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Abstract

In the search for non-Abelian anyonic zero modes for inherently fault-tolerant quantum
computing, the hybridized superconductor – quantum Hall edge system plays an im-
portant role. Inspired by recent experimental realizations of this system, we describe it
through a microscopic theory based on a BCS superconductor with Rashba spin-orbit
coupling and Meissner effect at the surface, which is tunnel-coupled to a spin-polarized
integer or fractional quantum Hall edge. By integrating out the superconductor, we
arrive at an effective theory of the proximitized edge state and establish a qualitative
description of the induced superconductivity.

We predict analytical relations between experimentally available parameters and
the key parameters of the induced superconductivity, as well as the experimentally
relevant transport signatures. Extending the model to the fractional quantum Hall case,
we find that both the spin-orbit coupling and the Meissner effect play central roles. The
former allows for transport across the interface, while the latter controls the topological
phase transition of the induced p-wave pairing in the edge state, allows for particle-hole
conversion in transport for weak induced pairing amplitudes, and determines when
pairing dominates over fractionalization in the proximitized fractional quantum Hall
edge.

Further experimental indicators are predicted for the system of a superconductor
coupled through a quantum point contact with an integer or fractional quantum Hall
edge, with a Pauli blockade which is robust to interactions and fractionalization as a key
indicator of induced superconductivity. With these predictions we establish a more solid
qualitative understanding of this important system, and advance the field towards the
realization of anyonic zero modes.
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CHAPTER 1
Introduction

“The old particles were the particles of the problem, and
the new particles are the particles of the solution.”

Jainendra Jain on quasiparticles,
in Composite Fermions (2007)

In the theory of condensed matter physics one applies quantum mechanics to systems
consisting of a number of atoms on the order of Avogadro’s number NA ∼ 1023. Since
quantum mechanical descriptions become notoriously complicated for any system of
more than a couple of particles, some clever ideas are needed to succeed. For systems
whose characteristic behavior arises from the collective dynamics of many strongly
interacting particles, one particularly valuable idea is that of the quasiparticle. Instead of
describing the collective dynamics in terms of each individual constituent particle, one
can sometimes arrive at a simpler description by assigning a quasiparticle to describe
just the collective behavior. Perhaps the simplest case of this is the phonon, which
embodies the vibrations of an ion lattice, while the description of a missing electron
in the Fermi sea as a quasiparticle (hole) lies at the very foundation of semiconductor
theory.

Among the more exotic examples, we find the part electron, part hole quasiparticle
characteristic of superconductivity [1], and the Laughlin quasiparticle of the fractional
quantum Hall (QH) effect, which can be accurately described as a fraction of an electron
[2]. This includes the accumulation of a fractional phase under exchange [3–5], i.e.

ψ(x1, x2) = eiϕψ(x2, x1),

with ϕ a fraction of the fermionic phase ϕF . While all actual particles must be either
bosons with ϕB = 0 or fermions with ϕF = π, the fractional exchange phase lies
between these cases in an example of the more general exchange statistics of anyonic
quasiparticles, or anyons. As shown by Leinaas and Myrheim [6], for particles in one
and two dimensions any exchange phase is permitted, hence the “any” in anyon. Actual
particles must exist in three dimensions, but quasiparticles are under no such obligation.

An important distinction is that between Abelian and non-Abelian anyons. In group
theory, these labels refer to groups whose binary operation commutes (Abelian) or does
not commute (non-Abelian). Similarly, there are Abelian anyons whose exchange simply
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Figure 1.1: A system of counter-propagating fractional QH edge states with a gap induced by either
backscattering or superconductivity. At the domain wall between these topologically distinct gaps, the
system is predicted to host non-Abelian zero modes (marked with stars) with generalized exchange
statistics. Reproduced from Ref. [16].

accumulates a phase, meaning exchanges commute, and non-Abelian anyons whose
exchange amounts to a rotation within a degenerate subspace, meaning exchanges
generally do not commute [7]. The experimental realization of non-Abelian anyons
has been a topic of widespread interest since it was predicted that certain non-Abelian
systems could form inherently fault-tolerant qubits [7,8]. In addition to academic efforts,
the realization of qubits through non-Abelian anyons is currently also a key element in
major industrial pursuits of large-scale quantum computing [9].

The main system of interest in the pursuit of non-Abelian anyons is one hosting
domain walls between topologically distinct regions with gapped dispersions [10, 11].
During the transition from one gapped system to another, the topological distinction
forces a closing of the gap at the border between the systems. This implies the existence
of localized degenerate states with zero energy at this border, also known as zero modes.
These are protected from noise and perturbations, since breaking the degeneracy would
require a breakdown of the topological distinction between the two regions.

To fully localize the zero modes, it is useful to use systems which are effectively
one-dimensional, and whose domain walls are point-like. A useful source of such states
is the QH effect, where a strong magnetic field causes a two-dimensional conductor
to become insulating in the bulk with a persistent, chiral current running around the
edge. This edge state is effectively one-dimensional and extremely robust to impurities
in the material. Due to its chirality, a gap can only be induced in the coupling of two
counter-propagating edges states, which can still be separated by a narrow trench. The
topological nature of the gap can then be controlled by what material is in that trench.

In the simple case that they are separated by vacuum, tunneling across the trench
will allow the states to backscatter, effectively hybridizing the two chiral states. The
induced gap can be topologically distinguished from that of a superconductor (SC),
which is due to the hybridization of particle and hole states. Thus, if we can make a
segment of the QH edge superconducting, we would expect a zero mode between the
superconducting region and the backscattering region. The superconducting QH edge
can be achieved by placing a SC in the trench and taking advantage of the proximity
effect, where the surface of the normal conductor near the interface experiences induced
superconductivity due to its proximity to the SC. The result is a hybridization of the SC
and normal conductor states, where we say that the normal conductor is proximitized.
This effect has been theoretically known for decades [12], but the introduction of a strong
magnetic field in order to induce the QH effect in the normal conductor complicates
matters [13–15].
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The system we have just described, and which is sketched in Fig. 1.1 for fractional
QH edges, has indeed been predicted to host non-Abelian zero modes at the domain
walls [16]. For edge states caused by the integer QH effect, these zero modes correspond
to Majorana fermions, while for edge states caused by the fractional QH effect, the
degeneracy increases, and the zero modes correspond to the more general parafermions
[17]. Only recently has such systems become experimentally available, with fabrication
techniques having improved enough that it is now possible to interface materials where
a clear coexistence of superconductivity and QH effect is observed, along with transport
across the interface [18–27]

The main focus of this thesis is the development of a theory which predicts the
experimentally observed proximity effect from well-understood models of the SC and
the QH effect in a framework which applies to both the integer and fractional QH
effects. In addition to that, we will present various experimental signatures of induced
superconductivity in a fractional QH edge, something which was only very recently
achieved [27].

The system we will treat is that of a single edge state coupled to a SC, which in
itself does not host any zero modes, but the understanding of which is an important
element in understanding the composite system hosting zero modes. We will analytically
predict how the experimental signatures of the proximity effect depends on parameters
characterizing the constituent systems, such as the order parameter of the SC and
the Landau level separation in the QH system. By doing this, we seek to further the
understanding of how the hybridized SC-QH edge state depends on the presence of
various underlying mechanisms including spin-orbit coupling and the Meissner effect,
and to contribute with a deeper qualitative understanding of the problem, adding
to the highly illuminating numerical and phenomenological treatments found in the
literature [28–32].

Outline

The thesis is structured as follows.
In Chapter 2 we introduce most of the background material needed to follow the

thesis. The integer and fractional QH effects are described, and the BCS model in the
presence of a strong magnetic field is discussed.

In Chapter 3 the model of the integer QH-SC interface is presented, and reduced to
an effective theory of the proximitized integer QH edge by integrating out the SC. The
effective model is discussed with a focus on particle-hole mixing.

Chapter 4 consists of transport calculations involving the effective model. A carefully
derived scattering formalism for particles and holes is used to predict the conditions for
negative downstream resistance, which is a key experimental indicator of the proximity
effect.

Chapter 5 extends the effective model to the case of the fractional QH edge state
through the framework of a Tomonaga-Luttinger liquid. The effective pairing Hamilto-
nian is derived in terms of the bosonic fields of the Tomonaga-Luttinger liquid, and the
derivation of transport signatures is sketched.

In Chapter 6 we present work on the different system of a SC and a QH edge
contacted through a point contact. A phenomenological model from the literature is
used to derive the current and noise characteristics of the system.

Finally, in Chapter 7 we conclude on the work presented.
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CHAPTER 2
Macroscopic quantum states

The main system of concern in this thesis consists of two elements: a material exhibiting
the quantum Hall (QH) effect, and a superconductor (SC). Both of these are examples
of “macroscopic quantum states”, in the sense that they are both expressions of a
macroscopic number of electrons condensing into a degenerate ground state at low
temperatures.

To construct a model describing the hybridization of these two systems, we will
start by modeling them separately, and then investigate the consequences of coupling
them. This chapter will summarize the background material required to construct the
separate models. In the case of the QH system, we will start by considering a finite
two-dimensional electron gas (2DEG) in a strong magnetic field, which is a simple
model of an integer QH system with a few important subtleties. The SC model will be
based on the BCS model [36], which will be discussed in the context of an externally
applied magnetic field. The models we present will generally be assumed to be at zero
temperature.

2.1 A two-dimensional electron gas in a strong magnetic field

The quantization of conductance in a 2DEG in a strong magnetic field at low temper-
atures due to the QH effect is a startling example of quantization of a macroscopic
observable robust to material impurities. So robust and exact is this quantization that it
plays a fundamental role in the new SI unit definitions implemented in 2019 [37].

In this section we derive the quantum mechanical origin of the integer QH effect, and
introduce important concepts and quantities for the following chapters. The fractional
QH effect will not be treated until Chapter 5. Further reading on the integer QH effect
can be found in sections 3.1, 3.2 and 14.1 of Ref. [38].

Let us first consider the case of an infinite plane of free electrons with a strong
perpendicular magnetic field pointing out of the plane. We assume the field is strong
enough to polarize the spins of the electrons in the up direction. The Hamiltonian of a
non-relativistic electron with charge −e moving in two dimensions in a perpendicular
magnetic field of positive strength B0 is given by minimal coupling

H2DEG =
1

2me

(
q+ eA

)2
, (2.1)

5



where the square is in the sense of a dot-product, me is the electron mass, q is the
two-dimensional momentum operator, and A is the vector potential. Note that we have
chosen units where ℏ = c = 1. Let the magnetic field be uniform such that ∇×A = B0ez ,
where ez is the unit vector along the z-axis. We can freely choose the gauge of the vector
potential, but the simplest choice is a gauge which reflects the geometry of the physical
system. Since we will later introduce a straight edge, we will choose the Landau gauge

A = −B0(y − y0)ex, (2.2)

which leaves the Hamiltonian translationally invariant along the x-axis. The constant
y0 represents a remaining gauge freedom which will be fixed later. In this gauge, the
x-momentum qx is a good quantum number, and we can replace the operator with the
eigenvalue in the Hamiltonian. We define the magnetic length

ℓ
def
=

√
1

eB0
, (2.3)

which is the characteristic length scale of the system, and rewrite the Hamiltonian as

H2DEG =
1

2m

[
q2y +

(
qx −

y − y0
ℓ2

)2
]
. (2.4)

This is the Hamiltonian of a harmonic oscillator along the y-axis with frequency

ωc
def
=

eB0

me
=

1

ℓ2me
, (2.5)

which is also known as the cyclotron frequency. The evenly spaced eigenvalues of the
Hamiltonian

En =
(
n+

1

2

)
ωc, n = 0, 1, 2 . . . (2.6)

are known as the Landau levels. An important characteristic of them is the lack of
dependence on qx, meaning that for a macroscopic number of allowed values of qx, each
level has a macroscopic degeneracy in qx.

We can understand the role of the quantum number qx better by looking at the
Hamiltonian in Eq. (2.4). Here, qx enters into the second term which acts as a harmonic
potential centered around the guiding center coordinate

Ygc
def
= qxℓ

2 + y0. (2.7)

The eigenfunctions of the Hamiltonian are [38],

ψn,qx(x, y) =
1√

2nn!(πℓ2)1/4
e
iqxx− 1

2

(
y−Ygc(qx)

ℓ

)2

Hn

(
y − Ygc(qx)

ℓ

)
, (2.8)

where Hn is the nth Hermite polynomial. As we might have expected, they are plane
waves along the x-dimension and exhibit Gaussian localization around Ygc in the y-
dimension. The intertwining of a state’s y-position and x-momentum qx will play an
important role in our modeling of the edge interface.
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Figure 2.1: Left: Numerical solutions to Eq. (2.9) with a hard wall at y = 0 (black line) for n = 0, 1, 2 at
Ygc = −1ℓ (edge state) and Ygc = 5ℓ (bulk state). The dotted lines indicate the corresponding harmonic
potential. Right: Dispersion relation corresponding to the numerical solutions for n = 0 (blue circles)
with linear interpolation. See also the supplemental material of Ref. [41].

2.2 Edge states

Let us now introduce an edge along the x-axis at y = 0, letting the 2DEG take up the
semi-infinite plane of y > 0, with vacuum in the rest of space. In the laboratory, the 2DEG
would naturally be finite in all dimensions, but we can assume that the dimensions of
the 2DEG are much larger than ℓ, meaning the edges will not directly affect each other.
We modify the Hamiltonian to include an edge potential, and rewrite it in terms of ℓ and
ωc,

H2DEG =
ωc
2

[
(qyℓ)

2 +
(y − Ygc)

2

ℓ2

]
+ Vedge(y), (2.9)

where the edge is a hard wall

Vedge(y) =

{
0 for y ≥ 0,

∞ otherwise.
(2.10)

The general problem of a harmonic potential with a barrier has been solved numerically,
while the specific problem of an infinite barrier at the center of a harmonic potential
(corresponding to Ygc = 0) has been solved analytically [39, 40]. The solutions to the
latter problem turn out to be the odd-n harmonic oscillator states of Eq. (2.8), which all
have a node at the center of the potential, and thus obey the boundary condition of the
hard wall.

We can develop an intuitive understanding of the effect of the edge by numerically
calculating the y-dimension eigenvalues and eigenfunctions using the renormalized Nu-
merov method, see Appendix A. As shown on the left of Fig. 2.1, the bulk eigenfunctions
are simply the harmonic oscillator eigenfunctions, while the introduction of a hard edge
"squeezes" the eigenfunctions and increases their energy. The energy eigenvalues for
different values of qx (or equivalently, different Ygc) are shown on the right.

In other words, the presence of an edge induces a smooth, upwards curve in energy
eigenvalues for states whose guiding center coordinate approaches the edge. Due to
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Figure 2.2: An example of an experimental setup for measuring Hall conductance. Leads 1 and 3 are
voltage leads, while leads 2 and 4 are current leads.

the connection between Ygc and qx, the same upwards curve is found in the dispersion
En(qx). If we consider the group velocity vg = ∂qxE(qx), we see a remarkable feature
of the quantum Hall effect: the bulk is insulating, vg = 0, while the edge states carry a
persistent current due to them all having vg < 0. Since the above analysis applies to all
sides of a real 2DEG, this current loops back around, and the material naturally remains
charge neutral. However, this edge current has the peculiar feature that the electrons
move without resistance, even in the presence of disorder. This ballistic transport
of particles can be explained by the fact that for energies between the Landau levels
there are no modes for the electron to backscatter into when they encounter impurities.
The bulk allows no states with this energy, and the counter-propagating states are
macroscopically far away, on the other side of the 2DEG. As we will see, this chiral
transport of ballistic electrons around the edge of the 2DEG is what gives rise to the
iconic quantization of conductance in the quantum Hall effect.

2.3 Transport through a QH system

Consider the setup presented in Fig. 2.2, where a 2DEG in a strong magnetic field is
contacted with four terminals, with an applied current I passing from terminal 4 to
terminal 2. Assuming that the current passes through M ballistic channels, we have the
relation [42]

I =M
e2

h
(V4 − V2), (2.11)

where we have re-introduced the Planck constant for clarity. We can count the number
of channels by counting the number of filled Landau levels: each filled Landau level
adds one edge mode, with higher levels adding modes deeper in the bulk. Labeling the
number of filled Landau levels as ν, also known as the filling factor, we conclude that the
transversal resistance, or Hall resistance, as measured between terminals 1 and 3 will be
R13 = (V3 − V1)/I = h/(νe2), while the longitudinal resistance as measured for example
between terminals 2 and 3 must be zero, R23 = 0, due to the ballistic nature of the edge
channels. Experimentally, this is indeed what is seen at very low temperatures (∼ 1K)
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Figure 2.3: Measurements of longitudinal and transverse voltages for a GaAs film showing QH plateaus
at integer filling factors and temperature ∼ 1K. Reproduced from Ref. [44].

and at strong magnetic fields, see Fig. 2.3. At higher temperatures, the quantization
is lost due to electron-phonon scattering effects [43]. A more detailed discussion of
transport through a QH system can be found in Chapter 3, where we will predict how
these transport characteristics behave in the presence of superconducting correlations.

For samples of very high mobility and at very high magnetic fields [43], plateaus
beyond the integer QH plateaus become visible, see Fig. 2.4. These occur at filling
factors which are rational fractions, such as ν = 1/3, and are clearly not accounted for
by the theory presented thus far. Indeed, it turns out that one must allow for strong
correlations between electrons to account for these fractional plateaus, as modeled by
the wave function proposed by Laughlin [45], the Chern-Simons theory proposed by
Wen [46] and beyond [38]. To an extent, these fractional states can be understood as
collective electron states best described through fractional quasiparticles, with fractional
charge and fractional exchange statistics. This makes the fractional QH edge an exciting
candidate in the pursuit of parafermions, which can “borrow” the rich structure of the
fractional edge state to go beyond the Majorana fermion.

Since we will not concern ourselves with the fractional QH edge until Chapter 5,
further discussion on the matter can be found there.

2.4 The BCS superconductor model

Among the startling effects of materials at extremely low temperatures, perhaps the
most well-known is superconductivity. For a wide range of materials, sufficiently strong
cooling makes their electric resistance drop to zero, and sees them perfectly expelling
any external magnetic fields. Such behavior is predicted in materials where the repul-
sive Coulomb interaction among electrons is competing with an attractive interaction,
typically from electron-phonon coupling. At low temperatures, the attractive interaction
wins out, causing a phase transition into superconductivity. This phase transition can be
understood as electrons pairing up to form bosonic Cooper pair states, which can then
condense into a degenerate ground state. Further reading on superconductivity can be
found in Refs. [1, 47].
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Figure 2.4: Measurements of longitudinal and transverse resistance for a GaAs/AlGaAs heterojunction
showing QH plateaus at fractional filling factors. Reproduced from Ref. [43].

We will be modeling a SC exhibiting conventional superconductivity, where the
attractive interaction between electrons is mediated primarily by phonons. This type
of SC can be accurately modeled by the theory developed by Bardeen, Cooper and
Schrieffer (BCS) [36]. They showed that by considering an interacting electron system
under a mean-field approximation, superconductivity can be accounted for using the
effective non-interacting second-quantization Hamiltonian

HBCS =
∑

k,σ

[
ϵkc

†
k,σck,σ +

(
∆0c

†
k,↑c

†
−k,↓ + h. c.

)]
, (2.12)

where ck,σ is the annihilation operator of an electron with momentum k and spin σ with
kinetic energy

ϵk =
k2

2ms
− µs, (2.13)

where ms is the mass of the superconducting electrons and µs is the chemical potential.
The complex superconducting order parameter ∆0 generally depends on momentum,
but in the simplest model it is assumed to be constant. At non-zero temperatures, the
parameter indicates the phase of the system, only attaining non-zero values below a
critical temperature.

An important signature of superconductivity is the mixing of particles and holes. For
a non-superconducting system, we can write the free electron Hamiltonian as a free hole
Hamiltonian by exchanging the electron fields and exploiting the symmetric summation
over k

H =
∑

k,σ

ϵkc
†
k,σck,σ =

∑

k,σ

−ϵ−kc−k,σc
†
−k,σ + const. (2.14)
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Figure 2.5: The dispersion of the BCS Hamiltonian in Eq. (2.18) for zero ∆0 (blue) and non-zero ∆0

(black). Without superconductivity, the particle dispersion (full blue line) and hole dispersion (dashed blue
line) are distinct. Non-zero ∆0 opens an energy gap and hybridizes the particle and hole dispersions.

If we interpret c−k,σ as the creation operator of a hole in the Fermi sea with kinetic energy
−ϵ−k, we see that describing the system in terms of holes and describing it in terms of
particles are equivalent approaches up to a constant, which we can ignore as long as the
energy scale is not fixed. Now let us diagonalize the BCS Hamiltonian Eq. (2.12) through
the Bogoliubov transformation

(
γk,1
γ†−k,2

)
=

(
u∗k −vk
v∗k uk

)(
ck,↑
c†−k,↓

)
, (2.15)

where uk, vk are complex numbers with amplitudes,

|uk|2 =
1

2


1 +

ϵk√
ϵ2k + |∆0|2


 , (2.16)

|vk|2 =
1

2


1− ϵk√

ϵ2k + |∆0|2


 , (2.17)

and phases such that arg(uk) + arg(vk) = arg(∆0). This results in the diagonal Hamilto-
nian

HBCS = ±
∑

k,j=1,2

√
ϵ2k + |∆0|2 γ†k,jγk,j . (2.18)

The dispersion EBCS(k) = ±
√
ϵ2k + |∆0|2 is plotted in Fig. 2.5 both for the superconduct-

ing and non-superconducting cases, with the negative dispersion corresponding to an
exchange of the γ operators. We see that the quasiparticles given by the operator γk are
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Figure 2.6: An electron wave impinging from the N side on an NS interface at energies within the SC gap
is either reflected normally, or reflected as a hole through Andreev reflection. Reproduced from Ref. [1].

superpositions of particles and holes. Specifically, for |∆0| = 0, we see that

γk,1 ∝
{
ck,↑ for ϵk > 0,

c†−k,↓ for ϵk < 0.
(2.19)

That is, if we define the amplitude k = |k| and the Fermi momentum kF =
√
2msµs,

the operator γ†k creates a hole if k < kF and creates an electron if k > kF . However,
for non-zero ∆0 we see a smooth interpolation between the two cases, with perfect
mixing between electron and hole at k = kF . As we can see in Fig. 2.5, the hybridization
between electron and hole states leads to avoided crossings between the particle and
hole dispersions, opening up an energy gap of width |∆0| from zero. Throughout the
thesis, the order parameter ∆0 may be referred to as the SC gap or the pairing amplitude,
depending on context.

At energies within the gap there are no single electron states. All the electrons have
paired up and condensed into a collective state, and it requires an energy of at least
2|∆0| to break up such a Cooper pair. At energies E > |∆0| we find quasiparticle states
consisting of electron/hole mixtures, and for E ≫ |∆0| the states are almost entirely
electron-like.

2.4.1 The NS junction

To accurately model transport between a normal system (N) and a superconducting
system (S), i.e. across an NS junction, the quasiparticle nature of the SC excitations must
be taken into account. In the framework of single particle mechanics, such transport was
modeled by Blonder, Tinkham and Klapwijk [48] using a generalized semiconductor
model. An important result from this work is the process of Andreev reflection. At
energies within the gap, a single electron wave function impinging from the N side onto
an NS junction is forbidden from transmitting into the superconductor by the lack of
single electron states. It does, however, still transmit evanescently into the SC, which
results in a non-zero amplitude of being reflected as a hole rather than an electron in
a process known as Andreev reflection, see Fig. 2.6. The fact that the process changes
the total charge on the N side by 2e hints at the physical interpretation: the impinging
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electron is absorbed into the SC condensate along with another electron, forming a
Cooper pair.

The amplitude of this process can be found by wave-matching across the interface,
i.e. by solving the Schrödinger equation on both sides of the interface and requiring
continuity of the wave function [49]. For example, with an interface at y = 0 and the
wave functions ψ±(y) in the y > 0 and y < 0 regions, respectively, continuity of the
wave function requires

ψ+(0) = ψ−(0). (2.20)

This method has been applied to the case of a SC-QH interface in previous work [13, 14],
but since this thesis considers a second quantization model of the interface, the method
does not apply. It does, however, form the basis of the numerical Numerov method used
to calculate the edge dispersion of the QH edge, see Fig. 2.1 and Appendix A, and will
play an important role in Chapter 4 where we will consider the transport across an NSN
junction, where a superconducting segment is found between to normal segments. As
discussed in that chapter, however, under certain boundary conditions Eq. (2.20) does
not hold, but is superseded by the requirement of continuity of the probability current
across the junction, as implied by the unitary evolution of quantum states [50].

2.5 The London theory of SC electrodynamics

In the presence of an externally applied magnetic field B0ez , a SC will expel the field
such that no flux penetrates it in a case of perfect diamagnetism. For modeling the bulk
of a BCS SC, one usually does not take magnetic effects into account, but since we will be
considering the interface between a SC and a QH edge state, it is important to accurately
model the surface of the SC. To do this, we must take the effects of the externally applied
magnetic field into account, which we will do through a phenomenological theory of the
electrodynamics of the SC, namely London theory [1]. Under the assumption that the
electrons in the SC form a normal fluid with uniform density nn and a superfluid with
uniform density ns, which is insensitive to scattering, the theory predicts the magnetic
field

B(y) = B0e
y/λez (2.21)

for a SC taking up the half-space y ≤ 0, where λ is the London penetration depth

λ
def
=

√
ms

4πe2ns
. (2.22)

In other words, the magnetic field is exponentially suppressed inside the SC with a
characteristic length scale λ. To account for the magnetic field in the SC Hamiltonian,
we will consider the vector potential A = AL in the London gauge [51],

AL(y) = −B0λe
y/λex (2.23)

which is the unique gauge for which

∇ ·AL = 0, (2.24)
AL = 0 in the SC bulk, (2.25)

AL · n = 0, (2.26)
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where n is the normal vector to the SC surface. This gauge has the unique property that
AL is directly related to the supercurrent density js through the London equation

js = −nse
2

ms
AL. (2.27)

From this we can see that the magnetic field induces a non-zero supercurrent at the SC
surface, which vanishes exponentially with the magnetic field into the SC. This is the
Meissner current which is responsible for the expulsion of the magnetic field.

We can now write up the position space BCS Hamiltonian in the presence of a
magnetic field,

HBCS =
∑

σ

∫
d3r

[
c†σ(r)

(
[−i∇+ eA]2

2ms
− µs

)
cσ(r) +

(
∆0c

†
↑(r)c

†
↓(r) + h. c.

)]
, (2.28)

where cσ(r) annihilates an electron with spin σ at a point r. At this point, it is practical to
express the Meissner current in terms of the supercurrent carrier momentum ks, which
relates to the current density as [47]

js =
nse

ms
ks, (2.29)

which means ks = −eAL. Specifically, Eq. (2.23) implies

ks(y) = eB0λe
y/λex, (2.30)

for y ≤ 0.

2.5.1 Surface current

Let us assume that we wish to describe the surface current in a region where the vector
potential varies very slowly, i.e. that it changes on a length scale greater than the size of
a Cooper pair, and thus the Cooper pair experiences an approximately constant vector
potential. Concretely this would correspond to λ ≫ ξ, where the superconducting
coherence length ξ is the characteristic length scale of a Cooper pair [47]. Then we can
approximate A(y) ≃ A(0) near the edge, corresponding to a constant supercurrent
momentum ks = eB0λex. Under this approximation, the Hamiltonian in Eq. (2.28)
reduces to

Hsurface
BCS =

∑

σ

∫
d3r

[
c†σ(r)

(
[−i∇− ksex]

2

2ms
− µs

)
cσ(r) +

(
∆0c

†
↑(r)c

†
↓(r) + h. c.

)]
.

(2.31)

Temporarily re-introducing hats to mark operators, the x-component of the kinetic
energy term in the Hamiltonian is

ĉ†σ(x)

(
(k̂x − ks)

2

2ms
− µs

)
ĉσ(x). (2.32)

Let us then define the unitary transformation Û(x) = e−iksx̂ such that Û †Û = 1. We can
then write Eq. (2.32) as

ĉ†σ(x)Û
†Û

(
(k̂x − ks)

2

2ms
− µs

)
Û †Û ĉσ(x). (2.33)
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Expanding Û(x) we find

Û †(k̂x − ks)Û = k̂x − ks + [−iksx̂, k̂x − ks] +
1

2!
[−iksx̂, [−iksx̂, k̂x − ks]] + . . . , (2.34)

where [·, ·] is the commutator. Applying the canonical commutator [x̂, k̂x] = i, we see
that all the nested commutators in the expansion drop out, and we find

Û(k̂x − ks)Û
† = k̂x − ks − iks[x̂, k̂x] = k̂x. (2.35)

Such a Û is known as a shift operator, and we are using the fact that the position operator
x̂ is the generator of momentum translation, much like how momentum is the generator
of position translation [50]. Once again dropping the hats, we can perform the unitary
transformation cσ(r) → U(x)cσ(r), after which the Hamiltonian Eq. (2.28) becomes

Hsurface
BCS =

∑

σ

∫
d3r

[
c†σ(r)

(
− 1

2ms
∇2 − µs

)
cσ(r) +

(
∆0e

2iksxc†↑(r)c
†
↓(r) + h. c.

)]
.

(2.36)

In other words, the current can be described through a plane wave factor on the SC
pairing amplitude [47, 52]. Assuming translational invariance in x and z, as well as
approximate translational invariance along y < 0, we can label the states by their
momentum and Fourier transform the Hamiltonian to find

Hsurface
BCS =

∑

δk,σ

[
ϵks+δkc

†
ks+δk,σ

cks+δk,σ +
(
∆0c

†
ks+δk,↑c

†
ks−δk,↓ + h. c.

)]
, (2.37)

where we have changed variables to δk = k− ks. This makes it clear that the Meissner
current corresponds to pairing at the surface occurring between electrons with a total
center-of-mass momentum of 2ks.

2.5.2 Doppler shift

Diagonalizing Eq. (2.37) yields the dispersion

Ecurrent,±(k) =
k · ks
ms

±
√
|∆0|2 + (ϵk + Es)

2, (2.38)

where we have defined the supercurrent energy Es = k2s/(2ms) which is usually small
compared to µs and thus often ignored [47]. The dispersion is sketched in Fig. 2.7 with
negative ks. Comparing to Eq. (2.18), we see that the current has an important effect
on the dispersion, namely the introduction of a term which is linear in k. This term is
known as the Doppler shift, and predicts the breakdown of superconductivity at applied
magnetic fields beyond a critical field value Bc corresponding to high currents [53]. If
we assume that ks ≪ kF , we can ignore Es and approximate the minimum energy of an
excitation into the upper band as found at k = kF , such that

min
(
Ecurrent,+(k)

)
= |∆0| −

kFks
ms

. (2.39)

When this minimum excitation energy is zero or negative, there are single particle states
at all energies, and superconductivity has broken down, see Fig. 2.7. In particular, at
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Figure 2.7: The current induced by a magnetic field tilts the dispersion at the SC surface through the
Doppler shift, see Eq. (2.38), with sufficiently large fields causing the gap to close as shown. The blue
lines indicate the ∆0 = 0 case, with a full line for the electron dispersion, and a dashed line for the hole
dispersion. The black line indicates the ∆0 ̸= 0 case.

this point single electron / hole tunneling into the SC would be allowed for any energy,
suppressing Andreev reflection. To avoid this breakdown, we must then assume

ks <
|∆0|ms

kF
, (2.40)

which guarantees a gap in the SC. This corresponds to assuming that the magnetic field
is less than the critical field, B0 < Bc [47].

2.6 Summary

To model the hybridized SC-QH edge system, we first establish separate models for the
QH edge and the SC. The integer QH state is derived from a 2DEG in a strong magnetic
field, and we show that in the Landau gauge, the eigenstates are plane waves with
well defined momentum qx along the interface, and harmonic oscillator states in the
y-direction, with the two dimensions connected through the fact that the guiding center
coordinate Ygc of the harmonic oscillator state is determined by the x momentum qx.
We show that introducing edges to the 2DEG causes chiral edge states to form, with
backscattering suppressed by the macroscopic distance between the edges.

The transport characteristics of an QH system, i.e. quantized Hall resistance and zero
longitudinal resistance, are described in terms of ballistic transport through these edge
states. In later chapters we will see that the introduction of a superconductor changes
these characteristics.

An s-wave SC is described through the BCS model, and the eigenstates are shown
to be mixtures of particle-like states and hole-like states. This mixing will be the main
mechanism behind induced superconductivity in the QH edge, as well as the main
experimental indicator. At the SC-QH interface, transport can occur due to Andreev
reflection, which causes an impinging electron to reflect as a hole.
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The presence of a strong magnetic field induces a surface current in the SC due to
the Meissner effect. This is described through the London theory of SC electrodynamics,
and it is shown that it can be accounted for by considering the electron pairing at the SC
surface to happen for electron states with a center-of-mass momentum ks = eB0λ. This
causes a Doppler shift of the gapped SC dispersion at the surface, from which we deduce
a limit on the SC momentum beyond which quasiparticle tunneling takes the place of
Andreev reflection. Since we wish to model Andreev reflection, we will assume that
the supercurrent momentum is beneath this limit, which will let us avoid unphysical
singularities in the theory in the next chapter.

In the next chapter, the two systems will be coupled and an effective theory of the
integer quantum Hall edge state with induced superconductivity will be derived.
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CHAPTER 3
Induced superconductivity in the

integer quantum Hall state

We now turn our attention to the system sketched in Fig. 3.1 where a superconductor
(SC) and a quantum Hall (QH) edge state hybridize through the proximity effect. We
can understand the effect in a semiclassical picture, where electrons form skipping orbits
along the edge of the two-dimensional electron gas (2DEG), and are converted into
holes at the SC-QH interface due to Andreev reflection. In a more accurate quantum
mechanical model, the QH edge state is a plane wave along the SC-QH interface, with
the SC inducing superconducting correlations into the edge state resulting in mixing
of particle and hole states [13, 14]. In the previous chapter, we summarized the general
theory behind an integer QH edge and a SC surface in the presence of a magnetic field.
In this chapter we introduce the specific models of the two systems we will use to
develop an effective theory of the QH edge with induced SC correlation. We introduce
a specific analytical approximation of the QH edge dispersion, discuss the presence
of spin-orbit coupling (SOC) at the SC surface, and couple the two systems through a
tunneling coupling. We then integrate out the SC fields to arrive at an effective theory of
the proximitized QH edge.

B0

Semiclassical Quantum mechanicala) b)

x
y

SC

QH

B0

SC

z

QH

Figure 3.1: A sketch of the QH-SC interface. a) In the semiclassical picture, electrons perform skipping
cyclotron orbits along the edge of the QH due to the applied magnetic field. At the QH-SC interface, the
electrons can reflect into holes through Andreev reflection. b) In the quantum mechanical picture, the QH
edge state is a plane wave state oscillating between electron-like and hole-like states due to hybridization
with the SC surface state. This may result in a hole being emitted at the end of the interface.
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3.1 The QH edge dispersion

We consider again the Hamiltonian of a free electron in a magnetic field with vector
potential A, see Eq. (2.1), but now with an added constant energy shift U0,

H2DEG =
1

2me

(
q+ eA

)2
+ Vedge(y)− U0, (3.1)

where Vedge(y) models a hard wall at y = 0. The energy shift U0 allows us to explicitly
account for constant shifts induced by the SC as we will see later. To develop a many-
body Hamiltonian of the total SC-QH system, we need to transform this Hamiltonian
into a second quantization Hamiltonian. Since the integer QH effect hosts quasi-one-
dimensional spin-polarized electron edge states, we can model the lowest filling factor
edge state through the Hamiltonian

Hedge =
∑

q

Eqψ
†
qψq, (3.2)

where ψq is the annihilation operator of a spinless one-dimensional QH edge electron
with momentum q, and Eq is the corresponding dispersion. As discussed in Section 2.2,
this dispersion does not have an exact analytical form, but we can approximate it with
one. To do this, we will first fix the gauge of the total vector potential of the system. In
the SC region y < 0, we will use the London gauge

ASC(y) = −B0λe
y/λΘ(−y)ex (3.3)

where B0 is the applied magnetic field, λ is the London penetration length and Θ(y) is
the Heaviside step function. Meanwhile, in the QH region y > 0 we have the Landau
gauge

AQH(y) = −B0(y − y0)Θ(y)ex, (3.4)

where y0 is a remaining gauge freedom. Since B = ∇ × A, it is clear that the total
vector potential formed by Eqs. (3.3) and (3.4) must have a continuous derivative to
avoid unphysical skips in the magnetic field. This fixes the remaining gauge freedom to
y0 = −λ, yielding the total vector potential [14]

A(y) = −B0

[
λey/λΘ(−y) + (y + λ)Θ(y)

]
ex. (3.5)

Upon fixing the gauge we then have that the QH states are centered around the guiding
center coordinate in the y-dimension

Ygc = qxℓ− λ. (3.6)

We can now formulate an analytical approximation of the QH state dispersion. Inspired
by Ref. [41], we approximate the dispersion with a half-parabola. Given the magnetic
length ℓ =

√
1/(eB0) and the cyclotron frequency ωc = eB0/m, we can assume that

• the approximate ground state dispersion goes as the square of qx,

• that we have the exact solution E = 3ωc/2− U0 at Ygc = 0 [40],
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Figure 3.2: The QH dispersion with EF = ωc/2 as calculated numerically with the Numerov method
(red circles), along with the analytical approximation of Ref. [41] (blue line) and the modified analytical
approximation in Eq. (3.7) (red line).

• that we reach the bulk solution E = ωc/2− U0 for Ygc > 2ℓ.

Under these assumptions we arrive at the approximation for the ground state energy
band

Eq =
ωc
4ℓ2

Θ
(
2ℓ− [qℓ2 − λ]

)(
2ℓ− [qℓ2 − λ]

)2
− EF . (3.7)

where we have fixed the energy shift

U0 = ωc/2 + EF , (3.8)

such that the Fermi energy is measured relative to the bulk ground state energy ωc/2.
The dispersion is shown in Fig. 3.2. There it is compared with the approximation from
Ref. [41], which we have modified by the substitutions ℓ→ 2ℓ inside the square and the
Heaviside function, as well as ωc/2ℓ2 → ωc/4ℓ

2 as the front factor. The original expres-
sion fits numerical results well at large filling factors EF ≫ ωc, while our expression is
more accurate the lowest filling factor 0 ≤ EF ≤ ωc. With this dispersion we can define
the Fermi momentum such that EqF = 0, as well as the Fermi velocity

qF (EF ) =
2

ℓ

(
1 +

λ

2ℓ
−
√
EF
ωc

)
, (3.9)

vF (EF ) = ∂qEq|q=qF = −ℓ
√
EFωc = −

√
EF
me

. (3.10)

At this point one might be puzzled by the appearance of λ, which is a material-specific
SC parameter, in Eqs. (3.7) and (3.9) which describe the QH edge. This is a consequence
of the choice of gauge in Eq. (3.5). In particular, the gauge independent quantities EF
and vF do not depend on λ.

In the rest of the chapter, as well as in Chapter 4, we will assume the QH edge to
be described by the Hamiltonian in Eq. (3.2) which has the dispersion in Eq. (3.7) with
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Fermi energy 0 ≤ EF ≤ ωc corresponding to being at filling factor ν = 1 and thus having
a single edge state.

3.2 The SC surface

We consider the surface of a SC in a magnetic field as described by the Hamiltonian in
Eq. (2.37), namely

Hsurface
BCS =

∑

δk,σ

[
ϵks+δkc

†
ks+δk,σ

cks+δk,σ +
(
∆0c

†
ks+δk,↑c

†
ks−δk,↓ + h. c.

)]
, (3.11)

where cδk,σ is the annihilation operator for a SC electron with momentum δk and spin σ,
ks is the supercurrent momentum, and we have the energy

ϵks+δk =
(ks + δk)2

2ms
− µs (3.12)

as well as the superconducting order parameter ∆0. We recall that this Hamiltonian was
derived under the assumption that the vector potential varies slowly within the relevant
region. We will model the coupling between QH and SC as a tunnel coupling for energies
within the SC gap, which involves the splitting of a Cooper pair into two electrons. The
characteristic length scale of a Cooper pair is the superconducting coherence length
ξ [47], and so we will consider the SC region −ξ < y < 0 as the relevant surface region
in the context of tunneling. Then the Hamiltonian of Eq. (3.11) is a good approximation
when λ≫ ξ. How well does that that correspond to the typical experimental situation?

The exact values of λ and ξ in an experimental context depend on many external
parameters including temperature, pressure, crystallic structure of the material and the
overall geometry, in particular the thickness of the SC [54, 55], but order-of-magnitude
analysis is still feasible. If we consider the superconductor NbN at a thickness of
∼ 100 nm, which is a high-field SC applied in key experiments on induced supercon-
ductivity in quantum Hall edge states [22, 27], it is estimated that it has a penetration
length of λNbN ∼ 300 nm [54–56], and a coherence length between ξNbN ∼ 5 nm [56, 57]
and ξNbN ∼ 50 nm [22]. Another important SC material is MoRe [20, 24], where it is
estimated that the penetration length is λMoRe ∼ 900 nm [56], while the coherence length
is between ξMoRe ∼ 8 nm [56] to ξMoRe ∼ 160 nm [24]. In conclusion, for comparable
experiments we will expect λ to be no less than about an order of magnitude larger than
ξ, meaning that between y = 0 and y = −ξ, the supercurrent momentum ks(y) should
decrease less than 10%.

3.2.1 Spin-orbit coupling

In describing Andreev reflection through the model presented so far, we are facing an
important issue. While the s-wave SC condensate consists of pairs of electrons with
opposite spin, the QH edge is spin-polarized. For two QH edge electrons to pair up and
enter the SC condensate, we require a physical process allowing the electrons to flip
their spins [58]. A good candidate for such a mechanism is Rashba spin-orbit coupling
(SOC), which is a coupling of spin and momentum with origins in the symmetries of
low-dimensional systems [59]. The SOC may be inherent to the 2DEG [15]. However,
the observation of induced superconductivity in a QH edge across a NbN-graphene
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interface [22] motivates us to consider the situation where a 2DEG with vanishing SOC
(graphene) inherits its spin-flip mechanism from a SC with strong SOC (NbN).

To model this situation, we follow Ref. [60], which models Rashba SOC at the x, z
plane surface of a three dimensional s-wave SC through the Hamiltonian

HSOC = α
∑

k

[kz + ikx]c
†
k,↑ck,↓ + h. c., (3.13)

where α is the real SOC amplitude with units of velocity. This Hamiltonian couples up
and down spins at the SC surface, and upon shifting the momentum as discussed in
Section 2.5.1 we arrive at the final description of the SC surface by adding it to Eq. (3.11),

Hsc =
∑

δk,σ

[
ϵks+δkc

†
ks+δk,σ

cks+δk,σ +
(
∆0c

†
ks+δk,↑c

†
ks−δk,↓ + h. c.

)

+
(
α[δkz + i(δkx + ks)]c

†
ks+δk,↑cks+δk,↓ + h. c.

)]
. (3.14)

In the rest of the chapter, as well as in Chapters 4 and 5, we will assume that this
Hamiltonian describes the SC surface region relevant in a tunneling context.

3.3 Tunneling

Having presented models for both the QH edge and the SC, the final element needed is a
coupling between the two systems. Modeling weak single-electron tunneling across the
QH-SC interface within a limited range in the y and z dimensions allows us to describe
the coupling between the edge state electrons and the SC condensate caused by Andreev
reflection. We will assume the tunneling to be local in the fields ψ(x), c(r) and that it
conserves the spin of the electrons involved. Assuming without loss of generality that
the QH edge is polarized in the spin up direction, the tunneling Hamiltonian is then
given by

Htunn = γ
√
wzwy

∫ Lx/2

−Lx/2
dx[ψ†(x)c↑(x, 0, 0) + h. c.]

= Γ
∑

q,k

δq,kx(ψ
†
qck,↑ + h. c.), (3.15)

where the second line is the momentum space Hamiltonian resulting from a Fourier
transform of the position space Hamiltonian on the first line. We have defined the
effective tunneling amplitude

Γ = γ

√
wzwy
LzLy

(3.16)

where γ is the tunneling amplitude in units of energy, wy,z are the effective tunneling
ranges in the y and z directions, and Ly,z are the total lengths of the SC in the y and z
dimensions. The presence of the Kronecker delta δq,kx means that the tunneling preserves
the x-momentum of the electrons involved, which is implied by the assumption of local
tunneling and translation invariance in the x direction.

It is worth pointing out that the Andreev reflection caused by this tunneling is
qualitatively different from that typically described in single particle theories, and
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Figure 3.3: The energy scales in the SC (blue) and QH (red) regions. All energies are measured with
respect to the center of the SC gap. Energies are not to scale, e.g. |∆0| ≪ µs.

thus from the mechanism sketched in Fig. 2.6. In the single particle picture, Andreev
reflection depends on the evanescent penetration of electron waves into the SC, an effect
not described by the presented tunneling Hamiltonian. As explored in Chapter 4, this
distinction will turn out to have a profound effect on the importance of the Meissner
current at the SC surface, which only causes relatively minor corrections in the single
particle picture [14, 15].

3.4 The full model

The full model of the QH-SC interface which will be treated in this and the follow-
ing chapter then consists of the combined QH edge Hamiltonian in Eq. (3.2), the SC
Hamiltonian in Eq. (3.14) and the tunneling Hamiltonian in Eq. (3.15),

H = Hedge +Hsc +Htunn. (3.17)

Before moving forward, it is worth considering the different energy scales involved
in these Hamiltonians. We will measure all energies with respect to the center of the
SC gap, with the main energy scales sketched in Fig. 3.3. At the top of the energy
hierarchy, we have the SC chemical potential, which for a metallic SC is on the order
of µs ∼ 1 eV. Several orders of magnitude below that we have the SC gap with typical
values of |∆0| ∼ 1 meV. To model Andreev reflection, we must assume that the gap is
large enough that the edge state does not couple to quasiparticle states beyond the gap.
First of all, this implies that neither the Meissner current nor the Rashba SOC are strong
enough to suppress the gap. The former corresponds to assuming

ks ≪
|∆0|ms

kF
, (3.18)

as discussed in Section 2.5.2. The latter can be achieved by assuming αkF ≪ |∆0|,
meaning that the SOC energy is small near the narrowest point of the gap k = kF .
The weak tunneling model presented in the previous section has its origins in a linear
expansion in γ, which means we have implicitly assumed γ ≪ |∆0|, and thus Γ ≪ |∆0|
since γ ≥ Γ.
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In the QH region, the energy scale is determined by the applied magnetic field
through ωc = eB0/me. Experiments on induced superconductivity in a QH edge at
filling factor ν = 1 typically apply magnetic fields on the order of B0 ∼ 10 T [22, 24],
yielding ωc ≃ 1 meV and ℓ ∼ 1 nm.

The assumption that the vector potential varies slowly corresponds to estimating

ks = A(y = 0) = eB0λex. (3.19)

Assuming that the SC material is NbN or MoRe, we have λ ∼ 600 nm as discussed in
Section 3.2. Further assuming that the effective mass of the SC charge carrier is the
electron mass, ms = me, we can evaluate the assumption Eq. (3.18),

eB0λ

|∆0|me/
√
2meµs

∼ 103. (3.20)

Thus, under the current assumptions the theory would predict that the applied magnetic
field is far above the critical field Bc of the SC, which from Eq. (3.18) is predicted to
be Bc ∼ 1 mT. While Doppler-shift induced breakdown of superconductivity at this
magnetic field scale has been observed for geometries of Nb SC’s on a InAs 2DEG [61],
it is clear that the theory does not capture the high-field behavior of the SC’s which have
been observed to induce superconductivity into the ν = 1 QH state, which requires large
fields. A central feature of the SC description is the assumption of homogeneity, both
in the London theory which assumes uniform supercurrent carrier density ns and the
assumption that a slowly varying vector potential A is enough to assume plane wave
solutions in the SC.

It is clear from this discussion that we should not expect accurate quantitative
predictions of experimental outcomes from the theory as presented, but rather turn
to it for phenomenological predictions whose scale should match experimental data
given correctly adjusted effective parameters, such as a large effective mass in the SC
ms ≫ me.

3.5 Diagonalisation

Given the total model of the system, we can start deriving an effective theory of the
proximitized QH edge. This will be done by integrating out the SC fields in the context
of a path integral. Before that, however, we will diagonalize the SC Hamiltonian to make
the future path integral more tractable. Since the SOC is weak, we first consider the limit
of vanishing SOC, α → 0, and then add the SOC perturbatively to first order, which
significantly simplifies the calculation.

3.5.1 Bogoliubov transformation

The SC surface Hamiltonian in the limit of vanishing SOC is

HSC, α=0 =
∑

δk,σ

[
ϵks+δkc

†
ks+δk,σ

cks+δk,σ +
(
∆0 c

†
ks+δk,↑c

†
ks−δk,↓ + h. c.

)]
. (3.21)

This type of Hamiltonian is typically diagonalized through the Bogoliubov transforma-
tion [1], which is the general unitary basis change

(
cks+δk,↑
c†ks−δk,↓

)
=

(
uδk vδk
v∗δk −u∗δk

)(
χδk,1
χ†
−δk,2

)
, (3.22)
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where the fermionic bogolon fields χδk,j with pseudo-spin index j = 1, 2 form the
diagonal basis. We define the energies

Es
def
=

k2s
2ms

, (3.23)

ζδk
def
=
√

(ϵδk + Es)2 + |∆0|2, (3.24)

and assuming that we have ∆0 = |∆0|eiϕ∆ , we have the transformation matrix elements

uδk =

√
1

2

(
1 +

ϵδk + Es
ζδk

)
, (3.25)

vδk = eiϕ∆

√
1

2

(
1− ϵδk + Es

ζδk

)
. (3.26)

Note that we have here fixed the phases of uδk and vδk, but any choice with arg(uδk) +
arg(vδk) = ϕ∆ would apply. The diagonalisation can then be performed on matrix form
in the basis used in Eq. (3.22),

HSC, α=0 =
1

2

∑

δk

(
c†ks+δk,↑
cks−δk,↓

)T (
ϵks+δk ∆0

∆∗
0 −ϵks−δk

)(
cks+δk,↑
c†ks−δk,↓

)

=
1

2

∑

δk

(
χ†
δk,1

χ−δk,2

)T (
δk·ks
ms

+ ζδk 0

0 δk·ks
ms

− ζδk

)(
χδk,1
χ†
−δk,2

)

=
∑

δk,j=1,2

(
δk · ks
ms

+ ζδk

)
χ†
δk,jχδk,j , (3.27)

where we have used ζδk = ζ−δk for the last step. As expected, we recover the Doppler
shifted dispersion as discussed in Section 2.5.2.

3.5.2 Degenerate perturbation theory

Having established the α = 0 case, we can now add the SOC perturbatively by assuming
a small, but non-zero α, such that the SOC term is the smallest term at all momenta. First
we convert the SOC Hamiltonian to the bogolon basis using Eq. (3.22),

HSOC = α
∑

δk

[δkz + i(δkx + ks)]c
†
ks+δk,↑cks+δk,↓ + h. c.

= iα
∑

δk

[(
ks + (δkx − iδkz)

ϵδk + Es
ζδk

)
χ†
δk,1χδk,2

− (δkx + iδkz)(v
∗
δkuδkχ−δk,2χδk,2 − u∗δkvδkχ

†
δk,1χ

†
−δk,1) + h. c.

]
. (3.28)

Since the unperturbed Hamiltonian in Eq. (3.27) is degenerate in the pseudo-spin index
j, we use degenerate perturbation theory [50] to approximate the effect of a small SOC.
To lowest order, the energy contribution will lift the degeneracy, and the correct α→ 0
limit of the perturbed basis states will be the linear combination of unperturbed basis
states which diagonalize the degenerate subspaces of the SOC term. Considering only
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this subspace, we neglect all contributions other than those which mix χ1 and χ2. In
other words, we neglect all but the first term of Eq. (3.28), which can then be written

α
∑

δk

(
χ†
δk,1

χ†
δk,2

)T (
0 ks + (δkx − iδkz)

ϵδk+Es

ζδk

ks + (δkx + iδkz)
ϵδk+Es

ζδk
0

)(
χδk,1
χδk,2

)
(3.29)

By diagonalising this contribution we can identify the diagonal elements as the first
order energy shifts,

α
∑

δk

(
d†δk,+
d†δk,−

)T 

∣∣∣ks + (δkx + iδkz)

ϵδk+Es

ζδk

∣∣∣ 0

0 −
∣∣∣ks + (δkx + iδkz)

ϵδk+Es

ζδk

∣∣∣



(
dδk,+
dδk,−

)
,

(3.30)

and the eigenstates as the associated rotated basis,

(
χδk,1
χδk,2

)
=

1√
2

(
−ie−iθδk ie−iθδk

eiθδk eiθδk

)(
dδk,+
dδk,−

)
, (3.31)

with the angle

θδk =
1

2
arg

(
ks + (δkx + iδkz)

ϵδk + Es
ζδk

)
. (3.32)

Thus, to first order in α we find the diagonal SC surface Hamiltonian

HSC =
∑

δk, r=±

(
δk · ks
ms

+ ζδk + rα

∣∣∣∣ks + (δkx + iδkz)
ϵδk + Es
ζδk

∣∣∣∣
)
d†δk,rdδk,r, (3.33)

whose effect on the QH edge we will now investigate.

3.6 Proximity effect

To arrive at an effective description of the induced superconductivity in the QH edge
state we integrate out the superconductor fields. This requires formulating the Euclidian
action corresponding to the Hamiltonian, plugging it into the corresponding partition
function, solving the path integral over the SC fields, and extracting the Hamiltonian
again. Integrating out degrees of freedom in this way is a standard approach with
detailed treatments found in e.g. Ref. [62, sec. 4.2] and Ref. [63, chs. 23-25]. Here we
summarize only the necessary elements to arrive at the results.

3.6.1 Integrating out the superconductor

We consider the system described by the Hamiltonian Eq. (3.17) derived in the previous
chapter. For a more unified description of the total system, we will shift the QH edge
momentum q by ks like we have shifted the SC momentum, i.e. we change variables to

δq = q − ks, (3.34)
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such that the QH edge Hamiltonian is

Hedge =
∑

δq

Eks+δqψ
†
ks+δq

ψks+δq. (3.35)

The quantum partition function corresponding to the system is

Z =

∫
D[d†dψ†ψ]e−S[d

†dψ†ψ], (3.36)

where d is the vector of Grassmann numbers corresponding to the SC fields, ψ is vector
of Grassmann numbers corresponding to the QH fields and S is the Euclidean action of
the system, which means it is expressed in terms of the discrete Matsubara frequencies
ωn.

The path integral has the measure

D[d†dψ†ψ] =
∏

δk,δq,ωn

d(d†δk,ωn
)d(dδk,ωn)dψ

†
δq,ωn

dψδq,ωn . (3.37)

We divide the action into terms only involving edge fields S0[ψ†ψ] and the remaining
terms involving a mix of SC and edge fields δS[d†dψ†ψ]. The notation of δS implies the
view of SC and tunneling as small corrections to the edge state. The total action is then
S = S0 + δS, with

S0[ψ
†ψ] =

∑

q,ωn

ψ†
q,ωn

(−iωn)ψq,ωn +Hedge[ψ
†ψ] (3.38)

δS[d†dψ†ψ] =
∑

δk,ωn

d†δk,ωn
(−iωn)dδk,ωn +HSC[d

†d] +Htunn[d
†dψ†ψ]. (3.39)

We have here assumed that the pairing amplitude ∆0 is independent of ω, corresponding
to the assumption that pairing occurs between fields with the same time coordinate.
This instantaneous assumption neglects any contributions from finite time differences.
Interestingly, including finite time differences can qualitatively change the problem since
it will then involve odd-frequency pairing [64], but that case will not be treated in this
thesis.

We can choose to perform the path integral in Eq. (3.36) over the superconductor
fields d†, d only, which will leave us with an effective Hamiltonian in terms of the edge
fields ψ†, ψ. To do this, we recast the path integral in the form of a Gaussian vector
integral by defining the vector fields

ηδk,ωn =

(
dδk,1,ωn

d†−δk,2,−ωn

)
(3.40)

φ†
κ,ωn

= −Γ

(
iuκe

−iθκψ†
ks+δq,ωn

− v∗κe
iθκψks−δq,−ωn

−iu∗κeiθ−κψks−δq,−ωn + vκe
−iθ−κψ†

ks+δq,ωn

)
(3.41)

where κ = (δq, δky, δkz), the phase θκ is defined in Eq. (3.32), and Γ is the tunneling
energy defined in Eq. (3.16). We note that the φ field has units of energy. We also define
the diagonal matrix

Λδk,ωn =

(
−iωn + Esurf,δk,+ 0

0 −iωn − Esurf,−δk,−

)
(3.42)
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where

Esurf,δk,r =

(
δk · ks
ms

+ ζδk + rα

∣∣∣∣ks + (δkx + iδkz)
ϵδk + Es
ζδk

∣∣∣∣
)

(3.43)

is the SC surface energy of Eq. (3.33). We can then write out δS in terms of vector fields

δS[η†ηφ†φ] =
∑

δk,ωn

η†δk,ωn
Λδk,ωnηδk,ωn −

∑

κ,ωn

(
φ†
κ,ωn

ηκ,ωn + η†κ,ωn
φκ,ωn

)
. (3.44)

Before we can write up the path integral, we must be careful in correctly treating the
different momenta involved. Since the order of multiplication in the path integral
measure is irrelevant, we can separate the product in the path integral measure into a
product over those momenta involved in tunneling, i.e. δk = κ with κx = ks, and the
remaining momenta δk′ with δk′

x ̸= ks

∏

δk

=
∏

κ

∏

δk′

. (3.45)

We will then apply the identities

e
∑

i ai =
∏

i

eai (3.46)

N∏

i=−N
bi

N∏

j=−N
eaj =

N∏

i=−N
bie

ai , (3.47)

for general commuting numbers ai, bi and a general limit N . We note that though
Grassmann numbers anti-commute like fermionic fields, pairs of Grassmann numbers
commute, and since the action is bi-linear in all fields, the above identities apply. The
path integral over the SC fields from Eq. (3.36) then becomes

∫
D[η†ηφ†φ]e−δS[η

†ηφ†φ] =
∏

κ,ωn

[∫
dη†κ,ωn

dηκ,ωndφ
†
κ,ωn

dφκ,ωne
S′
κ,ωn

[η†ηφ†φ]

]

×
∏

δk′,ωn

[∫
dη†

δk′,ωn
dηδk′,ωn

e
S′′
δk′,ωn

[η†η]
]

(3.48)

where we have divided the action into the fields that take part in the tunneling

S′
κ,ωn

[η†ηφ†φ] = −η†κ,ωn
Λκ,ωnηκ,ωn + φ†

κ,ωn
ηκ,ωn + η†κ,ωn

φκ,ωn , (3.49)

and those which do not

S′′
δk′,ωn

[η†η] = −η†
δk′,ωn

Λδk′,ωn
ηδk′,ωn

. (3.50)

The integrals on the right hand side of Eq. (3.48) are well defined Gaussian integrals
over Grassmann numbers [62], and we can resolve the path integral to

∫
D[η†η]e−δS[η

†ηφ†φ] = exp

(∑

κ,ωn

[
φ†
κ,ωn

Λ−1
κ,ωn

φκ,ωn + C
])

(3.51)
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where we have defined the constant

C = ln (det(Λκ,ωn)) + ln
(
det(Λδk′,ωn

)
)
, (3.52)

which constitutes a simple shift of the action and will be ignored.
Returning to the partition function Eq. (3.36), we can insert the result of Eq. (3.51) to

find

Z =

∫
D[ψ†ψ] exp

(
−S0[ψ†ψ]−

∑

κ,ωn

φ†
κ,ωn

Λ−1
κ,ωn

φκ,ωn

)
=

∫
D[ψ†ψ]e−Seff[ψ

†ψ], (3.53)

where the argument of the exponent becomes the effective action Seff describing the
proximitized edge. Note that the only fields present are the ψ fields, with the φ vector
fields simply being a compact way of writing up the involved combinations of ψ fields.

3.6.2 Effective Hamiltonian

Finally we need to convert the action into a Hamiltonian. To do that, we assume that the
action δS[ψ†ψ] only induces instantaneous effects in the QH edge, neglecting any other
effects. As in the previous section, this implies that the induced parameters contained
in Λ−1

κ,ωn
are independent of ωn. As the frequency enters as 1/(iωn +Esurf,κ,±), we will

find the greatest magnitude of induced effects at ωn = 0. Going forward, we will fix the
Matsubara frequency in Λκ,ωn to zero and treat the resulting system.

Given a Λκ independent of ωn, we can write up the effective action on the form

Seff[ψ
†ψ] =

∑

ωn,δk

ψ†
ωn,δk

(−iωn)ψωn,δk +Heff, (3.54)

where we have the effective Hamiltonian of the system

Heff = Hedge + δH. (3.55)

Here Hedge is defined in Eq. (3.2) and

δH =
∑

κ

φ†
κΛ

−1
κ φκ (3.56)

corresponding to the latter term of the effective action of Eq. (3.53) at ωn = 0. Since the
effective Hamiltonian in terms of ψ is a key result of this thesis we will now resolve the
above expression in detail. The matrix Λ is diagonal, and thus the inverse is trivial to
evaluate

Λ−1
κ =

(
E−1

surf,κ,+ 0

0 −E−1
surf,−κ,−

)
. (3.57)

The matrix elements diverge in the case of Esurf,κ,+ = 0, corresponding to the critical
Doppler shift as discussed in Section 2.5.2. However, since we have assume that we are
below this critical shift, we avoid the singularity.

The lack of off-diagonal elements in Λ−1 means δH depends in a simple way on
φ†
κφκ. We find

δH =
∑

κ

(
φ†
κ,1φκ,1

Esurf,κ,+
−

φ†
κ,2φκ,2

Esurf,−κ,−

)
. (3.58)
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The sum over κ is symmetric, which lets us change the signs of κ in the second term,

δH =
∑

κ

(
φ†
κ,1φκ,1

Esurf,κ,+
−
φ†
−κ,2φ−κ,2

Esurf,κ,−

)
. (3.59)

Recalling the definition of Esurf,κ,± in Eq. (3.43), we can split off the SOC contribution by
defining the α = 0 energy

Eα=0,κ =
δqks
ms

+ ζκ, (3.60)

as well as the momentum

κα =

∣∣∣∣ks + (δq + iδkz)
ϵκ + Es
ζκ

∣∣∣∣ , (3.61)

such that Esurf,κ,r = Eα=0,κ + rακα. This lets us simplify δH by writing

δH =
∑

κ

(
φ†
κ,1φκ,1

ακα + Eα=0,κ
+

φ†
−κ,2φ−κ,2

ακα − Eα=0,κ
.

)
(3.62)

We can put the two terms on a common denominator and find

δH =
∑

κ

(ακα − Eα=0,κ)φ
†
κ,1φκ,1 + (ακα + Eα=0,κ)φ

†
−κ,2φ−κ,2

(ακα)2 − E2
α=0,κ

=
∑

κ

Eα=0,κ(φ
†
−κ,2φ−κ,2 − φ†

κ,1φκ,1) + ακα(φ
†
−κ,2φ−κ,2 + φ†

κ,1φκ,1)

(ακα)2 − E2
α=0,κ

, (3.63)

where the second step is a simple re-arrangement of terms. This expression contains
all orders of α though, which is inconsistent with the perturbation expansion in Sec-
tion 3.5.2. Taylor expanding the expression and discarding terms higher than first order
corresponds to simply omitting the α2 term in the denominator, such that the form of
δH which is consistent with perturbation theory is

δH = −
∑

κ

1

E2
α=0,κ

[
Eα=0,κ(φ

†
−κ,2φ−κ,2 − φ†

κ,1φκ,1) + ακα(φ
†
−κ,2φ−κ,2 + φ†

κ,1φκ,1)
]
,

(3.64)

Noting that uκ, vκ are symmetric in κ, we can write the components of φ as

φ†
κ,1φκ,1

Γ2
=
(
−iuκe−iθκψ†

ks+δq
+ v∗κe

iθκψks−δq

)(
iu∗κe

iθκψks+δq + vκe
−iθκψ†

ks−δq

)

= |uκ|2ψ†
ks+δq

ψks+δq + |vκ|2ψks−δqψ†
ks−δq

− iuκvκe
−2iθκψ†

ks+δq
ψ†
ks−δq + iu∗κv

∗
κe

2iθκψks−δqψks+δq, (3.65)

φ†
−κ,2φ−κ,2

Γ2
=
(
iu∗κe

iθκψks+δq − vκe
−iθκψ†

ks−δq

)(
−iuκe−iθκψ†

ks+δq
− v∗κe

iθκψks−δq

)

= |uκ|2ψks+δqψ†
ks+δq

+ |vκ|2ψ†
ks−δqψks−δq

+ iuκvκe
−2iθκψ†

ks−δqψ
†
ks+δq

− iu∗κv
∗
κe

2iθκψks+δqψks−δq. (3.66)
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By commuting the fermion fields of the last line, we find

φ†
−κ,2φ−κ,2

Γ2
= −|uκ|2ψ†

ks+δq
ψks+δq − |vκ|2ψks−δqψ†

ks−δq

− iuκvκe
−2iθκψ†

ks+δq
ψ†
ks−δq + iu∗κv

∗
κe

2iθκψks−δqψks+δq. (3.67)

We see that the sum in Eq. (3.64) cancels the two first terms of each product, while the
difference cancels the two last terms of each product,

δH = 2Γ2
∑

κ

1

E2
α=0,κ

[
Eα=0,κ(|uκ|2ψ†

ks+δq
ψks+δq + |vκ|2ψks−δqψ†

ks−δq)

+ ακα(iuκvκe
−2iθκψ†

ks+δq
ψ†
ks−δq + h. c.)

]
. (3.68)

We can now identify two types of contribution from the SC in the effective Hamiltonian,
namely a renormalization of the kinetic energy δEδq and a pairing amplitude ∆δq,

Heff =
∑

δq

[
(Eks+δq + δEδq)ψ

†
ks+δq

ψks+δq +

(
∆δq

2
ψ†
ks+δq

ψ†
ks−δq + h. c.

)]
. (3.69)

We can identify the kinetic contribution from Eq. (3.68) by commuting the fermionic
fields

∑

κ

[ |uκ|2
Eα=0,κ

ψ†
ks+δq

ψks+δq +
|vκ|2
Eα=0,κ

ψks−δqψ
†
ks−δq

]

=
∑

κ

[ |uκ|2
Eα=0,κ

ψ†
ks+δq

ψks+δq −
|vκ|2
Eα=0,κ

ψ†
ks−δqψks−δq

]
+ const., (3.70)

whereupon ignoring the constant and changing summation variables κ → −κ, and thus
δq → −δq, in the second term leads to the contribution

δEδq = 2Γ2
∑

δky ,δkz

( |uκ|2
Eα=0,κ

− |vκ|2
Eα=0,−κ

)
. (3.71)

The induced pairing amplitude ∆δq, which must be odd in δq due to the fermionic
nature of the fields, can be written as as ∆δq = (∆̃δq − ∆̃−δq)/2, where the pairing term
in Eq. (3.68) leads to the definition

∆̃δq = iΓ2α
∑

δky ,δkz

καuκvκe
−2iθκ

E2
α=0,κ

. (3.72)

In the next sections we will write out these effective parameters δEδq and ∆δq in terms
of externally applied parameters.

3.6.3 Induced pairing

To simplify the pairing amplitude in Eq. (3.72) we first note that according to Eqs. (3.32)
and (3.61), we have that κα is defined as the amplitude of a complex number, while 2θκ
is the argument of the same complex number, yielding

καe
−2iθκ = ks + (δq − iδkz)

ϵκ + Es
ζκ

. (3.73)
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We then note that

uκvκ =
∆0

2ζκ
, (3.74)

which gives us

∆̃δq =
i

2
Γ2α∆0

∑

δky ,δkz

ζκks + (ϵκ + Es)(δq − iδkz)

ζ2κ

(
qks
ms

+ ζκ

)2 . (3.75)

Once again, the divergence at qks/ms = −ζκ, is avoided by assuming a sub-critical
Doppler shift, see Section 2.5.2.

Finally, we see that the term with δkz in the numerator will be anti-symmetric in δkz
and evaluate to zero over the symmetric summation range, while the remaining terms
are symmetric in the summation variables and remain,

∆̃δq =
i

2
Γ2α∆0

∑

δky ,δkz

ζκks + (ϵκ + Es)δq

ζ2κ

(
δqks
ms

+ ζκ

)2 . (3.76)

The momenta are discretized in steps of d(δky/z) = 2π/Ly/z, with Ly/z the relevant
length dimension of the SC, so for large Ly and Lz we can approximate the sum as an
integral (i.e. take the continuum limit)

∞∑

δky/z=−∞
= Ly/z

∞∑

k=−∞

d(δky/z)

2π
≃ Ly/z

∫ ∞

−∞

d(δky/z)

2π
. (3.77)

By noting that δky and δkz only appear inside ζκ and ϵκ, both in the form δk2y + tk2z , we

can straightforwardly convert to polar coordinates with radius δk =
√
δk2y + δk2z and

find

∆̃δq =
i

2
Γ2
Lα∆0

∫ 2π

0
dϕ

∫ ∞

0

d(δk)

(2π)2
δk[ζκks + (ϵκ + Es)δq]

ζ2κ

(
δqks
ms

+ ζκ

)2

=
i

2
Γ2
Lα∆0dϕ

∫ ∞

0

d(δk)

2π

δk[ζκks + (ϵκ + Es)δq]

ζ2κ

(
δqks
ms

+ ζκ

)2 , (3.78)

where we have resolve the angular integral in the second step, and defined the tunneling
amplitude ΓL = Γ

√
LyLz as modified by the conversion from sum to integral. This

result will be investigated further in Section 3.7.
As we can clearly see, for α = 0 the induced pairing vanishes as expected in the case

without spin-flipping mechanisms. The role of the Meissner current is more subtle, and
will be discussed further in the context of transport through the Andreev edge state.

3.6.4 Kinetic renormalization

We will now conduct a closer investigation of the kinetic renormalization in Eq. (3.71).
We rewrite the expression into one fraction

δEδq = 2Γ2
∑

δky ,δkz

Eα=0,−κ|uκ|2 − Eα=0,κ|vκ|2
Eα=0,κEα=0,−κ

, (3.79)
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which, using the fact that |uκ|2 + |vκ|2 = 1, can be re-arranged into

δEδq = 2Γ2
∑

δky ,δkz

ζκ(|uκ|2 − |vκ|2)− δqks/ms

ζ2κ − (δqks/ms)2
. (3.80)

We can resolve

|uκ|2 − |vκ|2 =
ϵκ + Es
ζκ

, (3.81)

to find

δEδq = 2Γ2
∑

δky ,δkz

ϵκ + Es − δqks/ms

ζ2κ − (δqks/ms)2
. (3.82)

Finally, writing out ζ2κ yields

δEδq = 2Γ2
∑

δky ,δkz

ϵκ + Es − δqks/ms

(ϵκ + Es)2 − (δqks/ms)2 + |∆0|2
. (3.83)

We again convert this sum to an integral,

δEδq = 2Γ2
L

∫ ∞

0

d(δk)

2π

δk(ϵκ + Es − δqks/ms)

(ϵκ + Es)2 − (δqks/ms)2 + |∆0|2
. (3.84)

This energy accounts for the effect of the SC on the QH edge state beyond pairing, with
the interesting feature that it is independent of the SOC, i.e. persists for α = 0. This
reflects the fact that single electrons can tunnel without a spin-flip mechanism, but they
will not carry any superconducting correlation with them until full Cooper pairs can
tunnel.

3.7 Effective dispersion

Before we move on to transport calculations using the effective Hamiltonian, we will first
diagonalize it and consider the limit of small δq to investigate the effective dispersion of
the proximitized edge state, as well as investigating the behavior of δEδq and ∆δq. The
effective Hamiltonian we have derived describes a BCS-like Hamiltonian with pairing
between spinless fermions. Such a system is well understood, see for example the work
by Read and Green [65].

It is straightforward to diagonalize the effective Hamiltonian Eq. (3.69) in much the
same way we diagonalized the original BCS Hamiltonian, and arrive at the dispersion

Eeff
δq,± =

1

2

[
Ẽδq − Ẽ−δq ±

√(
Ẽδq + Ẽ−δq

)2
+ 4|∆δq|2

]
, (3.85)

where

Ẽδq = Eks+δq + δEδq. (3.86)

The associated eigenvectors are

V+ =

(
ũδq
ṽ∗δq

)
V− =

(
ṽδq
−ũ∗δq

)
(3.87)
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where

ũδq =

√√√√√1

2


1 +

Ẽδq + Ẽ−δq√
(Ẽδq + Ẽ−δq)2 + 4|∆I,δq|2


,

ṽδq = ie−iϕ∆

√√√√√1

2


1− Ẽδq + Ẽ−δq√

(Ẽδq + Ẽ−δq)2 + 4|∆I,δq|2


,

(3.88)

Note that we have here fixed the phases of ũδq and ṽδq, but any choice with arg(uδk) +
arg(vδk) = ϕ∆ + π would apply. The angle results from the observation in Eq. (3.78) that
arg(∆δq) = arg(i∆0).

Experiments [24, 25] report the detection of particle/hole mixing as the primary
indicator of induced SC, and as discussed in Section 2.4, this mixing is greatest at the
avoided crossings between particle-like and hole-like bands, which for induced SC has
magnitude |∆δq|. In Eq. (3.85) we see that for |∆δq| = 0 we find Eeff

δq,± = ±Ẽks±δq. When
both values equal zero for the same δq value, the pairing will cause an avoided crossing
near the Fermi energy and we will see the greatest effect. For qF = ks, both energies
±Ẽks+δq cross zero at δq = 0, and thus the parameters qF ≃ ks and δq ≃ 0 are the most
relevant for transport experiments. We will now consider the small δq limit δq ≪ qF ,
and then interpret the condition qF = ks.

Since the pairing amplitude is odd in δq, its expansion around δq = 0 contains no
constant terms, and we have the linear approximation

∆δq ≃ ieiϕ∆∆pδq (3.89)

with the real p-wave pairing amplitude

∆p = −i∂δq∆δq

∣∣∣
δq=0

. (3.90)

This can be evaluated by taking the derivative in Eq. (3.78), giving

∆p =
msΓ

2
Lα

2π|∆0|

(
Es(Es − µs) + |∆0|2/4
(Es − µs)2 + |∆0|2

+
Es
|∆0|

{
arctan

[
Es − µs
|∆0|

]
− π

2

})
. (3.91)

We can simplify this expression by assuming a metallic SC with Es, |∆0| ≪ µs, letting us
approximate

∆p ≃ −Γ2
Lα

msEs
2|∆0|2

. (3.92)

This approximate expression is proportional to both SOC α and Meissner current Es,
though the full impact of the latter will not become clear until we perform transport
calculations. It is interesting to note that the induced amplitude depends on the inverse
square of the SC pairing amplitude ∆p ∝ |∆0|−2, i.e. the linear part of the induced
pairing increases with weaker pairing in the SC. However, as discussed in Section 3.4,
the model is based on the assumption that neither SOC nor the magnetic field are strong
enough to close the SC gap, meaning the limit |∆0| → 0 is not accurately described. In
particular, the supercurrent bound in Eq. (3.18) corresponds to the energy bound

Es
|∆0|2

≪ 1

4µs
, (3.93)
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which is small since µs ≫ |∆0|, Es. Moreover, a dependence on the inverse SC gap is
expected in the context of p-wave pairing, where local pairing is suppressed by the Pauli
principle, meaning the pairing has the SC coherence length ξ ∝ 1/|∆0| as a characteristic
length scale [47].

Next, the kinetic energy renormalization can be expanded as

δEδq = δEδq=0 + δvδq, (3.94)

where we have defined the velocity δv = ∂δq(δEδq)|δq=0. The constant term formally
diverges in the infinite limit, but since realistically only states up to some finite band-
width will contribute, we can freely replace the upper limit with a large, finite number.
Assuming that the upper limit is some large δkc, we find

δEδq=0 =
msΓ

2
L

2π
ln

( |∆0|2 + [δk2c/(2ms)− µs + Es]
2

|∆0|2 + (µs − Es)2

)
. (3.95)

This constitutes a renormalization of the constant U0 in Eq. (3.8), but in an experimental
setting this shift can be compensated by e.g. the application of a gate voltage, and
going forward we will ignore it such that the Fermi energy EF still measures the energy
difference between the middle of the SC gap and the lowest Landau level. The velocity
is

δv = − kSΓ
2
L

π|∆0|

[
π

2
− arctan

(−µs + Es
|∆0|

)]
, (3.96)

which we can again approximate for µ≫ Es, |∆0| as

δv ≃ −kSΓ
2
L

|∆0|
. (3.97)

Applying the approximations in Eqs. (3.92) and (3.97) to the effective dispersion in
Eq. (3.85) we can plot the dispersion to second order in δq in Fig. 3.4 for different values
of the Fermi energy. Note that since the induced parameters δEδq,∆δq are odd in δq,
they contribute only to first order in δq, while the original QH edge dispersion Eq is
quadratic in δq and its contribution is unmodified.

3.8 Particle/hole mixing

As discussed in the previous section, the experimentally interesting effect is particle/hole
mixing near the Fermi energy. This happens at δq = 0 when qF = ks, which corresponds
to EF = Eks = ωc. As shown in Fig. 3.4, EF = ωc is indeed the condition under which
the bands touch, while for EF < ωc the bands are separate and for EF > ωc we see
avoided crossings. To see better understand the particle/hole mixing at the avoided
crossings, we write up the effective Hamiltonian on matrix form in the Nambu basis
(ψks+δq, ψ

†
ks−δq), such that

Heff =
1

2

∑

δq

(
ψ†
ks+δq

ψks−δq

)T (
Ẽδq ∆δq

∆∗
δq −Ẽ−δq

)(
ψks+δq
ψ†
ks−δq

)
. (3.98)
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Figure 3.4: The effective dispersion in Eq. (3.85) to second order in δq for different Fermi energies. Solid
and dotted lines denote particle-like bands, Eeff

δq,+, and hole-like bands, Eeff
δq,−, respectively. The inset

shows the avoided crossing for EF > ωc. The dispersion has been calculated for effective parameters
ms = 10me, µs = 4 · 103ωc, |∆0| = 40ωc, λ = 0.8ℓ, and ΓL = α = ωcℓ.

Particles and holes are treated as separate particles in a scattering calculation. We
therefore explicitly define the particle p and hole h operators

p†δq
def
= ψ†

ks+δq
,

h†δq
def
= ψks−δq.

(3.99)

With this definition we are counting an electron operator such as ψks+δq twice, once as
the particle operator pδq and once as the hole operator h†−δq. This double counting is,
however, already accounted for in Eq. (3.98) by the factor 1/2 in front. Physically, it is not
an issue, since describing an electron state as either a particle or hole state are equivalent.
Then the Hamiltonian is

Heff =
1

2

∑

δq

(
p†δq
h†δq

)T (
Ẽδq ∆δq

∆∗
δq −Ẽ−δq

)(
pδq
hδq

)
(3.100)

In the absence of pairing, i.e. for ∆δq → 0, the holes are simply a doubling of the particle
system, but with opposite energy and momentum. The hybridization of these two types
of particles becomes clear upon diagonalization in the presence of pairing. Explicitly, ũ
and ṽ as defined in Eq. (3.88) determine the amplitudes of the particle and hole states,

Heff =
1

2

∑

δq

(
ũδqp

†
δq + ṽ∗δqh

†
δq

ṽδqp
†
δq − ũ∗δqh

†
δq

)T (
Eeff
δq,+ 0

0 Eeff
δq,−

)(
ũ∗δqpδq + ṽδqhδq
ṽ∗δqpδq − ũδqhδq

)
. (3.101)
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Recalling the definitions in Eq. (3.88),

ũδq =

√√√√√1

2


1 +

Ẽδq + Ẽ−δq√
(Ẽδq + Ẽ−δq)2 + 4|∆I,δq|2


,

ṽδq = ie−iϕ∆

√√√√√1

2


1− Ẽδq + Ẽ−δq√

(Ẽδq + Ẽ−δq)2 + 4|∆I,δq|2


,

(3.102)

we see that an even mix |ṽ|2 = |ũ|2 = 1/2 occurs at a point δq = δq1/2 where Ẽδq1/2 =

−Ẽ−δq1/2 . This is the point which minimizes the distance between the bands, which
becomes

|Eeff
δq1/2,+

− Eeff
δq1/2,−| = |∆δq1/2 |. (3.103)

Since we are interested in the behavior near the Fermi energy, we found in the previous
section that we should consider qF ≃ ks where the QH edge Fermi momentum matches
the Meissner current momentum at the SC surface. Recalling the definition in Eq. (3.9),

qF (EF ) =
2

ℓ

(
1 +

λ

2ℓ
−
√
EF
ωc

)
(3.104)

as well as the fact that we found ks = λ/ℓ2 in Section 2.5.1, we see that the condition
qF ≃ kS corresponds to EF ≃ ωc. Let us define a quantity Ω measuring the departure
from this condition,

Ω = ωc − EF . (3.105)

The full behavior of the amplitudes |ũδq| and |ṽδq| under the condition Ω ≃ 0 is shown
in Fig. 3.5. We see that for Ω < 0, a shift between particle-like and hole-like states
occurs, while for Ω > 0 there is only weak mixing. The evenly mixed states only occur
at avoided crossings, and thus only for Ω ≤ 0. Transition across the resonance Ω = 0 is
discontinuous, with

lim
Ω→0+

|ũδq=0|2 = 1, (3.106)

lim
Ω→0−

|ũδq=0|2 = 0, (3.107)

where 0± means zero approached from the positive (+) or the negative side (−). At
Ω = 0 exactly we have Ẽδq=0 = 0, and we can apply L’Hôpital’s rule to see that

lim
δq→0




Ẽδq + Ẽ−δq√
(Ẽδq + Ẽ−δq)2 + 4|∆I,δq|2

∣∣∣∣∣∣
Ω=0


 = 0 (3.108)

since Ẽδq depends on the square of δq, while |∆δq| depends linearly on δq. In that case,
|ũδq=0| = |ṽδq=0| = 1/2. This description is analogous to that of complex p-wave pairing
between spinless fermions by Read and Green [65], where the pairing depends on
momentum as ∆cP = ∆0(kx − iky). In that context, we see that Ω is the order parameter
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Figure 3.5: The amplitudes of the particle-like state |uδq|2 (full lines) and the hole-like state |vδq|2 (dashed
lines) for the case of avoided crossings Ω < 0 (red), touching bands Ω = 0 (black), and no avoided
crossings Ω > 0 (blue). For illustrative purposes, the deviations from the resonance conditions are chosen
to be small, Ω = ±5 · 10−9 ωc, and we have the same effective parameters as in Fig. 3.4.

of a topological phase transition. Then Ω > 0 describes the strong-pairing phase where
the position dependence of the pairing will fall off quickly, corresponding to tightly
bound pairs, while Ω < 0 describes the weak-pairing phase with the pairing amplitude
decaying slowly in space. Furthermore, Ω = 0 marks the topological phase transition
where the gap between the upper and lower bands of the effective dispersion closes.

It is clear that for any non-zero amplitude of the induced pairing |∆p| ≠ 0, the degree
of particle-hole mixing is determined by the resonance condition, which in turn depends
on the externally tunable parameters of EF , which is controlled by e.g. a gate voltage,
and ωc which is controlled by the strength of the applied magnetic field. But while the
pairing amplitude does not control the degree of mixing, it controls how fast the mixed
states decays into non-mixed states as a function of δq. Thus for small ∆p, the shift from
particle-like state to hole-like state will happen across a narrow interval of δq. As we
saw in Eq. (3.92), the width of the transition is thus increased for greater amplitudes
of tunneling and SOC, as well as larger effective mass and larger London penetration
depth since Es ∝ λ2. Meanwhile it is decreased for larger SC pairing amplitude |∆0|.
None of these parameters depend simply on easily varied externally applied parameters.
In the next chapter we will attach measurable quantities to the particle/hole transition,
and in that context we will take consider more detailed behavior.

3.8.1 Finite tunneling barrier

The resonance condition corresponds to finding the Fermi energy at the second Landau
level. This is problematic, since we have assumed that there is only one edge state, i.e.
we are at filling factor ν = 1. In the presence of more edge states, the situation changes
qualitatively as interplay between the edge states is introduced, as has been shown using
a phenomenological model [33, 58], and which will be explored further in Chapter 5.

The fact that crossing the resonance condition corresponds to crossing the second
Landau level is a consequence of the assumption of a hard wall confining potential in
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Figure 3.6: Left: Sketch of a half harmonic oscillator with a step of size V0 in the middle. Right: The lowest
energy eigenvalue of the half harmonic oscillator (full line) with the zero and infinite barrier limits marked
by dashed lines. The half harmonic oscillator ground state asymptotically approaches the infinite barrier
result E = 3ωc/2 from below. This system corresponds to a QH edge state with guiding center coordinate
Ygc = 0 confined by a finite edge potential. The dotted line indicates a linear interpolation between the full
harmonic oscillator ground state energy and the lowest potential barrier treated numerically.

the derivation of the approximate QH edge dispersion in Section 2.2. The condition
qF = ks generally corresponds to fixing the Fermi energy with the condition Eδq=0 = 0.
Since ks = λℓ2, the state corresponding to δq = q− ks = 0 is the harmonic oscillator state
with guiding center coordinate Ygc = 0, i.e. with a barrier in the middle. The ground
state energy of a harmonic oscillator with a barrier in the middle was solved in Ref. [40]
in both the finite and infinite cases. For a one-dimensional system with the potential, see
the left side of Fig. 3.6

V (y)

ωc
=

{
V0/ωc for y ≤ 0,

y2/(2ℓ2) for y > 0,
(3.109)

i.e. a half harmonic oscillator with a finite step in the middle, the lowest energy eigen-
value is given by a transcendental equation whose numerical solution is shown on
the right side of Fig. 3.6. Note that in the V0 → 0 limit, Eq. (3.109) does not become a
harmonic oscillator, and thus solutions with small V0 are ignored in Fig. 3.6, with the
full harmonic oscillator limit indicated by a dotted line. We see that for greater barrier
strengths, the energy approaches the second Landau level at E = 3ωc/2 asymptotically
from below. Thus, for large but finite barriers, we predict that the resonance condition is
found at some Fermi energy near, but below, the second Landau level, EF < ωc.

3.9 Summary

We present an approximate QH edge dispersion with a Fermi energy EF measuring
the energy difference from the lowest Landau level to the Fermi level, and find that a
constant vector potential at the SC surface is a good approximation for experimentally
relevant materials. We then assume Rashba SOC at the SC surface to allow for the critical
spin-flip needed for Andreev reflection, and model the tunneling coupling between the
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systems. We then find that the total model predicts lower critical SC fields than found in
experiment, which underlines the qualitative nature of the model.

We assume that the SOC is small compared to the SC gap, and consider it pertur-
batively to first order. The resulting diagonal SC Hamiltonian is then integrated out,
resulting in an effective model of the proximitized QH edge with induced pairing and
contributions to the kinetic energy,

Heff =
∑

δq

[
(Eks+δq + δEδq)ψ

†
ks+δq

ψks+δq +

(
∆δq

2
ψ†
ks+δq

ψ†
ks−δq + h. c.

)]
. (3.110)

The full expressions for δEδq and ∆δq are derived, with the pairing amplitude being

∆δq = −ieiϕ∆Γ2
Lα

msEs
2|∆0|2

δq, (3.111)

in the lowest order in δq. The effective dispersion of the system sees avoided crossings
between particle and hole bands, which indicates particle-hole mixing. This mixing
occurs even for weakly induced pairing, and we derive the resonance condition

Ω = ωc − EF , (3.112)

which is the energy for which the system undergoes a topological phase transition
between weak and strong pairing. This condition corresponds to the condition qF = ks,
and is thus fundamentally linked to the Meissner effect at the SC surface. We predict
that for finite barrier strengths at the interface, the transition occurs at Fermi energies
below ωc.

Having derived the effective Hamiltonian, we proceed to predict the experimental
signatures associated with the system it describes.
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CHAPTER 4
Transport through the proximitized

edge

We now wish to investigate transport through the proximitized edge states, also known
as Andreev edge states. In particular, we will draw inspiration from experiments [24,25]
and consider the setup sketched in Fig. 4.1. Here four leads with chemical potentials
µ1,...,4 are connected to a two-dimensional electron gas (2DEG) in the quantum Hall
(QH) phase. A current I is passed through the system, carried by the chiral edge states
which propagate in a clockwise direction. As the current passes through the Andreev
edge states characterized by induced superconductivity, the particle and hole states

2DEG

SC

AES

~

Figure 4.1: A sketch of a transport experiment measuring the downstream resistance R̃23 = dV3/dI ,
where V3 = µ3/e. A 2DEG in a strong magnetic field is connected to three normal leads and one grounded
SC lead (lead 2). A current I is injected through lead 4 and leaves through lead 2, while leads 1 and 3 are
voltage leads measuring µ1 and µ3. Due to the proximity effect, the edge channel passing lead 2 consists
of Andreev edge states (AES) which are mixtures of particle and hole states.
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mix. Since the particle and hole states have opposite charge, the mixing can be detected
in the charge transport. In particular, we will consider the effect of the mixing on the
differential resistance as measured downstream of the SC-QH interface, i.e. between
terminals 2 and 3

R̃23 =
dV3
dI

(4.1)

where V3 = µ3/e is the voltage corresponding to the chemical potential µ3 with e being
the elementary charge. We assume that the SC is grounded such that the chemical
potential of the other terminals are measured in relation to µ2, and fix it to the middle of
the SC gap, µ2 = 0. This further means that the SC can absorb an arbitrary amount of
charge. We note that the chemical potential µ2 corresponding to the voltage of terminal
2, and the SC chemical potential µs which enters into the BCS Hamiltonian are different
quantities, since µs represents what the chemical potential of the metallic SC would be
in the absence of superconductivity.

For the integer QH case, transport can be modeled by a scattering calculation in the
Landauer-Büttiker formalism. We will present this formalism in a particle-hole context,
and use it to predict the effect of the induced superconductivity on R̃23. For further
reading see Ref. [42]. Going forward we will work in units where |e| = 1 such that
charge current and probability current are the same.

4.1 Scattering in the particle-hole basis

As discussed in Section 2.2, the chiral edge state conduction in QH systems is one-
dimensional and ballistic, i.e. insensitive to backscattering. This insensitivity is quali-
tatively different from superconductivity, where electron scattering involves breaking
apart a Cooper pair and thus exciting electrons above the SC gap of magnitude |∆0|.
Instead, due to the chirality of the edge states, backscattering in a QH edge would
involve scattering to the opposite edge of the 2DEG, and is thus strongly suppressed
by the macroscopic distance involved. What type of transport do we then expect in the
proximitized edge, superconducting or ballistic? As shown in Section 3.7, the proximity
effect does not induce a gap into the QH edge, and also does not affect the chirality
of the edge state by introducing any backscattering channels. Thus the transport will
remain ballistic.

One-dimensional charge transport through ballistic channels is well understood in
the Landauer-Büttiker formalism [42], which relates transport quantities such as current
to the microscopic details of the ballistic system. This formalism can be extended to the
superconducting case [13,14,24] by explicitly taking particle-hole mixing into account as
for example done in the seminal paper by Blonder, Tinkham and Klapwijk [48]. In this
section we use these formalisms to carefully derive the current of a superconducting,
ballistic edge channel in terms of the scattering amplitudes between particle and hole
states.

4.1.1 Particles and holes

We will first derive the current of a general 1D system of particles and holes, and then
apply it to the specific case shown in Fig. 4.1. The discussion of particles and holes will
be similar to that of Section 3.8, but it is necessary to repeat in clear detail to ensure
consistent definitions for transport calculations.
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Consider the electron operator ck which annihilates a one-dimensional electron with
momentum k and kinetic energy ϵk = k2/(2m)− EF , where m is the electron mass and
EF = k2F /(2m) is the Fermi energy with associated Fermi momentum kF . We define the
operator as annihilating a particle for momenta above a fixed momentum k0, and define
it as creating a hole for momenta below k0

ck =

{
pk−k0 for k > k0,

h†k0−k for k ≤ k0,
(4.2)

where we have made the arbitrary choice of having a hole operator at k = k0. Typically
we have k0 = kF , but in light of the role of the supercurrent momentum in the previous
chapter, we will keep k0 general, and show that the choice has no effect on the current.
The particle and hole definitions correspond to

pk = ck0+k for k > 0,

hk = c†k0−k for k ≥ 0
(4.3)

The free electron Hamiltonian is then

H1 =
∑

k>k0

ϵkc
†
kck +

∑

k≤k0

ϵkc
†
kck

=
∑

k>k0

ϵkp
†
k−k0pk−k0 +

∑

k≤k0

ϵkhk0−kh
†
k0−k

=
∑

k>0

ϵk+k0p
†
kpk +

∑

k≥0

ϵk0−khkh
†
k, (4.4)

where the last term involved shifting the momentum variable. For energies near the
Fermi energy, we can linearize the spectrum around the Fermi momentum kF =

√
2mEF

as ϵk = vF (k − kF ) and thus define

ϵp,k = ϵk+k0 = vF (k + k0 − kF ),

ϵh,k = −ϵk0−k = vF (k − k0 + kF ),
(4.5)

where we have used that ϵkF = 0. An important detail that we will apply later is that
particles and holes only differ by the sign of the (shifted) Fermi momentum k0 − kF . In
other words, the two particles share the same group velocity vF , but their bands are
separated by an energy 2vF (k0 − kF ). For k0 = kF , the two bands are the same. The
Hamiltonian becomes

H1 =
∑

k>0

ϵp,kp
†
kpk +

∑

k≥0

ϵh,kh
†
khk + const., (4.6)

where the constant is added due to the fermionic nature of the fields {hk, h†k} = 1 and
will be ignored. We note that the linearization implies infinite bands, which means it
introduces an implicit momentum cutoff beyond which the linear model fails.

4.1.2 Current

The probability current density J passing through the one-dimensional system is given
by the continuity equation under conservation of charge

∂tρ+ ∂xJ = 0, (4.7)
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where ρ(x) is the local density operator whose time evolution is given by

∂tρ = i[H1, ρ], (4.8)

with the Hamiltonian H1 defined in Eq. (4.6). For the linearized system of free electrons
in one dimension, the result is well known [42], and the average probability current
density can be expressed in terms of momentum states

⟨J⟩ = vF
L

∑

k

⟨c†kck⟩ . (4.9)

In other words, the probability density is the summed product of electron density 1/L
and velocity vF for each occupied state. In particular, assuming all states are occupied
below kF , and none above, we have

⟨J⟩ = vF
L

∑

k≤kF

1, (4.10)

which formally diverges due to the assumption of an infinite band. In one dimension,
the current density J is the same as the current I [42], and so we can write the average
current in terms of particles and holes as

⟨I⟩ = vF
L


∑

k>k0

⟨c†kck⟩+
∑

k≤k0

⟨c†kck⟩




=
vF
L


∑

k>k0

⟨p†k−k0pk−k0⟩+
∑

k≤k0

⟨hk0−kh†k0−k⟩




=
vF
L


∑

k>0

⟨p†kpk⟩ −
∑

k≥0

⟨h†khk⟩+
∑

k≤k0

1


 . (4.11)

Despite particles and holes having the same group velocity, see Eq. (4.5), and thus
moving in the same direction, particles contribute positively to the current, while holes
contribute negatively to the current.

We now consider a system where electrons are allowed to move in two directions
with velocities ±vF , labeling those moving in the positive direction as incoming with
associated operator ik, and those moving in the negative direction as outgoing with
associated operator ok. Ultimately this will used to model the currents in and out of
the terminals in Fig. 4.1. Since we now simply have two free electron systems in one
dimension, we can repeat the above analysis to write the current of the system as

⟨I⟩ = vF
L

(∑

k

⟨i†kik⟩ −
∑

k

⟨o†kok⟩
)
. (4.12)

As we did in Eq. (4.3), we can then define in- and outgoing particle operators as pi/o,k, as
well as the equivalent hole operators hi/o,k, with i indicating incoming and o indicating
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outgoing. The current in terms of particles and holes then becomes

⟨I⟩ = vF
L


∑

k>k0

⟨p†i,k−k0pi,k−k0⟩ −
∑

k≤k0

⟨h†i,k0−khi,k0−k⟩+
∑

k≤k0

1




− vF
L


∑

k>k0

⟨p†o,k−k0po,k−k0⟩ −
∑

k≤k0

⟨h†o,k0−kho,k0−k⟩+
∑

k≤k0

1


 . (4.13)

We resolve the parentheses and find that the constant contributions cancel since they
correspond to opposite electron currents,

⟨I⟩ = vF
L


∑

k>k0

[
⟨p†i,k−k0pi,k−k0⟩ − ⟨p†o,k−k0po,k−k0⟩

]

−
∑

k≤k0

[
⟨h†i,k0−khi,k0−k⟩ − ⟨h†o,k0−kho,k0−k⟩

]



=
vF
L


∑

k>0

[
⟨p†i,kpi,k⟩ − ⟨p†o,kpo,k⟩

]
+
∑

k≥0

[
−⟨h†i,khi,k⟩+ ⟨h†o,kho,k⟩

]

 , (4.14)

where we have shifted the momentum variable in the second step. We find that ingoing
particles and outgoing holes contribute positively to the current, while outgoing particles
and ingoing holes contribute negatively, which is what we would expect. All the currents
discussed are independent of the choice of k0, as they should be.

4.1.3 Scattering

We will now modify Eq. (4.14) to account for the scattering of incoming particle into
outgoing particles at the terminals. In the continuum limit

∑
k → L

∫
dk/2π we have

⟨I⟩ = vF

∫ ∞

0

dk

2π

(
⟨p†i,kpi,k⟩+ ⟨h†o,kho,k⟩ − ⟨p†o,kpo,k⟩ − ⟨h†i,khi,k⟩

)
. (4.15)

For the scattering context will relabel the fields pi,k → ip,k etc., which will make future
notation more readable. In this labeling we have

⟨I⟩ = vF

∫ ∞

0

dk

2π

(
⟨i†p,kip,k⟩+ ⟨o†h,koh,k⟩ − ⟨o†p,kop,k⟩ − ⟨i†h,kih,k⟩

)
. (4.16)

Furthermore, in preparation for treating the NS junction between normal edge state
and proximitized edge state, we note that for a system without translational invariance
momentum is not conserved, but energy is. We relabel the states in terms of energy
instead of momentum as iE , oE by performing the substitution k = E/vF ,

⟨I⟩ = 1

2π

∫
dE
(
⟨i†p,Eip,E⟩+ ⟨o†h,Eoh,E⟩ − ⟨o†p,Eop,E⟩ − ⟨i†h,Eih,E⟩

)
. (4.17)

In a multi-terminal system with ballistic conduction, the in- and outgoing modes of
each terminal are related through the scattering matrix [42] as

om,j,E =
∑

n
l=p,h

t∗m,n,j,l(E)in,l,E , (4.18)
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where the indices j, l ∈ {p, h} describe whether we are dealing with particles or hole,
while the indices m,n = 1, 2, 3, . . . label the terminals. In the four-terminal case, the
scattering matrix has dimensions 8 × 8 to account for both particles and holes, with
the matrix elements tm,n,j,l(E) being the amplitude a particle of type l from terminal
n being transmitted to terminal m as a particle of type j, all at energy E. Due to the
ballistic nature of the conduction, the energy does not change in the transmission process.
Applying this relation between in- and outgoing particles to the current in Eq. (4.17)
while keeping the order of terms, we have the current through terminal m

⟨Im⟩ =
1

2π

∫
dE

(
⟨i†m,p,Eim,p,E⟩+

∑

n
l=p,h

|tm,n,h,l(E)|2 ⟨i†n,l,Ein,l,E⟩

−
∑

n
l=p,h

|tm,n,p,l(E)|2 ⟨i†n,l,Ein,l,E⟩ − ⟨i†m,h,Eim,h,E⟩
)
. (4.19)

Since the expectation values involved are for number operators at a certain energy, we
can resolve them by assigning a chemical potential µm and assuming Fermi distributions
nF (E − µm) in each lead. For the particle operators, this leads to

⟨i†m,p,Ein,p,E′⟩ = δ(E − E′)δm,nnF (E − µm). (4.20)

Since we know from Eq. (4.5) that the only difference between particle Hamiltonian and
hole Hamiltonian is the sign of the chemical potential, we also have

⟨i†m,h,Ein,h,E′⟩ = δ(E − E′)δm,nnF (E + µm). (4.21)

We can then write out the particle and hole terms of the current, which after re-arranging
the terms becomes

⟨Im⟩ =
1

2π

∫
dE

(
⟨i†m,p,Eim,p,E⟩ − ⟨i†m,h,Eim,h,E⟩

+
∑

n

[(
|tm,n,h,p(E)|2 − |tm,n,p,p(E)|2

)
⟨i†n,p,Ein,p,E⟩

+
(
|tm,n,h,h(E)|2 − |tm,n,p,h(E)|2

)
⟨i†n,h,Ein,h,E⟩

])
, (4.22)

where evaluating the expectation values yields

⟨Im⟩ =
1

2π

∑

n

∫
dE

(
nF (E − µm) +

(
|tm,n,h,p(E)|2 − |tm,n,p,p(E)|2

)
nF (E − µn)

+
(
|tm,n,h,h(E)|2 − |tm,n,p,h(E)|2

)
nF (E + µn)− nF (E + µm)

)
. (4.23)

To calculate the current through the system we then need to derive expressions for the
transmission amplitudes t. We will do this by solving the first quantization Schrödinger
equation corresponding to the system and finding the solutions for an NS junction.
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Figure 4.2: The spectrum in Eq. (4.26) (black dashed line) of the linear effective QH edge Hamiltonian
compared to the full effective spectrum in Eq. (3.85) (blue full line). It is plotted for Ω = ωc/10 with an
exaggerated ∆p = vF /

√
10 for illustrative purposes. While the spectrum is a good approximation for

Ω ≥ 0, it is symmetric across Ω = 0 and thus fails to take into account the avoided crossings at Ω < 0.

4.2 Position-dependent parameters

To model electron scattering through a proximitized region of the QH edge, we will
consider what is effectively a one dimensional chiral system with a proximitized region
surrounded by two normal regions, i.e. an NSN junction. This will be modeled by
introducing position dependence into the parameters of the Hamiltonian as follows.

We consider the linear approximations around δq = 0 of Eqs. (3.89) and (3.94), as
well as the linear approximation of the non-proximitized QH edge dispersion

EkS+δq ≃ Ω− ωcℓδq (4.24)

with Ω defined as ωc − EF in Eq. (3.105). Under these approximations, the effective
Hamiltonian of the proximitized QH edge in Eq. (3.100) becomes

Heff,lin =
1

2

∑

δq

(
p†δq
h†δq

)T (
Ω+ vF δq i∆pδq
−i∆pδq −Ω+ vF δq

)(
pδq
hδq

)
, (4.25)

where we have vF = −ωcℓ+ δv. By linearizing EkS+δq, the following transport calcula-
tions are far more tractable, but at the cost of treating a slightly different model than that
derived in the previous chapter. To illustrate the difference, we can diagonalize Eq. (4.25)
to find the spectrum

Eeff,lin,δq,± =
1

2

(
vF δq ±

√
Ω2 + (∆pδq)2

)
. (4.26)

This spectrum is shown in Fig. 4.2 for Ω = ωc/10, and with an exaggerated pairing
amplitude ∆p = vF /

√
10 for illustrative purposes. Since Eeff,lin,δq is symmetric across

Ω = 0, it fails to take into account the introduction of avoided crossings, but at Ω ≥ 0
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and small momenta, which will be the focus of the analysis, the physics are unchanged
by the approximation.

To allow for a spatially inhomogeneous system we Fourier transform to position
space

pδq =
1√
L0

∫
dxe−iδqxp(x),

hδq =
1√
L0

∫
dxe−iδqxh(x), (4.27)

where L0 is the total length of the system, distinct from the length of the SC segment L.
Then, we find

Heff,lin =
1

2

∫
dx

(
p†(x)
h†(x)

)T (
Ω− ivF∂x ∆p∂x
−∆p∂x −Ω− ivF∂x

)(
p(x)
h(x)

)
. (4.28)

Using this convention, the p(x) and h(x) modes propagate in the same direction, i.e.
both towards the left for vF < 0. We now introduce the NSN junction by assuming that
the edge is only superconducting in a region −L/2 < x < L/2. We assume the transition
between N and S regions to be steep on the length scale of the wave function, and model
it as a step function, such that the Hamiltonian has the parameters

∆p(x) = ∆p θ(x+ L/2)θ(x− L/2),

vF (x) = ωcℓ+ δv θ(x+ L/2)θ(x− L/2).
(4.29)

Note that since we ignored the constant shift in the linearization of δEδq, see Eq. (3.94), we
are technically missing a spatial dependence on Ω as well. Such a shift would constitute
a potential barrier between the normal and proximitized regions, which cannot affect
a chiral system with no backscattering, where perfect transmission is enforced by the
conservation of probability current. In a physical scenario, a non-negligible potential
barrier would force the edge state inwards into the 2DEG, in a similar situation to
experiments where a superconducting finger protrudes into the 2DEG [22]. In the
absence of crossed Andreev reflection, we do not expect any qualitative effects of this
push beyond the weakening of the induced superconductivity as the edge state is
pushed further away from the SC. This does not appear to be a concern in comparable
experiments [24, 25], and we will assume no such potential barrier exists.

When introducing position dependence into the parameters in the Hamiltonian,
they no longer commute with ∂x, and care must be taken to ensure Hermiticity of
the Hamiltonian. Since there are multiple Hermitian Hamiltonians which correspond
to Eq. (4.28) in the limit of position independence, this is not a unique choice. This
problem is well-known in the context of position dependent mass in semiconductor
heterostructures [66], and the choice is not expected to have any effect within the
accuracy of the presented model. We follow Ref. [15] and replace the product with an
anti-commutator,

∆p i∂x → 1

2
{∆p(x), i∂x}, (4.30)

and similarly for vF . This has the correct limit for position-independent parameters and
the Hamiltonian remains Hermitian. This can be seen if we define the matrix

M(x) =

(
vF (x) i∆p(x)

−i∆p(x) vF (x)

)
, (4.31)
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and write the NSN Hamiltonian

HNSN = HNSN,0 +HNSN,M (4.32)

in terms of M(x) and the spinor ψ(x) = (p(x), h(x))T

HNSN,0 = − i

4

∫
dxψ†(x)Ωσzψ(x), (4.33)

HNSN,M = − i

4

∫
dxψ†(x){M(x), ∂x}ψ(x), (4.34)

where σz is the Pauli matrix. Since HNSN,0 is trivially Hermitian, we can the check
Hermiticity of HNSN,M by writing out the anti-commutator

HNSN,M = − i

4

∫
dx

(
ψ†(x)M(x)[∂xψ(x)] + ψ†(x)[∂xM(x)ψ(x)]

)
. (4.35)

Since M(x) is unitary, we can replace it with M †(x) integrate by parts in the second term

HNSN,M = − i

4

∫
dx

(
ψ†(x)M(x)[∂xψ(x)]− [∂xψ

†(x)]M †(x)ψ(x)

)
. (4.36)

Since we have [−i∂xψ(x)]† = −i∂xψ†(x) (i.e. the momentum operator is Hermitian), the
Hamiltonian is Hermitian

HNSN,M = −1

4

∫
dx

(
iψ†(x)M(x)[∂xψ(x)] + h. c.

)
. (4.37)

We note that going forward, the most practical form to use is that in Eq. (4.35), written
out as

HNSN,M = − i

4

∫
dx

(
ψ†(x)M(x)[∂xψ(x)] + ψ†(x)[∂xM(x)ψ(x)]

)

= − i

4

∫
dx

(
ψ†(x)M(x)[∂xψ(x)] + ψ†(x)[∂xM(x)]ψ(x) + ψ†(x)M(x)[∂xψ(x)]

)

= − i

2

∫
dxψ†(x)M(x)[∂xψ(x)]−

i

4

∫
dxψ†(x)[∂xM(x)]ψ(x) (4.38)

Given this NSN Hamiltonian, we are ready to discuss transport across the junction.

4.3 Boundary conditions

To calculate scattering across the NSN junction, we must ensure that we apply the correct
boundary conditions at each NS junction. These are obtained by imposing continuity of
the current through the interfaces. We thus need to first derive the correct form of the
current operators associated with the Hamiltonian in Eq. (4.32).
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4.3.1 Current

To find the current operator, we will use the one dimensional continuity equation

∂tρ(x) + ∂xJ(x) = 0. (4.39)

We define the local density as

ρ(x) = ψ†(x)ψ(x) (4.40)

with the time evolution

∂tρ(x) = i[HNSN, ρ(x)]. (4.41)

We can write out the Hamiltonian as a sum of particle and hole components with
ψ1(x) = p(x) and ψ2(x) = h(x), such that

HNSN = − i

2

∑

r,s

∫
dxψ†

r(Nrs +Mrs∂x)ψs (4.42)

with the matrix

N(x) = iΩσz +
1

2
∂xM(x). (4.43)

The commutator describing the time evolution of the density is then

i[HNSN, ρ(y)] =
1

2

∑

r,s,m

∫
dx
[
ψ†
r(x)

(
Nrs(x) +Mrs(x)∂x

)
ψs(x), ψ

†
m(y)ψm(y)

]
. (4.44)

Defining the differential operator Drs(x) = Nrs(x) +Mrs(x)∂x, we have

∂tρ(y) =
1

2

∑

r,s,m

∫
dx
[
ψ†
r(x)Drs(x)ψs(x), ψ

†
m(y)ψm(y)

]
. (4.45)

We can then apply the commutator Eq. (B.16) from Appendix B to see

∂tρ(y) =
1

2

∑

r,s,m

∫
dx ψ†

r(x)ψm(y)δm,sDrs(x)δ(x− y)− ψ†
m(y)δr,mδ(x− y)Drs(x)ψs(x).

(4.46)

We write out D(x) and integrate by parts in the first term

∂tρ(y) =
1

2

∑

r,s,m

∫
dx

{[
Nrs(x)ψ

†
r(x) +Mrs(x)ψ

†
r(x)∂x

]
δm,sψm(y)δ(x− y)

− ψ†
m(y)δr,mδ(x− y)

[
Nrs(x) +Mrs(x)∂x

]
ψs(x)

}

=
1

2

∑

r,s,m

∫
dx

{[
Nrs(x)ψ

†
r(x)− ∂x[Mrs(x)ψ

†
r(x)]

]
δm,sψm(y)δ(x− y)

− ψ†
m(y)δr,mδ(x− y)

[
Nrs(x) +Mrs(x)∂x

]
ψs(x)

}
, (4.47)
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after which we can evaluate the m sum and the x integral,

∂tρ(y)

=
1

2

∑

r,s

{[
Nrs(y)ψ

†
r(y)− ∂y[Mrs(y)ψ

†
r(y)]

]
ψs(y)− ψ†

r(y)
[
Nrs(y) +Mrs(y)∂y

]
ψs(y)

}
.

(4.48)

We note that the N terms cancel, and we are left with

∂tρ(y) = −1

2

∑

r,s

{
∂y[Mrs(y)ψ

†
r(y)]ψs(y) + ψ†

r(y)Mrs(y)∂yψs(y)

}

= −1

2

∑

r,s

∂y

[
ψ†
r(y)Mrs(y)ψs(y)

]
(4.49)

where the contents of the parenthesis is a matrix product. Comparing to Eq. (4.39), we
see that the current is

J(x) =
1

2
ψ†(x)M(x)ψ(x). (4.50)

Note that this is technically only determined up to a constant, but since we only need
the current operator to ensure continuity of current, this constant has no effect and can
be ignored.

4.3.2 Continuity of the wave function

Since the system in consideration consists of non-interacting electrons, we can make a
first quantization description of the scattering. By solving the Schrödinger equation to
find the wave functions of each region, we can match these wave functions according to
the boundary conditions. This will result in the scattering matrix elements needed to
find the current from the Landauer-Büttiker formula in Eq. (4.23).

The boundary conditions of the problem are based on current conservation and will
be derived in detail. We will follow the strategy laid out in Ref. [67] and start by assuming
|∆p(x)| < |vF (x)| for all x, corresponding to weak induced pairing. The eigenvalues of
M(x) are vF (x) ±∆p(x), and since these are positive and M(x) is Hermitian, M(x) is
positive definite. This implies the existence of a positive, Hermitian matrix A(x) = A†(x)
such that

M(x) =

(
vF (x) i∆p(x)

−i∆p(x) vF (x)

)
= UD(x)U † = U

√
D(x)U †U

√
D(x)U † = A(x)A(x).

(4.51)

Here we have defined the unitary matrix U and the diagonal matrix D(x)

U =
1√
2

(
−i i
1 1

)
, (4.52)

D(x) =

(
vF (x)−∆p(x) 0

0 vF (x) + ∆p(x)

)
, (4.53)
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such that A(x) = U
√
D(x)U †. We can then recast the derivative of M(x),

∂xM(x) = U
(
∂x
√
D(x)

)
U †U

√
D(x)U † + U

√
D(x)U †U

(
∂x
√
D(x)

)
U †. (4.54)

Since U †U = I and diagonal matrices commute, we have

∂xM(x) = 2U
√
D(x)

(
∂x
√
D(x)

)
U † = 2A(x)∂xA(x), (4.55)

which lets us write the Hamiltonian in Eq. (4.34) as

HNSN,M = − i

2

∫
dxψ†(x)A(x)[∂xA(x)]ψ(x). (4.56)

The Schrödinger equation in first quantization corresponding to the Hamiltonian is then

H(x)ϕ(x) = − i

2
A(x)∂x[A(x)ϕ(x)] +

1

2
Ωσzϕ(x) = Eϕ(x) (4.57)

where ϕ(x) = (ϕ1(x), ϕ2(x))
T has two components for particle and hole, respectively.

We can recast the equation in terms of the rotated spinor wave function

ϕ̃(x) = A(x)ϕ(x), (4.58)

so that it becomes

− i

2
A(x)∂xϕ̃(x) +

1

2
ΩσzA

−1(x)ϕ̃(x) = EA−1(x)ϕ̃(x). (4.59)

Multiplying by A−1(x) from the left we have

− i

2
∂xϕ̃(x) +

1

2
ΩA−1(x)σzA

−1(x)ϕ̃(x) = E
[
A−1(x)

]2
ϕ̃(x), (4.60)

which can be re-arranged into the form

∂xϕ̃(x) = Q(x)ϕ̃(x), (4.61)

where we can use M−1 = [A−1(x)]2 to define

Q(x) = 2iEM−1(x)− iΩA−1(x)σzA
−1(x)

=
2i

ṽ2F (x)

(
vF (x)E − ΩṽF (x)/2 i∆p(x)E

−i∆p(x)E vF (x)E +ΩṽF (x)/2

)
, (4.62)

with the renormalized velocity

ṽF (x) =
√
v2F (x)−∆2

p(x). (4.63)

In the context of a single NS boundary, we can consider this boundary to be found at
x = 0 and integrate Eq. (4.61) over a narrow interval of width 2ϵ around the boundary.
Since the matrices on the right hand side are all bounded for |vF | > |∆1|, if we assume
that ϕ̃(x) is bounded as well, we see that the right hand side vanishes and the boundary
condition becomes

ϕ̃(ϵ)− ϕ̃(−ϵ) = 0. (4.64)
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This, in turn, means that the wave function ϕ(x) obeys the boundary condition

A(x)ϕ(x)|x=ϵ = A(x)ϕ(x)|x=−ϵ (4.65)

Hence, the simplest model of spatial dependence taking the form of a step function
implies a discontinuous wave function. As pointed out in Ref. [67], this is an artifact of
the model, which stems from the discontinuous form of the Hamiltonian parameters
as described in Eq. (4.29). When we consider the physical current Eq. (4.66) in the first
quantization picture, we see that for a state given by ϕ(x), the current

J(x) =
1

2
ϕ†(x)M(x)ϕ(x) =

1

2
ϕ̃†(x)ϕ̃(x) (4.66)

remains continuous.

4.4 Transfer matrix

We will now solve Eq. (4.61) for ϕ̃(x) in the N and S regions, and connect the solutions
through the boundary condition in Eq. (4.65). This will let us derive the scattering matrix
elements needed to calculate the current in Eq. (4.23).

Considering again a single NS junction at x = 0, we solve Eq. (4.61) separately for
x ≷ 0 and then impose continuity of ϕ̃(x) at x = 0. We will assume that on each side,
the parameters are constant, such that M−1(x) is a piecewise constant function M−1.
This allows us to solve the equation on either side of the boundary, after which we will
connect the solutions.

To make the calculations more tractable, we define the velocity and length

ṽF =
√
v2F −∆2

p,

L̃ =
ṽ2F√

4∆2
pE

2 + ṽ2FΩ
2
,

(4.67)

as well as the three parameters

a = 2vF /ṽ
2
F ,

b = 2∆p/ṽ
2
F ,

c = Ω/ṽF .

(4.68)

4.4.1 Wave function

On a given side, we then have to solve the two coupled equations,

−i∂xϕ̃1(x) = aEϕ̃1(x)− ibEϕ̃2(x)− cϕ̃1(x), (4.69)

−i∂xϕ̃2(x) = ibEϕ̃1(x) + aEϕ̃2(x) + cϕ̃2(x), (4.70)

The general solution of this coupled system is given by

ϕ̃1(x) = C1e
iaEx cos(x/L̃) + L̃(bEC2 − icC1)e

iaEx sin(x/L̃),

ϕ̃2(x) = C2e
iaEx cos(x/L̃)− L̃(bEC1 − icC2)e

iaEx sin(x/L̃). (4.71)
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We have two integration constants C1,2. At x = 0, we have ϕ̃1,2(0) = C1,2. Therefore,
continuity of ϕ̃(x) means that the constants C1,2 are identical on both sides. Hence, the
most general continuous solution, valid for all x, reads

ϕ̃1(x) = C1e
ia±Ex cos(x/L̃±) + L̃±(b±EC2 − ic±C1)L̃±e

ia±Ex sin(x/L̃±),

ϕ̃2(x) = C2e
ia±Ex cos(x/L̃±)− L̃±(b±EC1 − ic±C2)e

ia±Ex sin(x/L̃±), (4.72)

where a± = a(x ≷ 0) and similarly for b±, c± and L̃±. Written as a spinor, this means

ϕ̃(x ≷ 0) =

eia±Ex
[
cos(x/L̃±)12 + L̃±b±E sin(x/L̃±)

(
0 1
−1 0

)
− ic±L̃± sin(x/L̃±)

(
1 0
0 −1

)]
C,

(4.73)

where C = (C1, C2)
T . Next, we translate this to the wave function ϕ(x) by using

ϕ(x) = A−1(x)ϕ̃(x). For this we need the inverse of the matrix A(x). Using Eq. (4.51),
we find that this is given by

A−1(x) = U [
√
D(x)]−1U †, (4.74)

where we have used the fact that the matrix
√
D is (trivially) invertible because it is

diagonal and positive-definite. Therefore, we have

ϕ(x ≷ 0) = A−1(x)ϕ̃(x)

= eia±Ex
[
cos(x/L̃±)U [

√
D(x)]−1U † + L̃±b±E sin(x/L̃±)U [

√
D(x)]−1U †

(
0 1
−1 0

)

− iL̃±c± sin(x/L̃±)U [
√
D(x)]−1U †

(
1 0
0 −1

)]
C (4.75)

This solves the discontinuous wave function ϕ(x) up to the constant vector C, which
will be fixed in the next section.

4.4.2 Interface transfer matrix

We are now ready to derive the transfer matrix T , which relates modes at x > 0 to modes
at x < 0,

ϕ(0−) = Tϕ(0+). (4.76)

To find T we do not need to determine C, because taking the limit x→ 0 on both sides
of the boundary yields

ϕ(0±) = U [
√
D(0±)]

−1U †C (4.77)

We can use the first of these equations to express C in terms of ϕ(0+),

C = U [
√
D(0+)]U

†ϕ(0+), (4.78)

which immediately yields the transfer matrix

ϕ(0−) = U [
√
D(0−)]

−1[
√
D(0+)]U

†ϕ(0+). (4.79)
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If we assume that we have an N region on the right (x > 0) and an S region on the left
(x < 0) , we can write down the N to S transfer matrix explicitly as

TSN =

√
v0
2

(
i −i
1 1

)(√
vF −∆p 0

0
√
vF +∆p

)−1(−i 1
i 1

)
(4.80)

Interestingly, this transfer matrix is not unitary. However, we recall that the unitarity of
scattering matrices is implied by conservation of current [50], and as we saw in Eq. (4.66),
current conservation holds for ϕ̃ rather than ϕ. We can rewrite Eq. (4.76) as

ϕ̃(0−) = A−TA
−1
+ ϕ̃(0+), (4.81)

and since TSN = A−1
− A+, we have

ϕ̃(0−) = ϕ̃(0+), (4.82)

as also implied by continuity of ϕ̃. Since the only available channel across the boundary
is transmission, ϕ̃ must be perfectly transmitted, which in turn implies non-unitary TSN.
Even in the case ∆p = 0, we can see from Eq. (4.80) that T is non-unitary due to the
different velocities in the two regions. To find the transfer matrix from S to N we repeat
the above process to find

TSN =
1

2
√
v0

(
i −i
1 1

)(√
vF −∆p 0

0
√
vF +∆p

)(
−i 1
i 1

)
. (4.83)

4.4.3 NSN junction

To evaluate the scattering amplitudes between the terminals sketched out in Fig. 4.1, we
need to combine the above results to describe a full NSN junction. We assume that we
have normal conducting regions at x < −L/2 and x > L/2, and a superconductor region
at |x| < L/2. We will assume that L is great enough only plane wave states contribute to
coupling across the junction.

Based on this assumption, we can directly apply the transfer matrices we have
derived so far. In analogy to Eq. (4.76), we can relate the N and S region solutions by

ϕ(−L/2− ϵ) = TNSϕ(−L/2 + ϵ),

ϕ(L/2− ϵ) = TSNϕ(L/2 + ϵ), (4.84)

where ϵ is an infinitesimal distance. To fully account for the transport across the junction,
we also need to describe the transport within the S region by relating ϕ(−L/2 + ϵ) to
ϕ(L/2− ϵ). Looking at Eq. (4.73), we recall that ϕ̃(0) = C, and thus we see that ϕ̃(x) is
related to ϕ̃(0) through

ϕ̃(x) = eiaExT0(x)ϕ̃(0), (4.85)

where we have defined the matrix

T0(x) =

(
cos(x/L̃)− icL̃ sin(x/L̃) bEL̃ sin(x/L̃)

−bEL̃ sin(x/L̃) cos(x/L̃) + icL̃ sin(x/L̃)

)
. (4.86)
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This matrix is unitary, as can be checked by applying the fact that L̃ = 1/
√
b2E2 + c2.

All quantities are implicitly of their S region form. We find the relation

ϕ̃(−x) = e−iaExT0(−x)ϕ̃(0) = e−iaExT0(−x)
(
e−iaExT−1

0 (x)ϕ̃(x)
)
. (4.87)

We transform back to ϕ to get the relation

ϕ(−x) = e−2iaExA−1(−x)T0(−x)T−1
0 (x)A(x)ϕ(x), (4.88)

Settings x = L/2 allows us to define the transfer matrix across the S region

TS = e−2iaEL/2A−1(−L/2)T0(−L/2)T−1
0 (L/2)A(L/2). (4.89)

The total transfer matrix for the NSN junction TNSN is defined by

ϕ(−L/2− ϵ) = TNSNϕ(L/2 + ϵ), (4.90)

meaning that it must be

TNSN = TNSTSTSN. (4.91)

Noting that ATSN = 1
√
vF and TNSA

−1 = 1(
√
vF )

−1, we find that remarkably the NS
and SN junction transfer matrices cancel out when inserting the definition of TS . The
matrix T0 is unitary and obeys T0(−x) = T †

0 (x), therefore

TNSN = eiaELT0(−L/2)T−1
0 (L/2) =

(
T †
0 (L/2)

)2
. (4.92)

Writing out the product and applying the double angle formulae

sin(2x) = 2 sin(x) cos(x), (4.93)

cos(2x) = cos2(x)− sin2(x), (4.94)

leads to the expression

TNSN = e2iaEL
(
cos(L/L̃) + icL̃ sin(L/L̃) −bEL̃ sin(L/L̃)

bEL̃ sin(L/L̃) cos(L/L̃)− icL̃ sin(L/L̃)

)
. (4.95)

The physical meaning of this result is that applying the transfer matrix T0(x) twice to
a state corresponds to translating that state by a distance 2x, i.e. T 2

0 (x) = T0(2x). It
is worth dwelling on the fact that this matrix only depends on the parameters of the
S region. We can understand this by considering the nature of transport through QH
edge states. This transport is chiral and ballistic, meaning that everything must be either
perfectly transmitted or tunnel into the superconductor. This tunneling is not affected by
the parameters of the N regions, and thus any divergence from the well known ballistic
transport of the QH edge should only depend on the nature of the superconductor and
the length of the S region.
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Figure 4.3: The hole transmission probability Ph with vF /DeltaP = 2 as a function of the system
length L (in units of ∆p/E) and the detuning from resonance Ω/E. The contour lines indicate Ph =
(0.25, 0.5, 0.75). We will later show that Ph > 0.5 corresponds to negative downstream resistance.

4.5 Hole conversion probability

We are now ready to express a main result of this chapter, which is the the hole conversion
probability Ph(E) expressing the probability that an incoming particle is transmitted
through the NSN junction as a hole. As we will see in the next section, this probability
determines the behavior of the downstream resistance R̃23. Since TNSN is unitary, we
can safely interpret it as a scattering matrix in the basis of particles and holes (p, h)T ,
with the matrix elements

TNSN =

(
tpp tph
thp thh

)
, (4.96)

where thp is the amplitude of converting a particle into a hole. We thus find the hole
conversion probability Ph = |thp|2, which after inserting the definitions Eqs. (4.67)
and (4.68) becomes

Ph(E) =
1

1 + 1
4(Ω/E)2[(vF /∆p)2 − 1]

sin2




√
4 + (Ω/E)2[(vF /∆p)2 − 1]

(vF /∆p)2 − 1

EL

∆p


 .

(4.97)

This expression is plotted in Fig. 4.3. We see that the probability oscillates with an
amplitude described by a Lorentzian curve centered around Ω/E = 0 with a width
determined by vF /∆p. In particular we find the half-width-half maximum

ΩHWHM

µ1
=

2√
(vF /∆p)2 − 1

. (4.98)
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beyond which we always have Ph < 1/2. Thus, ∆p determines the width of the
Lorentzian, with ∆p → 0 leading to an infinitely narrow function. For finite ∆p, the
Lorentzian reaches unity at the resonance point Ω = 0, corresponding to ks = δqF as
also discussed in Section 3.8. In other words, at resonance we can find perfect hole
conversion, while far away from resonance the Andreev reflection is suppressed.

We also see that the hole conversion probability oscillates with the length L of the
S region. The expression is symmetric around Ω = 0, which is a consequence of the
linearization of the effective Hamiltonian in Eq. (4.25). This oscillatory behavior has
also been found in numerical treatments of the system [24, 25], where it is expressed as
Ph ∝ sin2(qphL/2), with qph/2 interpreted as being the momentum difference between
the particle-like and hole-like SC eigenstates. We can confirm this interpretation by
considering the linearized spectrum in Eq. (4.26), namely

Eeff,lin,δq,± =
1

2

(
vF δq ±

√
Ω2 + (∆pδq)2

)
. (4.99)

If we consider a fixed energy E0, then a state propagating through the proximitized
edge segment will in general be a linear combination of the two energy eigenstates with
energies Eeff,lin,δq0,± = E0. The momenta solving this equality is

δq0,± =
2(vF /∆p)±

√
4 + (Ω/E0)2[(vF /∆p)2 − 1]

(vF /∆p)2 − 1

E0

∆p
, (4.100)

meaning the momentum difference between the eigenstates is

qph
def
= δq0,+ − δq0,− = 2

√
4 + (Ω/E0)2[(vF /∆p)2 − 1]

(vF /∆p)2 − 1

E0

∆p
. (4.101)

This corresponds to the result in Eq. (4.97). The oscillation of Ph reflects the fact that as a
state propagates through the S region, it oscillates between a particle-like and a hole-like
nature due to the momentum difference between these states. The S region length L
determining when this oscillation is "interrupted" and the state stops oscillating as it
passes into the N region.

The oscillation peaks at

µ1L

∆p
=

π(2n+ 1)[(vF /∆p)
2 − 1]

2
√
4 + (Ω/µ1)2[(vF /∆p)2 − 1]

, n = 0, 1, 2 . . . (4.102)

For Ω = 0, at these peaks we find perfect hole conversion Ph = 1. This is a quite
striking result: despite the low transparency across the SC and QH interface implicitly
assumed in a tunneling model, it is still possible to find perfect hole conversion. Even
for very weak induced pairing it is technically possible, though as shown in Eq. (4.98),
the strength of the induced pairing as represented by ∆p controls how finely tuned the
system has to be for perfect hole conversion to take place.

To understand the dependence of the downstream resistance R̃23 on Ph(E), and to
find a physical interpretation of the energy argument, we will now insert the transmis-
sion amplitudes of Eq. (4.95) into the Landauer-Büttiker formula in Eq. (4.23).

60



2DEG

SC~

T43 T14

T31

Figure 4.4: A sketch of the treated transport experiment with transmission amplitude Tij between the
terminals.

4.6 Downstream resistance

We recall the experimental setup from the start of the chapter, as shown in Fig. 4.4, where
current is being transported through a 2DEG in a strong magnetic field through ballistic
edge channels. Terminal 2 is grounded and superconducting, and the electrons passing
between terminals 1 and 3 are converted into holes with probability Ph(E) as given in
Eq. (4.97). The current passing through each of the four leads is given by the expression
derived in Eq. (4.23)

⟨Im⟩ =
1

2π

∑

n

∫
dE

(
nF (E − µm) +

(
|tm,n,h,p(E)|2 − |tm,n,p,p(E)|2

)
nF (E − µn)

+
(
|tm,n,h,h(E)|2 − |tm,n,p,h(E)|2

)
nF (E + µn)− nF (E + µm)

)
, (4.103)

where tm,n,p,h is the scattering matrix element indicating the transmission amplitude of
a hole at terminal n is transmitted as a particle to terminal m, etc. We recall that we are
working in units of |e| = 1. Electron scattering in and out of terminal 2 is energetically
forbidden, and the effect of the SC on the QH edge was shown in Chapter 3 to be
effectively modeled by a QH edge state with induced superconductivity. Therefore in
the transport calculation we will not explicitly account for terminal 2, instead effectively
accounting for it through the induced NSN junction between terminals 1 and 3.

We are interested in investigating the effect of the NSN junction on the resistance R̃23

downstream of the junction. To ensure an accurate description, we will first construct
the scattering matrix for all four leads. Transport between the leads is restricted to the
chiral edge states, meaning that scattering only occurs between sequential terminals,
and only in one direction, 1 → 3 → 4 → 1. The outgoing electron mode from terminal
m, denoted om, is related to the ingoing modes of the system in through the scattering
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matrix,


i1,E
i3,E
i4,E


 =




0 0 T14(E)
T31(E) 0 0

0 T43(E) 0





o1,E
o3,E
o4,E


 (4.104)

where Tij(E) denotes a 2 × 2 scattering matrix in the Nambu basis which describes
scattering of particles and holes from lead j to lead i, see Fig. 4.4. For example, the
first row of the matrix is interpreted as the incoming electrons in terminal 1 being
the outgoing electrons of terminal 4 modified by the amplitude matrix T14. We allow
particle-hole conversion between leads 1 and 3, while the remaining scattering must
take the form of ballistic transport scattering particles to particles and holes to holes

T31(E) = TNSN(E) =

(
tpp(E) tph(E)
thp(E) thh(E)

)
,

T14 = T43 =

(
1 0
0 1

)
, (4.105)

with TNSN given by Eq. (4.95). The resulting 6× 6 matrix T is unitary because,

T †T =




0 T †
31(E) 0

0 0 T †
43

T †
14 0 0







0 0 T14
T31(E) 0 0

0 T43 0




=



T †
31(E)T31(E) 0 0

0 T †
43T43 0

0 0 T †
14T14


 = 1, (4.106)

where we used that TNSN is unitary. Next, we calculate the currents using the generalized
Landauer-Büttiker formula of Eq. (4.23). For the current at lead 3, we find,

⟨I3⟩ =
1

2π

∫ ∞

0
dE
(
nF (E − µ3)−

(
|T31,pp(E)|2 − |T31,hp(E)|2

)
nF (E − µ1)

−
(
|T31,ph(E)|2 − |T31,hh(E)|2

)
nF (E + µ1)− nF (E + µ3)

)
. (4.107)

Note that despite this expression only involving the scattering matrix elements of
incoming modes, it accounts for both incoming and outgoing modes as discussed in
Section 4.1.2. We insert the scattering matrix elements from Eq. (4.96) and obtain

⟨I3⟩ =
1

2π

∫ ∞

0
dE
(
nF (E − µ3)−

(
|tpp(E)|2 − |thp(E)|2

)
nF (E − µ1)

−
(
|tph(E)|2 − |thh(E)|2

)
nF (E + µ1)− nF (E + µ3)

)
. (4.108)

We then use the definition Ph(E) = |thp(E)|2, and apply unitarity |tpp(E)|2 = 1 −
|thp(E)|2 = 1− Ph(E) to find

⟨I3⟩ =
1

2π

∫ ∞

0
dE
(
nF (E − µ3)− nF (E + µ3)− (1− 2Ph(E)) (nF (E − µ1)− nF (E + µ1))

)
.

(4.109)
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Similarly, we have the normal currents,

⟨I4⟩ =
1

2π

∫ ∞

0
dE
(
nF (E − µ4)− nF (E − µ3) + nF (E + µ3)− nF (E + µ4)

)
, (4.110)

⟨I1⟩ =
1

2π

∫ ∞

0
dE
(
nF (E − µ1)− nF (E − µ4) + nF (E + µ4)− nF (E + µ1)

)
. (4.111)

In the simplest case we take the zero-temperature limit so that the Fermi distribution is
just a step function nF (E − µ) = θ(µ−E). For the combinations of θ functions we have,
we can use the following relation for a general function f(E)

∫ ∞

0
dEf(E) [θ(µ− E)− θ(−µ− E)] =

{∫ µ
0 dEf(E) for µ > 0

−
∫ −µ
0 dEf(E) for µ < 0

= sgn(µ)

∫ |µ|

0
dEf(E). (4.112)

We see that f(E) need only be defined for E > 0 in the integrand. However, if we
assume that f(E) is even around E = 0 (as Ph(E) is), we can write this as

∫ ∞

0
dEf(E) [θ(µ− E)− θ(−µ− E)] =

∫ µ

0
dEf(E), (4.113)

for any sign of µ. In the special case f(E) = 1, which is relevant for ⟨I4⟩ and ⟨I1⟩ this
implies,

∫ ∞

0
dE [θ(µ− E)− θ(−µ− E)] = µ. (4.114)

This means that at zero temperature

⟨I4⟩ =
1

2π
(µ4 − µ3) ,

⟨I1⟩ =
1

2π
(µ1 − µ4) ,

⟨I3⟩ =
1

2π

{
µ3 −

∫ µ1

0
dE[1− 2Ph(E)]

}
. (4.115)

In the experiment considered, a current is injected into lead 4, i.e., ⟨I4⟩ = I , whereas the
two other leads are voltage probes such that ⟨I1⟩ = ⟨I3⟩ = 0. From ⟨I1⟩ = 0, we find
µ4 = µ1. From the first equation, we can then determine µ3 in terms of I and µ1,

µ3 = µ1 − 2πI. (4.116)

Inserting this in the third equation, we obtain an equation which allows us to determine
µ1(I) implicitly as a function of I ,

µ1 = 2πI +

∫ µ1

0
dE[1− 2Ph(E)], (4.117)

where resolving part of the integral leads to the result
∫ µ1

0
dEPh(E) = πI. (4.118)
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The differential resistance which contains information about the hole conversion is then

R̃23 =
dV3
dI

. (4.119)

Restoring Planck’s constant h and the elementary charge e such that

µ3 = µ1 −
h

e
I (4.120)

we have

R̃23 =
1

e

dµ3
dI

=
1

e

dµ1
dI

− h

e2
(4.121)

To calculate the remaining derivative, we face the fact that while µ1(I) is difficult to
differentiate, I(µ1) is simple. We use the fact that for full derivatives the following holds
for inverse functions

dµ1
dI

=

(
dI

dµ1

)−1

. (4.122)

Since we have the identity

d

dµ1

∫ µ1

0
dEPh(E) = Ph(µ1), (4.123)

we find

dµ1
dI

=

(
2e

h
Ph(µ1)

)−1

=
h

e

1

2Ph(µ1)
. (4.124)

Therefore, we have the result

R̃23 =
h

e2
1− 2Ph(µ1)

2Ph(µ1)
, (4.125)

where µ1
def
= µ1(I). This resistance is plotted on the left in Fig. 4.5 for 0 < Ph < 1. Com-

paring this result to the zero resistance result of the QH effect without superconductivity
has some subtle elements. We see that for zero induced pairing, ∆p → 0, we have no
hole conversion Ph(µ1) → 0 and thus infinite resistance R̃23 → ∞. This is a consequence
of the current passing through the SC terminal: zero hole conversion means suppressed
Andreev reflection, and since that is the only process for electrons to cross the SC-QH
interface, no current can pass through the system. This in turn implies infinite resistance.

To better compare with the case of no induced pairing, we instead consider the
relationship between the chemical potentials of the terminals and Ph(µ1). In the normal
QH effect, longitudinal resistance is zero, meaning that there is no voltage difference be-
tween terminals on the same side of the system. Specifically, when the superconducting
terminal 2 is grounded, the downstream terminal 3 must have µ3 = 0. If any electrons
at µ1 ̸= 0 are passed from terminal 2 to terminal 3, it would change µ3 away from zero.
This is clearest for µ1 > 0 where µ3 would be raised to positive values, but since Ph(µ1)
is symmetric in µ1, the same effect would hold for µ1 < 0.

From this perspective, it is clear that the zero resistance case must correspond to a
neutralization of the charge transport between terminals 2 and 3, i.e. Ph(µ1) = 1/2. In
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Figure 4.5: Left: The downstream resistance R̃23 (full line) as a function of the probability Ph[µ1(I)] that
electrons at chemical potential µ1(I) are transmitted through the NSN junction as holes. The normal QH
effect result R̃23 = 0 is marked with a dashed line, which crosses the full curve at Ph = 1/2. Right: The
downstream resistance at µ1L/∆p = 16 oscillates above and below zero as a function of the resonance
parameter Ω. This plot corresponds to a vertical slice of Fig. 4.3. The resistance unit in both plots is
h/e2 ≃ 25.81 kΩ.

other words, the electrons being passed to terminal 3 have their charge canceled out by a
corresponding amount of holes. Now, just like how a majority of electrons being passed
to terminal 3 will change µ3 towards µ1, if a majority of holes are passed to terminal 3,
µ3 will change in the opposite direction. This means that for Ph(µ1) > 1/2 we will see
negative resistance since µ3 changes sign. The holes passing from terminals 2 to 3 can be
interpreted as a current running the other way, meaning the negative resistance implies
that we are measuring the “wrong direction”. It is, however, important to point out that
due to the chirality of the system, no physical current is flowing from terminals 3 to 2.

In recent experimental works on the system described, the condition R̃23 < 0 was
considered the main indicator of the Andreev edge state [24, 25]. It should be noted that
the Andreev edge state can exist without measuring negative resistance. Combining
Eq. (4.97) and Eq. (4.125), we see that the energy argument to consider is µ1,

Ph(µ1) =
1

1 + 1
4(Ω/µ1)

2[(vF /∆p)2 − 1]
sin2




√
4 + (Ω/µ1)2[(vF /∆p)2 − 1]

(vF /∆p)2 − 1

µ1L

∆p


 ,

(4.126)

and we want to investigate when Ph(µ1) > 1/2 as that is the region where Eq. (4.125)
predicts negative resistance. Considering the example where the length is fixed at
µ1L/∆p = 16, we plot a vertical slice of Fig. 4.3 to the right in Fig. 4.5. Near Ω = 0,
we see almost perfect hole conversion with R̃23 ≃ −0.5e2/h, with oscillations around
zero resistance as we increase Ω. An important result of this chapter is the fact that
the interplay between momentum conservation and Meissner current represented by Ω
plays a key role in predicting the conditions for negative resistance.
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4.6.1 Expansion for small bias current

To determine the differential resistance for a given applied current, we still need to solve
the equation

∫ µ1(I)

0
dEPh(E) = πI (4.127)

for µ1(I). Since there is no clear way of finding the antiderivative of Ph, which would
let us solve the equation generally, we will solve it approximately for small I . For I = 0,
the only solution of this equation is µ1 = 0 since Ph(E) ≥ 0 by definition. Therefore, for
small I , we will still have µ1 ≈ 0, so we can Taylor expand the integrand around E = 0,

∫ µ1(I)

0
dEPh(E) =

∫ µ1(I)

0
dE

[
Ph(0) + EP ′

h(0) +
E2

2
P ′′
h (0) +O(E3)

]
. (4.128)

From Eq. (4.97), we see that Ph(0) = 0. We also have P ′
h(0) = 0 since Ph(E) is a

symmetric function of E. Therefore, the leading order will be

∫ µ1(I)

0
dEPh(E) =

∫ µ1(I)

0
dE

[
E2

2
P ′′
h (0) +O(E3)

]
=

1

6
P ′′
h (0)µ

3
1 +O(µ41). (4.129)

Since this integral equals πI we find the approximation,

µ1(I) ≃
(

6πI

P ′′
h (0)

)1/3

,

P ′′
h (0) =

8∆2
p

Ω2(v2F −∆2
p)

sin2


 2ΩL√

v2F −∆2
p


 . (4.130)

For R̃23, we can also Taylor expand for small µ1 and thus find

R̃23 =
h

e2
1− 2Ph(µ1)

2Ph(µ1)
≈ h

e2
1− P ′′

h (0)µ
2
1

P ′′
h (0)µ

2
1

. (4.131)

Since we have assumed P ′′
h (0)µ

2
1 ≪ 1, we can further approximate

R̃23 ≈
h

e2
1

P ′′
h (0)µ

2
1

=
h

e2
[P ′′
h (0)]

−1/3(6πI)−2/3. (4.132)

In other words we predict that the relation

R̃23 ∝ I−2/3 (4.133)

provides an experimental indicator of the existence of the Andreev edge state

4.7 Experimental perspectives

The experiments on induced superconductivity in the quantum Hall edge involve three
main geometries as outlined in Fig. 4.6. The first is the edge setup [19,24,25,68], which is
the geometry treated in this thesis. The second is the finger setup [22,27] where a narrow
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2DEG

SC

Figure 4.6: Sketches of three common experimental setup, which we will call the edge setup (left), the
finger setup (middle), and the SNS setup (right).

superconductor protrudes into the 2DEG, allowing for crossed Andreev reflection across
the SC. The third geometry involves a 2DEG between two SC’s [20, 26], effectively
forming an SNS junction. The presented model can only be expected describe the edge
geometry, though there are still interesting elements from the other geometries we will
comment on. We note that typical experimental parameters which are varied include the
applied magnetic field B0 and the Fermi energy EF of the 2DEG in terms of an applied
gate voltage.

As discussed in Section 3.4, care should be taken in comparing the results of this
chapter directly with experiments, since the approximations and limits assumed do
not necessarily apply to a general experimental situation. Indeed, some effects which
have been neglected in this thesis have been the focus of work done by other groups in
parallel to this thesis, e.g. the effect of vortices in the SC [29, 31], the effect of disorder in
the SC [32] and the interplay between Meissner current and the angle of the SC wedge
in a finger geometry [30]. In addition, while considering the model in the tunneling
limit makes analytical derivations tractable, it may well be difficult to compare with
experiments which generally strive for high barrier transparency.

In addition, the presented work seeks to derive analytical descriptions of the qual-
itative effects seen in experiment to allow for straightforward physical interpretation
of the roles the parameters of the underlying models play in these effects. Thus, the
purpose is not to account quantitatively for any particular experimental result, where
other approaches including phenomenological models with fitted parameters [24, 25],
numerical tight-binding simulations [28] and numerical solutions of transcendental
equations [14] have already been applied. With these things in mind, we can proceed to
comment on the experimental perspectives of the presented results.

• The first result we note is the prediction of how SOC in the SC comes into play in
the induced superconductivity. It was speculated in Refs. [22, 27] that the induced
superconductivity detected in a spin-polarized QH edge without SOC was made
possible by inherent SOC in the Nb-based SC [69], and our results show that
Rashba SOC in the SC with amplitude α ̸= 0 allows induced superconductivity
with an amplitude ∆p ∝ α to first order in α, see Eq. (3.92).

• A strong, quantitative prediction of the presented model is the Pauli blockade at
zero bias, µ1 = 0, or correspondingly zero current I = 0, as well as the scaling
at small bias current R̃23 ∝ I−2/3. There are, however, to our knowledge no
experiments currently available in the literature which report measurements of the
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Figure 4.7: In Ref. [13], the contribution from Andreev reflection to the conductance GAR is calculated by
numerically solving a transcendental equation resulting from wave-matching across the SC-QH interface.
For a transparent interface w = 0, the Andreev reflection contribution increases in steps with increasing
ν = 2EF /ωc. For a non-transparent interface w > 0, Andreev reflection is suppressed except for one
point per step. Figure reproduced from Ref. [13].

relevant parameters at filling factor ν = 1, and at higher filling factor we expect
the Pauli blockade to be circumvented [58].

• The critical role of the Meissner current in the suppression of Andreev reflection
away from the resonance condition qF = ks is of particular interest since it is tied
to the tunneling coupling of the two systems. For a highly transparent interface,
where a description in terms of evanescent electron excitations in the SC applies,
the Meissner current plays no such critical role, and can be neglected without
losing induced superconductivity. For such a system, it has been reported [13, 14]
that at low transparency, Andreev reflection is suppressed for all 2DEG Fermi
energies except one point between each Landau level, see Fig. 4.7.

In the context of the tunneling model presented, a simple extension to account for
higher filling factors while neglecting tunneling into different edge states would
see the resonance condition fulfilled once per Landau level. Thus, a possible
physical interpretation of this phenomenon is that at high interface transparency,
the resonance condition plays no significant role, while in the tunneling limit, it
determines when the induced superconductivity is entirely suppressed. To confirm
this connection would require further work. Experimentally, it has been reported
for an SNS setup experiment [20] that indicators of induced superconductivity
only occurred at a single narrow energy range between each Landau level, while
for other edge setup experiments [24, 25] signatures of induced superconductivity
were found at a broad range of energies between the Landau level transitions.

• The edge setup experiments of Refs [24, 25] are of particular interest due to their
geometry corresponding to the presented model. Ref. [24] has a 600nm long MoRe
SC interface with graphene and sees strongly oscillating downstream resistance
within each Landau level, while Ref. [25] has a 150µm NbTiN SC long interface
coupled with a InAs 2DEG, and sees a downstream resistance which is essentially

68



Figure 4.8: For a fixed vF /∆p = 2, we predict increased resistance oscillations with increased µ1L/∆p,
here shown with two examples of R̃23(Ω/µ1) at fixed values of µ1L/∆p.

independent of 2DEG Fermi energy within each Landau level. In addition to the
effects of disorder and graphene-specific considerations as described in Ref. [28],
both experiments argue that the oscillatory behavior should be in part understood
through the content of the sine function in Eq. (4.126).

As we demonstrated in Eq. (4.101), inside an S-region of length L, a propagat-
ing state oscillates as sin2(qphL/2) between particle-like and hole-like due to the
momentum difference

qph =

√
4 + (Ω/µ1)2[(vF /∆p)2 − 1]

(vF /∆p)2 − 1

µ1
∆p

, (4.134)

between these two states, where we recall that µ1(I) corresponds to the voltage
difference resulting from the applied current I . For two experiments with equal
qph, we would expect greater L to lead to more oscillations as Ω changes, see
Fig. 4.8. However, the experiment with no oscillations has an interface length
which is about 250 times longer than the experiment with strong oscillations. In
the context of the presented model, this indicates a large difference in qph between
experiments. If we define the momenta and lengths of the experiments to be
qph,1, L1 and qph,2, L2, with L2 = 250L1, then in order for the long experiment
with L2 to correspond to the left of Fig. 4.8, while the short experiment with L1

correspond to the right, we would require qph,1/qph,2 ≃ 5 · 103. Assuming a fixed
vF /∆p, one way to achieve this would be to have this difference contained in
µ1/∆p, where we recall from Eq. (3.92) that the pairing amplitude depends on a
number of material parameters

∆p ≃ −Γ2
Lα

msEs
2|∆0|2

, (4.135)

from which a difference of several orders of magnitude between experiments
might accumulate.
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Furthermore, while previous work [22,24] reports measurements of small negative
downstream resistance −|R̃23| with |R̃23| ≪ h/e2, Ref. [25] reports negative down-
stream resistance with |R̃23| ∼ h/e2. As shown in Fig. 4.5, this indicates significant
hole conversion, with perfect hole conversion in a single edge state corresponding
to a negative downstream resistance of |R̃23| = h/(2e2). As our results suggest,
perfect hole conversion is in principle possible even for weak induced pairing, as
long as we can assume that all electrons tunneling across the interface Andreev
reflect, i.e. that none are lost as quasiparticle excitations above the SC gap.

• Finally, it was recently reported [27] that induced superconductivity had success-
fully been detected in a 2DEG exhibiting fractional QH effect interfaced with a SC
in the finger setup. A major benefit of the presented approach to modeling the
QH-SC interface is much of the derivation does not depend on the explicit form of
the QH edge Hamiltonian, and as we shall see in the next chapter, our results can
be extended to the fractional QH case.

4.8 Summary

We consider a typical experimental transport measurement setup, in which the resistance
R̃23 downstream of the SC terminal is considered to be an indicator of a proximitized
edge state due to the modified charge transport in a mixed particle-hole state. We derive
the Landauer-Büttiker formalism for transport involving particles and holes, and see that
despite having the same group velocity, particles add to the current and holes subtract.

We introduce position dependence in the parameters of the effective Hamiltonian to
model an NSN junction, and approximate everything to linear order in δq, which is a
good approximation for Ω ≥ 0, and less so otherwise. To ensure that we are applying
the correct boundary conditions at the NS junctions, we derive the current operator for
the proximitized system and require its continuity at the junctions, which turn out to
imply discontinuity of the wave function. We then derive the scattering matrix of the
system assuming |vF | > |∆p| to arrive at the amplitude of a particle being transmitted
across the NSN junction as a hole,

Ph(E) =
1

1 + 1
4(Ω/E)2[(vF /∆p)2 − 1]

sin2




√
4 + (Ω/E)2[(vF /∆p)2 − 1]

(vF /∆p)2 − 1

EL

∆p


 ,

(4.136)

which does not depend on the nature of the normal regions due to the lack of backscat-
tering in a chiral edge. We see that hole transmission is strongest near the resonance
Ω = 0 and vanishes on the scale of ∆p/vF away from this point, that it vanishes at E = 0
due to a Pauli blockade, and that it oscillates as sin2(qphL) where qph is the momentum
difference between the particle-like and hole-like modes in the proximitized region.

We then apply the derived Landauer-Büttiker formalism to predict the downstream
resistance to be

R̃23 =
h

e2
1− 2Ph(µ1)

2Ph(µ1)
, (4.137)

where the Planck constant is re-introduced for clarity. We find that the negative resistance,
which happens for Ph > 1/2 and which experimentally indicates Andreev reflection, can
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occur even for weak pairing. We further find that it depends strongly on the resonance
condition Ω = 0, which in turn is a consequence of the Meissner effect. We compare our
predictions with relevant experiments, and find that our model supports the hypothesis
about Andreev reflection being enabled by SOC in the SC, and predict how a difference
in ∆p for fixed vF /∆p may account for why one experiment sees a strongly oscillating
resistance as a function of Ω, while another does not.
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CHAPTER 5
Induced superconductivity in the

fractional quantum Hall state

As discussed in Chapter 1, a proximitized integer quantum Hall (QH) edge is useful
in the search for Majorana fermions, but to find parafermions with more generalized
anyonic exchange statistics, we must turn to the fractional QH edge [17]. We can extend
our model to this case by introducing strong interaction between the electrons in the
QH edge state Hamiltonian and replacing it with a chiral Luttinger liquid Hamiltonian,
which is known to be an effective low-energy model of a fractional quantum Hall edge
state.

5.1 The effective Hamiltonian

As in Chapters 3 and 4, we will treat a system consisting of QH edge state along the
x-axis proximitized by an s-wave SC, see Fig. 5.1, described by the Hamiltonian

H = Hedge +Hsc +Htunn, (5.1)

where once again the second term describes the SC surface, and the third term describes
tunneling between them, but this time the first term describes the fractional QH edge. In
particular, the SC surface Hamiltonian is

Hsc =
∑

δk,σ

[
ϵks+δkc

†
ks+δk,σ

cks+δk,σ +
(
∆0c

†
ks+δk,↑c

†
ks−δk,↓ + h. c.

)

+
(
α[δkz + i(δkx + ks)]c

†
ks+δk,↑cks+δk,↓ + h. c.

)]
, (5.2)

SC

FQH

B0
x

y

z

Figure 5.1: An illustration of a fractional QH system interfaced with a SC.
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where cδk,σ annihilates a SC electron with momentum δk and spin σ. As in Chapter 3,
momentum is measured relative to the supercurrent momentum ks, namely δk = k−ks.
The first term describes the kinetic energy of the SC electrons ϵδk, the second term
describes the s-wave pairing with complex pairing amplitude ∆0, and the third term
describes spin-orbit coupling with real amplitude α.

We assume as in Chapter 3 that the systems are coupled through local and spin-
preserving electron tunneling and thus have the tunneling Hamiltonian

Htunn = γ
√
wzwy

∫ L/2

−L/2
dx [ψ†(x)c↑(x, 0, 0) + h. c.]

= Γ
∑

q,k

δq,kx

(
ψ†
qck,↑ + h. c.

)
, (5.3)

where γ is the tunneling amplitude, wz and wy are the effective widths of the tunneling
interface in the y, z dimensions, while Ly and Lz are lengths of the SC in the same
dimensions. In the second line we have Fourier transformed into momentum space and
introduced the modified amplitude

Γ = γ

√
wzwy
LzLy

. (5.4)

In Chapter 3 it was shown that integrating out the SC fields in Eq. (5.1) yields the effective
QH edge state Hamiltonian

Heff = Hedge +
∑

δq

[
δEδqψ

†
ks+δq

ψks+δq +

(
∆δq

2
ψ†
ks+δq

ψ†
ks−δq + h. c.

)]
, (5.5)

where δEδq is the SC contribution to the kinetic energy of the QH edge state, and ∆δq is
the induced pairing amplitude.

The effective Hamiltonian was derived without reference to the edge state Hamil-
tonian other than the assumptions that the edge state is one-dimensional and that the
systems are coupled through electron tunneling. Thus, under the assumption of those
two conditions, the effective Hamiltonian applies directly to the fractional QH case.

5.2 Chiral Tomonaga-Luttinger liquid theory

For a QH system at integer filling factors, the edge states can be modeled as one-
dimensional channels of non-interacting electrons, see Chapter 2. To describe a QH edge
state at fractional filling factors, we must however take electron-electron interactions ex-
plicitly into account. This can be done through the approximate wave function proposed
by Laughlin [45], or the composite fermion approach [38], but the field theoretical ap-
proach by Wen [70] fits better into the framework we have developed so far, and strikes
a good balance between accurate predictions and tractable calculations. The approach
involves developing a field theoretical description of the 2DEG in the fractional QH
phase and inserting the correct boundary conditions by hand. The resulting field theory
shows that the low-energy physics of simple FQH states can accurately be described
by a one-dimensional field theory on the same form as a chiral Tomonaga-Luttinger
liquid [2, 71]. This effective theory of chiral, one-dimensional conductors describes
the strongly interacting electron system in terms of free boson fields representing the
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collective excitations of the electrons. In particular, the electron system can be accurately
described through a Hamiltonian consisting of quadratic terms of bosonic fields with
interactions encoded into a velocity v and an interaction parameter K. While the theory
does not predict the value of these parameters beyond the non-interacting limit where
v = vF and K = 1, it predicts the scaling of experimentally available quantities such as
temperature in terms of exponents given by these parameters.

The connections between this theory and the system of a fractional QH edge can be
hinted at by considering the following result: calculating the Hall resistance through
a QH system by imposing a voltage difference between two spatially separated chiral
fields yields the result [71]

RH =
2π

Ke2
, (5.6)

which is exactly the expected Hall resistance ifK = ν. It turns out that a chiral Tomonaga-
Luttinger theory with K = ν is indeed a good description at many filling factors, in
particular the integer filling factors and the Laughlin sequence with ν = 1/(2n+ 1) for
an integer n. This remarkable connection between the filling factor ν and the interaction
parameter K can be theoretically derived from the Chern Simons theory devised by
Wen [2,70,72]. The rest of this section introduces the theoretical framework we will need
to describe the proximitized fractional QH edge.

We will be following Refs. [2,70] to introduce the chiral boson theory. We assume that
at low energies, the dispersion of the system is approximately linear up to a momentum
cutoff q0, corresponding to a short-distance cutoff a = 1/q0. In a true one-dimensional
conductor, such as a nanowire, this is related to the bandwidth of the system, while in
the case of a QH edge state, the linearity approximation, and thus the cutoff, is rather
related to the separation between Landau levels. The expressions involving the cutoff
are only strictly mathematically exact in the limit q0 → ∞, but physically it is useful
to keep q0 finite. We take the edge state electrons to be moving to the left (negative
direction). At low energies we have an effective description in terms of bosons,

ψ(x) =
F√
2π/q0

e−iqF xe−iΦ(x)/
√
ν , (5.7)

where qF is the Fermi momentum, Φ(x) is the bosonic field, ν is the filling factor of the
fractional QH edge, and the operator F is the Klein factor [71]. This operator connects
the bosonic description to the fermionic description by ensuring the correct raising and
lowering of the fermion number, as well as ensuring the correct fermionic commutation
relations. The exact form of the operator will not have any profound impact on our
results, and we refer to Ref. [71] for more details. The boson field is defined as

Φ(x) = i

√
2π

L

∑

q>0

e−q/(2q0)√
q

(
e−iqxbq − eiqxb†q

)
, (5.8)

where L is the length of the edge and bq is the boson annihilation operator for momentum
q. This field obeys the commutation relation [2]

[Φ(x),Φ(y)] = ln

{
1− exp

[
2πi
L (x− y + i/q0)

]

1− exp
[
2πi
L (y − x+ i/q0)

]
}
. (5.9)
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We will generally consider a macroscopically large interface corresponding to the ther-
modynamic limit L→ ∞, where

lim
L→∞

[Φ(x),Φ(y)] = −2i arctan (q0[x− y]) . (5.10)

In the limit q0 → ∞, we find the strict relation

[Φ(x),Φ(y)] = −iπ sgn(x− y), (5.11)

which means

e−iΦ(x)/
√
νe−iΦ(y)/

√
ν = e−iΦ(y)/

√
νe−iΦ(x)/

√
ν exp

(
− iπ
ν

sgn(x− y)

)
. (5.12)

Interestingly, for the Laughlin sequence ν = 1/(2n+ 1) with integer n, exchanging the
exponentiated fields in space leads to a fermionic exchange phase, while other filling
factors have a more general behavior. Ultimately, the correct commutation of electrons
is ensured by the Klein factor.

Within this theory, it can be shown that the linearized interacting electron Hamil-
tonian can be approximated at low energies by the chiral Tomonaga-Luttinger liquid
Hamiltonian

H1D =
v

4πν

∫
dx
[
∂xΦ(x)

]2
, (5.13)

where v is the velocity of the bosonic excitations, which is the Fermi velocity v = vF in
the non-interacting case.

At this point it is worth returning to the assumption that the fractional QH edge
and the SC surface are coupled through electron tunneling. Since both systems have
bosonic ground states, one might expect tunneling of bosonic quasiparticles between
the systems. However, while quasiparticle tunneling is allowed between the edge states
of a fractional QH system, electron tunneling is the only allowed coupling to a SC which
does not host fractional quasiparticles [73].

5.3 Pairing Hamiltonian

We will now express the effective Hamiltonian in Eq. (5.5) in terms of the bosonic field
Φ(x). By applying the results of the previous section, at ν = 1 we can describe the
non-superconducting case ∆p = 0 as

H1D =
vF
4π

∫
dx
[
∂xΦ(x)

]2
, (5.14)

where vF contains all information about contributions to the kinetic energy from the
proximity effect. Adding interaction and going to ν ̸= 1, we substitute vF → v/ν. We
can then add pairing by considering the ∆p ̸= 0 case as expressed through the boson
fields Φ. We can do this through the relation Eq. (5.7), but first we must transform the
pairing Hamiltonian to position space using the Fourier transform

ψks+δq =
1√
L

∫ L/2

−L/2
dx ψ(x)ei(ks+δq)x. (5.15)
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When applied to the induced pairing term

Hp =
1

2

∑

δq

∆δqψ
†
ks−δqψ

†
ks+δq

+ h. c., (5.16)

we find

Hp =
1

2L

∫ L/2

−L/2
dx1dx2 ∆I(x1 − x2)e

−iks(x1+x2)ψ†(x1)ψ
†(x2) + h. c. (5.17)

where we have introduced the spatial pairing amplitude

∆I(x1 − x2) =
∑

δq

∆δqe
−iδq(x1−x2). (5.18)

Note that since ∆δq is odd around δq = 0, we could replace the complex exponential with
a sine, but we will keep the exponentials for now. Applying the definition of electron
fields in terms of Φ, Eq. (5.7), we find

Hp =
q0F

2

4πL

∫ L/2

−L/2
dx1dx2 ∆I(x1 − x2)e

−i(ks−qF )(x1+x2)eiΦ(x1)/
√
νeiΦ(x2)/

√
ν + h. c.,

(5.19)

which is the position space pairing Hamiltonian for filling factor ν in terms of the chiral
bosonic field Φ.

5.3.1 Linear approximation

We can simplify the pairing Hamiltonian further by simplifying ∆I(x1 − x2). We recall
that in Chapter 3 we defined the antisymmetrized expression

∆δq =
1

2

(
∆′
I,δq −∆′

I,−δq
)
, (5.20)

which implies that at at sufficiently small δq, the pairing amplitude is accurately de-
scribed by a linear approximation whose validity is evaluated below. Furthermore, as
discussed in Chapter 4, we expect small δq contributions to dominate the low energy
transport qualities of the system, and is thus the domain we are interested in. The
explicit expression is

∆′
I,δq = i|∆0|Γ2α

∑

ky ,kz

ksζκ + (ϵκ + Es)δq

ζ2κ(δqks/ms + ζκ)2
. (5.21)

Here we have the momentum κ = (δq, ky, kz), the superconductor electron mass ms and
the supercurrent energy Es = ks/2ms, as well as the energy

ζκ =
√

(ϵκ + Es)2 + |∆0|2 =

√√√√
(
δq2 + k2y + k2z

2ms
− µs + Es

)2

+ |∆0|2. (5.22)

As discussed in Chapter 3, the amplitude ∆′
I,δq becomes singular for −δqks/ms = ζκ,

corresponding to a critical current at the SC surface. Thus, the singularity imposes a
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cutoff on our theory, corresponding to assuming that we are well within the supercon-
ducting regime of the SC surface. Since ζκ ≥ |∆0| for all κ, the singularity is always
avoided when |δq| < δq∆, where

δq∆ =
|∆0|ms

ks
. (5.23)

This imposes a bound on the large momentum cutoff of our theory, namely that q0 < δq∆.
Assuming an unspecified cutoff within this constraint, we can approximate the pairing
amplitude as

∆δq ≃ ieiϕ∆∆pδqe
−|δq|/q0 , (5.24)

where ∆p is the real constant

∆p ≃ −msαΓ
2LzLy

Es
|∆0|2

. (5.25)

Going forward we will assume the induced SC phase to be ϕ∆ = 0 without loss of
generality. The linear approximation is adjusted with the soft cutoff e−|δq|/q0 suppress-
ing contributions from higher momenta. This allows us to keep the full momentum
summation range while capturing the small δq physics without any artifacts from a
hard cutoff. The approximate expression in Eq. (5.24) allows us to partially evaluate the
spatial integral in the pairing Hamiltonian, resulting in a form better suited for future
calculations.

In particular, we can resolve the sum in Eq. (5.18). We first convert the sum to an
integral by applying the large L limit,

1

L
∆I(x1 − x2) =

1

L

∑

δq

∆δqe
−iδq(x1−x2) ≃ i∆p

∫ ∞

−∞

d(δq)

2π
δqe−iδq(x1−x2)e−|δq|/q0 . (5.26)

We split up the integral into positive and negative momenta,

1

L
∆I(x1 − x2)

= i∆p

[∫ 0

−∞

d(δq)

2π
δqe−iδq(x1−x2)eδq/q0 +

∫ ∞

0

d(δq)

2π
δqe−iδq(x1−x2)e−δq/q0

]
, (5.27)

and apply the general integral identities
∫ ∞

0
dq qe−iqxe−q/q0 =

(
1

q0
+ ix

)−2

, (5.28)

∫ 0

−∞
dq qe−iqxeq/q0 = −

(
1

q0
− ix

)−2

, (5.29)

to find the approximation

1

L
∆I(x1 − x2) =

i∆p

2π

[(
1

q0
+ i(x1 − x2)

)−2

−
(

1

q0
− i(x1 − x2)

)−2
]

=
∆p

π

2(x1 − x2)

q0(q
−2
0 + (x1 − x2)2)2

, (5.30)

We find the behavior shown in Fig. 5.2, noting in particular that ∆I(x1 − x2) is odd
around x1 − x2 = 0, and vanishes beyond a distance given by the length scale 1/q0.
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Figure 5.2: The approximate spatial pairing in Eq. (5.30) is odd around the distance x = 0.

5.3.2 Short distance approximation

As Fig. 5.2 shows, the spatial pairing is odd around zero distance and vanishes at large
distances. The cutoff marks the momentum beyond which our model breaks down,
which is approximately on the order of the separation of Landau levels. From our
model dispersion of the QH edge presented in Chapter 3, we can approximate this
to correspond to q0 ≃ 1/ℓ, corresponding to a cut-off length 1/q0 ≃ ℓ, which under
the assumptions of that chapter is around one nanometer. Assuming that the relevant
physics involves momenta much smaller than q0, we consider that in the limit q0 → ∞
the pairing is dominated by its x1 − x2 → 0 behavior. Then the pairing amplitude
approaches the form of the derivative of the Dirac delta function,

∆(x1 − x2) ∼ δ′(x1 − x2), (5.31)

for which we have the identity for a general function f(x)
∫ ∞

−∞
dxδ′(x)f(x) = −

∫ ∞

−∞
dxδ(x)f ′(x). (5.32)

To ensure the correct scaling, we will first define the the antiderivative DI(x) of the
pairing amplitude

D′
I(x)

def
= ∆I(x), (5.33)

which we find to have the form

DI(x) = − L∆p

πq0
(
q−2
0 + x2

) , (5.34)

such that we recover the result from Eq. (5.30) using the chain rule,

D′
I(x) = − d

du

(
2L∆p

q0u

)
d

dx

(
1

q20
+ x2

)
=

2L∆px

πq0
(
q−2
0 + x2

)2 , (5.35)
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If we then assume that ∆I(x) = Aδ′(x), the scaling factor A can be found as
∫
dxDI(x) = A

∫
dxδ(x) = A. (5.36)

Resolving this integral yields

A = −L∆p, (5.37)

and thus we have the correctly scaled approximation

∆I(x) = −L∆pδ
′(x). (5.38)

Physically, this approximation corresponds to only considering pairing between particles
whose relative distance is very small but still non-zero, with zero-distance pairing being
suppressed by the Pauli principle. We will now apply this short-distance approximation
to the pairing Hamiltonian.

5.3.3 Simplifying the pairing term

Looking again at Eq. (5.19), we can exploit the fact that the pairing amplitude only
depends on the distance x1 − x2. We formulate it in terms of relative and center-of-mass
coordinates

r = x1 − x2, X =
x1 + x2

2
. (5.39)

This change of coordinates has a unit Jacobian determinant and thus the integral becomes

Hp =
q0F

2

4πL

∫ L/2

−L/2
dX e2i(ks−qF )X

∫ L

−L
dr ∆∗

I(r)e
−iΦ(X+r/2)/

√
νe−iΦ(X−r/2)/

√
ν + h. c.,

(5.40)

where we have explicitly written out the term associated with ∆∗
δq instead of ∆δq. In

anticipation of the application of the δ′(x) approximation, we see in Eq. (5.32) that only
the slope around r = 0 will affect the result of the integral. We will therefore expand
the exponent around r = 0 to linear order. To do this, we note that taking the derivative
∂rΦ can be replaced with taking the derivative ∂XΦ as follows. Using the definition of Φ
from Eq. (5.8), we have

∂rΦ(X ± r/2)
∣∣∣
r=0

= ∓


i
√

2π

L

∑

q>0

e−q/(2q0)√
q

iq

2

(
e−iq(X±r/2)bq + eiq(X±r/2)b†q

)


r=0

. (5.41)

We evaluate this expression at r = 0,

∂rΦ(X ± r/2)
∣∣∣
r=0

= ∓1

2
i

√
2π

L

∑

q>0

e−q/(2q0)√
q

iq
(
e−iqXbq + eiqXb†q

)
, (5.42)
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and note that the right hand side corresponds to taking the derivative of X instead of r,
namely

∂rΦ
(
X ± r

2

) ∣∣∣
r=0

= ±1

2
∂XΦ(X). (5.43)

Applying this result to exponential expanded to linear order around r = 0

exp

[
− i√

ν
Φ
(
X ± r

2

)]
= exp

[
− i√

ν

(
Φ(X) + ∂rΦ

(
X ± r

2

) ∣∣∣
r=0

r
)]
. (5.44)

then yields

exp

[
− i√

ν
Φ
(
X ± r

2

)]
= exp

[
− i√

ν

(
Φ(X)± ∂XΦ (X)

r

2

)]
. (5.45)

We then factor the exponential into a product of exponentials. According to the Baker-
Hausdorff lemma we have the following identities for operators A,B with [A,B] ∈ C:

[A, eB] = [A,B]eB, (5.46a)

eA+B = eAeBe−[A,B]/2, (5.46b)

eBeA = eAeBe−[A,B]. (5.46c)

The first identity lets us evaluate the following useful commutator

[
∂x2Φ(x2), e

−iΦ(x1)/
√
ν
]
= − i√

ν
[∂x2Φ(x2),Φ(x1)] e

−iΦ(x1)/
√
ν . (5.47)

From the commutator in Eq. (5.9) it can be derived that [74]

[Φ(x1), ∂x2Φ(x2)]

= −2πi

L

(
1

1− exp
[
−2πi

L (x1 − x2 − i/q0)
] + 1

1− exp
[
2πi
L (x1 − x2 − i/q0)

]
)
. (5.48)

In the thermodynamic limit L→ ∞ we can expand the exponentials and find

[Φ(x1), ∂x2Φ(x2)] ≃
2i

q0
[
(x1 − x2)2 + q−2

0

] . (5.49)

From here on we will assume that the commutator is evaluated in this limit. With this
result we are ready to simplify the expanded product of exponentials

e
− i√

ν
Φ(X+r/2)

e
− i√

ν
Φ(X−r/2)

= e
− i√

ν
[Φ(X)+ r

2
∂XΦ(X)]

e
− i√

ν
[Φ(X)− r

2
∂XΦ(X)]

. (5.50)

Looking again at Eq. (5.46) we generally have

eA+BeA−B = eAeBe−[A,B]/2eAe−Be[A,B]/2

= eAeBeAe−B

= e2Ae−[A,B] (5.51)
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This means the two exponentials become

e
− i√

ν
Φ(X+r/2)

e
− i√

ν
Φ(X−r/2)

= e
− 2i√

ν
Φ(X)

e−[−iΦ(X)/
√
ν,−i∂XΦ(X)r/(2

√
ν)]

= e
− 2i√

ν
Φ(X)

er/(2ν)[Φ(X),∂XΦ(X)]

= e
− 2i√

ν
Φ(X)

eiq0r/ν , (5.52)

where in the final step we have used that at zero distance, Eq. (5.49) becomes

lim
x2→x1

[Φ(x1), ∂x2Φ(x2)] = 2iq0. (5.53)

We can then separate out the center-of-mass integral to obtain the pairing Hamiltonian

Hp =
q0F

2

4πL

∫ L/2

−L/2
dX e2i(ks−qF )Xe

− 2i√
ν
Φ(X)

∫ L

−L
dr ∆∗

I(r)e
i
ν
rq0 + h. c. (5.54)

We apply the ∆I(x) ∼ δ′(x) approximation of Eq. (5.38) to find

1

L

∫ L

−L
dr ∆∗

I(r)e
iq0
ν
r = −∆

(1)
I

∫ L

−L
dr δ′(r)e

iq0
ν
r. (5.55)

Resolving the integral as shown in Eq. (5.32) yields

1

L

∫ L

−L
dr ∆∗

I(r)e
iq0
ν
r = ∆

(1)
I

∂

∂r

(
e

iq0
ν
r
)
r=0

=
i∆

(1)
I q0
ν

. (5.56)

We thus find the pairing term

Hp =
i∆pq

2
0F

2

4πν

∫ L/2

−L/2
dX e

2i(ks−qF )X− 2i√
ν
Φ(X)

+ h. c. (5.57)

Inserting this result into the effective Hamiltonian Eq. (5.5),

Heff =
v

4πν

∫
dx [∂xΦ(x)]

2 +
i∆pq

2
0F

2

4πν

∫ L/2

−L/2
dx e2i(ks−qF )xe−2iΦ(x)/

√
ν + h. c. (5.58)

we obtain the effective Hamiltonian of a proximitized segment of a fractional QH edge
with filling factor ν in terms of the bosonic field Φ(x). In the above derivation we have
performed first order expansion of the exponents and then applied the approximation
∆I(x) ∼ δ′(x). Both steps result in lost information about the system, and thus applying
them in the opposite order could possibly lead to a different result. That this is not the
case is demonstrated in Appendix C. An interesting feature of the bosonized pairing term
is that it appears that re-fermionization would lead to a vanishing term Hp ∝ ψ(x)ψ(x).
This is not actually the case, as we will see in the next section.

Seeing as there is a oscillatory factor under the integral, we should consider the
relevance of the pairing term to transport. In the continuum limit L→ ∞, the oscillatory
factor e2i(ks−qF )x within the integral would average the pairing out for all cases but
ks ≃ qF , corresponding to the resonance condition discussed in Chapter 3. That this
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resonance condition shows up so explicitly in the Hamiltonian without reference to
transport suggests that the pairing suppression is of a different nature than that found in
the previous chapters. Since the pairing fundamentally happens between electrons, and
the minimal excitation of the fractional QH edge is a fractional electron quasiparticle, the
suppression can be interpreted as the competition between electron pairing and electron
fractionalization.

For large but finite systems, the pairing will be weak but non-zero, with a dominant
contribution for ks ≃ qF . In the case of large but finite L, we would then be justified
in treating the pairing perturbatively in ∆p/v, where v is the velocity associated with
the system without pairing. We will use this to sketch out a calculation of transport
properties of the proximitized fraction QH edge in Section 5.4.

5.3.4 Re-fermionization

To interpret Eq. (5.57), it is helpful to consider the re-fermionized version in the electron
case ν = 1. Using Eq. (5.53) we can write

Hp =
i∆pq0F

2

4π

∫ L/2

−L/2
dx e2i(ks−qF )xe−iΦ(x)

(1
2
[Φ(x), ∂xΦ(x)]

)
e−iΦ(x) (5.59)

Adding and subtracting the gradient of Φ we have

Hp =
i∆pq0F

2

8π

∫ L/2

−L/2
dx e2i(ks−qF )x

(
e−iΦ(x)

(
− i∂xΦ(x) +

1

2
[Φ(x), ∂xΦ(x)]

)
e−iΦ(x)

+ e−iΦ(x)
(
i∂xΦ(x) +

1

2
[Φ(x), ∂xΦ(x)]

)
e−iΦ(x)

)
(5.60)

As demonstrated in Appendix D, the derivative of an exponentiated operator obeys the
relation

∂xe
−iΦ(x) = −

(
i∂xΦ(x) +

1

2
[Φ(x), ∂xΦ(x)]

)
e−iΦ(x). (5.61)

Applying Eq. (5.46), we furthermore have that

∂xe
iΦ(x) = −eiΦ(x)

(
i∂xΦ(x) +

1

2
[Φ(x), ∂xΦ(x)]− [Φ(x), ∂xΦ(x)]

)

= eiΦ(x)

(
−i∂xΦ(x) +

1

2
[Φ(x), ∂xΦ(x)]

)
. (5.62)

We can therefore rewrite Eq. (5.60) as

Hp =
i∆pq0F

2

8π

∫ L/2

−L/2
dx e2i(ks−qF )x

[(
∂xe

−iΦ(x)
)
e−iΦ(x) − e−iΦ(x)

(
∂xe

−iΦ(x)
)]

.

(5.63)

Re-fermionizing through the fermion field definition

ψ(x) =
F√
2π/q0

e−iqF xe−iΦ(x), (5.64)
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VRVL Iedge(x)

Figure 5.3: We investigate the current Iedge(x) at a point along the proximitized fractional QH edge
(blue region). The current corresponds to a potential difference VR − VL between the far right and far left
regions.

we find

Hp =
i

4
∆p

∫ L/2

−L/2
dx e2iksx

[(
∂xψ(x)

)
ψ(x)− ψ(x)

(
∂xψ(x)

)]
. (5.65)

Integrating by parts, and applying the Pauli principle ψ(x)ψ(x) = 0, we find

Hp = − i

2
∆p

∫ L/2

−L/2
dx e2iksxψ(x)∂xψ(x). (5.66)

This term can be understood through the definition of the derivative,

∂xψ(x) = lim
a→0

ψ(x+ a)− ψ(x)

a
, (5.67)

from which we can see that ψ(x)∂xψ(x) corresponds to the two fields being separated
by an infinitesimal distance. Since ψ is a fermionic field, this critically means that the
term does not vanish due to the Pauli principle. As discussed in Section 5.2, at filling
factors in the Laughlin sequence ν = 1/(2n+ 1), we also find fermionic behavior of the
fields, and so this treatment can in principle be extended to Laughlin quasiparticles.

We would expect that at ν = 1, the general bosonized pairing Hamiltonian would
reduce to the electronic pairing Hamiltonian derived in Chapter 3. With the result in
Eq. (5.66), we see that this is indeed the case for the bosonized pairing Hamiltonian in
Eq. (5.57). In particular, we see that under the applied approximations, the bosonized
pairing Hamiltonian reduces to the position space equivalent of the effective pairing
Hamiltonian for electrons derived to linear order.

5.4 Transport

Now that we have found the Hamiltonian describing the proximitized fractional QH
state, the next step is to use the Hamiltonian to predict the behavior of observable
quantities as we did in Chapter 4. This problem was not addressed within the scope of
this thesis, but here we provide an outline for how an observable transport signature
could be predicted from the result in Eq. (5.57).

While the derivation of the effective Hamiltonian in Chapter 3 applies equally well
to the integer and fractional QH edges, the same cannot be said for the transport
calculations in Chapter 4. In particular, the scattering formalism used only applies to
the case of free electrons, while in the fractional QH case, strong electron interaction is
an essential element of the system. In this section we will outline another strategy with
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which one use the derived Hamiltonian Eq. (5.57) to predict the outcome of transport
measurements across a proximitized fractional QH edge.

Following Ref. [75], we can consider the current Iedge(x) passing through a point x
along the chiral, left-moving fractional QH edge in terms of its linear response to an
applied electrostatic potential V (x),

Iedge(x) =

∫
dx′DR(x− x′, ω = 0)V (x′), (5.68)

where DR(x, ω) is the retarded response function for position x and frequency ω,

DR(x− x′, ω) = −i
∫ 0

−∞
dte−iωt

νe2

(2π)2
⟨[Φ̇(x, 0), ∂x′Φ(x′, t)]⟩ . (5.69)

It can then be shown that for a potential V (x) which has the constant value VL far to the
left, and the constant value VR far to the right, see Fig. 5.3, the current becomes

Iedge = −ν e
2

2π
VR, (5.70)

corresponding to the expected fractional QH conductance.
We then add pairing by considering the above result as true for a system described

by the Hamiltonian H0, and then investigating the case where the system is described by
the Hamiltonian H0 +Hp, with Hp defined in Eq. (5.57). We can pull out the derivatives
from the correlator inside the response function

∂t∂x′ ⟨[Φ(x, t),Φ(x′, t′)]⟩I |t=0,t′=t, (5.71)

where the I subscript indicated that it has induced pairing. To treat the pairing perturba-
tively, we take the standard approach of considering time evolution in the interaction
picture [50], which lets us write up the well-defined sum to second order in ∆p/v

⟨[Φ(x, t),Φ(x′, t′)]⟩I ≃ ⟨[Φ(x, t),Φ(x′, t′)]⟩0 + ⟨[Φ(x, t),Φ(x′, t′)]⟩(2)I . (5.72)

where the ⟨. . .⟩0 correlator is that of the system without pairing. The first order term must
vanish under the following argument: any correlators in the context of bosonization in
terms of Φ(x) must be invariant under a constant shift Φ(x) + C [71], and since the first
order contribution would involve a correlator on the form ⟨Φ̇∂xΦHp[Φ]⟩, we see from
Eq. (5.57) that it can only be invariant under a constant shift if it is zero.

The second order term will constitute a correction to the response function

DR(x− x′, ω) = DR
0 (x− x′, ω) +DR

p (x− x′, ω), (5.73)

which in turn will modify the current as

Iedge(x) =

∫
dx′
[
DR

0 (x− x′, ω) +DR
p (x− x′, ω)

]
V (x′). (5.74)

Thus, we expect a direct observation of the induced superconductivity in the transport
characteristics of the otherwise highly precisely quantized fraction QH edge, much like
we saw with the integer QH case in Chapter 4. This contribution can be predicted by
calculating ⟨[Φ(x, t),Φ(x′, t′)]⟩(2)I by resolving time-ordered correlators of the bosonic Φ
fields and the pairing Hamiltonian Hp.
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Experimentally [27], results from a finger setup have found a reduction of the Hall
resistance RH for up to 10% at the ν = 1/3 plateau, as well as strongly negative longitu-
dinal resistance on the order of kΩ. The reduction of RH can, however, also be attributed
to other reasons than induced superconductivity. A clearer signature of induced super-
conductivity would be negative longitudinal resistance, the prediction of which would
require a different approach than that sketched out here.

5.5 Summary

We extend the effective Hamiltonian of an integer QH edge with induced supercon-
ductivity as derived in Chapter 3 to the case of a fractional QH edge. To account for
the strong electron interactions causing the fractionalization, we apply the theory of
a Tomonaga-Luttinger liquid to bosonize the Hamiltonian, and use the fact that this
becomes an approximate low energy description of the fractional QH edge in the case
where the interaction parameter equals the filling fraction K = ν.

The bosonized theory has a large momentum cutoff q0, and we show that for a large
cutoff, the spatial pairing amplitude is approximately the derivative of a delta function,
∆I(x) ∼ δ′(x). We expand the bosonized Hamiltonian for small pairing distances and
apply the derivative-of-delta approximation to find the effective pairing Hamiltonian of
the fractional QH edge in terms of the bosonic fields Φ

Hp =
i∆pq0F

2

4π
√
ν

∫ L/2

−L/2
dx e2i(ks−qF )xe−2iΦ(x)/

√
ν + h. c. (5.75)

We then refermionize the Hamiltonian at ν = 1 to confirm that it has the expected
behavior for p-wave paired electrons. A sketch is presented for how the Hamiltonian
can be used to predict a modified Hall resistance in experiments, which is consistent
with the relevant literature.

By deriving the effective pairing Hamiltonian for the fractional QH edge based on
the results for the integer QH edge, we have demonstrated the general applicability of
our model to both cases. Despite the fact that the minimal excitation of the fractional
QH edge is a fractional electron quasiparticle, our results predict that electron pairing is
still possible, as was also recently found experimentally.

86



CHAPTER 6
Current correlations of Cooper-pair

point tunneling into the quantum
Hall edge

In this chapter we consider a different model of a similar system, namely second-order
tunneling of Cooper pairs across a quantum point contact into a quantum Hall (QH)
edge at different integer and fractional filling factors. This model was introduced by M.
P. A. Fisher in 1994 [58], and we expand upon the work by predicting the experimental
signatures of the most notable effects in terms of tunneling current and finite-frequency
noise. Since the paper by Fisher, the fractional nature of the quantum Hall edge at
very high fields has been successfully probed through experimental investigations of
tunneling current and noise signatures [76], and we will extend the results of the original
paper in terms of those quantities. Only recently, however, has it become possible to
couple the fractional QH edge to a superconductor (SC) due to the monumental challenge
of developing a SC material whose superconducting state can survive magnetic fields
up to B ∼ 14 T, with Ref. [27] being the only experiment known to the author to report
success in this regard. Since that experiment did not report on the tunneling current and
noise quantities investigate in this chapter, theoretical predictions on this type of system
remain untested for now.

The work in this chapter was published in Ref. [33]. This chapter will focus on
my contribution to the paper, which, in contrast to the previous chapters, did not
involve the full technical derivations. Therefore, some of the key results in this chapter
will not be derived, but rather taken from the paper, as marked by a reference to
Ref. [33]. In addition, while great care was taken in the previous chapters to rigorously
derive a Hamiltonian of the coupled system, this chapter will involve a more loosely
derived phenomenological Hamiltonian. Seeing as this Hamiltonian has already been
treated in the literature [58], we satisfy ourselves with only briefly motivating it before
discussing the resulting physical predictions. As a consequence of the loosely motivated
Hamiltonian, we do not expect to derive accurate predictions beyond scaling relations,
e.g. predicting which is the lowest non-zero order voltage contribution to the tunneling
current.

Throughout the chapter we will be working in units of |e| = kB = ℏ = 1.
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Figure 6.1: A quantum point contact with tunneling amplitude τ connects a SC to the chiral edge
states of an integer quantum Hall (QH) phase at filling factor ν. For ν = 1, both electrons of the Cooper
pair tunnel into the same state, leading to a Pauli blockade, while at ν = 2 the electrons can tunnel into
different states. The bias V is applied between the chiral edge channel and the superconductor.

6.1 Quantum point contact

Compared to the extended interface with which we have become familiar over the
previous chapters, the quantum point contact is different in a few key areas. The fact that
tunneling only occurs at one point implies that we have broken translation invariance,
and thus momentum conservation, along the interface. The description of the system
will therefore be in position space, and we will not find the same momentum matching
condition that played such a key role in the previous chapters.

Furthermore, where the extended interface saw hybridization between the SC sur-
face states and the QH edge states, resulting in electron transport across the interface
corresponding to an oscillation between particle-like and hole-like states in the QH
edge, the quantum point contact has a more well-defined spatial electron transport.
The electron transport due to an applied voltage across the interface will all happen at
the point contact, and rather than looking for signatures of induced superconductiv-
ity downstream of the contact, we will be directly investigating the tunneling current
passing through the point contact.

The geometry of the system and some key simplifying assumptions allow us to
extend our analysis to filling factor ν = 2, where two parallel states propagate along the
QH edge, and we will see that this case is qualitatively different due to the possibility
of a Cooper pair tunneling into separate edge states. Another extension compared
to previous chapters is that into finite (non-zero) temperature, where we will see a
dampening of quantum effects. Of course, while this system is different to the one
treated in previous chapters, it is also similar, and the reader will recognize several
elements of the treatment. In particular, we will see that the Pauli blockade, which
completely suppressed Andreev reflection at zero bias as discussed in Chapter 4, will
appear again.
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6.1.1 Perturbative Hamiltonian

We consider a system consisting of a quantum point contact between a SC and a QH
edge with an applied voltage V across the contact, as depicted in Fig. 6.1, using the
Hamiltonian presented in Ref. [58]. In this section we will briefly outline the justification
of the Hamiltonian, and refer the reader to the reference for more detail. Similarly to
the total Hamiltonian treated in Chapter 3, it consists of a QH edge Hamiltonian, a SC
Hamiltonian and a tunneling Hamiltonian

H = HQH +HSC +HT . (6.1)

We will be treating QH edges at different integer and fractional filling factors, which
imply different forms of HQH as detailed in the following sections. The SC will be
assumed to be an s-wave SC described by a BCS Hamiltonian, which means that it hosts
local pairing with an amplitude ∆ between electrons of opposite spin, where ∆ can be
assumed real without loss of generality. We will assume all energies to be within the SC
gap described by ∆, such that all tunneling involves only Cooper pairs, and no single
electrons. Assuming that the QH edge states are spin polarized in the same direction,
the s-wave nature of the SC implies that tunneling is only allowed in the presence of a
spin-flip mechanism such as spin-orbit coupling, as discussed in Chapter 2. In contrast
to the case in that chapter, however, we will not assume any particular source of the this
mechanism, but simply include it in the tunneling Hamiltonian. This can be considered
an effective model of relevant spin-orbit coupling at the SC surface or in the QH edge.

As we will see, the tunneling current can be described exclusively in terms of the
tunneling Hamiltonian, and thus this is the only part of the total Hamiltonian in Eq. (6.1)
which we will be describing explicitly. The simplest tunneling Hamiltonian removes
one Cooper pair from the SC and adds two electrons to the QH edge, or vice versa. The
point-like nature of the tunneling means that the resulting Hamiltonian will depend
evenly on all momenta, and we can ignore momentum dependencies. In a mean field
description [1], the Cooper pair operator can be replaced with the pairing amplitude ∆,
and thus the tunneling Hamiltonian with included spin-flip takes the form

HT =

∫
dxdx′ t1(x, x

′)
(
∆ψ†

↑(x)ψ
†
↓(x

′) + h. c.
)

+

∫
dx t2(x)

(
ψ†
↑(x)ψ↓(x) + h. c.

)
, (6.2)

where ψ↑(x) is the annihilation operator of the QH edge spin-up electron at position x
while t1 is the unitless Cooper pair tunneling amplitude and t2 is the spin flip amplitude
with units of energy. Note that the operator ψ is not tied to a particular edge state,
and thus for ν > 1 it represents a superposition of edge states as discussed below. The
coordinates x, x′ run along the QH edge, and we have assumed the point contact to be
at x = 0, meaning that this is the only coordinate where Cooper pairs can tunnel to and
from the SC.

Treating the tunneling Hamiltonian perturbatively in t1 and t2, the lowest order non-
zero term must be a second order cross term involving both tunneling, as indicated by
the presence of t1, and spin-flip, as indicated by the presence of t2. While the tunneling
Hamiltonian is symmetric in spin, all spin-down fields will be highly energetic due
to spin polarization, and can be integrated over in a low-energy theory. Under these

89



arguments, the dominating term can be shown to be describing pairing between parallel
spins

∫
dxdx′ τ(x, x′)∆

[
ψ†
↑(x)ψ

†
↑(x

′) + h. c.
]
. (6.3)

with an effective unitless tunneling amplitude

τ(x, x′) ∝ t1(x, x
′)[t2(x)− t2(x

′)]. (6.4)

We neglect all other terms and consider this the effective tunneling Hamiltonian. Follow-
ing Ref. [58], we can simplify the description further by the following observation: for a
single edge state, the tunneling will be suppressed at small distances x− x′ → 0 due to
the Pauli principle forcing ψ↑(x)ψ↑(x) = 0. Furthermore, superconducting correlations
are exponentially suppressed between electrons beyond the superconducting coherence
length ξ = vF,s/π∆ [77], with vF,s being the Fermi velocity of the SC. We thus find that
the greatest contribution to the integral Eq. (6.3) must occur at distances on the order
x− x′ ∼ ξ. We can then simplify the tunneling term by only considering the dominant
contribution to the integral

H ′
T = τ∆ψ†

↑(x = ξ)ψ†
↑(x = 0) + h. c., (6.5)

where we have fixed the positions of the QH electrons involved in the tunneling. Going
forward we will suppress the spin index since we will only be concerned with spin-up
electrons. The Pauli principle argument clearly applies to the case of one edge state,
but we can extend the validity of the argument, and thus the fixed distance tunneling
approximation, to the case of two edge states with equal spin by defining different
electron fields for the different states, ψ1 and ψ2, and writing

ψ(x) =
√
p ψ1(x) +

√
1− p ψ2(x). (6.6)

Here we have introduced 0 ≤ p ≤ 1 which is the probability of tunneling into edge state
1, and consequently 1− p is the probability of tunneling into edge state 2. At a fixed QH
edge Fermi energy, the two edge states will have a relative phase related to the strength
of the external B-field and the distance between them, see Chapter 2. As we will see, this
phase difference will lead to interference effects in the tunneling current. By assuming
p real, we assume that no further phase differences are induced due to tunneling. To
evaluate the finite distance approximation in Eq. (6.5) for two states, we can write

ψ(x)ψ(x) =
(√

p ψ1(x) +
√
1− p ψ2(x)

)(√
p ψ1(x) +

√
1− p ψ2(x)

)

= pψ1(x)ψ1(x) + (1− p)ψ2(x)ψ2(x) +
√
p(1− p)

(
ψ1(x)ψ2(x) + ψ2(x)ψ1(x)

)
, (6.7)

which must be zero under the Pauli principle. Thus, for two edges we can still consider
Eq. (6.5) the dominant term.

Replacing the tunneling Hamiltonian in Eq. (6.1) by Eq. (6.5) gives us the total
effective Hamiltonian of the system. By considering the effective tunneling term pertur-
batively we will calculate the tunneling current and noise for different filling factors.
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6.1.2 Tunneling current

The first observable of interest we wish to calculate is the tunneling current across the
quantum point contact. The corresponding operator measures the change in electron
number in the QH edge over time,

J =
dNQH

dt
= i[H,NQH], (6.8)

where NQH =
∫
dxψ†(x)ψ(x) is the number operator for electrons in the QH edge. Since

the only term of the Hamiltonian in Eq. (6.1) which changes electron number in the QH
edge is the tunneling term, this is the only term with a non-zero commutator

J = i[H ′
T , NQH]. (6.9)

Evaluating the commutator lets us perform the integral within the number operator
yielding

J = −2iτ∆
(
ψ†(ξ)ψ†(0)− h. c.

)
. (6.10)

We can calculate the current across the point contact at a time t under a dc bias pertur-
batively in the tunneling by applying the Keldysh formalism [78]. Then the current is
the interaction picture expectation value with respect to the biased ground state of the
system without tunneling

I(t) = ⟨U †(t,−∞)J(t)U(t,−∞)⟩ , (6.11)

where the time evolution operator U(t2, t1) can be written to lowest order in the tunnel-
ing amplitude as

U(t,−∞) ≃ 1− i

∫ t

−∞
dt′H ′

T (t
′). (6.12)

The steady state current at a given dc bias V can then be found in terms of the operator

A(t) = ψ(0, t)ψ(ξ, t) (6.13)

as [79]

Idc(V ) = 2(τ∆)2
∫ ∞

−∞
dt
〈[
A†(t), A(0)

]〉
. (6.14)

Taking the center of the SC gap as zero energy, the applied bias V means that the
QH edge fields are at energy V . Applying the unitary transform UV = eiV t to the
QH edge operators shifts the QH ground state energy down to zero, corresponding
to the momentum shift discussed in Section 2.5.1, but for energy and time instead of
momentum and space. We can apply this transformation to rewrite Eq. (6.14) as

Idc(V ) = 2(τ∆)2
∫ ∞

−∞
dte2iV t

〈[
A†(t), A(0)

]〉
0
, (6.15)

where the expectation value is now with respect to the unbiased ground state. Evaluating
this expression at different filling factors will be one of the main original contributions
of this chapter.
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6.1.3 Noise

Beyond current and conductance, a common experimentally available quantity used to
probe quantum mechanical effects of materials is noise [2]. Experiments on quantum
systems involve many sources of noise, with some external which interfere with the ex-
periments, and some which are inherent to the system which can be used to understand
details about the system which are otherwise difficult to access. If we consider a well-
isolated system we can focus on two interesting sources of noise: thermal fluctuations,
and the Poissonian statistics of quantized charge transport across a tunneling junction,
i.e. shot noise [76].

Specifically, we describe the noise through its power spectral density S at a finite
frequency ω and dc bias voltage V , which is defined as

Sdc(ω, V ) =

∫ ∞

−∞
dteiωt ⟨δJ(t)δJ(0)⟩ , (6.16)

where δJ(t) = J(t)−⟨J(t)⟩ measures the deviation of the current from its average, which
is taken with respect to the ground state of the QH and SC system without tunneling
but with bias. Using the definition of the current operator Eq. (6.10), we can write up the
noise to the lowest order in the tunneling amplitude

Sdc(ω, V ) = 4(τ∆)2
∫ ∞

−∞
dt
[
ei(ω+2V )t + ei(ω−2V )t

]
⟨A†(t)A(0)⟩0 . (6.17)

From this expression, results relating to the shot noise can be found by assuming that the
power spectral density is independent of frequency, corresponding to taking S(ω = 0, V ).
In that case, we can exploit time-translation invariance [33]

〈
A†(t)A(0)

〉
=
〈
A†(0)A(−t)

〉
, (6.18)

to express S through the anticommutator

Sdc(0, V ) = 4(τ∆)2
∫ ∞

−∞
dt
[
e2iV t ⟨A†(t)A(0)⟩0 + e−2iV t ⟨A†(0)A(−t)⟩0

]

= 4(τ∆)2
∫ ∞

−∞
dte2iV t

〈{
A†(t), A(0)

}〉
0
. (6.19)

Here we have made the substitution t→ −t in the second term in the second step.
It can be shown through scattering calculations that the shot noise across a quantum

point contact obeys the relation [76, 80, 81]

S(0, V ) = qIdc(V ), (6.20)

where q is the charge involved in tunneling, i.e. for Cooper pair tunneling, which
involves two electrons, we have q = 2, while for tunneling of fractional quasiparticles [73]
at filling fraction ν we have q = ν. By measuring the signal-to-noise ratio represented
by the Fano factor1 S(0, V )/Idc = q, one is then experimentally able to determine the
charge involved in tunneling, a fact which cannot be extracted from the current itself.

1Depending on one’s definition of noise, the Fano factor may be defined as S(0, V )/2I(V ) instead.
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6.2 Tunneling current in the DC regime

In this section we present the tunneling currents at filling factors ν = 1, 2 and the
Laughlin sequence ν = 1/(2n + 1) with n ∈ N . These are calculated by applying
Eq. (6.15), and the section will focus on discussing the physical interpretations of the
results in different experimentally relevant limits, foregoing the inclusion of the full
derivations.

Note that several of the results in this section were already discussed in Ref. [58]. We
present the calculations in greater detail and include interactions, and the next section
adds to these results with noise calculations not found in the literature.

6.2.1 Filling factor ν = 1

For a single QH edge state at filling factor ν = 1, we can write the QH Hamiltonian in
position space as

HQH = −ivF
∫
dxψ†(x)∂xψ(x), (6.21)

where vF is the Fermi velocity of the QH edge. We can assume vF > 0 (right moving
particles) and V > 0 without loss of generality. Resolving the integral in Eq. (6.15) in
this case yields [33]

Idc(V )

I0
=
ξT

vF
sinh

(
V

T

)[
F
(
0,

V

πT

)
−F

(
2πξT

vF
,
V

πT

)]
, (6.22)

where we have normalized by the factor I0 = (τ∆)2/πvF ξ and the terms in square
brackets are given by the dimensionless integral

F(a, b) =

∫ +∞

−∞
dz

cos(bz)

cosh(a) + cosh(z)
. (6.23)

This integral has an analytic solution in terms of hypergeometric functions, but since we
are primarily interested in the scaling of the current in terms of voltage and temperature,
we will simplify the expression by considering it in different limits. First we consider
the limit of low temperature compared to the SC gap, ξT/vF ≪ 1, as well as low voltage
compared to the temperature scale, V/T ≪ 1, to find the lowest order result in V and T .
To expand the integrals we note that for a ≪ 1, cosh(a) ≃ 1 + a2/2, letting us expand
the integrand as

F (0, b)−F (a, b) ≃ a2

2

∫ ∞

−∞
dz

cos(bz)
(
1 + cosh(z)

)2 =
π

3

a2b(1 + b2)

sinh(πb)
, (6.24)

while for b≪ 1 we can further expand

F (0, b)−F (a, b) ≃ a2

3

[
1 +

(
1− π2

6

)
b2
]
. (6.25)

Applying this expansion we find the current

Idc(V )

I0
≃ ξT

vF

V

T

{
1

3

(
2πξT

vF

)2
[
1 +

(
1− π2

6

)(
V

πT

)2
]}

, (6.26)
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Figure 6.2: The normalized tunneling current Idc(V )/I0 at filling factor ν = 1 oscillates with the
dimensionless bias 2V ξ/vF around linear (Ohmic) behavior, with non-zero temperature damping out the
oscillation (see Eqs. (6.22) and (6.28)).

which to lowest order in V/T is

Idc(V )

I0
≃ 4π2

3

(
ξT

vF

)2 ξV

vF
. (6.27)

Resolving the integral Eq. (6.15) at T = 0 requires a slightly different strategy than at
finite T to avoid dividing by zero, and in this case it is found that [33]

Idc(V )

I0
=

2ξV

vF

[
1− sin(2ξV/vF )

2ξV/vF

]
, (6.28)

which for small bias voltage ξV/vF ≪ 1 can be approximated as

Idc(V )

I0
≃ 4

3

(
ξV

vF

)3

. (6.29)

This limit can also be found by setting T = 0 in Eq. (6.26) which suppresses the linear
dependence I ∝ V , leaving the non-Ohmic I ∝ V 3 behavior as the lowest non-vanishing
order. The general results are plotted in Fig. 6.2, where it can be seen that the zero-
temperature case oscillates around Ohmic behavior, with oscillations damped at higher
temperatures.

The departure from Ohmic behavior at zero temperature means that the conductance
G = ∂Idc

∂V at V → 0 goes from the finite T value

G(T )

G0
= 1− 2πξT/vF

sinh(2πξT/vF )
, G0 =

2(τ∆)2

πv2F
, (6.30)

to zero at zero temperature G(T → 0) = 0. As discussed in Ref. [58], this behavior
stems from the effect of the Pauli exclusion principle in a similar way to how the hole
transmission probability Ph in Chapter 4 vanishes for vanishing V or I . Without an
applied bias, the Cooper paired electrons would both tunnel into a single state, which is
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not allowed. The time scale ξ/vF can be understood as the time separation below which
the tunneling events are suppressed, i.e. the second electron can tunnel after the first
tunneling electron has been transported away from the point contact for a time t ∼ ξ/vF .

This Pauli blockade constitutes a strong experimental signature of pair-tunneling,
and is also found for the extended surface treated in Chapter 3. We will hold off on
calculating the noise, since it will be shown in the next section that the ν = 1 filling
factor is a special case of the ν = 2 filling factor.

6.2.2 Filling factor ν = 2

We now extend our discussion to filling factor ν = 2, modeling a system where the QH
edge hosts two edge states with parallel spin polarization, see Fig. 6.1. As discussed in
Section 6.1.1, this system can be described within the same framework as for ν = 1 by
substituting the QH edge state electron operators in the tunneling Hamiltonian with

ψ → √
p ψ1 +

√
1− p ψ2. (6.31)

where p is the probability of tunneling into state 1. For simplicity we can assume both
edge states to have the same Fermi velocity – different velocities could be absorbed into
a redefinition of p. Upon performing the substitution Eq. (6.31), the dc bias tunneling
current at finite temperature is found to be [33]

Idc(V )

I0
=
ξT

vF
sinh

(
V

T

)[
F
(
0,

V

πT

)
−N (p, kξ)F

(
2πξT

vF
,
V

πT

)]
, (6.32)

with F and I0 defined as in Eq. (6.22). Shifting to filling factor ν = 2 has introduced the
interference factor

N (p, kξ) = 1− 2p(1− p)[1− cos(kξ)], (6.33)

where k = k2 − k1 is the difference in edge state momenta. Without going into details
of the derivation of Eq. (6.32), we can attempt an interpretation of N in terms of the
amplitudes of the different correlators involved in calculating ⟨A†(t)A(0)⟩ for two edge
states. These are four point correlators of the form

〈
ψ†
a(ξ, t)ψ

†
b(0, t)ψc(0, 0)ψd(ξ, 0)

〉
, (6.34)

where the indices a, b, c, d indicate either state 1 or state 2, with either all indices equal
or each state index appearing twice. Since we know from Chapter 2 that an edge state
is proportional to a plane wave along the interface ψa(x, t) ∝ e−ikax, we anticipate
momentum differences coming out of the correlator when a = c and b = d. In particular,
the expectation value ⟨A†(t)A(0)⟩ will involve the two terms

〈
A†(t)A(0)

〉
= p(1− p)

〈
ψ†
1(ξ, t)ψ

†
2(0, t)ψ1(0, 0)ψ2(ξ, 0)

〉

+ p(1− p)
〈
ψ†
2(ξ, t)ψ

†
1(0, t)ψ2(0, 0)ψ1(ξ, 0)

〉
+ . . . (6.35)

The former term involves the phase difference e−i(k2−k1)ξ, while the latter involves the
phase difference ei(k2−k1)ξ. The correlators with a = d and b = c will carry no phase,
but still contribute with an amplitude p(1− p), while the remaining correlators with all
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indices equal correspond to tunneling into one edge state only. We can then see that N
corresponds to one minus the sum of amplitudes of cross-tunneling correlators

N = 1− 2p(1− p)− 2p(1− p)
(
ei(k2−k1)ξ + e−i(k2−k1)ξ

)

= 1− 2p(1− p)[1− cos(kξ)]. (6.36)

This simple argument is not meant as a derivation of the source of N , but rather meant
to facilitate some intuitive understanding of its appearance at filling ν = 2.

As discussed in Chapter 2, the momentum of an edge state depends on the choice
of gauge, however by taking the difference the gauge dependence cancels. Indeed,
due to the inherent relationship between an edge state’s momentum and position, the
momentum difference becomes k = Bl where B is the B-field strength and l is the
spatial separation between the edge states. As expected, we recover the ν = 1 current for
p = 0 or p = 1 where only one edge state is involved in the tunneling, but interestingly
it is also recovered for cos(kξ) = 1, due to destructive interference between the two
tunneling events. This can be experimentally accessed by tuning the applied magnetic
field to B = 2πn/(ξl) for an integer n.

The zero-temperature current is found to be [33]

Idc(V )

I0
=

2V ξ

vF

[
1−N (p, kξ)

sin(2V ξ/vF )

2V ξ/vF

]
, (6.37)

where we see that for ξV/vF ≪ 1 we again have Ohmic behavior in the leading order,

Idc(V )

I0
≃ [1−N (p, kξ)]

2ξV

vF
+

4

3
N (p, kξ)

(
ξV

vF

)3

, (6.38)

as long as N (p, kξ) < 1. Correspondingly, the zero bias conductance for finite tempera-
ture is

G(T )

G0
= 1− 2πξTN (p, kξ)

vF sinh(2πξT/vF )
, (6.39)

with the zero temperature limit G ∝ 1 − N (p, kξ), which is no longer necessarily
vanishing.

The recovery of Ohmic behavior is expected, since allowing the electrons to tunnel
into different edge states allows the circumvention of the Pauli blockade. What is
more interesting is that tuning the B-field across the values yielding cos(kξ) = 1 while
staying at filling factor ν = 2 should allow for the experimental observation of the
Pauli blockade turning on and off. This result lets us interpret N as the amplitude of
destructive interference between the tunneling modes.

The current in Eq. (6.32) is plotted in Fig. 6.3, where the Pauli blockade is recovered
for kξ = 2πn with n ∈ N , resulting in more pronounced oscillations along the V axis.

Interacting electrons

We now further generalize our model by including electron interactions both within
an edge state and between edge states. In particular we will consider the model of a
Coulomb potential suppressed on all but extremely short range compared to ξ by the
surrounding material such that it is effectively a delta function in space [82–84]. As
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Figure 6.3: At filling factor ν = 2, we have oscillations of the normalized tunneling current both with
the dimensionless bias 2V ξ/vF as well as the interference factor argument kξ. Here, the oscillations are
shown at a finite temperature of 2ξT/vF = 0.5, with tunneling probability p = 0.5, see Eq. (6.32). Black
lines indicate integer values of the current ratio Idc/I0.

discussed in Section 5.2, we can exploit the one-dimensional nature of the QH edge to
include interactions of arbitrary strength in a low energy effective field theory [46, 70].
We assume that tunneling is only allowed into one of the edge states, corresponding to
p = 1 or p = 0. The excitations of the interacting electron system can be described as
collective fluctuations of the charge density of the edge state with index j = 1, 2

ρj(x) =
1

2π
∂xϕj(x), (6.40)

where ϕj(x) is a bosonic field operator with commutator

[ϕi(x), ϕj(y)] = iπδij sgn(x− y). (6.41)

In terms of this field, the free electron Hamiltonian for two edge states is as in Section 5.2

H0 =
vF
4π

∑

j=1,2

∫
dx
[
∂xϕj(x)

]2
, (6.42)

where we recall the assumption that both edge states have the same velocity. We then
introduce the screened Coulomb interaction between electron densities Uδ(x−y), where
U > 0 is the interaction strength. Defining the matrix

Vij(x, y) = (U + 2πvF δij)δ(x− y), (6.43)

we can write up the total Hamiltonian

HQH =
1

2

∑

ij=1,2

∫
dx

∫
dyρi(x)Vij(x, y)ρj(y)

=
1

8π2

∑

ij=1,2

∫
dx

∫
dy[∂xϕi(x)]Vij(x, y)[∂yϕj(y)], (6.44)
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Figure 6.4: The dc bias tunneling current for interacting electrons tunneling into a single edge, see
Eq. (6.47). We have ν = 2 and 2ξT/vF = 0.5 and the interaction is parametrized by v2/v1, with
v2/v1 = 1 being the non-interacting case. Stronger interactions (i.e. smaller v2/v1) mean decreased
magnitude of the normalized tunneling current, as well as longer oscillation periods with the applied bias.

which becomes H0 for U = 0. This Hamiltonian is diagonalized by the unitary transfor-
mation

ϕ1 =
1√
2
(χ1 + χ2), ϕ2 =

1√
2
(χ1 − χ2) (6.45)

which preserves bosonic commutation relations and yields the chiral bosonized Hamil-
tonian,

HQH =
1

4π

∑

j=1,2

vj

∫
dx
[
∂xχj(x)

]2
. (6.46)

where j no longer represents the edge modes, but rather two effective bosonic modes
with velocities v1 = U/π + vF and v2 = vF .

Given this model of interacting electrons, the integral in Eq. (6.15) can be resolved to
find [33]

Idc(V )

I ′0
=
v2
v1

2ξT

v2
sinh

(
V

T

) ∏

j=1,2

[
sinh

(
πξT

vj

)]
J
(
2πξT

v1
,
2πξT

v2
,
2V

πT

)
, (6.47)

where the normalization factor is now I ′0 = (τ∆)2/π
√
v1v2ξ and we have the unitless

integral

J (a1, a2, b) =

∫ ∞

−∞
dy

cos(by)

cosh2(y)
∏
i=1,2

√
cosh(2y) + cosh(ai)

. (6.48)

Assuming low temperature ξT/v2 ≪ 1, we can employ similar strategies as in Sec-
tion 6.2.1 to find the zero bias conductance as

G(T )

G′
0

≃ 2π2

3

(ξT )2

v1v2
, G′

0 =
2(τ∆)2

πv1v2
, (6.49)
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while for zero temperature and V ξ/v2 ≪ 1 we have Idc ∝ (2/3π)(V 3ξ2)/(v1v2)
2, mean-

ing the zero bias conductance vanishes. In other words, the Pauli blockade persists in
the presence of cross-channel interactions, making it a robust result for experimental
investigation.

The behavior of Eq. (6.47) at finite temperature is shown in Fig. 6.4 for different
interaction strengths, with v2/v1 = 1 corresponding to the non-interacting case. As
can be seen, non-zero interactions reduce the tunneling current while increasing the
oscillation period around Ohmic behavior.

Noise

We first consider the case of non-interacting electrons at filling factor ν = 2 with tun-
neling into both edges, which reduces to the ν = 1 case for p = 0 or p = 1. Applying
Eq. (6.17) to this system yields the finite temperature noise

Sdc(ω, V )

I0
=
∑

σ=±

ξT

vF
exp

(
ω + 2σV

2T

)

×
[
F
(
0,
ω + 2σV

2πT

)
−N (p, kξ)F

(
2πξT

vF
,
ω + 2σV

2πT

)]
, (6.50)

with the normalization factor I0 defined after Eq. (6.22) and with the dimensionless
integral F(a, b) defined in Eq. (6.23). The corresponding result at zero temperature is

Sdc(ω, V )

I0
=
∑

σ=±
2θ

(
ξ(ω + 2σV )

vF

){ |ω + 2σV |ξ
vF

−N (p, kξ) sin

( |ω + 2σV |ξ
vF

)}
,

(6.51)

where θ(x) is the Heaviside step function and the interference factor N (p, kξ) is defined
in Eq. (6.33). The noise at finite and zero temperature is shown in Fig. 6.5. At frequencies
ω = ±2V the zero-temperature noise changes with a discontinuous derivative. For
Cooper pair transport, these frequencies are known as Josephson frequencies, and
the characteristic behavior at these frequencies is due to the difference in chemical
potential [85]. Notably, in the case of tunneling between chiral Tomonaga-Luttinger
liquids, the noise exhibits a singularity at these frequencies, which is absent in our
system [85].

We can expand the zero-temperature noise for small frequencies 0 < ω ≪ 2V

Sdc(ω, V )

I0
≃ 2

[
2ξV

vF
−N (p, kξ) sin

(
2ξV

vF

)]
+ 2

[
1−N (p, kξ) cos

(
2ξV

vF

)](
ξω

vF

)
,

(6.52)

where we see that the frequency dependence appears linearly in a sub-leading term,
while for large frequencies ω ≫ 2V > 0 we find

Sdc(ω, V )

I0
≃ 4ξω

vF
, (6.53)

i.e. that the linear frequency dependency leads. By measuring the shot noise we can also
observe the Pauli blockade behavior we found for the conductance measurements,

G−1
0

∂Sdc(0, V )

∂V

∣∣∣
V→0

= 2[1−N (p, kξ)], (6.54)
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Figure 6.5: The normalized finite frequency noise at dc bias Sdc(ω, V )/I0 with filling factor ν = 2,
plotted as a function of the dimensionless frequency ωξ/vF at applied voltages 2V ξ/vF = 4 (blue lines)
and 2V ξ/vF = 6 (red lines). The solid lines correspond to finite temperature 2Tξ/vF = 0.5, see
Eq. (6.50), and the dashed lines correspond to zero temperature, see Eq. (6.51). We have p = 0.5 and
kξ = 2π/3.

where G0 is defined in Eq. (6.30). The signature oscillations of the interference factor
can thus be found in shot noise measurements as well. At low, non-zero temperatures
ξT/vF ≪ 1 we find a sub-leading correction to Eq. (6.54) of (4/3)N (p, kξ)(πξT/vF )

2,
and so the temperature independence of the derivative of the shot noise is only found to
leading order.

Using Eqs. (6.32) and (6.50) and the fact that F(a,−b) = F(a, b), we can directly
evaluate the fraction of shot noise and current at finite temperature

Sdc(0, V )

Idc(V )
= 2 coth

(
V

T

)
, (6.55)

which shows that the tunneling current exhibits the typical Poissonian shot noise form
[76]. In the limit of zero temperature, we recover the Fano factor Sdc(0, V )/Idc(V ) = 2,
which is consistent with the tunneling of Cooper pairs. Explicitly considering filling
factor ν = 1, i.e. setting p = 1 or p = 0, we have that at low temperature ξT/vF ≪ 1 and
bias voltage V/T ≪ 1 we find

Sdc(0, V )

I0
≃ 8ξV

3vF

(
πξT

vF

)2

. (6.56)

Including electron-electron interactions and assuming tunneling into only one channel,
we find the noise

Sdc(ω, V )

Idc(V )
=
∑

σ=±

v2
v1

2ξT

v2
exp

(
ω + 2σV

2T

) ∏

i=1,2

sinh

(
πξT

vi

)
J
(
2πξT

v1
,
2πξT

v2
,
ω + 2σV

πT

)
.

(6.57)

The Fano factor for this noise is unchanged from the result in Eq. (6.55), which is expected
since interactions should have no effect on the tunneling charge. The zero temperature
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shot noise for V ξ/vi ≪ 1 with i = 1, 2 becomes

Sdc(0, V )

I0
≃ 8v22

3v21

V 3ξ3

v32
, (6.58)

where again the Pauli blockade is recovered as ∂Sdc(0, V )∂V = 0 at V → 0.

6.2.3 Filling factor ν = 1/(2n+ 1)

Finally we consider the fractional filling factors belonging to the Laughlin sequence
ν = 1/(2n + 1) with n ∈ N . Once again we can construct an effective field theory in
terms of bosonic fields, this time considering a single channel of free bosonic fields
ϕ(x) propagating with velocity v. This field relates to the electron operator through
ψ(x) ∝ eiϕ(x)/ν as discussed in Chapter 5. Repeating the steps of the previous sections,
the tunneling current can be shown to be [33]

Idc(V )

I ′′0
= 21/ν

ξT

v

(
aT

2v

)2/ν−2

sinh2/ν
(
πξT

v

)
sinh

(
V

T

)
Q
(
2πξT

v
,
2V

πT

)
, (6.59)

where a is an ultraviolet (short distance) cutoff and we have the normalization factor
I ′′0 = (τ∆)2/πvξ. We have also introduced the dimensionless integral

Q(a, b) =

∫ ∞

−∞
dy

cos(by)

cosh−2/ν(2y)[cosh(2y) + cosh(a)]1/ν
. (6.60)

For low temperatures ξT/v ≪ 1, the zero bias conductance becomes

G(T )

G′′
0

≃
√
π

2

Γ(2/ν)

Γ(1/2 + 2/ν)

(
rT

2v

)2/ν−2(πξT
v

)2/ν

, G′′
0 =

2(τ∆)2

πv2
(6.61)

where Γ(x) is the gamma function. At zero temperature and small bias ξV/v ≪ 1, the
current becomes

Idc

I ′′0
≃ 2π2ξv

r2

(
2rξ

πv2

)2/ν V 4/ν−2

Γ(4/ν)
. (6.62)

This means that the zero bias conductance vanishes, and we once again recover the Pauli
blockade.

There are several interesting things to note here, as pointed out in Ref. [58]. First
of all, the powers of V and T involved are very large: the ν = 1/3 state leads to a
conductance scaling of G(T ) ∼ T 10 and a zero temperature tunneling current scaling of
Idc(V ) ∼ V 10. Furthermore, despite the fact that both the SC state and the fractional QH
edge state can be accurately described as bosonic states, the Pauli blockade persists due
to the fundamental electronic nature of the tunneling.

Noise

Resolving Eq. (6.17) in this context, the noise at fractional filling factors is found to
be [33]

Sdc(ω, V )

I ′′0
=
∑

σ=±
21/ν

ξT

v

(
rT

2v

)2/ν−2

sinh2/ν
(
πξT

v

)

× exp

(
ω + 2σV

2T

)
Q
(
2πξT

v
,
ω + 2σV

πT

)
. (6.63)
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At zero temperature and frequency, assuming a small bias V ξ/v ≪ 1 yields the approxi-
mation

Sdc(0, V )

I ′′0
≃ 4π2

Γ(4/ν)

vξ

r2V

(
2rξV 2

πv2

)2/ν

, (6.64)

with vanishing shot noise derivative ∂Sdc(0, V )/∂V at V → 0. Interestingly, the Fano
factor Eq. (6.55) is unchanged despite the fractionalization of the edge state charges,
indicating that the tunneling current consists of Cooper pairs no matter the filling factor
of the edge state.

6.3 Tunneling current and finite frequency noise in the AC
regime

Finally, we place our results so far into the context of a quantum point contact with an
applied ac bias, i.e. a time-dependent voltage Ṽ (t). We assume a periodic bias of the
form

Ṽ (t) = V + V1 cos(Ωt), (6.65)

with a low driving frequency Ω allowing adiabatic treatment and constant voltages V, V1.
We will not assume any particular filling factor, but rather express our results in terms
of the Idc and Sdc results from the previous sections.

The time-dependent part averaged over one period T = 2π/Ω gives zero, and the
average tunneling current is given by [79]

I =
2

T

∫ T

0
dt

∫ t

−∞
dt′Re

{
ei

∫ t
t′ dt

′Ṽ (t′)⟨[Â†(t), Â(t′)]⟩
}
. (6.66)

Applying the correlators calculated previously and using an expansion in terms of Bessel
functions of the first kind Jn for integer n,

eiλ sinφ =
∞∑

n=−∞
Jn(λ)e

inφ, (6.67)

we find

I =

+∞∑

n=−∞
J2
n(2V1/Ω) Idc(V + nΩ/2), (6.68)

where Idc(V +nΩ/2) is the relevant tunneling current calculated in the previous sections.
At Ω → 0 or V1 → 0 the bias is constant, and we can use the Bessel function sum rule [86]

∞∑

n=−∞
J2
n(λ) = 1 (6.69)

for any λ, meaning we recover the dc bias results. To treat the noise under an ac-bias [79]
we consider the time domain correlator S(t, t′) = ⟨δJ(t)δJ(t′)⟩ in terms of the “center of
mass” variables

τ =
t+ t′

2
, τ ′ = t− t′, (6.70)
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Figure 6.6: The normalized finite frequency noise of the tunneling current in presence of adiabatic ac
bias, Ṽ (t) = V + V1 cos(Ωt), at zero temperature for different 2V ξ/vF , see Eq. (6.72). The plot shows
the case of Sdc(ω, V ) at filling factor ν = 1, i.e. with N = 1. We set 2V1ξ/vF = 2 and Ωξ/vF = 1.

yielding the one-period average noise

S(ω) =
1

T

∫ T

0
dτ

∫ ∞

−∞
dτ ′S(τ + τ ′/2, τ − τ ′/2)eiωτ

′
. (6.71)

Applying the same methods as when calculating the ac-bias current, as well as the
identity J2

−n(λ) = J2
n(λ) we arrive at the result

S(ω) =
∞∑

n=−∞
J2
n(2V1/Ω)Sdc(ω, V + nΩ/2), (6.72)

where Sdc(ω, V + nΩ/2) is the relevant dc-bias noise as calculated in previous sections.
At filling factor ν = 1, the ac-bias noise S(ω) is shown in Fig. 6.6. The result is similar to
the case of dc bias, and again we see no singularities in the noise.

An analogous relation to Eq. (6.72) was experimentally tested for quasiparticle
tunneling between fractional QH edge states Ref. [87], and found to hold for electron
current, heat current and shot noise in a quantum point contacted fractional QH edge
under AC bias. According to Eq. (6.72), the relation holds for the tunneling current and
the finite frequency noise of a tunneling contact to a SC, indicating that the relation might
be universal for systems point contacted with a QH edge, and that the relation may
also hold for finite frequency noise across a point contact between QH edges. Further
work to find if Eq. (6.72) holds for tunneling between fractional QH edges would allow
probing of such a system, and the anyonic quasiparticles it is predicted to host, beyond
the regime of shot noise, but that is beyond the scope of this thesis.

6.4 Summary

We consider an effective model of Cooper pairs performing local tunneling from across
a SC-QH edge quantum point contact as presented in Ref. [58], which lets us predict
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tunneling current and noise for applied ac and dc biases across the point contact. Only
recently has a similar system been realized experimentally, motivated by which we
expand on the known theoretical predictions of such a system by considering interactions
and noise.

The main experimental signature is the Pauli blockade, which causes vanishing
zero-bias conductance in the zero temperature limit. This blockade is found both for
interacting and non-interacting electrons, as well as for a single integer QH edge state at
ν = 1 and for a fractional QH edge state in the Laughlin sequence ν = 1/(2n+ 1). For
two integer QH edge states, we find a zero bias conductance G ∝ 1−N , with 0 ≤ N ≤ 1
measuring the amplitude of destructive interference between tunneling modes which
involve both edge states. We predict a recovery of the Pauli blockade for an applied
magnetic field B = 2πn/(ξl), in which case N = 1.

The finite frequency noise is predicted to have discontinuous derivatives in its
frequency dependence at the Josephson frequencies ω = ±2V , where singularities have
been predicted in the case of tunneling between chiral Tomonaga Luttinger liquids. The
Pauli blockade can also be seen in the shot noise, whose derivative vanishes with the
conductance.

At small bias and low but finite temperatures, tunneling involving the fractional
QH edge involves remarkable scaling of the conductance G ∝ T 4/ν−2, while at zero
temperature we find similar scaling of the current Idc ∝ V 4/ν−2 and the noise Sdc ∝
V 4/ν−1.

Investigating the point contact under an ac bias, we find that current and noise are
expressed as sums over their dc bias counterparts, weighted by squared Bessel functions.
This result is analogous to an experimental result for tunneling between point contacted
fractional QH systems, indicating that finite frequency noise would show the same
behavior in that system.
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CHAPTER 7
Conclusion

In this thesis we have developed a model of a superconductor (SC) tunnel-coupled to an
integer or fractional quantum Hall (QH) edge. By integrating out the superconductor, we
have arrived at an effective QH edge Hamiltonian with induced pairing, and derived an
analytical prediction of the induced pairing amplitude in terms of externally determined
parameters of the separate systems. We have derived the effects of the induced pairing
on transport in a typical experimental setup where a segment of the edge of a Hall bar is
proximitized. This includes an analytical expression of the probability that an electron is
transmitted as a hole when passing the proximitized segment, as well as an analytical
expression of the effect of this hole transmission on the resistance measured downstream
of the proximitized segment. We have predicted the negative downstream resistance
found in experiments in terms of applied voltage and current, as well as its dependence
on Fermi energy, induced pairing and interface length. The analytical descriptions of
pairing amplitude, hole transmission probability and downstream resistance constitute
a central contribution to the literature, advancing the qualitative understanding of the
interplay of physical effects in this composite system.

This model has been extended to the fractional QH edge, where we predict that
pairing is induced despite the effective fractionalization of the electronic edge states.
Finally, applying an alternative, phenomenological model to the problem of a quantum
point contact between a SC and an integer or fractional QH edge, we have predicted a
number of experimental signatures of the induced superconductivity. The most robust
of these is the Pauli blockade, which causes vanishing zero temperature conductance
and shot noise, and persists in the presence of interactions and fractionalization. We
predict that this blockade can be continuously tuned across in the case of filling factor
ν = 2 by inducing constructive interference through the externally applied magnetic
field.

Taking into account the presence of the strong magnetic field needed to induce the
QH phase, we have found that the Meissner effect, which leads to a supercurrent at
the SC surface, has a surprisingly profound effect on the induced superconductivity.
In particular, the resonance condition that the QH edge fermi momentum matches
the supercurrent momentum qF = ks, corresponding to the QH system Fermi energy
matching the cyclotron frequency EF = ωc, plays a key role in our predictions:

• it marks the topological phase transition where the induced p-wave pairing crosses
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between the weak and strong pairing phases.

• it marks the point of maximum hole transmission amplitude, where perfect hole
conversion is predicted even for a weak induced pairing amplitude,

• in the competition between fractionalization and pairing in the proximitized frac-
tional QH edge, it marks the point where pairing is most significant.

Predicting the key role of the Meissner effect is another central contribution of the thesis.
The resonance condition is clearly linked to experimentally tunable parameters, making
it both a critical test of the applicability of the presented theory, and an indicator that
accounting for the Meissner could be an important step on the way to ever-improving
fabrication of SC-QH systems and ultimately the encoding of quantum information in
anyonic zero modes.

Outlook

Considering the interesting physics contained in the different experimental geometries
presented in Chapter 4, it would be very interesting to extend the transport calculations
to predict the behavior of experimental signatures in those geometries. Since the trench
and finger setups involve the coupling of counter-propagating edge states, these states
can couple directly into the SC bulk states with zero center-of-mass momentum, and it
would be interesting to see the impact of the Meissner effect in this case.

Naturally, a complete transport calculation for the fractional QH edge is of great
interest, in particular to predict if there are qualitative differences between the integer
and fractional QH cases. Furthermore, considering higher order tunneling terms in the
model would allow for the investigation of how the tunneling case and the transparent
case converge in the semi-transparent case. Another approach to model the semi-
transparent case would be to generalize the surface current to include a wide range of
momenta ks, modeling induced surface currents from the evanescent penetration of QH
edge states into the superconductor.
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APPENDIX A
The renormalized Numerov method

This appendix is based on a more in-depth explanation in Ref. [88]. We reintroduce ℏ ̸= 1
for clarity. The Numerov method integrates one-dimensional second order differential
equations with no first order derivative. Assume that such an equation is of the form

[
∂2

∂x2
+Q(x)

]
ψ(x) = 0, (A.1)

which is the Schrödinger equation when

Q(x) =
2m

ℏ2
(E − V (x)). (A.2)

We discretize space into N small intervals of length a starting at a point x0, continuing
in points xn = x0 + na with n ∈ N and ending at a point xN . The discretized wave
function is then ψn = ψ(xn), and Qn = Q(xn). The Numerov formula, which is derived
through a Taylor expansion in a, says that

(
1 +

a2

12
Qn+1

)
ψn+1 +

(
1 +

a2

12
Qn−1

)
ψn−1 −

(
2− 5a2

6
Qn

)
ψn +O(a6) = 0 (A.3)

where Qn is known for all n. For increased numerical stability we introduce the ratio

Rn =
ψn+1

ψn
(A.4)

which is usually on order one. If we ignore terms of order a6 and higher, we find

Rn =
(
1 +

a2

12
Qn+1

)−1[(
2− 5a2

6
Qn

)
−
(
1 +

a2

12
Qn−1

)
R−1
n−1

]
. (A.5)

Given R0 = ψ1/ψ0, we can use this formula to iteratively construct the wave function
forwards from x0. We can also construct the wave function backwards from xN by
defining

R̃n =
ψn−1

ψn
(A.6)
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and use the formula

R̃n =
(
1 +

a2

12
Qn−1

)−1[(
2− 5a2

6
Qn

)
−
(
1 +

a2

12
Qn+1

)
R−1
n+1

]
. (A.7)

The numerically optimal strategy is to choose a point xc between x0 and xN . The wave
function is then iterated from left and right up to xc. At this point, the matching function

G(E) =

(
ψ(xN + a)

ψ(xN )

)

right
−
(
ψ(xN + a)

ψ(xN )

)

left
(A.8)

is evaluated. G is zero if and only if E is an eigenvalue of the Hamiltonian Ĥ corre-
sponding to Q(x,E). While the choice of xc is arbitrary, it can be advantageous to use
the first extremum of the wave function as evaluated from xN when the more complex
behaviour occurs in x0.

The task is then to choose x0 and xN as points with well known wave function
behaviour (and thus R0, R̃N ). Then a root of G(E) can be found through optimization in
E, with the resulting energy being an eigenvalue of the Hamiltonian. The wave function
can then be reconstructed from the boundary conditions and the ratios R and R̃.
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APPENDIX B
Commutators

We have the general operator identities

[A,B] = 2AB − {A,B} = {A,B} − 2BA, (B.1)
[AB,C] = A[B,C] + [A,C]B. (B.2)

For fermionic operators ψ we generally have [50]

{ψm, ψn} = {ψ†
m, ψ

†
n} = 0, (B.3)

{ψm, ψ†
n} = δm,n, (B.4)

[ψm, ψn] = 2ψmψn, (B.5)

[ψm, ψ
†
n] = 2ψmψn − δm,n. (B.6)

These identities will be applied in the following proofs.

B.1 Density-density commutator

The commutator of two different density operators at two different points is
[
ψ†
m(x)ψm(x), ψ

†
n(y)ψn(y)

]
= ψ†

m(x)ψm(x)ψ
†
n(y)ψn(y)− ψ†

n(y)ψn(y)ψ
†
m(x)ψm(x).

(B.7)

We can apply Eqs. (B.3) and (B.4) to re-arrange the fields such that
[
ψ†
m(x)ψm(x), ψ

†
n(y)ψn(y)

]

= ψ†
m(x)ψm(x)ψ

†
n(y)ψn(y)− ψ†

n(y)
(
δm,nδ(x− y)− ψ†

m(x)ψn(y)
)
ψm(x)

= ψ†
m(x)ψm(x)ψ

†
n(y)ψn(y)

− ψ†
n(y)δm,nδ(x− y)ψm(x) + ψ†

n(y)ψ
†
m(x)ψn(y)ψm(x)

= ψ†
m(x)ψm(x)ψ

†
n(y)ψn(y)

− ψ†
n(y)δm,nδ(x− y)ψm(x) + ψ†

m(x)ψ
†
n(y)ψm(x)ψn(y)

= ψ†
m(x)ψm(x)ψ

†
n(y)ψn(y)

− ψ†
n(y)δm,nδ(x− y)ψm(x) + ψ†

m(x)
(
δm,nδ(x− y)− ψm(x)ψ

†
n(y)

)
ψn(y). (B.8)
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Writing out the parenthesis we see that the first and last term cancel,
[
ψ†
m(x)ψm(x), ψ

†
n(y)ψn(y)

]

=
((((((((((((
ψ†
m(x)ψm(x)ψ

†
n(y)ψn(y)

− ψ†
n(y)δm,nδ(x− y)ψm(x) + ψ†

m(x)δm,nδ(x− y)ψn(y)−((((((((((((
ψ†
m(x)ψm(x)ψ

†
n(y)ψn(y).

(B.9)

The remaining terms are zero when m ̸= n or x ̸= y, while for m = n and x = y they
cancel,
[
ψ†
m(x)ψm(x), ψ

†
n(y)ψn(y)

]
= −ψ†

n(y)δm,nδ(x− y)ψm(x) + ψ†
m(x)δm,nδ(x− y)ψn(y)

= 0. (B.10)

B.2 Current operator

In the derivation of a current operator, the commutator

[ψ†
r(y)∂yψs(y), ψ

†
m(x)ψm(x)], (B.11)

must be evaluated. Applying Eq. (B.2) we have

[ψ†
r(y)∂yψs(y), ψ

†
m(x)ψm(x)]

= ψ†
r(y)[∂yψs(y), ψ

†
m(x)ψm(x)] + [ψ†

r(y), ψ
†
m(x)ψm(x)]∂yψs(y). (B.12)

In the first term we can move out the derivative to find

[ψ†
r(y)∂yψs(y), ψ

†
m(x)ψm(x)]

= ψ†
r(y)∂y[ψs(y), ψ

†
m(x)ψm(x)] + [ψ†

r(y), ψ
†
m(x)ψm(x)]∂yψs(y). (B.13)

Applying Eq. (B.2) we have

[ψs(y), ψ
†
m(x)ψm(x)] = −[ψ†

m(x), ψs(y)]ψm(x) + ψ†
m(x)[ψs(y), ψm(x)]

= −
(
2ψ†

m(x)ψs(y)− {ψ†
m(x), ψs(y)}

)
ψm(x) + ψ†

m(x)
(
2ψs(y)ψm(x)−(((((((({ψs(y), ψm(x)}

)

= −2ψ†
m(x)ψs(y)ψm(x) + 2ψ†

m(x)ψs(y)ψm(x) + δm,sδ(y − x)ψm(x)

= δm,sδ(y − x)ψm(x), (B.14)

and

[ψ†
r(y), ψ

†
m(x)ψm(x)] = [ψ†

r(y), ψ
†
m(x)]ψm(x) + ψ†

m(x)[ψ
†
r(y), ψm(x)]

=
(
2ψ†

r(y)ψ
†
m(x)−(((((((({ψ†

r(y), ψ
†
m(x)}

)
ψm(x) + ψ†

m(x)
(
2ψ†

r(y)ψm(x)− δm,rδ(x− y)
)

= 2ψ†
r(y)ψ

†
m(x)ψm(x) + 2ψ†

m(x)ψ
†
r(y)ψm(x)− ψ†

m(x)δm,rδ(y − x)

= 2ψ†
r(y)ψ

†
m(x)ψm(x)− 2ψ†

r(y)ψ
†
m(x)ψm(x)− ψ†

m(x)δm,rδ(y − x)

= −δm,rδ(y − x)ψ†
m(x), (B.15)

Putting these results together we have

[ψ†
r(y)∂yψs(y), ψ

†
m(x)ψm(x)]

= δm,sψ
†
r(y)∂y

(
δ(y − x)ψm(x)

)
− δm,rδ(y − x)ψ†

m(x)∂yψs(y). (B.16)
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APPENDIX C
Exponent expansion for bosonic

pairing

We will do the approximations in opposite order and show that we find the same result.
We start from the ∆ ∼ δ′ approximation in Eq. (5.38)

Hp =
q0F

2

4πL

∫ L/2

−L/2
dX e2i(ks−δqF )X

∫ L

−L
dr ∆∗

I(r)e
−iΦ(X+r/2)/

√
νe−iΦ(X−r/2)/

√
ν + h. c.

= −q0∆pF
2

4π

∫ L/2

−L/2
dX e2i(ks−δqF )X

∫ L

−L
dr δ′(r)e−iΦ(X+r/2)/

√
νe−iΦ(X−r/2)/

√
ν + h. c.

(C.1)

Using Eq. (5.52) we expand the exponentials to find

∫ L

−L
dr δ′(r)e−iΦ(X+r/2)/

√
νe−iΦ(X−r/2)/

√
ν = − ∂

∂r

(
e−iΦ(X+r/2)/

√
νe−iΦ(X−r/2)/

√
ν
)
r=0

= − ∂

∂r

(
e
− 2i√

ν
Φ(X)

e
i
ν
rq0
)
r=0

(C.2)

We evaluate the derivative to find the expected pairing term

Hp =
i∆pq0F

2

4π
√
ν

∫ L/2

−L/2
dX e2i(ks−δqF )Xe−2iΦ(X)/

√
ν

[
q0√
ν

]
+ h. c. (C.3)
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APPENDIX D
Evaluating ∂xe

iΦ(x)

We wish to derive the result of taking the derivative

∂xe
iΦ(x). (D.1)

Naively, one might take

∂xe
iΦ(x) ?

= i∂x (Φ(x)) e
iΦ(x), (D.2)

but that assumes a specific ordering of operators not present in the original expression.
Let us instead derive the result by replacing the exponential with its series representation,

∂xe
iΦ(x) def

=
∞∑

n=1

in

n!
(∂xΦ

n(x)) . (D.3)

The constant term evaluates to zero, and is skipped. Of course, taking the derivative
inside the sum is simple,

∂xΦ
n(x) = Φn−1(x) (∂xΦ(x)) + Φn−2(x) (∂xΦ(x)) Φ(x) + Φn−3(x) (∂xΦ(x)) Φ

2(x) + . . .

=

n∑

m=1

Φn−m(x) (∂xΦ(x)) Φ
m−1(x), (D.4)

and thus

∂xe
iΦ(x) =

∞∑

n=1

in

n!

n∑

m=1

Φn−m(x) (∂xΦ(x)) Φ
m−1(x). (D.5)

We can propagate the derivative to the left to find

∞∑

n=1

in

n!

n∑

m=1

Φn−m(x) (∂xΦ(x)) Φ
m−1(x)

=
∞∑

n=1

in

n!

n∑

m=1

{
(∂xΦ(x)) Φ

n−m(x) +
[
Φn−m(x), ∂xΦ(x)

]}
Φm−1(x). (D.6)
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Using the identity
[
Φn−m(x), ∂xΦ(x)

]
= (n−m) [Φ(x), ∂xΦ(x)] Φ

n−m−1(x) (D.7)

we find
∞∑

n=1

in

n!

n∑

m=1

{
(∂xΦ(x)) Φ

n−m(x) +
[
Φn−m(x), ∂xΦ(x)

]}
Φm−1(x)

=

∞∑

n=1

in

n!

n∑

m=1

{
(∂xΦ(x)) Φ

n−m(x) + (n−m) [Φ(x), ∂xΦ(x)] Φ
n−m−1(x)

}
Φm−1(x)

=
∞∑

n=1

in

n!

n∑

m=1

{
(∂xΦ(x)) Φ

n−1(x) + (n−m) [Φ(x), ∂xΦ(x)] Φ
n−2(x)

}

=
∞∑

n=1

in

n!

{
n (∂xΦ(x)) Φ

n−1(x) +
n(n− 1)

2
[Φ(x), ∂xΦ(x)] Φ

n−2(x)

}
(D.8)

The first term can be evaluated by shifting the index by one to k = n− 1

∂xΦ(x)
∞∑

n=1

inn

n!
Φn−1(x) = ∂xΦ(x)

∞∑

n=1

in

(n− 1)!
Φn−1(x)

= i∂xΦ(x)
∞∑

k=0

ik

(k)!
Φk(x)

= i∂xΦ(x)e
iΦ(x). (D.9)

In the second term we see that due to the factor (n− 1), the n = 1 term drops out, and
we can form the exponential by shifting the index by two to j = n− 2

[Φ(x), ∂xΦ(x)]
∞∑

n=1

in

n!

n(n− 1)

2
Φn−2(x) =

i2

2
[Φ(x), ∂xΦ(x)]

∞∑

n=2

in−2

(n− 2)!
Φn−2(x)

= −1

2
[Φ(x), ∂xΦ(x)]

∞∑

j=0

ij

j!
Φj(x)

= −1

2
[Φ(x), ∂xΦ(x)] e

iΦ(x). (D.10)

In conclusion, we find

∂xe
iΦ(x) =

(
i∂xΦ(x)−

1

2
[Φ(x), ∂xΦ(x)]

)
eiΦ(x), (D.11)

which is the correct way of evaluating the derivative of an exponentiated operator.
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