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Abstract 

Physiologically based models could facilitate better understanding of mechanisms underlying 

epileptic seizures. In this paper, we attempt to reveal the dynamic evolution of intracranial 

EEG activity during epileptic seizures based on synaptic gain identification procedure of a 

neural mass model. The distribution of average excitatory, slow and fast inhibitory synaptic 

gain in the parameter space and their temporal evolution, i.e. the path through the model 

parameter space, were analyzed in thirty seizures from ten temporal lobe epileptic patients. 

Results showed that the synaptic gain values located roughly on a plane before seizure onset, 

dispersed during seizure and returned to the plane when seizure terminated. Cluster analysis 

was performed on seizure paths and demonstrated consistency in synaptic gain evolution 

across different seizures from the individual patient. Furthermore, two patient groups were 

identified, each one corresponding to a specific synaptic gain evolution in the parameter 
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space during a seizure. Results were validated by a bootstrapping approach based on 

comparison with random paths. The differences in the path revealed variations in EEG 

dynamics for patients despite showing identical seizure onset pattern. Our approach may have 

the potential to classify the epileptic patients into subgroups based on different mechanisms 

revealed by subtle changes in synaptic gains and further enable more robust decisions 

regarding treatment strategy. 

 

Introduction 

Epilepsy is the third neurological disorder in the world population and affects 

approximately 50 million people worldwide (Megiddo, 2016). It is defined as “a disorder of 

the brain characterized by an enduring predisposition to generate epileptic seizure and by the 

neurobiologic, cognitive, psychological, and social consequences of this condition” (Fisher et 

al., 2005). The concept of considering epilepsy as a dynamical disease of brain systems has 

been established (Lopes da Silva et al., 2003a; Lopes da Silva et al., 2003b; Richardson, 

2012) based on the fact that seizures occur in a paroxysmal way and an epileptic brain can 

function normally between seizures (Fisher et al., 2005), i.e. during the interictal state. 

Therefore, epileptic disorders are now considered as a dynamical disease, characterized by 

the occurrence of abnormal dynamics. The understanding of dynamical evolution underlying 

epileptic seizures is of significant importance for the development of effective treatments. 

The electroencephalogram (EEG) has become a commonly used technique for capturing 

macroscopic brain dynamics. The EEG features show a dynamic evolution during interictal to 

ictal transition (Blenkinsop et al., 2012; Nevado-Holgado et al., 2012). Computational 

models are efficient tools for studying this evolution, as it can relate EEG activities recorded 

during seizure to the pathways and mechanisms of seizure evolution (Richardson, 2012; 

Kuhlmann et al., 2015; Breakspear, 2017) through physiological relevance of the model 

parameters. In particular, neural mass models (NMMs) have been increasingly popular in the 
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field of epilepsy due to their capacity to reproduce accurately epileptiform EEG signals 

(Kameneva, 2017). They emphasize the dynamics of a population of neurons and the 

interactions among different populations, rather than explicitly describing the behavior of 

individual neurons, which dramatically reduce the dimensionalities of both parameters and 

variables (Wendling et al., 2016; Breakspear, 2017). The NMM proposed by Wending et al. 

(Wendling et al., 2002), based on the work of Jansen and Rit (Jansen & Rit, 1995), has 

gained increasing attention and become popular in the research community (Suffczynski et 

al., 2004; Lytton, 2008; Molaee-Ardekani, 2010; Kameneva, 2017), as it was validated to 

reproduce iEEGs recorded in patients with temporal lobe epilepsy (TLE) during the transition 

to seizure (Wendling et al., 2002; Wendling et al., 2005).  

The study of dynamics underlying epilepsy can be achieved in a purely theoretical way 

using bifurcation theory, which is a powerful tool for systematically studying the relationship 

between the output of the model and physiological based parameters (Breakspear et al., 2006; 

Marten et al., 2009a; Spiegler et al., 2010; Geng, 2014; Sohanian-Haghighi & Markazi, 

2017). It can also be achieved by fitting the model with recorded data (Wendling et al., 2005; 

Havlicek et al., 2011; Freestone et al., 2014; Lopez-Cuevas, 2015), exploring this way the 

path through parameter space (Nevado-Holgado et al., 2012). Both approaches have the 

potential to gain a better understanding of the physiology occurring in conjunction with 

seizure onset and evolution. For instance, Kramer et al. explored the pathways to seizure 

regions identified with bifurcation analysis on a mesoscale model to reveal potential 

mechanisms in the causation of seizures (Kramer et al., 2005; Kramer et al., 2007). 

Alternatively, Dadok et al. proposed a Bayesian framework to produce a probabilistic 

pathway of the temporal evolution of physiological state in the cortex over the course of 

individual seizures and allow the comparison among different hypotheses (Dadok et al., 

2015). The advantage of combining clinical data with physiological based model is that it 
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may provide an opportunity of revealing patient-specific mechanisms. This is of significant 

importance because patients with epilepsies which seem identical might have different 

underlying dynamic mechanisms (Marten et al., 2009b) and may require different treatment. 

Nevado-Holgado et al. proposed an approach to fit the model to clinical EEG data and 

characterized the dynamics of EEG waveforms in idiopathic generalized epilepsies as the 

path through parameter space of a NMM, which provides an opportunity to understand how 

system parameters change before, during and at the termination of a real seizure in a person 

with epilepsy (Nevado-Holgado et al., 2012). Focusing on TLE, Blenkinsop et al. mapped out 

a path by matching temporal features of each identified epoch to regions of parameter space 

identified from numerical continuation (Blenkinsop et al., 2012). Both studies compared the 

paths through parameter space against randomly generated paths and discovered consistency 

in parameter evolution across different seizures from a given patient (Blenkinsop et al., 2012; 

Nevado-Holgado et al., 2012). However, these comparisons were performed on seizure pairs 

within individual patients and no analysis was reported across different patients.  

In this paper, a NMM (Wendling et al., 2002) was implemented and automatically fitted 

to 30 SEEG signals recorded from 10 TLE patients during interictal to ictal transition. To 

achieve a fine temporal resolution, the recordings were processed within a sliding window 

and three physiologically meaningful parameters, i.e. the average excitatory (A), as well as 

the slow and fast inhibitory synaptic gains (B and G), were identified within each window to 

reproduce those recordings. We have shown previously the global trend of temporal 

evolution of excitation/inhibition synaptic gain ratios during interictal to ictal transition (Fan 

et al., 2018). In this paper, we analyzed the distribution of synaptic gains in the parameter 

space and their temporal evolution. Paths through synaptic gain parameter space during 

seizures were analyzed to characterize seizure evolution. Applying cluster analysis on those 

paths with a larger cohort, we were able to evaluate not only the consistency across seizures 
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within individual patients, but also the diversity across patients. Our results were validated 

statistically by a bootstrapping test based on comparing the seizure path pairs with random 

path pairs.  

Materials and Methods 

Clinical data 

The same database was used as in our previous study (Fan et al., 2018), which includes 

thirty depth-EEG recordings recorded from ten patients diagnosed with TLE (Table 1). The 

seizure onset, offset and seizure onset patterns (SOP) were determined by an expert 

epileptologist. The seizure onset was defined as the first unequivocal iEEG change visually 

distinguishable from background activity that followed by clear seizure discharges (Spanedda 

et al., 1997; Perucca et al., 2014). All seizure onset patterns were classified as low-voltage 

fast activity (LVFA), which is not surprising since it is the most frequent pattern in iEEG 

recorded from drug-resistant patients with focal epilepsy (Perucca et al., 2014; de Curtis & 

Avoli, 2016). Surgical outcome has been regularly evaluated based on Engel surgical 

outcome classification (Engel, 1993). The study was approved by the Ethics Committee of 

Hôpital Erasme.  

EEG modeling and parameter identification  

The model we use can be described mathematically by 10 first order differential 

equations, as previously described (Wendling et al., 2002). It macroscopically describes the 

interactions among four subsets of neurons (see Fig. 1A). The main population is composed 

of the principal cells (i.e. pyramidal cells in the hippocampus or neocortex), the summated 

postsynaptic potential of which is considered the main contributor of EEG activities. It 

projects to and receives feedback from other populations of local interneurons, either 

excitatory or inhibitory. Previous studies have demonstrated the existence of two types of 

GABAA synaptic responses in CA1 pyramidal neurons of the hippocampus: a slow one 
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targeting dendrites and a fast one targeting the soma (Miles et al., 1996). They correspond to 

two groups of inhibitory interneurons (Banks et al., 2000). The two subsets of inhibitory 

interneurons are included in the model and interact with the pyramidal neurons through slow 

synaptic kinetics (GABAA, slow) and faster synaptic kinetics (GABAA, fast), respectively. 

Moreover, the GABAA, slow interneurons inhibit GABAA, fast cells (Banks et al., 2000). This is 

modeled by a connection from dendritic-projecting interneurons to somatic-projecting ones. 

The influence from neighboring or more distant populations was modeled by an excitatory 

input     , which was assumed to be Gaussian white noise. The model output corresponds to 

the average postsynaptic activity of the pyramidal cells, which was considered to be the 

synthesized iEEG signals. 

The detailed schematic representation of the neural mass model is shown in Fig. 1B. Each 

population is modeled by two blocks: 1) a sigmoid function          
   

            that 

converts the average postsynaptic membrane potential v into average pulse density of 

potentials fired by the population and 2) a transfer function that converts the average pulse 

density of afferent action potential into an average excitatory or slow/fast inhibitory 

postsynaptic membrane potential (with respective impulse response 

              ,             
    or             

    (   )).  

All the parameters in the model have physiological meanings. Their standard values were 

previously established (Jansen & Rit, 1995; Wendling et al., 2002; Kerem & Geva, 2005). 

Their interpretation and standard values are listed in Table 2. All parameters were set to these 

standard values except the average synaptic gains (i.e. the average excitatory synaptic gain of 

the main population  , as well as the average inhibitory gains of the slow and fast inhibitory 

interneuron populations, respectively   and  ) that can vary, as previously proposed 

(Wendling et al., 2005; Lopez-Cuevas, 2015; Kameneva, 2017).  
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The average synaptic gains therefore need to be identified. We employed a window-by-

window approach to search the parameter space exhaustively, as illustrated in Fig. 2. The pre-

processing process includes two filtering approach. The clinical data were first filtered below 

0.16 Hz and above 65 Hz to remove slow baseline drift and electronic noise. Second, power 

line noise was removed using a 50 Hz notch filter. After pre-processing, the clinical data was 

segmented using a 2 s sliding window with a step of 0.1s. For each window, the key 

parameters were identified by minimizing an error function, which was established as the 

Euclidean distance between the feature vectors estimated from the synthesized and recorded 

signal, respectively, i.e.            and     in Fig. 2. The feature vector was constructed based 

on both spectral and morphographic properties of the signal. It contains seven temporal 

features and seven spectral features. For temporal features, the absolute signal amplitude was 

obtained first and the range was divided into seven equally sized bins. The ratios of sample 

numbers in each bin to the total sample number were retained as temporal features. The 

relative power within seven specific frequency bands (i.e. 0.5 - 1.5 Hz, 1.5 - 2.5 Hz, 2.5 - 4.5 

Hz, 4.5 - 8.5 Hz, 8.5 - 16.5 Hz, 16.5 - 32.5 Hz and 32.5 - 65 Hz) were computed as spectral 

features. See (Fan et al., 2018) for more details about the parameter identification procedure.  

The distribution of key parameters in the parameter space and their temporal evolution 

were therefore obtained and the path through synaptic gain space could be analyzed. We 

made the proposed methodology available in a toolbox
1

 integrated in the Statistical 

Parametric Mapping (SPM) software package
2
, which is widely used in the neuroscience 

community for the analysis of brain imaging data sequences, such as EEG/MEG, fMRI and 

PET etc. (Friston et al., 2003; Henson et al., 2011; Ashburner, 2012). 

 

 

                                                           
1
 http://beams.ulb.ac.be/research-projects/synaptic-gains-tracking-toolbox 

2
 http://www.fil.ion.ucl.ac.uk/spm/ 
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Distribution of identified parameters in the parameter space 

To better understand the synaptic gain evolution before, during and after a seizure, we 

focused on the EEG epoch from four minutes before seizure onset to four minutes after 

seizure offset. Three recordings (#6, 10 and 13) were therefore excluded because of signal 

length shortage, resulting in 27 seizures for this analysis. Four periods of interest were 

defined, as illustrated in Fig. 3: 

-- IntIctal, from 4 minutes before the onset to 2 minutes before onset, 

-- PreOnset, from 2 minutes before the onset to the onset, 

-- Sz, from marked onset to offset, and 

-- PostIctal, from marked offset to 4 minutes after. 

For each recording, principal component analysis (PCA) was conducted separately on 

identified synaptic gains during different periods of interest and the contribution ratio of the 

first two principal components was obtained. Kruskal-Wallis test followed by pairwise 

multiple comparison tests were performed for determining whether the contribution ratio has 

equal means for different periods of interest. The significance level was set to 0.05.  

Path through synaptic gain parameter space and clustering 

Clustering approach 

To obtain the path through synaptic gain parameter space and analyze the global trends of 

synaptic gains during interictal to ictal transition, a 10 s moving average window was first 

applied to the identified synaptic gains. Clustering analysis was performed on paths from 

seizure onset to offset to evaluate the consistency of paths across seizures. Clustering is a 

technique for data mining. It is a useful approach for exploratory data analysis as it finds 

structures in an unlabeled dataset by organizing data into similar groups (clusters) based on 

similarity. The objective here is to discover the patterns in paths through synaptic gain 

parameter space during seizures. More specifically, it will be used to know if paths through 
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synaptic gain parameter space show consistent trends within individual patients and distinct 

trends across different patients. 

Spectral clustering (Luxburg, 2007; Tucci & Raugi, 2011) was chosen for clustering the 

paths through synaptic gain parameter space (excitatory, slow and fast inhibitory), since it is 

best suited for multivariate time series. One major advantage is that it only requires the 

pairwise similarities of the seizure paths. Centroids of clusters, which are difficult to define 

for time series, are not required.  

Dynamic time warping (DTW) based distance was chosen as the similarity measure, as it 

is commonly the case in time series clustering (Aghabozorgi et al., 2015). The analysis was 

performed on epochs ranging from seizure onset to offset that were normalized to have the 

same length, as in (Blenkinsop et al., 2012). Amplitude normalization (unity-based 

normalization) was also performed. 

Determining the number of clusters and cluster initiation 

To determine the most appropriate cluster number, the silhouette coefficient (Rousseeuw, 

1987) was used to evaluate the resulting cluster structure. The silhouette coefficient is a 

commonly used metric to evaluate the clustering structure when the ground truth is unknown. 

It examines how well the clusters are separated and how compact the clusters are (Han et al., 

2012). 

For a data set   of n objects, suppose   is partitioned into k clusters,           For each 

object     , the silhouette coefficient      varies between -1 and 1. When      approaches 

1, the cluster containing   is compact, and   is far away from other clusters, which is the 

preferable case. The average silhouette coefficient value of all objects in the data set gives a 

good indication of clustering appropriateness, i.e. large values of average silhouette indicates 

high evidence of cluster structure (Rousseeuw, 1987).  
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We set the number of clusters to 2, 3, 4 and 5, successively. Since the clustering structure 

depends to some extent on the initiation that is chosen randomly, the clustering approach was 

repeated 100 times for each condition. Therefore, 400 times of clustering were performed. 

The cluster structure with the highest average silhouette coefficient was determined as the 

most plausible. 

Evaluating clustering results by comparing seizure path pairs against random path pairs 

To further address the statistical significance of the similarity between path pairs from an 

individual patient and evaluate the difference between path pairs from two different patients, 

a bootstrapping test was performed. This was achieved by comparing the DTW distance of 

seizure path pairs with those of randomly generated paths, as proposed previously 

(Blenkinsop et al., 2012; Nevado-Holgado et al., 2012). Since the paths are multivariate (i.e. 

constituted of the three variables A, B and G), three vectors were generated randomly with 

uniform probability within the specific ranges defined for the real seizure paths. 

Subsequently, they were treated as if they were real seizure paths inferred from clinical data. 

We computed the DTW between two random paths (      and repeated these calculations 

500,000 times.  

Both real seizure paths and randomly generated paths were normalized to have the same 

length, arbitrarily chosen of 1000 samples (Blenkinsop et al., 2012). For each seizure path 

pair    and   , the bootstrap value was calculated as the percentage of random path pairs that 

are equally close or closer than the real seizure path pairs (Nevado-Holgado et al., 2012). A 

small bootstrap value indicates high consistency between two paths    and   . If the bootstrap 

value is smaller than 0.05, i.e. less than 5% of random path pairs show a DTW smaller than 

the one of the seizure path pair    and   , the consistency between    and    was considered 

significant. 
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Results 

Distribution of identified synaptic gains in the parameter space 

The distribution of synaptic gains in the parameter space is demonstrated in Fig. 4. It 

shows the synaptic gains collected from the recordings of all patients. Each subfigure 

corresponds to one period of interest. Visual inspection showed that the synaptic gains locate 

roughly on one plane during IntIctal, PreOnset and PostIctal (see the planes in Fig. 4A, B 

and D). During Sz however, they diffuse mostly to regions in the synaptic gain parameter 

space where the excitatory/inhibitory synaptic gain ratios increase (see the arrows in Fig. 4C). 

It is consistent with previous work from our group (Hocepied et al., 2013; Fan et al., 2018), 

showing that the excitation/inhibition ratios increase around seizure onset and decrease 

before/around seizure offset.  

Principal component analysis was used to confirm this visual impression. Figure 5 shows 

that the synaptic gains identified during IntIctal, PreOnset and PostIctal can be better 

explained by the first two principal components (contribution ratios are 0.979 ± 0.022, 0.975 

± 0.031, and 0.992 ± 0.009, respectively), compared to those identified during Sz 

(contribution ratio is 0.791 ± 0.045) (pairwise multiple comparison after Kruskal-Wallis test: 

p < 0.001).  

Consistency of paths through synaptic gain parameter space during seizure evolution 

The highest average silhouette coefficient was 0.93, 0.88, 0.72, 0.73, when the cluster 

number was set to 2, 3, 4 and 5, respectively. The cluster results and corresponding silhouette 

coefficients are illustrated in Fig. 6. It can be seen that, for all cases, four seizures (seizure # 6 

from patient B, seizure # 18 from patient E and seizures #29&30 from patient J), were 

isolated from the others. These seizures were of short duration (less than 30s) compared to 

the others (130s on average). These two reasons motivated us to consider them as outliers and 

re-performed the cluster analysis on the remaining 26 seizures. 
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When the four outliers were ruled out, the highest average silhouette coefficient was 0.80, 

0.63, 0.57 and 0.53, when the number of clusters was 2, 3, 4, and 5, respectively, suggesting 

strong evidence of 2 clusters (Rousseeuw, 1987). The resulting cluster structure is shown in 

Fig. 7. We show the results with the original seizure numbering from Table 1 for clarity. The 

seizures from individual patients were grouped together except seizure 27 from patient I, 

indicating a consistent seizure evolution for individual patients for all patients but one. Of 

note, this clustering result (two clusters, shown in Fig. 7) is strikingly consistent with the one 

with four clusters (in Fig. 6D), except that the four outliers were ruled out, suggesting the 

robustness of this result. 

Figure 8 gives an example of paths through synaptic gain parameter space, of two 

seizures from a given patient, grouped in cluster 1 (seizures # 4 and 5 from patient B). 

Visually inspection revealed a counterclockwise pattern in the B-G plane (B and G are 

average slow and fast inhibitory gain, respectively) for seizures in cluster 1 (see the last 

column in Fig. 8). This reflects the interaction between slow and fast inhibitory interneuron 

population. For instance, in Fig. 8C and F, at the beginning of the seizures (in red), a decrease 

in B (average slow inhibitory synaptic gain) can be first observed while G (average fast 

inhibitory synaptic gain) increases or stays constant. Then a period where B increases and G 

decreases (either together e.g. in Fig. 8F or one after the other, e.g. in Fig. 8C) is seen. 

Finally, G increases again and the seizure stops.  

Seizures in cluster 2 demonstrated a distinct path through synaptic gain parameter space. 

Figure 9 gives an example for three seizures from a given patient grouped in cluster 2 

(seizures # 21-23 from patient G). A regular pattern in the A-B plane (A and B are average 

excitatory and slow inhibitory synaptic gain respectively) was observed, with an increase in 

A while B decreases or stays constant (see first column in Fig. 9). Then A decreases while B 

increases or stays constant. For some patients of cluster 2, as it is the case for the seizures 
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illustrated in Fig. 9, a pattern was also observed in the A-G plane (see middle column in Fig. 

9). At the start of these seizures (in red), A increases and G stays constant. Then A decreases 

and G first decreases and then increases. It seems that, for this particular patient, the first two 

columns, i.e. paths in A-B and A-G plane, show consistency whereas the last column, i.e. 

paths in B-G plane, are less consistent. However, if we look into the last column in Fig. 9 

closely, we can see some consistency among them. All seizures involved decreased B and 

constant G at the beginning of the seizure (red arrow). Afterwards B started to increase while 

G decreased (black arrow), followed by co-increase (yellow arrow) and then co-decrease 

(blue arrow). Finally, both B and G increased (gray arrow) at the end of the seizure. 

Therefore, these seizures share global trend, despite transient fluctuations.  

We further applied a bootstrapping test to validate the clustering results. This was 

achieved by comparing the DTW distance between intra-patient/inter-patient/intra-

cluster/inter-cluster seizure path pairs and random path pairs (see Methods).  

We computed the bootstrap value for seizure path pairs    and    from five groups: 

- Intra-patient path pairs: All possible pairs of seizure paths from individual patients, i.e. 

   and    are from an individual patient (33 pairs in total); 

- Inter-patient path pairs: All possible pairs of seizure paths from different patients, 

i.e.    and    are from two different patients (402 pairs in total); 

- Cluster 1 path pairs: All possible pairs of seizure paths from patients in cluster 1, i.e.    

and    are from seizures in cluster 1 (36 pairs in total); 

- Cluster 2 path pairs: All possible pairs of seizure paths from patients in cluster 2, i.e.    

and    are from seizures in cluster 2 (136 pairs in total); 

- Inter-cluster path pairs: All possible pairs of seizure paths from different clusters, i.e. 

   is a seizure in cluster 1 and    is a seizure in cluster 2 or vice versa (153 pairs in 

total). 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Figure 10 illustrates the boxplots of bootstrap values (%) for seizure path pairs from the 

five groups. The percentage of consistent seizure path pairs for each group is shown in Table 

3 (the bootstrap value < 5% is considered significantly consistent). The median of bootstrap 

value for each group is also provided. As a supplement, Wilcoxon rank sum tests were 

performed between any two groups, offering a statistical comparison of bootstrap value 

between groups. The significance level was set to 0.05 and indicated by * in Table 3. 

In total, 66.7% intra-patient path pairs showed significant consistency, indicating similar 

seizure evolution across seizures from individual patients. Path pairs involving the four 

outliers identified by cluster analysis (seizures #6, 18, 29 and 30), showed extremely large 

bootstrap values (i.e. they were significantly different from other seizures from the same 

patient). These seizures were therefore again excluded from the analysis.  

After ruling out these outliers, 78.6% intra-patient path pairs were consistent, compared 

to only 34.3% for path pairs in inter-patient group. If we further elevate the significance level 

to 0.1, this percentage for intra-patient path pairs elevated to 89.3%. These results suggest 

consistency in seizure evolution within individual patients. Intra-patient path pairs 

demonstrate a significant lower bootstrap value, compared to inter-patient ones (Wilcoxon 

rank sum test: p < 0.001). This confirms the consistency across seizures within individual 

patients and also suggests diversity across seizures from different patients.  

Cluster 1 showed intra-cluster path pair consistency (77.8%) comparable to the one of 

intra-patient (78.6%). Consistency across seizures in cluster 1 was validated (Wilcoxon rank 

sum test: p > 0.05). Cluster 2 showed a path pair consistency (39.7%) lower than the one of 

intra-patient (78.6%), yet just above the one of inter-patient (34.3%). Statistically, the 

bootstrap value for cluster 2 path pairs was significantly larger than the one of intra-patient 

path pairs and of cluster 1 path pairs (Wilcoxon rank sum test: p < 0.001), but significantly 

smaller than the one of inter-patient path pairs (Wilcoxon rank sum test: p = 0.0012). This 
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suggests that cluster 2 path pairs were less consistent than intra-patient ones, yet more 

consistent than inter-patient ones. Therefore, although the seizures in cluster 2 showed less 

consistent evolution compared to cluster 1, it is still meaningful to group seizures of cluster 2 

together. This is further reflected by the bootstrap value for inter-cluster path pairs that was 

significantly larger than for any other category, showing that the path pairs among the two 

clusters differed the most.  

Discussion and conclusion 

In this paper, we have explored the potential mechanisms underlying the occurrence of a 

seizure by analyzing the temporal evolution of synaptic gains using a generative model of 

intracranial EEG recordings. Synaptic gain values located roughly on a plane before seizure 

onset, dispersed during seizure and returned to the plane when seizure terminated. Seizure 

clustering allowed to separate all patients, except one, into two groups, each one 

corresponding to a specific synaptic gain evolution in the parameter space during a seizure. 

The existence of the two clusters has been validated by a bootstrapping test based on 

comparison with random path pairs. Different paths through synaptic gain parameter space 

have been observed, corresponding to the different clusters, and these paths are highly 

consistent across different seizures within individual patients.  

The low voltage fast activity (LVFA) is recognized as the most common pattern at seizure 

onset during iEEG recordings (Perucca et al., 2014; Singh, 2015; Lagarde et al., 2016). In 

this study, low-voltage fast activity has been recognized at the onset for all seizures, yet our 

approach identified two classes of synaptic gain evolution pattern. Our results suggest that 

seizures initiate with identical EEG changes do not necessarily progress the same way, 

possibly driven by distinct subtle physiological changes that are challenging to identify 

directly from the EEG waveforms. It has to be noted that no hints can be derived, from this 

study, on whether the differences in the two groups may be related to etiology of epilepsy. To 
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address this issue, a follow-up study in a large-scale clinical database is needed, where 

associations between EEG dynamics and pathologies can be investigated. Interpreting EEG in 

clinical practice can be subjective and the inter-rater agreement is unsatisfactory (Grant et al., 

2014). The temporal evolution of synaptic gains revealed by our approach may provide a 

more objective way for interpreting EEG in clinical practice, and thus may supplement expert 

interpretation of EEG dynamics. A follow-up study in a large-scale clinical database can also 

explore this hypothesis, where the relationship between EEG dynamics, pathology, diagnosis, 

and prognosis can be more systematically investigated.   

Patients in cluster 2 have seizure onset at the left side (except that patient D has bilateral 

hippocampal seizure onset) while patients in cluster 1 mostly have seizure onset at the right 

side (except patient H who has left hippocampal onset and patient B has bilateral temporal 

lobe onset) (see Table 1), even though the analysis did not use any a priori regarding the side 

of the seizure (only one derivation was considered for analysis). This could suggest a link 

between the synaptic gain path during a seizure and the side of the seizure. The anatomical 

(Watkins, 2001) and functional (Cohen et al., 1968) asymmetry of the two hemispheres has 

long been recognized (Hugdahi, 2005). Patients with left MTLE have been reported to 

perform worse in memory tasks (Zhao et al., 2014; de Campos, 2016) and have distinct 

structural damage of cerebral gray and white matter than patients with right MTLE (Keller et 

al., 2002; Besson et al., 2014), suggesting that left and right MTLE could have different 

pathological mechanisms (Pustina et al., 2015). A study of 16 patients has reported different 

dynamic network patterns in left and right TLE and suggested an ipsilateral predominance in 

left TLE but a more bilateral pattern in right TLE (Coito et al., 2015). Interestingly, another 

study with a larger cohort reached a different conclusion and demonstrated that left MTLE 

has a more intricate bilateral dysfunction compared to right MTLE (de Campos, 2016).  
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Different MRI lesions are involved in cluster 2, i.e. mesial temporal sclerosis (patient F) 

and periventricular nodular heterotopia (patient C and D). This could explain the lower 

consistency of seizure paths in cluster 2, compared to cluster 1.  

Seizure clustering allowed to separate all patients into two groups, corresponding to two 

specific synaptic gain evolutions in the parameter space during a seizure, except for patient I. 

The three seizures recorded from patient I were separated among the two clusters. This 

should not be considered surprising given the complexity of epilepsy (Fisher et al., 2005; 

Blenkinsop et al., 2012). We note that patient I was diagnosed to have partial and secondary 

generalized seizures and seizure # 27 was clinically determined to spread quickly to a more 

generalized area (hippocampal, post-pole, insula and posterior cingulum). This may explain 

why it was grouped into a different cluster from the other two seizures of the same patient.  

The consistency of seizure evolution within patients was previously reported, in focal-

onset epilepsies (Blenkinsop et al., 2012) and idiopathic generalized epilepsies (Nevado-

Holgado et al., 2012). Blenkinsop et al. subdivided each seizure recording into near-

stationary epochs and mapped each epoch into an equivalent region of patameter space where 

the model output has similar features, resulting a path coded by these regions characterizing 

temporal seizure evolution. Correlations and Euclidean distances of each pair of seizure paths 

were compared against those of randomly generated pairs. Although their characterization of 

seizure evolution is crude, results suggest consistency of underlying mechanisms during 

seizures within the same individual. Nevado-Holgado et al. used a multi-objective genetic 

algorithm to fit parameters of a NMM from scalp EEG that was recorded from patients with 

idiopathic generalized epilepsies to capture changes in underlying parameters (Nevado-

Holgado et al., 2012). The absolute difference between the paths through parameter space 

was compared against random path pairs. Bootstrapping test demonstrated consistent trends 

in paths within individual patients. In our study, a similar approach based on parameter 
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identification procedure of a NMM was employed. However, besides the larger cohort and 

the fine temporal analysis, our approach offers two major benefits compared to these two 

previous ones. First, we performed cluster analysis, which allowed to explore diverse 

temporal evolution patterns underlying seizures. Results not only confirmed the significant 

consistency in synaptic gain evolution for independent seizures within an individual patient, 

but also identified distinct patterns of synaptic gain evolution across patients. Second, we 

analyzed all synaptic gains together, i.e. in a multivariate path, instead of analyzing the trend 

in different parameters independently. It allowed to characterize the seizure evolution in an 

integrated way by analyzing the interaction among different neuronal populations and better 

corresponds to a physiological behavior. 

Our results also showed that the synaptic gains located roughly on a plane before the 

occurrence of a seizure, spread out during a seizure and returned to the plane after the seizure. 

This indicates that the average synaptic gains of excitatory, slow and fast inhibitory are 

interdependent and the excitation/inhibition balance is required to keep the brain non-ictal 

(Engel et al., 2003; Dehghani, 2016; Fan et al., 2018). 

The NMM used in this study describes a local population of interacting neurons. 

Extended models that allow the investigation of coupling between populations or brain 

regions have also been developed in epilepsy studies (Cosandier-Rimele et al., 2008; 

Richardson, 2012; Freestone et al., 2014; Hassan et al., 2017), based on the notion that 

epilepsy is a network disease (Engel et al., 2013), even for focal epilepsy (Terry et al., 2012; 

Lam, 2016). This can be achieved by coupling an ensample of NMMs into mesoscopic 

circuits and macroscopic systems. Thus both temporal and spatial dynamics are considered. 

Promising advances have been achieved with this perspective. A network model with NMM 

nodes was established to estimate brain network ictogenicity and predict the outcome from 
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epilepsy surgery, and even to suggest alternative resection regions (Goodfellow, 2016; Sinha, 

2017). Further study could investigate the proposed approach in such an extended model.  

In conclusion, we have explored the path through synaptic gain parameter space obtained 

by fitting a NMM to iEEGs recorded from thirty seizures from ten TLE patients. Seizure 

evolution was constant within individual patients. Synaptic gain values located roughly on a 

plane before seizure onset, dispersed during seizure and returned to the plane afterwards. 

Seizures were clustered, identifying this way two patient groups, corresponding to different 

synaptic gain path in the parameter space. This study may aid clinicians to classify patients 

into subgroups based on underlying mechanisms during seizures and potentially enable more 

robust decisions concerning treatment strategy.  
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Figure legends: 

Figure 1. (A) Illustration of the neural mass model (+/− represents excitatory/inhibitory); (B) 

Detailed schematic representation of the model (EPSP/IPSP denotes excitatory/inhibitory 

postsynaptic potential), cited from (Fan et al., 2018) and adapted from (Wendling et al., 

2002). 

Figure 2. Schematic illustration of parameter identification procedure (Fan et al., 2018) 

Figure 3. Illustration of periods of interest 

Figure 4. Distribution of identified synaptic gains in the parameter space. It shows the 

synaptic gains collected from the recordings of all patients. Each subfigure corresponds to 

one period of interest. The planes are identical and obtained by linear regression on data from 

IntIctal period. 

Figure 5. The boxplot of contribution ratios of the first two principal components during the 

four periods of interest. 

Figure 6. Clusters showing the highest average silhouette coefficient. (A), (B), (C) and (D) 

correspond to different number of clusters, i.e. 2, 3, 4, 5, respectively. For each of the four 

subfigures, the cluster structure is shown on the left and the silhouette coefficients on the 

right. In the cluster structure, each circle represents one seizure. Seizures recorded from 

different patients are separated by dashed lines and indicated by patient ID in subfigure (D) 

(from A to J). In the silhouette coefficients, values for all the seizures of the corresponding 

cluster structure are shown with horizontal bars (seizures grouped in the same cluster are 

shown together and clusters are separated). 

Figure 7. Clusters showing the highest average silhouette coefficient (analysis over 26 

seizures, after removing 4 outliers). (A) Cluster structure. Each circle represents one seizure. 

Seizures recorded from different patients are separated by dashed lines and indicated by 

patient ID (from A to J). (B) Silhouette coefficients of all seizures of the corresponding 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

cluster structure (seizures grouped in the same cluster are shown together and clusters are 

separated). 

Figure 8. Illustration, for the patient B, of paths through synaptic gain parameter space in 

cluster 1. The three subfigures of each row represent one seizure. Each corresponds to a 2-D 

projection. Seizures start in red and end in blue. 

Figure 9. Illustration, for the patient G, of paths through synaptic gain parameter space in 

cluster 2. The three subfigures of each row represent one seizure. Each corresponds to a 2-D 

projection. Seizures start in red and end in blue. 

Figure 10. Boxplots of bootstrap values (%) for seizure path pairs from five groups, i.e. intra-

patient path pairs, inter-patient path pairs, cluster 1 path pairs, cluster 2 path pairs and inter-

cluster path pairs (obtained by the “boxplot” function in MATLAB). Bootstrap value < 5% 

indicates significant consistency between two paths. The whiskers extend to the most extreme 

data points not considered anomalies (approximately +/–2.7σ and 99.3 percent coverage if the 

data are normally distributed) and the crosses in red represent anomalies. 
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Table 1. Basic information about the patients and cluster results. N/A, not available; NL, neuronal 

loss; NI, normal MRI; PNH, periventricular nodular heterotopia; HD, hippocampal dysplasia; MTS, 

mesial temporal sclerosis; LVFA, low-voltage fast activity. 

Patient Sex Age Pathology MRI 

Surgical 

outcome 

Onset 

side Seizure # Cluster # SOP 

A M 40 N/A NI Engel 1a L 

1 2 LVFA 

2 2 LVFA 

3 2 LVFA 

B M 31 N/A NI 
No 

surgery 
B 

4 1 LVFA 

5 1 LVFA 

6 - LVFA 

C F 30 N/A 
PNH; 

HD 
Engel 1a L 

7 2 LVFA 

8 2 LVFA 

9 2 LVFA 

10 2 LVFA 

11 2 LVFA 

D F 26 N/A PNH 
No 

surgery 
B 

12 2 LVFA 

13 2 LVFA 

14 2 LVFA 

E F 11 NL HD Engel 1b R 
15 1 LVFA 

16 1 LVFA 

F M 41 N/A MTS Engel 1a L 

17 2 LVFA 

18 - LVFA 

19 2 LVFA 

G M 35 Normal NI Engel 1a L 

20 2 LVFA 

21 2 LVFA 

22 2 LVFA 

H M 38 N/A NI Engel 2 L 

23 1 LVFA 

24 1 LVFA 

25 1 LVFA 

I F 26 N/A NI Engel 1a R 

26 1 LVFA 

27 2 LVFA 

28 1 LVFA 

J F 43 N/A MTS 
No 

surgery 
R 

29 - LVFA 

30 - LVFA 
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Table 2. Model parameters, their physiological meanings and standard values. The standard values 

were established in previous studies (Jansen & Rit, 1995; Wendling et al., 2002; Wendling et al., 

2005). 

Parameters Physiological meaning Standard value 

   Average excitatory synaptic gain 3.25 mV  

   Average slow inhibitory synaptic gain 22 mV 

   Average fast inhibitory synaptic gain 10 mV 

     Average time constant in the feedback excitatory loop  1/100 s 

     Average time constant in the feedback slow inhibitory 

loop (targeting dendrites of pyramidal cells)  

1/50 s 

     Average time constant in the feedback fast inhibitory 

loop (targeting soma of pyramidal cells)  

1/350 s 

       Average number of synaptic contacts in the feedback 

excitatory loop 

              

          

       Average number of synaptic contacts in the feedback 

slow inhibitory loop 

              

       Average number of synaptic contacts in the feedback 

fast inhibitory loop 

             

    Average number of synaptic contacts between the fast 

and slow inhibitory interneurons 

         

    Half of the maximum firing rate of the population          

   Steepness of the nonlinear asymmetric sigmoid function            

    The postsynaptic potential when firing rate is e0 6 mV 

      Excitatory input noise (Gaussian white noise)                 
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Table 3. Results of the bootstrapping test to validate cluster results. The bootstrap value was 

computed as the percentage of random path pairs that are equally close or closer than real seizure 

evolution path pairs. Bootstrap value < 5% indicates significantly consistent path pairs. Wilcoxon 

rank sum tests were performed to compare the statistical difference in bootstrap values between 

groups and significance was indicated by * (p<0.05). N represents no significant difference between 

groups. The values in the parentheses in the last and second last columns were computed after ruling 

out the four outliers.  

 Groups 

Intra-

patient  

Inter-

patient  Cluster 1  Cluster 2  

Inter-

cluster  

Median of bootstrap 

value % 

% of consistent 

path pairs 

Intra-patient  - * N * * 0.6 (0.30) 66.7 (78.6) 

Inter-patient * - * * * 47.5 (15.80) 25.6 (34.3) 

Cluster 1 N * - * * 0.45 77.8 

Cluster 2 * * * - * 8.00 39.7 

Inter-cluster  * * * * - 41.19 26.8 
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