
Citation: Stolfi, D.H.; Danoy, G. An

Evolutionary Algorithm to Optimise

a Distributed UAV Swarm Formation

System. Appl. Sci. 2022, 12, 10218.

https://doi.org/10.3390/

app122010218

Academic Editor: Dimitris Mourtzis

Received: 9 September 2022

Accepted: 6 October 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Evolutionary Algorithm to Optimise a Distributed UAV
Swarm Formation System
Daniel H. Stolfi 1,* and Grégoire Danoy 2

1 SnT, University of Luxembourg, 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg
2 SnT and FSTM/DCS, University of Luxembourg, 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg
* Correspondence: daniel.stolfi@uni.lu

Abstract: In this article, we present a distributed robot 3D formation system optimally parameterised
by a hybrid evolutionary algorithm (EA) in order to improve its efficiency and robustness. To achieve
that, we first describe the novel distributed formation algorithm3 (DFA3), the proposed EA, and
the two crossover operators to be tested. The EA hyperparameterisation is performed by using the
irace package and the evaluation of the three case studies featuring three, five, and ten unmanned
aerial vehicles (UAVs) is performed through realistic simulations by using ARGoS and ten scenarios
evaluated in parallel to improve the robustness of the configurations calculated. The optimisation
results, reported with statistical significance, and the validation performed on 270 unseen scenarios
show that the use of a metaheuristic is imperative for such a complex problem despite some overfitting
observed under certain circumstances. All in all, the UAV swarm self-organised itself to achieve
stable formations in 95% of the scenarios studied with a plus/minus ten percent tolerance.

Keywords: evolutionary algorithm; crossover operator; UAV; swarm robotics; argos simulator;
formation control

1. Introduction

Metaheuristics for combinatorial optimisation problems [1] are usually inspired by
natural processes, such as Darwin’s theory of evolution, with evolutionary algorithms (EA)
being a classic example [2]. Specifically, bio-inspired algorithms such as genetic algorithms
(GA) [3,4], simulated annealing (SA) [5], particle swarm optimisation (PSO) [6], and ant
colony optimisation (ACO) [7], are able to find good (usually optimum) solutions to highly
complex real-world problems in reasonable computing times. They start with a set of
initial candidate solutions and iteratively generate new ones in a chain of increasingly fitted
populations toward the optimum of the problem. They are non-deterministically guided
and use intelligent search balances in the exploration of the search space. They exploit its
more promising regions to hopefully find the optimal solution to the problem being solved.

One real-world problem, which has features that are difficult to solve by using ex-
act techniques, is the parameterisation of a swarm of autonomous robots to efficiently
arrange in a formation. Reported applications of robot formation found in the literature
comprise surveillance [8], synchronisation of spacecraft [9], autonomous navigation [10],
load transportation in precision agriculture [11], urban search and rescue [12], and marine
applications [13], etc. They require different control schemas, e.g., whether they need a
collision-avoidance strategy, making it difficult to find an architecture that suits all the
requirements. Moreover, problems related to robot-formation systems usually present
unknown initial positions of the swarm members, as well as the need for path planning
from these positions to the final locations. Systems having predefined final positions also
present challenging adaptability to real situations, especially when the initial positions are
not always known in advance or there are robot failures.

Our formation proposal consists of a range- and bearing-based approach in which
the unmanned aerial vehicles (UAVs) in the swarm self-organise to arrange a final desired
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formation, surrounding an object such as a rogue drone in a sphere-like shape. It is part of
a swarm-based counter UAS (C-UAS) system. We do not use a global coordinate system
nor a different, intelligent node in the swarm. We just let the UAVs make their own local
decisions based on local information. There is an exclusion zone (sphere) around the
central point of the formation to avoid collisions with the rogue drone while the formation
algorithm itself avoids collisions between the swarm members. Other applications can
be derived from our proposal, such as asteroid observation, provided that the number
of robots (probes) is high enough and the desired formation radius is achievable. Our
proposal is tested on three case studies comprising swarms of three, five, and 10 UAVs. We
proposed four individual UAV parameters and designed a hybrid EA to optimise them in
order to achieve proper formations in all the 300 scenarios studied. The main contributions
of this paper are as follows.

1. A distributed robot 3D formation system able to surround and escort an object of
interest is given.

2. A hybrid EA to optimise the parameters of the formation system providing efficiency
and robustness is given.

3. A study of the EA parameters and an analysis of the proposed genetic operators is
presented.

4. A simulation approach using a multi-physics robot simulator to evaluate the different
configurations calculated by the EA is given.

The rest of this paper is organised as follows. In the next section, we review the state
of the art related to our proposal. In Section 3 our robot-formation system is presented.
The optimisation approach is discussed in Section 4, wherein the optimisation algorithm
and its parameterisation is described. The experimental results are in Section 5 and finally,
Section 6 gives our conclusions and future work.

2. Related Works

In this section, we review some research works related to robot formations, includ-
ing distributed/decentralised approaches [14] wherein robots self-organise [15] by using
limited local information.

First, we discuss some formation-control articles starting with a distributed method for
formation control, as described in [16]. This article discusses a swarm of aerial robots which
self-coordinates by sharing information and obtaining a consensus to navigate throughout
a dynamic environment by using a restricted communication and vision range. The authors
proposed a motion-planning algorithm based on calculating the convex hull of the robots’
positions and achieving the optimal formation while avoiding obstacles. Their results have
been obtained by using four real quad-rotors and Monte Carlo simulation experiments. In
our proposal, we obtain different robot formations because our robots are located in a 3D
shape inscribed into a sphere, using swarms of up to ten robots. Finally, our formations are
achieved by using attracting and repelling forces optimised by an EA.

A non-uniform vector field method is proposed to achieve formations of fixed-wing
UAVs in [17]. The authors use a leader–follower approach and compare their results with a
wind-absence method and another one based on unicycle dynamics. The system stability
is analysed by using Lyapunov stability theory. Several validations are carried out by
comparing simulations by using Gazebo and hardware-in-the-loop experiments using two
UAVs. Our approach is different as it does not rely on a leader (all swarm members are in
the same hierarchy level). We propose the optimisation of the swarm’s parameters, and
simulate up to 10 robots by using the full UAV dynamics.

Secondly, we include some articles in which metaheuristics are used to optimise the
robots’ trajectories. In [18], the authors propose an alternative method by which to achieve
distance-based formation by using a GA. It is composed of two phases: formation and
obstacle avoidance. Each phase uses a different chromosome. The first codifies the distance
and moving angle of each robot to achieve the formation, whereas the second defines the
robots’ speed to avoid collisions. The algorithm is tested by using simulations and real
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robots in experiments in a 2D environment. Although our formation system is also based
on distance and angles, we calculate different robot parameters to foster self-organisation
by using an EA.

A cooperative method is proposed in [19] by using a GA and a cellular automata. A
team of three robots moves throughout a pre-specified formation pattern by a discretised
environment. One of the robots (master) coordinates the rest (slaves) when moving in
the desired pattern. A set of robot parameters are calculated by using a GA through
simulations to maximise the time in formation and team progress, while minimizing the
number of rotations performed by robots. As mentioned before, we propose a different set
of parameters focused on the robot collaboration while surrounding a rogue drone in a 3D
environment.

Summing up, in our proposal we obtain the UAV formation by using attracting and
repelling forces parametrised and optimised by an EA. We use a multi-physics robot
simulator to test our proposal on 90 unseen scenarios per case study featuring different
initial conditions. We have given some initial steps [20] in a 2D environment toward the
present article in which we have increased the complexity of the formation, proposed and
parameterised a hybrid evolutionary algorithm where each robot parameter is optimised
individually. To the best of our knowledge, this study involving the optimisation of the
swarm parameters for achieving robust 3D formations by using an evolutionary technique
followed by the validation by using the ARGoS simulator has not been addressed before.

3. Distributed Formation Algorithm3 (DFA3)

The proposed 3D formation system is focused on a swarm of autonomous flying robots
(UAVs), surrounding and escorting a rogue drone out of a restricted area, e.g., an airport,
while they conserve a predefined desired distance to the formation centre (Figure 1a). This
is a challenging real-world problem, as achieving stable robot formation systems involves
addressing different constraints, such as limited communication range, absence of absolute
positions, and uncertain initial conditions.

Figure 1. A 2D representation of the 3D formation system. (a) Swarm of five drones escorting the
rogue drone. (b) Attracting/repelling forces between each drone in the swarm and the rogue drone.
(c) Attracting/repelling forces between drones.

Each UAV in the swarm receives a beacon signal emitted by each of the other UAVs
in the swarm and uses it to calculate its relative orientation and distance to the rest of
the UAVs. Given the simplicity of the communications, no protocol is necessary, nor was
it implemented. Moreover, no localisation system, such as GPS, is used by the UAVs.
Additionally, the UAVs do not have a predefined final position in the formation. The rogue
drone is tracked by using its own radio signal in our experiments, although other methods
can be used, such as images from cameras, LIDAR data, etc.

The 3D formation is collaboratively built by the UAVs arriving to the area from
different positions. They use a series of attracting and repelling forces calculated from the
received beacons, to find their final position in the surface of a virtual sphere around the
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rogue drone. Depending on the number of UAVs, the final shape would be more or less
effective as a dissuasive measure. The swarm members are spread by such a virtual sphere
to improve their distribution, avoiding being too close each other. Hence, having a reduced
number of UAVs could leave too much open space from where the rogue drone might
escape. Two types of forces are considered: (i) between each UAV and the rogue drone and
(ii) between the UAVs in the swarm (Figure 1b,c).

The formation problem is defined by

P = (G, rd, S, C), (1)

where the distance graph is given by

G = (V, E, D), (2)

where V = {UAV1, . . . , UAVN} represents the UAVs in the swarm, E = {(i, j) ∈ V × V}
represents the edges of the graph indicating the swarm connectivity, and D = {d(i, j), ∀(i, j) ∈
E} represents the distances between UAVs (DUAV). Furthermore, rd stands for the rogue
drone, the distances between the UAVs and the rogue drone are given by

S = {d(rd, u), u ∈ V}, (3)

and the problem’s constraints are given by

C = ∀d(rd, j) ∈ S, d(rd, j) = DRD, (4)

where DRD is the desired distance to the rogue drone (formation radius).
We propose four parameters for the swarm members in order to achieve stable forma-

tions: a distance threshold Dth to control the attracting/repelling movement between UAVs,
the minimum distance Dmin to the rogue drone, the intensity of the attracting/repelling
force FRD, with respect to the rogue drone, and the moving speed Spd of the UAVs.

The pseudocode of our distributed formation algorithm3 (DFA3) is detailed in
Algorithm 1. Each UAV executes the same algorithm with its own parameters, and the
same predefined formation radius, i.e., the desired distance to the rogue drone DRD, which
is a constant value.

The DFA3 first initialises the vector r where the calculation of the resulting attract-
ing/repelling force to/from the rogue drone plus the other UAVs will be stored. Then, for
each beacon received, the range and the vertical and horizontal bearings from the other
robots are obtained and used to calculate the three components of r, according to the given
distance threshold Dth. After that, the same calculation is performed with respect to the
rogue drone. In this case, depending on the distance from the UAV to the rogue drone and
the value of Dmin, an extra intensity FRD can be applied as a repelling force (ω) with respect
to the rogue drone. Finally, having calculated the 3D components of r, the inclination θ
and azimuth φ are calculated as the new moving direction (in 3D space) to be returned to
the UAV’s controller. Figure 2 shows a flow chart of the DFA3 depicting the beacons being
received by the RADIO module to be processed in order to calculate the vector r by using
the optimised parameter set. Finally, the inclination θ, azimuth φ, and Spd are sent to the
UAV to modify its moving direction.
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Algorithm 1 Distributed formation algorithm3 (DFA3).

function DFA3(DRD, Dth, Dmin, FRD)
rx ← 0, ry ← 0, rz ← 0
for uav ∈ BEACONS do

range, vBearing, hBearing← RangeAndBearing(uav) . From the other UAVs
rx ← rx + (range− Dth)× cos(hBearing)× sin(vBearing) . Force
ry ← ry + (range− Dth)× sin(hBearing)× sin(vBearing)
rz ← rz + (range− Dth)× cos(vBearing)

end for
range, vBearing, hBearing← RangeAndBearing(rogue_drone) . Rogue drone
ω ← 1.0
if range < Dmin then

ω ← FRD . Force intensity
end if
rx ← rx + ω(range− DRD)× cos(hBearing)× sin(vBearing)
ry ← ry + ω(range− DRD)× sin(hBearing)× sin(vBearing)
rz ← rz + ω(range− DRD)× cos(vBearing)
θ ← arctan ry

rx
, φ← arccos rz√

r2
x+r2

y+r2
z

. Next moving direction (angles)

return θ, φ . Inclination and azimuth
end function

Figure 2. Flow chart of the DFA3.

Table 1 shows the parameters of UAVs running DFA3. It can be seen that the range of
the first three parameters depends on the desired distance DRD, whereas the robots’ speed
is in a fixed range. All these parameter constraints were experimentally calculated.

Table 1. Proposed parameters for the UAVs in the formation.

Parameter Name Value Range

Distance threshold Dth [ 1
3 DRD − 3DRD]

Minimum distance Dmin [ 1
3 DRD − 3DRD]

Attracting/Repelling force FRD [ 1
3 DRD − 3DRD]

Speed Spd [1− 200]

In the following sections, we describe the optimisation approach including the problem
representation, the proposed optimisation algorithm and operators, and its parameterisa-
tion. After that, a random search algorithm is proposed as a sanity check, followed by the
description of our case studies and our experimental results.
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4. Optimisation Approach

As mentioned above, each UAV is configured by using four parameters. Thus, the
complete system configuration is represented by the following status vector:

~x = {Dth1 , Dmin1 , FRD1 , Spd1, . . . , DthN , DminN , FRDN , SpdN (5)

where Dthi
is the distance threshold, Dmini is the minimum distance to the rogue drone,

FRDi is the attracting/repelling force, and Spdi is the speed, all for each UAV i in the swarm.
Hence, the length of the status vector will depend on the number of UAVs in the swarm (N).

The proposed evaluation function for this formation problem is shown in Equation (6).
Three terms are added and then averaged for the M evaluated scenarios (different initial
conditions). In doing so, we expect to obtain a more robust solution as the optimisation
algorithm will be converging to more general solutions instead of a particular one. The
three terms in F(~x) are the minimum error (Em(~x)) and maximum error (EM(~x)) distance
of any UAV in the swarm to the rogue drone, with respect to the desired distance DRD,
and an extra term (D(~x)) to foster the UAVs to be spread throughout the surface (sphere)
instead of forming local clusters. Because we wish to minimise these terms, the lower the
value of F(~x) the better:

F(~x) =
1
M

M

∑
j
[Emj(~x) + EMj(~x) + Dj(~x)] (6)

Em(~x) = |min δ(i, RD)− DRD|, i ∈ {1 . . . N} (7)

EM(~x) = |max δ(i, RD)− DRD|, i ∈ {1 . . . N} (8)

D(~x) = |2.0× DRD −min δ(l, m)|, ∀l, m ∈ {1 . . . N}, l 6= m. (9)

Having defined the solution vector (problem representation) and the evaluation func-
tion, it can be seen that this is a difficult problem to optimise (solve) by an exact method,
especially if we take into account its high dimensionality. Hence, in the next section we
describe the proposed optimisation technique, a hybrid evolutionary algorithm.

4.1. Evolutionary Algorithm (EA)

The proposed optimisation algorithm is a hybrid EA consisting of two stages
(Algorithm 2). First, a genetic algorithm (GA) approach is used during the first 90%
of evaluations where the solution space is explored while the GA is converging to competi-
tive solutions [4]. Secondly, a local search (LS) is applied to the best solution found by the
GA in order to explore its neighbourhood. In doing so, this high-level relay hybridisation
(HRH) approach [21] improves the final solution found by the EA.

The GA approach mimics processes present in evolution such as natural selection,
gene recombination after reproduction, gene mutation, and the dominance of the fittest
individuals over the weaker ones. This is a steady-state GA whereby an offspring of λ indi-
viduals is obtained from the population µ, so that the auxiliary population Q contains the
subset of individuals (10 in our implementation) from the population Pop (20 individuals).
This decision finds its justification in the long evaluation times required to evaluate each
individual through realistic simulations, especially in the most dense scenarios.

Following the EA’s pseudocode, after initialising t, Nev, and Q(0), the initial population
Pop(0) is filled with random individuals by the Initialisation function. Then, the main loop
is executed while the termination condition is not fulfilled (270 evaluations in our case).
Binary tournament [22] was used as selection operator, integer polynomial mutation [23] as
mutation operator, and an elitist replacement was used to update the algorithm population
after each generation. Regarding the crossover operator, we propose two candidates: the
well-known uniform crossover [24] and a novel variant adapted to this problem, the drone
crossover, both described later in Section 4.2.

The parameters of the GA were calculated as described in Section 4.5, using the irace
package. After the GA stage, the best solution obtained is fed into the LS performed by
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the hill climbing algorithm [25] (HC), which will explore the best solution neighbourhood
during the last 30 evaluations. By doing so, we have first explored the search space and
then exploited the best solution found. Figure 3 shows the block diagram of the proposed
EA where the differences between it and a canonical GA are highlighted by coloured blocks.
Specifically, it can be seen that the last 10% of evaluations are used for LS and that in the
GA phase, two different recombination operators (crossover) have been proposed to work
in combination with a different mutation operator for integer numbers (instead of bit flip).

Algorithm 2 Pseudocode of the hybrid evolutionary algorithm (EA).

function EA(Pc, Pm)
t← 0 . Genetic Algorithm
Nev ← 0
Q(0)← ∅ . Q=auxiliary population
Pop(0)← Initialisation(µ) . Pop=population of µ individuals
while Nev < MAX_EVALUATIONS ∗ 0.9 do . 2 iterations reserved for LS

Q(t)← Selection(Pop(t)) . λ individuals
Q(t)← Crossover(Q(t), Pc)
Q(t)← Mutation(Q(t), Pm)
Evaluation(Q(t)) . Also increases Nev
Pop(t + 1)← Replacement(Q(t), Pop(t))
t← t + 1

end while
best_solution(t)← BestSolution(Pop(t))
distance← 1
while Nev < MAX_EVALUATIONS do . Local Search: Hill Climbing

Solutions(t)← Neighbours(best_solution(t), distance)
Evaluation(Solutions(t)) . Also increases Nev
best_solution(t + 1)← BestSolution(Solutions(t) ∪ best_solution(t))
distance← distance + 1
t← t + 1

end while
return best_solution(t)

end function

Figure 3. Differences between a canonical GA and our proposed EA shown in coloured blocks.

4.2. Evolutionary Crossover Operators

We plan to test two different crossover operators to see which one produces better
results to the UAV swarm formation problem. First, we describe the well-known uniform
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crossover [24] (UCX), in which the offspring is calculated by swapping individual genes
(parameters) in the chromosome (system configuration). Algorithm 3 shows the pseu-
docode of the UCX where it can be seen that each pair of individuals from the population
are subject to crossover, if a generated random number is less than the crossover probability
Pc. Consequently, each gene could be swapped between individuals, depending on another
generated random number uniformly distributed throughout the chromosome (swap prob-
ability = 0.5). Otherwise, the offspring would be an identical copy of their parents. Figure 4
shows an example of UCX for the case of three UAVs where genes 2, 3, 7, 8, 10, and 12
have been swapped between individuals. The algorithm using the UCX operator would be
named EA.ucx.

Algorithm 3 Pseudocode of the uniform crossover (UCX).

function UCX(Pop, Pc)
Q← ∅ . New empty working population
for ind1, ind2 ∈ Pop do . For each pair of individuals in Pop

o f f spr1 ← ind1 . Copy individuals into offspring
o f f spr2 ← ind2
if RND() < Pc then . Crossover probability

for i← 1, len(o f f spr1) do . For each parameter in offspring
if RND() <= 0.5 then . Swap probability

aux ← o f f spr1[i] . Swap parameter values
o f f spr1[i]← o f f spr2[i]
o f f spr2[i]← aux

end if
end for

end if
Q← Q ∪ {o f f spr1, o f f spr2} . Add offspring to the working population

end for
return Q . Return the new population

end function

Figure 4. Uniform crossover (UCX).

We also propose a novel crossover operator, the drone crossover (DCX), in which each
UAV configuration is treated as a block in terms of swap probability. It can be seen in
Algorithm 4 that if two individuals are selected for crossover (with the same conditions as
in UCX), a whole UAV configuration might be swapped between them, depending on a
generated random number (swap probability = 0.5). Figure 5 illustrates an example of DCX
in which the configuration of the UAVs 2 and 3 have been swapped. We would like to test
these two operator to address which one is better suited to our formation problem, making
our proposed EA variants (EA.ucx and EA.dcx) even more efficient and successful.
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Algorithm 4 Pseudocode of the drone crossover (DCX).

function DCX(Pop, Pc)
Q← ∅ . New empty working population
for ind1, ind2 ∈ Pop do . For each pair of individuals in Pop

o f f spr1 ← ind1 . Copy individuals into offspring
o f f spr2 ← ind2
if RND() < Pc then . Crossover probability

for d1, d2 ∈ o f f spr1, o f f spr2 do . For each drone configuration in offspring
if RND() <= 0.5 then . Swap probability

aux ← d1 . Swap drone parameters
d2 ← d1
d1 ← aux

end if
end for

end if
Q← Q ∪ {o f f spr1, o f f spr2} . Add offspring to the working population

end for
return Q . Return the new population

end function

Figure 5. Drone Crossover (DCX).

4.3. Sanity Check: Random Search (RS)

We proposed a random search (RS) algorithm as a sanity check of both versions of
the EA. Although the RS algorithm also provides configurations for the UAVs, they are
expected to be worse (in fitness) than the solutions provided by the EAs. Otherwise, it
would indicate a poor design of the EAs, a wrong parameterisation, or that the problem
might not be too complex, as was initially believed, and that a metaheuristic is not needed.
The pseudocode of RS is described in Algorithm 5, where it begins by generating an initial
random solution which is set as the best solution so far. Then, a new temporary random
solution is generated and compared with the current best one in terms of fitness value.
If it is better (lower), the best solution is replaced by the temporary one; otherwise, it is
discarded. To ensure a fair comparison between algorithms, we use the same number of
evaluations as in the EAs, i.e., 300.
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Algorithm 5 Pseudocode of random search (RS).

function RS
Nev ← 0
best_solution← RandomSolution()
while Nev < MAX_EVALUATIONS do

temp_solution← RandomSolution()
if F(temp_solution) < F(best_solution) then

best_solution← temp_solution
end if
Nev ← Nev + 1

end while
return best_solution

end function

4.4. Case Studies

We propose three case studies to test the optimisation algorithms by using simulations.
They feature three, five, and 10 UAVs, each one composed of 100 different scenarios in
which the UAVs begin to build the formation from different points in the simulation arena,
as shown in Figure 6. Although many different initial conditions were covered, a central
sphere having a 10-m radius was initially left empty to simulate the UAVs approaching the
rogue drone from different distant points.

Figure 6. UAVs’ initial positions for the three case studies.

These scenarios were modelled in ARGoS [26], a multi-physics robot simulator which
can efficiently simulate large-scale swarms of robots of any kind. In our study, we have
used the model of the Spiri UAVs [27] by using the range and bearing communication
model provided by ARGoS (Figure 7). Each UAV is only aware of the relative distance and
angles to the other robots, calculated from the received beacon signals. We have worked in
an area of 30 × 30 × 30 metres, although the system can be easily adapted by scaling the
UAVs’ parameters according to the new dimensions [20]. The distance to the rogue drone
(DRS) used was five metres, set up according to the simulation arena dimensions.

The controller of the UAVs was programmed to move in the direction provided by the
DFA3 with the parameterised speed (Spdi). No specific collision-avoidance algorithm was
needed as the same repelling force between UAVs used in the formation, prevents them
from being too close to each other and colliding.
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Figure 7. Snapshot of the ARGoS simulator showing eleven Spiri UAVs (swarm of ten plus the rogue
drone) and their communication links.

4.5. Parameterisation of the EA

We have used the irace [28] package as the automatic method for calculating the
EA configuration. Irace is an implementation of iterated racing procedure which uses
Friedman’s non-parametric two-way analysis of variance by ranks [29]. We have calculated
the parameters of the EA, i.e., crossover probability (Pc) and mutation probability (Pm),
by setting up irace with 500 experiments per case study and a confidence interval for the
elimination test of 0.95. Table 2 shows the best configurations obtained by irace as well
as the rest of the EA’s parameters. The testing frequency of each parameter is shown in
Figure 8, providing insights on the set of configurations sampled by irace. It can be seen
that almost all the possible values in the range of the parameters’ search space where
explored (except for Pm = 1.0 which would turn the EA into a highly random algorithm
anyway) to achieve the reported best values for Pc and Pm.

Simulating the 3D formation system by using a realistic physics model is very costly
in terms of computing resources, especially for ten UAVs. Consequently, without loss of
generality, we have limited each optimisation run of the EA.ucx to 100 evaluations of the
GA stage during this parameterisation study (neither crossover nor mutation are used in
the local search stage). Overall, the total time spent in the parameterisation of EA using
parallel evaluations was about 255 h (more that 10 computing days).

Table 2. Parameterisation of the proposed EA for each case study obtained by irace.

Case Study Nev µ λ pc pm

3 UAVs 300 20 10 0.51 0.44
5 UAVs 300 20 10 0.19 0.15

10 UAVs 300 20 10 0.55 0.06

We can see that the values of Pm decrease with the length of the solution vector
(number of UAVs) as it was to be expected, although Pm is somewhat high for 3 UAVs
prioritising a high exploration of the search space. The crossover probability (Pc) is around
0.50 for 3 and 10 UAVs, and only 0.19 for 5 UAVs as it was calculated by irace, presenting
better results than the second-best valued configuration (Pc = 0.69 and Pm = 0.13), also
shown as a promising candidate in Figure 8. The rest of the parameters, i.e., µ, λ, and
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Nev (number of evaluations), were set to suit the available hardware while keeping an
affordable experimentation time.

Figure 8. Parameter sampling frequency per case study.

5. Experimental Results

In this section, we first present the simulation setup and describe the hardware used
to run our optimisation algorithm. Secondly, we discuss the results obtained from the
optimisation of ten scenarios per case study, randomly selected from the 100 available, by
using the proposed algorithms. Finally, we test the best configurations calculated by the
algorithms in 90 unseen scenarios per case study to assess the quality of the results.

5.1. Simulation Setup

As mentioned above, all the experiments were conducted by using the simulator
ARGoS [26] to evaluate the different solutions found by the EA, which represent different
configurations of the UAVs. A future research work would include the validation of the
DFA3 using physical drones. Each simulation will last for a maximum of five minutes
(simulation time equivalent to 3000 ticks) to allow the swarm to arrange around the rogue
drone in a formation. It can end prior to this if a stability threshold is reached by measuring
the maximum distance moved by any UAV during 300 simulation ticks, i.e., 30 s.

The optimisation algorithms were implemented by using the jMetalPy package [30].
Each run was executed in parallel by using computing nodes in the HPC facilities of the
University of Luxembourg [31], equipped with Intel Xeon Gold 6132 @ 2.6 GHz and 128
GB of RAM. Because the realistic simulations are costly in terms of execution time, the total
optimisation time (270 parallel runs) was equivalent to 728.8 h (about 30.4 days).

5.2. Optimisation Results

We have optimised 10 scenarios per case study by using the three proposed algorithms
and achieved the results shown in Table 3. It can be seen that RS achieved the poorest results
compared with both EAs, as expected, which confirms the necessity of using an intelligent
optimisation algorithm. Then, both EAs present competitive results, statistically compatible
for three and five UAVs. In the most difficult case, 10 UAVs, EA.dcx has achieved the best
results, outperforming the other two algorithms, which could justify the use of the DCX
operator when there is a bigger number of parameters to optimise (bigger solution space).
All the results have been tested for normality by using the Shapiro–Wilk test. It can be
seen that in most of cases the results are not normally distributed. Consequently, we have
used a non-parametric test, i.e., Wilcoxon p-value, to address the statistical validity of the
optimisation results. The best median values were achieved by the EA.dcx in two case
studies and by EA.ucx in one. Hence, it is not clear at this point whether selecting one or
the other was the best option, although the absolute minimum fitness value was always
achieved by EA.dcx. The result distribution obtained from the 30 runs performed shows
that except for 10 UAVs, the most difficult case study, both EAs’ results are similar.

Figure 9 shows the distribution of the optimisation results in three boxplots, one per
case study. Despite outliers, the boxplots are in concordance with the results presented in
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Table 3, highlighting the high dispersion of the results of RS for 10 UAVs (lack of accuracy).
EA.dcx also shows less accuracy than EA.ucx as the interquartile range is a little larger.

Figure 9. Boxplots showing the distribution of the optimisation results.

The convergence of the evolutionary algorithms is presented in Figure 10 where the
maximum, mean, and minimum fitness values were plotted as curves. At the end of each
line, a continue trace represents the LS stage where the extra improvement achieved at the
end of the algorithm execution is clearly shown. Using our hybrid approach resulted in
achieving better solutions with a minimal effort (evaluations) as the LS only explores the
best solution’s neighbourhood. The late improvement shown by the plots confirms the
utility of our approach to improve the EA’s solutions.

Figure 10. Convergence of the evolutionary algorithms by case study (30 runs each). The dotted lines
represent the GA stages, while the continuous segments are the LS stages.
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Table 3. Results of the optimisation process comparing RS and EA (10 scenarios). Best results are in
bold.

Case Study Algorithm Fitness Shapiro-Wilk
p-Value

Wilcoxon
p-ValueMinimum Median Maximum

3 UAVs
RS 1.373 1.546 1.619 0.022 <0.001

EA.ucx 1.351 1.392 1.440 0.063 0.848
EA.dcx 1.341 1.383 1.482 0.014 —

5 UAVs
RS 3.273 3.513 3.722 0.923 <0.001

EA.ucx 3.071 3.229 4.171 <0.001 —
EA.dcx 2.998 3.236 3.467 0.885 0.929

10 UAVs
RS 5.574 6.533 7.929 0.434 <0.001

EA.ucx 5.389 5.634 6.865 <0.001 0.030
EA.dcx 5.168 5.538 6.497 0.015 —

5.3. Simulation Results

After the optimisation stage, we have tested the best configurations calculated by the
algorithms in 90 unseen scenarios to address the robustness of each optimisation result. The
obtained values are shown in Table 4 where the measured distance to the rogue drone (Drd?)
is detailed, as well as the precision of the final shape achieved, indicating the percentage of
UAVs presenting final positions with a five-percent deviation from the desired five-metre
radius, and also a less restrictive condition, i.e., ten percent.

It can be seen that a swarm of three UAVs achieved competitive results by using the three
best configurations when tested on the 90 unseen scenarios, evidencing that it is the easiest of
the case studies analysed. However, the swarm of five UAVs did perform differently, as only
the configuration obtained by EA.dcx achieved the best results with 100% of UAVs placed
into the five-percent tolerance at the end of the formation, followed by RS and EA.ucx (56.7%
and 47.8%, respectively). Surprisingly, the configuration achieved by RS placed more UAVs
in a stable shape than the EA.ucx’s, given insights of a possible overfitting as EA.ucx did
improve RS during the optimisation process. We believe that this situation may be improved
by choosing different optimisation scenarios (diversity) or a bigger number of them, although
this would imply the use of far more computational resources.

Finally, in the most complex case study (10 UAVs), EA.ucx presented the most accurate
results (93.3% of scenarios) followed by EA.dcx (51.1%), both arranging the UAVs in
formations with a precision higher than 90%. The best configuration achieved by RS for
10 UAVs was unable to achieve precise spheric shape in any scenario. Due to the high
complexity of this case study, no configuration obtained formations within plus/minus
five-percent tolerance.

From the metrics obtained after testing the best configurations on 90 unseen scenarios per
case study, we can see that three UAVs do not require a very fine tuning of their parameters
as formations were always achieved, even when using the configuration found by RS. When
the problem becomes more difficult, only EA.dcx finds a configuration for five UAVs that
obtains 100% of successful formations (plus/minus 5% accuracy). This completely discards
RS as an option, and leaves EA.ucx to be used for less precise formations. Finally, in the most
complex case study, i.e., 10 UAVs, only formations with a 10% accuracy were possible, with
EA.ucx being the best choice for that (93.3% of the testing scenarios). This does not mean that
it underperformed in the remaining scenarios. On the contrary, the reported minimum and
maximum distances to the centre (Drd?), show that despite the precision loss, the UAVs are
still surrounding the rogue drone. This study thus confirms the necessity of testing the results
from the optimisation of a given set of scenarios on different unseen conditions which, in the
end, could give some insight about the robustness of the system.

As a complement to the results presented in Table 4, Figure 11 shows the final positions
of all the UAVs in the 90 scenarios per case study and algorithm. Despite the fact that
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it is hard to visualise a 3D representation of the swarm members, all the graphs show a
sphere-like shape in contrast with the initial positions depicted in Figure 6.

Figure 11. UAVs’ final position for the 90 testing scenarios per case study and algorithm.
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Table 4. Metrics obtained after testing the best drone parameters on 90 unseen scenarios. Best results
are in bold.

Case Study Algorithm Drd? (m) Shape
(±5%)

Shape
(±10%)Minimum Mean Maximum

3 UAVs
RS 5.052 5.063 5.080 100.0% 100.0%

EA.ucx 5.031 5.039 5.045 100.0% 100.0%
EA.dcx 5.005 5.067 5.099 100.0% 100.0%

5 UAVs
RS 4.887 5.018 5.286 56.7% 100.0%

EA.ucx 4.986 5.097 5.286 47.8% 100.0%
EA.dcx 5.001 5.059 5.118 100.0% 100.0%

10 UAVs
RS 4.186 5.053 5.617 0.0% 0.0%

EA.ucx 4.709 5.109 5.683 0.0% 93.3%
EA.dcx 4.768 5.254 5.598 0.0% 51.1%

6. Conclusions

In this article, we have proposed an optimisation algorithm and tested two different
crossover operators to optimise the configuration of a swarm of autonomous UAVs when
performing a formation surrounding a rogue drone. This is a complex problem wherein
the swarm members use the novel distributed formation algorithm (DFA3) to self-organise
and achieve the desired formation by using only communication beacons and a set of
parameters. Hence, the calculation of these optimal parameters is challenging and prone
to be done by using an intelligent algorithm such as a metaheuristic. Consequently, we
have designed a hybrid EA built with a genetic algorithm and a local search stage at the
end of the optimisation process to better exploit the best solution found by the first stage.
The optimisation results showed that the proposed EA outperformed the RS results in all
the case studies as expected, whereas for swarms of three and five UAVs, both tested EAs
(EA.ucx using a uniform crossover operator and EA.dcx using a drone crossover operator)
presented similar results. In the most difficult case study featuring 10 UAVs, the proposed
alternative algorithm (EA.dcx) outperformed the other two, achieving better fitness values,
which were statistically validated. Having obtained the optimal parameter set for each
swarm, we have tested them on 90 unseen scenarios (UAVs in different initial positions) to
address the robustness of the swarm configurations.

From our results, we can conclude that the formation problem using the proposed
DFA3 is viable and it achieves competitive results when using an intelligent algorithm, e.g.,
EA, to calculate the system parameters. The two EA variants proposed performed well
in most of the 300 tested scenarios although some overfitting was observed. Hence, the
proposed DFA3 and the proposed hybrid EAs are capable of achieving accurate formations
by using three UAVs and five UAVs, while for swarms of 10 UAVs, successful formations
were built in 95% of cases with plus/minus 10% accuracy.

As a matter of future work, it would be interesting to address more case studies as
well as the main issue observed, the aforementioned overfitting, by using a higher number
of optimisation scenarios or even using a different technique such as k-fold cross validation.
Because the number of experiments is limited by the required simulation time (if we
want realistic simulations), we would like to study the use of surrogates to speed up the
optimisation process and then validate the results by using heavy simulations. We plan to
study robot failures to assess how the swarm rebuilds a broken formation using the initial
configuration, e.g., eight- or nine-UAV swarm using the parameters calculated for 10 UAVs.
Different formation shapes are also to be studied and the ways the DFA3 can be modified
to achieve such other formations. Currently, we are working in the implementation of
the DFA3 by using real UAV robots to validate in vivo the results we have observed and
presented in vitro.
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