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Abstract 

We propose an approach that combines a neural mass model and clinical intracranial 

electroencephalographic (iEEG) recordings to explore the potential pathophysiological 

mechanisms (at the neuronal population level) of ictogenesis. Thirty iEEG recordings from ten 

temporal lobe epilepsy (TLE) patients around seizure onset were investigated. Physiologically 

meaningful parameters (average excitatory [Ae], slow [B] and fast [G] inhibitory synaptic gain) 

were identified during interictal to ictal transition. Four ratios (Ae/G, Ae/B, Ae/(B+G) and B/G) 
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were derived from these parameters and their evolution over time were analyzed. The 

excitation/inhibition ratio increased around seizure onset and decreased before seizure offset, 

indicating the impairment and re-emergence of excitation/inhibition balance around seizure onset 

and before seizure offset, respectively. Moreover, the slow inhibition may have an earlier effect 

on excitation/inhibition imbalance. We confirm the decrease of excitation/inhibition ratio upon 

seizure termination in human temporal lobe epilepsy, as revealed by optogenetic approaches both 

in vivo in animal models and in vitro. The increase of excitation/inhibition ratio around seizure 

occurrence could be an indicator to detect seizures. 

 

Introduction 

Epilepsy is one of the most common neurologic conditions and is characterized by repeated 

transient seizures separated by interictal periods (Blauwblomme et al., 2014). Seizures are 

thought to be caused by a sudden abnormal excessive or synchronous neuronal activity in the 

brain and can cause notable deterioration of the patients’ quality of life. However, mechanisms 

of interictal to ictal transition remains poorly understood and may vary between conditions and 

syndromes.  

Experimental works have established an excitation/inhibition imbalance as the leading 

mechanism of ictogenesis (Scharfman, 2007; Naylor, 2010). The mechanistic role of γ-

aminobutyric acid (GABA) in both seizure initiation and termination is increasingly being 

recognized. Gamma oscillations, one of the most characteristic electrophysiological patterns in 

focal epileptic seizures, can be induced by optogenetic activation of fast-spiking inhibitory 

interneurons in vivo (Cardin et al., 2009). Functional upregulation of a portion of GABAergic 

inhibitory neurons was upon seizure termination in ex vivo model of temporal lobe epilepsy 
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(Wen et al., 2014). Further, both optogenetic inhibition of excitatory principal cells and 

activation of a sub-population of GABAergic cells can readily stop temporal lobe seizures 

induced in mice (Krook-Magnuson et al., 2013). Experiments in vitro confirmed the 

effectiveness of activating GABAergic inhibitory interneuron populations for seizure control, 

more specifically when using  global optogenetic activation of mixed interneuron populations 

(Ledri et al., 2014).  

Computational modeling is now considered an efficient method to gain new insights into the 

mechanisms of brain disorders, including epilepsy. It can relate depth-EEG activities recorded 

during interictal to ictal transition to mechanisms of ictogenesis. The transition from interictal to 

ictal could be caused by either a random perturbation in bistable state (Lopes da Silva et al., 

2003; Baier et al., 2012; Taylor et al., 2014), the gradual change of underlying parameters 

(Wendling et al., 2002; Wendling et al., 2005; Breakspear et al., 2006), or a combination of both 

(Lopes da Silva et al., 2003; Wang et al., 2014). A typical example of the first scenario is the 

absence seizure (Lopes da Silva et al., 2003; Taylor et al., 2014). Temporal lobe seizures, on the 

other hand, may be preceded by a gradual change in dynamics (Wendling et al., 2002; Lopes da 

Silva et al., 2003; Wendling et al., 2005) and studying the temporal evolution of underlying 

parameters could reveal the mechanisms underlying the interictal to ictal transition. One strategy 

is to use coarse-grained cortical units as models of cortical tissue (Coombes, 2010). In these 

models, the average behavior of a large number of neurons is described to capture the dynamics 

of a neuronal population and study the interactions among different populations. The benefits are 

twofold. First, the dimensionalities of both parameters and variables are dramatically reduced 

compared to fine-grained models, contributing to a much lower computational load. Second, 
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experimental data required to construct such models are already available since no detailed 

knowledge at the neuron scale is needed.  

One of the best-known neural mass models is proposed by Jansen and Rit (Jansen & Rit, 

1995) based on the original work of Lopes da Silva et al. (Lopes da Silva et al., 1974) and was 

further studied by Wendling et al. (Wendling et al., 2002) in the framework of the analysis of 

temporal lobe epileptic signals. It has been proposed that seizures are oscillatory attractors that 

can be reached through underlying parameter change, or bifurcation (Wendling et al., 2002). The 

interictal to ictal transition in human temporal lobe epilepsy was studied in this framework by 

fitting a neural mass model to temporally broad segments of intracranial EEG (iEEG) signals 

(Wendling et al., 2005). Further, a time-optimized identification procedure to process long 

duration signals (over a sliding window) was used and a path through parameter space was 

illustrated to explain the changing features of EEG waveform in absence seizure evolution 

(Nevado-Holgado et al., 2012).  

In this paper, a neural mass model (Wendling et al., 2002) that consists of four neural 

populations (main population, excitatory interneurons, slow dendritic-projecting inhibitory 

interneurons and fast somatic-projecting inhibitory interneurons) is implemented and 

automatically fitted to 30 SEEG signals recorded from 10 temporal lobe epilepsy (TLE) patients 

during interictal to ictal transitions. The recordings are processed within a sliding window and 

physiologically meaningful parameters, namely average excitatory Ae, slow B and fast G 

inhibitory (related to GABAA kinetics) synaptic gains are identified within each window to 

reproduce those recordings. The temporal evolution of excitation/inhibition ratios (Ae/G, Ae/B 

and Ae/(B+G)), and slow/fast inhibition ratio (B/G) was obtained and the global trend was 

analyzed to reveal dynamics underlying interictal to ictal transition. Compared to previous 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

studies, our approach therefore allows a systematic analysis on clinical data with both fine 

temporal resolution and global trend analysis to better link computational research with 

experimental findings. 

Materials and Methods 

The Neural Mass Model 

The model implemented in our study was detailed previously (Wendling et al., 2002). The 

neural mass model macroscopically reflects the interactions between four subsets of neurons (see 

Fig. 1A). The main population is composed of the principal cells (i.e. pyramidal cells). It projects 

to and receives feedback from three other populations of local interneurons, one excitatory, two 

inhibitory. The two subsets of inhibitory interneurons are dendritic-projecting interneurons with 

slow synaptic kinetics (GABAA, slow) and somatic-projecting interneurons with faster synaptic 

kinetics (GABAA, fast), respectively. Somatic-projecting interneurons received feedback from the 

other inhibitory interneurons. 

The detailed schematic representation of the neural mass model is shown in Fig. 1B. Each 

subset is modeled by two blocks, an asymmetric sigmoid function         that converts the 

average postsynaptic membrane potential v into average pulse density of potentials fired by the 

population, and a transfer function that transfers the average pulse density of afferent action 

potential into an average excitatory or fast/slow inhibitory postsynaptic membrane potential with 

respective impulse response      ,       or      , as shown in Eq. (1) and Eq. (2) respectively.  

                                                          
   

                                                                            (1) 

Where    determines the maximum firing rate of the population,   denotes the postsynaptic 

potential when a 50% of firing rate is achieved, and   is the steepness of the sigmoid function. 

                                      
    ,            

   ,            
         (   )            (2) 
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Here       and   respectively represent the average excitatory, slow and fast inhibitory 

synaptic gain.            respectively stand for the average time constant in the feedback 

excitatory, slow and fast inhibitory loop. 

The influence from neighboring or more distant populations was modeled by an excitatory 

input     , which was assumed to be Gaussian white noise. The constants    in Fig. 1B refer to 

the average number of synaptic contacts in the feedback loops. The model outputs the summed 

average postsynaptic potentials in principal cells, which was considered to be the synthesized 

iEEG signals. The model can be represented by a set of first order differential equations 

(Wendling et al., 2002).  

All the parameters in the model have physiological meanings. The average synaptic gains (i.e. 

the average excitatory synaptic gain of the main population    , as well as the average inhibitory 

gains of the slow and fast inhibitory interneuron populations, respectively   and  ) were granted 

a degree of freedom. Other parameters were set to the standard values reported earlier (Wendling 

et al., 2005). We chose to estimate the 3 parameters,    , B and G, (average excitatory, slow and 

fast inhibitory synaptic gain) as previously proposed (Wendling et al., 2005; Blenkinsop et al., 

2012; Hocepied et al., 2013; Armando et al., 2015; Kameneva et al., 2017) since they play 

central roles in the transition between background EEG activity and seizures (Wendling et al., 

2002). 

Clinical data 

After approval from the Ethics Committee of Hôpital Erasme, 30 iEEG recordings recorded 

from ten patients diagnosed with temporal lobe epilepsy (TLE) were retrospectively selected 

from our EEG database. The detailed information about the patients can be found in Table 1. All 

patients underwent stereo-electroencephalography (SEEG) with 500 Hz sampling frequency and 
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16-bit resolution. For the analysis, an epoch of iEEG comprising the seizure was selected on 

visual inspection by an expert neurophysiologist in the channel that showed the first implication 

during the seizure. The expert also marked the onset and offset of each seizure.  

Identification of key parameters 

The schematic illustration of the algorithm is shown in Fig. 2. The recordings were first 

filtered below 0.16 Hz and above 65 Hz to remove slow baseline drift and electronic noise. 50 

Hz notch filter was used to remove power line noise. After pre-processing, the recordings were 

segmented using a 2 s moving window with a step of 0.1 s. For each window, the model 

parameters were identified to generate the corresponding EEG segment. The window size (2 s) 

was chosen short enough to obtain quasi-stationary EEG segments and yet long enough to 

achieve proper parameter identification. The window step size (0.1 s) was chosen small enough 

to track parameters changes with a high temporal resolution. 

To find the parameters (  , B and G) that enable the model to generate a signal similar to the 

recorded EEG, we established an error function                   , where     and     are the 

feature vectors estimated from the recorded signal and synthesized signals, respectively. It 

evaluates the dissimilarity between two signals and is defined as the Euclidean Distance between 

their feature vectors. A small error indicates high similarity between two signals. By minimizing 

the error function, the parameters can be identified.  

The feature vector was constructed based on both spectral and morphographic properties of 

the signal. It contains seven temporal features and seven spectral features. Specifically, the 

relative power within seven specific frequency bands 0.5 - 1.5 Hz, 1.5 - 2.5 Hz, 2.5 - 4.5 Hz, 4.5 

- 8.5 Hz, 8.5 - 16.5 Hz, 16.5 - 32.5 Hz and 32.5 - 65 Hz were retained as spectral features. For 

temporal features, the absolute signal amplitude was obtained first and the range was divided 
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into seven equally sized bins. The ratios of sample numbers in each bin to the total sample 

number were retained as temporal features.  

Searching the parameter space is a commonly used approach to find the optimal parameter 

set. In this study, we employed an exhaustive grid searching with a constant step. We computed 

the error function between clinical data and the synthesized signals generated from all possible 

combinations of parameters in the parameter space. The grid searching space has a resolution of 

0.5 mV in slow (B)/fast (G) inhibition and 0.125 mV in excitation (Ae). Wendling et al. 

employed a similar grid to map the key parameters with the different EEG patterns that the 

model was able to generate (Wendling et al., 2002). The key parameters (Ae, B and G) were 

bounded within specific ranges around standard values (Jansen & Rit, 1995; Wendling et al., 

2002). Specifically, Ae (excitatory) was varied from 3 to 7 mV, B (slow inhibitory) and G (fast 

inhibitory) were varied from 0.5 to 50 mV.  

Since the excitation input p(t) is modeled with white Gaussian noise, the synthesized EEG 

depends on the realization of the model input excitation. Therefore, we repeated simulations 15 

times for each possible triplet to generate 15 synthesized EEG segments, from which the 

averaged features were obtained. To evaluate potential bimodality (i.e. the existence of two 

peaks in the probability density function) of feature values, the bimodality coefficient was 

calculated (Jonathan B. Freeman & Dale, 2013; Pfister et al., 2013), showing that large majority 

of the feature values (95.86%) can be considered unimodal (bimodality coefficient below 0.555). 

Therefore, this averaging is meaningful because features show high unimodality for nearly all 

points in parameter space. 

The algorithm finds a family of potential solutions, instead of looking for one “best” triplet. 

The errors calculated during exhaustive grid searching for each 2-s segment were sorted in 
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ascending order. The top fifty fits (0.15‰) with the lowest values of the error function were 

selected as potential solutions. We assume that the parameters with similar values (close in the 

parameter space) enable the model to generate similar signals (unless it’s a bifurcation point). 

This is supported by various studies (Wendling et al., 2002; Blenkinsop et al., 2012). We then 

employed density-based spatial clustering of applications with noise (DBSCAN) (Sander et al., 

1998), to further select the solutions. In DBSCAN, points with many nearby neighbors are 

grouped while points lying alone in low-density regions are marked as outliers. These outliers 

were discarded from the family of potential solutions. Finally, the cluster center calculated from 

the cluster with smallest average error was taken as the optimum and assumed to be a good 

representative fit, as previously shown (Nevado-Holgado et al., 2012). In this sense, our 

algorithm does not seek the “best” set of parameters (i.e. the one minimizing the cost function) 

but the one that is most representative of the model behavior.  

Data analysis 

Calculation of ratios  

Epileptic seizures are classically considered as hyperexcitable phenomena. Previous studies 

have shown that interictal and ictal epileptiform discharges cannot be explained simply by 

enhanced excitation and/or decreased inhibition (Engel, 1996; Nusser et al., 1998). The role of 

excitation, inhibition and the relationship between them in epileptogenesis have long been 

discussed (Dichter, 1997; Dalby & Mody, 2001). Epileptic seizures are assumed to reflect an 

imbalance between neuronal excitation and inhibition (Engel et al., 2003; Dehghani et al., 2016). 

Therefore, we analyzed the ratios calculated from the key parameters (average excitatory Ae, 

slow B and fast G inhibitory synaptic gains). 
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Four ratios were calculated for each 2-second segment: 1) Ae/G: the ratio between excitation 

and fast inhibition; 2) Ae/B: the ratio of excitation to slow inhibition; 3) Ae/(B+G)): the ratio 

between excitation and the sum of slow and fast inhibition; and 4) B/G: the ratio of slow to fast 

inhibition. 

Analysis of time evolution of ratios 

A moving average filter was applied using a 30s window to smooth the time series of each 

ratio and analyze global trends. We expected ratios to show an increase around seizure onset and 

decrease around seizure offset (Wendling et al., 2005). Thus, we defined two points of interest to 

identify the rise and fall of a ratio (see Fig. 3 for illustration). The first (called      ) indicates the 

point when the ratio starts to increase and the second one (called      ) reveals the point when it 

returns back to       value .       (red dot in Fig. 3B) is defined as the first point in the sample 

where the ratio crosses one standard deviation (SD) above the mean (horizontal solid blue line in 

Fig. 3B) while continuing to increase to at least two SD (horizontal dashed blue line in Fig. 3B). 

      (green circle in Fig. 3B) was identified as the point following      where the ratio falls 

below one SD above the mean.  

We related       and       with seizure onset and offset, respectively. Changes in excitation, 

slow and fast inhibition were found a few tens of seconds before the seizure, which was 

considered as pre-onset period (Wendling et al., 2005). Recent EEG-based algorithms are able to 

detect seizures 10s (F. Fürbass et al., 2017) to even 1 min (Hocepied et al., 2013) before their 

onset. Therefore, we relate       to the seizure onset if       locates within the period from 30s 

before onset to offset (i.e. between the first vertical solid line and the second vertical dashed line 

in Fig. 3B). Similarly,       was related to seizure offset if it locates within the period from onset 

to 30s after offset (i.e. between the first vertical dashed line and second vertical solid line in Fig. 
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3B). For each ratio, the time delay to onset is calculated as       
       , while the time delay to 

offset is       
        . Of note,       and       are obtained for each ratio. 

We further analyzed the recordings for which both       and       of Ae/B (excitation/slow 

inhibition) and Ae/G (excitation/fast inhibition) could be related to the seizure. More specifically, 

we compared the time delay to seizure onset/offset calculated from these two ratios 

(excitation/slow inhibition Ae/B and excitation/fast inhibition Ae/G).  

Sensitivity analysis of ad hoc parameters 

There are several ad hoc parameters in this study, i.e. size (2 s) and step (0.1 s) of the sliding 

window, number of potential solutions (50) and moving average window length (30 s). Their 

values were chosen empirically and may vary from one study to another.  

Processing EEG with a sliding window is a widely used approach in epileptic EEG analysis. 

Different values have been proposed previously, for instance, 1-s window size with 0.5-s step 

(Sinha et al., 2017), 1-s window with 1-s step (Chiu et al., 2011), 1.7-s window size with 0.1-s 

step (Rogowski et al., 1981), 3-s window size with 1.8-s step (Dadok et al., 2015), 10 s window 

size with 10-s step (Aarabi & He, 2014), etc. Similarly, different moving average window 

lengths have been chosen in previous studies. For instance, spike rate was smoothed using a 30-s 

moving average filter for seizure prediction (Li et al., 2013). More recently, a moving average 

filter with a window length of 150 s was applied on EEG features for seizure detection 

(Bhattacharyya & Pachori, 2017). In a model-based seizure detection approach, the authors 

applied a moving average filter with a 5-min window to smooth identified model parameters and 

detected seizures by investigating changes in the parameters prior to seizures (Gadhoumi et al., 

2016). 
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Sensitivity analysis was conducted on all patients and for all ratios (when the ratios could be 

related to the seizure) to evaluate the effect on results if different values were set. This was done 

by a one-at-a-time approach (Murphy et al., 2004), i.e. changing the value of one parameter 

while keeping the others constant.  

Results 

Global trend of calculated ratios 

We show the illustration of results for two seizures in Fig. 4 and Fig. 5, respectively. The 

four ratios (Fig. 4 or Fig. 5 B, C, D, E) are aligned with the iEEG recording (Fig. 4 or Fig. 5 A) 

at marked seizure onset. As shown in Fig. 4 and Fig. 5, some ratios (Ae/B, Ae/G and Ae/(B+G) 

in Fig .4 and all ratios in Fig. 5) increased above one SD above the mean around seizure onset 

and decreased (below one SD above the mean) around seizure offset, i.e. the interactions among 

neuronal populations were disturbed with seizure onset and recovered when seizure ends.  

Each recording was individually analyzed to assess which ratio(s) showed such variations 

during the occurrence of a seizure (increased around seizure onset and decreased around/before 

seizure offset). Fig. 6 gives an insight on how      , the rise of a ratio to one SD above the mean, 

is positioned in time compared to the onset of a seizure. It shows, for each seizure and each ratio, 

the delay between the rise of a given ratio and the onset of a given seizure (i.e.              ). It 

equals zero when the ratio exceeds one SD above the mean exactly at seizure onset. It is negative 

when it precedes seizure onset and positive when it follows it. We relate       with seizure onset 

when it locates between 30s before seizure onset and seizure offset, i.e., as illustrated in Fig. 6, 

when a ratio lies between the solid red line (that indicates 30s before seizure onset) and the 

dashed green line (that indicates the seizure offset). 
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Similarly, Fig. 7 shows the delay between the decrease of a given ratio (below one SD above 

the mean) and the offset of a given seizure. We relate       with seizure offset when it locates 

between seizure onset (solid red line in Fig. 7) and 30s after seizure offset (dashed green line in 

Fig. 7). 

Results showed that for most seizures, the ratios increased to one SD above the mean around 

seizure onset and decreased below one SD above the mean around/before seizure offset. More 

specifically, among 30 seizures, 25 (83.3%), 28 (93.3%), 24 (80.0%) and 18 (60.0%) showed this 

pattern for Ae/(B+G) (excitation/(slow + fast inhibition)), Ae/B (excitation/slow inhibition), 

Ae/G (excitation/fast inhibition) and B/G (slow/fast inhibition) respectively (indicated by the 

markers located between the solid red line and dashed green line in Fig.6 and Fig. 7). Further 

analysis showed that these ratios restored before seizure offset (negative time delay to seizure 

offset) for most seizures (25/25 for Ae/(B+G), 24/28 for Ae/B, 24/24 for Ae/G and 17/18 for 

B/G). We next considered the 22 seizures for which both Ae/B (excitation/slow inhibition) and 

Ae/G (excitation/fast inhibition) could be related to       and       (i.e. increased around seizure 

onset and decreased around/before seizure offset). Among them, Ae/B increased and restored 

earlier than Ae/G for 17 (77.3%), 18 (81.8%) seizures, respectively (blue triangles are below 

corresponding dark circles for most seizures in Fig.6 and Fig. 7). Therefore we concluded that 

excitation/slow inhibition rises and restores earlier, compared to excitation/fast inhibition for 

most seizures. Visual examination seems to show a transient low value in Ae/G at seizure onset 

in many seizures (see the low value of the light blue trace in Fig.4B just after seizure onset). In 

addition, 11 (50%) seizures showed longer Ae/B disturbance, while the other 11 (50%) showed 

longer Ae/G disturbance.  
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Sensitivity analysis of ad hoc parameters 

To evaluate the robustness of our conclusions to the choice of the values of ad hoc 

parameters, a sensitivity analysis was conducted. This was done by a one-at-a-time approach 

(Murphy et al., 2004).   

The variations of       
and       

 (the location of red dots and green circles in Fig. 4 and Fig. 5) 

due to parameters change have been assessed, as shown in Tab. 2. In summary,       
 and       

 

varied on average less than 5% for all parameters, the only exception being the rise/fall of B/G 

(slow/fast inhibition) that is more sensitive to step size of the sliding window. This exception 

could be due to the variation of B/G that seems more complex (the increase around seizure onset 

and decrease around seizure offset is seen only for 60% seizures), indicating sophisticated 

interactions between fast and slow inhibitory interneurons. Therefore, small variations of these 

ad hoc parameters (i.e. size and step of the sliding window, number of pre-selected potential 

solutions and moving average window size) had minor effect on the global trends of ratios, thus 

would not change our conclusions. 

Discussion 

We have shown that a model-based approach can be used to explore potential mechanisms 

underlying the occurrence of a seizure by analyzing parameter shifts over time. We analyzed 30 

seizures from 10 patients with a fine temporal resolution and inferred general trends. Increase of 

Ae/(B+G), i.e. excitation/(slow + fast inhibition), suggests excitation/inhibition imbalance 

underlying seizure onset, as reported earlier (Engel et al., 2003; Dehghani et al., 2016). In the 

same way, the decrease of this ratio indicates the re-emergence of the balance toward the end of 

the seizure (Dehghani et al., 2016). Similar changes were found in Ae/B (excitation/slow 
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inhibition) and Ae/G (excitation/fast inhibition). Our results thus support a role for 

excitation/inhibition imbalance in seizure occurrence.  

Furthermore, Ae/B increased earlier for most seizures, indicating an earlier break of 

excitation/slow inhibition balance around seizure onset, compared to excitation/fast inhibition 

balance. These results are in line with previous publications reporting that fast activity at the 

beginning of a seizure involves a significant participation of fast spiking inhibitory interneurons 

(Cardin et al., 2009; De Curtis & Gnatkovsky, 2009; Jiruska et al., 2013). Increase in fast 

inhibition at the onset of a seizure tends to reduce the value of the excitation/fast inhibition ratio, 

since the denominator increases, but does not have any impact on the excitation/slow inhibition 

ratio, since it is not related to it. Both ratios are also related to the excitation – i.e. the numerator 

– and so their exact value also depends on it. We can, however, still infer that the excitation/fast 

inhibition ratio will not increase as fast as the excitation/slow inhibition ratio as the seizure 

progresses from seizure onset. This is consistent with the delayed increase in excitation/fast 

inhibition at seizure onset, relative to excitation/slow inhibition, shown in our study. 

Focusing only on the excitation/fast inhibition ratio, with the enhancement of fast inhibition 

at seizure onset, one could expect that the excitation/fast inhibition ratio would show a low value 

or a decrease. Visual examination seems to support this hypothesis in many seizures (e.g. see the 

low value of the light blue trace in Fig.4B just after seizure onset). However, this was not seen in 

the analysis of the general trend (e.g. see the low value of the dashed black trace in Fig.4B, at the 

same time), which was the focus of our study. This could be explained by the rather short period 

of time of activation of fast-spiking interneurons at the beginning of the seizure. Indeed, it was 

reported that the fast spiking interneuron firing rates were initially high, yet began to drop as 

pyramidal cell firing rates increased approximately 4 s later, in the pilocarpine freely moving rat 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

model of epilepsy (Grasse et al., 2013). Therefore, the possible decrease of excitation/fast 

inhibition ratio at seizure initiation should be brief. This transient decrease in excitation/fast 

inhibition ratio at seizure onset cannot be seen when analyzing more general trends (please 

remind the 30s smoothing window). 

The fast activity here refers to low voltage fast activity at seizure onset, usually between 20 - 

30 Hz (Uva et al., 2005; Gnatkovsky et al., 2008; Trombin et al., 2011; Wendling et al., 2012). 

The exact frequency range for low amplitude fast activity at seizure onset is inconsistently 

defined between studies. In some studies, the fast activity at seizure initiation refers to activities 

in beta and low-gamma band (15 - 40 Hz) (De Curtis & Gnatkovsky, 2009; Wendling et al., 

2016). Other studies extend this range to higher frequency (Medvedev, 2001; Fisher et al., 2014), 

but usually lower than ripples (>80 Hz) (Jiruska et al., 2017). Here, activities faster than 65 Hz 

cannot be explained by identified parameters in this study since they were filtered. Further 

investigation could be undertaken to include activities in a higher frequency range. 

GABAA, slow and GABAA, fast interneurons were found to be two different populations in 

region CA1 of the hippocampus and were responsible for theta and gamma rhythms generation 

(White et al., 2000) which can be observed in EEG seizure signals. Integrated optogenetic and 

electrophysiology approaches suggest that GABAA, fast interneurons (e.g. fast-spiking 

parvalbumin positive interneurons) impose a brief but powerful suppression on nearby excitatory 

cells, whereas GABAA, slow interneurons (e.g. low-threshold spike somatostatin positive 

interneurons) may have a longer suppressive effect (Cardin, 2012; Kvitsiani et al., 2013). Our 

results do not confirm this difference at a larger population level, as they showed comparable 

imbalance duration for Ae/B (GABAA, slow related) and Ae/G (GABAA, fast related). 
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Generally, seizure terminates automatically within a few minutes (Timofeev & Steriade, 

2004; Lado & Moshé, 2008; Zubler et al., 2014; Wang et al., 2015). This self-termination is 

often related to an increase of GABAergic inhibition (Lado & Moshé, 2008). Functional 

upregulation of a portion of inhibitory neurons in the cortices where seizures are appearing the 

earliest was reported as a mechanism for seizure termination in ex vivo model of temporal lobe 

epilepsy (Wen et al., 2014). Our results suggest that the excitation/inhabitation balance restores 

before seizure ends and may contribute to its termination. 

Evidence showed that temporal lobe seizures induced in mice can be stopped rapidly either 

by optogenetic inhibition of excitatory principal cells, or by activation of a subpopulation of 

GABAergic cells (related to GABAA, fast), in a spatially restricted manner (Krook-Magnuson et 

al., 2013). It was also found that global optogenetic activation of mixed interneuron populations 

was more effective at seizure suppression in vitro, compared to targeting only one interneuron 

population, due to a more generalized GABA release (Ledri et al., 2014). We found a decrease in 

both excitation/fast inhibition and excitation/slow inhibition ratios before seizure termination. It 

suggests that, besides being more effective at seizure suppression, a more generalized GABA 

release better corresponds to a physiological behavior. There is a clear methodological difference 

between our study, which analyzes the global trends of excitation, slow and fast inhibition in 

human data, and optogenetic studies, which manipulates the behavior of specific cell populations. 

However, both approaches yield similar results and confirm each other. 

The implicit assumption underlying our approach is that the dynamics of ictogenesis can be 

captured by smooth variations of several system parameters. This is often illustrated as a path 

through parameter space (Blenkinsop et al., 2012; Nevado-Holgado et al., 2012). It has been 

proposed that the transition from background activity to epileptic rhythms can be caused either 
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by a perturbation in a bistable state without change in parameters (Lopes da Silva et al., 2003; 

Baier et al., 2012), as most often in absence seizures, or by a deformation of the attractor leading 

to a gradual evolution onto the ictal state (Wendling et al., 2002; Wendling et al., 2005; 

Blenkinsop et al., 2012), for instance in temporal lobe epilepsy (Lopes da Silva et al., 2003). 

Seizures may be undetectable in the first scenario when caused by a random perturbation (Lopes 

da Silva et al., 2003). However, in the second scenario, addressed in this study, some seizures 

can be detected or even predicted by analyzing the gradual change in dynamics. Since Ae/B, 

Ae/G and Ae/(B+G) increase around seizure onset, they could be used as indicators to detect 

seizures in an early stage using the model-based approach proposed earlier by our group 

(Hocepied et al., 2013).  

The feasibility of seizure prediction has been long questioned and debated. Our results 

suggest that Ae/B may be a potential indicator to predict seizures before onset in TLE patients 

using a similar model-based approach, as it increases to one deviation above the mean before 

onset for most seizures (26/28).  

This study builds on previous work by others where electrophysiological patterns typically 

observed during interictal to ictal transition in mesial temporal lobe epilepsy were related to 

mechanisms of seizure generation through a neural mass model (Wendling et al., 2005). They 

defined four periods of interest (intICTAL, PreONSET, ONSET and ICTAL), each with a 

duration of 10 s. An evolutionary algorithm was employed, for each temporally broad segment, 

to search the parameter space and generate observed data. In this work, we used a time-

optimized parameter identification procedure to process recordings of long duration. Thus global 

change of these parameters, underlying interictal to ictal transition, could be captured. 

Furthermore, using this approach, we do not rely on EEG segmentation that can be difficult to 
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label because of inter-seizure variability and inter-expert subjectivity. For instance, it has been 

argued that the use of terms “interictal”, “ictal” and “postical” can be confusing (Fisher & Engel, 

2010) and their boundaries are often indistinct (Fisher et al., 2014). Also, instead of analyzing 

excitation and inhibition separately, we analyzed the variation of excitation/inhibition ratios 

(excitation/slow inhibition Ae/B, excitation/fast inhibition Ae/G and excitation/(slow + fast 

inhibition) Ae/(B+G)), which is of significance, since epileptic seizure events are assumed to 

involve a chronic imbalance between neuronal excitation and inhibition (Engel et al., 2003). 

Since the parameter space was searched exhaustively, i.e. scan was performed through all 

possible combinations of parameters, the algorithm avoids converging in local optima. Despite 

this, the computational load was tremendously reduced by pre-calculating the average feature 

vectors of the simulated data. It allowed to compute one minute of recording in half a minute on 

a personal laptop, and therefore could be used in real time. More sophisticated algorithms, e.g. 

Kalman filtering (Freestone et al., 2014), could be considered for further study. 

Besides the single neural mass model described in this study, models of multiple coupled 

neural populations have also been developed to generate epileptiform EEG signals, which allow 

the investigation of coupling among populations (Wendling et al., 2000; Cosandier-Rimele et al., 

2012). They can be viewed as an extension of neural mass models and represent the 

spatiotemporal dynamics of several circumscribed brain regions. In this study, a single neural 

mass model was implemented to analyze the dynamics underlying interictal to ictal transition. 

We believe it is a necessary step to validate our method on a relatively simple model (only three 

parameters need to be identified) before moving to a more complex model, which would be of 

most interest for further work. Apart from the neurophysiology-inspired models, mathematical 

models or phenomenological models have also been proposed to capture some dynamical 
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properties of neural systems, for instance the Epileptor (Jirsa et al., 2014). Although it is difficult 

to relate mathematical models to measurable biophysical data, the advantage is that the system 

behavior is unambiguously defined by bifurcations. 

It is worth mentioning that the results were obtained on TLE patients, the most common form 

of focal epilepsy. We chose this particular type of epilepsy also because the neural mass model 

was initially designed to simulate iEEG recorded from TLE patients (Wendling et al., 2002). It 

would, however, be interesting to adapt this approach to other types of epilepsy. 

In conclusion, efforts have been made to reveal potential mechanisms underlying temporal 

lobe seizure occurrence using a model-based approach. This was achieved by analyzing the 

temporal evolution of key physiological parameters identified from clinical recorded data. Our 

results suggest the collapse and restoration of excitation/inhibition balance around seizure onset 

and before seizure offset, respectively. They also show that excitation/slow inhibition imbalance 

starts before the breaking of excitation/fast inhibition balance around the seizure. The present 

approach could be applied to seizure detection. Future works will be oriented towards the use of 

Ae/G, Ae/B and Ae/(B+G) as indicators in a model-based early seizure detection algorithm. 
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Table 1. Information about patients 

Patient ID Gender Age Number of recordings 

A Male 40 3 

B Male 31 3 

C Female 30 5 

D Female 26 3 

E Female 11 2 

F Male 41 3 

G Female 26 3 

H Male 38 3 

I Female 26 3 

J Female 43 2 
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Table 2. Variations (%) of       
and       

by varying ad hoc parameter values. The sliding window 

size was set to 1 s, 2 s, 5 s and 10 s. The sliding window step was set to 0.1 s, 0.5 s, 1 s, 1.5 s and 

2 s. The number of candidates varied from 50 to 200 with a step of 25. The moving average 

length varied from 15 s to 50 s with a step of 5 s. 

Ad-hoc parameters 
Ae/G Ae/B Ae/(B+G) B/G 

      
       

       
       

       
       

       
       

 

Sliding window size 1.79 1.79 4.93 4.49 1.09 1.61 4.84 4.54 

Sliding window step 2.15 1.64 0.96 0.41 0.83 0.49 13.30 11.30 

Number of candidates 2.22 2.39 0.58 0.61 0.33 0.25 1.61 1.76 

Moving average window length 4.12 3.47 2.52 1.89 2.09 1.45 4.24 3.90 
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