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ABSTRACT
Autonomous robot swarm systems allow to address many inherent
limitations of single robot systems, such as scalability and reliabil-
ity. As a consequence, these have found their way into numerous
applications including in the space and aerospace domains like
swarm-based asteroid observation or counter-drone systems. How-
ever, achieving stable formations around a point of interest using
different number of robots and diverse initial conditions can be chal-
lenging. In this article we propose a novel method for autonomous
robots swarms self-organisation solely relying on their relative
position (angle and distance). This work focuses on an evolutionary
optimisation approach to calculate the parameters of the swarm,
e.g. inter-robot distance, to achieve a reliable formation under dif-
ferent initial conditions. Experiments are conducted using realistic
simulations and considering four case studies. The results observed
after testing the optimal configurations on 72 unseen scenarios per
case study showed the high robustness of our proposal since the
desired formation was always achieved. The ability of self-organise
around a point of interest maintaining a predefined fixed distance
was also validated using real robots.

CCS CONCEPTS
• Computer systems organization → Evolutionary robotics;
• Mathematics of computing → Combinatorial optimization; •
Applied computing→ Aerospace;
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1 INTRODUCTION
Robot formation as a part of robotics, studies the coordination of
a swarm of mobile robots to arrange in a predefined shape [6, 12].
The resulting formation is then used for performing collective

https://doi.org/10.1145/3512290.3528709

tasks, usually in an autonomous way. Applications range from
surveillance [3] and synchronisation of spacecrafts [5] to salvage
missions [4], caging and grasping [16], and localisation and map-
ping [22]. These formation proposals have to overcome several
problems to be considered a viable solution. Mainly, the initial posi-
tion of the drones and the path planning from these positions to the
final location have to be calculated. However, having predefined
final positions restricts the adaptability of the formation to real
changing situations and the initial positions are not always known
in advance.

We propose a distance based approach where the optimal dis-
tances between robots are calculated in order to achieve the final
desired formation, surrounding a central point where the target is
located. We also take into account the distance of the swarm to the
target and the final coverage achieved, i.e. the area of the target
seen from the robots. Possible applications are asteroid observation
and escorting a rogue drone out of a restricted area, although others
are also possible providing the number of robots is enough and
the desired formation radius is achievable. To test our proposal we
have defined four case studies comprising swarms of three, five,
ten, and fifteen robots. We have identified the system’s parameters
and used a genetic algorithm to optimise them in order to achieve
proper formations in all the scenarios tested.

The remainder of this paper is organised as follows. In the next
section, we review the state of the art related to our proposal. In
Section 3 our approach is presented. The problem is defined in
Section 4 where the optimisation algorithm and case studies are also
described. The experimental results are in Section 5. And Section 6
brings discussion and future work.

2 RELATEDWORK
In this section we review some research works related to distributed
formation control and motion planning [15] for autonomous robots.
We are interested in distributed/decentralised formation approaches
in which robots are not centrally controlled, but autonomously self-
organised by using limited local information. This make systems
more robust against failures as the final goal is achieved by the
collaboration of the individual members of the swarm.

A distributed method for formation control is presented in [1].
Using a restricted communication and vision range, the aerial robots
in the swarm share information between them to coordinate and
obtain a consensus to navigate in a dynamic environment. The
proposed motion planning algorithm is based on calculating the
convex hull of the robots’ positions and achieving the optimal
formation while avoiding obstacles. The results are obtained using
Monte Carlo simulation experiments and four quad-rotors. In our
proposal we obtain different robot formations since our robots are
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(a) Three Probes performing asteroid observation (b) Five UAVs surrounding a rogue drone (c) Schema of forces and beacons for three robots

Figure 1: Formation of robots performing asteroid observation (a) and surrounding a rogue drone (b). A detailed schema of
forces and beacons for a three-robot example is given in (c).

placed at the vertices of the polygons. Our formations are achieved
using attracting and repelling forces optimised by an evolutionary
algorithm.

In [18] a team of autonomous mobile robots are controlled using
non-linear attractor dynamics. The authors use a formation matrix
to define the robot formations for exploration tasks. These forma-
tions are achieved using a hierarchical structure of leader-follower
robots. Simulations and experiments using real ground robots are
shown to demonstrate formation switch and obstacle avoidance are
possible without the use of an explicit coordination scheme. Our
attractor-repeller forces model differs from this approach in that
final formations emerge from the collaboration between swarm
members (there is no hierarchy) after optimising their parameters.

A semi-centralised control for multi robot formation is proposed
in [25]. The formation problem was modelled as a task distribution
problem and solved using the Hungarian method [14]. A leader-
followers method was used to get the desired formation and a
discussion about the transformation between different formations
is also included. Finally, a theorem to optimize the choice of new
formation centre was given and simulations were used to test this
proposal using MATLAB. There are no leaders and followers in our
approach, we propose a different optimisation algorithm to tune
the robots’ distributed behaviour, and use realistic simulations as
well as real robots to obtain and validate our results.

In [13] a deep neural network is designed to model a decen-
tralised formation control policy to map the onboard LIDAR sensor
to motor control. Supervised learning is used to train the centralised
learning framework and the trained model was deployed on each
robot to rely only in local observations without any inter-robot
communication. This proposal was evaluated using simulations
(VREP) involving three robots. We proposed a different approach
based on evolutionary optimisation, use up to 15 robots and test
our results using simulations and real robots.

All these works achieve formations using techniques that differ
from the one studied in our present article. In our proposal we
obtain the robot formation using attracting and repelling forces
parametrised using an evolutionary algorithm. We do not take into

account external obstacles although collision between swarm mem-
bers are avoided by the same forces that shape the final desired
formation. We use a multi-physics robot simulator to test our pro-
posal on 72 unseen scenarios per case study featuring different
initial conditions. To the best of our knowledge, this study involv-
ing the optimisation of the swarm parameters for achieving robust
formations using an evolutionary technique, followed by the valida-
tion using the ARGoS simulator and real world tests using E-Puck2
robots, has not been done before.

3 PROPOSAL
Our proposal for robot formation has the objective of designing and
testing an algorithm that can be used for asteroid observation and
rogue drone escorting applications (figures 1(a) and 1(b)) among
others. Having coverage rates close to 100% (full surface observa-
tion) while keeping a safe distance to the central object (target) are
desired characteristics of the final formation to reach. Additionally,
since working conditions can be harsh, i.e. outer space or conflict
zones, autonomy, resilience, flexibility and self-organisation are also
required. Fortunately, these characteristics can be reached using
swarm intelligence [23], where the collective behaviour of a swarm
of robots can be modified through a set of individual parameters to
optimise their cooperation and achieve a common goal.

The proposed formation algorithm to be run individually and
independently by each robot in the swarm does not require to know
the exact position of the other swarmmembers nor to exchange any
data, which makes it more robust against communication issues. It
only uses a beacon signal from the other swarm members to obtain
the range and bearing (intensity and direction of the incoming
radio signal) information and calculate the next moving direction
to modify the robot’s trajectory accordingly. In order to define a
central point for the formation where the object of interest (asteroid,
rogue drone, etc.) is located, a number of virtual points (ghosts) are
introduced. They are static virtual entities which provide a set of
attracting and repelling forces to stabilise the formation around the
object to be observed/escorted (Figure 1(c)). Ideally a unique ghost
serves as central point, however, as it is discussed in Section 5.2, a
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Algorithm 1 Formation Algorithm.

1: function Formation(robot ,Dcentre ,Drobot )
2: ®a ← ®0
3: for r ∈ ROBOTS ∪GHOSTS do
4: if r , robot then
5: ranдe,bearinд← RanдeAndBearinд(r )
6: if r ∈ ROBOTS then
7: th ← Drobot ▷ Distance to other robots
8: else
9: th ← Dcentre ▷ Distance to ghosts
10: ∆x ← |th − ranдe | × sin(bearinд) ▷ Intensity
11: ∆y ← |th − ranдe | × cos(bearinд)
12: if ranдe < th then
13: ®a ← ®a − ®∆ ▷ Repelling force
14: else
15: ®a ← ®a + ®∆ ▷ Attracting force
16: return arctan ay

ax ▷ Next moving direction

higher number was needed to increase the influence of the central
forces and obtain a stable formation.

Our initial 2D approach is described in Algorithm 1, where the
desired distance to the central body and the distance between robots
are provided as parameters. In line 2, the value of ®a is initialised to
be used later for calculating the resulting vector, after taking into
account all the other robots in the swarm as well as the ghosts. For
each robot in the swarm and ghosts the range and bearing values
are obtained from the radio beacons (lines 3 to 5). In lines 6 to 9
a distance threshold th is selected depending on the nature of r ,
i.e. whether it is another robot or a ghost. Then, the corresponding
®∆ is calculated (lines 10 and 11) to modify vector ®a depending of
the threshold th (lines 12 to 15). Finally, the next moving direction
is returned as an angle (line 16), which depends on the resulting
force ®a, to be used to modify the current robot’s trajectory. After
a fixed period of time the Formation algorithm is to be run again
for a new trajectory update. Providing the central point is fixed,
after a number of iterations the system is expected to be in an
equilibrium state where the desired formation shape is achieved
and the attracting/repelling forces are mutually cancelled. Under
these conditions the Formation algorithm will continue running in
each robot to preserve the formation against any environmental
change, e.g. the central point has moved or the number of robots
in the swarm has changed.

3.1 Formation Parameters
Our most intuitive approach consisted in calculating the geometric
distances between robots (Drobot ) for a given distance to the centre
(Dcentre ). Using the equations 1 and 2, the distance Drobot can
be easily calculated according to the number of robots N and the
desired distance Dcentre .

α = 180◦ ×
N − 2
N

(1)

Drobot = 2 × cos
α

2
× Dcentre (2)

Table 1: Geometric approach (Dcentre = 1.00).

Robots α Drobot

3 60° 1.732
5 108° 1.176
10 144° 0.618
15 156° 0.416

As we want to test our proposal on swarms made of three, five,
ten and fifteen robots, we have calculated the parameters as shown
in Table 1. However, after simulating each scenario using the ARGoS
simulator [20], we have found that when the number of robots is
high (ten and fifteen in our study) there are formations whose final
shape is not the expected as shown in Figure 2 and Dcentre is
incorrect.

Our best explanation to this phenomenon is that when having
many robots, the desired Drobot cannot be achieved since the non-
adjacent robots are further away than the others, i.e. the shape’s
diagonals are longer than the edges. This is not a matter of local
minimum but the impossibility for each robot to know whether
the others are to be in adjacent vertices, while the formation is
being dynamically built. We expect that an equilibrium state can
be achieved by using a different parameterisation and possible
extra ghosts in order to find the point in which the repelling and
attracting forces are cancelled. To address this research question,
we propose the optimisation of the system parameters for each case
study using a bio-inspired technique: a genetic algorithm. In the
following sections we define our formation problem, describe the
optimisation algorithm as well as the four proposed case studies,
comprising 100 scenarios each.

4 PROBLEM DEFINITION AND
OPTIMISATION

In this section we present the problem representation and the eval-
uation function, describe our optimisation algorithm, and explain
the case studies proposed to test our formation system.

4.1 Representation and Evaluation Function
The solution vector representing the system configuration con-
sists of two parameters: the distance between robots (Drobot ) and
the number of ghosts (Nдhosts ) required for a stable system: ®x =
{Drobot ,Nдhosts }. We have used integer numbers for each pa-
rameter to simplify the operators as a precision of two decimal
places has proved to be enough in our preliminary tests. Conse-
quently, the range for Nдhosts was set to [1 − 4] while the range
for Drobot was calculated depending on the number of robots as
[Dдeometr ic − 4 × Dдeometr ic ] where Dдeometr ic is the value for
Drobot calculated by the geometric approach, shown in Table 1.
Although two parameters seem to be more appropriated to be opti-
mised using a brute force approach, the complexity of the search
space for the combinatorial optimisation associated to our problem
makes it suitable for being efficiently solved using a meta-heuristic.
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Figure 2: Final formations centred in one ghost when using the geometric distances to configure the robots. It can be seen that
10 and 15 robots achieve undesired equilibrium positions.

The evaluation of each case study is done according to the fitness
function F (®x) described by Equation 3. Since we want the optimisa-
tion algorithm to calculate a robust configuration, we will evaluate
28 different scenarios (M = 28) featuring different initial positions
for the robots, and calculate F (®x) using Monte Carlo [17]. Three
terms are included in the summation and a penalisation term is also
applied to the resulting value. The summation involves the shape of
the polygon P(®x) (Equation 4) which is the calculated through the
norm of the resulting vector after adding all the final positions of
the robots (P(®x) = ®0 for a perfect polygon), and the errors εmin (®x)
and εmax (®x), (equations 5 and 6) which represent the distances of
the closest and furthest robots from the desired Dcentre .

F (®x) =
1
M

M∑
j
[P(®x) + ϵmin (®x) + ϵmax (®x)] + ω(G − 1) (3)

P(®x) = ∥
N∑
i
®ri ∥ (4)

εmin (®x) =
N∑
i
|min[D(®ri , ®centre)] − Dcentre | (5)

εmax (®x) =
N∑
i
|max[D(®ri , ®centre)] − Dcentre | (6)

The penalisation term is the number of ghosts G weighted by ω
so that it penalises solutions that use more than one ghost as we

wanted to keep this number as low as possible. We have experimen-
tally setω = 0.1 according to the values observed in the other terms
of F (®x). The evaluation of the scenarios is done by simulating the
system configuration using the ARGoS simulator explained later in
Section 4.3.

4.2 Genetic Algorithm (GA)
We have designed a Genetic Algorithm (GA) which uses operators
for continuous optimisation, in order find the parameterisation of
the formation which keeps the desired polygonal shape as well
as the distance to central ghosts. Our decision is justified by the
complexity of the solution space as well as the long simulations
times required to evaluate the system configurations. The proposed
GA is based on an Evolutionary Algorithm (EA) [11]. EA simulates
processes present in evolution such as natural selection, gene re-
combination after reproduction, gene mutation, and the dominance
of the fittest individuals over the weaker ones. This is a generational
GA where an offspring of λ individuals is obtained from the popu-
lation µ, so that the auxiliary population contains the same number
of individuals (20 in our implementation) as the main population.

We have setup 3,000 evaluations as termination condition, and
chosen Binary Tournament [10] as selection operator, Single Point
Crossover [7] as recombination operator, Integer Polynomial Mu-
tation [8] as mutation operator, and an elitist replacement. The
rest of the parameters of GA are crossover probability Pc = 0.9
and mutation probability Pm = 1

L , all experimentally calculated to
obtain a good performance of the algorithm, balancing exploration
and exploitation.
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Figure 3: Robots’ initial position for the 100 optimisation scenarios per case study.

4.3 Case Studies
The proposed case studies consist of swarms of three, five, ten, and
fifteen robots. For each case study there are 100 different scenarios
where the robots begin to build the formation from different posi-
tions in the area. By doing so, we address a more general problem
and the calculated configurations are to be valid for many different
situations instead of just a few particular cases. Twenty-eight sce-
narios per case study were randomly selected for the optimisation
process. As described in Equation 3, the resulting fitness value of a
given configuration is calculated as the mean of the values of each
of the 28 scenarios. Then, once the best configuration is obtained
from the optimisation process, it would be tested on the rest (72) sce-
narios, individually, to study the robustness of the aforementioned
configuration, as explained in Section 5.3.

Figure 3 shows the distribution of the initial position of the
robots in the predefined 100 optimisation scenarios. Note that the
central area is left free as the robots are supposed to arrive from
the borders, far from the central point to be surrounded/observed.
These scenarios were modelled in ARGoS [20], a multi-physics
robot simulator which can simulate large-scale swarms of robots of
any kind efficiently. In our study, we simulate the E-Puck2 robots
using the Range and Bearing communication model provided by
ARGoS. Each robot will only receive a beacon from the others
which indicates their relative distance and angle. Although we have
worked without any specific length unit as the system can be easily
scaled, in ARGoS we have defined an area of 4x4 units and the
distances were calculated to fit this scale.

5 EXPERIMENT RESULTS
In this section we describe the experiment setup, the optimisa-
tion process performed using the GA, the testing phase where we
address the robustness of the achieved solutions, and finally the
validation of the results using real robots.

5.1 Experiment Setup
The optimisation process consisted in optimising 28 different scenar-
ios per case study using the proposed GA which was implemented
using the jMetalPy package [2]. We have performed 30 independent
runs in parallel using computing nodes in the HPC facilities of the
University of Luxembourg [24], equipped with Intel Xeon Gold
6132 @ 2.6 GHz and 128 GB of RAM. Since the realistic simulations

are costly in terms of execution time, the total optimisation time
(120 runs) was equivalent to 242.4 hours (about 10 days).

The controller of the E-Pucks2 robots was programmed so that
when there is a change in the moving direction, the robot would
stop their translation, rotate until it reaches the new orientation to
begin to advance again. The same behaviour was implemented on
the actual E-Pucks2 for the final validation of the results.

5.2 Optimisation Results
Table 2 shows the results of the optimisation process. Fitness values
are reported from each set of 30 runs, where it can be seen that
for three and five robots the GA has found perfect triangles and
pentagons respectively (fitness values equal to 0), while for ten
and fifteen robots there are still some minimal imperfections in the
final shapes (note that fitness values were also penalised due to the
use of multiple ghosts in these two cases, so the error is actually
around one hundredth). As mentioned, the GA has converged to
solutions using more than one ghost for ten and fifteen robots
and has succeeded where the geometric approach has failed. The
observed precision of GA also denotes that it was not falling into
local minima during the optimisation process. The next step was
to address the robustness of the achieved solutions by testing them
on 72 unseen scenarios per case study.

Table 2: Results of the optimisation process using the pro-
posed GA using 28 scenarios (Dcentre = 1.00).

Robots Drobot Nдhosts Fitness
(Best) (Best) Min. Avg. Max.

3 1.73 1 0.0000 0.0000 0.0000
5 1.63 1 0.0000 0.0013 0.0200
10 1.57 2 0.1100 0.1101 0.1104
15 1.57 4 0.3107 0.3114 0.3218

5.3 Robustness Analysis
In this section we test the best configuration for each case study on
a number of unseen scenarios to know how robust the solutions
provided by the GA are. Additionally, we have tested on the same
scenarios the geometric approach and another optimised solution
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Table 3: Results after testing the different approaches on 72 unseen scenarios. The best results are in bold.

Robots Approach Nдhosts
Drobot⋆ Dcentre⋆ Wilcoxon

p-valueMin. Avg. Max. Min. Avg. Max.

3
Geometric 1 1.719 1.729 1.740 0.992 0.999 1.005 identical
0-Ghosts 0 1.454 2.727 2.830 0.474 1.691 2.708 2.70 × 10−034

Optimised 1 1.719 1.729 1.740 0.992 0.999 1.005 —

5
Geometric 1 0.891 0.899 0.912 0.761 0.767 0.774 9.44 × 10−061

0-Ghosts 0 0.807 0.856 1.152 0.089 0.925 2.164 1.26 × 10−005

Optimised 1 1.169 1.176 1.187 0.995 1.003 1.009 —

10
Geometric 1 0.244 0.264 0.354 0.618 0.997 1.320 9.95 × 10−001

0-Ghosts 0 0.414 0.426 0.617 0.032 0.649 1.802 3.88 × 10−101

Optimised 2 0.597 0.606 0.631 0.982 0.992 1.001 —

15
Geometric 1 0.089 0.130 0.367 0.233 0.837 1.850 1.78 × 10−034

0-Ghosts 0 0.354 0.381 0.504 0.014 0.690 1.306 3.19 × 10−159

Optimised 4 0.403 0.409 0.423 0.982 0.996 1.009 —

Figure 4: Final positions of the robots (72 scenarios) when using the studied approaches: geometric, 0-ghosts, and optimised.
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Figure 5: Final formations achieved using the optimised configurations for the robots. All the circles are centred in the ghosts
and have a radius equal to 1.0, the desired Dcentre . Only one testing scenario is shown for clarity.

called 0-Ghosts. By doing so, we want to perform a sanity check
and to confirm that the use of central ghosts are essential to achieve
the final desired shapes.

Table 3 shows the results obtained after testing the proposed
approaches on 72 unseen scenarios per case study. It can be seen
that for three robots, the optimised results and the geometric calcu-
lation have obtained the same values as the relation of distances
between robots and the desired distance to the centre are geomet-
rically compatible. In these cases the measured distance Dcentre⋆

is practically the desired value, i.e. 1.0, while the measured dis-
tance between robots are the same values for both approaches, i.e.
Drobot⋆ ≃ 1.7.

Some differences appearedwhen using five robots. TheGeometric
approach, despite of achieving the desired shape, ended up with a
distance to the centre notably lower, i.e. Dcentre⋆ ≃ 0.77. However,
the optimised approach did achieve Dcentre⋆ ≃ 1.0with a minimal
deviation across the 72 scenarios. In the scenarios having ten and
fifteen robots, the optimised approach obtained the best results
(Dcentre⋆ ≃ 1.0) while the Geometric approach was unable to
obtain such a precise results, presenting a high variability for the
72 scenarios. The 0-Ghosts approach fails to form a valid shape in
most of cases and the measured values show the highest dispersion
among the three approaches. All these results have been statistically
tested using theWilcoxon p-value to confirm the existing high grade
of significance (p-values ≪ 0.01) except for the Geometric approach
for 10 robots, where the average value of (Dcentre⋆) is similar

to the Optimised approach. However, Geometric’s minimum and
maximum values evidence the lack of precision of this approach.

Finally, Figure 4 shows the final distribution of the robots for each
approach and case study. All the testing scenarios were included
so that there are 216, 360, 720, and 1080 robots depicted for each
case study, respectively. It can be seen how for three robots the
Geometric approach gets the desired result (all the robots are in the
circle’s perimeter), but for five robots the radius is clearly lower
than 1.0. There is a number of anomalies in the formed shapes for
ten and fifteen robots when using Geometric, as it was mentioned
when the numeric results were analysed. The final positions for the
0-Ghosts approach were completely chaotic as expected since there
is no central point (ghost) to organise the robots around it. Finally,
the optimised approach shows four circles of radius 1.00 centred in
the central point (0,0) where the ghost(s) were located.

Figure 5 shows the final formations achieved by the robots for
the four case studies (just one testing scenario for improving clarity)
when using the optimised configuration calculated by the GA. All
the robots are keeping the desired distance to the centre as well as
the almost perfect polygonal shape. It can be seen how the use of
multiple central ghosts plus the optimised distance between robots
have overcome the difficulties observed when using the geometric
approach, c.f. Figure 2.
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Figure 6: Initial and final positions plus the detailed trajectories followed by the E-Puck2 robots in six scenarios. Video avail-
able at https://adars.uni.lu/

5.4 Validation of Results
In order to validate the simulation results using a real world appli-
cation, we have developed a testing environment using E-Puck2
robots and a video camera (Logitech C925e) to detect the robots’
positions and simulate the communication layer, providing range
and bearing information.

The E-Puck2 robots, developed by GCtronic [9], are small devices
featuring a pair of wheels with encoders, proximity and time of fight
(frontal distance) sensors, accelerometers, 3D gyro, magnetometers,
VGA Camera, etc. The connectivity is done through USB, BLE, WiFi
or Bluetooth. Each robot is identified by a different Aruco [21]
code which is used to detect its position and orientation using
opencv [19]. These permit to calculate the range and bearing data
which are then provided to each robot’s controller. Then, the robot’s
wheels are controlled via WiFi link, being able to rotate a given
number of degrees or move forward at constant speed. As in the
simulations, the robots do not know their own absolute position
nor the others’ coordinates, just the relative range and bearing from
the other robots.

Figure 6 shows the initial position and the trajectories followed
by the robots in six different experiments using three and five E-
Pucks. In every case, there is a simulated ghost to define the central
point of the screen from where the robots keep the fixed distance
to the centre when forming the shape. We have linearly scaled the
distances obtained during the optimisation to adapt our solutions to
the real world experiment. Given the desiredDcentre = 25, we have
calculatedDrobot = ⌈25×1.73⌉ = 44 andDrobot = ⌈25×1.63⌉ = 41
for three and five robots, respectively. During the experiments we
have observed that the camera has temporary lost focus in some
occasions so that the robots’ positions were not updated constantly.
This has given us some insight into the robustness of our proposal
with respect to temporary communication loss, since the global
performance of the system was not affected and the final formation
was always achieved.

6 CONCLUSIONS AND FUTUREWORK
In this article we have proposed a novel system to control a swarm
of autonomous robots developing formation tasks, e.g. surround-
ing a rogue drone or observing asteroids. Our proposed algorithm
achieves stable robot formations around a predefined central point
and distance. We have proposed four case studies including three,
five, ten, and fifteen robots and also designed a genetic algorithm
to calculate the optimal parameters of the system, by evaluating 28
training scenarios per case study, in parallel. We have tested our
results on 288 unseen scenarios to simulate real world situations in
which the arriving positions of the swarm members are unknown.
By doing so, we have evaluated the robustness and reliability of
the configurations, where our proposal has achieved the desired
formation in 100% of scenarios. Finally, we have conducted experi-
ments with real robots to validate our simulation results by scaling
the obtained configuration values to real world magnitudes.

As a matter of future work we would like to address obstacles
and communication loss to challenge our formation algorithm and
evaluate the time elapsed by the robots to be at their final positions
as another metric to be taken into account. Since using several ghost
could be difficult to implement in a final application we are working
on replacing them by a parameterised repelling force to preserve
the formation stability. We wish to test formations following a
moving centre and dynamically add/remove robots to the swarm.
After that, once our formation system is mature, we plan to extend
our proposal to 3D space adding a third component to the forces
involved in the model and test it using simulations and actual quad
rotor drones.
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