

Real-Time Large Deformation Simulations Using Probabilistic Deep Learning Framework

UNIVERSITÉ DU LUXEMBOURG

ode for different input forces

Saurabh Deshpande¹ Jakub Lengiewicz^{1,2} Stéphane P.A. Bordas¹

¹University of Luxembourg

²Institute of Fundamental Technological Research, PAS

Motivation & Overview

Motivation

- Engineering applications, such as in the biomedical field demand accurate real-time non-linear deformation responses.
- Conventional techniques, such as FEM, are time-consuming.
- Deterministic models fail to account for uncertainties.
- Bayesian methods such as Gaussian processes, Markov chain Monte Carlo methods don't scale well with the problem size.

Solution

- Deep learning surrogate models to speed up the solutions.
- Bayesian inference to efficiently track uncertainties.

Implementation details

- \blacksquare U-Net (\mathcal{U}) , a convolutional NN architecture is used.
- Deterministic and probabilistic models are proposed.
- U-Nets are trained on synthetic FEM datasets.
- Parameters of the network are Gaussian distributions.
- Variational Bayesian inference is implemented.
- Prior means are included in the training procedure.

Data Generation

Dataset $\mathcal{D} = (\mathbf{f}_i, \mathbf{u}_i)_{i=1}^N$, of pairs of nodal force, and displacement vectors is generated by applying random forces, using Neo-hookean hyperelastic law.

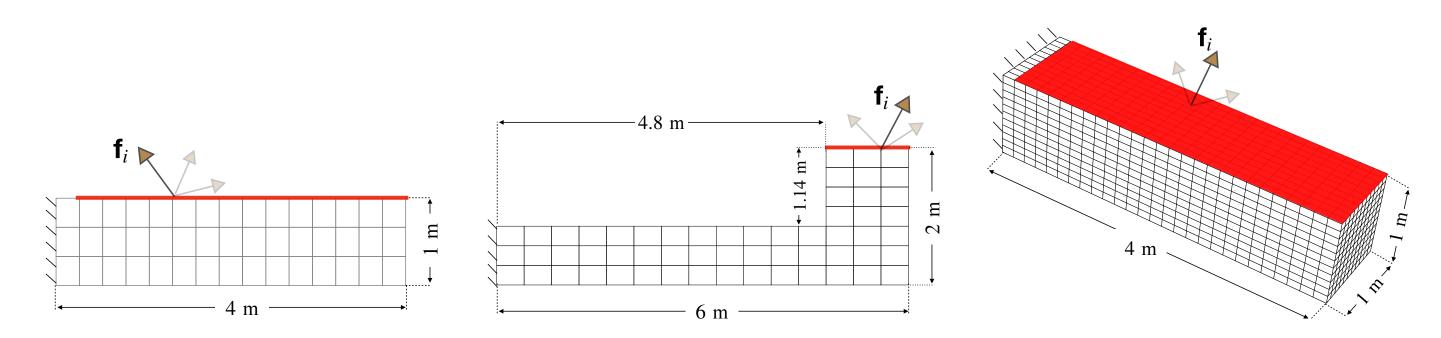


Figure 2. Schematics of three benchmark examples. Regions marked in red color indicate the nodes at which random nodal forces are applied to generate training datasets.

Training & Test metrics

Deterministic Loss: $\mathcal{L}_{\mathsf{det}} = \frac{1}{N} \sum_{i=1}^{N} \| \mathcal{U}_{\mathsf{Det}}(\mathbf{f}_i) - \mathbf{u}_i \|_2^2$

Variational Bayes Loss: (\mathcal{M} Monte Carlo samples used)

$$\begin{aligned} \mathcal{L}_{\text{VB}} &= \text{KL}[q(\boldsymbol{w}|\boldsymbol{\theta})||P(\boldsymbol{w}|\mathcal{D})] \\ &= \text{KL}[q(\boldsymbol{w}|\boldsymbol{\theta})||P(\boldsymbol{w})] - \mathbb{E}_{q(\boldsymbol{w}|\boldsymbol{\theta})}[\log P(\mathcal{D}|\boldsymbol{w})] \\ &\approx \sum_{i=1}^{\mathcal{M}} \log q(\boldsymbol{w}^{(i)}|\boldsymbol{\theta}) - \log P(\boldsymbol{w}^{(i)}) - \log P(\mathcal{D}|\boldsymbol{w}^{(i)}) \end{aligned}$$

where

 $q(\boldsymbol{w}|\boldsymbol{\theta}) = \mathsf{Approximate}$ posteriors for CNN parameters

 $P(\boldsymbol{w}) = \text{Priors for CNN parameters}$

 $P(\mathcal{D}|\boldsymbol{w}) = \mathsf{Gaussian} \mathsf{\ liklihood\ loss}$

Validation metric

For the test set $\{(\mathbf{f}_1, \mathbf{u}_1), ..., (\mathbf{f}_M, \mathbf{u}_M)\}$, $\mathcal{F}=$ Degrees of freedom of mesh

$$e_m = rac{1}{\mathcal{F}} \sum_{i=1}^{\mathcal{F}} |\mathcal{U}_{\mathsf{Det/Bayes}}(\mathbf{f}_m)^i - \mathbf{u}_m^i|.$$
 $ar{e} = rac{1}{M} \sum_{m=1}^{M} e_m, \qquad \sigma(e) = \sqrt{rac{1}{M-1} \sum_{m=1}^{M} (e_m - ar{e})^2}.$

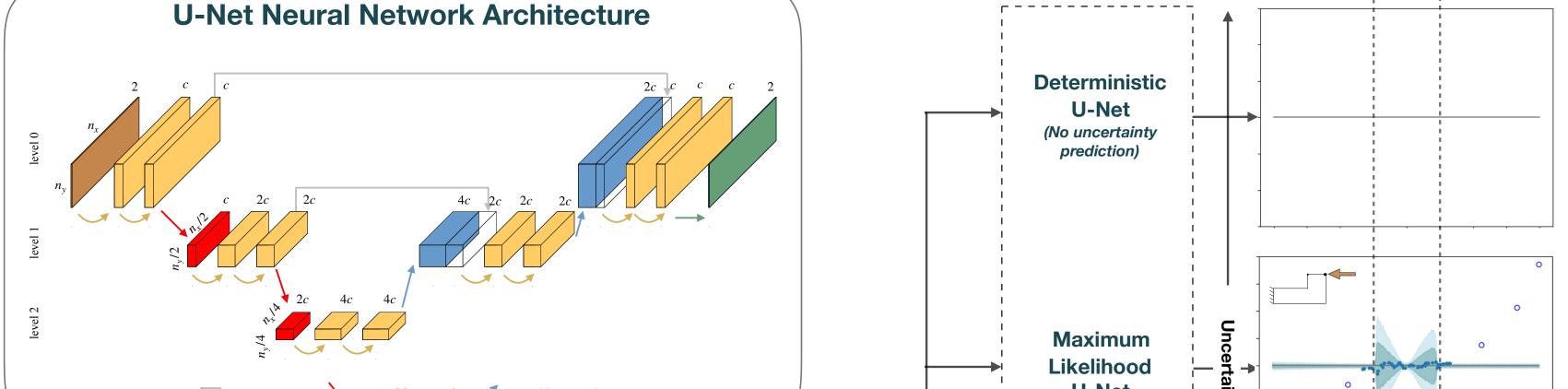
Reference

Deshpande, S., J. Lengiewicz, and S. P. A. Bordas (2021). *Probabilistic Deep* Learning for Real-Time Large Deformation Simulations. DOI: 10.48550/ ARXIV.2111.01867. URL: https://arxiv.org/abs/2111.01867.

Acknowledgement

Project has received funding from the European Union's H2020 research and innovation programme under the Marie Sklodowska-Curie grant No. 764644. J.L. would like to acknowledge the support from EU Horizon 2020 Marie Sklodowska Curie Individual Fellowship MOrPhEM under Grant 800150. This paper only contains the

author's views and the Research Executive Agency and the Commission are not responsible for any use that may be made of the information it contains.



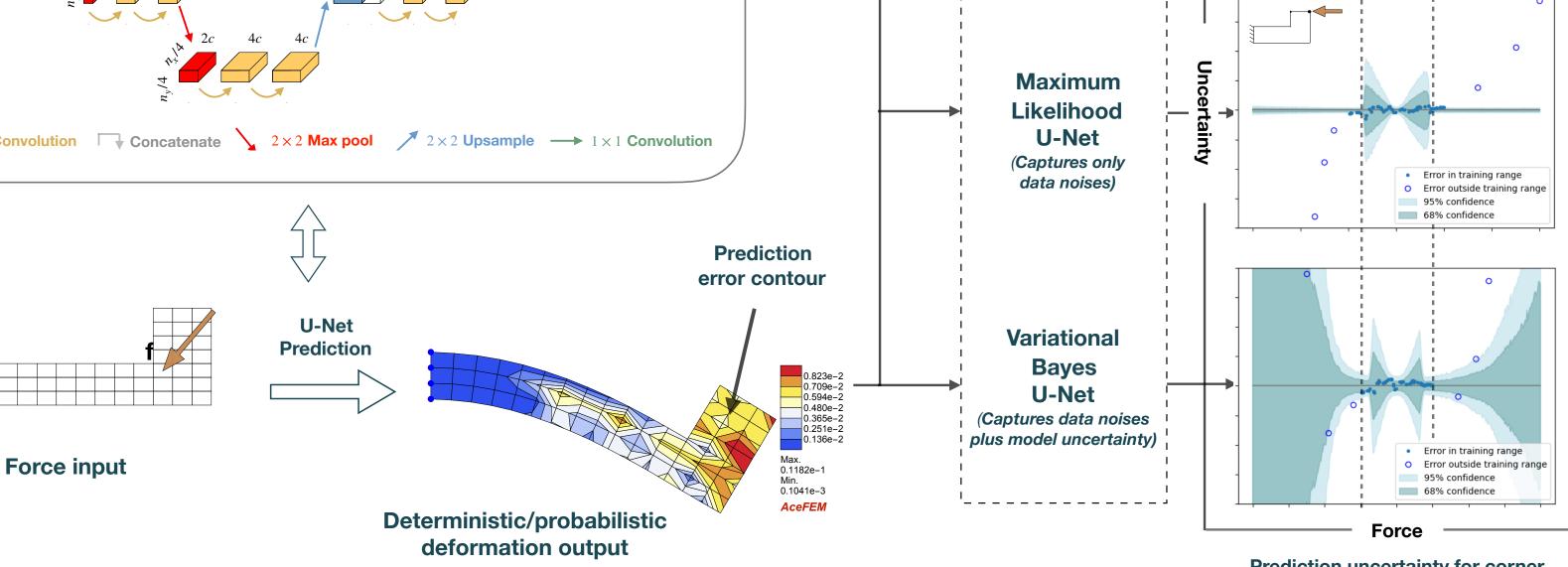


Figure 1. Overview of the framework [Deshpande et al. 2021].

Results

Accuracy:

Type	M	N	$m{ar{e}} \; [m]$	$m{\sigma}(e)$ [m
2D Beam (VB)	300	5700	1.3 E-3	1.3 E-3
2D Beam (D)	300	5700	0.3 E-3	0.2 E-3
2D L-Shaped (VB)	200	3800	5.3 E-3	3.7 E-3
2D L-Shaped (D)	200	3800	0.8 E-3	0.4 E-3
3D Beam (D)	1782	33858	0.6 E-3	0.3 E-3

Table 1. Error metrics for test sets. M = No. of test examples, N = Number of training examples D = Deterministic, VB = Variational Bayes.

Prediction times:

Type	dof	t_fem _{CPU} [s]	t_{CPU} [s]	t_{GPU} [s]	$rac{{t}_{I}fem_{CPU}}{t_{CPU}}$	$rac{{f t}_{f GPU}}{t_{f GPU}}$
2D Beam	128	0.123	0.005	0.001	25	123
2D L-shaped	256	0.120	0.007	0.001	17	120
3D Beam	12096	3.1	0.1	0.009	31	345

Table 2. Prediction times of deterministic U-Net on CPU & GPU.

Visualisations

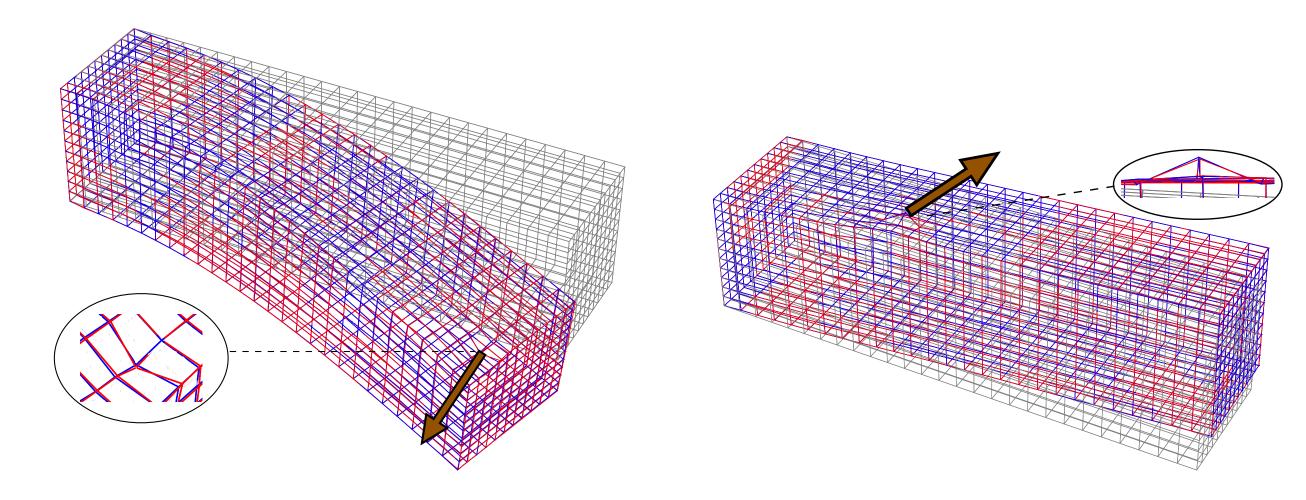


Figure 3. Deformation of 3D beam computed using deterministic U-Net (blue), reference FEM solution (red) is present. The magnitude of tip displacement for the first case is 1.1 m (0.6%error) and for the second case is 0.26 m (1.6% error).

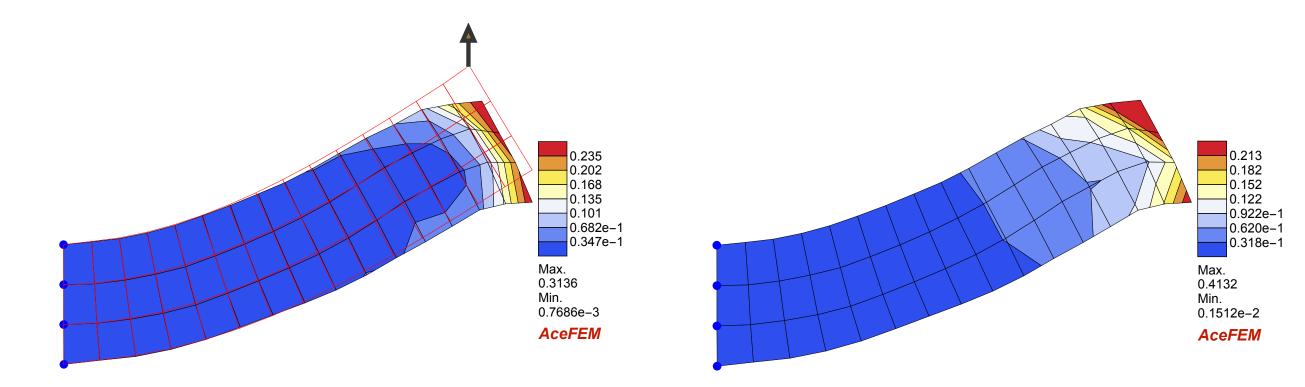


Figure 4. Deformation of 2D Beam using Bayesian U-Net for an input force outside the training range. Strong co-relation of error (left) and uncertainty predicted using Bayesian U-Net (right).

Conclusions

- Accurate large deformation solutions computed in milliseconds.
- Data noises and neural network model uncertainties are captured.
- Qualitative agreement between model errors and computed uncertainties.
- Captured the effect of increased uncertainty in the regions not supported by data.