues until the computational budget is exhausted. Since it is usually difficult to

accurately approximate the whole search space relying on global surrogate models only, such cooperation

between global and local search is more effective at achieving the search objectives [154]. The details of

global and local searches will be provided below.

In addition to applying the state-of-the-art, surrogate-assisted optimization algorithms to the important

software engineering problem of test suite generation, we address its limitations in our context. We

observed that these algorithms generate either too many local surrogate models that tend to degrade

performance or only one local surrogate model that cannot accurately capture the local fitness landscape

of individual promising areas. To address the issues, we introduce a novel, clustering-based approach that

generates one local surrogate model per cluster composed of test cases that belong to the same promising

area. Before we move on to the details, we first provide an overview of SAMOTA below.

Similar to Algorithm 2, SAMOTA (whose pseudo-code is shown in Algorithm 3) takes as input a

set of objectives O, a population size ps, and a set of error thresholds E, plus the maximum numbers of

iterations for global search gmax and local search lmax (as stopping criteria for global and local search),

the percentage of test cases to be used for training local surrogate models η, the minimum number of test

cases in a cluster cm for local search, and a database D that keeps all test cases already evaluated by the

simulator (if any); SAMOTA then returns an archive A as in Algorithm 2 and the database D updated

during the execution. The updated database can be used as input for future execution.

The algorithm begins with initializing A, the set of uncovered objectives U , and the set of test cases P

of size ps (lines 1-3). For the initialization of P while promoting diversity, an adaptive random generation

technique [19] is used. The fitness scores of the test cases in P are then computed by executing a

simulator (line 4) and updates A and U using P and E such that U excludes the objectives that are covered

(achieved) by P with respect to the given error thresholds E and A includes the test cases from A ∪ P ,

which are best at achieving the covered objectives (line 5). The algorithm also updates D to include P

since the simulator is executed for all test cases in P (line 6). Until the stopping criterion is met, the

algorithm repeats the surrogate-assisted global search (lines 8–11) and the surrogate-assisted local search

(lines 12–15). For the global search, the algorithm generates the set of test cases T̂g that are expected to

satisfy U with respect to E using algorithm GS (line 8), calculates the fitness scores of the test cases in

T̂g by executing the simulator to generate the set of test cases Tg that also contains their actual fitness

scores (line 9), and updates A, U , and D using Tg, as done for P (lines 10-11). For the local search, the

algorithm repeats the same procedures as for the global search, except that it generates the set of test

cases T̂l, that are expected to better satisfy U than T̂g, with respect to E using algorithm LS (line 12).
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Algorithm 3: SAMOTA
Input :Set of Objectives O

Population Size ps
Set of Error Thresholds E
Max Iteration for Global Search gmax

Max Iteration for Local Search lmax

Percentage of Test Cases for Local Search η
Minimum Number of Test Cases in Cluster cm
Database D

Output :Archive A
Updated Database D

1 Archive A← ∅
2 Set of Uncovered Objectives U ← O
3 Set of Test Cases P ← InitialPopulation(ps)
4 P ← calculateFitnessSim(P )
5 A,U ← updateArchive(A,P,E,O)
6 D ← updateDatabase(D,P )
7 while not (stopping-condition) do
8 Set of Test Cases T̂g ← GS(D,U, ps, gmax , E)

9 Set of Test Cases Tg ← calculateFitnessSim(T̂g)
10 A,U ← updateArchive(A, Tg, E,O)
11 D ← updateDatabase(D,Tg)

12 Set of Test Cases T̂l ← LS(D,U, lmax , cm, η)

13 Set of Test Cases Tl ← calculateFitnessSim(T̂l)
14 A,U ← updateArchive(A, Tl, E,O)
15 D ← updateDatabase(D,Tl)

16 end
17 return A,D

The algorithm ends by returning A and D (line 17). Note that |T̂g| and |T̂l| decrease as |U | decreases,

resulting in further reducing the number of expensive executions of the simulator.

GS (Global Search)

This algorithm aims to explore the search space using global surrogate models for uncovered objectives. It

basically uses the same search framework as Algorithm 2 and returns the best test case for each uncovered

objective in terms of the fitness score predicted by the global surrogate model trained using all the test

cases in the database. Recall that the resulting test cases will be evaluated using the simulator (line 9 in

Algorithm 3) to calculate their actual fitness scores, and the database will be updated to include the test

cases with their actual fitness scores, leading to more accurate surrogate models in the next iteration of GS.

To further improve the accuracy, GS additionally finds and returns the most uncertain test case for each

uncovered objective based on the uncertainty of the surrogate model predictions, which can be measured,

for example, according to the magnitude of the disagreement among the outputs of the members of an

ensemble surrogate model as explained in section 2.3.

Specifically, the GS algorithm (Algorithm 4) takes as input the database D, the set of uncovered

objectives U , the population size ps, the maximum number of iterations gmax , and the set of error

thresholds E; it returns a set of resulting test cases T̂g found by global surrogate models trained using D.
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T̂g consists of the most promising test case for each uncovered objective u ∈ U and the most uncertain

test case for each u, leading to |T̂g| ≤ |U | × 2.

Algorithm 4: GS (Global Search)
Input :Database D

Set of Uncovered Objectives U
Population Size ps
Max Iteration gmax

Set of Error Thresholds E
Output :Set of Test Cases T̂g

1 Set of Global Surrogates Mg ← trainGlobals(D,U)

2 Set of Best Test Cases T̂b ← ∅
3 Set of Most Uncertain Test Cases T̂n ← ∅
4 Integer Counter i← 0
5 Set of Test Cases P ← initialPopulation(ps)
6 while i < gmax do
7 Set of Test Cases Q← genOffspring(P )
8 Set of Test Cases W ← calcFitnessGS(P ∪Q,Mg)

9 T̂b, T̂n, U ← update(T̂b, T̂n,W,U,E)
10 P ← generateNextGen(W,U)
11 i← i+ 1

12 end
13 return T̂b ∪ T̂n

The algorithm begins with training the set of global surrogate models Mg (one per an uncovered

objective in U ) using all the test cases in D (line 1). The algorithm then initializes the set of best test cases

T̂b, the set of most uncertain test cases T̂n, the counter i, and the set of test cases P of size ps (lines 2–5).

While i < gmax , the algorithm repeats the following steps: (1) generate the offspring Q from P (line 7),

(2) generate the set of test cases W by merging P and Q and predicting their fitness scores using Mg

while recording the uncertainty of individual predictions (line 8), (3) update T̂b, T̂n, and U such that T̂b

includes the best test case from T̂b ∪W for each u ∈ U , T̂n includes the most uncertain test case from

T̂n ∪W for each u ∈ U , and U excludes the objectives covered by T̂b (line 9), (4) generate the next

generation P from W for U (line 10), and (5) increase i by 1 (line 11). The algorithm ends by returning

T̂g = T̂b ∪ T̂n (line 13).

Note that each global surrogate model should be able to provide the uncertainty of individual pre-

dictions in addition to predicted fitness scores. An ensemble model already satisfies the requirement as

the disagreement among the outputs of the ensemble members can be used to measure uncertainty (see

chapter 2 for more details). Following the widely used surrogate models in the area of surrogate-assisted

optimization [78, 134], we combine Kriging, polynomial regression, and radial basis function network

models into an ensemble surrogate model for global search to accurately provide fitness score predictions

and easily calculate the uncertainty of individual predictions.

LS (Local Search)

This algorithm aims to exploit promising areas, found by the global search, using local surrogate models.

For each promising area for each uncovered objective, it finds and returns the best predicted test case based
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Figure 5.1: Illustration of clustering-based, local surrogate model generation

on a single-objective search. Since inexpensive surrogate models are used for fitness evaluations, we can

use population-based optimization algorithms, such as Genetic Algorithm [138], rather than single-state

optimization algorithms to increase the search performance. An important challenge is how to train a

local surrogate model that accurately captures the local fitness landscape of a certain area.

An approach proposed by Zhou et al. [154] builds a local surrogate model using the m nearest data

points in the database for each of the top η% individuals (in terms of their actual fitness scores) in the

database. While each surrogate model can intuitively represent the local fitness landscape in the vicinity of

a good individual, the number of the surrogate models can be an issue (especially considering the growth

of the database) because the local search should be iterated for each individual and uncovered objective to

find the best test case. Another approach proposed by Wang et al. [134] builds one local surrogate model

for all top η% individuals at once. While this is clearly better than the former solution in terms of number

of surrogate models, the top η% individuals can be too widespread, making the surrogate model unable to

accurately capture the local fitness landscape.

To address the limitations of existing approaches in our context, we introduce a clustering-based

approach for local surrogate model generation, which combines the benefits of the two approaches

described above by limiting the number of surrogate models while avoiding the combination of top

individuals that are too far away from each other. Our approach once again first selects the top η%

individuals. But it then clusters the selected individuals based on their vicinity in the fitness landscape.

Based on the clustering results, our approach builds one local surrogate model for each cluster. Taking

Figure 5.1 as a simple uni-dimensional example where the dots denote all test cases in the database and the

red circles indicate the clusters generated for the top 10 test cases. While the individuals are widespread

in the fitness landscape, a local surrogate model is built based on the test cases in each cluster, to allow the

local search to exploit the best candidates located in a specific area.

For clustering test cases, we use Hierarchical Density-Based Spatial Clustering of Applications with

Noise (HDBSCAN) [85], with an optional parameter specifying the minimum number of data points in

each cluster. One can select the minimum number if the minimum amount of training data is already

known for a certain surrogate model type to be used; otherwise, the default value of 5 provided by

HDBSCAN can be used.

Algorithm 5 presents the pseudo-code for local search, including our clustering-based local surrogate

model generation. It takes as input the database D, the set of uncovered objectives U , the maximum

number of iterations lmax , the percentage of test cases in D to be used for training local surrogate models

η, and the minimum number of data points in a cluster cm; it returns a set of test cases T̂l that are expected

to be the best at satisfying U according to local surrogate models. Note that T̂l may contain multiple test
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Algorithm 5: LS (Local Search)
Input :Database D

Set of Uncovered Objectives U
Max Iteration lmax

Percentage for Training Surrogate Models η
Minimum Number of Test Cases in Cluster cm

Output :Set of Test Cases T̂l

1 Set of Test Cases T̂l ← ∅
2 foreach Objective u ∈ U do
3 Set of Clusters C ← generateClusters(D, η, u, cm)
4 foreach Cluster (Set of Test Cases) P ∈ C do
5 Surrogate Model mu← trainLocal(P )

6 Test Case T̂b ← null
7 Integer Counter i← 0
8 while i < lmax do
9 Set of Test Cases Q← genOffspring(P )

10 Set of Test Cases W ← calcFitnessLS(P ∪Q,mu)

11 T̂b ← updateBestPredicted(T̂b,W )
12 P ← generateNextGen(W )
13 i← i+ 1

14 end
15 T̂l ← T̂l ∪ {T̂b}
16 end
17 end
18 return T̂l

cases for one objective if there are multiple promising areas for one objective.

Algorithm 5 begins with initializing a set of test cases T̂l (line 1). For each uncovered objective u ∈ U ,

the algorithm finds the best test cases (possibly many if there are many promising areas) to be added into

T̂l (lines 2–15). Specifically, the algorithm generates clusters, with the minimum number of test cases cm
in each cluster, from the top η% test cases in D1 for u (line 3), trains a local surrogate model for each

cluster (lines 4–5), and finds the best predicted test case T̂b using the local surrogate model (lines 6–13).

The algorithm ends by returning T̂l (line 18).

Unlike GS, LS does not use the uncertainty of surrogate models’ predictions. Therefore, considering

computationally efficiency, we can use any of the non-ensemble models described in section 2.3. We

will show how to find the best configuration for LS, including the surrogate model type, in our empirical

evaluation (see section 5.3.2).

5.3 Empirical Evaluation

This section reports the empirical evaluation of our approach for efficient DNN testing when applied to an

open-source DADS. Specifically, we investigate the following research questions:

RQ1: What is the best configuration for LS?

1If the number of the top η% test cases in D is less than cm, then the top cm test cases in D are used.
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RQ2: How do alternative approaches fare in terms of test effectiveness?

RQ3: How do alternative approaches fare in terms of test efficiency?

RQ1 aims to find the best configuration for LS before we investigate the effectiveness and efficiency

of SAMOTA. We propose a new clustering-based approach for better local surrogate model generation in

LS. However, compared to existing approaches, we need to assess our clustering-based approach in terms

of the effectiveness of LS. Furthermore, its impact may vary depending on the types of surrogate models

(e.g., Kriging, polynomial regression, and radial basis function network). To answer these questions, we

compare the combinations of surrogate model generation approaches and surrogate model types in terms

of the ability of LS to find the most critical test inputs for a given time budget. Notice that we do not

investigate the best configuration for GS since this has already been investigated in existing studies [76, 78]

and we will therefore rely on reported results.

Using the best configuration for LS resulting from answering RQ1, RQ2 and RQ3 aim to investigate

the effectiveness and efficiency of SAMOTA, respectively, in comparison to “naive” approaches that do

not use surrogate models, such as MOSA, FITEST, and Random Search (with archive). To answer RQ2,

we investigate how many safety violations are found by test suites generated using different approaches

given a time budget. To answer RQ3, we investigate how quickly target safety violations are found by test

suites generated using different approaches. The answers will show how effective and efficient SAMOTA

can be by adapting the idea of surrogate-assisted optimization.

We conducted our evaluation on Ubuntu 18.04 running on Intel i9-9900K CPU with RTX 2080 Ti (11

GB) and 32 GB memory.

5.3.1 Case Study Subjects

We use Pylot [46], a publicly available DADS, as our case study subject. To enable simulation-based

testing, we also use CARLA [30], a high-fidelity, open-source simulator for ADS.

Pylot is a DADS for developing and testing autonomous vehicle components (e.g., perception,

prediction, planning) on the CARLA simulator and real-world vehicles [46]. Given a driving environment

(either simulated or real), it drives the ego vehicle by controlling its acceleration, braking, and steering

according to input data dynamically collected though sensors (e.g., camera and LiDAR). To achieve

this, it consists of multiple components providing various functions of an autonomous vehicle, such

as traffic light detection, lane detection, and object tracking. For each component, Pylot provides the

implementations of state-of-the-art approaches based on pre-trained DNNs. For example, SSD (Single

Shot Detector) [79] is used for object detection while SORT (Simple Online and Realtime Tracking) [13]

and DeepSORT [142] enable obstacle tracking.

CARLA [30] is an open-source simulator based on the Unreal Engine [34], designed to support

training, development, and validation of ADS. CARLA provides hand-crafted, high-fidelity virtual maps

having various static environments, such as different road types (e.g., straights and curves), different

sizes of buildings, different shapes of trees, and different positions for traffic lights. Such configurable

attributes can be used to define the test input space of DADS. In our evaluation, we consider as many

configurable attributes as possible: road type, start/end-point on maps, the presence of other vehicles in

front/same/opposite lane, other vehicle types, vehicle speed, the density of pedestrians, the presence of

trees and buildings, time of day, and weather condition. To avoid invalid scenario generation (e.g., the
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road type is ‘straight’ while the start-point on a map is ‘at the start of a curve road’), we use additional

pre-defined constraints on the attribute values. More details are provided in the supporting materials [131].

Considering the capability of CARLA to compute related metrics (e.g., the distance between vehicles),

we use the following six (safety) requirements for Pylot: (1) follow the center of the lane, (2) avoid

collision with other vehicles, (3) avoid collision with pedestrians, (4) avoid collision with static objects

(e.g., traffic signs), (5) abide by traffic rules (e.g., traffic lights), and (6) reach the destination within a

given time. More details about the requirements and their implementations are provided in the supporting

materials.

We selected the combination of Pylot and CARLA as our case study subject since (1) Pylot is

an advanced, DNN-based ADS composed of multiple autonomous driving components, (2) Pylot is

designed to be easily usable in simulated environments created by CARLA, and (3) both are publicly

available. While Apollo2 is another DADS one could rely on in our investigation, we do not use it

because of compatibility issues (e.g., not compatible with the latest version of CARLA) and incomplete

implementations (e.g., its camera perception module is not available).

5.3.2 RQ1: Best Configuration for Local Search

Setup

To answer RQ1, we generate a set of test cases by executing LS using different configurations and

measure the Local Search Effectiveness (LSE) of the test set. Since LS aims to return a set of test

cases that are expected to be the best at satisfying the given search objectives (i.e., violating safety

requirements) by predicting the fitness scores of the test cases, the LSE of a test set can be measured by

its actual fitness scores for all objectives. Specifically, we measure the LSE of a set of test cases T as

LSE (T ) =
∑

o∈O maxt∈T f(t,o)

|O| where O is a set of objectives and f(t, o) is the (normalized) actual fitness

score of a test case t ∈ T for an objective o ∈ O. In other words, we calculate the maximum actual fitness

score achieved when running all test cases in T for each objective in O and average these scores across all

objectives.

Regarding the LS configurations, we consider the combinations of surrogate model types and

generation approaches. Surrogate model types include KriGing (KG) [118], Polynomial Regression

(PR) [119], and Radial basis Function network (RF) [16] as they are the most widely used in the litera-

ture [78, 45, 134, 11, 91, 39, 42]. For RF, we set the number of neurons in the hidden layer to 10 since it

gave the best accuracy at predicting the fitness scores of test cases in our preliminary evaluation. Similarly,

we set the degree of polynomial models for PR to 2 based on our preliminary evaluation. Regarding

surrogate model generation, there are three different approaches for a set of data points (i.e., test cases

with actual fitness scores): (1) build one surrogate model using all the data points; (2) build one surrogate

model for each data point and its neighbors; and (3) build one surrogate model for each cluster after

clustering the data points. The first and second approaches (i.e., all and neighbors) come from existing

work [154, 134] while the third approach is newly proposed in this chapter. However, we decided to

exclude the second approach because it generates too many surrogate models to process as the number of

data points provided to LS increases during the execution of SAMOTA. As a result, we consider a total

six configurations (i.e., the combination of 3 surrogate model types and 2 surrogate model generation

2https://github.com/ApolloAuto/apollo
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Figure 5.2: Distribution of LSE values for different LS configurations

approaches). For simplicity, an LS configuration is denoted by XY where X ∈ {RF ,PR,KG} refers to

the surrogate model type and Y ∈ {al , cl} refers to the surrogate model generation approach (i.e., all and

clustering). For example, KGcl denotes the configuration that uses Kriging and the clustering approach

for model generation.

To run LS, we need to set its inputs: the database D, the set of target objectives U , the maximum

number of iterations lmax , the percentage of data points in D to be used for training local surrogate models

η, and the minimum number of data points in a cluster cm. To generate diverse test scenarios in D, we

use 4-way combinatorial coverage for all the attributes used to define the test input space, resulting in

|D| = 587. We select lmax = 200, based on our preliminary evaluations, since increasing lmax above 200

no longer significantly increases the predicted fitness scores of the test cases generated by LS. We select

η = 20% following the recommendations of a recent paper [78]. For cm, we use the default value of 5

provided by HDBSCAN [85].

To account for randomness in LS, we repeat the experiment 20 times. We apply the non-parametric

Mann–Whitney U test [83] to assess the statistical significance of differences in LSE across LS configura-

tions. Since we statistically test five hypotheses for each LS configuration (as we compare the six LS
configurations pairwise), we use a level of significance α = 0.05/5 = 0.01 by applying the Bonferroni

correction [137] to reduce the risk of Type 1 errors. We also measure Vargha and Delaney’s ÂAB [132]

to capture the effect size of the difference, which can be typically characterized as small, medium, and

large when the ÂAB value exceeds 0.56, 0.64, and 0.71, respectively. Note that ÂAB = 1 − ÂBA and

ÂAB = ÂBA = 0.5 means there is no statistical difference between the two compared configurations.

Results

Figure 5.2 shows the distribution of the LSE values for the six LS configurations. The orange bar and the

green triangle in the middle of each box represent the median and the average, respectively. Table 5.1

additionally shows the results of statistical comparisons between different LS configurations. The columns

A and B indicate the two configurations being compared. The columns p-value and ÂAB indicate the

statistical significance and effect size, respectively, when comparing A and B in terms of LSE.

Let us first compare the two surrogate model generation approaches, i.e., al and cl , for the same

surrogate model type. In Figure 5.2, for all surrogate model types, the cl approach seems better than the

al approach. In Table 5.1, given a level of significance α = 0.01, we can see that the difference between
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Table 5.1: Statistical comparison results for LS configurations

A B p-value ÂAB A B p-value ÂAB

RFcl RFal 0.001 0.78 RFcl KGcl 0.162 0.59
RFal PRal 0.015 0.70 PRcl PRal 0.000 0.90
PRcl RFal 0.001 0.78 KGal PRal 0.033 0.67
RFal KGal 0.347 0.54 KGcl PRal 0.000 0.86
KGcl RFal 0.019 0.69 PRcl KGal 0.001 0.79
RFcl PRal 0.000 0.90 PRcl KGcl 0.308 0.55
RFcl PRcl 0.495 0.50 KGcl KGal 0.003 0.76
RFcl KGal 0.001 0.78 - - - -

cl and al for the same surrogate model type is statistically significant in all cases. Furthermore, the ÂAB

value is always greater than 0.71, meaning that cl is largely better than al in terms of LSE. In particular,

the difference between PRcl and PRal is extreme (p-value = 0.000 and ÂAB = 0.90). This is because

the al approach yields outliers by considering all data points at once, thus making the surrogate models

(especially PR) inaccurate, whereas the cl approach does not thanks to clustering. As a result, for the

same surrogate model type, using the cl approach is clearly better, showing the practical usefulness of our

clustering approach in local surrogate model generation.

The ranking of the surrogate model types, based on their average LSE values over 20 runs, is RF cl ,

PRcl , and KGcl , respectively. However, with α = 0.01, the differences between them are all insignificant,

meaning that it does not make a difference, in terms of LSE, whether RF cl , PRcl , or KGcl is used.

Nevertheless, the results do not imply that there is no significant difference among RF, PR, and KG for all

problems. If possible, in practice, it is better for engineers to determine the best surrogate model type

for LS before running SAMOTA. While it requires a dataset D containing diverse test cases with actual

fitness scores, such a dataset could be available if the system under test already went through system

testing and the test results regarding safety requirements were recorded. Otherwise, one can opt for RF cl

as it is known to provide both computational efficiency and reasonable training accuracy [78]. In our

evaluation, we therefore use RF cl for the remaining RQs.

The answer to RQ1 is that our clustering-based approach (cl ) for surrogate model generation is

significantly better than the existing approach (al ) in all cases but there is no practical difference

overall between different surrogate model types. In practice, it is therefore better to experimentally

determine the best local surrogate model type for a given system under test, while relying on cl for

surrogate model generation. Otherwise, RF cl can be the default option when this is not possible.

5.3.3 RQ2: Test Effectiveness

Setup

To answer RQ2, we generate a test suite using SAMOTA and its alternatives (e.g., MOSA and FITEST)

for a fixed time budget and measure the Test Effectiveness (TE) of the test suite, defined as the proportion

of safety requirements that are violated when running the test suite over the total number of safety

requirements. TE ranges between 0 and 1, where higher values are desirable.

For SAMOTA, if we have a database that keeps test cases and their actual fitness scores computed in
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Figure 5.3: Distribution of TE values for different search approaches

previous testing sessions, the database can be provided as input (see Algorithm 3). Though SAMOTA

can start without it, providing a non-empty database as an initial input can boost the effectiveness of

SAMOTA by improving the accuracy of surrogate models early. To better understand this, we use two

configurations, i.e., SAMOTA starting with an empty database (SAMOTA-E) and SAMOTA starting with

an initial database (SAMOTA-I). For the initial database, we use 4-way combinatorial coverage based on

all the attributes used to define the test input space to generate diverse test cases, as we did for RQ1.

As alternatives to SAMOTA, we use MOSA [96] and FITEST [4], as they are the state-of-the-art

many-objective test suite generation algorithms. We also use Random Search (RS) that randomly generates

test cases for each iteration, as a baseline. Similar to MOSA and FITEST, we use an archive in RS so that

it keeps the best at satisfying individual objectives in the archive until the search ends; the resulting archive

is a test suite generated by RS. RS will provide insight into how easy the search problem is and will help

us evaluate the impact of using advanced search algorithms, such as MOSA, FITEST, and SAMOTA, on

test effectiveness.

The initial population size of MOSA, FITEST, and SAMOTA is the number of objectives. To be

consistent in terms of population size, we set the number of newly generated test cases at each iteration

of RS to be the number of objectives. For the other parameters, such as mutation and crossover rates in

MOSA, FITEST, and SAMOTA-E/I, we adapt the default values used by Fraser and Arcuri [38].

To account for randomness in all approaches, we repeat the experiment 20 times. For each run, we

use the same budget of two hours, as we found that it was long enough to converge in our preliminary

evaluation. We apply the Mann–Whitney U test [83] to assess the statistical significance of differences in

TE among approaches. Since we statistically test four hypotheses for each approach (as we compare RS,

MOSA, FITESET, SAMOTA-E, and SAMOTA-I pairwise), we use a level of significance α = 0.05/4 =

0.0125 by applying the Bonferroni correction [137] as we did for RQ1. We also measure Vargha and

Delaney’s ÂAB [132] to capture the effect size of the difference.

Results

Figure 5.3 shows the distribution of TE values achieved by RS, MOSA (MO), FITEST (FI), SAMOTA-E

(SE), and SAMOTA-I (SI) over 20 runs. Again, the orange bar and the green triangle in the middle of

each box represent the median and average, respectively. Table 5.2, whose format is the same as Table 5.1,
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Table 5.2: Statistical comparison results for different search approaches

A B p-value ÂAB A B p-value ÂAB

MO FI 0.377 0.53 SI MO 0.000 0.77
FI RS 0.411 0.52 SE MO 0.000 0.75
SI FI 0.001 0.76 SI RS 0.000 0.82
SE FI 0.002 0.74 SE RS 0.000 0.81
MO RS 0.229 0.56 SI SE 0.210 0.56

presents the results of statistical comparisons between different approaches. Notice that some safety

requirements may never be violated, and therefore absolute TE values cannot be interpreted; we use these

values only for comparison purposes.

Overall, the results show that SAMOTA-I is the best in terms of the average TE value for 20 runs. With

a level of significance α = 0.0125, the difference between SAMOTA-I and SAMOTA-E is insignificant

(p-value = 0.210), but the differences between SAMOTA-I/E and the others are all significant with

large effect sizes. This means that, by leveraging surrogate models, SAMOTA can be significantly more

effective than the state-of-the-art test suite generation approaches and random search in terms of revealing

unknown safety violations within a reasonable time budget.

Interestingly, the differences between MOSA and RS and between FITSET and RS are insignificant

(p-values are 0.229 and 0.411, respectively), meaning that MOSA and FITEST are not significantly better

than RS in terms of TE. A detailed analysis of the results shows that this is because the two-hour time

budget is not enough for MOSA and FITEST to evaluate and evolve candidate test cases many times;

on average, across 20 runs, only around five generations were completed during each run of MOSA and

FITEST. In contrast, SAMOTA went through more than 800 generations using global and local surrogate

models, within the same time budget, and therefore yielded significantly higher TE values than MOSA

and FITEST as a result. This also confirms that the surrogate models of SAMOTA are sufficiently accurate

to effectively guide the search towards test cases that cause safety violations. However, we would expect

the difference between SAMOTA and MOSA or FITEST to diminish with a much longer time budget

allowing them to go through many more generations. Nevertheless, such a scenario is unrealistic in

practice as SAMOTA is likely to remain significantly more effective than its alternatives for practical time

budgets.

Another interesting result is that there is no statistical difference between SAMOTA-I and SAMOTA-E,

meaning that providing an initial database in SAMOTA does not lead to a significant improvement in

detecting safety violations. This implies that SAMOTA can generate good enough test suites even without

an initial database, an importance practical consideration. In RQ3, we will further compare SAMOTA-I

and SAMOTA-E in terms of test efficiency (i.e., how fast safety violations are detected).

The answer to RQ2 is that, in our context, SAMOTA is significantly more effective than other

many-objective search algorithms tailored for test suite generation. Furthermore, SAMOTA can

achieve acceptable test effectiveness without an initial database.
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Figure 5.4: Test efficiency for different search approaches

5.3.4 RQ3: Test Efficiency

Setup

To answer RQ3, we use the same approaches and setups as in RQ2 (i.e., SAMOTA-I/E, MOSA, FITEST,

and RS). We generate a test suite using each approach and measure its execution time to achieve specific

TE values (i.e., 1/6, 2/6, ..., 6/6 as there are six safety requirements in total).

To account for randomness, as we did in RQ2, we repeat the experiment 20 times. Notice that we

cannot calculate the average execution time for 20 runs to achieve a specific TE value because not all 20

runs necessarily achieve such TE value (even for TE = 1/6). Therefore, we compute how the average TE

values for 20 runs vary over time from 20min to 120min, in steps of 20min.

Results

Figure 5.4 shows the relationship between the execution time and the average TE values for 20 runs across

all approaches. For example, RS is always at the bottom, meaning that, on average, RS achieves the

lowest TE values compared to the others over the same time period.

Comparing SAMOTA-I and SAMOTA-E, we can see that SAMOTA-I achieves higher TE values than

SAMOTA-E for the first 60min on average, but this difference vanishes after 80min. This is because the

surrogate models of SAMOTA-E are relatively inaccurate in the beginning, as no initial database was

provided, but they get more accurate over time as the database grows. Such growth also explains why

MOSA achieves a higher average TE value than SAMOTA-E after 20min and why this trend is reversed

after 80min.

Comparing SAMOTA-I/E and alternatives, SAMOTA-I is always at the top, meaning that it is always

faster than the alternatives to achieve the same level of test effectiveness. This is the same for SAMOTA-E,

except for the first 40min where it is slower than MOSA for the reason provided above.
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The answer to RQ3 is that SAMOTA is more efficient than alternative test suite generation

approaches using many-objective search as soon as its surrogate models become sufficiently

accurate. An initial database can boost the efficiency of SAMOTA in the initial search phase and

allow it to surpass other techniques right from the start.

5.3.5 Threats to Validity

Since we use a specific DES (i.e., Pylot), coupled with a simulator (i.e., CARLA), external validity

is our main challenge here. However, Pylot and CARLA are respectively representative of advanced

DADS and high-fidelity driving simulators, in terms of accuracy, fidelity, and performance [46, 30].

Furthermore, no other realistic DADS, coupled with a high-fidelity simulator, is publicly available at this

point, which is indeed an impediment to further experiments on this topic. Note that such experiments

would likely be highly computationally-intensive, given that it took more than 300 computing hours in our

case. Nevertheless, further experiments with different DES and high-fidelity simulators would be required

to strengthen the generalizability of our results.

We want to remark that the applicability of SAMOTA is not limited to a specific DES since none of the

algorithms (3-5) assumes specific DES properties. As long as there are many safety requirements (possibly

independent from each other) for a DES under test and the fitness evaluation for each requirement is

expensive, SAMOTA would show promising results as compared to the other algorithms that do not use

surrogate models.

5.4 Related work

5.4.1 Online Testing for DNN-Enabled Systems

In recent years, online testing for DNN-Enabled Systems (DES) has attracted more attention, especially in

the context of ADS.

Gambi et al. [41] presented ASFAULT, a tool for automatically generating road networks based on

a genetic algorithm to test if the ego vehicle under test keeps the center of the lane while driving in a

simulated environment. Majumdar et al. [82] presented PARACOSM, a language and tool to systematically

define and generate test scenarios for autonomous driving simulations. They used a fuzzing-based test

input generation strategy to achieve high combinatorial coverage for the attribute values that define the test

input space. Tuncali et al. [127] presented SIM-ATAV, a testing framework to generates test cases, using

covering arrays and requirements falsification methods, for autonomous vehicle with machine learning

components. Seymour et al. [111] presents an empirical study, in which they generated test cases, using

metamorphic and equivalent partitioning techniques, to test DADS in black-box settings. Riccio and

Tonella [104] presented DEEPJANUS, a search-based approach to generate similar input pairs, which

causes the DADS under test, with a focus on lane keeping, to mispredict for one input and work fine for

the other input. Despite this significant body of work, no existing study focuses on performing efficient

online testing for DES, with many objectives (requirements), using surrogate models.

One notable exception is the study of Abdessalem et al. [3] as they used ML models (i.e., decision

trees) to better guide the search process towards promising areas for efficient online testing for vision-

based DADS. Nevertheless, their approach is inherently different from ours since their models are not
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surrogate models that can replace the computationally expensive fitness evaluations with much less

expensive approximations but classification models that help focus the search on the critical test input

space. Furthermore, they used the classification models outside the search algorithm (i.e., NSGA-II) to

reduce the search space, whereas we use surrogate models inside the search algorithm to calculate fitness

scores without using expensive simulators. In fact, their approach is based on learnable evolutionary

search [88], whereas our approach is based on surrogate-assisted optimization [61]. Therefore, the two

approaches are orthogonal, meaning that one can easily combine the two approaches together; for example,

one can use SAMOTA instead of NSGA-II for the approach of Abdessalem et al. [3] and iteratively

reduce the search space using decision trees while reducing the execution time of fitness evaluations using

surrogate models in the main search algorithm.

5.4.2 Surrogate-Assisted Optimization

Addressing computationally expensive optimization problems using surrogate models (see section 2.3 for

details) has been widely studied in the field of surrogate-assisted optimization [61].

Among many studies, Zhou et al. [154] presented a pioneering idea of combining global and local

surrogate models to accelerate evolutionary optimization. Specifically, they used global surrogate models

to filter some promising individuals, and utilized local surrogate models that represent the local fitness

landscape in the vicinity of the individual to accelerate convergence. The experimental results on

multimodal benchmark functions and a real-world aerodynamic shape design problem showed that

the idea of combining global and local searches yields significant savings in computational cost when

compared to alternatives.

Following up on the idea of combining global and local searches, Wang et al. [134] additionally used

the prediction uncertainty of global surrogate models to select candidates for actual fitness evaluations.

By providing the actual fitness scores of the most uncertain candidates, it maximizes the information gain

of the surrogate models, making them more accurate faster. Recently, Liu et al. [78] also experimentally

confirmed that using the most uncertain candidates in addition to the best predicted candidates was a

promising strategy for solving benchmark problems with up to 30 dimensions.

However, no existing study addresses surrogate-assisted optimization, combining global and local

surrogate models, applied to the problem of test suite generation for DES online testing.

5.5 Conclusion

In this chapter, we present SAMOTA, a novel approach to effectively and efficiently generate test data for

DNN-enabled systems in the context of online testing. In essence, it provides a strategy to effectively

combine surrogate-assisted optimization and many-objective search. Empirical evaluation results on an

advanced DNN-enabled ADS, with a high-fidelity driving simulator, show that SAMOTA is significantly

more effective and efficient, with a large effect size, than the state-of-the-art many-objective test suite

generation algorithms and random search.
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5.6 Data Availability

The replication package of our experiments — including the implementation of search algorithms,

simulator, and the details of the experimental setup — is available on Figshare [131].
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Chapter 6

Many-Objective Reinforcement Learning
for Test Suite Generation

In this chapter, we present MORLOT (Many-Objective Reinforcement Learning for Online Testing),

a novel online testing approach for DNN-enabled systems (DES). MORLOT leverages two distinct

approaches: (1) Reinforcement Learning (RL) [121] to generate the sequences of changes to the dynamic

elements of the environment with the aim of causing requirements violations, and (2) many-objective

search [96, 4] to efficiently satisfy as many independent requirements as possible within a limited testing

budget.

Existing online testing approaches for DES exhibit at least one of two critical limitations. First, they do

not account for the fact that there are often many safety and functional requirements, possibly independent

of each other, that must be considered together in practice. Though one could simply repeat an existing

test approach for individual requirements, it is inefficient due to its inability to dynamically distribute the

test budget (e.g., time) over many requirements according to the feasibility of requirements violations. For

example, if one of the requirements cannot be violated, the pre-assigned budget for this requirement would

simply be wasted. Furthermore, dividing the limited test budget across many requirements may result

in too small a budget for testing individual requirements thoroughly. Second, they do not vary dynamic

environmental elements, such as neighboring vehicles and weather conditions, during test case (i.e., test

scenario) execution. For example, certain weather conditions (e.g., sunny) remain the same throughout a

test scenario, whereas in reality they may change over time, which can trigger requirements violations.

This is mainly because the number of possible test scenarios increases exponentially when considering

individual dynamic elements’ changes (i.e., time series). However, not accounting for such dynamic

environments could significantly limit test effectiveness by limiting the scope of the test scenarios being

considered.

The combination of RL and many objective search works as follows: (1) RL incrementally generates

the sequence of changes for the dynamic elements of the environment, and (2) those changes are deter-

mined by many-objective search such that they are more likely to achieve any of the uncovered objective
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(i.e., the requirement not yet violated). In other words, changes in the dynamic elements tend to be driven

by the objectives closest to being satisfied. For example, if there are three objectives o1, o2, and o3 where

o2 is closest to being satisfied, MORLOT incrementally appends those changes that help in achieving

o2 to the sequence. Furthermore, by keeping a record of uncovered objectives as the state-of-the-art

many-objective search for test suite generation does, MORLOT focuses on the uncovered ones over the

search process.

Though MORLOT can be applied to any DES interacting with an environment including dynamically

changeable elements, it is evaluated on DNN-enabled Autonomous Diving Systems (DADS). Specifically,

we use Transfuser [102], the highest ranked DADS, at the time of our evaluation, among publicly available

ones in the CARLA Autonomous Driving Leaderboard [124] and CARLA [30], a high-fidelity simulator

that has been widely used for training and validating DADS. Our evaluation results, involving more than

600 computing hours, show that MORLOT is significantly more effective and efficient at finding safety

and functional violations than state-of-the-art, many-objective search-based testing approaches tailored

for test suite generation [96, 4] and random search.

Our contributions can be summarized as follows:

- MORLOT, a novel approach that efficiently generates complex test scenarios, including sequential

changes to the dynamic elements of the environment of the DES under test, by leveraging both RL and

many-objective search;

- An empirical evaluation of MORLOT in terms of test effectiveness and efficiency and comparison with

alternatives;

- A publicly available replication package, including the implementation of MORLOT and instructions to

set up our case study.

Significance. For DES that continuously interact with their operational environments and have

many safety and functional requirements to be tested, performing online testing efficiently to identify

as many requirements violations as possible, without arbitrarily limiting the space of test scenarios, is

essential. However, taking into account the sequential changes of dynamic elements of an environment

over time is extremely challenging since it renders the test scenario space exponentially larger as test

scenario time increases. MORLOT addresses the problem by leveraging and carefully combining RL and

many-objective search, thus providing an important and novel contribution towards scalable online testing

of real-world DES in practice.

Chapter Structure. The rest of the chapter is structured as follows. Section 6.1 formalizes the

problem of DES online testing with a dynamically changing environment. Section 6.2 describes our

proposed approach, starting from a generic RL-based test generation approach and then MORLOT, a many-

objective reinforcement learning approach for online testing. Section 6.3 evaluates the test effectiveness

and efficiency of MORLOT using an open-source DNN-based ADS with a high-fidelity driving simulator.

Section 6.4 discusses and contrasts related work. Section 6.5 concludes the chapter. Section 6.6 provides

details on the replication package.
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6.1 Problem Description

In this section, we provide a precise problem description regarding the automated online testing of DNN-

enabled systems (DES) by dynamically changing their environment during simulation. As a working

example, we use a DNN-enabled autonomous driving system (DADS) to illustrate our main points, but

the description can be generalized to any DES.

In online testing, a DADS under test is embedded into and interacts with its driving environment.

However, because of the risks and costs it entails, online testing is usually performed with a simulator

rather than on-road vehicle testing. Using a simulator enables the control of the driving environment, such

as weather conditions, lighting conditions, and the behavior of other actors (e.g., vehicles on the road and

pedestrians). During simulation, the DADS continuously interacts with the environment by observing the

environment via the ego vehicle’s sensors (e.g., camera and LIDAR) and driving the ego vehicle through

commands (e.g., steering, throttle, and braking). Due to the closed-loop interaction between the DADS

and its environment, simulation is an effective instrument to check if any requirements violation can

occur under realistic conditions. Notice that such violations can be triggered by dynamically changing the

driving environment during simulation; for example, certain changes to the speed of the vehicle in front,

which can often occur in practice due to impaired driving or sudden stops, can cause a collision. The goal

of DADS online testing, based on dynamically changing the environment, is to find a minimal set of test

cases, each of them changing the environment in a different way, to cause the DADS to violate as many

requirements as possible.

Specifically, let d be the DADS under test on board the ego vehicle and E = (X,K) be the environ-

ment where X = {x1, x2, . . . } is a set of dynamic elements of the simulation (e.g., actors other than the

ego vehicle, and the environment conditions) and K is a set of static elements (e.g., roads, buildings, and

trees). Each dynamic element x ∈ X can be further decomposed into a sequence x = ⟨x1, x2, . . . , xJ⟩
where J is the duration of the simulation and xj is the value of x at time j ∈ {1, 2, . . . , J} (e.g.,

the position, speed, and acceleration of the vehicle in front at time j). Based on that, we can define

Xj = {xj | x ∈ X} as capturing the set of values of all the dynamic elements in X at time j and

Ej = (Xj ,K) as indicating the set of values of all environmental elements (both dynamic and static) in

E at time j. Let a test case t = ⟨X1, . . . , XJ⟩ be a sequence of values of the dynamic elements for J time

steps. By running d in E with t, using a simulator, at each time step j ∈ {1, 2, . . . , J}, d observes the

snapshot of Ej = (Xj ,K) using the sensors (e.g., camera and LIDAR) and generates driving commands

Cj (e.g., throttle, steering, and braking) for the ego vehicle. Note that what d observes from the same

E varies depending on the ego vehicle’s dynamics (e.g., position, speed, and acceleration) computed by

C; for example, d observes the relative distance between the ego vehicle and the vehicle in front, which

naturally varies depending on the position of the ego vehicle. For the next time step j + 1, the simulator

computes Ej+1 = (Xj+1,K) according to t and generates what d observes from Ej+1 by taking into

account Cj .

Given a set of requirements (safety, functional) R, the degree of a violation for a requirement r ∈ R

produced by d in E for t at any time step j ∈ {1, . . . , J}, denoted by v(r, d, E, t, j), can be measured

by monitoring the simulation of d in E for t. For example, the distance between the ego vehicle and the

vehicle in front can be used to measure how close they are from colliding. If v(r, d, E, t, j) is greater

than a certain threshold ϵr (i.e., the distance is closer than the minimum safe distance) at any j, we say

that d violates r at j. Let vmax (r, d, E, t) be the maximum degree of violation for r produced by d in
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E for t during simulation. Given an initial environment E1 = (X1,K), the problem of DADS online

testing for dynamically changing environments is to find a minimal set of test cases TS that satisfies

vmax (r, d, E, t) > ϵr for as many r ∈ R as possible when executing all t ∈ TS .

Test data generation for online testing of a DADS, with a dynamically changing environment, presents

several challenges. First, the input space for dynamically changing the behavior of the environment is

enormous because there are many possible combinations of environmental changes for each timestamp.

Second, there are usually many independent requirements to be considered simultaneously. For example,

keeping a safe distance from the vehicle in front is independent from the ego vehicle abiding by the traffic

lights. If the requirements are not considered simultaneously, no practical test budget may be sufficient to

thoroughly test each requirement, as a limited budget must be divided across all individual requirements.

Third, in addition to the second challenge, depending upon the accuracy of the DADS under test, it may be

infeasible to violate some requirements. This implies that the pre-assigned budgets for those requirements

are inevitably wasted if a testing approach cannot simultaneously consider all requirements. Last but

not least, a DADS is often developed by a third party, and as a result its internal information (e.g., about

DNN models) is often not fully accessible. Therefore, online DADS testing must often be carried out in a

black-box manner.

To address the challenges mentioned above, we propose a novel approach that combines two distinct

approaches: (1) RL to dynamically change the environment based on the simulation state (including

the state of the DES under test and the state of the environment) at each timestamp with the aim of

causing requirements violations, and (2) many-objective search to effectively and efficiently achieve

many independent objectives (i.e., violating requirements in our context). Furthermore, our approach is

DNN-agnostic; it does not need any internal information about the DNN.

6.2 Reinforcement Learning-Based Test Generation

This section presents MORLOT (Many-Objective Reinforcement Learning for Online Testing), our novel

approach to address the problem explained in Section 6.1. In the following subsections, we first describe

how Reinforcement Learning (RL) can be tailored for the generation of a single test case (i.e., a test

scenario in the context of DES online testing), and then present MORLOT by extending it.

6.2.1 Test Case Generation using RL

RL has widely been used to learn the sequence for completing a sequential decision-making task [121, 114].

RL has been also applied to automated software testing [150, 151, 94]. For the latter, RL is particularly

suitable for systems whose usage entails sequential steps, for example ordering something from the

web [150] such as: (1) going to the website, (2) putting something in the cart, (3) checkout and payment.

Similarly, in the case of testing a DADS, we require sequential changes in the environment; for example,

sequential steps for one scenario can be: (1) change the weather to Rainy (to decrease the friction between

tyres and the road), (2) increase the fog level (to reduce visibility), (3) increase the speed of the vehicle-

in-front (to increase distance from the ego-vehicle, which then speeds up as no obstacle is visible), (4)

abruptly slow the vehicle-in-front to trigger a collision (violation of safety requirement).

To generate a test case (i.e., a test sequence) for a single requirement (safety, functional), RL is driven

by an objective that must be satisfied while interacting with the environment. The objective is to find any
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test case t that satisfies vmax (r, d, E, t) > ϵr, where vmax (r, d, E, t) is the maximum degree of violation

for a requirement r observed over the simulation of the DADS under test d in its driving environment

E, while executing t and assuming ϵr is the threshold specifying the maximum acceptable violation

for r. The goal of RL-based testing is to find a sequence of changes in the environment that results in

satisfying the objective; these changes are stored in t in the form of state-action pairs, where a state

captures a snapshot of E and the ego vehicle and an action indicates the change to be applied to E given

the state. Storing states in t is essential as it provides necessary information for explaining the changes in

the environment that resulted in a requirement violation. A single test case is therefore composed of a

sequence of state-action pairs leading to requirement violations.

As described in background chapter (section 2.4), RL methods can be categorised into two types: (1)

tabular-based and (2) approximation-based. Considering the simplicity and fast convergence of tabular-

based methods, we use Q-learning [136], one of the most widely used algorithms in this category, as our

basis in the rest of the chapter. Nevertheless, one can easily opt for other tabular-based RL methods, such

as SARSA [108], by just changing the way of updating the Q-table.

To use Q-learning for testing, it is essential to define states, actions, and rewards for an RL agent

as described in Section 2.4. In the context of DADS testing, states can be defined to capture important

details of the simulation (e.g., locations/speeds of actors, weather conditions), actions are the environment

changes (e.g., change in the dynamics of actors and weather conditions) and rewards should indicate the

degree of requirements violations. The higher the degree of violation, the higher the reward, so that the

RL agent can generate a sequence of state-action pairs that maximizes the sum of rewards.

Algorithm 6 presents a generic RL-based testing algorithm that takes as inputs an objective o, an

environment E and a Q-table q (possibly initialized based on prior knowledge), and returns a test case t

achieving o and a Q-table q that was updated during the generation of t. If the algorithm cannot find a

t that satisfies o, it returns a null value for t along with the updated Q-table q resulting from the search,

which can be reused later if needed.

The algorithm begins with the loop for finding t that satisfies o. Until the budget (e.g., total number of

hours or simulator runs) runs out, the algorithm repeats the following steps: (1) initialize t and resetting E

to its initial state (lines 2–3) and (2) run the tabular-based RL algorithm to generate t (i.e., a sequence

of environmental changes in the form of state-action pairs) with the aim of satisfying o (lines 4–12; see

below). The algorithm ends by returning t if o is satisfied; otherwise, a null value is returned for t.

To generate t so that it satisfies o (lines 4–12), the algorithm repeats the following steps until the

stopping condition (e.g., satisfying o or no more possible actions) is met: (i) observe the state s from E

(line 5), (ii) choose an action a either randomly (with a small probability ϵ to increase the exploration of

the state space and to avoid being stuck in local optima) or using q and s (line 6), (iii) perform a to update

E and receive a reward w for o (line 7), (iv) append a new state-action pair (s, a) at the end of t (line 8),

(v) update q using s, a and w (line 9), and (vi) return t and q if the objective o is satisfied (i.e., a violation

is found) (line 12).

6.2.2 Test Suite Generation using many-objective RL

Algorithm 6 works well with one objective (violating one requirement) while the nature of our problem,

as described in Section 6.1, involves multiple independent objectives. Therefore, we need to extend the

algorithm above to efficiently take into account many objectives.
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Algorithm 6: RL-based Test Generation (single objective)
Input :Objective o,

Environment E,
Q-table q

Output :Test Case t
1 while not(budget_finished) do
2 Test Case t← ∅
3 E ← reset(E )
4 while not(stopping_condition) do
5 State s← observe(E)
6 Action a← chooseAction(q, s)
7 Reward w ← perform(E, a)
8 t← append(t, (s, a))
9 q ← updateQtable(q, s, a, w)

10 if satisfy(t, o) then
11 return t, q
12 end
13 end
14 end
15 return null , q

There is existing work on covering many independent objectives in the context of DES/DADS

testing [3, 4, 130]. Though they test both static and dynamic elements of the environment, they do not

change the dynamic elements during the execution (simulation) of a test case. Existing approaches can be

used for the problem of DADS testing with dynamically changing environments if they extend the search

space to take into account the environment’s dynamic elements over a certain time horizon; however, this

would be highly inefficient due to the resulting much larger search spaces (see Section 6.3 for details).

To efficiently solve the problem of DES online testing considering dynamically changing environments,

with many independent objectives, we propose a novel approach: Many-Objective Reinforcement Learning

for Online Testing (MORLOT). It combines two distinct techniques: (1) tabular-based Reinforcement

Learning (RL) to dynamically interact with the environment for finding the environmental changes that

cause the violation of given requirements and (2) many-objective search for test suite generation [96,

4, 130] to achieve many independent objectives (i.e., violating the requirements) individually within a

limited time budget.

Similar to existing work, MORLOT uses the notion of archive to keep the minimal set of test cases

satisfying the objectives. To take into account many independent objectives simultaneously, we extend

Algorithm 6 to have multiple Q-tables, each of them addressing one objective. Intuitively, each Q-table

captures the best action to select for one corresponding objective in a given state. However, the challenge

is that, in the same states, different actions can be chosen for different objectives (by different Q-tables).

To choose a single action to perform, we select the Q-table based on the objective that achieved the

maximum fitness value (i.e., reward in RL) in the previous iteration. This is because that objective is the

closest to being satisfied.

MORLOT takes a set of objectives O, an environment E and a set of Q-tables Q (possibly initialized

based on prior knowledge); MORLOT returns a test suite containing a test case for each satisfied objective.

As stated earlier, we define each objective as a violation of a certain requirement. Specifically, given a set
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of requirements R = ⟨r1, r2, . . . rn⟩ for the DADS d, we define a set of objectives O = ⟨o1, o2, . . . on⟩
where oi is to cause d to violate ri for i = 1, 2, . . . , n. MORLOT returns a test suite TS = ⟨t1, t2, . . . , tm⟩
where tl is a test case satisfying any one of the objective oi ∈ O and m ≤ n.

Algorithm 7 shows the pseudocode of MORLOT. It takes O, E and Q as inputs and returns a test suite

containing test cases satisfying at least one objective and multiple Q-tables, one for each objective.

Algorithm 7: MORLOT
Input : Set of Objectives O

Environment E
Set of Q-tables Q

Output :Archive (Test Suite) A
Set of Q-tables Q

1 Set of Uncovered Objectives U ← O
2 Archive A← ∅
3 while not(budget_finished) do
4 Set of Rewards W ← ∅
5 Test Case t← ∅
6 E ← reset(E )
7 while not(stopping_condition) do
8 State s← observe(E)
9 Action a← chooseActionMultiObjs(s,R,Q,U)

10 W ← performMultiObjs(a,E)
11 Q← updateQtables(Q , s, a,W )
12 t← append(t, (s, a))
13 foreach o ∈ O do
14 if satisfy(t, o) then
15 A← updateArchive(A, t, o)
16 U ← U − {o}
17 end
18 end
19 end
20 end
21 return A,Q

The algorithm starts by initializing the set of uncovered objectives U with O (line 1). It is important

to keep a record of uncovered objectives so that the search process can focus on them. It then initializes

A (line 2). Notice that |Q| = |O| so that there is a Q-table for each objective. Until the search budget

runs out, the algorithm repeats the following steps: (1) initialize a set of rewards W and a test case t

and resetting E to its initial state (lines 4–6) and (2) find t that satisfies u ∈ U using RL (lines 7–19).

To achieve the latter, the algorithm repeats the following steps until the stopping conditions are met:

(i) observe s from E (line 8), (ii) choose an action a either randomly (with a small probability ϵ to increase

the exploration of the state space and to avoid being stuck in local optima) or using a Q-table qm ∈ Q

and s where qm is the Q-table of an uncovered objective u ∈ U whose reward w ∈W for the previously

chosen action is the maximum (line 9), (iii) perform a to update W received from E (line 10), (iv) update

Q using s, a, and W (line 11), (v) append (s, a) at the end of t (line 12), and (vi) update A and U , if t

satisfies any oi ∈ O, such that A includes the shortest test case satisfying oi from A∪ {t} and U excludes

oi (lines 13–16). The algorithm ends by returning A (i.e., a minimal set of test cases, each of them
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covering at least one objective) and Q (i.e., a set of filled Q-tables, each of them matching one objective).

Notice that MORLOT updates the Q-tables Q even for covered objectives, while addressing the

uncovered objectives, as Q can be reused later for a newer version of the DES under test in a regression

testing setting. Since the Q-tables record the best actions to choose for given states, using them for testing

the newer versions of the DES can boost the performance of Algorithm 6. This investigation is however

left to future work.

6.3 Evaluation

This section reports on the empirical evaluation of MORLOT when testing an open-source DADS.

Specifically, we answer the following research questions:

RQ1: How does MORLOT fare compared to other many-objective search approaches tailored for test

suite generation in terms of test effectiveness?

RQ2: How does MORLOT fare compared to other many-objective search approaches tailored for test

suite generation in terms of test efficiency?

To answer RQ1, we compare test suites generated by different approaches within the same execution

time budget (in computing hours) in terms of their ability to reveal safety and functional requirements

violations. To answer RQ2, we compare different approaches in terms of the execution time required to

reveal a certain number of requirements violations and how differences among them evolve over time.

These investigations aim to evaluate the benefits of MORLOT for DADS online testing, in terms of test

effectiveness and efficiency, and therefore the benefits of dynamically changing the environment based on

the simulation state.

6.3.1 Evaluation Subjects

We use TransFuser (TF) [102], the highest rank DADS among publicly available ones in the CARLA

Autonomous Driving Leaderboard Sensors Track [124] at the time of our evaluation. The Leaderboard

evaluates the driving performance of ADS in terms of 11 different metrics designed to assess driving

safety, such as red light infractions, collision infractions, and route completion. The driving performance

results of TF reported in the Leaderboard show that it is well-trained and able to pass a large variety test

scenarios. It ought therefore to be representative of what one can find in the industry.

TF takes an image from the front-facing camera and the sensor data from LiDAR as input and generates

the driving command (steering, throttle, and braking). Internally, it uses ResNet34 and ResNet18 [54]

to extract features from the input image and sensor data, respectively. It then uses transformers [133] to

integrate the extracted image and LiDAR features. The integrated features are processed by a way-point

prediction network that predicts the ego vehicle’s expected trajectory, which is used for determining the

driving command for next time steps.

We also use CARLA [30], a high-fidelity open-source simulator developed for autonomous driving

research. CARLA provides hand-crafted static and dynamic elements for driving simulations. Static

elements include different types of roads, buildings, and traffic signs. Dynamic elements include other

vehicles, pedestrians, weather, and lighting conditions. In our evaluation, we let the approach under

evaluation (i.e., MORLOT and its alternatives) control a subset of dynamic elements to mimic real-world
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scenarios, such as weather and lighting conditions and the behavior of pedestrians, which are dynamically

controllable during the simulation. They also control the throttle and steering of the Vehicle-In-Front

(VIF), which is one of the most influential factors in the driving performance of the Ego Vehicle (EV).

Furthermore, to avoid trivial violations of safety and functional requirements resulting from the behavior

of dynamic elements (e.g., a pedestrian runs into the EV), we manually imposed constraints on such

behaviors. The details of the constraints can be found in the supporting material (see Section 6.6).

Considering the capability of the simulator, we use the following six safety and functional requirements:

r1: the EV should not go out of lane; r2: the EV should not collide with other vehicles; r3: the EV should

not collide with pedestrians; r4: the EV should not collide with static meshes (i.e., traffic lights, traffic

signs etc.); r5: the EV should reach its destination in defined time budget; r6: the EV should not violate

traffic lights.

Recall that we should specify an initial environment that determines the static elements and the initial

states of the dynamic elements for simulation. In practice, one can randomize the initial environments to

test diverse scenarios. In our evaluation, however, we need the same initial environments for different

approaches (and their repeated runs) to compare them fairly in terms of test effectiveness and efficiency.

Since the road type defined in the initial environment is one of the critical factors that has the greatest

influence on the driving performance of a DADS, we consider three different initial environments having

three different road types: Straight, Left-Turn, and Right-Turn. For the other environmental elements, we

use the basic configuration (i.e., sunny weather, the VIF is 10 meters away from the EV, pedestrians are

20 meters away from the EV on a footpath, zero precipitation deposit on roads) provided in CARLA [30].

The details of the initial environment setup can be found in the supporting material (see Section 6.6).

Due to the execution time of individual simulations in CARLA (i.e., 5 minutes on average), the total

computing time for all the three different initial environments is more than 600 hours (25 days). To

address this issue, we conduct our evaluation on two platforms, P1 and P2. Platform P1 is a desktop with

Intel i9-9900K CPU, RTX 2080 Ti (11 GB) GPU, and 32 GB memory, running Ubuntu 18.04. Platform

P2 is a g4dn.xlarge node configured as Deep Learning AMI (version 61.1) in Amazon Elastic Cloud

(https://aws.amazon.com/ec2/) with four virtual cores, NVIDIA T4 GPU (16GB), and 16 GB

memory, running Ubuntu 18.04. Specifically, we use P1 for the Straight environment and five instances of

P2 for the remaining. By doing this, we can compare the results of different approaches (i.e., MORLOT

and its alternatives) for the same initial environment.

6.3.2 RQ1: Test Effectiveness

Setup

To answer RQ1, we generate test suites using MORLOT and other many-objective search approaches

tailored for test suite generation using the same execution time budget. We compare the approaches in

terms of Test Suite Effectiveness (TSE). Specifically, the TSE of a test suite TS is defined as the proportion

of requirements TS violated over the total number of requirements (i.e., six as explained in Section 6.3.1).

To use MORLOT, we need to define states, actions, and rewards specific to our case study as we rely

on a tabular-based RL method as mentioned in Section 6.2.1. In the context of DADS online testing, a

state should contain all the information that may affect the requirements violations of the DADS, such as

weather conditions and the dynamics of the Ego Vehicle (EV), Vehicle-In-Front (VIF), and pedestrian in

terms of positions, speeds, and accelerations. To reduce the state space, we consider only one VIF and
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one pedestrian since they are sufficient to generate critical test scenarios. Further, we rely on the spatial

grid [73] and divide the road into 10x10 grids when representing the positions of the EV and VIF. For

speed and acceleration, we use values reported by CARLA, rounded to one decimal point. Specifically, we

define a state s as a 6-tuple s = (EV ,VIF , P, h, f, g) where each of its elements is defined as follows:

- EV = (xEV , yEV , vEVx , vEVy , aEVx , aEVy ) is the state of the EV where xEV and yEV are the x and y

components of the absolute position of the EV on the road, vEVx and vEVy are the x and y components of

the absolute speed of the EV, and aEVx and aEVy are the x and y components of the absolute acceleration

of the EV.

- VIF = (xVIF , yVIF , vVIF
x , vVIF

y , aVIF
x , aVIF

y ) is the state of the VIF where xVIF and yVIF are the

x and y components of the position of the VIF relative to the EV, vVIF
x and vVIF

y are the x and y

components of the speed of the VIF relative to the EV, and aVIF
x and aVIF

y are the x and y components

of the acceleration of the VIF relative to the EV.

- P = (xP , yP , vPx , v
P
y ) is the state of the pedestrian where xP and yP are the x and y components of

the direction of the pedestrian and vPx and vPy are the x and y components of the speed of the pedestrian.

We do not consider the acceleration of the pedestrian since it is not computed in CARLA.

- h is the weather state and can have a value ranging between 0 (clear weather) and 100 (thunderstorm) in

steps of 2.5.

- f is the fog state and can have a value ranging between 0 (no fog) and 100 (heavy fog) in steps of 2.5.

- g is the lighting state (controlled by changing the location of the light source) and can have a value

ranging between -30 (night) and 120 (evening) in steps of 2.5.

For actions, we keep the size of unit changes of the dynamic elements small, based on preliminary

experiments, to avoid unrealistic changes within each time step; for example, the VIF’s throttle can

increase/decrease by only 0.1 at each simulation time step. As a result, for each time step, one of the

following actions can be taken:

- increasing/decreasing throttle by 0.1 (throttle range: 0–1),

- increasing/decreasing steering 0.01 (steering range: -1–1),

- increasing/decreasing light intensity by moving the source of light by 2.5 degrees,

- increasing/decreasing weather intensity by 2.5,

- increasing/decreasing fog intensity by 2.5,

- increasing/decreasing pedestrian speed by 0.05 m/s (speed range 0.3–1.5),

- changing pedestrian direction (x,y-axis) by 0.1 (direction change range: -1–1), and

- do nothing.
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For rewards, we define one reward function for each requirement ri for i = 1, . . . , 6, discussed in

Section 6.3.1. Since we aim to cause the DADS to violate the requirements, we need higher reward values

for more critical situations. For i = 1, . . . , 5, the criticality of a situation depends on the distance between

the EV and the object (i.e., the VIF, pedestrian, static meshes, center of the lane, and destination for r1,

r2, r3, r4, and r5, respectively); the shorter the distance, the more critical. To capture this, we define the

reward function reward1,...,5 for r1, . . . , r5 as follows:

reward1,...,5 =

1/dEV ,obj , if dEV ,obj > 0

1000000, else

where dEV ,obj refers to the distance between the EV and the object and 1,000,000 is the maximum reward

for any violation, a large number which is not achievable without violations. The distance is normalized

between 0 and 1 so that every requirement contributes equally to the reward function. For r6, reward6 is

defined as binary due to the limitation of CARLA: it returns 1 if r6 is violated (i.e., at least one traffic rule

is violated); otherwise 0.

Besides the definition of states, actions, and rewards for MORLOT, there are a few RL parameters

to be tuned [121], such as the probability ϵ of choosing a random action, the learning rate α, and the

discount factor γ. For ϵ, to make MORLOT more exploratory at first but gradually more exploitative,

we dynamically decrease it from 1.0 to 0.1 during the search, following a suggested approach [89].

Specifically, we decrease it from 1 to 0.1 in the first 20% of the search budget and keep it at 0.1 for the

rest. For α and γ, based on preliminary experiments, we set the values to 0.01 and 0.9, respectively.

For comparison with MORLOT, we use two well-known approaches for many-objective test suite

generation: MOSA [96] and FITEST [4]. The six reward functions defined above for MORLOT are

used as fitness functions for MOSA and FITEST. Recall that, as described in Section 6.1, our test case

(test scenario) is a sequence of values of the dynamic elements for J time steps, where the length of a

simulation J can vary depending on the behavior of dynamic elements. Since MOSA and FITEST search

for test cases that satisfy many test objectives without sequentially determining environmental changes,

the length of a test case (i.e., the length of a sequence of values of the dynamic elements) should be fixed

before running the search. Therefore, we set the length of a test case as the maximum possible length

of a simulation determined by the minimum car speed and the maximum road length; if a simulation

ends before its maximum possible length, then the remaining sequence in a test case is ignored. To be

consistent with previous studies [130, 4], we set the population size equal to the number of objectives (i.e.,

requirements). We follow the original studies [4, 96] for mutation and crossover rates.

We also use Random Search (RS) with an archive as a baseline. RS generates random changes to the

dynamic elements as a test case. The possible changes are the same as those of MORLOT, MOSA, and

FITEST. Furthermore, RS maintains an archive for all the test cases that lead to requirements violations.

RS will provide insights on how complex the search problem is and will help us quantify the relative

effectiveness of advanced approaches: MORLOT, MOSA, and FITEST.

Note that we do not additionally consider other RL-based testing approaches for comparison since

they do not account for cases where many requirements must be validated at the same time. As explained

in Section 6.1, simply repeating a single-objective approach multiple times, by dividing the test budget

per requirement, cannot scale in our context, given that test executions are expensive due to high-fidelity

simulations.
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Figure 6.1: Distribution of TSE values for different testing approaches

Table 6.1: Statistical comparison results for different approaches

Comparison Straight Left-Turn Right-Turn

A B p-val ÂAB p-val ÂAB p-val ÂAB

FITEST RS 0.605 0.43 0.261 0.42 0.269 0.37
MOSA RS 0.261 0.35 0.120 0.38 0.009 0.19
MORLOT RS 0.001 0.91 0.000 0.99 0.001 0.94
MOSA FITEST 0.753 0.46 0.394 0.45 0.161 0.34
MORLOT FITEST 0.003 0.88 0.000 1.00 0.001 0.95
MORLOT MOSA 0.001 0.93 0.000 1.00 0.000 0.99

To account for randomness in all the approaches, we repeat the experiment 10 times with the same

time budget of four hours. We found that fitness reaches a plateau after four hours based on our preliminary

evaluations. We apply Mann–Whitney U tests [83] to evaluate the statistical significance of differences in

TSE values among the approaches. We also measure Vargha and Delaney’s ÂAB [132] to calculate the

effect size of the differences; ÂAB (= 1− ÂBA) indicates that A is better than B with a small, medium,

and large effect size when its value exceeds 0.56, 0.64, and 0.71, respectively.

Results

Figure 6.1 shows the distribution of TSE values achieved by RS, MOSA, FITEST, and MORLOT over 10

runs for each of the three initial environments (i.e., Straight, Left-Turn, and Right-Turn). The orange bar

and green triangle in the center of each box represent the median and average, respectively. In addition,

Table 6.1 shows the statistical comparison results between different approaches. The columns A and

B indicate the two approaches being compared. The columns p-value and ÂAB indicate the statistical

significance and effect size, respectively, when comparing A and B in terms of TSE.
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For all three initial environments, it is clear that MORLOT outperforms RS, MOSA, and FITEST.

Given a significance level of α = 0.01, the differences between MOTLOT and the others are significant (p-

value < 0.01) in all cases. Furthermore, ÂAB is always greater than 0.71 when A = MORLOT, meaning

that MORLOT has a large effect size when compared to the others in terms of TSE. This result implies

that, by combining RL and many-objective search, MORLOT can detect significantly more violations for

a given set of safety and functional requirements than random search and state-of-the-art many-objective

search approaches for test suite generation. This is mainly because MORLOT can incrementally generate

a sequence of changes by observing the state and reward after each change, whereas the other approaches

must generate an entire sequence at once whose fitness score is calculated only after the simulation is

completed.

It is also interesting to see that MOSA and FITEST do not outperform RS in all cases. Given α = 0.01,

the differences between MOSA and RS and between FITEST and RS are insignificant, except for the

difference between MOSA and RS in the Right-Turn environment. This means that, in the Straight

and Left-Turn environments, the advanced many-objective approaches are not significantly better than

simple random search with an archive. One possible explanation can be that the search space considering

dynamically changing environmental elements is enormously large, making advanced search approaches

less effective within the given time budget (i.e., four hours). Although they might perform better than

random search if given much more time, this is unrealistic in practical conditions.

The answer to RQ1 is that MORLOT is significantly more effective, in terms of Test Suite

Effectiveness (TSE), and with a large effect size, than random search and alternative many-objective

search approaches tailored for test suite generation.

6.3.3 RQ2: Test Efficiency

Setup

To answer RQ2, we basically use the same setup as in RQ1 but additionally measure the achieved

TSE values at 20-minute intervals over a 4-hour run. To account for randomness, again, we repeat the

experiment 10 times and report on how the average TSE values for 10 runs vary over time from 20 minutes

to 240 minutes in steps of 20 minutes.

Results

Figure 6.2 shows the relationship between the execution time and the average TSE values for 10 runs of

RS, MOSA, FITEST, and MORLOT for each of the three initial environments.

Overall, we can clearly see that MORLOT is always at the top in all environments, meaning that

MORLOT always achieves the highest TSE values, at any time, when compared to the other approaches

over the same period of time. Furthermore, the gaps between MORLOT and the others keep increasing

over time, up to a certain point, implying that MORLOT is not only significantly more efficient at detecting

unknown violations but also that the effect size becomes larger as we run the testing approaches longer. An

tentative explanation for this observation is that MORLOT keeps learning over time as it observes further

states and rewards during the generation of test scenarios. Furthermore, as described in Section 6.3.2,
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Figure 6.2: Average TSE values over 20 minutes interval

dynamically decreasing the epsilon value in MORLOT makes it gradually more exploitative and more

effective.

Comparing RS, MOSA, and FITEST, we can see that MOSA and FITEST do not significantly

outperform RS at any time, meaning that advanced search-based approaches are not more efficient than

simple random search with an archive in this context. As already discussed in RQ1, this can be mainly

because of the enormous search space that makes advanced search approaches less effective within a

practical time budget.

The answer to RQ2 is that MORLOT is significantly more efficient than random search and

alternative many-objective search approaches. Indeed, it achieves, for any given time budget, a

significantly higher average TSE, and this difference keeps increasing over time.

6.3.4 Threats to Validity

Using one DADS and one simulator is a potential threat to the external validity of our results. To

mitigate the issue, we selected the highest rank DADS (i.e., Transfuser), at the time of our evaluation,

among publicly available ones in the CARLA Automation Driving Leaderboard [124], and a high-fidelity

driving simulator (i.e., CARLA) that can be coupled with the selected DADS; they are representative

of state-of-the-art DADS and advanced driving simulators, respectively, in terms of performance and

fidelity [30, 102]. Note that we did not consider more DADS from the Leaderboard since (1) most of

them are not good enough to drive the ego vehicle safely (e.g., yielding many violations of the given

requirements even by random search) and (2) our evaluation already took more than 600 computing hours.

Nevertheless, further studies will be needed to increase the generalizability of our results.

The degree of the discretization of the actions and states could be a potential factor that affects

our results. However, the same set of possible actions (changes) is used for RS, MOSA, FITEST, and

MORLOT. Furthermore, since only MORLOT considers states, using a sub-optimal discretization of these

states would only decrease the effectiveness and efficiency of MORLOT, and therefore this aspect has not

impact on our conclusions.
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6.4 Related Work

This section discusses DES testing in terms of two approaches closely related to ours: search-based testing

and RL-based testing.

6.4.1 Search-Based Testing

Search-based testing has been widely adapted to test DES, particularly DADS, by formulating a test data

generation problem as an optimization problem where an objective is to cause the DADS under test to

misbehave and applying metaheuristic search algorithms to solve the optimization problem automatically.

For example, Gambi et al. [41] presented ASFAULT, a tool for generating test scenarios in the form of

road networks using a genetic algorithm to cause the DADS under test to go out of lane. Klischat and

Althoff [65] tested motion-planning modules in DADS by generating critical test scenarios based on a

minimization of the search space, defined as a set of scenario parameter intervals, of the vehicle under

test. Riccio and Tonella [104] presented DEEPJANUS, an approach that uses NSGA-II to generate a pair

of close scenarios, where the DADS under test misbehaves for one scenario but not for the other, in an

attempt to find a frontier behavior at which the system under test starts to misbehave. For a configurable,

parameterized ADS, Calò et al. [17] aimed to find avoidable collisions, that is collisions that would

not have occurred with differently-configured ADS; using NSGA-II, they first search for a collision

scenario and then search for a new configuration of the ADS which avoids the collision. Considering the

high computational cost of simulations involved in search-based approaches, improving the efficiency

of search-based testing has also been studied in the context of DES/DADS testing. Abdessalem et al.

[3] presented NSGAII-DT that combines NSGA-II (a multi-objective search algorithm) and Decision

Tree (a classification model) to generate critical test cases while refining and focusing on the regions of

a test scenario space that are likely to contain cost critical test scenarios. Ul Haq et al. [130] presented

SAMOTA, an efficient online testing approach extending many-objective search algorithms tailored

for test suite generation to utilize surrogate models that can mimic driving simulation (e.g., whether a

requirement violation occurred or not) and are much less expensive to run.

Though search-based testing approaches have shown to work very well for testing DADS when the

environment remains static throughout the tested scenario, they are not likely to work efficiently in the

case of dynamically changing environments. One of the reasons is they must get the fitness score for a

test scenario after the simulation is completed (when we can ascertain whether a requirement violation

occurred) and cannot, therefore, change the environment during a simulation run. Another challenge

is that the search space becomes enormous because of the many possible combinations of environment

parameters at each timestamp.

6.4.2 RL-Based Testing

RL has also recently been used for DES/DADS testing. In RL-based testing, a DES/DADS testing

problem is formulated as a sequential decision-making problem where the goal is to generate a compact

test scenario (in the form of a sequence of environmental changes) that causes the system under test to

violate a given requirement. For example, Koren et al. [69] presented an approach that extends Adaptive

Stress Testing (AST) [72] by using reinforcement learning for updating the environment of a vehicle

to cause a collision. Corso et al. [26] further extended AST to include domain relevant information in
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the search process. This modification helps in finding a more diverse set of test scenarios in the context

of DADS testing. Sharif and Marijan [113] presented a two-step approach that not only generates test

scenarios using Deep RL but also utilizes the test scenarios to improve the robustness of the DADS under

test by retraining it. Very recently, Lu et al. [80] presented DEEPCOLLISION, an approach that learns the

configurations of the environment, using Deep Q-learning, that can cause the crash of the ego vehicle.

Despite encouraging achievements when using RL for DES/DADS testing, especially when the

objective is to dynamically change the environment, there is no work that focuses on testing many

independent requirements simultaneously, thus raising the problems discussed in Section 6.1.

6.5 Conclusion

In this chapter, we present MORLOT, a novel approach that combines Reinforcement Learning (RL) and

many-objective search to effectively and efficiently generate a test suite for DNN-Enabled Systems (DES)

by dynamically changing the application environment. We specifically address the issue of scalability

when many requirements must be validated. We empirically evaluate MORLOT using a state-of-the-art

DNN-enabled Automated Driving System (DADS) integrated with a high-fidelity driving simulator. The

evaluation results show that MORLOT is significantly more effective and efficient, with a large effect size,

than random search and many-objective search approaches tailored for test suite generation.

6.6 Data Availability

The replication package of our experiments, including the implementation of MORLOT and alternative

approaches, the instructions to set up and configure the DADS and simulator, and the detailed descriptions

of the initial environments used in the experiments, is currently under review for its open-source license

by our legal team.
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Chapter 7

Conclusion & Future Work

In this chapter, we summarise the contributions presented in this dissertation and discuss potential future

work.

7.1 Summary

In this dissertation, we focused on providing scalable and practical solutions for testing deep neural

networks (DNNs) and DNN-Enabled Systems (DES). The main challenges for testing DNNs include: (1)

the extremely large search space for all possible test data, (2) the many requirements to be considered

at the same time, (3) computationally expensive simulation, and (4) no access to internal information of

DNNs.

Throughout this dissertation, we propose several approaches to address the aforementioned challenges

in collaboration with IEE Sensing, who provides advanced sensing solutions to the automotive industry.

Specifically, the dissertation covered the following in each chapter.

Chapter 3 presented an empirical study to compare offline and online testing in the context of

autonomous driving systems. We investigated the use of simulator-generated data in lieu of real-world

data. We also investigated whether offline testing could be used to reduce the cost of online testing. In

this empirical study, we used open-source DNNs that predict the steering angles based on an input driving

scene (image).

Chapter 4 presented an automated approach to generate test data for key-points detection DNNs using

many-objective optimisation. Our approach uses many-objective search algorithms tailored for test suite

generation to generate test data. We also demonstrated a way to learn the conditions, in terms of image

characteristics, that cause the misprediction for each keypoint. We evaluated our approach using a facial

key-point detection DNN developed by IEE. The results showed that our approach can generate test suites

to severely mispredict more than 93% of all keypoints on average, while random search, as a comparison,

can do so for 41% of them.

Chapter 5 presented SAMOTA, a surrogate-assisted many-objective testing approach. SAMOTA

leverages the combination of surrogate-assisted optimisation and many-objective optimisation. SAMOTA
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iteratively uses two search phases: global search (to search the complete search space) and local search

(to search a promising sub-portion of the search space). Both search phases use surrogate models that

are trained with data from the targeted search space. We evaluated the effectiveness and efficiency of

SAMOTA using an open source DNN-enabled autonomous driving system, Pylot, integrated with a

high-fidelity simulator, CARLA. The results showed that SAMOTA is statistically more effective and

efficient than other many-objective search algorithms tailored for test suite generation and random search.

Chapter 6 presented MORLOT, a many-objective reinforcement learning approach for online testing.

MORLOT relies on the combination of reinforcement learning, to dynamically interact with the envi-

ronment, and many-objective optimisation, to solve multiple objectives simultaneously. We evaluated

MORLOT using an open source DNN-enabled autonomous driving system, Transfuser, integrated with a

high-fidelity simulator, CARLA. The results showed that MORLOT is statistically more effective and

efficient than alternative approaches.

7.2 Future Work

Overall, we plan to increase the generalisability of the approaches presented in this dissertation. Specif-

ically, we intend to include recently released end-to-end DNN-enabled autonomous driving systems

(DADS) in the evaluation of MORLOT and SAMOTA. We also intend to include more Keypoints

detection DNNs in evaluating our approach for test data generation.

For SAMOTA, we plan to investigate further how to explain the safety violations detected by our

approach; for example, we can derive association rules between the test scenario attribute values and the

resulting safety violations using association rule mining algorithms [55].

For MORLOT, we plan to investigate if we can reuse MORLOT’s Q-tables trained on a former version

of the DES under test to improve test effectiveness and efficiency for latter versions. We also plan to

extend MORLOT to leverage different RL methods, including Deep Q-learning with varying epsilon

values, and compare the results in the context of DADS online testing.

We also plan to create a publicly available framework for testing DNN-based systems. We intend to

combine all the approaches into one framework where users can test their systems based on four inputs:

system or model, system’s parameters, simulator, simulator’s parameters. The framework would learn

and decide which approach to use, starting with determining the type of testing to use, online or offline

testing. The framework would start with basic approaches such as many-objective search for test suite

generation (Chapter 4) and then move on to more sophisticated approaches such as SAMOTA (Chapter

5) and MORLOT (Chapter 6). At the end of the testing budget, the framework would return a report

containing all the details about the types of testing that were carried out and their results.
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