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Abstract

In this thesis, we show how the thermodynamic concepts of heat and work arise at the level of a quantum

collision. We consider the collision of a particle travelling in space, described by a wave packet, with a

fixed system having internal energy states. Our main finding is that the energy width of the wave packet,

which can be narrow or broad with respect to the system energies, plays a crucial role in identifying energy

exchanges due to collisions as heat or work. While heat is generated by narrow wave packets effusing with

thermal momenta, work is generated by fast and broad wave packets. We compare our results with models

of repeated interactions, which despite being inspired by quantum collisions, still present shortcomings

when used as a basis for a thermodynamic theory. We show how these difficulties are circumvented by a

proper application of quantum scattering theory.
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Preface

The purpose of this thesis is to understand how the concepts of heat and work arise from a collision be-

tween quantum systems. This involves putting together two different research fields - thermodynam-

ics and quantum mechanics. Although historically linked since the beginning of the XXth century, these

two fields are conceptually quite different. Chapter 1 provides a general introduction of these fields. In

Secs. 1.1 and 1.2, we review the history and concepts of thermodynamics and quantum mechanics, re-

spectively. In Sec.1.3, we show how thermodynamics can be formulated quantum mechanically in the

language of open quantum systems, as developed in the later half of the century. This theory describes

how quantum systems evolve irreversibly, over very long times, into classical states by changing heat with

an environment in thermal equilibrium. The environment is pictured here to be very large and in per-

manent contact with the open system — a picture which is clearly at odds with short time events such as

collisions. In Sec. 1.4, we introduce models of repeated interaction, where the environment is pictured

as being divided into sub-systems, called of units, which interact sequentially and for a short time with a

quantum system. Since the units can be prepared in a non equilibrium state, these models capture the

essence of modern experiments with matter and light, being a promising avenue to study thermodynam-

ics of quantum systems out of equilibrium. Despite being inspired by collisions, there is no notion of space

or momentum in these models; instead, the system-unit interaction is modelled by a time-dependent

function. This leads to problems when these models are used as a basis for thermodynamics — related to

thermalization and work — which are discussed at the end of Chapter 1. In Chapter 2, we tackle the prob-

lems from the perspective of quantum scattering theory, where particles move freely in space long before

and after they collide. Their quantum state of motion is described by wave packets, which are groups of

waves that travel together in a quantum superposition. As a first step towards thermodynamics, Sec. 2.1

presents a treatment of a thermal gas in terms of wave packets and a comparison with traditional approach

based on plane waves. This treatment is important in order to establish the notion of heat in scattering

theory. In Sec. 2.2 we introduce the mathematical formalism of quantum scattering theory based on the

scattering operator. Having the necessary tools, we present our results in Sec. 2.3 over three manuscripts,

where we formulate the notions of heat and work using scattering theory. The central result is that the

wave packet plays a crucial role in identifying heat and work sources. Our approach overcomes many of

the limitations of repeated interactions models. The conclusions of this thesis are presented in Chapter

3, where we discuss limitations and open perspectives in the light of our results.
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Chapter 1

Introduction
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1.1. CLASSICAL THERMODYNAMICS

1.1 Classical Thermodynamics

In this section, we give an overview of thermodynamics for classical systems in thermal equilibrium. Sum-

marizing, the first law of thermodynamics splits energy changes into heat and work. The second law of

thermodynamics splits entropy changes into a reversible contribution related to heat and an irreversible

contribution called entropy production. In the absence of work, an open system exchanges heat with a

thermal reservoir and produces entropy, until it reaches thermal equilibrium. This state is represented

statistically by the Boltzmann distribution, corresponding to the state of maximum entropy.

1.1.1 Historical Perspective

Born in the XIXth century, thermodynamics was motivated by the technological progress brought about

by the Industrial Revolution. At the center of the revolution is the heat engine, whose basic principle of

operation was eventually understood to be the conversion of heat, the energy flow between systems at

different temperatures, into work, the energy flow that generates motion.

Carnot Engine

The first step in understanding this principle was given in 1824 by Sadi Carnot, who introduced an abstract

model of the heat engine [1]. Carnot’s heat engine is reversible: it can extract work by making heat flow

from a hot reservoir to a cold one, but it can spend the same amount of work to make heat flow from a

cold reservoir to a hot one. By operating the engine in a cyclic fashion — in such a way that the engine

returns to its initial state after a sequence of operations — he showed that no engine can extract more

work than the reversible heat engine. This limit on the efficiency of work extraction, known as Carnot

efficiency, is very general since it depends only on the temperatures of the reservoirs which exchange the

heat and not on the details of the engine. Carnot achieved this at a time when heat was still thought to be

an indestructible substance called caloric, that can be exchanged but never created or destroyed.

Heat, Work and Entropy

This view on the nature of heat was overturned two decades later by James Joule, which showed experi-

mentally that mechanical energy can be used to increase the temperature of matter, thereby generating

heat. In other words, heat and work are both forms of energy which can be interconverted. Around the

same time, the work of Robert Mayer and Hermann von Helmholtz on the principle of energy conservation

helped to establish the first law of thermodynamics: the energy change in a given system is the sum of heat

and work [2, 3]. Then, in 1865, Rudolph Clausius explained the efficiency of the reversible engine in terms

of a quantity called entropy: a system which exchanges heat with a reservoir in a reversible fashion pro-

duces no entropy, thus allowing for maximal work extraction [4]. Conversely, irreversible heat exchanges
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1.1. CLASSICAL THERMODYNAMICS

produce entropy and decrease the amount of extracted work. This became known as the second law of

thermodynamics: irreversible processes are characterized by entropy production. In Subsec. 1.1.2, we

present the mathematical form of these fundamental laws.

1.1.2 The Laws of Thermodynamics

Thus thermodynamics was born as a theory about energy conversion in macroscopic systems. The prime

example of such a system is a gas of particles, whose state is characterized by a small number of macro-

scopic parameters called state variables, namely volume V , number of particles N , temperature T and

pressure P . The state of the gas can be changed by changing the state variables, e.g. compressing or ex-

panding it with a piston, heating or cooling it with a thermal reservoir. The energy E = E (V , N , T ) and

entropy S = S (V , N , T ) of the system, which form the basis for the laws of thermodynamics introduced

below, are functions of these variables called state functions. Their change∆E and∆S , due to changes in

some state variables, depends only on the initial and final states of the gas.

In general, the system interacts with its exterior through the boundary of the volume V . We take the

number of particles to be conserved within the system and say that a system is isolated if it cannot ex-

change energy with its exterior; otherwise, it is called open.1 For an isolated system, the fact that a single

temperature can be defined for the whole system is what we mean by thermal equilibrium. In the same

way, two open systems are in thermal equilibrium with each other (they have the same temperature) if

they do not exchange heat: a statement known as the zeroth law of thermodynamics [2, 3, 5].

First Law of Thermodynamics

Denote by ∆E the change in energy of the system after an arbitrary change of state variables. Then the

first law of thermodynamics is given by

∆E =Q +W , (1.1)

where Q and W are the heat and work exchanged, respectively. We use the convention that Q > 0 if heat

is absorbed by the system and equivalently for work. Note that if∆E = 0 it follows Q =−W . This happens

for an isolated system due to energy conservation, or for an open system undergoing any cyclic transfor-

mation (because E is a state function). It is worth noting that heat and work are not state functions, but

only processes by which energy is exchanged.

1The traditional nomenclature in classical thermodynamics calls a system open if it exchanges matter and energy with the

exterior, and closed if only energy is exchanged. In this section, we adopt a different nomenclature and substitute closed by open

for consistency with quantum theory introduced later.

3



1.1. CLASSICAL THERMODYNAMICS

Second Law of Thermodynamics

The second law relates the entropy to the heat exchanged with a thermal reservoir at temperature T . Ac-

cording to Clausius, the entropy change in the system ∆S is an upper bound on the reversible heat ex-

changed [4]

∆S ≥
Q

T
, (1.2)

where the equality holds for reversible processes, achieved by very slow transformations such that thermal

equilibrium is never disrupted. A contemporary formulation of the second law writes the last inequality

as an equality [3, 6]

∆S =Σ+
Q

T
. (1.3)

The quantity Q/T , which can be positive or negative, is called the entropy flow and represents the entropy

change associated to reversible heat exchanges with the thermal reservoir. Accordingly, the entropy pro-

duction Σ≥ 0 is a measure of the irreversibility of the processes within the system. Since the entropy flow

is minus the change in entropy of the reservoir∆SE =−Q/T , we can write the second law as

∆S +∆SE ≥ 0 , (1.4)

with the usual interpretation that the entropy of the universe (system and exterior) always increases. Since

S is a state function, for an open system undergoing a cyclic process we have ∆S = 0 and thus Q/T ≤ 0.

Due to irreversible processes, the system can never return to its initial state without increasing the entropy

of the exterior by the expulsion of heat.

1.1.3 Statistical Mechanics

The laws of classical thermodynamics are general because they make no reference to the microscopic state

of the system which, according to classical mechanics, would involve specifying the energy, momenta or

positions of the particles that compose it. However, with the advent of statistical mechanics in the second

half of the XIXth century, it became possible to understand macroscopic properties (such as temperature,

pressure and entropy) in terms of microscopic states [7, 8, 9, 10, 11]. Joseph Willard Gibbs introduced the

concept of an ensemble as a collection of identical systems, each one representing a different microscopic

state compatible with the macroscopic state of the system. In statistical mechanics, these microscopic

states are assigned a probability distribution and the macroscopic state corresponds to certain averages

over this distribution.

The Boltzmann Distribution

For this thesis, the canonical ensemble is the most relevant ensemble, describing an open system ex-

changing energy with a thermal reservoir at temperature T . In this case, the probability that the sys-

tem has energy E is always proportional to exp (−βE ) where β ≡ (kB T )−1 has units of inverse energy and

4



1.1. CLASSICAL THERMODYNAMICS

kB = 1.38× 10−23 J K−1 is the Boltzmann constant. Since the system is in thermal equilibrium with the

reservoir, its average energy 〈E 〉 is conserved. Below, we overview the canonical ensemble for systems

with discrete and continuous energy states.

Discrete Energies. The first case of interest is when the energies of the system are discrete {Ei }Ni=1, with

N being the total number of energy microscopic states. This case is specially relevant for quantum sys-

tems discussed in Secs. 1.2 and 1.3. Then the probability Pi that the system has energy Ei is given by the

Boltzmann or Gibbs distribution

Pi = Z −1 exp (−βEi ) with Z =
N
∑

i=1

exp (−βEi ) , (1.5)

where Z is called the partition function. Under the macroscopic constraints of average energy 〈E 〉 =
∑N

i=1 Pi Ei , the Boltzmann distribution can be derived as the distribution maximizing the quantity

S =−kB

N
∑

i=1

Pi log Pi ≥ 0 , (1.6)

which is called the Gibbs entropy [8] or more recently the Shannon entropy [12, 13]. From the point of view

of information theory, the Shannon entropy in Eq. (1.6) can be interpreted as a measure of the ignorance

about the microscopic state of the system, or equivalently as the information gained if we were to know this

state with certainty [13]. In this sense, the equilibrium distribution in Eq. (1.5) has the least information

possible about the microscopic state of the system and is thus maximally random.

Continuous Energies. The second case of interest is when the energies of the system are continuous, as

is the case for a particle with mass m belonging to a gas. This case is specially relevant when we study

a thermal gas of wave packets in Sec. 2.1. Since the main results of this thesis are formulated in one di-

mension, we consider the gas to be confined to a length L = V 1/3. For a low density gas, we can ignore

potential energy due to very rare collisions so that the energy of a particle is purely kinetic and indepen-

dent of position E = p 2/2m , where p is the momentum. The Boltzmann distribution is then given by

ρ(p ) =
µMB(p )

L
with µMB(p ) =

1
p

2πm/β
exp

�

−
βp 2

2m

�

, (1.7)

where the probability density is normalized over the length L and all momenta. The momentum probabil-

ity density µMB(p ) is called Maxwell-Boltzmann distribution.2 By computing the average kinetic energy

2We can also write the distribution as ρ(p ) = (2π~Z )−1 exp (−βp 2/2m ), where Z = L/λ is the partition function and λ =
~
p

2πβ/m is the thermal wavelength. The constant ~ has the units of action (momentum times length) and is most naturally

identified with the Planck constant to be introduced below in Sec. 1.2.

5



1.1. CLASSICAL THERMODYNAMICS

〈E 〉 = kB T /2, one can understand temperature in terms of average particle motion in the gas. Regard-

ing the entropy, we simply note that Boltzmann showed, from its famous transport equation, that the

Maxwell-Boltzmann distribution maximizes a continuous analog of the Shannon entropy in Eq. (1.6) un-

der the constraints of average energy of the gas particle [7, 9, 11].

Thermalization

Suppose that a system in a non equilibrium state, i.e. described by some probability distribution other

than the Boltzmann distribution, is put in contact with a thermal reservoir. In the absence of work sources,

the first law in Eq. (1.1) implies that only heat is exchanged, while the second law in Eq. (1.3) that entropy

is produced. Eventually the system reaches thermal equilibrium, i.e. it is described by the Boltzmann

distribution, where its entropy is maximal and no longer produced. Thus Q = ∆S = 0 and the second

law reads Σ = 0. This irreversible evolution towards thermal equilibrium is called thermalization. The

problem faced by statistical mechanics is to reconcile this irreversible behaviour with the underlying re-

versible microscopic laws, either for classical or quantum systems [14, 15, 16]. We discuss thermalization

in quantum systems in Sec. 1.3 and from a quantum scattering perspective in Sec. 2.3.

6



1.2. QUANTUM MECHANICS

1.2 Quantum Mechanics

We introduce quantum mechanics for closed and isolated systems. The state of a quantum system is given

by a state vector in Hilbert space or by an ensemble of such vectors represented by a density operator. Its

state evolves unitarily in time as a superposition of observable states, each assigned with a probability of

occurrence. For a quantum particle moving freely in space, its state is represented as a wave packet, which

form the basis of the results of Chapter 2. Importantly, the entropy of a closed or isolated quantum system

does not change under unitary evolution.

1.2.1 Historical Perspective

Until the end of the XIXth century, most natural phenomena was explained on the basis of classical physics,

comprising of three fields: thermodynamics, classical mechanics and electromagnetism. Thermodynam-

ics holds macroscopically and was discussed in Sec. 1.1. Microscopically, one has classical mechanics and

electromagnetism, the first describing the motion of matter and the second describing light in terms of

electromagnetic waves. Put together, these last two fields provide a classical picture of how matter and

light interact that is relevant even nowadays [17, 18].

Planck’s Relation

Despite the many successes of classical physics, it failed to explain light emitted from a blackbody in ther-

mal equilibrium.3 In 1901, Max Planck solved the problem by postulating that matter and light could

only exchange energy in discrete amounts or quanta [19]. This was in stark contrast to continuous energy

exchanges allowed by the classical theory of electromagnetism. According to Planck, the quantum of en-

ergy E exchanged between a matter oscillator in equilibrium with thermal light is given by E = ~ωwhere

~= 1.05×10−34 J s is Planck’s constant andω is the angular frequency of the oscillator. Drawing on the work

of Planck, Albert Einstein postulated in 1905 that light is composed of particles, called photons, obeying

Planck’s relation [20]. This view on light was used to explain the photoelectric effect, which hitherto lacked

theoretical basis, and later found experimental support in the Compton effect [21, 22]. Moreover, after the

discovery of the atomic nucleus in 1911 by Ernest Rutherford, it became clear that classical physics could

neither describe the stability of the atom, whose electrons should lose energy by radiation and eventually

fall into the nucleus, nor the discreteness of the atomic spectra. This was remedied in 1913 when Niels

Bohr proposed his model of the atom, where the orbits of the electrons are quantized and stable except

for jumps between orbits induced by absorption or emission of photons. The work of the aforementioned

3A blackbody absorbs and emits all radiation at all frequencies.

7



1.2. QUANTUM MECHANICS

scientists made clear that the quantum nature of light and matter was necessary to explain many phe-

nomena in microscopic physics.

de Broglie’s Relation

In the early 1920s, Louis de Broglie postulated that the wave-particle duality should not only apply to

light, but to matter as well. Thus, to every particle with momentum p there is an associated wave vector

k , defined through the relation p = ~k where λ = 2π/k is called the de Broglie wavelength [23]. It did

not take long for de Broglie’s hypothesis to be confirmed through scattering experiments of electrons by

crystals and through double-slit experiments with electrons. The latter experiments showed that single

electrons behave as waves, in the sense that they pass through both slits in a superposition (much like

classical waves), thus displaying interference patterns when detected on a screen. However, the inter-

ference pattern is not observed if the experimenter has a way to infer through which slit the electron has

gone. The double-slit experiments (which can also be performed with light) and many others showed that

measurement destroys the wave nature of particles [21, 22, 24].

The Superposition Principle

By the end of the 1920s, the bits and pieces of non-relativistic quantum mechanics were put together in

a cohesive picture by Erwin Schrödinger and Werner Heisenberg [25, 26], while the mathematical frame-

work in its most abstract form was put forth by Paul Dirac [27] and later by von Neumann [28]. In this

formalism, the state of a quantum system is described as a superposition of observable states, each as-

signed with a probability of being measured. Thus, a particle bound by some potential, such as an electron

in an atom, can be described as a wave in a superposition of discrete energy states. In contrast, a free par-

ticle is described by wave in a superposition of continuous energy or momentum states, a so-called wave

packet. The formalism presented below includes both of these cases.

1.2.2 The Schrödinger Equation

In quantum mechanics, the state of a system is given by a vector in a complex, separable Hilbert space

|ψ〉 ∈ H with inner product 〈φ|ψ〉 = 〈ψ|φ〉∗ for any |φ〉 ∈ H .4 For physical purposes, the state vector is

normalized according to 〈ψ|ψ〉= 1. Transformations of state vectors are effected by linear operators, say

A, so that if |ψ〉 = α1 |ψ1〉+ α2 |ψ2〉 is a linear combination of state vectors with α1,α2 ∈ C then A |ψ〉 =
α1A |ψ1〉+α2A |ψ2〉.5 The adjoint of an operator A, denoted A†, is defined through the inner product by

4A Hilbert space is separable if it admits a countable, dense and orthonormal basis.
5Transformations can also be effected by anti-linear operators B , which act as B |ψ〉=α∗1B |ψ1〉+α∗2B |ψ2〉. This is the case for

the time-reversal operator discussed in the publications. Unless stated otherwise, all operators are linear.

8



1.2. QUANTUM MECHANICS

〈φ|A|ψ〉= 〈ψ|A†|φ〉∗ and an operator is called self-adjoint if A = A†.

Spectral Decomposition

Observables of the system such as energy, position and momentum are represented by self-adjoint oper-

ators. We usually express state vectors in the eigenbasis of the energy operator H called the Hamiltonian,

which can have both discrete and continuous spectrum. In this section, we always assume the discrete

spectrum to not be degenerate. In this case we have H |i 〉= ei |i 〉 where {|i 〉}Ni=1 is a discrete orthonormal

basis 〈 j |i 〉 = δ j i and dim(H ) = N . For its continuous spectrum we have H |λ〉 = Eλ |λ〉, where {|λ〉} is a

continuous orthogonal basis satisfying 〈λ′|λ〉 = δ(λ−λ′). Such a continuous basis is called an improper

basis, since it has infinite norm when λ = λ′, but can nevertheless be used to build proper (normalized)

state vectors. Any self-adjoint can be expressed in terms of projection operators onto the subspace as-

sociated to each eigenvalue [28, 29, 30]. This is the spectral decomposition, which for the Hamiltonian

reads

H =
N
∑

i=1

ei |i 〉〈i |+
∫ ∞

−∞
Eλ |λ〉〈λ| dλ , (1.8)

where |i 〉〈i | and |λ〉〈λ| are projection operators. An important case is obtained by considering the identity

operator I =
∑N

i=1 |i 〉〈i |+
∫∞
−∞ |λ〉〈λ| dλ, which simplifies to the sum or integral term if the spectrum is

purely discrete or purely continuous, respectively.

Time Evolution

The time evolution of the state vector |ψ(t )〉 is found by solving the Schrödinger equation

d |ψ(t )〉
d t

=−
i H (t )
~
|ψ(t )〉 , (1.9)

where H (t ) = H †(t ) is the Hamiltonian which in general can be time-dependent. It specifies the total

energy of the system considered. For quantum systems, we say that the system is closed if its Hamiltonian

is time-dependent, otherwise it is called isolated. The expectation value of the energy at time t can be

found by 〈H (t )〉 ≡ 〈ψ(t )|H (t )|ψ(t )〉 and similarly for other observables. The formal solution to Eq. (1.9) is

given by

|ψ(t )〉=U (t , t0) |ψ(t0)〉 (1.10)

where U (t , t0) is the evolution operator obeying U (t , t0)U †(t , t0) =U †(t , t0)U (t , t0) = I and I is the iden-

tity operator. All unitary operators obey the last relation, which imply that the inner product and norm

are preserved under such transformations. Note that the evolution operator has an inverse for all times

U †(t , t0) =U −1(t , t0), implying that unitary dynamics inH is always reversible. The evolution operator

9
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admits the general expression

U (t , t0) = T← exp
�

−
i

~

∫ t

t0

d t ′ H (t ′)
�

, (1.11)

where T← is the time-ordering operator, which orders time-dependent operators from right to left when

expressed as a series. For isolated systems considered in this section, the Hamiltonian is time-independent

and the evolution operator simply reads

U (t , t0) = exp
�

−
i H (t − t0)

~

�

. (1.12)

The evolution for a purely continuous spectrum is treated below. Here, for a purely discrete spectrum, we

insert the identity into Eq. (1.10) to obtain

|ψ(t )〉=
N
∑

i=1

ci (t ) |i 〉 with ci (t ) = ci (t0)exp
�

−
i ei (t − t0)

~

�

, (1.13)

with the coefficients defined as ci (t0)≡ 〈i |ψ(t0)〉. Thus, the state vector evolves in time as a superposition

of energy eigenstates with complex coefficients. The phase of the exponential describes a wave oscillating

in time with angular frequency ei /~, according to Planck’s relation. As usual, we interpret | 〈 j |ψ(t )〉 |2 =
|c j (t )|2 as the probability to find the state in the eigenstate | j 〉 at time t after a given measurement. From

the normalization of the state vector, it follows that
∑N

j=1 |c j (t )|2 = 1 so the probability of finding the system

in any of its energy eigenstate is one.

Wave Packets

We now consider a particle moving freely in one dimension according to the Hamiltonian of kinetic energy

Hp = p 2/2m , where m is the mass and the momentum operator p has a continuous spectrum with {|p 〉}
being an improper eigenbasis of H such that 〈p ′|p 〉 = δ(p −p ′). The position operator x is also continu-

ous and obeys similar relations to p . These improper states can be used to expand proper state vectors,

which belong to the Hilbert space of square-integrable functions in one dimension. Combining the res-

olution of identity in position with the inner product between two arbitrary states |ψ1〉 and |ψ2〉, we get

〈ψ2|ψ1〉=
∫∞
−∞ψ2(x )∗ψ1(x )d x , whereψ(x )≡ 〈x |ψ〉 is a representation of the state vectors in position, or

wave function in position. Inserting a resolution of identity in momentum in 〈x |ψ〉, we can related it to

its wave function in momentumφ(p )≡ 〈p |ψ〉, which is just the Fourier transform

ψ(x ) =
1

p
2π~

∫ ∞

−∞
φ(p )exp

� i p x

~

�

d p , (1.14)

where we introduced the quantity

〈x |p 〉= (2π~)−1/2 exp
� i p x

~

�

, (1.15)

10
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which are plane waves whose wave vector is k = p/~ according to de Broglie’s relation. The wave function

at time t is thus directly obtained from Eq. (1.10)

ψ(x , t ) =
1

p
2π~

∫ ∞

−∞
φ(p )exp

� i p x

~
−

i p 2t

2m~

�

d p , (1.16)

where we set t0 = 0 for simplicity. The last expression represents a wave packet, which is a superposition

of plane waves whose weight is given byφ(p ). The main results of this thesis are based on Gaussian wave

packets, with wave function in momentum is given by

φ(p ) = (2πσ2
p )
−1/4 exp

�

−
(p −p0)2

4σ2
p
−

i p x0

~

�

, (1.17)

where p0 ≡ 〈p (0)〉 and x0 ≡ 〈x (0)〉 are the initial expectation values of momentum and position and σp is

the standard deviation, or width, in momentum. Substituting Eq. (1.17) into Eq. (1.16) and performing

the integral, we obtain the solution

ψ(x , t ) = [2πσ2
x (t )]

−1/4 exp
�

−
(x − x0−p0t /m )2

4σ2
x (1+ i t /τs )

+ iΘ(x , t )
�

, (1.18)

where Θ(x , t ) is a real function with the definition

Θ(x , t ) =
p0

~

�

x − x0−
p0t

2m

�

−
1

2
arctan

� t

τs

�

. (1.19)

Expression (1.18) describes a Gaussian wave packet whereσx (t )≡σx

p

1+ (t /τs )2 is the width in position

at time t and σx = ~/2σp . The spreading time τs ≡ 2mσ2
x /~ describes how the packet spreads out of its

center x0+p0t /m , the latter moving with constant velocity p0/m called the group velocity. It leads to the

uncertainty relation between position and momenta σx (t )σp ≥ ~/2 where the equality holds at t = 0 for

Gaussian states. The uncertainty relation implies that the particle cannot be simultaneously localized in

space and momentum, in opposition to classical mechanics. It can be derived more generally for any two

non-commuting observables [22, 24, 31, 32].6 The phase Θ(x , t ) describes a plane wave with wave vector

k0 = p0/~ and de Broglie wavelength λ0 = 2π/k0, modified by the spreading time. Finally, the square of

the modulus of the wave function

|ψ(x , t )|2 =
1

Æ

2πσ2
x (t )

exp
�

−
(x − x0−p0t /m )2

2σ2
x (t )

�

, (1.20)

is interpreted as the probability per unit length. It is easily verified to be normalized over all space.

6The uncertainty in position is time-dependent while the uncertainty in momentum is not. This is best understood in the

Heisenberg picture, where observables evolve in time. It is then clear that p is a constant of motion and so is any standard

deviation or width computed from it.
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1.2.3 The von Neumann Equation

The idea of an ensemble discussed in Subsec. 1.1.3 can be generalized for quantum systems. This is

achieved by the introduction of a density operator ρ acting onH , which is the quantum analog of the

classical probability distribution. If we consider an ensemble of state vectors {|ψα〉}Mα=1, each being as-

signed a probability pα ≥ 0 where M is the dimension of the ensemble, then the density operator is written

in terms of projection operators

ρ =
M
∑

α=1

pα|ψα〉〈ψα| , (1.21)

where
∑M
α=1 pα = 1. We can also consider a continuous probability distribution for an ensemble instead of

a discrete one (this issue is addressed in Sec. 2.1 when we treat a thermal gas of wave packets). The density

operator is self-adjoint ρ =ρ†, positive 〈ψ|ρ|ψ〉 ≥ 0 for any |ψ〉 ∈H and has trace one Tr(ρ) = 1. Another

important property of this operator is Tr(ρ2) ≤ Tr(ρ), where the equality holds if and only if ρ = |ψ〉〈ψ|.
If it holds, we know the state vector with certainty and we say that the quantum system is in a pure state;

otherwise, it is in a mixed state [28].

Time Evolution

The density operator at time t is then obtained directly from the pure state solution of Schrödinger equa-

tion in Eq. (1.10). It reads

ρ(t ) =U (t , t0)ρ(t0)U
†(t , t0) , (1.22)

withρ(t0) =
∑M
α=1 pα|ψα(t0)〉〈ψα(t0)| being the initial density operator. Differentiating with respect to time

we obtain the von Neumann equation

dρ(t )
d t

=−
i

~
[H (t ),ρ(t )] , (1.23)

which describes the time evolution of the ensemble and [ , ] is the commutator. For isolated systems, the

Hamiltonian is time-independent. If it has a purely discrete spectrum, Eq. (1.22) reads in its eigenbasis

ρ(t ) =
N
∑

j ,i=1

ρ j i (t ) | j 〉〈i | with ρ j i (t ) =ρ j i (t0) exp [−iω j i (t − t0)] , (1.24)

with the definition of the matrix element ρ j i (t0)≡ 〈 j |ρ(t0)|i 〉. The diagonal elements in the eigenbasis of

the Hamiltonian are called populations ρ j j (t ), representing the probability that the system is in a given

state j and naturally Tr[ρ(t )] =
∑N

j=1ρ j j (t ) = 1 for all times t . The non-diagonal elements are called co-

herencesρ j i (t ) for j 6= i , representing superpositions between different energy eigenstates. In opposition

to the populations, they evolve in time according to the phase in the exponential, describing a wave with

angular frequencyω j i ≡∆ j i /~ called the Bohr frequency, with∆ j i ≡ e j − ei . Its inverse 1/ω j i defines an

intrinsic evolution time scale of the system (wheneverω j i 6= 0). Note that the phase is preserved through-

out the evolution, therefore the evolution is called coherent.

12
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von Neumann Entropy

The Shannon entropy in Eq. (1.6) also has a generalization for ensembles of quantum systems. It is called

the von Neumann entropy, defined as

S (ρ) =−kB Tr (ρ logρ)≥ 0 , (1.25)

where the equality holds for pure states. It reduces to the Shannon entropy through the spectral decom-

position of the density operator. Note that if ρ is already diagonal in the energy eigenbasis, then the von

Neumann entropy is equal to the Shannon entropy in Eq. (1.6), where ρ j j is the probability associated to

a given energy state j . Importantly, the von Neumann entropy is invariant under unitary transformations

of states S (ρ) = S (UρU †) for any unitary operator U [28, 33]. In other words, the entropy of the system

remains constant under unitary evolution, as expected from reversible dynamics.

The Interaction Picture

So far we considered eigenstates of the full Hamiltonian H (t ). Usually, this Hamiltonian is the sum of two

parts H (t ) =H0+V (t ), where H0 is called the free Hamiltonian, assumed here to be time-independent, and

V (t ) is the interaction operator which is in general time-dependent. In this case, it is useful to consider

the unitary operator in the interaction picture

UI (t , t0) =U †
0 (t , t0)U (t , t0) , (1.26)

where U0(t , t0) is the time evolution operator for H0 and U (t , t0) is the equivalent for H (t ). Given some

observable A(t ) in the usual Schrödinger picture, there is an observable AI (t ) in the interaction picture

defined by

〈A(t )〉= Tr[A(t )ρ(t )] = Tr[AI (t )ρI (t )] . (1.27)

The last expression also defines how expectation values of observables are computed in the density oper-

ator formalism. The observable in the interaction picture is given by AI (t )≡U †
0 (t , t0)A(t )U

†
0 (t , t0) and the

density operator in this picture is

ρI (t )≡UI (t , t0)ρ(t0)U
†

I (t , t0) . (1.28)

Note that both picture coincide at initial times ρI (t0) =ρ(t0). Expression (1.28) can be differentiated with

respect to time to obtain

dρI (t )
d t

=−
i

~
[VI (t ),ρI (t )] , (1.29)

which is the von Neumann equation in the interaction picture. Since the density operator in the inter-

action picture evolves with the interaction VI (t ), this expression form is often used as a starting point for

derivations of quantum master equations based on perturbation theory.

13
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1.3 Irreversibility in Quantum Systems

We review how irreversibility arises in quantum systems. At the center of the discussion is the theory of

open quantum systems, describing how a quantum system evolves due to the interaction with its envi-

ronment. The evolution of the open system is not unitary, but given instead by a completely positive and

trace preserving map. This is enough to formulate the laws of thermodynamics for quantum systems in-

teracting with a thermal reservoir. We discuss Markovian quantum master equations which obey detailed

balance, ensuring thermalization of the open system.

1.3.1 Thermalization

The evolution of a closed or isolated system is reversible and thus its entropy remains constant over time.

This is true for quantum systems, whose evolution in time is given by the von Neumann equation (1.25)

or for classical systems governed by the Liouville equation [9, 10, 11]. This is in contrast with the empirical

fact that natural processes are irreversible, as expressed by second law of thermodynamics in Eq. (1.3).

Thus, statistical mechanics should not be restricted to thermal equilibrium (see Sec. 1.1.3), but should

also describe how equilibrium is reached from initial non equilibrium conditions. This involves deriv-

ing irreversible dynamical equations starting from the microscopic reversible equations for classical or

quantum systems.

Our discussion from now on focuses mainly on quantum systems, whose underlying equations of mo-

tion share many features with its classical counterpart. Nevertheless, we should point out the most cru-

cial distinction between the quantum and classical cases: the presence of superposition or coherences for

quantum systems, which have no classical analogue. This means that any equation describing thermal-

ization of a quantum system should also describe how coherences are lost or suppressed – a phenomena

called decoherence — and by consequence the emergence of a classical system described by a density

operator diagonal in the relevant eigenbasis. In other words, for a discrete quantum system with Hamil-

tonian H we expect the quantum analog of Eq. (1.5) called the Gibbs state, or simply thermal state

ρeq = Z −1 exp (−βH ) with Z = Tr[exp (−βH )] . (1.30)

Below, we give a brief historical perspective on the problem of thermalization which serves as motivation

for the theory of open quantum systems introduced in Subsec. 1.3.2.

Boltzmann’s Approach

The problem of thermalization goes back to Boltzmann and his famous transport equation for a classi-

cal gas of particles, describing how the probability distribution changes in time due to particle collisions.

Three main conditions lie at the heart of Boltzmann’s approach. First, the gas is considered sufficiently
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dilute so that only two-body collisions are relevant. Second, each collision is microscopically reversible,

so that the scattering cross section or probability is invariant under time-reversal. Third, the momenta of

the colliding particles are uncorrelated before and after the collision, an assumption known as molecular

chaos or Stosszahlansatz. These conditions allowed Boltzmann to derive his famous H-theorem showing

that, in the absence of external forces, the Maxwell-Boltzmann distribution in Eq. (1.7) is the equilibrium

distribution corresponding to maximum entropy [7, 9, 11]. Boltzmann’s approach was very successful in

predicting transport coefficients for dilute gases. Nonetheless, the question of the validity of his approach

remained unanswered, and there was considerable need for a theory describing transport processes in liq-

uids (e.g. low-temperature helium), solids (e.g. heat conduction in crystals) and plasmas. This prompted

the development of a general theory of irreversible processes, starting from the Liouville equation of clas-

sical mechanics or from the Schrödinger or von Neumann equation of quantum mechanics [14, 15, 16].

Pauli’s Equation

The first microscopic derivation of a dynamical equation describing irreversible processes was achieved

in 1928 by Wolfgang Pauli [34]. A rigorous study of this master equation, as it came to be known, was

carried out by Léon van Hove almost 30 years later for quantum systems [35]. For a discrete system, the

master equation reads in the Schrödinger picture

dρ j j (t )

d t
=
∑

i

�

Tj iρi i (t )−Ti jρ j j (t )
�

. (1.31)

It is a first-order, linear differential equation for the populations (probabilities) associated with each eigen-

state of a quantum system. The quantities Tj i are time-independent rates expressing the transition prob-

abilities (per unit time) for the system to jump from eigenstate i to j . Some comments on its original

microscopic derivation and validity of Eq. (1.31) are now in order.

1. The starting point for its derivation is a many-body, time-independent Hamiltonian of the form H =

H0+λV , where H0 is the free Hamiltonian, V is the interaction and λ is an adimensional coupling

constant measuring its strength. It is assumed to be small λ� 1 so that perturbation theory can be

applied to Eq. (1.23) or Eq. (1.29) up to second-order in λ. This is called the weak coupling limit.

2. It describes the dynamics only of the populations associated to the eigenstates of H0. In this case,

terms proportional to λ vanish and the rates become proportional to the square of the matrix ele-

ment of the interaction Tj i ∝λ2| 〈 j |V |i 〉 |2.

3. The master equation is Markovian, so that the state of the system at time t does not depend on its

past history, which follows immediately from the fact that the rates are time-independent. This

property is essential in deriving quantum master equations as we discuss in Subsecs. 1.3.2 and

Subsecs. 1.3.3. For Pauli’s equation, it is enforced in the long time limit, so that the rates become

Tj i = (2πλ2/~)| 〈 j |V |i 〉 |2δ(∆ j i ), where πδ(∆ j i ) = limt→∞ sin(∆ j i t /~)/∆ j i . In other words, the time
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scales considered in Eq. (1.31) are much larger than the intrinsic time scales of the system. Here,

it implies that only transitions preserving energy are allowed. This is a discrete version of Fermi’s

golden rule: transitions between eigenstates due to a small perturbation occur at a constant rate

within an energy shell. Note however that the δ-function presented above is not rigorously defined

for H0 with discrete spectrum but only for a continuous one. Indeed, the exact conditions under

which Eq. (1.31) holds is called the van Hove limit, defined for an infinitely large system with con-

tinuous spectrum when λ→ 0, t →∞with λ2t being constant [35].

4. The symmetry of the rates Tj i = Ti j implies that the thermal state in Eq. (1.30) with an infinite tem-

perature (β → 0 or T →∞) is a solution of Eq. (1.31). This symmetry is an expression of microscopic

reversibility, or detailed balance, for an isolated system: transitions between any two eigenstates of

the system are equally probable.

We do not pretend to be exhaustive in the derivation of Eq. (1.31), but only in providing and discussing

its main ingredients. Detailed discussions can be found elsewhere [15, 35, 36]. This master equation is an

important achievement, being the simplest equation describing irreversible processes that can be derived

from the full unitary dynamics. It can also be interpreted as a stochastic (random) Markov process for the

populations, where transitions are caused by a weak perturbation. Note that the classical analogue of

Eq. (1.31) has also been derived in the weak coupling limit by Ilya Prigogine and others [14, 16]. In fact, the

classical master equation has been extensively used in phenomenological approaches to dynamics and

thermodynamics of stochastic processes [37, 38, 39, 40].

Thermalization in isolated systems is still an open issue and beyond the scope of this thesis [41, 42]. In

Subsecs. 1.3.2 and 1.3.3, we show how Eq. (1.31) arises from quantum master equations in the framework

of open quantum systems. There, the evolution of coherences is explicitly taken into account.

1.3.2 Open Quantum Systems

In practice, physical systems are never isolated. More precisely, the relevant degrees of freedom are only a

subset of the total degrees of freedom at play. Henceforth, we call this relevant subset the open system or

just system. The remaining degrees of freedom, called the exterior or environment, are usually too diffi-

cult to describe microscopically and not easily controllable. There is thus a practical necessity to describe

the dynamics of the open system induced by interactions with its environment. To give some concrete

examples, the quantum transport of electrons in conducting materials is coupled to the lattice vibrations

called phonons, which act as an environment for the electrons and damp their motion [43]. In quantum

optics, one builds a laser by stimulated emission of photons from excited atoms into a cavity. These pho-

tons are fed back into the excited atoms by reflecting mirrors in the cavity. A full description of the laser

setup would involve not only the interaction of the atoms with light, but the pumping mechanisms for

atomic excitation and the losses due to spontaneous emission and imperfect cavity [24, 43, 44, 45, 46].

By treating either the atom or the light as an open system, a more tenable description is obtained. In
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quantum computation and information, a qubit (a two-level quantum system used to store or process

information) experiences decoherence due to its environment, thus losing any computational advantage

it has over classical systems [33]. Treating the qubit as an open quantum systems is there indispensable.

Finally, a quantum system can be regarded as open with respect to some measurement apparatus [47, 48].

Below, we provide the mathematical framework to study open quantum systems relying on the notion

of completely positive and trace preserving maps, which are generalizations of unitary evolution.

Time Evolution

We consider a Hilbert spaceH in a tensor product formH =HS ⊗HE , whereHS is the Hilbert space of

the system andHE is the Hilbert space of the environment. The total Hamiltonian is of the form

H (t ) =HS ⊗ IE + IS ⊗HE +V (t ) , (1.32)

where the interaction can be time-dependent, IS is the identity inHS and an equivalent notation holds for

the environment. The full dynamics inH is unitary and defined by Eq. (1.22). Our aim is to describe the

dynamics inHS with observables of the form A ⊗ IE . This is achieved by taking the partial trace over the

degrees of freedom of the environmentρS = TrE (ρ), whereρS is the reduced density operator representing

the state of the system [49, 50, 51]. A reduced description for the environment can be obtained in a similar

fashion. If the full state (system plus environment) is initially uncorrelated, we have the product state

ρ =ρS ⊗ρE , where we set t0 = 0 for simplicity and dropped the time-dependence of the initial states. The

state of the system obtained from Eq. (1.22) reads

ρS (t ) = TrE

�

U (t )
�

ρS ⊗ρE

�

U †(t )
�

≡St (ρS ) , (1.33)

where U (t ) ≡U (t , 0) and St ≡ St ,0 is called a dynamical map, responsible for the evolution of the open

system during time t ≥ 0. Before we go any further, a dynamical map can be understood more generally

in terms of quantum operations, without making reference to the dynamics as we show below.

The Kraus Decomposition

A quantum operationS is a map between density operators that can be written as

S (ρS ) =
∑

i

KiρS K †
i with

∑

i

K †
i Ki ≤ IS , (1.34)

where the sum is over some discrete index set and Ki are so-called Kraus operators. This decomposition

of a quantum operation was proven in 1971 by K. Kraus [52]. We note that the subscript s (system) is here

only kept for continuity with the notation introduced above, but Kraus’ theorem is general. A quantum

operationS admitting the above decomposition is characterized by three properties.

1. It obeys 0≤ TrS [S (ρS )]≤ 1 which follows directly from the property
∑

i K †
i Ki ≤ IS .
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2. It is convex-linear S (
∑

αpαρ
α
S ) =

∑

αpαS (ραS ), where α labels a density operator occurring in a

mixture with probability pα so that
∑

αpα = 1.

3. It is completely positive, a technical requirement which we summarize as follows. If (S ⊗ IE ) is a

combined operation on the full Hilbert spaceH =HS⊗HE , whereHE has an arbitrary dimensions

andω is a positive operator onH , then (S ⊗ IE )(ω) is a positive operator [53, 54, 55, 56].

Equipped with the Kraus decomposition, we go back to Eq. (1.33), use the spectral decomposition of the

environment (assumed here to be discrete) ρE =
∑

i γi |i 〉〈i | and take the partial trace explicitly, obtaining

ρS (t ) =
∑

j ,i

K j i (t )ρS K †
j i (t ) with K j i (t )≡

p

γi 〈 j |U (t )|i 〉 . (1.35)

Since U (t ) is unitary, it follows immediately that
∑

j ,i K †
j i (t )K j i (t ) = IS and thus that TrS [ρS (t )] = 1. The

main conclusion is that the dynamical map St is a completely positive and trace preserving quantum

operation. In fact, any map for the system obtained from an initially uncorrelated full state, followed by

unitary evolution, is completely positive and trace preserving. The main results of this thesis presented

throughout Chapter 2 are based on a such maps.

Relative Entropy and Irreversibility

In opposition to unitary evolution, the evolution of the system given by Eq. (1.33) is not reversible in time

— in fact, the dynamical map St has an inverse if and only if it is unitary [51]. This is in keeping with the

irreversibility of open quantum systems. The physical reason for this irreversibility can be understood as

follows. During unitary evolution, correlations between system and reservoir are established and thus the

full state cannot be generally represented as a product state ρ(t ) 6=ρS (t )⊗ρE (t ). Such a state ρ(t ) is said

to be an entangled state. When we obtain the state of system by tracing out the degrees of freedom of the

environment, we also discard the correlations established between them — from the point of view of the

system, this information is then irreversibly lost. The same conclusion holds for the environment state

ρE (t ) = TrS [ρ(t )]. We can make these statements more precise by referring to the sub-additivity property

of the von Neumann entropy, which reads S [ρS (t )] +S [ρE (t )] ≥ S [ρ(t )] and the equality holds if the full

system is uncorrelated [33, 50]. Physically, it means that we lose information about the correlations of

system and environment when we trace over the degrees of freedom of either one. We can write the sub-

additivity property as an equality in the following way

S [ρS (t )]+S [ρE (t )] = S [ρ(t )]+D [ρ(t )|ρS (t )⊗ρE (t )] (1.36)

where D [α|ω] is the relative entropy between any two density operators α,ω in the relevant Hilbert space

(H in the case of the last expression), defined by

D [α|ω] = kB Tr[α(logα− logω)]≥ 0 , (1.37)
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where we introduce the Boltzmann constant anticipating its thermodynamic interpretation. The fact that

it is non-negative is known as Klein’s inequality and it is zero only if and only if α = ω. Therefore, the

quantity in Eq. (1.36) is identified as

IS :E (t )≡D [ρ(t )|ρS (t )⊗ρE (t )]≥ 0 , (1.38)

called the quantum mutual information, providing a measure of the correlations established between the

open system and environment [33]. More generally, the relative entropy is invariant under unitary evo-

lution D [UαU †|UωU †] = D [α|ω] for any unitary operator U . Moreover, if α1 = Tr2(α) and ω1 = Tr2(ω),

where the traces are over a second sub-system, then D [α1|ω1]≤D [α|ω] and the equality holds for uncor-

related systems D [α1|ω1] =D [α1⊗α2|ω1⊗ω2]. Using these properties along with Eq. (1.33) applied to ρ

andω, it is easy to show that

D [ρ(t )|ω(t )]≤D [ρ|ω] . (1.39)

Therefore the relative entropy always decreases under the action of a dynamical map. This statement was

proven in 1975 by G. Lindblad [57]. Denoting ρss
S as the stationary state of the dynamical map, we have

St (ρss
S ) = ρ

ss
S , i.e. it is an eigenoperator of the map with eigenvalue one. Then D [ρS (t )|ρss

S ] ≤ D [ρS |ρss
S ]

and thus we define

Σ(t )≡D [ρS |ρss
S ]−D [ρS (t )|ρss

S ]≥ 0 . (1.40)

In other words, the dynamical map decreases the relative entropy of the system with respect to the sta-

tionary state, being zero when this state is reached. This is a statement of irreversibility in open quantum

systems and the last quantity can be interpreted phenomenologically as the entropy production (see Sub-

sec. 1.1.2 and Eq. (1.3) in particular). We can use it to write an entropy balance. Simplifying the notation

SS (t )≡ S [ρS (t )] and∆SS (t )≡ SS (t )−SS (0), we obtain [56]

∆SS (t ) =Σ(t ) +kB TrS [(ρS (t )−ρS ) logρss
S ] . (1.41)

The second term can be interpreted as the entropy exchanged with the environment. Indeed, if we assume

that ρss
S is the thermal state in Eq. (1.30) with Hamiltonian HS , then we immediately obtain

∆SS (t ) =Σ(t )−
∆ES (t )

T
, (1.42)

where∆ES (t )≡ TrS [HS (ρS (t )−ρS )] is the energy change in the system. Note, however, that we cannot di-

rectly interpret it as heat flowing out of the reservoir∆ES (t ) 6=−Q (t ), since this would require knowledge

about the microscopic state of the environment and interaction. Instead, we interpret∆ES (t )more gen-

erally as the energy change in the system due to irreversible processes, here called dissipated energy. The

last expression is then interpreted, phenomenologically, as the second law of thermodynamics for open

systems.
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Markovian Evolution

We have seen that for a fixed time interval t ≥ 0 the evolution of the open system in Eq. (1.33) is given by

a completely positive and trace preserving dynamical map. The full evolution of the system at any time

is then given by a whole family of such maps {St |t ≥ 0}, which could be very involved to analyze. This

difficulty arises because the system evolution is generally not Markovian. A dynamical map is Markovian

if it satisfies the semigroup or Markov property

St2
=St2,t1

St1
with t2 ≥ t1 ≥ 0 . (1.43)

Generally, this is composition law is not satisfied by the dynamical map in Eq. (1.33), since as we discussed

the system and environment are entangled after time t1, so that the full state at that time is no longer a

product state. However, under suitable physical conditions (discussed in Subsec. 1.3.3), the open system

evolution can be considered Markovian. In this case, {St2,t1
|t2 ≥ t1} is a continuous family of dynamical

maps called a quantum dynamical semigroup [49, 56]. This is in opposition to the group structure of

unitary maps [51]. We restrict ourselves to one-parameter semigroups St2,t1
= St2−t1

for simplicity, in

which case the mapSt describes an evolution which is homogeneous in time

ρS (t ) =St (ρS ) = exp(L t )ρS . (1.44)

The time-independent linear map L is called the generator of semigroup and satisfies TrS [L (ρS )] = 0.

Differentiating with respect to time we have

dρS (t )
d t

=L [ρS (t )] , (1.45)

which is referred to as the quantum master equation. The most general form of the generator L was

derived in 1976 for an N -level quantum system by V. Gorini, A. Kossakowski, E. C. G. Sudarshan [54], and

in the same year by G. Lindblad for a separable Hilbert space [55]. For a finite Hilbert space dim(HS ) =N ,

the mapSt can be represented in a Hilbert space of its own with an orthonormal basis {Jk }N
2

k=1 and inner

product TrS (J
†

k J j ) = δ j k . We choose one of these elements to be the identity operator, which means that

the remaining N 2−1 are traceless operators. The generatorL then has the form

L [ρS (t )] =−
i

~
[HL ,ρS (t )]+

N 2−1
∑

j ,k=1

γ j k

�

J jρS (t )J
†

k −
1

2

¦

J †
k J j ,ρS (t )

©�

, (1.46)

where HL is a self-adjoint operator having units of energy called the effective Hamiltonian; it does not

necessarily correspond to the Hamiltonian of the system HS . The commutator term on the right hand-

side thus describes unitary evolution. The second term is usually called the dissipator, being responsible

for the irreversible evolution of the open quantum system. The matrix (γ j k ) is positive (thus self-adjoint),

has units of inverse time and { , } denotes the anti-commutator. Physically, this matrix defines relaxation

rates of the open system interacting with a given environment. Note that Eq. (1.46) can always expressed

in diagonal form by a unitary transformation of the dissipator.
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For the stationary state of the map, it follows from Eq. (1.44) and Eq. (1.45) thatL (ρss
S ) = 0, i.e. station-

ary states are eigenoperators of the generator with zero eigenvalue. Differentiating Eq. (1.40) with respect

to time, we obtain

Σ̇(t )≡−
d

d t
D [ρS (t )|ρss

S ] =−TrS [L [ρS (t )] (logρS (t )− logρss
S )]≥ 0 , (1.47)

where Σ̇(t ) is the rate of entropy production, which is always positive since the derivative of the relative

entropy with respect to the stationary state is always negative. This last statement, derived in 1978 by

Herbert Spohn [58], is a stronger statement than the positivity of the entropy production in Eq. (1.39).

Assuming the stationary state is the Gibbs state, we can differentiate Eq. (1.42) to obtain

d SS (t )
d t

= Σ̇(t )−
JS (t )

T
, (1.48)

where JS (t )≡ TrS [HSL [ρS (t )]] is the rate of dissipated energy in the system. This is the differential version

of Eq. (1.42), which we can interpret phenomenologically as the second law of thermodynamics for open

quantum systems.

1.3.3 Quantum Master Equations

In the previous section, we laid out the general theory of open quantum systems and shown that, if the

evolution of the system is Markovian, a description in terms of a quantum master equation is possible. In

this section, we summarize how they can be obtained microscopically, starting from the full dynamics in

Eq. (1.29) and the Hamiltonian in Eq. (1.32). This involves a treatment of the interaction V , environment

Hamiltonian HE and its stateρE . When the environment is in thermal equilibrium, these equations obey

detailed balance, which ensures thermalization of the open system.

We should add that although the main results of this thesis, presented in Chapter 2, are not based on

quantum master equations, we find this section necessary for several reasons. First, a formulation of our

results in terms of quantum master equations is in preparation and should be available in the near future.

Second, the property of detailed balance, necessary for thermalization, has been traditionally obtained for

master equations. Finally, it is important to contrast how thermalization is achieved in the weak coupling

and low density limits (both presented below) with how it is achieved at the single collision level between

a system and a wave packet (see Sec. 2.3). We hope this section gives a broader understanding of our

contribution to thermalization of open systems.

Several strategies can be employed to derive quantum master equations depending on the model un-

der consideration. The most general procedure starts from Eq. (1.29) and applies so-called projection

techniques, developed by S. Nakajima and R. Zwanzig [59, 60]. These techniques involve defining a pro-

jector P which acts on ρI (t ) and retrieves only those degrees of freedom which one wishes to describe.

For instanceP [ρI (t )] can represent the populations if one is interested in deriving Eq. (1.31) or it can be

the product state TrE [ρI (t )]⊗ρE if one is interested in the open system dynamics, whereρE is a fixed state
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of the environment. We focus here on the latter, which in any case allows the derivation of Eq. (1.31) for

open systems. We assume an initial product state and also that TrE [VI (t )ρE ] = 0. The latter condition can

always be adopted if the environment state is stationary [ρE , HE ] = 0 [51]. We can write down an equation

for the projected state

dP [ρI (t )]
d t

=

∫ t

0

K (t , t ′)P [ρI (t
′)]d t ′ , (1.49)

whereK (t , t ′) is called the memory kernel. Due to the condition TrE [VI (t )ρE ] = 0, the kernel is at least

second order in the interaction VI (t ). It depends on the irrelevant degrees of freedom I−P containing the

correlations between system and environment, where I is identity. Thus, the memory kernel describes the

non-Markovian evolution of the open system. The crucial point in deriving quantum master equations is

to identify the physical conditions under which the kernel becomes Markovian.

Weak Coupling Limit

The weak coupling limit is essentially a generalization of van Hove’s derivation of Eq. (1.31). In this case,

it is possible to truncate the memory kernel to second-order in the interaction. Introducing the coupling

parameter V →λV , taking the trace over the environment and performing a change of variables, Eq. (1.49)

becomes

dρS (t )
d t

=−
λ2

~2

∫ t

0

TrE [VI (t ), [VI (t −u ),ρS (t −u )⊗ρE ]] . (1.50)

In order to achieve a Markovian kernel, one usually introduces a new time scale τR = λ2t describing the

evolution of the system due to the interaction. In the weak coupling limit, the interaction only affects

significantly the system over very long times. This corresponds to the limit λ→ 0, t →∞ with τR being

constant. Moreover, if the interaction terms in the integrand vanish over a timeτE �τR , we can substitute

ρS (t −u )→ρS (t ) and the integral can be taken to infinity. The Markovian equation thus obtained is called

the Redfield equation, which was derived by A. G. Redfield to describe spin relaxation in the context of

nuclear magnetic resonance [61]. Such an equation, however, cannot yet be described by a generator

of the form in Eq. (1.46) and the associated map is not yet a semigroup. One then usually performs the

so-called secular approximation, which is valid when τS � τR , where τS is a typical, intrinsic evolution

time scale of the system. This approximation is similar in spirit to the rotating wave approximation used

in quantum optics [24, 44, 45, 62]. Together, this set of approximations (weak coupling limit, Markovian

approximation and secular approximation) is called the Born-Markov-Secular approximation [50, 56, 51].

Using these approximations and taking a general interaction of the form V =
∑

αAα⊗Bα, where Aα and Bα
are self-adjoint operators in the Hilbert space of the system and environment, respectively, we can write

Eq. (1.50) as a generator in the interaction picture as

L [ρS (t )] =−
i

~
[HLS ,ρS (t )]+D(ρS (t ) (1.51)
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In the last expression, HLS is a self-adjoint operator called the Lamb-Shift Hamiltonian, which is propor-

tional to λ2 and commutes with the system Hamiltonian [HLS , HS ] = 0. The explicit expression can be

consulted elsewhere [50, 56, 51]. More important for us is the dissipator

D(ρS (t ) =λ
2
∑

ω

∑

α,β

γαβ (ω)
�

Aβ (ω)ρS (t )A
†
α(ω)−

1

2

¦

A†
α(ω)Aβ (ω),ρS (t )

©�

, (1.52)

whereω denotes a particular Bohr frequencies of the system and the jump operators are given by

Aα(ω) =
∑

j ,i :e j−ei=~ω
〈 j |Aα|i 〉 | j 〉〈i | (1.53)

being eigenoperators of HS obeying [HS , Aα(ω)] = ~ωAα(ω). As a consequence of the secular approxima-

tion, these operators describe transitions between eigenstates with the same Bohr frequency. The matrix

element γαβ (ω) is given by

γαβ (ω) =
1

~2

∫ ∞

−∞
TrE [B

†
α(t )Bβ (0)ρE ]exp (iωt ) d t , (1.54)

where Bα(t ) are the environment operators in the interaction picture. These quantities are Fourier trans-

forms of two-point correlations functions of the environment, and represent the rates of dissipation of

the open system. We should add that in order for these quantities to be well-defined, the environment

correlations in the integrand have to decay in a finite time τE as we mentioned above. However, this can

only happen if the reservoir has a continuous spectrum, which is the case if the environment is infinitely

large [49, 50, 51]. The rates can then be shown to be positive and thus Eq. (1.51) is indeed the generator of

a semigroup. We mention two important properties of this master equation.

1. If the Hamiltonian of the system is not degenerate, the populations and coherences decouple. This

means that populations obey a closed master equation equivalent to Eq. (1.31) (either in Schrödinger

or interaction picture) with rates Tj i =
∑

αβ γαβ (ei − e j ) 〈i |Aα| j 〉 〈 j |Aβ |i 〉. Thus we recover Pauli’s

equation for an open system. Fermi’s golden rule now states that transitions happen between eigen-

states with the same Bohr frequency.

2. If the environment state is a thermal reservoir given by Eq. (1.30) (with Hamiltonian HE ) then the

rates obey the symmetry γαβ (−ω) = exp(−βω)γβα(ω), which follows from the well-known Kubo-

Martin-Schwinger relation for the correlation functions of the reservoir [63, 50, 56]. This symmetry

suffices to prove that the thermal state in Eq. (1.30) (with Hamiltonian HS ) is a stationary state of the

generator. Moreover, the aforementioned symmetry implies the detailed balance symmetry for the

population rates Tj i = exp(−β∆ j i )Ti j .

The last two properties imply that the open quantum system undergoes decoherence and thermalizes.

They are crucial to establish a microscopic theory of thermodynamics of weakly coupled quantum system

[63, 64, 65]. Since the environment is a thermal reservoir and the Hamiltonian is time-independent, the
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rate of entropy flow in Eq. (1.48) can be interpreted as heat flowing out of the reservoir and into the system.

The same applies to the entropy flow in Eq. (1.42) obtained by integration over time. In other words, these

equations can be interpreted as the second law of thermodynamics, derived microscopically in the weak

coupling limit.

One can also derive quantum master equations in the so-called singular coupling limit, which is valid

under strong coupling provided the environment correlations decay faster than any relevant time scale

τE → 0. The derivation is similar to the weak coupling limit presented above, but the correlations do not

obey detailed balance and are thus beyond the scope of this. Rigorous derivations can be found elsewhere

[50, 56, 51].

Low Density Limit

A quantum master equation can be derived in the so-called low density limit, which is based on quantum

scattering theory which we introduce in Sec. 2.2. A rigorous mathematical derivation of this equation was

obtained in 1985 by R. Dümke [66] and finds applications in quantum optics, for instance in describing

how emission and absorption spectra of atoms are modified as a result of collisions [67, 68, 24]. In this

setup, the open quantum system considered is again discrete, while the environment is a thermal gas of

N non-interacting particles in a volume V having uniform density n =N /V . Each one of the gas particles

collides with the quantum system according to an interaction V , which is assumed to be such that scat-

tering theory can be applied (see Sec. 2.2). The single-particle Hamiltonian is HE =
∫

( ~p 2/2m )| ~p 〉〈 ~p |d 3p

where {| ~p 〉} are improper momentum states in three dimensions and its state is

ρE =
(2π~)3

V

∫

µMB( ~p ) | ~p 〉〈 ~p | d 3p , (1.55)

whereµMB( ~p ) is the Maxwell-Boltzmann distribution introduced in Eq. (1.7). In order to derive a quantum

master equation starting from Eq. (1.49), the thermal gas should have a density low enough so that only

two-body collisions are relevant, and moreover that the time between collisions τW is much larger than

the duration of a collision τC . Indeed, if v is the typical velocity of a gas particle, then we require τW ∼
n−1/3v−1� τC which holds in the limit n → 0. This limit is trivial since then the collision rate defined by

γ=σn v , whereσ is the scattering cross section, goes strictly to zero. A constant collision rate is obtained

only in the limit n → 0 and t →∞ with n t being constant. After performing an average over these long

time scales, in the same spirit as the secular approximation, the memory kernel in Eq. (1.49) becomes

Markovian and is indeed the generator of a semigroup [66]. Before presenting the resulting equation, we

define the jump operators

Tω(~q , ~p ) =
∑

j ,i :e j−ei=~ω
〈 j , ~q |T |i , ~p 〉 | j 〉〈i | (1.56)

which are eigenoperators of HS . The operator T is called the transfer operator, being related to the scatter-

ing operator and capturing the effect of a single collision [69, 70, 71]. Using these operators we can write
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a generator of the form in Eq. (1.51), with Lamb-Shift Hamiltonian

HLS = (2π~)3n

∫ �

T0( ~p , ~p ) +T †
0 ( ~p , ~p )

2

�

µMB( ~p )d
3p . (1.57)

Note that this Hamiltonian commutes with the system Hamiltonian [HS , HLS ] = 0 and contributes only to

transitions between degenerate levels. The dissipator reads

D(ρS (t ) = n

∫ ∫

∑

ω

γω(~q , ~p )
�

Tω(~q , ~p )ρS (t )T
†
ω(~q , ~p )−

1

2

¦

T †
ω(~q , ~p )Tω(~q , ~p ),ρS (t )

©�

d 3p d 3q , (1.58)

where the quantity γω(~q , ~p ) is positive and defined by

γω(~q , ~p ) = (2π)4~2µMB( ~p ) δ
� ~q 2

2m
−
~p 2

2m
+~ω

�

. (1.59)

The most important properties of the aforementioned generator are similar to the weak coupling limit.

Namely, if the spectrum of HS is not degenerate, the populations and coherences decouple and we recover

Pauli’s equation for an open system. The main difference occurs at the level of detailed balance. The rates

for the population read Tj i = n
∫ ∫

γe j−ei
(~q , ~p ) | 〈 j , ~q |T |i , ~p 〉 |2 d 3p d 3q and can be shown to obey detailed

balance if the property of micro-reversibility 〈 j , ~q |T |i , ~p 〉 = 〈i ,− ~p |T | j ,−~q 〉 is obeyed [66]. This property

was already mentioned in Subsec. 1.3.1 and is related to the fact that a single collision is reversible in time.

Then the open system decoheres and thermalizes in the low density limit.

We finish by briefly comparing the low density limit with the approach taken in this thesis and laid out

in Chapter 2. First, our approach focuses on the scattering map for a single collision in one dimension and

not on quantum master equations. Second, our approach takes into account the spatial structure of the

colliding particles as wave packets. This means that the notion of a thermal gas which is diagonal in the

momentum according to Eq. (1.55) is no longer generally applicable, since as we covered in Subsec. 1.2.2 a

wave packet is not localizable in momentum. Nevertheless, we show in Sec. 2.1 how the traditional notion

of a thermal gas is recovered in terms of wave packets. Then in Sec. 2.3 we show how wave packets effusing

from this thermal gas lead to thermalization of the system through collisions, where micro-reversibility is

again an essential ingredient.

Other Equations Based on Scattering Theory

One can also derive quantum master equations describing decoherence and thermalization of the wave

function of a quantum system as a result of collisions with a background gas, very much in the spirit of

Boltzmann’s approach [72, 73, 74, 75, 76]. These equations were successfully applied to predict decoher-

ence rates of large molecules, like fullerenes, due to the their own emission of thermal radiation [77, 78].

They are related to the aforementioned low density limit, in the sense that a low density gas is always as-

sumed for a consistent derivation of these equations. This is beyond the scope of our thesis, which deals

mostly with irreversibility of internal degrees of freedom, but treatments of the background gas in terms

of wave packets can be found in the these studies, which inspired our own treatment of thermal gas of

wave packets in Sec. 2.1.
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1.3.4 The Laws of Thermodynamics

We can now establish a general form of the first and second law of thermodynamics for quantum systems,

starting from the full Hamiltonian in Eq. (1.32). We require the interaction to be time-dependent, allowing

us to formulate the notion of work as the energy exchanged due to a time-dependent Hamiltonian. This

is line with most approaches in thermodynamics of quantum systems [79, 80, 81, 82, 83, 84], where the

time-dependence represents some external degrees of freedom over which we have full control and thus

can be used to manipulate the system in a deterministic fashion. The environment is a thermal reservoir

with state given by Eq. (1.30) and can be finite. As usual, the system and reservoir are initially uncorrelated

ρ =ρS ⊗ρE . The full state evolves unitarily during a time t according to Eq. (1.22) and its von Neumann

entropy does not change∆S (t ) := 0. We thus define work as the energy exchanged in the full system

W (t )≡ Tr[H (t )ρ(t )−H (0)ρ] . (1.60)

We can split work into two different contributions. First, the energy exchanged in the open system which

is defined including the contribution of the interaction

∆ES (t )≡ TrS [HS (ρS (t )−ρS )]+Tr[V (t )ρ(t )−V (0)ρ] . (1.61)

The second contribution is due to the energy flowing out of the reservoir

Q (t ) =−TrE [HE (ρE (t )−ρE )] . (1.62)

Note thatρS (t ) andρE (t ) are obtained from completely positive and trace preserving dynamical maps as

discussed in Subsec. 1.3.2. Thus we write the first law of thermodynamics for quantum systems

∆ES (t ) =W (t ) +Q (t ) , (1.63)

with the definitions above. An identification of Q (t ) as heat has to be justified through a formulation of a

second law of thermodynamics. We follow Ref. [80]which starts from the invariance of the von Neumann

entropy at the full system level∆S (t ) := 0 to obtain the entropy change in the open system

∆SS (t ) =Σ(t ) +
Q (t )

T
, (1.64)

where the entropy production is written as a relative entropy

Σ(t )≡D [ρ(t )|ρS (t )⊗ρE ]≥ 0 , (1.65)

being an exact measure of the correlations established between system and a thermal reservoir of finite

size. If we compare this relative entropy with the one formulated through the sub-additivity property of

the entropy in Eq. (1.36) and Eq. (1.38), we get an exact relationΣ(t ) = IS :E (t )+D [ρE (t )|ρE ]. The last term

represents the information discarded from not knowing the state of the reservoir after the evolution.
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Finally, we note that work vanishes for a time-independent Hamiltonian W (t ) := 0. However, this is not

enough to ensure thermalization of the open system even if the reservoir is infinite, since the interaction

can still be strong and thus Markovianity is not guaranteed in the usual system-reservoir setup. However,

in the weak coupling limit it is guaranteed and the aforementioned laws can be expressed solely in terms

of system quantities. In this limit we can also obtain the differential version of these laws (see discussion of

the weak coupling limit in Subsec. 1.3.3). However, we know of no attempt to connect the first and second

laws stated above with the low density limit. In fact, this would require a treatment of energy and entropy

changes using the scattering operator. The results of this thesis provide a first step in this direction.
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1.4 Models of Repeated Interactions

We introduce a framework for open quantum systems based on repeated interactions, motivated by mod-

ern experiments in quantum optics. We formulate the first and second law of thermodynamics within this

framework and discuss some problems associated with thermalization and the notion of work. These are

the main motivations for the results of Chapter 2.

1.4.1 Motivation from Quantum Optics

We mentioned in Subsec. 1.3.2 that a laser is built by stimulated emission of photons from excited atoms

into a cavity. This requires the populations of the excited level of the atom to be inverted with respect to a

lower level. From a thermodynamic perspective, detailed balance is broken between the atomic transition

which, via stimulated emission, generates the laser light: this means that lasers operate out of equilibrium.

Since the photons emitted have ideally the same frequency and phase, the laser field constitutes a low

entropy source which can be used to generate work — this is in contrast with thermal light, characterized

by a broad range of frequencies and phases in thermal equilibrium. However, even at low temperatures

where few thermal photons are present, there exist laser field losses due to spontaneous emission from

the atoms and due to the imperfect cavity. The theory of open quantum systems and resulting master

equations have been successfully applied to describe gains and losses in lasers [24, 44, 45].

Ideally, one could populate a lossless cavity with photons by sending an atom, modelled by a two-level

system with a Bohr frequency resonant with the electromagnetic field. A theoretical model describing this

situation was introduced in 1963 by E. T. Jaynes and F. W. Cummings [85]. Only later, with the advent of

superconducting cavities and frequency-tunable lasers, did this model become experimentally feasible,

thus leading to the development of the micromaser (single-atom maser) [86, 87] and more generally to

the study of light-matter interaction in cavities — this field is called cavity quantum electrodynamics or

cavity-QED for short [88, 89, 62]. A cavity-QED setup is shown in Fig. 1.1. Before entering the cavity, a

conventional laser is used to excite a particular transition of an atom in the microwave regime. The long

lifetime of the atom and the high quality of the cavities ensure that the rate at which losses of photons

occur in the atom are low compared to the Rabi frequency, defined as the rate of oscillations induced by

the atom-field coupling. Moreover, the flux of atoms is low enough that, at most, one atom is present

in the cavity at a time. These features of cavity-QED allow the observation of unitary energy exchanges

between the atoms and the field which are averaged out in conventional lasers and masers. It has also

been a major tool to study quantum entanglement and light-matter interaction in the strong coupling

regime [90, 62, 91]. Moreover, the micromaser has been used as a basis for a quantum heat engine, which

exploits coherences in the atom to extract more work than classically allowed [92].

The relevant question is how to build a consistent theory of thermodynamics which includes strong

non equilibrium contributions, such as those found in cavity-QED. This is addressed in the framework of

repeated interactions, also known as collision models, introduced below.
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Figure 1.1: Cavity-QED experimental setup. Atoms effusing from an oven O enter into a box B , where they

are prepared in very excited Rydberg states using a laser L . These states have a large dipole moment and

interact very strongly with microwave photons in the superconducting cavity C . The atoms then leave

the cavity and are detected by field-ionization detector D . The figure is taken from Ref. [62]. A velocity

selector can also be included between O and C to fix the interaction time between atom and cavity field.

1.4.2 Repeated Interaction Models

Repeated interaction models are an alternative approach to quantum open systems [93, 94, 95], having

proved useful in quantum information, thermodynamics and optics [96, 97, 98, 99, 100]. In these models,

the environment is composed of an ensemble of sub-systems, which we call units, initially uncorrelated

with each other and with the system. The system interacts sequentially with each unit during a given time,

in a collision-like fashion. After each interaction, the unit is discarded and replaced by a new unit, the

process being repeated several times and thus inducing a given dynamics in the system. We are interested

in the case where the units are prepared all in the same state, but apart from this the state of system and

units can be arbitrary. In this case, the evolution of the open system is described by a single (completely

positive and trace preserving) dynamical map which is clearly Markovian since each unit is discarded after

the interaction. These models are then quite different from the framework presented in Subsecs. 1.3.2 and

1.3.3, since Markovianity here holds ab initio, independently of the coupling strength between system

and unit. This allows for simple derivations of quantum master equations which do not rely on weak

coupling or low density limits [94, 95, 101, 102]. We also mention that these models can be extended to

study non-Markovian evolution, for instance by correlating units with each other, but this is beyond the

scope of our work [103, 104]. Below, we present the general formalism for repeated interactions, which

we then use to establish an energy and entropy balance for a single interaction. We show how the laws of

thermodynamics arise from this balance when the units are in thermal equilibrium.
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Time Evolution

We start with the full Hilbert spaceH =HS ⊗HE whereHE =
⊗

nH n
U is the Hilbert space of the environ-

ment andH n
U is the Hilbert space of the n th unit. The number of units can potentially be infinite, thus we

leave the limits of n implicit. The Hamiltonian of the full system is given by Eq. (1.32) where HE =
∑

n H n
U

and H n
U is the Hamiltonian of the n th unit, having discrete spectrum just like the system Hamiltonian HS .

We omit the identity operator in the sum for simplicity. The most important feature is the interaction,

which in these models takes the form

V (t ) =
∑

n

V n (t ) =
∑

n

Θ(t −nτ)Θ(nτ+τ′− t )V n
SU (t ) . (1.66)

In the last expression Θ(t ) is the Heaviside theta function, having the value of unity if t ≥ 0 and zero

otherwise. The operator V n
SU (t ) is an arbitrary time-dependent interaction between the system and the

n th unit. In other words, the interaction between system and n th unit is switched on at a time t = nτ and

switched off at a time t = nτ+ τ′, where τ′ is the interaction time and τ > τ′ is the waiting time. The

full system then evolves freely until t = (n + 1)τ, where a new interaction with the (n + 1)th unit occurs

and the process is repeated. Finally, the initial state of the environment is given by ρE =
⊗

n ρ
n
U , being

uncorrelated with the system. We let the first interaction start at t = 0 and wait until t =τ, just before the

second unit arrives. The state of the full system in the Schrödinger picture is then given by

ρ(τ) =U1(τ)(ρS ⊗ρ1
U )U

†
1 (τ)⊗

⊗

n>1

ρn
U (τ) (1.67)

where U1(t ) is the evolution operator associated with the Hamiltonian for the system and the first unit

H 1
SU (t ) =HS +H 1

U +V 1(t ) and ρn
U (τ) for n > 1 is the state of the n th unit after evolving freely during time

τ according to its own Hamiltonian H n
U . From the last expression, we can obtain the state of the system

by tracing out the first unit according to Eq. (1.33), and similar comments holds for the unit, both being

described by a dynamical map which is completely positive and trace preserving. The initial state of the

system and each unit can be arbitrary, making this setup quite versatile.

Nonetheless, we are here interested in not only repeated but identical interactions, with the goal of

obtaining a map for the open system which is n independent. Thus we consider V n
SU (t ), H n

U and the initial

state ρn
U (0) to be of the same form for all units and thus independent of n . Since the units evolve freely

when not interacting, a crucial assumption here is that the state of the units is the same when they reach

the system, i.e. that ρn
U (nτ) = ρ

m
U (mτ) for all m , n ∈ N [99]. In this case, we can drop the n dependence

and focus on the dynamics of the first collision with Hamiltonian HSU (t ) =HS +HU +V (t ) where V (t ) =

Θ(t −τ)Θ(τ+τ′− t )VSU (t ) is the interaction. The full state after time τ now reads

ρSU (τ) =U (τ)(ρS ⊗ρU )U
†(τ) (1.68)

where U (t ) is the evolution operator associated to HSU (t ). The state of the system and unit are straight-

forwardly obtained through partial tracing.
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Quantum Master Equations

It is now simple to derive quantum master equations for the system. There are two main strategies for

this. In the first, one considers the waiting time τ to be Poisson-distributed and the interaction time τ′

to be negligible. In this case, the system evolves freely most of the time, being interrupted by kicks corre-

sponding to the interaction with the units [105, 99]. After averaging over many interactions, one recovers

the desired equation. In the second strategy, the waiting time is negligible and the system evolves under

a constant stream of units with VSU (t ) being constant over τ′. One can then expand the unitary U (τ′, 0),

rescale the interaction VSU → VSU /
p
τ′ and take the limit τ′ → 0 to recover a quantum master equation

[94, 95, 101, 102]. For our purposes in this thesis, we simply state that master equations derived in this

way do not generally obey detailed balance [98, 106]. We discuss this issue in Subsec. 1.4.3.

Energy and Entropy Balance

At this point we can establish an energy and entropy balance for a single interaction. We use the same

method as in Subsec. 1.3.4, except now the environment is a single unit which can be prepared in an

arbitrary state. In order to capture correctly the boundary effect of the interaction, we consider an interval

(−ε,τ) and take the limit ε→ 0 such that the interaction vanishes both at the start and end of the interval

V (−ε) = V (τ) = 0. We remind that the interaction is not effective in the sub-interval (τ′,τ), implying that

the system and unit evolve isolated without exchanging energy or entropy. The work exchanged during

the full interval follows from Eq. (1.60)

W (τ) = Tr[(HS +HU )(ρSU (τ
′)−ρSU )] . (1.69)

The last expression is called switching work, corresponding to the work done by the time-dependent in-

teraction on the system-unit composite. Since the energy change in the system now has the form∆ES (τ)≡
TrS [HS (ρS (τ)−ρS )] and equivalently for the unit, we can write an energy balance from Eq. (1.63)

∆ES (τ) =W (τ)−∆EU (τ) . (1.70)

Since the unit is not necessarily thermal, the entropy balance for the system is written more generally

using the sub-additivity property in Eq. (1.36)

∆SS (τ) = IS :U (τ)−∆SU (τ) . (1.71)

The last two expressions are the energy and entropy balance, which lack any a priori thermodynamic

interpretation. Of course, when the unit is in a thermal state we recover the first and second law of ther-

modynamics in Eqs. (1.63) and (1.64). We note that it is also possible to formulate the first and second

law of thermodynamics in these models by coupling the system-unit composite to a thermal reservoir,

while keeping the state of the unit arbitrary. It is then evident that the unit constitutes a non equilibrium

resource for the system [99]. However, whether in the absence or presence of a thermal reservoir, the

switching work of Eq. (1.69) represents a source of non equilibrium which is intrinsic to repeated interac-

tion models. This is the focus of discussion in the next section.
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1.4.3 Formulation of the Problem

The work in Eq. (1.69) is usually interpreted as the energy required by an external agent to switch on and

off the system-unit interaction. This statement is however meaningless when one considers experiments

where such models could be applied, such as those of cavity-QED, since there is no agent mediating the

system-unit interaction. It is also meaningless if one remembers that these models are inspired by col-

lisions, which happen in space through a time-independent potential and thus without external agency.

Thus a priori, the switching work represents an extra energy source which lacks a physical interpretation in

models of repeated interaction. However, its presence has important thermodynamic consequences. For

instance, systems under repeated interactions with thermal units fail to thermalize and switching work is

the energy that sustains the non equilibrium steady state [98, 107, 108]. This is line with the fact that the

thermal state is not a stationary state of the dynamical map for the system even when the unit is thermal.

As a consequence, quantum master equations derived from these models do not generally obey detailed

balance [106]. In summary, repeated interaction models generally fail to describe thermalization. A po-

tential solution for this problem comes from the field of quantum resource theories [109, 110, 111, 112].

Here, one is interested in the set of transformations that an agent can perform on a system with the goal

of using it as a resource, e.g. for work extraction. The allowed transformations require no work and are

in this sense free resources — they are called thermal maps. These are maps of the form in Eq. (1.33),

where the environment is thermal and the unitary U is energy preserving [U , HS +HE ] = 0. If we assume

that the system-unit evolution is effected by energy preserving unitary, then clearly the switching work in

Eq. (1.69) vanishes and this ensures thermalization [106]. To give a concrete example, if the system and

unit are both spins with resonant energy gaps, then a unitary which swaps the states of the spins is clearly

energy preserving and the system thermalizes over many interactions. This solves the problem of ther-

malization in these models, but at the cost of restricting the types of interactions that can occur between

system and unit. Moreover, this solution does not shed any light on the physical origin of the switching

work. A more satisfactory solution would describe thermalization without restricting the interaction and

also explain the switching work from a microscopic point of view.

In the next chapter, we provide an alternative approach to these models by treating the system-unit

interaction as a true collision happening in space. In other words, the unit is treated as a particle having

some internal structure and travelling in space as a wave packet. The state of the full system before and

after a single collision is obtained using the scattering operator, which is unitary and conserves total (in-

ternal and kinetic) energy. By tracing out all degrees of freedom of the particle, we obtain a dynamical

map for the system whose properties depend strongly on the wave packet. We show how the kinetic en-

ergy exchanged during the collision can be either interpreted as heat, thus inducing thermalization of the

system; or as switching work, thus acting as a source of non equilibrium energy.
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Chapter 2

Thermodynamics of Quantum Collisions
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2.1 Thermal Gas of Wave Packets

Before introducing quantum scattering theory, we show how to treat a thermal gas of wave packets in a

box. To the author’s knowledge, this treatment is rarely found in the literature except in Refs. [73, 113].

Since the wave packets have a finite width in position and momentum space, they are not diagonal in

either representation. However, when the box is very large we recover the usual notion of a thermal bath

without coherences in momentum given by Eq. (1.55). We compare our approach with the traditional

approach based on plane waves, both matching in the limit of a large box. We comment on the state of

the thermal gas of packets when it effuses the box to collide with a system of interest.

2.1.1 Wave Packet Approach

We consider an ensemble of massive particles without internal structure, each described by a Gaussian

wave packets in a pure state having an average position x0 and momentum p0 according to Eq. (1.17).

The particles are uniformly distributed in a one-dimensional box of length L and their average momenta

is thermal according to the Maxwell-Boltzmann distribution in Eq. (1.7). The state of a single particle is

then given by the mixture

ρ =

∫

L

d x0

L

∫

d p0 µMB(p0) |φx0,p0
〉 〈φx0,p0

| , (2.1)

where we added the labels for the average positions and momenta of the pure states |φx0,p0
〉 〈φx0,p0

|. We

can now insert two resolutions of identity in momentum p and p ′ at the left and right of the pure states in

Eq. (2.1), respectively, and then use the definition Eq. (1.17) to get an explicit expression. We also perform

a useful change of variables to the center of momenta u = (p ′+p )/2 and relative momenta v = (p ′−p )/2.

After this, Eq. (2.1) reads as follows

ρ =

∫

d u

Zβ

∫

d p0 exp
�

−
β (u −p0)2

2σ2
p

�

exp
�

−
βp 2

0

2m

�

∫

d v

(2πσ2
p )1/2

δL (v )exp
�

−
v 2

2σ2
p

�

|u − v 〉 〈u + v | , (2.2)

where Zβ ≡ L/λβ is the partition function at inverse temperature β and λβ = ~
p

2πβ/m is the thermal

wavelength. Importantly, the diffraction function

δL (v ) =
L

π~
sinc

�v L

~

�

, (2.3)

where sinc(x ) = sin(x )/x , approaches aδ-function when the box is infinitely large. Before taking this limit,

we perform the integral over p0, the result being another Gaussian function

ρ = Z −1
βC

∫

d u exp
�

−
βC u 2

2m

�

∫

d v δL (v )exp
�

−
v 2

2σ2
p

�

|u − v 〉 〈u + v | . (2.4)

In the last expression, ZβC
is a new partition function defined in terms of a modified thermal wavelength

λβC
with βC = β/(1+βσ2

p/m ). This result is exact and equivalent to Eq. (2.1). It shows that the center of
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momenta u are thermally distributed with a new inverse “temperature” βC which depends on the width

in momentumσp , while coherences v are generally present. To obtain a gas without coherences, we first

estimate the width of δL (v ), which can be approximated by twice the distance between the maximum at

v = 0 and the first zero at v =π~/L , yielding the width∆v ' 2π~/L . If the condition∆v �σp holds, then

we can approximate δL (v ) as a δ-function and the integral over v simplifies. Using the relation between

Gaussian wave packetsσxσp = ~/2, the last condition can be written more simply as L �σx . We get

ρ =
1

ZβC

∫

d u exp
�

−
βC u 2

2m

�

= Z −1
βC

exp(−βC Hp ) , (2.5)

where Hp = p 2/2m is the Hamiltonian of kinetic energy. However, this is still not a thermal state with in-

verse temperatureβ , but instead depends on the width of the packets. However, if the conditionβσ2
p/m �

1 holds, or equivalentlyσx �λβ , then we have βC 'β and therefore

ρ = Z −1
β exp(−βHp ) =

2π~
L

∫

d p µMB(p ) |p 〉 〈p | , (2.6)

which is the one-dimensional version of the thermal gas presented in Eq. (1.55). The last expression is

valid under the important condition L �σx �λβ .

2.1.2 Plane Wave Approach

We start with a fully quantum description of a massive particle in a one-dimensional box of length L . The

kinetic energy of the particle is discrete and specified by the Hamiltonian of kinetic energy Hp whose ac-

tion on proper momentum eigenstates is Hp |pn 〉= p 2
n/(2m ) |pn 〉with n ∈N and pn = 2πn~/L is quantized

according to periodic boundary conditions on the interval x ∈ [−L/2, L/2]. The resolution of identity in

the box is given by IL =
∫

L
|x 〉 〈x |d x in position and Ip =

∑

n |pn 〉 〈pn | in momentum. In fact, these last

quantities are the same IL = Ip but this notation will prove useful when we take the large box limit below.

The inner product between position and momentum states reads

〈x |pn 〉= L−1/2 exp (i pn x/~) , (2.7)

which are plane waves with discrete momentum. With this in mind, we consider the state of the particle

to be thermal with inverse temperature β and write it as follows

ρ = Z −1
β exp

�

−βHp/2
�

IL exp
�

−βHp/2
�

(2.8)

= Z −1
β

∑

n ,n ′
exp

�

−
βp 2

n

2m

�

|pn 〉 〈pn ′ |
∫

L

d x

L
exp

� i (pn ′ −pn )x
~

�

(2.9)

= Z −1
β

∑

n ,n ′
exp

�

−
βp 2

n

2m

�

|pn 〉 〈pn ′ |δn ′n = Z −1
β exp

�

−βHp

�

, (2.10)

where Zβ = Tr[exp(−βHp ) IL ]. The step from the second to the third line follows directly from the momen-

tum boundary conditions and shows that the state is diagonal in momentum. We now show that this is not
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generally the case when we take the continuous limit. For this, we note that the difference between any

two momenta∆p ≡ pn−pn−1 = (2π~/L ) can be taken very small provided L is sufficiently large. Therefore,

the continuous limit is formalized by the substitution of the identity in momentum

Ip =
∑

n

|pn 〉 〈pn | → I=
∫

|p 〉 〈p |d p , (2.11)

so that the inner product between position and momentum states are now plane waves with continuous

momentum given by Eq. (1.15). We can now obtain an explicit version for the partition function

Zβ = Tr[exp(−βHp ) IL ] =
1

2π~

∫

L

d x

∫

d p exp
�

−
βp 2

2m

�

=
L

λβ
. (2.12)

We now repeat the calculation in Eq. (2.8) but in continuous momentum. We insert the resolution of

identity in p and p ′ on the left and right of the first line and perform the change of variables u = (p ′+p )/2

and relative momenta v = (p ′−p )/2, obtaining

ρ = Z −1
β

∫

d u exp
�

−
βu 2

2m

�

∫

d v δL (v )exp
�

−
βv 2

2m

�

|u − v 〉 〈u + v | . (2.13)

This equation is very similar to Eq. (2.4) and we treat it in a similar fashion. Here, we obtain a state which

is free from momentum coherences described by Eq. (2.6) if the condition holds L �λβ . In summary, the

wave packet and plane wave approaches in treating a thermal gas are equivalent when L �σx �λβ .

2.1.3 Effusion of the Thermal Gas

Suppose we are interested in sending the thermal gas of particles described by Eq. (2.1) to collide with a

system outside the box. We open a hole in the right side of the box at t = 0. All the particles that leave the

box are known to eventually collide with the system. In order to compute the rate of collisions, we monitor

the hole to know when the center of a particle x0 has crossed it. When the first crossing happens at time

t > 0, we know that its more probable that a fast particle with momentum p0 > 0 crossed than a slow one,

no matter the waiting time t . The momentum distribution of an effusing particle is then shifted towards

higher momentum. It is given by

µeff(p0) =
β |p0|

m
exp

�

−
βp 2

0

2m

�

, (2.14)

called the effusion distribution, normalized here from [0,+∞). In Ref. [114], it was shown how this distri-

bution arises from the Maxwell-Boltzmann distribution when particles hit a scattering center. We use it

in Sec. 2.3 to study thermalization induced by a thermal gas of wave packets.
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2.2 Quantum Scattering Theory

We motivate the use of quantum scattering theory in the study of thermodynamics of quantum system and

review its mathematical formalism. We present the scattering map for the internal degrees of freedom of

the colliding particles in Eq. (2.20) and perform an energy and entropy balance for a single collision. These

are the essential ingredients of all results presented in Sec. 2.3.

2.2.1 Motivation

The discreteness of the internal energy of a particle is related to bound states, the typical example being

the state of the electron bound to an atom by an attractive interaction. However, many interactions in na-

ture can be described in terms of scattering states, which are travelling freely long before and after a given

interaction. Such an interaction between quantum systems is called a collision and the mathematical

framework that describes them is quantum scattering theory. Indeed, we have seen in Sec. 1.2 that par-

ticles travelling freely are described by wave packets and have a continuous energy spectrum. The wave

packets are precisely the free states considered in quantum scattering theory, describing the motional

state of the particles before and after a collision. In general, the particles also have internal structure

which can change due to collisions and quantum scattering theory, in its multichannel formalism, takes

this structure into account [69, 70, 71]. Let us further motivate the scattering approach used in this thesis.

First, we have seen in Subsec. 1.3.3 that microscopic approaches to thermalization require the envi-

ronment to have continuous degrees of freedom — either in the form of an infinite thermal reservoir or a

thermal gas of particles. In addition, we discussed in Sec. 1.4 how modern approaches to thermodynam-

ics rely on collision-like events between the system and an environment having no continuous degrees

of freedom, generally failing to induce thermalization. Since quantum scattering theory is a microscopic

theory of collisions dealing with continuous spectra, it is a natural framework to study thermalization and,

more generally, thermodynamics.

Second, from both a theoretical and experimental point of view, scattering has been ubiquitous in

physics throughout its history [69, 70, 71]. We name a few examples without being exhaustive. In 1911,

scattering experiments between α-particles and gold atoms allowed Rutherford to discover the atomic

nucleus. We also briefly mentioned in Sec. 1.2 how scattering experiments confirmed many predictions of

early quantum theory. In particle physics, quantum collisions are exhaustively used to create new particles

and to test theoretical models. Furthermore, scattering is one of the mechanisms for decoherence [72, 77],

it is at the basis of quantum transport [115, 116] and is indispensable in the field of ultra-cold atoms [117,

118]. Given its universality, it is not surprising that a rigorous quantum theory of scattering was developed

in close connection with experiment, becoming a field of mathematical physics in its own right [119, 120].
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2.2.2 Mathematical Formalism

The main goal of scattering theory is to obtain the scattering operator S which is a one-to-one map be-

tween free (incoming) states before the collision to free (outgoing) states after the collision. Whether or

not such an operator exists depends on the dynamics during the collision through the interaction poten-

tial, which in general can support states which are either free or bound to the interaction region for very

long times. However, its existence is guaranteed for a large class of potentials V (x )which vanish at infinity.

We then consider a quantum system with Hilbert spaceH and time-independent Hamiltonian

H =H0+V , (2.15)

where H0 is the free Hamiltonian having a continuous and possibly discrete spectrum. We take the inter-

action in position V (x ) = 〈x |V |x 〉 to belong to the aforementioned class of potentials.

The Scattering Operator

In this case, the Hilbert space H of the full system can be expressed as a direct sum of two mutually

orthogonal subspacesH =S ⊕B whereS andB are the subspaces of scattering and bound states [71,

70, 119, 120]. This allow us to define the so-called Møller wave operators, which are the central objects in

the time-dependent formalism of scattering theory. Let |ψ±〉 ∈ H be any two states in the Hilbert space

(labelled by ± for later convenience) at some time t0 = 0. For the potentials under consideration, the

following limit holds

|| lim
t→±∞

U (t ) |ψ〉− lim
t→±∞

U0(t ) |ψ±〉 ||= 0 ⇔ |||ψ〉− lim
t→±∞

U †
I (t ) |ψ

±〉 ||= 0 , (2.16)

where |ψ〉 ∈S is a scattering state at time t0 = 0 and || |ψ〉 ||=
p

〈ψ|ψ〉 ≥ 0 is the norm induced by the inner

product. In words, there is a scattering state which evolves, in the past (−) or future (+), into a state that

is indistinguishable from a freely evolving state. By indistinguishable, we mean in the sense of the norm

in Eq. (2.16), since these states can still differ up to a global phase. In the right part of Eq. (2.16) we wrote

the same statement in the interaction picture, which allow us to identify the Møller operators

Ω∓ ≡ lim
t→±∞

U †
I (t ) = lim

t→±∞
U †(t )U0(t ) . (2.17)

These operators are isometries ofH , i.e. they map state vectors onto the subset of scattering states Ω± :

H 7→S while preserving their norm. The isometric property readsΩ†
±Ω± = I. Note that a unitary operator

is necessarily an isometry, but the reverse is not true. For instance, here the adjoint Møller operator Ω†
±

acts only on scattering states Ω†
± : S 7→ H and one has Ω±Ω

†
± = I− PB , with PB the projector onto the

space B of bound states. Note that Ω+ and Ω− have the same range S , a property called asymptotic

completeness [71, 70, 119, 120]. Thus the scattering operator

S =Ω†
−Ω+ = lim

t→+∞
UI (t ) lim

t ′→−∞
U †

I (t
′) =UI (+∞,−∞) , (2.18)
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exists and is a one-to-one map S :H →H in the full Hilbert space. It maps free states in the past to free

states in the future |ψ+〉 = S |ψ−〉 without formation of bound states. Since S is an isometry and one-to-

one, it is unitary S †S = SS † = I. Moreover, from the definition of the Møller operators it follows directly

that [S , H0] = 0 expressing total energy conservation in the collision. We prove this last property and many

others in the Appendix of the manuscript in Sec. 2.3.2.

The Scattering Map for a Subsystem

We now consider the Hilbert space as a tensor productH =HI ⊗HK , whereHI andHK are the Hilbert

spaces of internal and kinetic degrees of freedom of the full system. The free Hamiltonian now reads

H0 =HI⊗IK+II⊗HK , where HI has a discrete spectrum and HK has a continuous spectrum. In the density

matrix formalism, the scattering map for the full system reads

ρ′ = S (ρI ⊗ρK)S
† , (2.19)

where ρ′ is the final state, being generally entangled while the initial internal and kinetic state are fac-

torized. Note we are not assuming thatHI andHK correspond to different particles. For instance, if we

consider a fixed system colliding with an incoming particle, then HI might include the internal struc-

ture of both systems, but we keep the notation general for now. We can trace over the kinetic degrees of

freedom in Eq. (2.19) to obtain

ρ′I ≡ S(ρI) = TrK[S (ρI ⊗ρK)S
†] . (2.20)

Since the scattering operator is unitary and the initial state is factorized, the scattering mapS is completely

positive and trace preserving. The final state of the kinetic degrees of freedom ρ′K is obtained by tracing

over the internal degrees of freedom.

Energy and Entropy Balance

The unitary and energy preserving properties of the scattering operator allow us to perform an energy and

entropy balance for a single collision. We follow Sec. 1.4 except we take the open system to be the internal

degrees of freedom. Then the energy change in the internal structure is given by ∆EI ≡ TrI[HI(ρ′I −ρI)]

and similarly for the kinetic degrees of freedom. Therefore Eq. (1.70) becomes

∆EI =−∆EK , (2.21)

where there is no switching work since the scattering setup is time-independent. The entropy balance is

the same as in Eq. (1.71)

∆SI = II:K −∆SK . (2.22)

Again, the last expressions lack an a priori thermodynamic interpretation, but they are the most general

balances we can perform at the single collision level.
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2.3 Thermodynamics of Quantum Collisions

We present three manuscripts where we formulate the notions of heat and work in quantum scattering

theory. Heat is the energy exchanged by thermally mixed wave packets which are narrow in energy with

respect to the internal system. Work is the energy exchanged by pure and fast wave packets which are

broad in energy with respect to the internal system. We discuss our results in connection to models of

repeated interactions.

2.3.1 Discussion on Heat and Work

We have all the ingredients to tackle the main problem of this chapter: under what conditions can we in-

terpret the change in internal energy, or kinetic energy, as heat or work? Once we establish an answer, then

Eqs. (2.21) and (2.22) can be interpreted as the first and second laws of thermodynamics for a quantum

collision. We discuss heat and thermalization in the first two manuscripts in Secs. 2.3.2 and 2.3.3, while

work is discussed separately in the manuscript in Sec. 2.3.4. We provide below a preface to each of the

manuscripts and put them in the context of this thesis. Figure 2.1 is a depiction of the main results.

First manuscript (Subsec. 2.3.2)

In Secs. II and III of the first manuscript, we establish the scattering setup that we use in all subsequent

manuscripts, consisting of a fixed quantum system with internal structure colliding with a particle trav-

elling as a wave packet. Our setup is general, so that the wave packet can be either pure (thus having a

definite average momentum p0 as we treated in Subsec. 1.2.2) or mixed (according to some momentum

distribution as we treated in Sec. 2.1). The particle can also have an internal structure. The crucial point

is that packets have a definite width in momentum or energy, which we show plays a crucial role in the

internal dynamics governed by the scattering map S.

Our first and general result is that wave packets can be divided into two categories: those with energy

width smaller or larger than the internal energies, called narrow or broad wave packets, respectively. This

distinction is made mathematically precise in Sec. IV. of the manuscript. There, we show that the scatter-

ing map S for narrow wave packets decouples populations and coherences in the energy eigenbasis of the

internal system, when the latter is not degenerate. The dynamics of the populations is thus described by a

Markov process in discrete time (Markov chain) and coherences decay. The notion of narrow wave packet

is then the most important in this manuscript, since they are responsible for decoherence, whether in a

pure or mixed state. As we explain in Sec. IV., this is because narrow wave packets are entangled with the

internal system after the collision, thus carrying away information about internal transitions. However

they do not, by themselves, lead to thermalization since the Markov chain does not generally obey de-

tailed balance. In Sec. V. of the manuscript, we show that detailed balance is achieved when the narrow

packet is mixed according to the effusion distribution and when the collisions are invariant under time-
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reversal. In this case, the thermal state is a stationary state of the map S. This allows us to identify heat

as the kinetic energy lost by the thermal wave packet and transferred to the internal system due to a col-

lision. Regarding entropy, we show in the same section only how the internal change in Shannon entropy

(which takes into account only populations) can be decomposed into an entropy production and entropy

flow terms. However, we can obtain an equivalent decomposition for the von Neumann in this thesis by

appealing to Eq. (1.42), which has a microscopic interpretation in our scattering framework. This is due

to two reasons: 1) The definition of entropy production used in Eq. (1.42) relies on the thermal state being

the stationary state of the dynamical map, which we prove is the case in first manuscript. 2) Point 1) allow

us to interpret the dissipated energy in Eq. (1.42) as (minus) heat. In summary, the results in Sec. V. of

the first manuscript justify the interpretation of Eqs. (2.21) and (2.22) as the first and second law of ther-

modynamics in the absence of work sources. Remarkably, these laws can be expressed solely in terms

of internal system quantities even when the collision is strong and they hold for a large class of interac-

tions. Concerning thermalization, detailed balance implies that if the internal degrees of freedom of the

particle are also thermal with the same temperature as the effusion distribution, then repeated collisions

thermalize the fixed system (see Sec. VI. of the manuscript). This statement is true independently of the

free evolution of the fixed system between each collision.

Regarding broad wave packets, the most general result of this manuscript is that they couple pop-

ulations and coherences of the internal system during the collision, whether pure or mixed, leading to

transfer of coherences to the internal system. They are studied in detail in the third manuscript, where we

use them to establish the notion of work.

Second manuscript (Subsec. 2.3.3)

The results on thermalization derived in the first manuscript are general, but an exact analytical solution

to the scattering problem is unavailable for most potentials. In this manuscript, we present two simple

models of thermalization based on the first manuscript. The scattering setup is the same, except for two

things. First, we study in more detail the scattering map for the fixed system, tracing out both kinetic and

internal degrees of freedom of the particle after each collision. Second, we consider specifically a potential

barrier (see Sec. II of the manuscript) allowing us to use transfer matrix methods to derive the scattering

map at high energies, where transmission dominates over reflection. The models based on this map are

rigorously presented in Secs. III-A. and III-B. of the manuscript, both of them inducing thermalization

of the fixed system (given that the internal and kinetic degrees of freedom of the particle have the same

temperature). Although they are very similar to each other, the second model, called random interaction

time model, is important in connection with models of repeated interaction. This is because each wave

packet interacts with the fixed system for a given time, where this time emerges in scattering theory in the
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Figure 2.1: Upper panel: Thermalization of a fixed system with energy scale ∆S is achieved after many

collisions with particles described by narrow wave packets, effusing from a box with thermal momentum

p0. In general, we require that particles travel both to the right and left, but we show only the former

case for simplicity. The internal structure is not depicted, but it is assumed to be thermal with the same

temperature as the effusing packets. This corresponds to a heat source as we discuss in the manuscript in

Sec. 2.3.2. Lower panel: When the wave packets are broad and prepared with a fixed momentum p0, they

act as a source of non-equilibrium by transferring coherences to the internal system as a whole (particle

and fixed system). In the limit when the packets are very fast and broad, the internal evolution becomes

unitary and energy is exchanged without entropy. This corresponds to a work source as we discuss in the

manuscript in Sec. 2.3.4.

high energy kinetic regime.1 However, in our model the time is random as a consequence of the effusion

distribution, while in repeated interaction models it is fixed. As we discuss in Sec. V., the results suggest

that the difference between heat and work arises from a specific randomization of interaction times.

1This interaction time is not equivalent to the time it takes for a packet with a given momentum to cross the potential region.

Instead, it is a function that also depends on the internal energy of the system, which is a necessary requirement for thermaliza-

tion. This subtle point is discussed in Sec. III-B. of the manuscript.
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Third manuscript (Subsec. 2.3.4)

In this last manuscript, we deal only with pure, broad wave packets at the single collision level. We show

that when the wave packet is very broad and its kinetic energy is much larger than all energy scales in-

volved, the dynamics of the internal system (both particle and fixed system) becomes unitary.2 The re-

sulting scattering map S is shown in Eq. (6) of the manuscript and the accompanying text contains the

precise conditions of its validity. In this regime, due its high kinetic energy and width, the effect of the

internal system on the packet is negligible. As a consequence, the wave packet and internal system do not

entangle, so that no information about the system can be retrieved from the outgoing packet. The inter-

nal dynamics is then unitary, with a phase proportional to the interaction time, i.e. the time it takes for

a packet with a given momentum to cross the potential region. Since in this manuscript the wave packet

is pure (not mixed according to the effusion momentum distribution), the interaction time is fixed just

like in models of repeated interactions. Indeed, we show in the manuscript that the internal scattering

dynamics is the same as the one of models of repeated interactions. This allow us to explain microscopi-

cally the switching work of Eq. (1.69) as the energy exchanged during a collision with a very fast and broad

wave packet. Such a wave packet can then effectively mimick a time-dependent interaction, acting as an

external source of energy for the internal system without incurring entropy changes.

In the light of these results, we argue that the fast and broad wave packet acts as a work source for the

internal degrees of freedom. Of course, we recognize that the notion of work for quantum systems is highly

debated [121, 122, 82], specially in autonomous systems which lack any explicit time-dependence [123].

However, since we have shown in the third manuscript that the packets can exchange energy without

changing their own entropy, and also that they can also mimick a time-dependent interaction, we believe

our interpretation to be justified [99, 123]. For this work source, all the terms in Eq. (2.22) vanish and

Eq.(2.21) becomes an energy balance which can drive the internal system out of equilibrium.

2This regime of high energies is similar to the regime used in the second manuscript for a potential barrier. However, the

derivation of the scattering map in the high energy regime is quite different in this third manuscript, allowing us to treat a poten-

tial of finite length but arbitrary shape. This is possible because the de Broglie wavelength of the packet is much shorter than the

length over which the potential varies significantly. An arbitrary potential can then be effectively treated as a potential barrier,

as we confirm numerically in the main text and prove analytically in the Appendix of the manuscript.
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2.3.2 Manuscript: [PRX Quantum, 2(2):020312, 2020]

The following article is reprinted from [S. L. Jacob, M. Esposito, J. M. R. Parrondo and F. Barra. Thermal-

ization induced by quantum scattering. PRX Quantum, 2(2):020312, 2020] under the conditions of the

Creative Commons Attribution 4.0 International Licence.
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We use quantum scattering theory to study a fixed quantum system Y subject to collisions with massive
particles X described by wave packets. We derive the scattering map for system Y and show that the
induced evolution crucially depends on the width of the incident wave packets compared to the level
spacing in Y. If Y is nondegenerate, sequential collisions with narrow wave packets cause Y to decohere.
Moreover, an ensemble of narrow packets produced by thermal effusion causes Y to thermalize. On the
other hand, broad wave packets can act as a source of coherences for Y, even in the case of an ensemble
of incident wave packets given by the effusion distribution, preventing thermalization. We illustrate our
findings on several simple examples and discuss the consequences of our results in realistic experimental
situations.

DOI: 10.1103/PRXQuantum.2.020312

I. INTRODUCTION

Many phenomena in quantum physics can be described
in terms of repeated collisions of moving particles X with
a fixed target system Y. The effect of such collisions on Y
is the subject of this paper. Such a framework is extremely
rich, as the particles X can be prepared in an arbitrary state
and used to control the dynamics of Y. Without loss of gen-
erality, we assume that these particles X have no internal
structure. Indeed, we will see that the internal structure of
X , if decorrelated from its center of mass motion, can be
effectively incorporated into that of Y. This allows us to
focus on how the motion of the center of mass of such par-
ticles—described by wave packets—affects the dynamics
of Y. Besides a notable exception [1], it is surprising that
such a simple question seems to have been little explored.
For instance, one would expect that phenomena such as
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‡parrondo@fis.ucm.es
§fbarra@dfi.uchile.cl
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author(s) and the published article’s title, journal citation, and
DOI.

decoherence and thermalization of Y occur as a result of
collisions with a thermal ensemble of wave packets X ,
but the conditions for this to happen have not been iden-
tified and the precise definition of the thermal ensemble
is also lacking. Our approach contrasts with the theory of
open quantum systems, in which a system is in perma-
nent contact with equilibrium reservoirs [2,3] or subjected
to continuous collisions with a quantum gas in thermal
equilibrium [4–8], where such phenomena are well under-
stood. One would also expect that a nonthermal ensemble,
instead of causing decoherence and thermalization, can
play the role of a thermodynamic resource for Y and bring
it in a suitable coherent state. Related questions have been
considered within the framework of repeated interaction
models [9–11], where instead of treating a true scattering
problem in real space, an interaction between X and Y is
switched on for a given time.

Our results in this paper rely on three main concepts.
The first is the scattering map, i.e., the quantum map for
Y induced by a collision with a particle X in a generic
(pure or mixed) state, defining the reduced dynamics of Y.
The second is the distinction between pure wave packets
whose energy width is smaller or larger than the smallest
energy-level spacing in Y, which we call narrow or broad
wave packets, respectively. These two concepts suffice to
prove our first result: that collisions with narrow wave
packets induce decoherence in a nondegenerate system Y,

2691-3399/21/2(2)/020312(19) 020312-1 Published by the American Physical Society
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while collisions with broad packets can act as a source of
coherences. The third is the notion of a statistical ensemble
of effusing narrow packets, which we show not only deco-
heres but thermalizes Y, establishing our second and main
result.

This framework offers a rich platform to analyze the
interplays between various types of wave packets for X
interacting with Y. A quantum thermodynamic perspective
on the ensuing free energy transfers is left for future work.

The paper is organized as follows. The model and the
scattering map for the fixed system Y subject to collisions
with wave packets X are defined in Sec. II. The scat-
tering map is then expressed in terms of the scattering
matrix in Sec. III. Its properties when X is a pure wave
packet are studied in Sec. IV, where we prove that deco-
herence occurs for collisions with narrow—but not with
broad—wave packets. Mixtures, or statistical ensembles,
of thermally effusing wave packets are considered in Sec.
V. Narrow wave packets are shown to produce a detailed
balance map, which leads not only to decoherence of Y
but also to thermalization of its populations. Broad wave
packets, on the other hand, can prevent the system from
thermalizing by acting as a source of coherences. In Sec.
VI, we comment on the extension of our framework to
particles with an internal structure. In Sec. VII, we illus-
trate our findings in a simple model based on a Dirac-δ
potential. Conclusions are drawn in Sec. VIII. Appendix
A is used to recall some important results from scattering
theory used in our calculations. The solution of the scat-
tering problem used to illustrate the theory is detailed in
Appendix B.

II. THE MODEL AND THE SCATTERING MAP

We consider a particle X with mass m, which travels
freely before and after colliding with a fixed scatterer,
which we call the system Y, having internal states in a
Hilbert space HY. For simplicity, we restrict ourselves to
systems with finite dimension N and a one-dimensional
space for the particle. If the latter has no internal structure,
the Hilbert space of the global system is H = HX ⊗ HY,
where HX is the Hilbert space of a one-dimensional par-
ticle, i.e., the set of normalized wave functions ψ(x) with
x ∈ R (as we argue in Sec. VI, one can also consider parti-
cles with internal structure, e.g., spin, by extending HY).

The Hamiltonian for the global system is given by

H = H0 + V = p2

2m
⊗ IY + IX ⊗ HY + V(x)⊗ ν, (1)

where x and p are the position and momentum operators
of the particle X . The free Hamiltonian H0 ≡ p2/2m ⊗
IY + IX ⊗ HY is the sum of the kinetic energy of the par-
ticle X and the internal energy of the system Y, where IY
is the identity in HY (equivalently for X ) and the interac-
tion is given by V ≡ V(x)⊗ ν, with ν being an operator in

HY. Finally, we assume that the interaction potential V(x)
tends to zero sufficiently fast as x → ±∞, as is usual in
scattering theory [12].

For such a class of potentials, scattering theory guar-
antees the existence of a one-to-one map S between free
(incoming) states before the collision to free (outgoing)
states after the collision. More specifically, the total Hilbert
space H can be decomposed into the direct sum of scat-
tering and bound states. Only the asymptotic behavior
of the former is that of free states, i.e., its evolution
for t → ±∞ is given by the unitary evolution operator
U0(t) = exp[−itH0/�] corresponding to the free Hamilto-
nian H0, while the latter remain bound to the interaction
region in the same limit. If U(t) = exp[−itH/�] is the full
evolution operator, one can define the isometric Møller
operators [12]:

�± = lim
t→∓∞ U(t)†U0(t), (2)

which, respectively, map incoming and outgoing states
onto scattering states. The scattering operator defined as

S = �
†
−�+, (3)

is then unitary SS† = S†S = I and maps incoming states
onto outgoing states, providing all the information of how
the full system changes in a collision. We add that one
can prove mathematically, under mild conditions, that any
state in the Hilbert space H can be interpreted as a free
(incoming or outgoing) state. In other words, the domain of
the Møller and the scattering operator is the whole Hilbert
space H [12]. However, one is usually interested in incom-
ing states where the incident particle is localized in space,
far from the collision region and is approaching the scat-
terer in a state either from the left or from the right. These
are the incoming states considered in this paper.

In our approach, the incoming and outgoing states
are density operators associated to the Hilbert space H.
Namely, if the incoming state is factorized ρ = ρX ⊗ ρY,
then the outgoing state of the full system is ρ ′ = S(ρX ⊗
ρY)S†, and the effect of the collision on the internal state of
the system Y is given by

ρ ′
Y = TrX

[
S
(
ρX ⊗ ρY

)
S†
]

≡ SρY, (4)

where TrX denotes the partial trace over X . Finally, the
system Y can sequentially collide with a stream of parti-
cles in identical states ρX . Between collisions, the system
Y evolves isolated. The dynamics is then obtained by the
concatenation

ρ
(n)
Y = Eτn ◦ S ◦ · · · ◦ Eτ2 ◦ S ◦ Eτ1 ◦ S ρ(0)Y , (5)

where τi is the time between collision i and i + 1 and
Et(·) = exp [−itHY/�](·) exp [itHY/�] is the unitary map
associated to the free evolution with Hamiltonian HY.
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In the rest of the paper, we calculate and explore the
main properties of the superoperator S defining the dynam-
ics in Eqs. (4) and (5).

III. THE MAP IN TERMS OF THE SCATTERING
MATRIX

The scattering operator commutes with the free Hamil-
tonian [S, H0] = 0 (see Appendix A 1), implying that the
energy is conserved in a collision. As a consequence, it is
convenient to express S in terms of the eigenstates of H0.
We denote the eigenstates of HY by |j 〉 ∈ HY:

HY |j 〉 = ej |j 〉 , (6)

where the eigenvalue ej is the internal energy of the system
and consider the eigenvalues of HY ordered as e1 ≤ e2 ≤
· · · ≤ eN , denoting the Bohr frequencies by �jk/� with
�jk ≡ ej − ek. Then the generalized eigenstates of H0 are
the tensor products |p , j 〉 ≡ |p〉 ⊗ |j 〉, where |p〉 is a plane
wave, i.e., an improper (non-normalizable) state of HX ,
whose position representation reads

〈x|p〉 = eipx/�
√

2π�
, (7)

and satisfies the generalized orthogonality condition
〈p ′|p〉 = δ(p ′ − p). The eigenvalue equation for H0 reads

H0 |p , j 〉 =
(

p2

2m
⊗ IY + IX ⊗ HY

)
|p , j 〉

= (Ep + ej ) |p , j 〉 , (8)

Ep ≡ p2/2m being the kinetic energy of the plane wave
|p〉.

Due to the conservation of energy, the elements
of the scattering operator S in the eigenbasis of H0,
〈p ′, j ′| S |p , j 〉, are proportional to δ(Ep − Ep ′ −�j ′j ) (see
Appendix A 1). We express these elements as

〈p ′, j ′| S |p , j 〉 =
√|pp ′|

m
δ(Ep − Ep ′ −�j ′j )s

(α′α)
j ′j (Ep + ej ),

(9)

where s(α
′α)

j ′j (E) is an element of the so-called scatter-
ing matrix with α = sign(p) and α′ = sign(p ′) account-
ing for the initial and final direction of the momenta,
which can be positive (α,α′ = +) or negative (α,α′ = −).
These elements can be calculated by solving the stationary
Schrödinger equation with appropriate asymptotic bound-
ary conditions (see Appendices A 2 and A 3). Importantly,
Eq. (9) defines s(α

′α)
j ′j (E) only for E ≥ max{ej , ej ′ } because

p2 and p ′2 are non-negative. If j and j ′ fulfill this condition
for a given value of E, we say that the transition |j 〉 → |j ′〉

is an open channel. Consequently, the dimension of the
matrices s(α

′α)(E) is Nopen(E)× Nopen(E), where Nopen(E)
is the number of open channels for an energy E. For
example, if e1 < E < e2, there is only one open scatter-
ing channel (j = j ′ = 1) and, if E > eN , all channels are
open.

The scattering matrix is then ordered in four blocks

s(E) =
(

r̂L(E) t̂R(E)
t̂L(E) r̂R(E)

)
, (10)

all of dimension Nopen(E)× Nopen(E). The entries of
the transmission-from-the-left matrix t̂L(E) are s(++)

j ′j (E),
those of the transmission-from-the-right matrix t̂R(E) are
s(−−)

j ′j (E), those of the reflection-from-the-left matrix r̂L(E)

are s(−+)
j ′j (E), and those of the reflection-from-the-right

matrix r̂R(E) are s(+−)
j ′j (E). They define the conditional

probabilities

PL
j ′j (E) ≡ |t̂Lj ′j (E)|2 + |r̂L

j ′j (E)|2 =
∑
α=±

∣∣∣s(α+)
j ′j (E)

∣∣∣
2

(11)

for a transition |j 〉 → |j ′〉 in the system Y given that the
momentum of the plane wave is positive (coming from
the left) and the total energy is E. We similarly define
PR

j ′j (E) for negative momentum (coming from the right).
The normalization

∑
j ′ PL

j ′j = ∑
j ′ PR

j ′j = 1 follows from
the unitary property of s(E), which corresponds to the diag-
onal elements of the relation s†(E)s(E) = I satisfied by the
scattering matrix Eq. (10), as shown in Appendix A 4.

If we express the density matrix of the system in
the eigenbasis of HY, i.e., (ρY)jk ≡ 〈j |ρY|k〉 and (ρ ′

Y)jk ≡
〈j |ρ ′

Y|k〉, we write Eq. (4) as

(ρ ′
Y)j ′k′ =

∑
j ,k

Sjk
j ′k′(ρY)jk (12)

with the scattering map

Sjk
j ′k′ = 〈j ′| TrX

[
S
(
ρX ⊗ |j 〉 〈k| )S†

]
|k′〉 . (13)

The superoperator S can be expressed in terms of the
scattering matrix by introducing in Eq. (13) the decomposi-
tion ρX = ∫

dp dp ′′ρX (p , p ′′) |p〉 〈p ′′| in the eigenbasis of
HX :

Sjk
j ′k′ =

∫ ∞

−∞
dp ′

∫ ∞

−∞
dp
∫ ∞

−∞
dp ′′ρX (p , p ′′)

〈p ′, j ′| S |p , j 〉 〈p ′′, k| S† |p ′, k′〉 . (14)
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Substituting Eq. (9) in Eq. (14) and using dEp ′ = |p ′|dp ′/m
we obtain

Sjk
j ′k′ =

∑
α′=±

∫
dEp ′ dp dp ′′ρX (p , p ′′)

√|pp ′′|
m

δ(Ep − Ep ′ −�j ′j )s
(α′α)
j ′j

(Ep + ej )δ(Ep ′′ − Ep ′ −�k′k)
[
s(α

′α′′)
k′k (Ep ′′ + ek)

]∗
,

(15)

where the integrals over the momenta p , p ′′ run along the
entire real axis, whereas the integral over the energy Ep ′
runs from 0 to infinity and the sum over α′ accounts for
the positive and negatives values of p ′. We note that s(α

′α)
j ′j

and s(α
′α′′)

k′k are well defined only if the channels |j 〉 → |j ′〉
and |k〉 → |k′〉 are open at the energies in their arguments,
i.e., if Ep + ej ≥ max{ej , ej ′ } and Ep ′′ + ek ≥ max{ek, ek′ }.
These conditions are equivalent to Ep ≥ �j ′j and Ep ′′ ≥
�k′k, respectively, and are enforced by the δ functions.
Integration over the energy Ep ′ yields

Sjk
j ′k′ =

∑
α′=±

∫
dp dp ′′ρX (p , p ′′)

√|pp ′′|
m

× δ(Ep − Ep ′′ −�j ′j +�k′k)s
(α′α)
j ′j (Ep + ej )

×
[
s(α

′α′′)
k′k (Ep ′′ + ek)

]∗
, (16)

where the integrals run over the region where Ep ≥ �j ′j
and Ep ′′ ≥ �k′k.

IV. WAVE PACKETS AND DECOHERENCE

In this section we study the properties of the scatter-
ing map, Eq. (12), when the incoming particle is in a pure
state, i.e., ρX = |φ〉 〈φ|. We use the momentum represen-
tation φ(p) ≡ 〈p|φ〉 with

∫
dp|φ(p)|2 = 1. To simplify,

we consider that all components of |φ〉 travel to the right,
i.e., φ(p) = 0 if p < 0. For this pure state, ρX (p , p ′′) =
φ(p)φ∗(p ′′) and Eq. (16) reads

Sjk
j ′k′ =

∑
α′=±

∫
dp dp ′′φ(p)φ∗(p ′′)

√
pp ′′

m

× δ(Ep − Ep ′′ −�j ′j +�k′k)s
(α′+)
j ′j (Ep + ej )

×
[
s(α

′+)
k′k (Ep ′′ + ek)

]∗
. (17)

Recall that the integration domain in this expression is
defined by the inequalities Ep ≥ �j ′j and Ep ′′ ≥ �k′k.
Since dEp ′′ = |p ′′|dp ′′/m, the integration of the δ function

over p ′′ yields

Sjk
j ′k′ =

∑
α′=±

∫ ∞

pinf

dp φ(p)φ∗ [π(p)]
√

p
π(p)

s(α
′+)

j ′j (Ep + ej )

×
[
s(α

′+)
k′k (Ep −�j ′j + ek′)

]∗
, (18)

with π(p) = √
p2 − 2m(�j ′j −�k′k). The lower integra-

tion limit pinf is obtained from p2
inf/2m = max{0,�j ′j ,�j ′j

−�k′k}, which guarantees that the channels are open in the
integration domain.

We now focus on wave packets centered at a momentum
p0 and with a width 2�p , that is, states where the func-
tion φ(p) is zero except for p ∈ [p0 −�p , p0 +�p]. The
properties of the map, Eq. (18), depend crucially on the
product

φ(p)φ∗[π(p)], (19)

which is different from zero if and only if the arguments
are within the support of φ, that is,

p0 −�p < p < p0 +�p ,

p0 −�p < π(p) < p0 +�p .
(20)

Squaring the two inequalities, we have

(p0 −�p)2 < p2 < (p0 +�p)2,

(p0 −�p)2 < p2 − 2m(�j ′j −�k′k) < (p0 +�p)2

(21)

and, eliminating p , one gets the following necessary condi-
tion for the product (19) to be different from zero for some
value of p:

(p0 +�p)2 − (p0 −�p)2 > 2m|�j ′j −�k′k|

⇒ �p >
m|�j ′j −�k′k|

2p0
. (22)

This inequality defines an important distinction between
two types of incoming wave packets: (a) Those where
the function φ(p) is highly peaked around p0 so that �p
verifies Eq. (22) only when �j ′j = �k′k. Consequently, in
Eq. (18) the term Sjk

j ′k′ vanishes except for transitions with
equal energy change. From now on, we call them narrow
wave packets. (b) Those where the function φ(p) is broad
enough to verify Eq. (22) for at least a pair of transitions
|j 〉 → |j ′〉 and |k〉 → |k′〉 with �j ′j �= �k′k. We call them
broad wave packets and they allow for an overlap of the
two factors in Eq. (19) for some value of p; hence the
corresponding term Sjk

j ′k′ in Eq. (18) can be different from
zero.
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As we show below, narrow (wave) packets destroy most
of the coherences or off-diagonal terms of the density
matrix of the system, whereas they survive or are even
created after repeated collisions with broad packets.

This is one of the main results of the paper. It is worth
giving a physical interpretation of condition (22) and the
distinction between narrow and broad wave packets. In
order to do that, suppose that the initial state of the global
system is the pure state |φ〉 ⊗ |j 〉. After the collision, the
state can be written as

S |φ〉 ⊗ |j 〉 =
∑

j ′

∫
dp ′ |p ′, j ′〉 〈p ′, j ′| S [|φ〉 ⊗ |j 〉] ,

=
∑

j ′

∫
dp ′dp |p ′, j ′〉 〈p ′, j ′| S |p , j 〉φ(p).

(23)

Using Eq. (9) and integrating the δ function, the outgoing
state can be written as

S |φ〉 ⊗ |j 〉 =
∑

j ′

∑
α′=±

|φα′
j ′ 〉 ⊗ |j ′〉 . (24)

Here |φα′
j ′ 〉 are non-normalized wave packets, whose

momentum representation reads

〈p|φα′
j ′ 〉 =

√
|p|

|π̄(p)|s(α
′+)

j ′j (Ep + ej ′)φ[π̄ (p)]�(α′p),

(25)

with π̄(p) ≡ √
p2 + 2m�j ′j , and �(p) being the Heavi-

side step function. Hence, the state after the collision is
a superposition of wave packets |φα′

j ′ 〉 ⊗ |j ′〉, correspond-
ing to the different transitions |j 〉 → |j ′〉, that leave the
scatterer with positive (α = +, transmitted packets) or
negative (α = −, reflected packets) momentum. The sup-
port of this outgoing packet is given by the function φ and
is determined by the inequalities

p0 −�p <
√

p2 + 2m�j ′j < p0 +�p , (26)

with p > 0 for the transmitted packets and p < 0 for the
reflected ones.

Consider now the initial states |φ〉 ⊗ |j 〉 and |φ〉 ⊗ |k〉
and the corresponding transitions, |j 〉 → |j ′〉 and |k〉 →
|k′〉. The transmitted wave packets overlap in the momen-
tum representation if there is a positive p such that

p0 −�p <
√

p2 + 2m�j ′j < p0 +�p ,

p0 −�p <
√

p2 + 2m�k′k < p0 +�p .
(27)

It is straightforward to prove that these two conditions
are equivalent to Eq. (22). However, Eq. (27) provides an

FIG. 1. Narrow (upper plate) and broad (lower plate) wave
packets. The blurred gray zones represent the scatterer, which
undergoes the transitions |j 〉 → |j ′〉 and |k〉 → |k′〉. The figure
shows the two transmitted wave packets corresponding to these
specific transitions (notice that the collision will generate, in
general, much more outgoing packets than the two depicted).
The crucial difference is that the overlap of the outgoing wave
packets is zero in the narrow case, unless both have exactly
the same energy: �j ′j = �k′k. For broad packets, coherences
between states do not vanish and can even be created due to the
overlap (dark area) of the two outgoing packets depicted in the
lower plate.

illuminating interpretation of the distinction between nar-
row and broad wave packets, which is sketched in Fig. 1.
In the case of an incident narrow packet, condition (27)
means that the outgoing wave packets resulting from chan-
nels |j 〉 → |j ′〉 and |k〉 → |k′〉 do not overlap unless they
induce jumps in the system state with exactly the same
energy, that is, �j ′j = �k′k; in such a case, the outgoing
packets are identical. On the other hand, for a broad packet
obeying Eq. (27) for a pair of transitions with �j ′j �= �k′k,
outgoing wave packets with different energy may overlap,
as shown in the lower diagram of Fig. 1. If this occurs,
then the collision preserves the coherences between states
|j 〉 and |k〉 and can even create new coherences when a sin-
gle pure state |j 〉 jumps to a superposition of |j ′〉 and |k′〉
and the resulting wave packets overlap, as we show below
in detail.

The same results apply to a wave packet where φ(p)
decays and is almost zero far from its center at p0. We con-
sider, for instance, Gaussian wave packets |φp0,x0〉 of the
form:

〈p|φp0,x0〉 = (2πσ 2)−1/4 exp
[

− (p − p0)
2

4σ 2 − i
px0

�

]
,

(28)

where p0 = 〈φp0,x0 | p |φp0,x0〉 is the expectation value of
the momentum, σ > 0 its standard deviation, and x0 =
〈φp0,x0 | x |φp0,x0〉 is the expectation value of the position
operator. The condition φp0,x0(p) = 0 for p < 0, which we
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assume above, is practically satisfied if p0 is positive and
p0 � σ . The previous discussion applies to Gaussian wave
packets, for which the condition (22) for a narrow packet
is

σ � m|�j ′j −�k′k|
2p0

(29)

for every quadruplet {j , k, j ′, k′} with �k′k �= �j ′j .

A. Narrow wave packets

As discussed previously, a consequence of Eq. (22) is
that, in a collision with an incident narrow packet, elements
(ρY)jk contribute to (ρ ′

Y)j ′k′ only if �j ′j = �k′k. In this
case, π(p) = p in Eq. (18). Moreover, since the packet is
narrow, we can assume that the scattering matrix is approx-
imately constant in the support of φ(p) and that |φ(p)|2
is approximately normalized in the integration domain
[pinf, ∞). Under these assumptions, Eq. (18) reduces to

Sjk
j ′k′ �

∑
α′=±

s(α
′+)

j ′j (Ep0 + ej )
[
s(α

′+)
k′k (Ep0 + ek)

]∗

= t̂Lj ′j (Ep0 + ej )
[
t̂Lk′k(Ep0 + ek)

]∗

+ r̂L
j ′j (Ep0 + ej )

[
r̂L

k′k(Ep0 + ek)
]∗ , (30)

if �j ′j = �k′k and zero otherwise. Let us apply this condi-
tion first to the diagonal terms of the density matrix (ρY)jj ,
which are the populations of the energy levels. The con-
dition �j ′j = �k′k for j ′ = k′ implies ej = ek. If HY is
nondegenerate, then j = k and

Sjj
j ′j ′ =

[
|t̂Lj ′j (Ep0 + ej )|2 + |r̂L

j ′j (Ep0 + ej )|2
]

= PL
j ′j (Ep0 + ej ), (31)

where the transition probability PL
j ′j (E) is the one defined

in Eq. (11). We see that the evolution of the populations
or diagonal terms of the density matrix (ρY)jj is indepen-
dent of the off-diagonal terms or coherences. The diagonal
terms obey the master equation

(ρ ′
Y)j ′j ′ =

∑
j

PL
j ′j (Ep0 + ej )(ρY)jj , (32)

which conserves the trace or total probability since∑
j ′ PL

j ′j (E) = 1, due to the unitarity of the scattering
matrix s(E) [see the discussion below Eq. (11)].

Let us discuss the evolution of the coherences or off-
diagonal terms of the density matrix ρY, and suppose first
that HY is nondegenerate and the Bohr frequencies of the
system are nondegenerate, i.e., the only solutions to�j ′j =
�k′k are j ′ = j and k′ = k or j ′ = k′ and j = k. The sec-
ond case corresponds to the evolution of the populations

that we discussed previously. The first case corresponds
to Sjk

jk and yields the following evolution equation for the
off-diagonal terms:

(ρ ′
Y)jk = Sjk

jk(ρY)jk for j �= k. (33)

Therefore, each coherence evolves independently and is
simply changed by a multiplicative factor after a colli-
sion. Moreover, since |tLj ′j (E)|2 + |rL

j ′j (E)|2 ≤ 1 for any
E, j , and j ′, a direct application of the Cauchy-Schwarz
inequality yields

∣∣∣tLj ′j (E)t
L
k′k(E

′)∗ + rL
j ′j (E)r

L
k′k(E

′)∗
∣∣∣
2

≤
[
|tLj ′j (E)|2 + |rL

j ′j (E)|2
] [|tLk′k(E

′)|2 + |rL
k′k(E

′)|2]

≤ 1 (34)

for all j , j ′, k, k′, E, and E′. We conclude that all the entries
of the scattering map, Eq. (30), are bound as |Sjk

j ′k′ | ≤ 1,
and, according to Eq. (33), coherences either decay or
remain finite only if |Sjk

jk| = 1. The latter case happens
only when the two equalities |tLaa(E)|2 + |rL

aa(E)|2 = 1 for
a = j , E = Ep0 + ej , and a = k, E = Ep0 + ek are simul-
taneously satisfied. This is extremely unlikely in a mul-
tichannel scattering process. Therefore, generically one
observes the strict inequality, which leads to decoherence
in systems without degenerate Bohr frequencies. When the
Bohr frequencies are degenerate, the scattering map now
couples their coherences and is given by

(ρ ′
Y)j ′k′ =

∑
jk:

�j ′k′=�jk

Sjk
j ′k′(ρY)jk. (35)

If the incoming wave packet is narrow, repeated collisions
will nonetheless decohere system Y. Indeed, using Eq.
(30) and the Cauchy-Schwarz inequality, we find |Sjk

j ′k′ |2 ≤
PL

j ′j (Ep0 + ej )PL
k′k(Ep0 + ek) and therefore

|(ρ ′
Y)j ′k′ | ≤

∑
jk:

�j ′k′=�jk

|(ρY)jk|
√

PL
j ′j (Ep0 + ej )PL

k′k(Ep0 + ek),

(36)

with the sum over j and k restricted by the condition
�j ′k′ = �jk. Since

√
PL

j ′j (Ep0 + ej )PL
k′k(Ep0 + ek) ≤ 1, the

last expression shows that the amount of coherence
between a pair of levels after the collision is generally
smaller than the total amount of coherence present before
the collision.

In summary, we find that decoherence is generic for
systems with nondegenerate levels. Coupling between
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eigenbasis coherences and populations is only possible
if the energy spectrum displays degeneracies, in which
case it occurs within the degenerate subspace. Since in
that subspace the eigenenergy basis is arbitrary, the notion
of decoherence becomes ill defined. These findings are
reminiscent of those obtained using quantum master equa-
tions describing a system in weak contact with a thermal
reservoir in theory of open quantum systems [3,13].

B. Broad wave packets

If the momentum width of the wave packet is large
enough, the map S is more complex and can keep and cre-
ate coherences. For example, suppose that condition (22)
is satisfied for k = j and some j ′ �= k′, i.e.,

�p >
m|�j ′j −�k′j |

2p0
. (37)

In this case, the term Sjj
j ′k′ is different from zero. If the sys-

tem is initially in the pure state ρY = |j 〉 〈j | then, after the
collision, we have

(ρ ′
Y)j ′k′ = Sjj

j ′k′ �= 0, (38)

that is, a nonzero coherent or off-diagonal term.
Therefore, broad wave packets can induce coherences

in a system initially diagonal in the energy basis, even
for inelastic collisions. This is one of our main results,
which may seem unexpected at first sight, since inelastic
collisions are usually associated to thermalization or deco-
herence. In the case of broad packets, the origin of the
coherence is that after the collision, the global state is of the
form given by Eq. (24), where system Y is entangled with
nonorthogonal states of system X , namely, the overlapping
outgoing wave packets. Consequently, the partial trace
over system X , which fully describes system Y, exhibits
coherences that remain no matter the fate of those outgoing
wave packets. In Sec. VII, we explore this crucial phe-
nomenon and its contrast with the case of narrow packets
in specific examples.

V. ENSEMBLES OF WAVE PACKETS AND
THERMALIZATION

In this section we consider that the initial state of X is
given by a statistical ensemble of wave packets and dis-
cuss sufficient conditions that lead to thermalization for
system Y. Here, we assume that [HY, ν] �= 0 to ensure that
[S, IX ⊗ ν] �= 0, otherwise the scattering process induces
transitions only between the (common) eigenstates of HY
and ν with different eigenvalues, ruling out the possibility
of thermalization of Y by repeated collisions.

The first condition for thermalization is that the ensem-
ble consists of narrow wave packets. As we have just seen,
narrow wave packets lead to decoherence while broad ones

induce coherences even if the initial state of the system
is diagonal in the energy basis. This remains true for an
ensemble of packets described by a density matrix, as we
illustrate in the examples of Sec. VII.

A. Microreversibility

The second condition is microscopic reversibility, that
is, the invariance of the scattering operator under time
reversal. In quantum mechanics, time reversal is imple-
mented by an antiunitary operator T, which changes the
sign of all momenta and other odd magnitudes under time
reversal, like angular momentum, spin, and the magnetic
field. It takes different forms, depending on the system.
For instance, for a spinless point particle, T is the con-
jugation of the wave function in position representation:
〈x|T|ψ〉 = 〈x|ψ〉∗. In the momentum representation, on the
other hand, the operator changes the sign of the momenta:
〈p|T|ψ〉 = 〈−p|ψ〉. If the free and the total Hamiltonian
commute with T = TX ⊗ TY, where TX and TY are the
time-reversal operators acting on the Hilbert space of X
and Y, then the scattering operator also commutes with T
and the collision is invariant under time reversal. For sim-
plicity, we assume here that the eigenstates of HY are also
invariant, that is, TY |j 〉 = |j 〉. In this case, the scattering
matrix obeys the following symmetry relation:

s(α
′ α)

j ′j (E) = s(−α−α′)
jj ′ (E) (39)

or equivalently r̂L = (r̂L)t, r̂R = (r̂R)t, and t̂L = (t̂R)t,
where (·)t stands for transpose [12,14,15]. In other words,
Eq. (10) is a symmetric matrix.

In our previous discussion, we considered only parti-
cles incident from the left. This setting is not time-reversal
invariant. To satisfy microscopic reversibility, we have
to consider particles coming from both left and right,
as shown schematically in Fig. 2. That is, for every
wave packet |φp0,x0〉 in the ensemble, centered around the
momentum p0 > 0 and coming from the left (x0 < 0), there
must be a |φ−p0,−x0〉 centered around momentum −p0 < 0
and coming from the right (−x0 > 0). For narrow wave
packets, the position x0 becomes irrelevant and we omit it
from the notation. With these ideas in mind, we consider a
symmetric ensemble defined by the probability distribution
μ(p0), normalized in [0, ∞):

ρX =
∫ ∞

0
dp0

μ(p0)

2
(|φp0〉 〈φp0 | + |φ−p0〉 〈φ−p0 |). (40)

Inserting this incoming state into Eq. (16), and taking into
account that all the packets are narrow, one obtains

Sjj
j ′j ′ =

∫
dp0

μ(p0)

2

[
PL

j ′j (Ep0 + ej )+ PR
j ′j (Ep0 + ej )

]
,

(41)
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FIG. 2. Thermalization via collisions is achieved if the sys-
tem (scatterer) is bombarded by narrow wave packets coming
from equilibrium reservoirs at the two sides. If we remove one
of the reservoirs, the setup is out of equilibrium. Notice however
that, if the scatterer is symmetric, that is, if the interaction poten-
tial V(x) is even, V(x) = V(−x), then the second reservoir is not
necessary.

where the integral over p0 runs over all positive values
satisfying Ep0 ≥ �j ′j . Recall that PL

j ′j (E) is given by Eq.
(11) and similarly for PR

j ′j (E). To simplify the notation, we
define

Pj ′j (E) =
PL

j ′j (E)+ PR
j ′j (E)

2
(42)

and replace it in Eq. (41), which becomes

Sjj
j ′j ′ =

∫
dp0 μ(p0)Pj ′j (Ep0 + ej ). (43)

Let us recall that the energy in the argument of Pj ′j (E) is
such that the scattering channel |j 〉 → |j ′〉 is open. Finally,
from the definition of the transition probabilities in Eq. (11)
and the microreversibility condition (39), we obtain

PL
j ′j (E)+ PR

j ′j (E) = PL
jj ′(E)+ PR

jj ′(E)

⇒ Pj ′j (E) = Pjj ′(E). (44)

B. Detailed balance and thermalization

A third condition for the thermalization of the sys-
tem Y is that the statistics of the narrow wave packets
X is thermal. We show below that, in this case, the map
that evolves the populations obeys the detailed balance
condition, ensuring thermalization.

According to the discussion in Ref. [16] we take
μ(p0) = μeff(p0) with

μeff(p) = β
p
m

e−βp2/2m (45)

the effusion distribution, in which case Eq. (43) satisfies
the detailed balance relation

Sjj
j ′j ′e−βej = Sj ′j ′

jj e−βej ′ . (46)

To prove it, let us compute the left-hand side using Eq.
(43), Eq. (18), and the change of variable E = Ep0 + ej :

Sjj
j ′j ′e−βej =

∫ ∞

pinf

dp0
β p0

m
e−β(Ep0+ej )Pj ′j (Ep0 + ej )

= β

∫ ∞

max{ej ,ej ′ }
dE e−βEPj ′j (E), (47)

where pinf is
√

2m�j ′j if �j ′j > 0 and zero otherwise.
Similarly, the right-hand side of Eq. (46) reads

Sj ′j ′
jj e−βej ′ =

∫ ∞

pinf

dp0
β p0

m
e−β(Ep0+ej ′ )Pjj ′(Ep0 + ej ′)

= β

∫ ∞

max{ej ′ ,ej }
dE e−βEPjj ′(E), (48)

where now pinf is
√

2m�jj ′ if �jj ′ > 0 and zero other-
wise. Both integrands are the same because time-reversal
symmetry implies Pj ′j (E) = Pjj ′(E). Hence, the detailed
balance equality Eq. (46) is satisfied, which, in turn, guar-
antees the thermalization of system Y, that is, after a
number of collisions the system reaches the thermal state
ρY = exp [−βHY]/ZY with ZY = Tr(exp [−βHY]).

Notice that if, on the other hand, we take the Maxwell-
Boltzmann distribution μ(p0) = √

β/(2mπ) exp[−βp2
0/

(2m)] in Eq. (43), (SY)
jj
j ′j ′ does not satisfy detailed balance

and the map does not thermalize the system Y. The phys-
ical reason is that particles escaping from a small hole in
a thermal box are distributed in momentum according to
the effusion distribution, which is the Maxwell-Boltzmann
distribution weighted with a flux factor. See Ref. [16] for a
detailed discussion of this subtle issue.

We end this section with two remarks. First, if the poten-
tial V(x) has the spatial symmetry x → −x, then r̂L = r̂R

and t̂L = t̂R, and PL
j ′j (E) = PR

j ′j (E). The spatial reflection
symmetry x → −x plus time-reversal symmetry, Eq. (44),
imply PL

j ′j (E) = PL
jj ′(E). In this case, detailed balance (and

therefore thermalization) is satisfied with just left (or right)
incoming wave packets.

Second, we see that the narrow packets destroy coher-
ences in the eigenbasis of HY. Consequently, once the diag-
onal state is reached, the unitary free evolution between
collisions present in Eq. (5) does not change the density
matrix ρY. We conclude that narrow wave packets induce
thermalization independently of the time intervals between
collisions, which can be either random or deterministic.

C. Entropy production

The evolution of populations pj ≡ (ρY)jj in system Y is
ruled by the discrete-time stochastic master equation

p ′
j =

∑
k

Wjkpk, (49)
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where Wjk ≡ Skk
jj satisfies

∑
j Wjk = 1 and detailed bal-

ance Wjke−βek = Wkj e−βej . This allows the identification
of the average energy change of Y with heat, i.e., �S ≥
β�E where the entropy S ≡ −∑j pj ln pj is given by the
Shannon entropy associated to system Y, and E = ∑

j ej pj
its average energy, as shown in Ref. [17] (see also Refs.
[18,19]). The energy change is determined by

Q ≡ �E =
∑

j

ej (p ′
j − pj )

=
∑
j ,k

ej (Wjk − δjk)pk (50)

that we denote Q, anticipating its interpretation as heat. We
now consider the change in the Shannon entropy of the
system Y

�S =
∑

j

(pj ln pj − p ′
j ln p ′

j ) = βQ +� (51)

that we split into two contributions. The first one is the
entropy flow given by

βQ = −
∑
j ,k

Wjkpk ln
Wjk

Wkj
, (52)

where we used the detailed balance condition ln(Wjk/Wkj )

= −β(ej − ek) for the identification with Eq. (50). The
second one is the entropy production given by

� =
∑
j ,k

Wjkpk ln
Wjkpk

Wkj p ′
j
. (53)

This quantity is non-negative as can be shown using Jensen
inequality. Indeed, since − ln x ≥ x − 1,

� ≥
∑
j ,k

Wjkpk

(Wkj p ′
j

Wjkpk
− 1

)

=
∑
j ,k

(
Wkj p ′

j − Wjkpk

)
= 0. (54)

When the system reaches equilibrium, i.e., when pj =
p ′

j = exp [−βej ]/ZY, we have � = 0.

VI. EXTENSION TO PARTICLES WITH
INTERNAL STRUCTURE

We briefly comment on the statement from the introduc-
tion that if the incoming particle has an internal structure
and its state is of the form ρX ⊗ ρχ with ρX associated to
the translation degree of freedom and ρχ to the internal
structure, the effective system Y comprises χ and the fixed

scatterer, here called ϒ . The effective system Y before
the collision has a state ρY = ρχ ⊗ ρϒ and the effective
Hamiltonian is HY = Hχ + Hϒ , with Hχ the Hamiltonian
associated to the internal degrees of freedom of the trav-
eling particle and Hϒ that of the fixed scatterer. Narrow
wave packets (with respect to the smallest level spac-
ing of Y) induce decoherence in Y, and thus also in χ

and ϒ . Thermalization of ϒ after many collisions still
holds if ρX is a thermal ensemble of wave packets and
the internal structure of the particle is also thermal, i.e.,
ρχ ∼ exp [−βHχ ]. This follows from the detailed balance
property of Sjj

j ′j ′ . The index j stands now for the pair (x, y)
where x indexes the eigenvalues and eigenstates of Hχ and
y those from Hϒ . Due to the product structure of the state
of Y prior to the collision, the population of Y evolves
with the equation Px′y′ = ∑

xy S(xy)(xy)
(x′y′)(x′y′) exp [−βεx]Py

and the reduced dynamics for the populations of ϒ

is given by Py′ = ∑
y Ry

y′Py with the reduced stochas-

tic map Ry
y′ = ∑

xx′ S(xy)(xy)
(x′y′)(x′y′) exp [−βεx] also satisfy-

ing detailed balance and thus inducing thermalization
of ϒ .

VII. APPLICATIONS

In this section, we illustrate in simple models the results
previously obtained. We consider a system Y with finite
dimension N , i.e., HY = ∑N

j =1 ej |j 〉 〈j | interacting with X
via the coupling V(x)⊗ ν in Eq. (1) with V(x) = gδ(x)
being a Dirac δ potential with strength parameter g. The
scattering problem is solved in Appendix B. Since the
potential is symmetric under the spatial inversion x →
−x, the transmission and reflection matrices from the left
equal those from the right, i.e., r̂L(E) = r̂R(E) ≡ r̂(E) and
t̂L(E) = t̂R(E) ≡ t̂(E). The resulting scattering matrix in
Eq. (10) is given by

t̂j ′j =
√

pj ′

pj
tj ′j and r̂j ′j =

√
pj ′

pj
(δj ′j − tj ′j ), (55)

with 1 ≤ j , j ′ ≤ Nopen(E), where Nopen(E) = #{ej ′ ≤ E},
the number of levels with energy smaller than E, pj =√

2m(E − ej ) and tj ′j are the elements of the N × N matrix

t =
[
I + img

�2 D−1V
]−1

. (56)

In Eq. (56), the matrix D is diagonal with Djj = pj /� and
V the matrix with elements Vkj = 〈k| ν |j 〉 . We take in the
following numerical examples � = g = 1.

A. Narrow and broad wave packets

We first illustrate the role of the width of the wave
packet, i.e., the transition from narrow to broad wave pack-
ets. For this, the simplest is to investigate a two-level
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σx σy

σz

σx σy

σz

Narrow

Broad

FIG. 3. Bloch sphere representation of the state ρ(n)Y under
repeated collisions (n = 200) with narrow and broad Gaussian
wave packets (blue circles and red triangles, respectively). The
colored arrows show the direction of the evolution of each state
in the sphere starting from the initial states, which are pure (i.e.,
they lie on the surface of the sphere) and given by (ρY)

(0)
11 = 1

and (ρY)
(0)
12 = 0 (upper panel) and (ρY)

(0)
11 = (ρY)

(0)
12 = 0.5 (lower

panel). All parameters are identical in the two panels,�Y = m =
1, p0 = 10, except the widths, which are σ/(m�Y/2p0) = 0.2 for
narrow wave packets and σ/(m�Y/2p0) = 20 for broad wave
packets.

system Y. Let us remind that, according to Eq. (29), a
Gaussian wave packet is considered to be narrow if σ �
m�Y/2p0 with �Y = e2 − e1. We take V = σ x + σ z (the
Pauli matrices) in Eq. (56) and compute the map S accord-
ing to Eq. (16). Between collisions, we simply take Eτn as
the identity for all n.

The results are shown in Fig. 3, where we plot the
state in the Bloch sphere representation according to ρY =
(I + �P · �σ)/2 and �P is the polarization vector. We take two
initially pure states (lying on the surface of the sphere), one
being in an excited state and the other in a superposition of
ground and excited states (Fig. 3, upper and lower panel,
respectively).

Collisions with narrow wave packets lead to
decoherence of Y for both initial states; see the blue dots
converging to the invariant state in the z axis near the
center of the sphere as the scattering map is iterated. The
populations of the invariant state can be computed by eval-
uating the invariant state of Eq. (32). For the two-level
system under consideration, the scattering matrix s(E)
depends only weakly on E and therefore PL

j ′j (Ep0 + ej ) ≈
PL

j ′j (Ep0) for all j ′j in Eq. (32). Since PL
j ′j (E) is a bis-

tochastic matrix, the invariant state of Eq. (32) is very close
to the maximally mixed state. In Fig. 3, upper panel, we
see (blue dots) that a state, which is initially diagonal in
the energy basis, remains diagonal throughout the evolu-
tion, i.e., its dynamics is confined to the z axis. In Fig. 3,
lower panel, an initial superposition state with an equal
amount of populations decoheres and changes its popu-
lations in an almost negligible way as it spirals towards
the invariant state. Conversely, collisions with broad wave
packets transfer coherences to an initially diagonal state
(which leaves the z axis) and couple the populations and
coherences of an initial superposition state (which quickly
leaves the x-y plane). For such broad wave packets, the
system evolves towards a steady state with coherences (red
triangles in Fig. 3).

We finish this subsection by discussing the role played
by adding a free system evolution of fixed time τ between
the collisions with the wave packets. This time may cor-
respond to integer or noninteger number of periods of
the free evolution T ≡ 2π�/(�Y). From Eq. (5), the map
Eτn is the identity in the former case. Figure 4 shows
the populations (left panel), modulus (middle panel), and
phase of coherences (last panel), for τ = 0 (no free evo-
lution) and τ = 3T/4, when considering both narrow and
broad wave packets. For narrow wave packets, we observe
that the free evolution does not affect the system popu-
lations. This is expected since populations do not evolve
under free evolution and are decoupled from coherences
during collisions. The free evolution also leaves the modu-
lus of the coherences unchanged and only changes their
phase, but eventually coherence will vanish due to the
collisions. Turning to broad wave packets, we note that
adding a free evolution between collisions modifies the
evolution of populations and coherences in a signifi-
cant way. Collisions in this case can induce coherences
in the system and couple them to populations. With or
without free evolution, the steady state displays coher-
ences, although less in the former case. It is interesting to
note that broad wave packets with free evolution display
results quite close (but not identical) to narrow packets.
To summarize, the results drawn in the previous sections
for narrow and broad wave packets are still valid when
free evolution is included. The effect of the free evolu-
tion on ensembles of broad wave packets is illustrated in
Sec. VII C.
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FIG. 4. Effect of free evolution between collisions on the populations (left panel), modulus and phase of coherences (middle and
right panel, respectively) for a two-level system colliding with narrow (N ) and broad (B) Gaussian wave packets. The system evolves
freely for 0 or 3/4 cycles between each collision. The initial state is (ρY)

(0)
22 = 0.9 and (ρY)

(0)
11 = 0.1, (ρY)

(0)
12 = 0.3. The remaining

parameters are �Y = m = 1, p0 = 6.3, and σ/(m�Y/2p0) = 0.12 for narrow wave packets and σ/(m�Y/2p0) = 12 for broad wave
packets.

B. Thermalization

In this section, we explore the dynamics of system Y
under repeated collisions with narrow wave packets as
described in Sec. V. In particular, we aim to illustrate
the thermalization property observed with Sjj

j ′j ′ in Eq. (43)
when μ = μeff.

For that purpose, we take a system Y of dimension 5 and
energy spectrum is {ej = j 2}5

j =1, which has nondegenerate
Bohr frequencies. As coupling matrix V, we take

V =

⎛
⎜⎜⎜⎝

0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0

⎞
⎟⎟⎟⎠ . (57)

To check whether the collisions induce the thermalization
of system Y, we evaluate the quantities

B(n)jk ≡ − 1
ej − ek

ln
(ρ
(n)
Y )jj

(ρ
(n)
Y )kk

, (58)

where ρ(n)Y = Snρ
(0)
Y and ρ(0)Y is the initial state. Since we

are interested in the evolution of the populations, the free
evolution of system Y between collisions does not play
a role. If as n grows, the system Y approaches a ther-
mal distribution exp [−βHY]/ZY, then all B(n)jk converge
to β. We see in Fig. 5 that, when the wave packets are
weighted with the effusion distribution μeff in Eq. (45), the
system Y thermalizes (upper panel). On the other hand, if
they are weighted with the Maxwell-Boltzmann distribu-
tion μ ∝ exp[−βp2/2m] (lower panel), the stationary state
is not thermal. The evolution of coherences are also tracked

(but not depicted) and observed to decay exponentially, as
predicted.

C. Ensemble of broad wave packets

To complement our analysis, we consider here a mix-
ture of broad wave packets, each being weighted according
to the effusion distribution μeff. Despite the fact that inci-
dent particles have the same distribution of velocities as
classical particles effusing from a gas at equilibrium, we
see that the system Y does not thermalize. To illustrate
this, we consider again a two-level system Y. The con-
dition for a narrow packet for incident momentum p0 is
Eq. (29). Since the effusion distribution has its maximum
at pmax = √

m/β, to satisfy the condition of broad wave
packet for most of the incident particles we set the width
of the packet as σ > �Y

√
mβ/2.

In the upper panel of Fig. 6, we plot the iteration of S
and observe that, despite the thermal distribution of the
average velocities of the wave packets, the asymptotic
state of Y is not thermal and in fact develops coherences
that were absent in the initial state. In the lower panel
of Fig. 6, we consider the iteration in Eq. (5) with the
times τi drawn from a random distribution with Poisso-
nian statistics. While this partially decoheres the system’s
state, the populations do not approach their thermal value
(orange straight lines). Instead, they fluctuate near a value
determined by the stationary state of the map for the
populations, i.e., the master equation with Wj ′j = Sjj

j ′j ′
where

Sjj
j ′j ′ =

∫
dpρX (p , p)2Pj ′j (Ep + ej ). (59)

Here Pj ′j (E) are the transition probabilities defined in
Eq. (42) and ρX (p , p) is the diagonal part of the density
matrix of Gaussian wave packets Eq. (28) weighted with
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FIG. 5. Plot of B(n)jk defined in Eq. (58) computed for an ensem-
ble of narrow Gaussian wave packets weighted by the effusion
distribution in Eq. (45) and the Maxwell-Boltzmann (MB) distri-
bution (upper and lower panel, respectively) with β = 3. In both
cases, the initial state is the thermal state e−β ′HY/ZY with β ′ = 1
and the mass of the wave packet is m = 0.5. The orange line cor-
responds to β = 3. For clarity, not all pairs of indices (j , k) are
plotted.

the effusion distribution μeff Eq. (45). A cumbersome but
straightforward calculation yields

ρX (p , p)= βC

m

[
σ√
2π

e− p2

2σ2 + p
2
√

r
erf
(

p√
2rσ

)
e−βC

p2
2m

]
,

(60)

with

r = 1 + βσ 2

m
, βC = β

r
. (61)

The map for the populations given by Eq. (59) does not
satisfy detailed balance if σ is not negligible, implying that
the system does not thermalize when bombarded by these
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Number of collisions (n)

FIG. 6. Evolution of ρ(n)Y when the state of X is a mixture of
broad Gaussian wave packets weighted with the effusion distribu-
tion. Upper panel: The values (ρY)

(n)
ij are obtained by composing

the map SY. In black we depict (ρY)
(n)
11 and (ρY)

(n)
22 in blue, while

the real and imaginary parts of (ρY)
(n)
12 are depicted in green

and red, respectively. Lower panel: The iterated map is given
in Eq. (5) with random Poissonian times τi. In both panels: The
orange lines indicates the thermal values (ρY)11 and (ρY)22 with
inverse temperature β. The light blue lines indicate the ther-
mal values (ρY)11 and (ρY)22 with inverse temperature βC. The
gray lines indicate the values (ρY)11 and (ρY)22 computed by
considering the master equation for the populations ruled by
Wik = Skk

ii as given in Eq. (59). The initial state is (ρY)
(0)
11 = 0.3

and (ρY)
(0)
12 = 0. The remaining parameters are �Y = m = 0.5

with e2 = 2.5, e1 = 2, σ = 0.31 and β = 3.

broad packets. It is interesting to notice that the diagonal
part, Eq. (60), behaves like an effusion distribution with a
temperature βC for p � σ . As shown in the lower panel of
Fig. 6, for Poissonian collision times the system reaches an
effective temperature close to βC.

Notice, however, that the broad or narrow packet con-
dition depends on �Y, that is, on the energy spectrum of
the system. Hence, the same ensemble of packets used for

020312-12



THERMALIZATION INDUCED BY QUANTUM SCATTERING PRX QUANTUM 2, 020312 (2021)

Fig. 6 will thermalize the system to the temperature of the
ensemble β if the level spacing �Y is large enough. One
can even induce a crossover from narrow to broad wave
packets by decreasing �Y.

VIII. CONCLUSIONS

We consider a quantum scattering process between a
massive particle X described by a wave packet and a static
system Y and study the resulting quantum map on Y. We
find that the properties of the map strongly depend on the
properties of the wave packet. For wave packets whose
energy width is smaller than the smallest energy-level
spacing (narrow wave packet), eigenstate populations and
coherences decouple from each other if Y is nondegenerate
and the latter decay. Instead, for broad wave packets, pop-
ulations and coherences couple and influence each other.
Our central finding is that thermal ensembles of wave
packets, i.e., narrow wave packets distributed with the effu-
sion probability distribution function, induce decoherence
and thermalization in Y.

Our results strongly suggest that the distinction between
narrow and broad packets could be observable in certain
situations, like the interaction between single atoms and a
single electromagnetic mode in cavity-QED experiments.
Since the broadness of the packet depends on the level
spacing �Y, one could tune �Y to measure the width of
the packets and explore the wave-particle duality of atoms
and molecules escaping by effusion from a gas in thermal
equilibrium.

The scattering framework that we propose here is very
rich and opens many interesting perspectives for the
future. We are particularly interested in using it as a
basis for a quantum thermodynamics formulation. Indeed,
our present scattering approach avoids many difficulties
encountered using other formulations as it is formally
exact, autonomous, and the interaction energy is naturally
vanishing before and after the collisions.
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APPENDIX A: SCATTERING THEORY

The main goal of scattering theory is to obtain the scat-
tering operator S, which is a one-to-one map between free
(incoming) states before the collision to free (outgoing)
states after the collision. Whether or not such an opera-
tor exists depends on the dynamics during the collision
through the interaction potential, which in general can sup-
port states that are either free or bound to the interaction
region for very long times. However, its existence is guar-
anteed for a large class of potentials V(x), which vanish
fast enough at infinity. In this case, the Hilbert space H
of the full system can be expressed as a direct sum of
two mutually orthogonal subspaces H = S ⊕ B, where S
and B are the subspaces of scattering and bound states
[12,14,20,21].

According to their definition (2), the Møller operators
are isometries of H, i.e., they map state vectors onto the
subset of scattering states �± : H �→ S while preserving
the norm 〈ψ |�†

±�±|ψ〉 = 〈ψ |ψ〉 , ∀ |ψ〉 ∈ H. The isomet-
ric property reads �†

±�± = I. Note that a unitary operator
is necessarily an isometry, but the reverse is not true. For
instance, here the “inverse” Møller operator �†

± acts only
on scattering states �†

± : S �→ H, and one has �±�
†
± =

I − PB, with PB the projector onto the space B of bound
states. The Møller operators define the scattering operator
according to Eq. (3) in the main text. Its unitarity follows
from the fact that �± have the same range S , a property
called asymptotic completeness [12,14,20,21].

Some relevant properties of these operators are derived
in the next sections.

1. Intertwinning relation

One of the main properties of the Møller operators �±
is the so-called intertwining relation:

H�± = �±H0. (A1)

The proof follows from the definition of the Møller opera-
tors in Eq. (2)

eiHτ/��± = eiHτ/�
[

lim
t→∓∞ eiHt/�e−iH0t/�

]

= lim
t→∓∞ eiH(t+τ)/�e−iH0(t+τ)/�eiH0τ/�

= �± eiH0τ/�. (A2)

Differentiating with respect to τ at τ = 0, we obtain the
desired result, Eq. (A1). By writing Eq. (A1) as�†

±H�± =
H0, it is clear that such a transformation of the Hamilto-
nian H is not unitary, since it relates the full Hamiltonian
containing the interaction with the free Hamiltonian, which
has a different energy spectrum.
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From the intertwinning relation, we can straightfor-
wardly derive the important commutation property of the
scattering operator

SH0 = �
†
−�+H0 = �

†
−H�+

= H0�
†
−�+ = H0S ⇒ [S, H0] = 0, (A3)

which implies the conservation of the total energy in
the scattering event and that the elements of the scatter-
ing operator in the eigenbasis of H0, i.e., 〈p ′, j ′| S |p , j 〉,
are proportional to δ(Ep + ej − Ep ′ − ej ′) = δ(Ep − Ep ′ −
�j ′j ), allowing us to write these terms as in Eq. (9).

Another important consequence of the interwinning
relation is that, if |p , j 〉 is an improper eigenstate of H0
with energy E = Ep + ej = p2/(2m)+ ej , then �± |p , j 〉
is an eigenstate of the full Hamiltonian H with the same
energy:

H�± |p , j 〉 = �±H0 |p , j 〉 = E�± |p , j 〉 . (A4)

2. The T operator

A crucial tool in scattering theory are the resolvents
or Green’s operators associated to the free and the full
Hamiltonian:

G0(z) ≡ (z − H0)
−1, G(z) ≡ (z − H)−1 (A5)

defined for any complex number z, which does not belong
to the spectrum of H0 and H , respectively. It is not hard to
prove that these operators verify

G(z) = G0(z)+ G0(z)VG(z)

= G0(z)+ G(z)VG0(z). (A6)

We also define the T operator as

T(z) ≡ V + VG(z)V. (A7)

Applying G0(z) to this equation and making use of Eq.
(A6), we get

G0(z)T(z) = G(z)V, (A8)

which relates the two resolvents through the T operator and
the interaction potential.

To relate the scattering and the T operator, we rewrite
the Møller operators (2) as

�± = 1 +
∫ ∓∞

0
dt

d
dt
(eiHt/� e−iH0t/�)

= − lim
ε→0+

[
e±εt/�eiHt/� e−iH0t/�]∓∞

0

+ lim
ε→0+

∫ ∓∞

0
dt e±εt/� d

dt
(eiHt/� e−iH0t/�)

= lim
ε→0+

∓ ε
�

∫ ∓∞

0
dt e±εt/�eiHt/� e−iH0t/�, (A9)

where integration by parts is used from the second to the
third equality. Its action on the improper eigenstates of H0
gives

�± |p , j 〉 = lim
ε→0+

∓ ε
�

∫ ∓∞

0
dt e−i(E±iε)t/� eiHt/� |p , j 〉

= lim
ε→0+

± i ε G(E ± iε) |p , j 〉

= |p , j 〉 + G(E ± i0)V |p , j 〉 , (A10)

where E = Ep + ej = p2/(2m)+ ej is the energy of the
state |p , j 〉 and we introduce the notation f (z + i0) ≡
limε→0+ f (z + iε). The second equality follows from a
direct calculation of the integral in Eq. (A9), while the
third is obtained using Eq. (A6) and G0(z) |p , j 〉 = (z −
E)−1 |p , j 〉. Multiplying Eq. (A10) by V we get the useful
expression

V�± |p , j 〉 = T(E ± i0) |p , j 〉 . (A11)

Recalling the representation of the Dirac δ, πδ(x) =
limε→0+ Im(x − iε)−1, one can prove that Eq. (A10)
implies the identity

(�+−�−) |p , j 〉 = [G(E + i0)− G(E − i0)]V |p , j 〉
= −2π iδ(E − H)V |p , j 〉 . (A12)

The action of the scattering operator on an eigenstate of
H0 can now be computed from its definition (3) and Eq.
(A12):

S |p , j 〉 = �
†
−�+ |p , j 〉

= (1 +�
†
−(�+ −�−)) |p , j 〉

= |p , j 〉 − 2π i�†
−δ(E − H)V |p , j 〉 . (A13)

Closing the last expression with 〈p ′, j ′| and taking into
account that �− |p ′, j ′〉 is an eigenstate of H with eigen-
value Ep ′ + ej ′ , we get
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〈p ′, j ′| S |p , j 〉 = δj ′j δ(p ′ − p)− 2π iδ(Ep − Ep ′ −�j ′j ) 〈p ′, j ′|�†
−V |p , j 〉 . (A14)

We can eliminate the Møller operator using Eq. (A11) and the property T†(z) = T(z∗), yielding 〈p ′, j ′|�†
−V |p , j 〉 =

〈p ′, j ′| T(E + i0) |p , j 〉. Inserting this last expression into Eq. (A14), one finally gets

〈p ′, j ′| S |p , j 〉 = δj ′j δ(p ′ − p)− 2π iδ(Ep − Ep ′ −�j ′j )× 〈p ′, j ′|T(E + i0)|p , j 〉

= δ(Ep − Ep ′ −�j ′j )

[
δj ′j δα′α

|p|
m

− 2π i 〈p ′, j ′|T(E + i0)|p , j 〉
]

. (A15)

Comparing this expression with Eq. (9) and taking into account that j ′ = j implies |p ′| = |p|, we get

s(α
′α)

j ′j (E) = δj ′j δα′α − 2π i m√|pp ′| 〈p ′, j ′|T(E + i0)|p , j 〉 . (A16)

In this way, we relate the entries of the scattering matrix s to the T operator. In the next section of this appendix, we relate
the elements of the T operator to the transmission and reflection coefficients, which, in turn, can be computed by solving
the stationary Schrödinger equation.

3. Scattering states

The previous definitions and relationships can be used to compute the T operator and the scattering operator S in specific
situations. For this purpose, let us introduce the so-called scattering states |p , j 〉+ defined as

|p , j 〉+ ≡ �+ |p , j 〉 = |p , j 〉 + G(E + i0)V |p , j 〉
= |p , j 〉 + G0(E + i0)T(E + i0) |p , j 〉 . (A17)

Here, we use Eqs. (A10) and (A8). We also use the following identity derived from Eqs. (A11) and (A17):

|p , j 〉+ = |p , j 〉 + G0(E + i0)V |p , j 〉+ . (A18)

The scattering state |p , j 〉+ is an eigenstate of H with energy E = Ep + ej as shown in Eq. (A4). Moreover, the asymptotic
behavior of its wave function in real space 〈x|p , j 〉+ contains all the necessary information to calculate the operators T
and S. To prove this, we start by expressing Eq. (A18) in the position representation, using the plane wave introduced in
Eq. (7):

〈x|p , j 〉+ = eikx

√
2π�

|j 〉 +
∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′ 〈x|G0(E + i0)|x′〉 〈x′|V|x′′〉 〈x′′|p , j 〉+

= eikx

√
2π�

|j 〉 +
∫ ∞

−∞
dx′ V(x′) 〈x|G0(E + i0)|x′〉 ν 〈x′|p , j 〉+ , (A19)

with k = p/�. The resolvent in position representation G+
0 (x, x′) ≡ 〈x|G0(E + i0)|x′〉 is an operator in HY that obeys the

equation
[

E − HY + �2

2m
d2

dx2

]
G+

0 (x, x′) = δ(x − x′)⊗ IY. (A20)

The solution is

G+
0 (x, x′) =

∑
j ′

m
ikj ′�2 eikj ′ |x−x′| |j ′〉 〈j ′| , (A21)

with kj ′ = √
2m(E − ej ′)/�, as one can check by direct substitution. Inserting this expression in Eq. (A19), we get

〈x|p , j 〉+ = eikx

√
2π�

|j 〉 +
∑

j ′

m
ikj ′�2 |j ′〉

∫ ∞

−∞
dx′eikj ′ |x−x′|V(x′) 〈j ′| ν 〈x′|p , j 〉+ . (A22)
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We are interested in the asymptotic behavior of 〈x|p , j 〉+ far from the collision region. Consider first the case p > 0 and
x → −∞. Due to the presence of V(x′), only the values of x′ in the collision region contribute to the integral. Therefore,
we can replace |x − x′| by x′ − x, yielding

〈x|p , j 〉+ =
x→−∞

1√
2π�

⎡
⎣eikx |j 〉 +

∑
j ′

rL
j ′j e−ikj ′ x |j ′〉

⎤
⎦ , (A23)

where

rL
j ′j = m e−ikj ′ x

ikj ′�2

∫ ∞

−∞
dx′eikj ′ x′

V(x′) 〈j ′| ν 〈x′|p , j 〉+ . (A24)

Hence, the scattering state |p , j 〉+ is a superposition of wave packets with certain amplitudes rL
j ′j , which we need to relate

to T and the S operators. To achieve this, we express Eq. (A17) in position representation

〈x|p , j 〉+ = 1√
2π�

[
eikx |j 〉 +

∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′eikx′′

G+
0 (x, x′) 〈x′|T(E + i0)|x′′, j 〉

]

= 1√
2π�

⎡
⎣eikx |j 〉 +

∑
j ′

m
ikj ′�2 |j ′〉

∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′eikx′′

eikj ′ |x−x′| 〈x′, j ′|T(E + i0)|x′′, j 〉
⎤
⎦ . (A25)

To conform with the asymptotic behavior, Eq. (A23), the integrand must be localized in a finite region. We can then
replace again |x − x′| by x′ − x when x → −∞, obtaining

〈x|p , j 〉+ =
x→−∞

1√
2π�

⎡
⎣eikx |j 〉 +

∑
j ′

me−ikj ′ x

ikj ′�2 |j ′〉
∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′eikx′′

eikj ′ x′ 〈x′, j ′|T(E + i0)|x′′, j 〉
⎤
⎦ . (A26)

Comparing Eqs. (A23) and (A26), we get

rL
j ′j = m

ikj ′�2

∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′eikx′′

eikj ′ x′ 〈x′, j ′|T(E + i0)|x′′, j 〉 . (A27)

If we go back to the momentum representation taking into account that |p〉 = (
√

2π�)−1
∫∞
−∞ dx exp [ikx] |x〉 then Eq.

(A27) reduces to

rL
j ′j = −2π i

m
pj ′

〈−pj ′ , j ′|T(E + i0)|p , j 〉 , (A28)

with pj ′ = �kj ′ = √
p2 − 2m�j ′j . Introducing the value of 〈p ′, j ′|T(E + i0)|p , j 〉 given by Eq. (A28) in Eq. (A16), we

can express the entries of the scattering matrix in terms of the amplitudes rL
j ′j :

r̂L
j ′j ≡ s(−+)

j ′j (E) =
√

|p ′|
|p| rL

j ′j (A29)

since the sign of the momentum of the incident wave |p , j 〉 is α = + and the one of the reflected wave |−pj ′ , j ′〉 is α = −.
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The asymptotic behavior of |p , j 〉+ for x → +∞ is analyzed in a similar way. First we proceed as above to get the
analogous to Eq. (A23), which reads [notice that we can now include the first term in Eq. (A23) in the sum]:

〈x|p , j 〉+ =
x→+∞

1√
2π�

∑
j ′

tLj ′j eikj ′ x |j ′〉 . (A30)

The position representation of Eq. (A17) is still given by Eq. (A25), but now the absolute value in the exponential is
|x − x′| = x − x′, yielding

〈x|p , j 〉+ =
x→∞

1√
2π�

⎡
⎣eikx |j 〉 +

∑
j ′

meikj ′ x

ikj ′�2 |j ′〉
∫ ∞

−∞
dx′
∫ ∞

−∞
dx′′eikx′′

e−ikj ′ x′ 〈x′, j ′|T(E + i0)|x′′, j 〉
⎤
⎦ (A31)

and therefore

tLj ′j = δj ′j − 2π i
m
pj ′

〈pj ′ , j ′|T(E + i0)|p , j 〉 . (A32)

Finally, the corresponding entry in the scattering matrix reads

t̂Lj ′j ≡ s(++)
j ′j (E) =

√
|p ′|
|p| tLj ′j . (A33)

Summarizing, to obtain the entries of the scattering matrix with α = +, one has to solve the stationary Schrödinger
equation H |ψ〉 = E |ψ〉 for an improper state |ψ〉 whose position representation 〈x|ψ〉 ∈ HY has the following asymptotic
behavior:

〈x|ψ〉 =

⎧
⎪⎪⎨
⎪⎪⎩

eikj x |j 〉 +
∑

j ′
rL

j ′j e−ikj ′ x |j ′〉 for x → −∞
∑

j ′
tLj ′j eikj ′ x |j ′〉 for x → +∞ . (A34)

The solution is unique and determines the amplitudes tLj ′j and rL
j ′j , which in turn determine the entries of the scattering

matrix t̂Lj ′j and r̂L
j ′j , as prescribed in Eqs. (A29) and (A33).

Repeating the whole analysis with p < 0, we get identical results. The solution of the Schrödinger equation now must
obey the asymptotic conditions:

〈x|ψ〉 =

⎧⎪⎪⎨
⎪⎪⎩

∑
j ′

tRj ′j e−ikj ′ x |j ′〉 for x → −∞

e−ikj x |j 〉 +
∑

j ′
rR

j ′j eikj ′ x |j ′〉 for x → +∞ (A35)

and we finally obtain

t̂Rj ′j ≡ s(−−)
j ′j (E) =

√
|p ′|
|p| tRj ′j

r̂R
j ′j ≡ s(+−)

j ′j (E) =
√

|p ′|
|p| rR

j ′j , (A36)

for transmission and reflection from the right, respectively.
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4. The scattering matrix

We order the channels such that the first Nopen are right propagating and the last Nopen are left propagating. In this way
we write

s(E) =
(

r̂L t̂R

t̂L r̂R

)
=
(

s−+ s−−
s++ s+−

)
, (A37)

which satisfies the identities

s(E)s†(E) =
(

r̂Lr̂L† + t̂Rt̂R† r̂Lt̂L† + t̂Rr̂R†

t̂Lr̂L† + r̂Rt̂R† t̂Lt̂L† + r̂Rr̂R†

)
=
(

1 0
0 1

)
, (A38)

s†(E)s(E) =
(

r̂L†r̂L + t̂L†t̂L r̂L†t̂R + t̂L†r̂R

t̂R†r̂L + r̂R†t̂L t̂R†t̂R + r̂R†r̂R

)
=
(

1 0
0 1

)
, (A39)

following from the unitarity of the scattering operator S†S = I and SS† = I, respectively. We sketch the proof of Eq. (A38).
Starting from

〈p ′, j ′| S†S |p , j 〉 = δ(p ′ − p)δj ′j , (A40)

inserting the resolution of identity and expressing the Dirac δ as a function of the kinetic energies, we get

∑
k

∫
dp ′′ 〈p ′, j ′| S† |p ′′, k〉 〈p ′′, k| S |p , j 〉 = |p|

m
δ(Ep ′ − Ep)δj ′j δα′α . (A41)

We now write the matrix elements of the operator S in terms of the scattering matrix s(α
′α)

j ′j using Eq. (9) and perform the
integral over p ′′ by recalling that dEp ′′ = |p ′′|dp ′′/m:

δ(Ep ′ − Ep −�j ′j )

√|p p ′|
m

∑
k

∑
α′′=±

[s(α
′′α′)

kj ′ (Ep ′ + ej ′)]∗s(α
′′α)

kj (Ep + ej ) = |p|
m
δ(Ep − Ep ′)δj ′j δα′α . (A42)

Taking into account that the δ function in the right-hand side of the equation implies j = j ′ ⇒ |p| = |p ′|, one obtains

∑
k

∑
α′′=±

[s(α
′′α′)

kj (E)]∗s(α
′′α)

kj (E) = δj ′j δα′α , (A43)

which is Eq. (A38) as a careful inspection shows. To prove Eq. (A39), one can follow similar steps starting from
〈p ′, j ′| SS† |p , j 〉 = δ(p ′ − p)δj ′j .

APPENDIX B: SCATTERING MATRIX FOR A δ POTENTIAL

Here we provide explicit computations of t̂ = t̂L = t̂R and r̂ = r̂L = r̂R for V(x) = gδ(x). According to Appendix A 3,
we have to solve the stationary Schrödinger equation H |ψ〉 = E |ψ〉 which, in position representation, can be written as

{
E − HY + �2

2m
d2

dx2

}∑
k

ψk(x) |k〉 = V
∑

k

ψk(x) |k〉 , (B1)

where 〈x|ψ〉 = ∑
k ψk(x) |k〉. We look for solutions obeying the asymptotic boundary conditions Eq. (A34) or, equiva-

lently, Eq. (A35). Since the support of the potential is a single point at x = 0, the asymptotic conditions are fulfilled for
every x �= 0:

020312-18



THERMALIZATION INDUCED BY QUANTUM SCATTERING PRX QUANTUM 2, 020312 (2021)

〈x|ψ〉 =

⎧
⎪⎪⎨
⎪⎪⎩

eikj x |j 〉 +
∑

j ′
rj ′j e−ikj ′ x |j ′〉 for x < 0

∑
j ′

tj ′j eikj ′ x |j ′〉 for x > 0.

(B2)

Projecting the Schrödinger Eq. (B1) onto 〈j ′|, we get

(E − ej ′)ψj ′(x)+ �2

2m
ψ ′′

j ′(x) = gδ(x)
∑

k

ψk(x) 〈j ′| ν |k〉 .

(B3)

The wave functions ψj ′(x) must be everywhere continu-
ous, while their first derivative ψ ′

j ′(x) has a jump discon-
tinuity at x = 0. Imposing the continuity condition to the
solution Eq. (B2), we get δj ′j + rj ′j = tj ′j or, in matrix
form

I + r = t. (B4)

To obtain the value of the jump discontinuity, we inte-
grate both sides of Eq. (B3) in an interval [−ε, ε] and then
take ε → 0+:

�2

2m
[ψ ′

j ′(0+)− ψ ′
j ′(0−)] = g

∑
k

ψk(0) 〈j ′| ν |k〉 . (B5)

According to Eq. (B2), the derivatives at x = 0
are ψ ′

j ′(0+) = ikj ′ tj ′j and ψ ′
j ′(0−) = ikj ′(δj ′j − rj ′j ) =

ikj ′(2δj ′j − tj ′j ), where in the last equality we use Eq. (B4).
From continuity we also haveψk(0) = tkj . Collecting these
results, Eq. (B5) yields

i�2

m
kj ′[tj ′j − δj ′j ] = g

∑
k

tkj 〈j ′| ν |k〉 .

This relation can be expressed in matrix form by defining
D as the diagonal matrix with elements Djj = kj and V the
matrix with elements Vjk = 〈j | ν |k〉

D[t − I] = mg
�2i

V t,

hence

t =
[
I + img

�2 D−1V
]−1

, (B6)

which, together with Eq. (B4), determines the amplitudes
tj ′j and rj ′j for the δ potential in space.
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Universidad Complutense de Madrid, 28040 Madrid, Spain

2Complex Systems and Statistical Mechanics, Physics and Materials Science Research Unit,
University of Luxembourg, L-1511 Luxembourg, G.D. Luxembourg
3Kavli Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106 Santa Barbara, U.S.A.
4Departamento de F́ısica, Facultad de Ciencias F́ısicas y Matemáticas, Universidad de Chile, 837.0415 Santiago, Chile
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Collisional reservoirs are becoming a major tool for modelling open quantum systems. In their
simplest implementation, an external agent switches on for a given time the interaction between
the system and a specimen from the reservoir. Generically, in this operation the external agent
performs work onto the system, preventing thermalization when the reservoir is at equilibrium.
Thermalization only occurs if the global system is autonomous and this requires considering the
kinetic degree of freedom of the reservoir particles colliding with the system. The corresponding
scattering problem is rather involved. Here, we present a formal solution of the problem in one
dimension and for flat interaction potentials. The solution is based on the transfer matrix formalism
and allows us to explore the symmetries of the resulting scattering map. One of these symmetries is
micro-reversibility, which is a condition for thermalization. We then introduce two approximations
of the scattering map that preserve these symmetries and, consequently, thermalize the system.
These relatively simple approximate solutions constitute models of quantum thermostats and are
useful tools to study quantum systems in contact with thermal baths. We illustrate their accuracy
in a specific example, showing that both are good approximations of the exact scattering problem
even in situations far from equilibrium. Moreover, one of the models consists of the removal of
certain coherences plus a very specific randomization of the interaction time. These two features
allow one to identify as heat the energy transfer due to switching on and off the interaction. Our
results prompt the fundamental question of how to distinguish between heat and work from the
statistical properties of the exchange of energy between a system and its surroundings.

PACS numbers:

I. INTRODUCTION

A proper understanding of the interaction between a system and a thermal reservoir is crucial for the development
of thermodynamics. This interaction turns out to be more involved for quantum systems. The theory of quantum
open systems was initiated more than fifty years ago and has provided robust and widely used tools, such as the
Lindblad equation for autonomous systems weakly coupled to thermal baths [1–3]. However, there are a number of
questions which are still open or even under some controversy. Examples are Lindblad equations for driven systems
[4], local versus global Lindblad and master equations [5, 6], strong coupling [7, 8], and non-Markovian effects [9].

Some of these issues could be addressed and eventually clarified if we had simplified and analytically solvable
models of the interaction between a quantum system and a thermal bath. Good candidates would be the so-called
repeated-interaction or collisional reservoirs [10–13]. In these models, the system does not interact with the reservoir
as a whole. The reservoir consists of a large ensemble of independent units in a given state (usually, the equilibrium
Gibbs state). One unit is extracted and put in contact with the system during a certain time interval. The process
is repeated with fresh units, i.e., in each interaction the initial state of the unit is always the same and given by
the density matrix that characterizes the reservoir. The interaction induces a quantum map in the system, which is
exact and usually simpler to analyze than a continuous-time Lindblad equation. Moreover, this type of interaction

∗Electronic address: jorgetab@ucm.es
†Electronic address: parrondo@fis.ucm.es
‡Electronic address: samuel.lourenco@uni.lu
§Electronic address: massimiliano.esposito@uni.lu
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occurs in relevant experimental setups, as in cavity quantum electrodynamics [14]. Unfortunately, this approach has
a drawback. The models explored up to now are not autonomous: an external agent is needed to switch on and
off the interaction between the system and the unit. In general, this action involves an energy exchange, which is a
work supply that prevents the system from thermalizing [10–13]. Consequently, repeated-interaction models cannot
be used as thermostats.

In a series of papers [15, 16], we managed to overcome this drawback by considering a fully autonomous scenario,
where the units escape from the reservoir with a random velocity given by the effusion distribution, move in space as
quantum wave packets and collide with the system without the need of an external agent. In this case, the energy to
switch on and off the interaction is provided by the spatial degree of freedom of the unit. It turns out that the width
of the incident wave packets in momentum representation plays a crucial role in the thermodynamics of the whole
setup [15]. For wave packets with a large momentum dispersion, the exchanged energy can be interpreted as work
[17]. On the other hand, if one assumes that the velocity of the unit is in equilibrium and that the wave packets are
narrow enough in momentum representation, then this energy exchange is no longer work but heat and the system
thermalizes [15]. Consequently, this latter approach captures all the essential features of a real thermostat.

In this paper, we extend the analysis of our previous work [15] to include the internal degrees of freedom of the
units. Then we apply the transfer matrix formalism [18] to obtain an exact solution of the scattering problem for a
uniform interaction potential. This solution allows us to explore the symmetries of the scattering map. In particular,
we analyze the role of micro-reversibility as a sufficient condition for the system to thermalize when it is bombarded
by narrow wave packets with velocities distributed according to the effusion distribution [15, 16].

We then find approximations to the exact scattering map for large scatterers and high incident kinetic energy. The
approximations preserve micro-reversibility and, consequently, induce thermalization when the particles come from
a reservoir at equilibrium. The first approximation is based on wave-vector operators and can be further simplified
for large kinetic energy. The final result is a scattering map that resembles the repeated-interaction scheme, where
the interaction Hamiltonian acts during a given time. When the system is bombarded by effusion particles, this time
is a random variable whose distribution depends on the total energy of the system and the unit. This very specific
randomization of the interaction time, plus the decoupling of populations and coherences by narrow wave packets [15],
allows one to interpret the energy exchanged in the switching of the interaction as heat. Recall that, in the standard
non-autonomous repeated interaction schemes [11], the energy transfer between the system and the external agent
that switches on and off the interaction is work. In contrast, in our models this energy is heat because it is exchanged
with the kinetic degree of freedom of the unit, which is in thermal equilibrium. Our results show that the distinction
between heat and work is reflected in the dynamics of the system. This raises the interesting question of whether the
energy exchange between a generic open system (classical or quantum) and its surroundings can be characterized as
work or heat just by analyzing the dynamics of this exchange.

The paper is organized as follows. Sec. II is essentially a review of the results of our previous paper [15]: we
discuss the map induced on the system by a single collision with a unit consisting of a wave packet, as well as the
sufficient conditions for this map to thermalize the system when the incident velocity is random. The relation between
these conditions and the symmetries of the scattering matrix are discussed in detail in Appendix A. In Sec. III, we
present two specific models of repeated-interaction thermostats fulfilling these conditions. These are based on an
approximation that is carried out in the context of transfer matrix theory in Appendices A and B. Finally, we apply
the results to a specific example in Sec. IV and present our main conclusions in Sec. V.

II. THERMALIZATION AND THE SCATTERING MAP

A. Collisional reservoirs

We consider units drawn from a reservoir and colliding, one by one, with the system [15]. Each unit U is a particle
of mass m with internal states and moving in one dimension. Its corresponding Hilbert space is HU = HU,p ⊗HU,int,
where HU,p refers to the spatial states and HU,int is the space of internal states. The units collide with the system S,
which only has internal degrees of freedom and its states are vectors in the Hilbert space HS .

The system is a fixed scatterer located in an interval [−L/2, L/2], as sketched in Fig. 1. The whole setup is described
by the following Hamiltonian Htot, which is an operator acting on HU ⊗HS :

Htot =
p̂2

2m
+ χL(x̂)HUS +HU +HS (1)

p̂ and x̂ being, respectively, the momentum and position operators in HU,p. χL(x) is the index function of the
scattering region [−L/2, L/2]: χL(x) = 1 if x ∈ [−L/2, L/2] and zero otherwise. Outside the scattering region,
the free Hamiltonian H0 = HU + HS rules the evolution of the internal degrees of freedom and is the sum of the
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Hamiltonian of the system HS and of the internal degrees of freedom of the unit HU . Within the scattering region, the
Hamiltonian affecting the internal degrees of freedom is H = HUS +H0, which we will call total internal Hamiltonian.
The free and the total internal Hamiltonians, H0 and H respectively, are operators in HU,int ⊗HS . We will assume
that both have a discrete spectrum with eigenstates:

H0 |sJ〉 = eJ |sJ〉
H |s′J〉 = e′J |s′J〉 .

(2)

Notice that {|sJ〉} and {|s′J〉} are orthonormal basis of the Hilbert space of the internal states of the unit and the
system, HU,int ⊗HS . Moreover, the eigenvectors of H0 can be written as |sJ〉 = |sjU 〉U ⊗ |sjS 〉S ∈ HU,int ⊗HS , with

HU |sjU 〉U = e
(U)
jU
|sjU 〉U

HS |sjS 〉S = e
(S)
jS
|sjS 〉S (3)

and total energy eJ = e
(U)
jU

+e
(S)
jS

. Here and in the rest of the paper, we use capital letters J for the quantum numbers
labelling the eigenstates of H0 and H and lower case letters, jU , jS , for the quantum numbers corresponding to
HU and HS . In this notation, the quantum number J of an eigenstate of H0 comprises the two quantum numbers
J = (jS , jU ).

FIG. 1: A scheme of the setup analyzed in the text: a unit in state |φp0,x0〉 ⊗ |sjU 〉U , which consists of a wave packet and an

internal state with well defined energy e
(U)
jU

, collides with a system in state ρS . The length of the collision region is L.

In order to observe well-defined collisions, the spatial state of the units must be a wave packet |φp0,x0〉 centered
around position x0 and momentum p0, with momentum dispersion σp, as the one depicted in Fig. 1. An example is
the Gaussian wave packet, whose wave function in momentum representation reads [15]

〈p|φp0,x0
〉 = (2πσ2

p)−1/4 exp
[
− (p− p0)2

4σ2
p

− i px0

~

]
. (4)

Here |p〉 denotes the non-normalizable plane wave with momentum p. The Hamiltonian (1) is invariant under spatial
reflection x → −x. Consequently, a collision with a unit coming from the left with positive velocity, x0 < 0 and
p0 > 0, is equivalent to the mirror collision with a unit |φ−p0,−x0

〉 coming from the right. Hence, we can limit our
discussion to units with positive velocity, without loss of generality (the mathematical consequences of this spatial
symmetry in the scattering problem are explained in detailed in Appendix A).

The internal state of the unit depends on the properties of the reservoir. For instance, if the reservoir is in thermal
equilibrium at inverse temperature β, the internal state is the Gibbs state ρU,eq = e−βHU /ZU , where ZU is the
corresponding partition function. We first analyze the case of a unit in a pure eigenstate of HU , |sjU 〉U , and later on
we consider thermal mixtures of these eigenstates.

B. The scattering map

The effect of the collision on the system is given by a CPTP map, which depends on the incident momentum p0 and
the internal state of the unit. However, it is convenient to consider first the effect of the collision on all the internal
degrees of freedom, those of the system and of the internal state of the unit, following Ref. [15]. The scattering map
S relates the internal state before the collision, ρ, and after, ρ′ = Sρ. Expressing the states in the eigenbasis of H0,
ρJK = 〈sJ |ρ|sK〉 and ρ′JK = 〈sJ |ρ′|sK〉, the scattering map is given by a tensor SJKJ′K′ such that

ρ′J′K′ =
∑

J,K

SJKJ′K′ρJK . (5)
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In Ref. [15], we have analyzed in detail this scattering map and found that the behavior of the state ρ crucially
depends on the momentum dispersion of the packet, σp. If the dispersion is small enough, the outgoing wave packets
corresponding to different transitions |sJ〉 → |sJ′〉 are either identical or do not overlap. The precise condition for
these narrow wave packets in terms of the transition energies ∆JJ ′ = eJ − eJ′ , reads

σp �
m|∆JJ ′ −∆KK′ |

2p0
(6)

for every pair of transitions |sJ〉 → |sJ′〉 and |sK〉 → |sK′〉 with ∆J′J 6= ∆KK′ . If the incident packet fulfills this
condition, we call it narrow wave packet and the scattering map induced by the collision is given by [15]:

SJKJ′K′ ' tJ′J(Ep0 + eJ) [tK′K(Ep0 + eK)]
∗

+ rJ′J(Ep0 + eJ) [rK′K(Ep0 + eK)]
∗
, (7)

whenever

eJ′ − eJ = eK′ − eK (8)

and Ep0 + eJ ≥ eJ′ , and zero otherwise. Here tJ′J(E) and rJ′J(E) are the transmission and reflection amplitudes
that depend on the total energy, kinetic Ep0 ≡ p2

0/(2m) plus internal eJ . They are defined for all J and J ′ such that
E ≥ eJ , eJ′ , which are the so-called open channels in the collision, and are usually arranged into two matrices t(E)
and r(E) that form the scattering matrix

S̃(E) =

(
r(E) t(E)
t(E) r(E)

)
. (9)

The two matrices t(E) and r(E) are defined on the subspace of open channels Hopen, spanned by the eigenvectors
|sJ〉 of H0 with eJ ≤ E (see Appendix A for a detailed discussion). One important property of the scattering matrix

is that it is unitary on the subspace Hopen for a given total energy E, that is, S̃†(E)S̃(E) = I for all E, implying

r(E)r†(E) + t(E)t†(E) = I
r(E)t†(E) + t(E)r†(E) = 0 .

(10)

In Appendix A, we present a detailed overview of the properties of the scattering matrix S̃(E) and its symmetries,
and explain how it can be calculated by solving the time-independent Schrödinger equation for the so-called scattering
states, which behave asymptotically as incoming and outgoing plane waves. The amplitudes of these plane waves are
directly related to the reflection and transmission matrices and can be obtained using a transfer matrix technique.
Moreover, in Appendix B, we derive an approximation valid for long scatterers (large L) and incident units with high

momenta, which preserves the symmetries of S̃(E) and will be the basis to design consistent thermostats.
Let us first discuss the behavior of the diagonal terms of the density matrix ρJJ , which are the populations of

the energy levels eJ = e
(U)
jU

+ e
(S)
jS

. The evolution of the populations is determined by the coefficients SJKJ′J′ of the

scattering map. Condition (8), particularized to J ′ = K ′, indicates that these coefficients are different from zero only

if eJ = eK . Moreover, since the initial internal state of the unit is an eigenstate of HU , jU = kU ; hence, e
(S)
jS

= e
(S)
kS

.
If the Hamiltonian of the system HS is non degenerate, this implies jS = kS and populations evolve independently of
the off-diagonal terms of the density matrix

ρ′J′J′ =
∑

J

PJ′J(p0)ρJJ (11)

with the following transition probabilities that depend on the momentum p0 of the incident unit:

PJ′J(p0) ≡ SJJJ′J′

= |tJ′J(Ep0 + eJ)|2 + |rJ′J(Ep0 + eJ)|2 (12)

if p2
0 ≥ 2m∆J′J and zero otherwise. The unitarity of the scattering matrix on the subspace Hopen of open channels,

Eq. (10), implies that the off-diagonal terms decay [15], since |tJ′J |2 + |rJ′J |2 ≤ 1, and that the trace of the density
matrix is preserved,

∑
J′ PJ′J(p0) = 1 for all p0.
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C. Conditions for thermalization

In this subsection we explore whether the system thermalizes if the units are in equilibrium at inverse temperature
β. This implies that the units are in an internal state |sjU 〉U with probability

pjU =
e
−βe(U)

jU

ZU
(13)

where ZU is the internal partition function of the unit. The momentum of the units coming form a thermal bath is
distributed as [15, 16]:

µ(p) =
β|p|
m

e−βp
2/(2m) p ∈ [0,∞] . (14)

This is the effusion distribution describing the momentum of particles in equilibrium that cross a given point or hit
a fixed scatterer coming from the left (since our scatterer, as described by the total Hamiltonian (1), is symmetric,
there is no need to explicitly consider the case of negative incident velocity). We have shown in Ref. [16] how this
effusion distribution arises from the Maxwellian velocity distribution and a uniform density of classical particles, which
characterize an ideal gas at equilibrium.

In this case, the populations p(J) ≡ ρJJ , obey the following master equation

p′(J ′) =
∑

J

p(J)p(J → J ′) (15)

with

p(J → J ′) =

∫ ∞

0

dp0 µ(p0)PJ′J(p0) . (16)

The master equation for the state of the system

p(jS) =
∑

jU

p(jS , jU ) , (17)

with p(jS , jU ) ≡ p(J), reads

p′(j′S) =
∑

jS

p(jS)p(jS → j′S) (18)

with

p(jS → j′S) =
∑

jU ,j′U

e
−βe(U)

jU

ZU
p(J → J ′) (19)

where we recall that J denotes the pair of quantum numbers (jS , jU ).
A sufficient condition for thermalization is micro-reversibility or invariance of the collision probabilities under time

reversal [15]. In a quantum system, the states are transformed under time reversal by means of an anti-unitary
operator T defined on the corresponding Hilbert space. Any anti-unitary operator can be written as T = CU , where
C is the conjugation of coordinates in a given basis and U is a unitary operator [19]. The time reversal operator
depends on the physical nature of the system. Consider for instance a qubit with Hilbert space H = C2. If the
qubit is a 1/2 spin, then time-reversal must change the sign of all the components of the spin, i.e., TσαT

† = −σα
for α = x, y, z, where σα are the Pauli matrices. The anti-unitary operator that fulfills these transformations is
T = Cσy, where C is the conjugation of the coordinates of the qubit in the canonical basis (the eigenbasis of σz)
[19]. On the other hand, if the qubit is a two-level atom whose states are superpositions of real wave functions in the
position representation, then the time reversal operator is just T = C, since the time-reversal of spinless particles is
the conjugation of the wave function in the position representation.

In our case, the total time-reversal operator acting on the Hilbert space HU,p ⊗ HU,int ⊗ HS can be decomposed
into three parts T = TU,p ⊗ TU,int ⊗ TS . The operator TU,p is the conjugation of the spatial wave function of the
unit in the position representation TU,pψ(x) = ψ∗(x), whereas in momentum representation reads TU,pφ(p) = φ∗(−p)
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[19, 20]. The time-reversal operator for the internal degrees of freedom can in principle be any anti-unitary operator
Tint = TU,int ⊗ TS .

Micro-reversibility occurs when the total Hamiltonian commutes with the time-reversal operator, [Htot,T] = 0.
Since the kinetic part is already invariant under time reversal, the commutation [H,Tint] = 0 is a sufficient condition
for micro-reversibility. For simplicity, we further assume that [H0,Tint] = 0 and that the eigenstates of H0 are time-
reversal invariant: Tint |sJ〉 = |sJ〉 for all J . In Appendix A we show that, if these conditions are fulfilled, then the

scattering matrix obeys S̃∗S̃ = I. Combining this expression with the unitarity of S̃, we conclude that the matrices t
and r are symmetric for a given energy E:

〈sJ′ |t(E)|sJ〉 = 〈sJ |t(E)|sJ′〉
〈sJ′ |r(E)|sJ〉 = 〈sJ |r(E)|sJ′〉 . (20)

If we now apply this symmetry to the transition probabilities given by Eq. (12), we obtain

PJ′J(p0) = PJJ ′

(√
p2

0 − 2m∆J′J

)
(21)

for all p0 satisfying p2
0 ≥ 2m∆J′J .

Let us prove now that micro-reversibility, as expressed by Eq. (21) for the transition probabilities, is a sufficient
condition for thermalization. We first focus on transitions of internal states including the unit, that is, from |sJ〉 to
|sJ′〉. If eJ′ ≥ eJ , then ∆J′J ≥ 0 and the transition probability reads

p(J → J ′) =

∫ ∞
√

2m∆J′J

dp0
βp0

m
e−βp

2
0/(2m)PJ′J(p0) . (22)

Here, the lower limit in the integral is due to the fact that PJ′J(p0) is zero for p2
0 ≤ 2m∆J′J . If we change the

integration variable to p′0 =
√
p2

0 − 2m∆J′J ⇒ dp′0 = |p0|dp0/|p′0|, we obtain

p(J → J ′) =

∫ ∞

0

dp′0
βp′0
m

e−β(p
′2
0 /(2m)+∆J′J ) PJ′J

(√
p

′2
0 + 2m∆J′J

)
. (23)

Finally, applying the micro-reversibility condition (21),

p(J → J ′) =e−β∆J′J

∫ ∞

0

dp′0
βp′0
m

e−βp
′2
0 /(2m)PJJ ′(p′0)

=e−β∆J′Jp(J ′ → J) . (24)

We can proceed in an analogous way for the case eJ′ ≤ eJ . The final result is the local detailed balance condition

p(J → J ′)
p(J ′ → J)

= e−β(eJ′−eJ ) for all J, J ′ . (25)

We now explicitly consider the internal states of the unit. Recall that the subindex J in the previous sections
comprises two quantum numbers J = (jS , jU ). If the internal states of the unit are in thermal equilibrium at inverse
temperature β, then the transition probabilities between the states of the system are given by (19). The detailed
balance condition (25) can be written as

p(J → J ′) = e
−β

[
e
(U)

j′
U

+e
(S)

j′
S
−e(U)

jU
−e(S)

jS

]

p(J ′ → J) . (26)

Inserting (26) into (19), one gets

p(jS → j′S) = e
−β

[
e
(S)

j′
S
−e(S)

jS

]

p(j′S → jS) (27)

which is the detailed balance condition for the populations of the states of the system and ensures thermalization.
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III. COLLISIONAL THERMOSTATS

A. Wave-vector-operator model

In Appendix B, we solve the generic one dimensional scattering problem with internal states for large scatterers
an high incident momentum p0. In this limit, the reflecting waves vanish and the transition amplitudes tJ′J(E) are
given by (~ = 1)

tJ′J(E) ' e−iL(kJ+kJ′ )/2 〈sJ′ | eiLK(E) |sJ〉 (28)

where kJ =
√

2m(E − eJ) and the wave-vector operator within the scattering region, defined as

K(E) ≡
√

2m(E −H) , (29)

is a self-adjoint operator if E is larger than the maximum eigenvalue of H.
To complete the model, we need an expression for the transmission and reflection amplitudes at low velocities.

To preserve micro-reversibility and the unitarity of the scattering matrix, we adopt the simplest assumption for low
energies, namely, that the incident unit is reflected without affecting the state of the system. This is also justified by
the fact that in a large scatterer the transmission amplitudes corresponding to tunneling vanish. However, from the
point of view of the system, it does not matter whether the unit is reflected or transmitted, as long as it does not
affect the system. Then, for simplicity, we define our model of a collisional thermostat as given by vanishing reflection
amplitudes, rJ′J(E) = 0 for all E, and the following transmission amplitudes:

tJ′J(E) =

{
e−iL(kJ+kJ′ )/2 〈sJ′ | eiLK(E) |sJ〉 if E > emax

δJ′J if E ≤ emax
(30)

where E = p2
0/(2m) + eJ and emax is the maximum of the eigenvalues of H and H0. With this choice

∑

J′

[
|tJ′J(E)|2 + |rJ′J(E)|2

]
= 1 (31)

for all J and E, ensuring the conservation of the trace of the density matrix Tr(ρ′) = Tr(ρ).
The transmission amplitudes defined by Eq. (30) obey condition (20), as shown in Appendix B. We conclude that

our repeated-interaction model, based on the wave-vector operator K, induces the thermalization of the system.
Consequently, it constitutes a simple model of a thermostat. Furthermore, it is also a good approximation of a system
colliding with units that escape from a thermal reservoir, specially for large scatterers. In section IV, we check the
validity of this approximation in explicit examples.

B. Random-interaction-time model

We now present a second model that also induces thermalization and is more directly related to the repeated
interaction schemes considered in the literature [11, 13], where the interaction HUS is switched on for a time interval.

This can be done if the incident momentum is large and we can further expand the operator K(E) =
√

2m(E −H)
as

K(E) '
√

2mE −
√

m

2E
H . (32)

An analogous expansion of the wave vectors outside the scattering region yields kJ '
√

2mE−eJ
√
m/(2E). Inserting

these expressions in the transmission amplitudes given by Eq. (30), we get

tJ′J(E) ' eiτ(E)[eJ′+eJ ]/2 〈sJ′ | e−iτ(E)H |sJ〉 . (33)

Here, we have introduced the time

τ(E) ≡ L

vE
=

L√
2E/m

, (34)
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which is the time a classical particle with velocity vE ≡
√

2E/m =
√

(p0/m)2 + 2eJ/m takes to cross the scattering
region of length L. Except for a phase, Eq. (33) is equivalent to the evolution of the state |sJ〉 under the total
internal Hamiltonian H = H0 +HUS during a time τ(E), which is, approximately, the interaction time between the
wave packet and the scatterer. We thus recover for the transmission amplitudes the usual picture that ignores the
translational part of the unit and considers that the coupling is switched on for a given time τ(E) [11, 13]. Notice
however that this velocity does not exactly coincide with the velocity of the wave packet vpacket ≡ p0/m. In fact,
the scattering matrix resulting from setting the interaction time equal to τpacket ≡ L/vpacket = Lm/p0 does not obey
micro-reversibility and does not thermalize the system, as we show in section IV for an specific example.

Two important remarks must be made. First, expression (33) can be evaluated for any pair of states, J and J ′,
and any positive energy E. However, the transfer matrix is only defined for open channels, obeying E ≥ eJ , eJ′ .
To preserve the unitarity of the scattering matrix we have to restrict the use of (33) to energies E larger than the
eigenvalues of H0. To be consistent with the wave-vector-operator model, we adopt here a more conservative strategy,
restricting expression (33) to energies higher than emax, the maximum eigenvalue of both H0 and H. We also assume
that emax is positive, to avoid a negative total energy E, which would yield an imaginary velocity vE . Summarizing,
our model consists of null reflection amplitudes, rJ′J(E) = 0 for all E, and transmission amplitudes given by

tJ′J(E) =

{
eiτ(E)[eJ′+eJ ]/2 〈sJ′ | e−iτ(E)H |sJ〉 if E > emax

δJ′J if E ≤ emax.
(35)

With this definition, our random-interaction-time model, like the wave-vector-operator model, preserves all the prop-
erties of the exact scattering matrix and consequently induces the thermalization of the system. As in the previous
model, we have set to zero the reflection amplitudes for E ≤ emax. Recall, however that for low energies the unit is
most likely reflected and this is equivalent to taking a zero interaction time τ(E) = 0 for E ≤ emax.

The second remark is to notice that the interaction time τ(E) depends on the zero of the total energy, that is, if
we add a constant E0 to the total Hamiltonian Htot, τ(E) changes. Then the transition amplitudes will depend as
well on the zero of energy. The reason of this dependency is the Taylor expansion around H = 0 in Eq. (32). Shifting
the internal energies an amount E0 is equivalent to expanding the square root around H = −E0 in Eq. (32). Hence,
to minimize the error in the expansion we have to choose the zero of energy in such a way that H is small. There are
several criteria to define the “smallness” of an operator, based on different matrix norms. For the example in section
IV, we minimize the spectral norm of H, which is the square root of the largest eigenvalue of H†H = H2. Notice
however that all the models obtained by an energy shift with emax > 0 are effective thermostats when the scatterer
is bombarded by equilibrium units, since Eq. (35) is unitary and fulfills micro-reversibility.

The model given by Eq. (35) and the corresponding scattering map in Eq. (7) are similar to the ones previously
considered in the literature [11, 13], except for the randomization of the interaction time τ(E), which depends on the
initial state |sJ〉, and for the removal of coherences due to tracing out the outgoing narrow packets [15].

C. Kraus representation

To further explore the differences and similarities between our thermostats and a repeated-interaction reservoir, it
is convenient to use the Kraus representation of the scattering map given by Eq. (5), together with (7) and condition
(8). If we neglect the reflecting amplitudes, a representation of this map is given by the following Kraus operators:

Ml =
∑

J,J ′

tJ′J(Ep0 + eJ) δ∆J′J ,∆l
|sJ′〉 〈sJ | (36)

where δ is a Kronecker delta and ∆l runs over all possible Bohr frequencies of the free internal Hamiltonian H0.
Indeed, the map

ρ′ =
∑

l

MlρM
†
l (37)

in the eigenbasis of H0 is given by the tensor

SJKJ′K′ =
∑

l

〈sJ′ |Ml|sJ〉 〈sK |M†l |sK′〉 , (38)

which coincides with the one given by Eqs. (5), (7), and (8), if the reflection amplitudes are neglected. If we now use
the approximation (35), the Kraus operators in the eigenbasis of H0 read

〈sJ′ |Ml|sJ〉 = e−iτ(E)(eJ+eJ′ )/2 〈sJ′ |e−iτ(E)H |sJ〉 δ∆J′J ,∆l
(39)
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with E = p2
0/(2m) + eJ .

On the other hand, the Kraus representation of the unitary evolution in a repeated-interaction scheme consists of
a unique unitary operator M given by

〈sJ′ |M |sJ〉 = 〈sJ′ |e−iτintH |sJ〉 (40)

where τint is the interaction time. Comparing (39) and (40), we see three main differences: First, the Kronecker delta
kills all coherences between jumps with different Bohr frequencies. Recall that the map acting on a pure state can be
seen as the application of a randomly chosen operator Ml [21]. The Kronecker delta only allows for superpositions
with the same energy jump ∆l. This is a consequence of using narrow packets, which is a necessary condition for
thermalization, as proved in Ref. [15]. Remarkably, this condition has also been shown to be necessary to derive
a fluctuation theorem for quantum maps (see Eq. (12) in Ref. [21]), and is equivalent to imposing that the energy
exchange with the reservoir, i.e., the heat, is well defined for each possible transformation of a pure state given by
the Kraus operators. This implies that heat is well defined for any quantum stochastic trajectory [21]. Second, the
interaction time in the random-interaction-time model, τ(E), depends on the energy of the initial state eJ . Third,
there is an extra phase that appears in the solution of the scattering problem, although it does not play a role in
thermalization.

IV. AN EXAMPLE

In this section we analyze in detail an explicit example where the units and the system are single qubits. We
consider the following free Hamiltonian and interaction term between the system and the internal state of the unit:

H0 = ωU σ
U
z ⊗ I + ωS I⊗ σSz (41)

HUS = Jxσ
U
x ⊗ σSx + Jyσ

U
y ⊗ σSy . (42)

where σU,Si are the Pauli matrices in the Hilbert space of the unit and the system, respectively, 2ωU,S is the level
spacing of each qubit, and Jx,y are coupling constants. The eigenstates of the free Hamiltonian H0 are |00〉US , |01〉US ,
|10〉US , and |11〉US with energies ωU + ωS , ωU − ωS , −ωU + ωS , and −ωU − ωS , respectively. This system has been
exhaustively studied in Ref. [13] in the context of the repeated-interaction coupling mediated by an external agent.

The system obeys the conditions for thermalization discussed in Sec. II C. First, HS = ωSσ
s
z has no degenerate

levels and no Bohr degeneracies. Second, if we take as time-reversal operator Tint = C, where C the conjugation of

coordinates in the canonical basis, then T†intσ
U,S
y Tint = −σU,Sy , T†intσ

U,S
x Tint = σU,Sx , and T†intσ

U,S
z Tint = σU,Sz , hence

[H,Tint] = [H0,Tint] = 0 and micro-reversibility is fulfilled. Furthermore, the eigenstates of H0 are invariant under
time reversal, Tint |eJ〉 = |eJ〉 for all J (notice that this is not the time reversal operator of a spin 1/2; it is however an
admissible time reversal operator for a qubit, as discussed in section II C). Consequently, if the system is bombarded
by narrow wave packets at equilibrium, the scattering map drives the system towards the equilibrium state, and this
thermalization occurs for the exact scattering map as well as for any of the two effective models introduced in the
previous section.

A. Transition probabilities

We first check whether the two models presented in the previous section are able to reproduce the transition proba-
bilities PJ′J(p0). We calculate the transfer matrix given by Eq. (A27) and compare the exact transition probabilities
in Eq. (12) for a given incident momentum p0 with the ones obtained from the wave-vector operator model (WVO),
Eq. (30), and the random interaction model (RIT), Eq. (35). The comparison is shown in Fig. 2 as a function of
the kinetic energy p0/(2m), for the transition |00〉US → |11〉US . As expected, the two models reproduce with good
accuracy the exact transition probabilities for high kinetic energy. It is remarkable that the wave vector operator
model is a very good approximation of the scattering problem even for low kinetic energy, as shown in the inset,
whereas the random-interaction-time model fails in this regime.

B. Thermalization

We now bombard the qubit with narrow wave packets with random momentum, according to the effusion distribution
at temperature T , and a random internal state, according to the Boltzmann distribution at the same temperature.
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FIG. 2: Probability of the transition |00〉US → |11〉US for Jx = 1, Jy = 0, ωS = ωU = 1, m = 0.1, and L = 50. We show the
exact result obtained from the transfer matrix Eq. (A27) (dark green), the wave-vector-operator model (WVO, light green)
given by Eq. (30), the random-interaction-time model (RIT, orange) given by Eq. (35). The inset shows the behavior for low
kinetic energy, where one can see that the WVO model still reproduces rather well the exact probabilities. Below emax = 2.23
the transition probability vanishes for the two models, WVO and RIT.
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FIG. 3: Stationary population of the ground state of the qubit for Jy = 1, 0,−1, Jx = 1 and ωS = ωU = 1, m = 0.1, and
L = 50. We depict the exact solution of the scattering problem using the transfer matrix (A27) (dark green squares) and
the populations given by different models: the wave-vector-operator model given by Eq. (30) (green circles) and the random-
interaction-time model given by Eq. (35) (orange triangles). The exact solution and the two models induce thermalization at the
same temperature as the bath, as expected. We also show the population if the interaction time is chosen as τpacket = Lm/p0
(dark blue dots, Jy = 1, 0,−1 from top to bottom), which clearly departs from the thermal state and even exhibits negative
absolute temperatures or population inversion for Jy = −Jx = −1 (see Appendix C for an analytical proof of this result). The
continuous and dashed light green curves depict the population of the fundamental level in the canonical ensemble with positive
and negative temperature respectively.

As expected, the system thermalizes not only for the exact solution of the scattering problem, given by Eq. (A27),
but also for the two models, Eq. (30) and Eq. (35). In the left panel of Fig. 3, we plot the stationary population of
the ground state in the three cases and in the thermal state.

To stress the importance of micro-reversibility for thermalization, we also plot in the figure with dark blue circles
the population when the interaction time is chosen as τpacket = L/vpacket, where vpacket = p0/m is the velocity of the
incoming wave packet. In this case, the system does not reach the temperature of the reservoir and can even exhibit
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population inversion (see Appendix C for a detailed discussion of the model and Ref. [22] for a general discussion of
the phenomenon within the repeated interaction framework). From the point of view of the dynamics of the system,

it is striking that the replacement of vE =
√

2E/m by vpacket = p0/m in the calculation of the interaction time has
such significant consequences. Notice however that the interaction time in the RIT model with time given by Eq. (34)

depends both on the energy of the system e
(S)
jS

and of the internal state of the unit e
(U)
jU

.
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FIG. 4: Entropy production per collision as a function of the temperature of the kinetic degrees of freedom, Tkin, for Jx = 1,
Jy = 0, ωU = ωS = 1, m = 1 , L = 50 and a temperature Tint = 20 of the internal degrees of freedom of the units. We compare
the exact (numerical) solution of the scattering problem using the transfer matrix (A27), the wave-vector-operator (WVO)
model and the random-interaction-time (RIT) model.

C. Non-equilibrium

Finally, we check the models in a non-equilibrium scenario where the internal states of the unit are in equilibrium
at temperature Tint, different from the temperature Tkin of the effusion distribution. In this situation, the system
is exchanging heat with two different thermal baths and reaches a non-equilibrium steady state where heat Q is
transferred from the hot to the cold bath in each collision. This irreversible heat transfer induces an entropy production
per collision ∆S = Q|1/Tint− 1/Tkin|, which is shown in Fig. 4 for the two different models and for the exact solution
of the scattering matrix. We see in the figure that, for this range of temperatures, the two thermostats are accurate
approximations of the exact solution of the scattering problem, even far from equilibrium.

V. CONCLUSIONS

We have presented two heuristic models of collisional thermostats that induce thermalization. Our models are
relatively simple to implement numerically and analytically, and overcome the main drawback of previous repeated-
interaction schemes, namely that they do not induce thermalization due to the energy introduced when switching on
and off the interaction [10, 11, 13]. Moreover, the two thermostats are good approximations to the scattering problem
even in situations far from equilibrium, as shown in section IV.

Besides the practical interest of our models as tools to simulate or study analytically the behavior of quantum
systems in contact with one or several thermal baths, they are also related to a fundamental issue in thermodynamics:
the nature of heat and work.

The random-interaction-time model is similar to the repeated-interaction reservoirs considered in the literature
[11, 13]. We have explored the differences between both schemes in section III B. The main ones are the removal
of coherences resulting from jumps with different energy and that the interaction time is random. Both differences
make the energy transferred from the reservoir to the system to be heat instead of work. Notice also that populations
thermalize for a very specific distribution of interaction times —the one resulting from the effusion distribution and
fulfilling the micro-reversibility condition. This result raises the question of which are the conditions or signatures
for an energy transfer to be considered as heat. Heat is defined as an energy transfer between a system and its
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surroundings inducing a change of entropy in the latter. The definition is precise and unambiguous if the environment
is at equilibrium. The distinction between heat and work is also determinant for the performance of thermal machines:
work “can do more” than heat. Since a transfer of heat Q from a thermal bath at temperature T is accompanied by
a decrease of entropy ∆Sbath = −Q/T in the bath, the second law implies that either Q is negative or there must be
an increase of entropy in the system or a dissipation of heat into another bath to compensate ∆Sbath. In other words,
not all the extracted heat can be transformed into useful work.

Hence, we can identify an energy transfer as heat by analyzing either where this energy comes from or what it can
do. In most situations, the first option is the easiest to follow: by knowing where the energy comes from we can infer
what it can do. This is one of the main achievements of classical thermodynamics.

However, if we do not have information about the physical nature or the state of the environment and know only
the statistical properties of the energy transfer, how can we split it into heat and work? Our models shed some light
into this problem. First, heat destroys certain coherences. Second, the random interaction times must follow a very
specific distribution. If one uses a distribution different from effusion [16] or if, for instance, the interaction time is
calculated using the incident velocity p0/m instead of the one given by Eq. (34), thermalization fails. This implies
that part of the energy exchanged can be considered as work, since, if the system does not thermalize, it would be
possible to create a thermal machine able to extract energy from a single thermal bath, even with classical systems
[16].

To summarize, we have presented two simple models of collisional thermostats given by Eqs. (30) and (33), which
are novel tools to analyze open quantum systems. The models involve the removal of coherences resulting from jumps
with different energy transfers between the system and the reservoir, allowing to interpret the energy exchange as
heat. These results help to address the problem of how to split a given random transfer of energy into heat and work,
a fundamental open question with practical implications. Its solution could be useful even for classical, meso- and
macro-scopic systems, since it will help to establish benchmarks for energy harvesting from fluctuations.
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Appendix A: Properties of the scattering matrix

1. Scattering states

To obtain the scattering amplitudes we have to find the scattering states, which are solutions of the time-independent
Schrödinger equation

Htot |ψ〉 =

[
p̂2

2m
+H0 + χL(x̂)HUS

]
|ψ〉 = E |ψ〉 (A1)

and behave asymptotically as plane waves. The scattering states can be written in terms of the eigenstates |sJ〉 of
the free Hamiltonian H0 and the eigenstates |s′J〉 of the total internal Hamiltonian H = H0 +HUS :

H0 |sJ〉 = eJ |sJ〉 (A2)

H |s′J〉 = e′J |s′J〉 . (A3)

Using these internal states, the most general solution of the time-independent Schrödinger equation reads
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|ψ〉 =





∑

J

(
αJe

ikJx + βJe
−ikJx) |sJ〉 for x < −L/2

∑

J

(
α′Je

ik′Jx + β′Je
−ik′Jx

)
|s′J〉 for −L/2 < x < L/2

∑

J

(
α′′Je

ikJx + β′′Je
−ikJx) |sJ〉 for L/2 < x .

(A4)

Applying the total Hamiltonian Htot to state |ψ〉, we get (~ = 1):

Htot |ψ〉 =





∑

J

(
k2
J

2m
+ eJ

)(
αJe

ikJx + βJe
−ikJx) |sJ〉 for x < −L/2

∑

J

(
k′2J
2m

+ e′J

)(
α′Je

ik′Jx + β′Je
−ik′Jx

)
|s′J〉 for −L/2 < x < L/2

∑

J

(
k2
J

2m
+ eJ

)(
α′′Je

ikJx + β′′Je
−ikJx) |sJ〉 for L/2 < x .

(A5)

Therefore, for |ψ〉 to be a scattering eigenstate of the total Hamiltonian with energy E, the following energy conser-
vation condition must be fulfilled:

k2
J

2m
+ eJ =

k′2J
2m

+ e′J = E for all J . (A6)

The transmission and reflection amplitudes tJ′J(E) and rJ′J(E), which define the scattering map via Eq. (7) and the
scattering matrix (9), can be obtained from the amplitudes of the scattering state |ψ〉 by setting αK = δKJ , β′′K = 0
for all K and solving for α′′J′ and βJ′ . These solutions are related with the transmission and reflection amplitudes as
[15, 20]:

tJ′J(E) =
kJ′

kJ
α′′J′ rJ′J(E) =

kJ′

kJ
βJ′ , (A7)

and are defined for J and J ′ such that kJ and kJ′ are real, which correspond to the so-called open channels.
We now turn to an important property of the scattering states. If we write the global state as

|ψ〉 =
∑

J

ψJ(x) |sJ〉 (A8)

and introduce this expression in the Schödinger equation (A1), we get

− 1

2m

∂2ψJ(x)

∂x2
+ (eJ − E)ψJ(x) + χL(x)

∑

K

ψK(x) 〈sJ |HUS |sK〉 = 0 . (A9)

The generalization of the Wronskian

W (x) ≡
∑

J

[
∂ψJ(x)

∂x
ψ∗J(x)− ψJ(x)

∂ψ∗J(x)

∂x

]
(A10)

can be interpreted as a total current of particles and is independent of x. To prove it, we use the Schrödinger equation
to compute the derivative

dW (x)

dx
=
∑

J

[
∂2ψJ(x)

∂x2
ψ∗J(x)− ψJ(x)

∂2ψ∗J(x)

∂x2

]

= 2m χL(x)
∑

J,K

[
ψK(x)ψ∗J(x) 〈sJ |HUS |sK〉 − ψJ(x)ψ∗K(x) 〈sJ |HUS |sK〉∗

]
= 0 . (A11)

To prove the last equality, we have taken into account that HUS is self-adjoint and, consequently, the two terms in
the sum are equal under a permutation of the indexes.
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For a given total energy E, the solution (A4) at x→ −∞ corresponds to ψJ(x) = αJe
ikJx + βJe

−ikJx if kJ is real
(eJ ≤ E) and ψJ(x) ' 0 if kJ is imaginary (eJ ≥ E). Then, the Wronskian reads

W (x) '
∑

J:eJ≤E
2ikJ

[
|αJ |2 − |βJ |2

]
. (A12)

Similarly, for x→∞:

W (x) '
∑

J:eJ≤E
2ikJ

[
|α′′J |2 − |β′′J |2

]
. (A13)

Therefore
∑

J:eJ≤E
kJ
[
|αJ |2 − |βJ |2

]
=

∑

J:eJ≤E
kJ
[
|α′′J |2 − |β′′J |2

]
. (A14)

Notice that the sums in the previous expressions run only over the states |sJ〉 with kJ real, i.e., the incoming and
outgoing plane waves. In particular, since the transmission and reflection amplitudes are given by Eq. (A7) with the
coefficients of |ψ〉 calculated by setting αK = δKJ and β′′K = 0 for all K, and E ≥ eJ , one has:

∑

J′:e′J≥E

kJ′

kJ

[
|βJ′ |2 + |α′′J′ |2

]
=

∑

J′:e′J≥E

[
|rJ′J(E)|2 + |tJ′J(E)|2

]
= 1 . (A15)

We further explore this important property in the subsection A 3.

2. Transfer and scattering matrices

The coefficients αJ , βJ , etc. in (A4) are determined by imposing the continuity of the wave function and its first
derivative at x = −L/2 and x = L/2. At x = −L/2:

∑

J

(
αJe

−ikJL/2 + βJe
ikJL/2

)
|sJ〉 =

∑

J

(
α′Je

−ik′JL/2 + β′Je
ik′JL/2

)
|s′J〉 (A16)

∑

J

kJ

(
αJe

−ikJL/2 − βJeikJL/2
)
|sJ〉 =

∑

J

k′J
(
α′Je

−ik′JL/2 − β′Jeik
′
JL/2

)
|s′J〉 . (A17)

and, at x = L/2:

∑

J

(
α′′Je

ikJL/2 + β′′Je
−ikJL/2

)
|sJ〉 =

∑

J

(
α′Je

ik′JL/2 + β′Je
−ik′JL/2

)
|s′J〉 (A18)

∑

J

kJ

(
α′′Je

ikJL/2 − β′′Je−ikJL/2
)
|sJ〉 =

∑

J

k′J
(
α′Je

ik′JL/2 − β′Je−ik
′
JL/2

)
|s′J〉 . (A19)

These equations can be written in a more compact form using the operators:

K0(E) ≡
√

2m(E −H0)

K(E) ≡
√

2m(E −H)
(A20)

and the vectors in HU,int ⊗HS :

|a〉 =
∑

J

αJ |sJ〉 ; |b〉 =
∑

J

βJ |sJ〉

|a′〉 =
∑

J

α′J |s′J〉 ; |b′〉 =
∑

J

β′J |s′J〉

|a′′〉 =
∑

J

α′′J |sJ〉 ; |b′′〉 =
∑

J

β′′J |sJ〉 .

(A21)
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We define the following matrix acting on the Hilbert space [HU,int⊗HS ]⊕ [HU,int⊗HS ] and depending on a position
x and an operator K:

M(x,K) =

(
eiKx e−iKx

KeiKx −Ke−iKx
)
. (A22)

Its inverse reads:

M−1(x,K) =
1

2

(
e−iKx K−1e−iKx

eiKx −K−1eiKx

)
=

1

2
M†(−x,K−1) . (A23)

With these matrices the boundary conditions can be written as

M(−L/2,K0)

(
|a〉
|b〉

)
= M(−L/2,K)

(
|a′〉
|b′〉

)
(A24)

M(L/2,K0)

(
|a′′〉
|b′′〉

)
= M(L/2,K)

(
|a′〉
|b′〉

)
. (A25)

The transfer matrix M is defined as the one that connects the amplitudes of the plane waves at the right and at
the left sides of the scatterer (see Fig. 5):

(
|a′′〉
|b′′〉

)
=M

(
|a〉
|b〉

)
. (A26)

From the boundary conditions (A24) and (A25) one immediately gets

M = M−1(L/2,K0)M(L/2,K)M−1(−L/2,K)M(−L/2,K0) . (A27)

We also define the matrix S as the one relating the incoming and outgoing amplitudes (see Fig. 5):
(
|b〉
|a′′〉

)
= S

(
|a〉
|b′′〉

)
=

(
S11 |a〉+ S12 |b′′〉
S21 |a〉+ S22 |b′′〉

)
. (A28)

A direct comparison between (A26) and (A28) yields [18]:

S11 = −M−1
22M21 S12 =M−1

22

S21 =M11 −M12M−1
22M21 S22 =M12M−1

22 .
(A29)

The matrix S is not exactly the scattering matrix S̃ for two reasons. First, S acts on the whole Hilbert space
[HU,int⊗HS ]⊕ [HU,int⊗HS ], whereas the scattering matrix S̃ introduced in Eq. (9) is restricted to the open channels

that correspond to solutions with real wave vectors kJ . Second, the entries of S̃ are the transmission and reflection
amplitudes, which are given respectively by the amplitudes of the transmitted and reflected waves multiplied by the
ratio of outgoing to incoming momenta, as given by Eq. (A7).

To define the scattering matrix, we have to introduce the subspace of open channels:

Hopen = lin{|sJ〉 : eJ ≤ E}. (A30)

According to Eqs. (9) and (A7), the scattering matrix can be written as the following operator acting onHopen⊕Hopen:

S̃ ≡
(

K1/2
0 0

0 K1/2
0

)
S
(

K−1/2
0 0

0 K−1/2
0

)
= K1/2

0 SK
−1/2
0 (A31)

where all the operators K0 and Sij are restricted to Hopen.

3. Symmetries

a. Conservation of probability current

The conservation of the total probability current (A14) imposes some constraints on the matrices M and S. Let
Popen be the projector onto Hopen, i.e., onto the eigenstates |sJ〉 with kJ real:

Popen =
∑

J:eJ≤E
|sJ〉 〈sJ | (A32)
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Scatterer

FIG. 5: Incoming and outgoing vectors in the scattering problem.

and let us define the operator acting on [HU,int ⊗HS ]⊕ [HU,int ⊗HS ]

P =

(
Popen 0

0 Popen

)
, (A33)

which verifies P2 = P. Condition (A14) can be written as

(〈a| 〈b|)
(

K0Popen 0
0 −K0Popen

)(
|a〉
|b〉

)
= (〈a′′| 〈b′′|)

(
K0Popen 0

0 −K0Popen

)(
|a′′〉
|b′′〉

)
. (A34)

Applying the relationship (A26) between the amplitudes of the waves at the right and left sides of the scatterer via
the transfer matrix, we obtain

(
K0 0
0 −K0

)
P =M†

(
K0 0
0 −K0

)
PM (A35)

and, multiplying by P from right, we get

M†
(

K0 0
0 −K0

)
PM =M†

(
K0 0
0 −K0

)
PMP . (A36)

SinceM† and K0 are both invertible in their respective Hilbert spaces (we assume that kJ 6= 0 for all J), we conclude
that PMP = PM or PM(I − P) = 0. This relationship indicates that the amplitudes of the real exponentials (kJ
imaginary) do not affect the amplitudes of the plane waves (kJ real) and that we can restrict ourselves to Hopen, the
subspace of eigenstates of H0 with kJ real, which correspond to the open channels in a collision with total energy
E [15, 20]. Notice however that P and M do not necessarily commute, i.e., Hopen is not in general invariant under
the transfer matrix M. However, the action of M on vectors in Hopen is entirely determined by its restriction to
this subspace PMP. In particular any power n of M verifies PMnP=(PMP)n and the inverse of M in Hopen is
PM−1P, that is [PMP][PM−1P] = [PM−1P][PMP] = P. The same arguments apply to the matrix S, which
obeys PS(I − P) = 0. Hence, from now on, we can neglect the eigenstates |sJ〉 with imaginary kJ and explore the
properties of the matrices M and S restricted to Hopen. Nevertheless, we will keep the same notation, for simplicity.
Notice also that k′J , the wave vectors within the scattering region [−L/2, L/2], can be imaginary, indicating that the
corresponding channel is associated with tunneling.

A second important consequence of the conservation of probability current is the unitarity of the scattering matrix.
Condition (A14) can be written as

(〈a| 〈b′′|)K0

(
|a〉
|b′′〉

)
= (〈b| 〈a′′|)K0

(
|b〉
|a′′〉

)
= (〈a| 〈b′′|)S†K0S

(
|a〉
|b′′〉

)
(A37)

where all vectors and operators are restricted to Hopen. Hence, K0 = S†K0S in this subspace and we finally obtain

S̃†S̃ = K−1/2
0 S†K1/2

0 K1/2
0 S K

−1/2
0 = I (A38)

that is, the scattering matrix S̃ is unitary.

b. Spatial symmetry

The collision problem that we consider in this paper is invariant under spatial inversion x→ −x, which is equivalent
to the following transformation of vectors:

|a〉 ↔ |b′′〉 |b〉 ↔ |a′′〉 (A39)
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This transformation converts (A28) into

(
|a′′〉
|b〉

)
= S

(
|b′′〉
|a〉

)
(A40)

and comparing this expression with (A40), we get

(
0 1
1 0

)
S
(

0 1
1 0

)
= S (A41)

which yields S11 = S22 and S12 = S21. The same symmetry applies to the scattering matrix S̃. The entries of this
matrix are denoted as [15]

S̃ =

(
r t
t r

)
(A42)

where r and t are matrices whose elements are the reflection and transmission amplitudes, respectively. The unitarity
of S̃ derived in Eq. (A38), can be written now as

rr† + tt† = I
rt† + tr† = 0 .

(A43)

c. Time-reversal symmetry

The symmetry under time reversal implies that there is an anti-unitary operator Tint in the Hilbert space of
internal states that commutes with H0 and HUS . As discussed in the main text, the total time-reversal operator is
T = TU,p ⊗ Tint where TU,p is the conjugation of the wave function in the position representation. Hence, if |ψ〉 is
given by (A8), then

T |ψ〉 =
∑

J

ψ∗J(x)Tint |sJ〉 . (A44)

For simplicity, we assume that the eigenstates of H0 are invariant under time reversal, i.e., Tint |sJ〉 = |sJ〉. In this
case, [HUS ,Tint] = 0 implies that 〈sJ |HUS |sK〉 is real, that is, the matrix of the interaction Hamiltonian HUS in
the eigenbasis of H0 is real and symmetric. To prove this property, take into account that an anti-unitary operator
verifies (T |a〉 ,T |b〉) = (|a〉 , |b〉)∗, where (·, ·) is the scalar product in the Hilbert space. Hence, we can take the
complex conjugate of the Schrödinger equation (A9) and obtain the following transformation under time reversal for
the vectors restricted to Hopen:

|a〉 ↔ |b∗〉 |a′′〉 ↔ |b′′∗〉 (A45)

where |b∗〉 = T|b〉 =
∑
j β
∗
j |sj〉. This symmetry implies

(
|a∗〉
|b′′∗〉

)
= S

(
|b∗〉
|a′′∗〉

)
. (A46)

Using (A28), we obtain S∗S = K−1/2
0 S̃∗S̃ K1/2

0 = I, implying S̃∗S̃ = I, and

rr∗ + tt∗ = I
rt∗ + tr∗ = 0 .

(A47)

Combining this symmetry with the unitarity of the scattering matrix, Eq. (A43), we conclude that the matrices t and
r are symmetric.
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Appendix B: The high energy and large scatterer limit

The matrix M can be calculated exactly from Eq. (A27). Here we introduce an approximation that preserves the
symmetries and the unitarity of the scattering matrix and therefore provides a simple implementation of a thermal
reservoir. The approximation is valid for incident particles with a large kinetic energy and a long scatterer, that is E
and L large. In this case, we can approximate K−1K0 ' I and

M−1(L/2,K0)M(L/2,K) =
1

2

(
e−iK0L/2 K−1

0 e−iK0L/2

eiK0L/2 −K−1
0 eiK0L/2

)(
eiKL/2 e−iKL/2

KeiKL/2 −Ke−iKL/2
)

'
(
e−iK0L/2eiKL/2 0

0 eiK0L/2e−iKL/2

)
(B1)

and

M−1(−L/2,K)M(−L/2,K0) =
1

2

(
eiKL/2 K−1eiKL/2

e−iKL/2 −K−1e−iKL/2

)(
e−iK0L/2 eiK0L/2

K0e
−iK0L/2 −K0e

iK0L/2

)

'
(
eiKL/2e−iK0L/2 0

0 e−iKL/2eiK0L/2

)
(B2)

yielding

M'
(
e−iK0L/2eiKLe−iK0L/2 0

0 eiK0L/2e−iKLeiK0L/2

)
. (B3)

Using Eqs. (A29) and the definition of the scattering matrix (A31), we find that the scattering matrix S̃ and the
matrix S in this approximation read

S̃ ' S '
(

0 e−iK0L/2eiKLe−iK0L/2

e−iK0L/2eiKLe−iK0L/2 0

)
. (B4)

We see that, in this approximation, the reflection amplitudes vanish and the transition amplitudes read

〈sJ′ |t|sJ〉 ' e−i(kJ+kJ′ )L/2 〈sJ′ |eiKL|sJ〉 . (B5)

This matrix is unitary and symmetric for a given energy E = k2
J/(2m) + eJ = k2

J′/(2m) + eJ′ if K is self-adjoint, that
is, if all k′J are real. Therefore, this approximation, which is the basis for the wave-vector-operator model described
in section III A, fulfills all the symmetries of the original collision problem. To see that the matrix is symmetric under
the assumptions made in the main text, notice that [H,Tint] = 0 implies eiKLTint = Tinte

−iKL in the subspace where
K is self-adjoint. Therefore, for energies E ≥ emax, we have

〈sJ′ |eiKL|sJ〉 = (Tint |sJ′〉 , eiKLTint |sJ〉)
= (Tint |sJ′〉 ,Tinte

−iKL |sJ〉)
= (|sJ′〉 , e−iKL |sJ〉)∗

= 〈sJ′ |e−iKL|sJ〉
∗

= 〈sJ |eiKL|sJ′〉 (B6)

where we have used the time-reversal invariance of the eigenstates of H0, Tint |sJ〉 = |sJ〉 for all J . The same symmetry
holds if we replace KL by Hτ , as in the random-interaction-time model, or by any real function of H.

Appendix C: The random-interaction-time model for the two-qubit example

Here we explicitly derive some properties of the example studied in Sec. IV. The total internal Hamiltonian H in
the eigenbasis of the free Hamiltonian (42), ordered as {|00〉US , |01〉US , |10〉US , |11〉US}, reads

H = H0 +HUS =




Ω 0 0 ξ
0 ∆ω Ξ 0
0 Ξ −∆ω 0
ξ 0 0 −Ω


 (C1)
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where Ω = ωS + ωU , ∆ω = ωU − ωS , Ξ = Jx + Jy, and ξ = Jx − Jy. The block structure of this matrix allows only

for transitions |11〉US ↔ |00〉US and |10〉US ↔ |01〉US . The eigenvalues of H are ±
√

Ω2 + ξ2 and ±
√

∆ω2 + Ξ2.
If Jx = Jy, then ξ = 0 and the only permitted transitions are the swaps |10〉US ↔ |01〉US and the probability that

the system jumps from 0 to 1 in the random-interaction-time model with τpacket(p0) ≡ Lm/p0 reads:

p(jS = 0→ j′S = 1) =
e−βωU

ZU

∫ ∞
√

2memax

dp0 µ(p0)
〈

0 1
∣∣∣ e−iτpacket(p0)H

∣∣∣ 1 0
〉

(C2)

whereas

p(jS = 1→ j′S = 0) =
1

ZU

∫ ∞
√

2memax

dp0 µ(p0)
〈

1 0
∣∣∣ e−iτpacket(p0)H

∣∣∣ 0 1
〉
. (C3)

Then, the ratio verifies

p(jS = 0→ j′S = 1)

p(jS = 1→ j′S = 0)
= e−βωU (C4)

and the system thermalizes in the resonant case, ωU = ωS , where heat is identically zero.
On the other hand, if Jx = −Jy, then Ξ = 0 and the only permitted transitions are |00〉US ↔ |11〉US . Hence

p(jS = 1→ j′S = 0) =
e−βωU

ZU

∫ ∞
√

2memax

dp0 µ(p0)
〈

0 0
∣∣∣ e−iτpacket(p0)H

∣∣∣ 1 1
〉

(C5)

whereas

p(jS = 0→ j′S = 1) =
1

ZU

∫ ∞
√

2memax

dp0 µ(p0)
〈

1 1
∣∣∣ e−iτpacket(p0)H

∣∣∣ 0 0
〉
. (C6)

Now the ratio verifies

p(jS = 0→ j′S = 1)

p(jS = 1→ j′S = 0)
= eβωU (C7)

which indicates that the steady state exhibit a population inversion with negative absolute temperature, as shown in
Fig. 3.
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We show that the state of two quantum systems A and B after a short time-dependent interaction
equals the state after a collision between A and B provided that the wave packet associated to their
relative motion is fast and broad compared to the energies of A and B. The entropy change in the
joint system A and B vanishes and the change in kinetic energy due to their collision is equivalent
to (minus) the work generated by the time-dependent interaction.

Time-dependent Hamiltonians are commonly used to
describe the interaction of quantum systems with exter-
nal degrees of freedom. The most prominent example is
the semi-classical treatment of light-matter interaction,
where one introduces a time-dependent function to de-
scribe the effect of the electromagnetic field upon the
atom [1–4].

Another example more relevant to our work is the
description of a collision between two particles. In a
semi-classical approximation, one can replace the rela-
tive motion between the particles with a time-dependent
interaction [5]. But while the energy change resulting
from a time-dependent Hamiltonian is identified as work
in quantum thermodynamics [6–12], we have shown in
Ref. [13] that the energy exchanged in the collision may
correspond to heat, even at high kinetic energy when one
expects the semi-classical limit to be valid.

In this letter, we investigate this problem and de-
rive the conditions for the equivalence between the au-
tonomous collision dynamics of two particles with in-
ternal structure and the corresponding time-dependent
model. We do so by monitoring thermodynamic quan-
tities like energy and entropy change. In this way, we
identify an ideal autonomous work source for an open
system subjected to collision events, which is relevant
for quantum thermodynamics in general [8, 9] and for
developing autonomous work extraction devises [14] in
particular.

We start by considering time-dependent models
(TDM) describing two interacting quantum systems A
and B for a time τ with Hamiltonian Ĥ(t) = ĤY + V̂ (t).

Here, ĤY = ĤA ⊗ ÎB + ÎA ⊗ ĤB is the Hamiltonian of
the joint system Y and ÎA denotes the identity opera-
tor on the Hilbert space of A (equivalently for B). The
time-dependent interaction is given by V̂ (t) = Ṽ (t)ν̂,
where Ṽ (t) is a non-vanishing function only in the in-
terval t ∈ (−τ/2, τ/2) and ν̂ is a time-independent op-
erator. In the interaction picture, the density operator

describing the state Y after the interaction is given by

ρ̂τ = ÛI(τ)(ρ̂A ⊗ ρ̂B)Û†I (τ) , (1)

where the initial state is assumed factorized. The unitary
operator in the interaction picture is the solution to the
von Neumann equation

dtÛI(t) = − i
~
V̂I(t)ÛI(t) (2)

where dt is the total time derivative and V̂I(t) =

eiĤY t/~V̂ (t)e−iĤY t/~ is the interaction in the interaction
picture. The unitary evolution of Y implies the invari-
ance of its von Neumann entropy ∆Sτ ≡ S(ρ̂τ )−S(ρ̂A⊗
ρ̂B) = 0 with S(ρ̂) = −kBTr[ρ̂ log ρ̂] ≥ 0. The energy
change during the interaction is interpreted as work and
given by [6, 7, 10]

W = Tr[ĤY (ρ̂τ − ρ̂A ⊗ ρ̂B)] , (3)

and vanishes if ĤY and V̂ (t) commute for all times.
We now compare these models with one dimensional

scattering models (SCM) in which a moving particle of
mass m with internal and kinetic degrees of freedom, re-
spectively denoted by B and X, collides with a fixed sys-
tem A. In general, both particles can move but our choice
simplifies the treatment without loss of generality. The
Hamiltonian of the full system reads Ĥ = Ĥ0 + V̂ (x̂),

where Ĥ0 = ĤY ⊗ ÎX + ÎY ⊗ p̂2/2m and ĤY is the
same as for TDM. The kinetic energy operator accounts
for the motion of the particle, obeying the eigenvalue
equation (p̂2/2m) |p〉 = Ep |p〉. Here, {|p〉} are improper
(non-normalizable) eigenstates whose position represen-
tation are plane waves 〈x|p〉 = exp(ipx/~)/

√
2π~ and

Ep = p2/2m ≥ 0 is the kinetic energy. The interac-
tion between the particles is described by the operator
V̂ (x̂) = V (x̂) ⊗ ν̂, where V (x) is a non-vanishing func-
tion only inside the interval x ∈ (−a/2, a/2) defined by
V (x̂) |x〉 ≡ V (x) |x〉. We take the full system to be ini-
tially in a factorized state ρ̂A⊗ρ̂B⊗ρ̂X with ρ̂X = |φ〉 〈φ|,
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where φ(p) ≡ 〈p|φ〉 = (2πσ2)−1/4 exp[−(p − p0)2/4σ2 −
ipx0/~] is a Gaussian wave packet with average momen-
tum p0 = 〈φ| p̂ |φ〉 and position x0 = 〈φ| x̂ |φ〉, normalized
according to

∫
dp 〈p|ρ̂X |p〉 =

∫
dp|φ(p)|2 = 1. We con-

sider that p0 � σ > 0, so that the particle is incident
from the left with positive momenta: φ(p) ' 0 for p < 0.
Scattering theory allow us to compute the final state of
Y after the collision

ρ̂′ = TrX
[
Ŝ
(
ρ̂A ⊗ ρ̂B ⊗ ρ̂X

)
Ŝ†
]
, (4)

where TrX denotes the partial trace over X, Ŝ is the uni-
tary scattering operator satisfying ŜŜ† = Ŝ†Ŝ = Î and
Î is the identity in the Hilbert space of the full system.
In general, the dynamics for the system Y described by
Eq. (4) is not unitary and thus the associated entropy
change for a collision ∆S = S(ρ̂′) − S(ρ̂A ⊗ ρ̂B) is non-
zero. The energy change in Y is given by

∆E = TrY
[
ĤY (ρ̂′ − ρ̂A ⊗ ρ̂B)

]
= −∆Ep , (5)

where ∆Ep = TrX [(p̂2/2m)(ρ̂′X−ρ̂X)] is the change in ki-
netic energy and ρ̂′X is the final state of the wave packet,
obtained by tracing over Y instead of X in Eq. (4). The
second equality in Eq. (5) follows from energy conser-
vation in a collision as expressed by the commutation
relation [Ŝ, Ĥ0] = 0.

For the TDM and SCM respectively, we introduce the

effective interaction potentials 〈Ṽ 〉 ≡ τ−1
∫ τ/2
−τ/2 Ṽ (t)dt

and 〈V 〉 ≡ a−1
∫ a/2
−a/2 V (x)dx = τ−1p0

∫ τp0/2
−τp0/2

V (p0t/m)dt,

where the respective interaction times are τ and τp ≡
ma/p (the time needed for the center of the wave packet
with incoming momentum p to travel the distance a).

Provided the equivalence τ = τp0 and 〈Ṽ 〉 = 〈V 〉 our
first main result is that the dynamics given by Eq. (1)
and Eq. (4) are equivalent when: 1) The interaction time
is much smaller than the time associated with the free
evolution of the internal system τ � ~/∆Y . 2) The
wave packet is fast and broad with respect to the system
p0 � σ � m∆Y /p0. 3) The wave packet travels semi-
classically over the potential Ep0 � V (x) and p0amin �
~. Here, amin is the minimal length scale over which
V (x) varies and ∆Y is a characteristic energy scale of
the internal system Y . Specifically, considering {|i〉}Ni=1

the eigenbasis of ĤY and ĤY |i〉 = ei |i〉, where ei increase
with i, we define ∆j′j ≡ ej′ − ej and ∆Y ≡ ∆N1.

Under these conditions, the dynamics in either model
is given by the unitary transformation

ρ̂′ = e−iτV̂ /~ (ρ̂A ⊗ ρ̂B) eiτV̂ /~ , (6)

where V̂ ≡ 〈V 〉ν̂. This immediately implies a vanishing
entropy change in both models. Our second result follows
directly from the last expression applied to Eqs. (3) and
(5), showing that work in the TDM is given by minus the
change in kinetic energy of the wave packet.

Time dependent model: We first discuss how to de-
rive the aforementioned results for TDM starting from
Eq. (2). The solution to this equation can be generally
written as ÛI(τ) = exp Ω̂(τ), where Ω̂(τ) =

∑∞
k=1 Ω̂k(τ)

is the Magnus expansion [26, 28], whose first two terms
read

Ω̂1(τ) = − i
~

∫ τ/2

−τ/2
V̂I(t)dt , (7)

Ω̂2(τ) = − 1

2~2

∫ τ/2

−τ/2
dt

∫ t

−τ/2
dt′[V̂I(t), V̂I(t

′)] . (8)

The higher-order terms consist of linear combinations of
nested commutators of [V̂I(t), V̂I(t

′)]. To simplify this
expansion, we take the interaction time to be very short
compared to the internal dynamics (condition 1) which
immediately implies that V̂I(t) ' V̂ (t). In this case, we
have [V̂ (t), V̂ (t′)] ' Ṽ (t)Ṽ (t′)[ν̂, ν̂] = 0, due to the fac-
torized form of the interaction, and we are left with the
first order term of the expansion. Using the definition
given above for 〈Ṽ 〉, and the equality 〈Ṽ 〉 = 〈V 〉, we im-
mediately get ÛI(τ) = exp (−iτ V̂ /~), which is also the
evolution operator in the Schrödinger picture due to con-
dition 1. We thus conclude that Eq. (1) reduces to Eq. (6)
under condition 1.
Scattering model: We now discuss how to derive our

main results from SCM starting from Eq. (4). We recall
that, due to the conservation of energy, the scattering
operator in the eigenbasis of Ĥ0, denoted by |p, j〉 ≡ |p〉⊗
|j〉, is given by [13, 18, 19]

〈p′, j′| Ŝ |p, j〉 =

√
|pp′|
m

δ(Ep − Ep′ −∆j′j)s
(α′α)
j′j (E) ,

(9)

where s
(α′α)
j′j (E) is the scattering matrix at total energy

E = Ep + ej and α = sign(p) and α′ = sign(p′) accounts
for the initial and final direction of the momenta, which
can be positive (α, α′ = +) or negative (α, α′ = −). Us-
ing expression (9) and taking the partial trace over mo-
mentum, we write Eq. (4) in the eigenbasis of ĤY as [13]

ρ′j′k′ =
∑

jk

Sjkj′k′(ρ̂A ⊗ ρ̂B)jk , (10)

where ρ′j′k′ ≡ 〈j′|ρ̂′|k′〉 and the scattering map for a pure,
incoming state X is given by

Sjkj′k′ =
∑

α′=±

∫ ∞

pinf

dp φ(p)φ∗ (π(p))

√
p

π(p)
(11)

× s(α
′+)

j′j (Ep + ej)
[
s
(α′+)
k′k (Ep −∆j′j + ek′)

]∗
.

In the last expression, π(p) =
√
p2 − 2m(∆j′j −∆k′k),

and the lower integration limit pinf is obtained from
p2inf/2m = max{0,∆j′j ,∆j′j − ∆k′k}, which guarantees
that the channels are open in the integration domain.
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First, we consider that the wave packet travels at very
high kinetic energies compared to the energies of the in-
ternal system Ep � ∆Y for all p, and that the packet
is very broad with respect to the system σ � m∆Y /p0.
We show in the Supplementary Material [28] that under
these conditions φ(p)φ(π(p))∗ ' |φ(p)|2, meaning that
the outgoing wave packets associated with different tran-
sitions in the internal system Y fully overlap, and the
populations and coherences in Eq. (11) are coupled in the
collision [13]. Moreover, under the conditions mentioned
above, summarized by condition 2, the lower integration
limit in Eq. (11) can be extended to minus infinity.

Secondly, the dependence on the shape of the poten-
tial V (x) of the scattering matrix simplifies in the semi
classical regime (condition 3) [29, 30]. Indeed, reflection
is negligible and the effect of the collision is a shift in

(m/~p)
∫ a/2
−a/2 V (x)ν̂ dx = τp〈V 〉ν̂/~ on the phase of Y .

As we show in the Supplementary Material [28], the scat-
tering matrix simplifies to

s
(α′+)
j′j (Ep) = δα′+ 〈j′|e−iτpV̂ /~|j〉 . (12)

In other words, we are justified in treating the potential
V (x) as an effective barrier of length a and height 〈V 〉.
The last expression has been obtained for a potential
barrier via transfer matrix methods in the semi classical
regime [27].

After these considerations, the scattering map in
Eq. (11) is greatly simplified and Eq. (10) can be written
in a basis-independent fashion as

ρ̂′ =

∫ ∞

−∞
dp|φ(p)|2 e−iτpV̂ /~ (ρ̂A ⊗ ρ̂B) eiτpV̂ /~ . (13)

The last step involves performing a saddle point around
p0 to perform the integral, which is possible since p0 � σ
is fulfilled (see Supplementary Material [28]). After this
we obtain our main result in Eq. (6) with τ = ma/p0,
showing the equivalence between the dynamics of TDM
and SCM. It follows that work in the former can be in-
terpreted as change in kinetic energy in the latter.

Application: To illustrate our results, we consider a
numerical model where A and B are both spins 1/2 with
Hamiltonians ĤA = ∆Aσ̂

z
A where 2∆A is the energy gap

of A and σ̂iA are Pauli matrices i = x, y, z in the Hilbert
space of A (equivalently for B). The internal interac-
tion between the spins is given by ν̂ = σ̂xA ⊗ σ̂xB . Re-
garding the potential Ṽ (t) in TDM we choose a trian-
gular barrier Ṽ (t) = (4/τ)V0(τ/2 − |t|) for |t| < τ/2
and zero otherwise with V0 > 0. The exact dynamics
is computed by solving Eqs. (2) and (1). For SCM, we
take a sinusoidal potential vanishing at the boundaries
V (x) = (π/2)V0 cos(πx/a) for |x| < a/2 and zero other-
wise. The minimal scale characterizing this potential is
amin ∼ a. The exact scattering matrix is solved by using
the non-linear equations of multi-channel scattering the-
ory [16] summarized in the Supplementary Material [28].

These are plugged in Eq. (11) which in turn is used in
the scattering map Eq. (10). As required by our theory,
〈Ṽ 〉 = 〈V 〉 = V0.

The model in Eq. (6) can be solved analytically (see
[28]). The unitary operator exp (−iλσ̂xA ⊗ σ̂xB) generates
an oscillatory dynamics with period π in terms of the
coupling parameter λ ≡ V0τ/~ with two independent sec-
tors, {|↑↑〉 , |↓↓〉} and {|↓↑〉 , |↑↓〉}. For degenerate spins
∆A = ∆B , as in Fig. 1, the dynamics in {|↓↑〉 , |↑↓〉}
does not involve energy changes. Therefore we focus our
attention to the sector {|↑↑〉 , |↓↓〉}.

In Fig. 1 we display the joint state of the two
spins (populations 〈↑↑| ρ̂′ |↑↑〉 in panel A and coherences
〈↓↓| ρ̂′ |↑↑〉 in panel B), as well as the energy and en-
tropy changes after one interaction (panels C and D), as
a function of the coupling parameter λ ≡ V0τ/~ which
we increase by increasing V0 while keeping τ fixed. Since
we require τ = τp, we take in SCM p0 = ma/τ . We dis-
play the results for τ = 2.5 × 10−3 and τ = 2.5 × 10−1,
with condition 1 holding in the former case but not in
the latter. Condition 2 and p0amin � ~ are here always
fulfilled. For τ = 2.5 × 10−3 (high Ep0), we observe a
very good matching between TDM, SCM and our model,
even when the coupling is strong. Indeed, when λ = 10
we still have Ep0/V0 � 1 and thus all conditions of our
model are fulfilled. The wave packet therefore excites
both spins without changing their entropy with Rabi-like
oscillations [4, 31, 32] of period π with λ as predicted by
the model. For τ = 2.5 × 10−1 (low Ep0), we see that
our model departs from those in SCM and TDM at the
level of coherences and entropy change. Remarkably, our
model still replicates the populations and energy changes
of TDM and SCM provided the coupling is not too large
(i.e., Ep0/V0 � 1 still holds), but they mismatch for
larger couplings (i.e., Ep0/V0 ∼ 1 and reflection is no
longer negligible).

We tested many other potentials Ṽ (t) and V (x) with
〈Ṽ 〉 = 〈V 〉 and numerically confirmed in this two-spin
system that they induce the same dynamics in Y pro-
vided the conditions for our theory hold.

Conclusions: We have considered the effect of a col-
lision between a particle at rest and an incoming fast
particle described by a broad wave packet and showed
that the map describing the effect of the collision on the
internal states of the particles becomes unitary. Since the
energy transfers within the internal system occur with-
out entropy change, such collisions can be used to model
the effect of a work source on the particle at rest.

This finding nicely complements the results of
Refs. [13, 27] where we showed that collisions with effus-
ing mixtures of incoming narrow packets can model heat
sources. The width of the packet is crucial to discrim-
inate between these two cases. In the narrow case, the
outgoing packets associated with each transition in the
scattering map are distinguishable because they do not
overlap. Therefore, the environment can collect informa-
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FIG. 1: Upper panels: Populations (panel A) and real part of coherences (panel B) of a two spin 1/2 system after one collision
according to the exact SCM in Eq. (4) (squares), TDM in Eq. (1) (circles) and our model Eq. (6) (black dashed lines) as a
function of coupling parameter λ ≡ V0τ/~. We vary λ by varying V0 while keeping τ fixed at τ = 2.5 × 10−3 (plots with
dark color markers, read on the left axis) or τ = 2.5 × 10−1 (plots with light markers, read on the right axis). Lower panel:
Equivalent of upper panels for energy (panel C) and entropy changes (panel D), respectively. The state of the spins is initially

diagonal in the eigenbasis of ĤY , with (ρ̂A)↑↑ = 0.1, (ρ̂A)↓↓ = 0.9 and (ρ̂A)↑↓ = (ρ̂A)↓↑ = 0 while the state of B is thermal

ρ̂B = exp(−βĤB)/Tr[exp(−βĤB)] with inverse temperature β = ∆−1
B . The model parameters are 2∆A = 2∆B = 1 (degenerate

spins), ~ = m = 1, a = 3.5, τp = τ ⇒ p0 = ma/τ and σ � 20× (m∆Y /p0) for SCM.

tion about the transitions in the internal system, acting
as a measurement apparatus. Instead, in the broad case,
the outgoing packets strongly overlap. As a result they
do not reveal information about the internal system tran-
sitions, and coherences are preserved.

Since quantum scattering is ubiquitous throughout
physics [15–19] and plays an essential role in many other
aspects of open quantum systems [20–25], our results
should be of wide relevance in the exploration of the
quantum properties of matter and energy and could open
the way for scattering-based realistic implementations of
quantum thermodynamic operations.
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3Departamento de Fisica Atómica, Molecular y Nuclear and GISC,

Universidad Complutense Madrid, 28040 Madrid, Spain
4Departamento de F́ısica, Facultad de Ciencias F́ısicas y Matemáticas, Universidad de Chile, 837.0415 Santiago, Chile
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TIME-DEPENDENT MODEL

In this section, we summarize the Magnus expansion as a solution to the time-dependent model introduced in the
main text. We remind that the full Hamiltonian of the time-dependent model (TDM) is given by Ĥ(t) = ĤY + V̂ (t),

with ĤY = ĤA ⊗ ÎB + ÎA ⊗ ĤB being the Hamiltonian of the internal degrees of freedom. The interaction operator
is V̂ (t) = Ṽ (t)ν̂, where Ṽ (t) is a non-vanishing function in the interval (−τ/2, τ/2) ∈ R and zero everywhere else. In
the interaction picture, the state of Y after the interaction is given by

ρ̂τ = ÛI(τ)(ρ̂A ⊗ ρ̂B)Û†I (τ) , (S1)

where the initial state is assumed factorized. The unitary operator in the interaction picture is the solution to the
von Neumann equation

dtÛI(t) = − i
~
V̂I(t)ÛI(t) (S2)

where dt is the total time derivative, V̂I(t) = exp(iĤY t/~)V̂ (t) exp(−iĤY t/~) is the interaction in the interaction
picture and ÛI(τ/2) = ÛI(−τ/2) = 1̂Y . Due to the time-dependence of V̂I(t), the last equation does not generally
have a closed form. Usually, one expands ÛI(t) as an infinite series of time-ordered integrals of V̂I(t) — the so-called
Dyson series — which is specially useful for perturbative calculations. However, an alternative solution is to write
the unitary operator as an exponential of an infinite series

ÛI(t) = exp (Ω̂(t)) = exp
( ∞∑

n=1

Ω̂n(t)
)
, (S3)

where the series is called the Magnus expansion (see Ref. [1] for a precise relationship between this approach and the
Dyson series). The first three terms are as follows:

Ω̂1(t) = − i
~

∫ t

−τ/2
V̂I(t

′)dt′ , (S4)

Ω̂2(t) = − 1

2~2

∫ t

−τ/2
dt′
∫ t′

−τ/2
dt′′[V̂I(t

′), V̂I(t
′′)] , (S5)

Ω̂3(t) =
i

6~3

∫ t

−τ/2
dt′
∫ t′

−τ/2
dt′′
∫ t′′

−τ/2
dt′′′

(
[V̂I(t

′), [V̂I(t
′′), V̂I(t

′′′)]] + [V̂I(t
′′′), [V̂I(t

′′), V̂I(t
′)]]
)
. (S6)

If we take V̂I(t) to be an element of a Lie algebra, i.e. an element of linear space of operators with commutation as a
binary operation, then all higher order terms can be obtained by linear combinations of nested commutators of V̂I(t).
Thus, if we show that these commutators vanish under some conditions, we reduce the Magnus expansion to the first
term. The matrix element of V̂I(t) in the eigenbasis of ĤY reads

〈j|V̂I(t)|i〉 = 〈j|V̂ (t)|i〉 ei∆jit/~ = Ṽ (t) 〈j|ν̂|i〉 ei∆jit/~ , (S7)
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where ∆ji ≡ ej − ei is the energy difference between eigenstates |j〉 and |i〉, as in the main text. Thus, if the free

evolution is negligible ∆Y τ/~ � 1 (condition 1), we simply get [V̂I(t), V̂I(t
′)] ' Ṽ (t)Ṽ (t′)[ν̂, ν̂] = 0. The unitary

operator in Eq. (S3) evaluated at t = τ/2 then reads

ÛI(τ) = exp
[
− i

~

∫ τ/2

−τ/2
V̂ (t)dt

]
. (S8)

The last step involves simplifying the integral using the mean-value theorem 〈Ṽ 〉τ ≡
∫ τ/2
−τ/2 Ṽ (t)dt. As discussed in

the main text, the identification with SCM involves setting 〈Ṽ 〉 = 〈V 〉, where 〈V 〉 ≡ a−1
∫ a/2
−a/2 V (x)dx is the average

potential in SCM. We immediately get ÛI(τ) = exp (−iτ V̂ /~) with the definition V̂ ≡ 〈V 〉ν̂.

SCATTERING MODEL

In this section we study the reduced scattering dynamics for the internal degrees of freedom Y and the conditions
under which it matches those of TDM. Consider the scattering model (SCM) with full Hamiltonian

Ĥ = Ĥ0 + V̂ (x̂) = ĤY ⊗ ÎX + ÎY ⊗ p̂2/2m+ V̂ (x̂) (S9)

where Ĥ0 is the free Hamiltonian. The kinetic energy operator accounts for the motion of the particle B and is
unbounded, obeying the eigenvalue equation (p̂2/2m) |p〉 = Ep |p〉, where {|p〉} are improper eigenstates representing
plane waves with kinetic energy Ep ≡ p2/2m ≥ 0. The interaction between the particles is described by the operator

V̂ (x̂) = V (x̂) ⊗ ν̂, where V (x) is a non-vanishing function only inside the interval x ∈ (−a/2, a/2) and V (x̂) |x〉 ≡
V (x) |x〉.

The goal of scattering theory is to obtain the scattering operator Ŝ which is a one-to-one map between free
(incoming) states before the collision to free (outgoing) states after the collision. Whether or not such an operator
exists depends on the dynamics during the collision through the interaction potential V (x). However, its existence is
guaranteed for a large class of potentials which vanish fast enough at infinity, and the one introduced above belongs
to this class [2, 3]. Thus Ŝ exists with the usual properties ŜŜ† = Ŝ†Ŝ = Î and [Ŝ, Ĥ0] = 0 expressing unitarity and
total energy conservation for the full system, respectively. Due to the latter, the scattering operator in the eigenbasis
of Ĥ0, denoted by |p, j〉 ≡ |p〉 ⊗ |j〉, is given by

〈p′, j′| Ŝ |p, j〉 =

√
|pp′|
m

δ(Ep − Ep′ −∆j′j)s
(α′α)
j′j (E) (S10)

where s
(α′α)
j′j (E) is the scattering matrix at total energy E = Ep + ej and α = sign(p) and α′ = sign(p′) accounts

for the initial and final direction of the momenta, which can be positive (α, α′ = +) or negative (α, α′ = −). The
absolute value squared of the scattering matrix determines the transitions probabilities at a given total energy E.

The scattering map

We take the full system to be initially in a factorized state ρ̂A ⊗ ρ̂B ⊗ ρ̂X with ρ̂X = |φ〉 〈φ| being a pure state,
normalized according to

∫
dp 〈p|ρ̂X |p〉 =

∫
dp|φ(p)|2 = 1. The state of the full system after the collision is given by

Ŝ(ρ̂A ⊗ ρ̂B ⊗ ρ̂X)Ŝ†. Taking the partial trace over momentum, we can write the map in the eigenbasis of ĤY as [4]

ρ′j′k′ =
∑

jk

Sjkj′k′(ρ̂A ⊗ ρ̂B)jk (S11)

where ρ′j′k′ ≡ 〈j′|ρ̂′|k′〉 and the scattering map is given by,

Sjkj′k′ =
∑

α′=±

∫ ∞

pinf

dp φ(p)φ∗ (π(p))

√
p

π(p)
s

(α′+)
j′j (Ep + ej)

[
s

(α′+)
k′k (Ep −∆j′j + ek′)

]∗
(S12)

with π(p) =
√
p2 − 2m(∆j′j −∆k′k). The lower integration limit pinf is obtained from p2

inf/2m = max{0,∆j′j ,∆j′j−
∆k′k}, which guarantees that the channels are open in the integration domain. As discussed in Ref. [4], the scattering
map is completely positive and trace-preserving and does not generally lead to unitary dynamics. In the next sections,
we derive in detail the conditions - already presented in the main text - under which it does.
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Broad wave packet approximation

The map in Eq. (S12) depends crucially on the product φ(p)φ∗(π(p)) which measures the overlap between wave
packets at different momenta. In this section, we prove that if such packets are sufficiently broad with respect to the
energy scale of Y , we can replace φ(p)φ∗(π(p)) by |φ(p)|2 in Eq. (S12).

Consider for simplicity that the support of the packet φ(p) is [p0−σ, p0+σ] and that of φ(π(p)) is [p0+δ−σ, p0+δ+σ]
shifted by δ = π(p0) − p0. The support of the product φ(p)φ∗(π(p)) is the intersection of these intervals, i.e.,
[p0 +δ−σ, p0 +σ] for δ > 0 and [p0−σ, p0−|δ|+σ] for δ < 0. Thus, we see that if |δ| ≈ 2σ the support of φ(p)φ∗(π(p))
is narrow and very different from the support of φ(p). Therefore a necessary condition for the approximate equality

∫
dpφ(p)φ∗(π(p))f(p) ≈

∫
dp|φ(p)|2f(p) (S13)

with a smooth function f(p) is |δ| � 2σ. Since π(p) =
√
p2 − 2m(∆j′j −∆k′k), the difference π(p) − p decays with

increasing p. Therefore for large p0 we have δ ≈ −m(∆j′j − ∆k′k)/p0. Considering that ∆Y is the maximal value
for the energy differences ∆j′j , we arrive at the condition m∆Y /p0 � σ, which is the broad wave packet condition 2
presented in the main text.

The validity of the approximation Eq. (S13) is also due the fact that the difference

|φ(π(p))− φ(p)| ≈ dφ(p)

dp

2m∆Y

p

decreases as p increases because the value for the slopes dφ(p)/dp depends on the shape of the packet and not in it
location in the p axis. For instance, consider a smooth wave packet centered around p0. The maximum values of the
derivatives dφ/dp are located at some p∗ = p0 + C(σ, x0) where C(σ, x0) is some function of the parameters of the

packet. For example, for a Gaussian wave packet C(σ, x0) = ix0σ
2 ±

√
σ2 − x2

0σ
4. Therefore dφ(p)

dp |p∗ is independent

of p0. Thus, the difference φ(π(p))− φ(p) decreases with increasing p as

|φ(π(p))− φ(p)| ≈ M× 2m∆Y

p
≈ M × 2m∆Y

p0
,

where M = dφ(p)
dp |p∗ , justifying the use of Eq. (S13) in Eq. (S12) for p0 � M (2m∆Y ) and σ � m∆Y /p0. Interestingly,

for a Gaussian packet M ∼ 1/σ and both conditions are equivalent. Further conditions on the value of p0 are imposed
by the interaction energy as we see below.

Semi-classical regime

Introduction

Consider the time-independent Schrödinger equation in the absence of internal degrees of freedom, with the potential
V (x) being effective over the region x ∈ (−a/2, a/2). If we take a position very far away to the left of this region, then
ψ(x) ∼ exp (ipx/~) is a solution to the equation, representing a plane wave of some wave packet which travels free
from the potential. In general, inside the region of the potential V (x) the solutions are not plane waves. However,
it is well known that if the wave packet is fast Ep � V (x) and if its de Broglie wave length is much shorter than
the scales over which the potential varies significantly pamin � ~, where amin is this scale, then the effect of the
potential on the wave can be simplified. The plane wave at position x inside the potential is then multiplied by a
phase proportional to the integral of the interaction [5, 6]. More precisely, we have

ψ(x) ∼ exp
( ipx

~

)
exp

(
− im

~p

∫ x

−∞
V (x)dx

)
. (S14)

By taking x→ +∞ the the total phase shift due scattering with the potential, which is proportional to the scattering

amplitude is recovered [5]. Since the potential is supported on the interval x ∈ (−a/2, a/2), we have
∫ a/2
−a/2 V (x)dx =

〈V 〉a. In other words, the potential can be effectively treated as a barrier of length a and height 〈V 〉. The purpose
of this section is to show that the same is true in the presence of internal degrees of freedom, which then allows us to
simplify the scattering matrix appearing in Eq. (S12).
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Derivation

Let |ψ〉 be a solution to the time-independent Schrödinger equation Ĥ |ψ〉 = E |ψ〉 with some energy E and |ψ0〉
the corresponding free solution with the same energy, valid very far away from the potential. Projecting the former
equation onto the position eigenbasis 〈x|Ĥ|ψ〉 = E 〈x|ψ〉 and using Eq. (S9), we obtain an operator equation for
|ψ(x)〉 ≡ 〈x|ψ〉 in the Hilbert space of Y

(~2d2
x + P̂ 2

0 ) |ψ(x)〉 = 2mV̂ (x) |ψ(x)〉 , (S15)

where dx is a total derivative and the interaction is V̂ (x) ≡ V (x)ν̂. The momentum operator is defined as

P̂0 ≡
√

2m(E − ĤY ) (S16)

and we assume that E is larger than the maximum eigenvalue of ĤY , in which case P̂0 is a positive operator and thus
self-adjoint. To make progress in solving Eq. (S15), we look for solutions of the form

|ψ(x)〉 = eiP̂0x/~ |ψ̂(x)〉 , (S17)

where the exponential operator is unitary. Substituting in Eq. (S15) and noting that [exp(iP̂0x/~), P̂0] = 0 we obtain

that |ψ̂(x)〉 satisfies

(~2d2
x + 2i~P̂0dx) |ψ̂(x)〉 = 2m(e−iP̂0x/~V̂ (x)eiP̂0x/~) |ψ̂(x)〉 , (S18)

The last expression is completely equivalent to Eq. (S15). Since we are interested in taking the semi-classical limit
where ~ is very small compared to some action, we ignore the second derivative in the equation above. After we
obtain the solution, we derive exactly the conditions under which this is valid. We thus get the equation

i~dx |ψ̂(x)〉 = (e−iP̂0x/~mP̂−1
0 V̂ (x)eiP̂0x/~) |ψ̂(x)〉 , (S19)

which formally has the same form of a Schrödinger equation in the interaction picture where x plays the role of time,
mP̂−1

0 V̂ (x) is the interaction and −P̂0 the free Hamiltonian [8]. This Schrödinger equation is integrated with an
“initial” position x0 and an “initial” state with the same energy E appearing in Eq. (S16). We take the asymptotic

state |ψ0〉 introduced above, and through Eq.(S17), the corresponding |ψ̂0〉 to pick the “initial” condition. The
evolution operator associated with this equation can be written in terms of a Magnus series as we did in section . In
analogy to Eq. (S4), we have the first order term of the expansion

Ω̂1(x) = − i
~

∫ x

x0

V̂P̂0
(x′) dx′ , (S20)

where V̂P̂0
(x′) ≡ e−iP̂0x

′/~mP̂−1
0 V̂ (x′)eiP̂0x

′/~ has units of momentum. The higher order terms Ω̂n(x) contain nested

commutators of [V̂P̂0
(x), V̂P̂0

(x′)] similarly to Eqs. (S5) and (S6). Now we show that one can neglect the higher order
terms in the Magnus expansion when the kinetic energy is sufficiently large. For large E we have

P̂0 =

√
2m(E − ĤY ) =

√
2mE −

√
m

2E
ĤY

[
1−O

(ĤY

E

)2]
, (S21)

allowing the replacement

V̂P̂0
(x′) ≈ ei

√
m
2E ĤY x

′/~ m√
2mE

[
1 +

ĤY

E

]
V̂ (x′)e−i

√
m
2E ĤY x

′/~ ≈
√

m

2E
V̂ (x′)

where in the last approximation we used that |x′| < a/2 and considered
√

2E/m� a∆Y /~, eliminating the exponen-

tials of the expression at the left. In this limit we have [V̂P̂0
(x), V̂P̂0

(x′)] = m(V (x)V (x′)/2E)[ν̂, ν̂] = 0 and all higher

orders can be neglected. The above inequality,
√

2E/m� a∆Y /~ allows us to consider E ≈ Ep which is equivalent
to τp∆Y /~� 1 (condition 1 of the main text). Thus, the Magnus series is

Ω̂(x) = − i
~

√
m

2E

∫ x

x0

V̂ (x′) dx′ = − im
~p

∫ x

x0

V̂ (x′) dx′ (S22)
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meaning that

|ψ̂(x)〉 = exp
(
− im

~p

∫ x

x0

V (x)ν̂
)
|ψ̂0(x0)〉 . (S23)

The last expression applied to Eq. (S17) is the generalization of Eq. (S14) in the presence of internal degrees of

freedom. Now that we have a closed expression, we can verify the conditions under which ~2d2
x |ψ̂(x)〉 is negligible in

Eq. (S18). Differentiating Eq. (S23) twice with respect to x and multiplying by ~2/p2 to get an adimensional quantity,
we obtain

(
1

p2

)
~2d2

xψ̂(x) = −
(

1

p2

)[ im~V ′(x)

p
+
m2V (x)2

p2

]
ν̂ψ̂(x) . (S24)

Therefore, for high momentum, the term ~2d2
xψ̂(x) is negligible in comparison to the rest of the terms in Eq. (S18)

if the potential varies very slowly p3/(2m~) � V ′(x), a condition well known from semi-classical approximations in
quantum mechanics [5]. We simplify this condition by integrating over a minimum scale amin where the potential
varies significantly by an amplitude ∆V obtaining (Ep/∆V )pamin/~ � 1. Since we are interested in high kinetic
energies, in the worst case scenario we have Ep/∆V ∼ 1 and thus pamin/~� 1 is a sufficient condition.

The scattering matrix

Eq.(S23) in terms of the original wave function is

|ψ(x)〉 = eiP̂0x/~ exp
(
− im

~p

∫ x

x0

V (x)ν̂
)
e−iP̂0x0/~ |ψ0(x0)〉 . (S25)

From this expression we can deduce the transmission coefficient. Taking x > a/2 and x0 < −a/2, considering
(m/p)

∫ x
x0
V (x) = τp〈V 〉, recalling the definition V̂ ≡ 〈V 〉ν̂ and projecting Eq. (S25) on the left with 〈j′| we have

〈j′|ψ(x)〉 = 〈j′|eiP̂0x/~e−iτpV̂ /~e−iP̂0x0/~|ψ0(x0)〉 (S26)

Taking |ψ0(x0)〉 = eipjx0 |j〉 with pj =
√

2m(E − ej) in Eq. (S26) we obtain

〈j′|ψ(x)〉 = eipj′x/~ 〈j′|e−
iτp
~ V̂ |j〉 e−ipjx0eipjx0 = tj′je

ipj′x/~ (S27)

with pj′ =
√

2m(E − ej′), from where we read that the elements of the transmission matrix t are tj′j = 〈j′|e−
iτp
~ V̂ |j〉.

Since t is unitary, the reflection coefficients vanish in this limit. Thus, the scattering matrix under the conditions
stated above is

s
(α′+)
j′j (Ep) = δα′+ 〈j′|e−iτpV̂ /~|j〉 , (S28)

as presented in the main text. It is valid when τp∆Y /~� 1 (condition 1), Ep � V (x) and pamin � ~ (condition 3)
and Ep � ∆Y (inequality present in condition 2 of the main text).

Averaging the interaction

After performing the broad wave packet approximation and inserting the scattering matrix Eq. (S28) into Eq. (S11),
we get a simplified expression for the scattering map. Using the representation of the density matrix (ρ̂A ⊗ ρ̂B) =∑
ji(ρ̂A ⊗ ρ̂B)ji |j〉 〈i| we get a basis-independent result

ρ̂′ =

∫ ∞

−∞
dp|φ(p)|2 e−iτpV̂ /~ (ρ̂A ⊗ ρ̂B) eiτpV̂ /~ , (S29)

where we extended the lower integration limit to minus infinity since |φ(p)|2 = (2πσ2)−1/4 exp[−(p − p0)2/2σ2] is
supported at very high kinetic energies. Using the spectral decomposition V̂ =

∑
α Vα |α〉 〈α|, we can simplify the

integral by studying the function in the exponent

Fαβ(p) ≡ − (p− p0)2

2σ2
− ima(Vα − Vβ)

~
, (S30)
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and performing a saddle point approximation assuming p0 � σ, a condition already fulfilled for the wave packets
considered in this study. We can do this by finding the extrema F ′αβ(p) = 0

( p
p0
− 1
) p2

pαβσ
=
iσ

p0
, (S31)

where pαβ ≡ ma(Vα − Vβ)/~ has units of momentum. Thus, if p0 � σ then p = p0 is an approximate solution
corresponding to a maximum (as can be confirmed by computing the second derivative). We expand Fαβ(p) to
second-order around p0 and perform the integral, obtaining our final result with τ = ma/p0

ρ̂′ = e−iτV̂ /~ (ρ̂A ⊗ ρ̂B) eiτV̂ /~ . (S32)

Multi-channel scattering equations

In this section we present the multi-channel equations of scattering theory which allow us to compute numerically
the exact scattering matrix presented in the main text. For a wave packet coming from the left, we have the following
relations

s
(−+)
j′j (E) =

√
|p′|
|p| rj′j(E) and s

(++)
j′j (E) =

√
|p′|
|p| tj′j(E) (S33)

where p′ and p the final and initial momentum before and after the transition, while rj′j(E) and tj′j(E) are the
reflection and transmission coefficients. The latter can be found by solving the coupled multi-channel scattering
equations

drj′j(x)

dx
=
∑

n,m

imV (x)

~pn
[
δj′ne

ipnx/~ + rj′n(x)e−ipnx/~
]
νnm

[
δmje

ipmx/~ + rmj(x)e−ipmx/~
]
, (S34)

dtj′j(x)

dx
=
∑

n,m

imV (x)

~pn
[
tj′n(x)e−ipnx/~

]
νnm

[
δmje

ipmx/~ + e−ipmx/~rmj(x)
]
,

where we omitted the dependence on energy E and pj =
√

2m(E − ej) in the last expression. These are a set of non-
linear, coupled differential equations for the transmission and transmission coefficients in space. They were derived
by Razavy in the context of quantum tunneling [7]. By using the boundary conditions rji(∞) = 0, tji(∞) = δji,
rji(−∞) = rji and tji(−∞) = tji we recover the reflection and transmission coefficients defined which then completely
determine scattering matrix.

ANALYTICAL SOLUTION FOR THE TWO-SPINS MODEL

In this example we have 〈Ṽ 〉 = 〈V 〉 = V0 and ν̂ = J1σ̂
x
A ⊗ σ̂xB + J2σ̂

y
A ⊗ σ̂yB . Defining λ ≡ V0τ/~, the unitary

transformation of our analytical model (Eq. 6 in the main text or Eq. (S32) in this document) in the eigenbasis of
ĤY is the 4× 4 matrix

e−iλν̂ =




cos[λ(J1 − J2)] 0 0 −i sin[λ(J1 − J2)]
0 cos[λ(J1 + J2)] −i sin[λ(J1 + J2)] 0
0 −i sin[λ(J1 + J2)] cos[λ(J1 + J2)] 0

−i sin[λ(J1 − J2)] 0 0 cos[λ(J1 − J2)]




which can be reordered and written as

e−iλν̂ = e−iλ(J1+J2)σ̂x1 ⊕ e−iλ(J1−J2)σ̂x2

a direct sum on two two-dimensional subspaces {|+〉1 ≡ |↑↓〉 , |−〉1 ≡ |↓↑〉} and {|+〉2 ≡ |↑↑〉 , |−〉2 ≡ |↓↓〉}. Similarly,
with the same order for the basis, the Hamiltonian

HY = {(∆A −∆B)σ̂z1} ⊕ {(∆A + ∆B)σ̂z2}
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is a direct sum. Here σ̂i1 are the Pauli matrix in the basis {|+〉1 , |−〉1} and similarly for σ̂i2. Thus, for this example, the
dynamics given by Eq. (S32) is equivalent to the oscillatory dynamics of two independent qubits. One of them having
the period π/(J1 − J2) and the other π/(J1 + J2). For Fig. 1 in the main text we take J1 = 1, J2 = 0 and ∆A = ∆B ,
thus only qubit {|+〉2 ≡ |↑↑〉 , |−〉2 ≡ |↓↓〉} changes its energy, peaking when the coupling is an odd multiple of π/2.
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3.1. CONCLUSIONS

3.1 Conclusions

In this thesis, we presented a novel approach to thermodynamics based on quantum scattering theory.

Here, the traditional picture of an environment in permanent interaction with the open system is no longer

applicable. Instead, one must picture the environment as being composed of particles, whose internal and

kinetic degrees of freedom are described quantum mechanically and which collide sequentially and re-

peatedly with a fixed system. Our framework is particularly suited for modern experiments with light and

matter, where single interactions between two quantum systems can be quite strong and far from ther-

mal equilibrium. Moreover, it overcomes the difficulties of models of repeated interactions by explaining

microscopically the origin of heat and work as exchanges in the kinetic energy of the travelling particles.

The distinction between heat and work in our approach can only be understood by appealing to the

quantum nature of the particle motion, i.e. to the fact that particles travel as wave packets before and after

they collide with the system. In opposition to plane waves, these packets are not localized in momentum

or energy, but instead have a quantum uncertainty which plays a crucial role in the internal scattering

dynamics and ensuing energy and entropy changes. If this uncertainty is smaller than the internal transi-

tion energies, the narrow packet entangles with the internal system during the collision and carries away

information about the internal state, thus inducing decoherence. This is necessary but not sufficient for

thermalization. Only when the momentum of the packets is thermal according to the effusion distribution

do they induce thermalization — provided, of course, that the internal structure of the travelling particle

has the same temperature as the effusing packets. By exchanging heat with the particles, the fixed system

thermalizes over many collisions, even if each of the collisions is strong. If the uncertainty is larger than

the internal transition energies, the broad wave packet can instead transfer coherences to the internal sys-

tem as a whole. In the limit of high kinetic energy and uncertainty, these wave packets drive the internal

system unitarily, exchanging energy without exchanging entropy. This is because they do not entangle

with the internal system and therefore do not carry away any information about it. They can thus act a

work source which keeps the internal degrees of freedom from thermalizing.

Another crucial distinction between the picture of work and that of thermalization is that, in the for-

mer, the average momentum of the packet must be known before the collision. This is the reason why

we can assign an deterministic interaction time to the fast, broad packet and effectively mimic a time-

dependent interaction, thus explaining microscopically the dynamics and switching work of repeated in-

teraction models. In this sense, repeated interactions models can be looked at as a semi-classical limit of

our scattering framework.
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3.2. PERSPECTIVES

3.2 Perspectives

We conclude this thesis by first addressing limitations of our approach and then discuss possible exten-

sions as well as future research directions.

Regarding limitations, we recognize that our approach focuses on the internal dynamics of a fixed

system without taking into account its center of mass. This is reasonable if we are thinking of applying

scattering to cavity-QED, where the internal system is the number of photons in the cavity [124]. It is also

warranted if one is interested in modifications to the emission and absorption spectra of atoms as a result

of collisions, much in the spirit of the low density limit presented in Subsec. 1.3.3. Nevertheless, if the

system to be described is an atom whose mass is not much larger than the mass of incoming particles, a

complete description would have to account for the atom’s center of mass, treating it as a wave packet in

its own right. Even if initially at rest, the atom would move as a result of collisions with travelling particles

while the total momentum would, of course, be conserved. Indeed, we mentioned briefly in Subsec. 1.3.3

some dynamical equations based on scattering theory which describe the center of mass, so we could

use this framework to extend our own. Let us also recognize that our scattering approach is implemented

in one dimension. Again, this is adequate for comparisons with repeated interaction models and appli-

cations in cavity-QED [124], while simplifying the less tractable scattering problem in three dimensions

[125, 126]. Since the dimensionality of the problem does not compromise any of the results on the narrow

and broad wave packets, our one-dimensional approach is more pedagogical. It also covers many relevant

setups in quantum transport, for instance that of a particle travelling in a waveguide (where the transverse

modes of propagation are discrete while the longitudinal ones are continuous and one dimensional), as

well as tunneling of molecules through potential barriers [127, 115, 128, 116]. Nonetheless, if one is inter-

ested in differential cross sections, then this would certainly require a three-dimensional treatment.

There are several research topics which we did not explore thoroughly in this thesis. The first is the

transition between narrow and broad packets. Since the narrow-broad distinction is relative to the inter-

nal energy scales, we could change the internal energies to cross from the narrow to the broad regimes.

By using thermal wave packets, we could then study how detailed balance and heat are modified across

these different regimes. In addition, it is also not clear the role that reflection plays (if any) in the internal

dynamics and thermodynamics. For instance, Ref. [124] points out that slow atoms can be reflected from

a micromaser field even when no photons are present; this takes place in light-matter coupling strengths

which are much higher than in the typical regime of Rabi oscillations. Our framework could be potentially

used to study the dynamics and thermodynamics in this regime. Finally, we did not formulate the first and

second law of thermodynamics in the presence of both heat and work sources. We are currently writing a

manuscript where we do so, which also includes a study of the continuous time limit and resulting quan-

tum master equations.
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