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Abstract

From population collapses to cell-fate decision, critical phenomena are abundant in complex
real-world systems. Among modelling theories to address them, the critical transitions framework
gained traction for its purpose of determining classes of critical mechanisms and identifying
generic indicators to detect and alert them (“early warning signals”). This thesis contributes to
such research field by elucidating its relevance within the systems biology landscape, by providing
a systematic classification of leading mechanisms for critical transitions, and by assessing the
theoretical and empirical performance of early warning signals. The thesis thus bridges general
results concerning the critical transitions field — possibly applicable to multidisciplinary contexts —
and specific applications in biology and epidemiology, towards the development of sound risk
monitoring system.
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Chapter 1

Introduction

1.1 Forewords

Imagine swinging on a chair. The equilibrium remains stable until a certain angle is accidentally
hit, and you crash onto the ground. Suddenly losing stability and falling onto a new equilibrium is
a hallmark of critical transitions. This example pertains to static equilibria; however, many natural
systems are characterised by dynamic equilibria — repeated patterns over time — and transitions
between them. The present thesis concerns the study of critical transitions in complex dynamical
systems, with a specific focus on biological and epidemiological ones. Of particular interest is the
taxonomy of recognised critical transitions and their systematic classification, followed by studies
about the application of current knowledge for identification, detection and, potentially, prediction
of critical transitions in monitored natural systems.

The present thesis has been developed in a highly interdisciplinary environment, with experi-
mental biologists working hand-in-hand with data analysts and computational scholars, further
paired up with physicists, mathematicians and engineers. They have different backgrounds and
know-how. Hence, to set some common ideas and vocabulary that will be employed in the
writing, this introductory section puts forward some notions about complex systems and models
— mathematical, mainly. Later in the text, specific subsections will also summarise the main
mathematical key points, to disseminate ideas and methods to other audiences and, hopefully, to
stimulate interdisciplinary collaborations.

This chapter is concluded with an overview on the thesis objectives and on the contributions
associated with the present PhD project.

1.2 Models (with focus on mathematical biology)

Primary goals of scientific activities are knowledge, prediction and control (Hepburn et al., 2021).
To achieve such outputs, the scientific community has relied on method and methodologies,
constantly updated and refined over the centuries and within disciplines. This section first
presents an introductory overview, focusing on models and methods employed in biological and
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mathematical-biology disciplines, and is concluded with two personal examples on the emerging
role of mathematical and computational models as in silico testbeds for the natural sciences.

1.2.1 The scientific method and the *“cycle for knowledge discovery”

The sciences do not try to explain, they hardly even try to interpret; they mainly make
models. By a model is meant a mathematical construct which, with the addition of certain
verbal interpretation, describes observed phenomena. The justification of such a mathematical
construct is solely and precisely that it is expected to work (J. von Neumann)

According to textbooks, the scientific method involves back-and-forth interplay between
experiments, observations of natural phenomena and theoretical models, to guide our insights
and contribute to building knowledge. The main purpose of the scientific method is, ultimately,
to foster an objective understanding of observable phenomena. The whole process is guided
by research questions that shape study designs and circumscribe the systems’ properties that
we care to focus on. By no means the scientific method is linear and uniquely characterised,
although many scholars have, over the centuries, attempted to rationalise it. To make things more
complicated, it might occur that different disciplines developed alternative or nuanced methods, in
order to best exploit the instruments they have at disposal (Mazzocchi, 2019). Nonetheless, shared
characteristics among the scientific method(s) can be recognised and a general skeleton depicted,
to establish a common ground for further discussions.

To begin with, the method is an iterative, cycling process (see Fig. 1.1). Its end products are
models — of potentially various kinds (see below). The cycle can be broken down in arbitrarily
fine-grained steps, of which at least five are of paramount importance (Saetzler et al., 2011):

* Experiments. Foundation of scientific endeavours are experiments, to empirically observe
natural phenomena.

* Data acquisition. Measuring the properties of systems observed during experiments and
then curating, aggregating and analysing the corresponding data to systematize the collected
information (Huang et al., 2013). If the data acquisition is expected to be hypothesis-driven
(cf. Sec 1.2.3), this step can also help tuning the experimental procedures.

* Hypothesis formulation. Hypothesis about the functioning of observed phenomena are
usually informed by acquired data and guided by mental processes such as induction
(inference from repeated particular cases to the general case) or transformational reasoning
(envisioning the effect of various transformation that the phenomenon might undergo, thus
getting “a sense” of it, Simon (1996)).

* Model development. From hypothesis to modelling, this is the process of formalising the
expected theory. Developing a model also helps to foster new hypothesis.

* Models are used to make predictions, which should be novel with respect of what’s already
known. They can be obtained by solving equations, simulating algorithmic models, or
deducting properties from theoretical principles (Sherry, 2006). Depending whether the
predictions hold against experiments, models can then be updated or even built anew (Kuhn,
1962). Every piece of knowledge so gained is not considered true in an absolute sense, but
valid (or significant) until falsified by new contrasting evidences (Orzack, 2012).
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* Back to experiments: predictions are contrasted against empirical observations and carefully
tested. Confirming or falsifying the predictions (Popper, 2014; Oreskes et al., 1994) triggers
updates in the underlying models and, eventually, guides the formulation of new hypothesis.
When using statistical tools, this process is often associated with hypothesis testing, a form
of inference to draw conclusions about model properties. Note the slight redundancy in
terminology: here, “hypothesis” stands for alternative solutions from model predictions. In
the other step, “hypothesising” encompasses the formulation of assumptions, modelling
choices and preliminary pieces of novel theory.

Data
acquisition )
Observation and Induction/
data analysis / ? N Transformational
/ reasoning
Tuning Design
. Hypothesis
Experiment ypothes
formulation
\ Confirmation\ Update -

i falsification Hypothesising /" “ )
Testing v 1@ g | Modelling
Model Model
predictions development

~

Solution/simulation/deduction

Fig. 1.1 Schematic illustration of the systems biology two-ways cycle for knowledge discovery, adapted
and elaborated from Oreskes et al. (1994); Simon (1996); Saetzler et al. (2011); Huang et al. (2013). Black
path: Careful observations of certain aspects of natural phenomena (experiments) produce data. Scientists
reflect upon data in order to generate hypothesis, following various reasoning strategies including induction
or “transformational reasoning”. Iterating and distilling hypothesis eventually lead to develop models (cf.
Sec. 1.2.2). Working upon models with analytical solutions, simulations, deduction etc. yields predictions.
These are contrasted against new experiments, to check if predictions are confirmed. Accumulating such
confirmations supports the verification or falsification of models and of their underlying hypothesis. Grey
path: the inverse process of updating the “prior” steps in the black path, given the outcome of “posterior”
steps. As the whole process is iterative, the two paths might be potentially equivalent in the outcome, but
still differ in approach, methodology and procedures.

Entry points in this “knowledge cycle” are usually observations of natural phenomena (data-
driven entry) or from hypothesis made about a certain system’s behaviour being sufficiently
analogous to that of another, well studied one (hypothesis-driven entry). As anticipated, the
products are constantly refined models used for predictions, knowledge and control.

1.2.2 A non-exhaustive introduction to scientific models

'In general, a model is an idealised representation of a certain situation or phenomenon, according
to the purpose of the modeller who selects the features to consider (often called “modelling
choices”). Wind tunnels, for example, are models designed to research the effect of wind on
automotive and airplane design. They enable researchers to simulate what happens when an object

IPart of this section has been adapted from “Models”, in Proverbio D., Ley C. and Mangers P., Coronavirus
technical terms — explained by scientists from Luxembourg, science.lu, 2020 (https://bit.ly/3qy02mS5).
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passes through the air in a controlled environment. To answer specific issues, science heavily
relies on models (Jensen, 1998; Giere, 2004). Note that, under this framework, models can be
idealized and controlled representations of any kind. In philosophy and mathematics, model theory
is associated with the study of formal languages and their interpretation (Hodges, 2020), but in
scientific methodologies as well as routine practice, models often play the role of archetypes or of
substitutes for the object of study. Hence, there exist animal models, in vitro models, industrial
models and mathematical models.

Mathematical models

Mathematical models are abstract representations, written in mathematical terms, whose elements
are put in correspondence with the components of real-world phenomena. Once a plausible
correlation has been established, the mathematical model is said to describe the given phenomenon.
Mathematics is a formal discipline, with universal logical rules that can be derived to obtain
results. This means that mathematical deductions and predictions can be proven and verified as
correct or untrue, whereas other models have lower confidence levels.

Even mathematical models, despite their abstract character, have some limits. The bulk of
simplifications, features, context and initial decisions form the model’s assumptions. There is no
model that can accurately represent the full reality. Attempting to include every possible real-world
consequence would result in the most comprehensive description, but the mathematical complexity
would be impossible to manage. Similarly, too simplified systems may become mathematically
trivial and fail to accurately describe the original occurrence. In this spirit, A. Einstein is said to
have written:

Everything should be made as simple as possible, but not simpler.

Another witty quote, reflecting the degree of imprecision of mathematical models, but their
nonetheless importance for knowledge, predictions and control, is:

All models are wrong, but some are useful (G. Box).

In fact, mathematical models are extremely useful in multiple ways. First, for knowledge discov-
ery. Studying the properties of a model is likely to shed light on our understandings, to answer
certain questions and to inquire important mechanisms of the considered phenomenon. Second, to
make predictions, i.e., answering the question “what will happen”? Once an evolution or transfor-
mational rule has been established for a given system, it is possible to predict its development
under multiple applications of such rule, given the initial conditions. Third, to inquire scenarios:
“what would happen if...?” Mathematics as a formal language allows precise control over all
involved variables. It is thus possible to modify some of them into alternative settings and perform
counterfactual analysis, or to maintain the current settings in situations of larger uncertainty and
investigate what is plausible to happen, should the situation be maintained. The uncertainty could
be associated to scarce data about the initial conditions, openness of the system involving external
and/or unpredictable inputs, intrinsic complexity of the system and so on. In this case, we speak
of “projections” rather than “predictions”, with corresponding degrees of confidence. Finally, the
three points above can be used for system control: the predictions (or projections, if sufficient
over the desired time horizon) of a suitably confirmed model can be combined with models of
expected outcomes, to aptly steer a system of interest.
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Classification of mathematical models

There is a whole spectrum of mathematical models, and their classification can be performed
from different angles (Sherry, 2006; Gertsev et al., 2004). Models can be classified based on their
object of study (distinguishing between simple and object-system models), on their fundamental
operators (hence having linear, non-linear, algorithmic... models), on the way they treat parameters
and variables (distinguishing between continuous or discrete-time/space models, static or dynamic,
deterministic or non-deterministic, n-dimensional, qualitative or quantitative, etc.), on the primary
modelling goal (are they descriptive, optimization or decisional), or on the implementation
method (algebraic or approximate analytical models, or numeric vs simulated algorithmic ones)
(Ashikhmin et al., 2004)?.

A useful working classification, to navigate among the various modelling suggestions employed
in mathematical®-, systems*-, synthetic’- or computational®-biology, is sketched in Fig. 1.2 and
described below. The proposed classification is mainly based on object of study and modelling
goal:

* “Pure” mathematical models. They focus on the study of abstract and formal properties of
functions, sets, variables etc, as well as on method development in abstract settings. They
do not have the primary purpose of reproducing data and observations, so they are placed
outside the “spectrum” of scientific models for the natural sciences. Nonetheless, they
constitute the foundation of all others.

* Physics-like (or prime-principled) models. They are based on first principles, tested and
confirmed many times, to explain, characterise and predict the behaviour of a system. To
date, they are the most powerful and accurate tool for studying physical and chemical
systems. An overarching goal in other systemic disciplines is to develop similar predictive
models for complex systems, although their verification is recognised to be extremely
challenging (Oreskes et al., 1994).

* Phenomenological models. They try to reproduce observations (often, time evolutions)
by referring to physical or biological/financial/ecological/... principles (depending on the
discipline in which they are applied). They are known to be simplified and provide fewer
causal explanations, but they allow many preliminary studies and plausible predictions.
Among them, the so-called “minimal models” focus on a minimal set of mechanisms needed
to produce a certain behaviour of interest.

* Optimization models. They can use either first principles (when there are any) or indicators,
with the aim of reproducing and explaining a phenomenon in terms of “it is the result that
optimises a certain function”. They still have a degree of subjectivity due to the choice of
optimisation criteria (which undergoes modelling choices as well), but they generate results

2Qriginal version in Russian. An article translating and summarising the excellent contribution of this referenced
book is available on Medium: Pospeev L., Classification of mathematical models, medium.com, Oct 13, 2019
(https://bit.ly/3FuZeD3).

3Jones et al., 2009; Hunt et al., 2008

4Kitano, 2002

SBenner et al., 2005

6Cahan et al., 2021; Fisher et al., 2006; Borshchev et al., 2004
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which, it can be shown, are the best of all possible outcomes. In addition to knowledge
development, the main end product of such models is the control of desired systems.

* Statistical models. They try to describe and reproduce observed data by means of objective
indicators (mean, variance, etc.) and to reconstruct their evolution by means of “simple”
functions (in the sense that they are combinations of basic functions, but not derived from
first principles and subsequent manipulations). Statistical models are useful to capture
trends in data and to extrapolate short-term predictions, but have usually little explanatory
power.

* Indicators. They are simple tools for quantifying some quantity that, by common agreement,
is judged potentially interesting. They are only descriptive and defined in a fairly subjec-
tive way. They have the advantage of enabling quantitative comparison between system
elements.

The introduced classes are rather fuzzy and should not considered rigid but part of a spectrum
(Fig. 1.2): models employed in everyday research are usually combinations to various degrees.
For instance, regulatory network models combine statistical and optimization models to build
something phenomenological that, if confirmed by controlled laboratory experiments, might
develop into principle-based models. Same goes for many dynamical models to explain and
reproduce the temporal behaviour of observed systems.

cile.
Pr;r;zljie Optimization  Indicators
B e
“Pure” Phenomeno- Statistical
logical

Fig. 1.2 Conceptual scheme representing the model classification described in the present section. “Pure”
mathematical models (i.e. those whose main goal is to study mathematical models themselves) stand out
but are basis of all others, to develop new models and verify the existing one. Then, a spectrum ranging
from principle-based models to indicators accommodates the fuzzy classes described in the section.

Mathematical models as irn silico testbeds: personal examples

Thanks to improved modelling techniques and better computation power, mathematical and
computational models can be used to replace — up to a certain extent — the object of study. They
could serve as abstract testbeds, in place of the real biological systems of interest, employed to
pursue the goals described above. Two personal examples are shared below.

My Master thesis (“A Multi Agent System approach to complex micro-biological systems -
In silico simulation of Dictyostelium Discoideum colonies”) developed an agent-based model to
reproduce swarming and gathering behaviours of D. discoideum colonies (social amoeboids). The
model built upon biological knowledge to first reproduce their decentralised gathering patterns.
The control mechanisms were fully accessible: it was thus possible to estimate the degree of
robustness of the gathering process (Proverbio et al., 2020) and to test settings otherwise difficult
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to design and obtain in in-vitro experiments. Overcoming their limitations was one among the
model’s benefits.

Another example is the ETH and Cambridge University thesis discussed by Master student J.L.
Kruiisemann (“Modelling the behaviour of a synthetic gene circuit for controlled gene expression
in Chlamydomonas reinhardtii’’), whom I had the pleasure to co-supervise during my PhD. He
developed a minimal dynamical model describing the regulation of ON-switches for controlled
gene expression in Chlamydomonas reinhardtii. The model allowed predicting plausible parameter
ranges for the ON-switch, to be further tested and verified in laboratory experiments. Among
other insights, the model thus served as a first-pass tool to guide experiment design ad hypothesis
generation, saving time and resources.

1.2.3 Methodologies

On top of the scientific method, scholars in various fields have developed structured methodologies,
which include the values and justifications behind a particular characterization of scientific method
(Hepburn et al., 2021). Such values include objectivity, reproducibility, simplicity, or past
successes. In this sense, we could argue that society and culture do influence the practice of
science, in addition to the self-corrective empirical method at its core.

Examples of methodological practices include the FAIR methodology for data management
(Mayer et al., 2021), which is nowadays diffusing in the systems biology community. It stands for
“findable, accessible, interoperable and reusable” and provides guidelines and principles to follow
in case of data or code management and sharing. When applicable, the studies conducted for this
thesis followed the FAIR methodology (e.g. compliance with data anonymization and referencing,
code licencing and sharing, use of interoperable tools, etc.).

Another methodological distinction employed in this work is that between exploratory and
confirmatory data analysis. Data analysis for natural samples, performed with qualitative and
quantitative methods, can either aim at explore trends and patterns in data to generate hypothesis,
or to test hypothesis and prediction, ideally confirming them. “Exploratory” researchers do not
usually hold prior assumptions or hypotheses; such practice is sometimes disrespectfully called
“fishing expedition” and is usually data-driven. Confirmatory data analysis, on the other hand,
is hypothesis-driven and used to evaluate evidence, by challenging their assumptions about the
data. Essentially, it serves to test a theory robustness by testing hypothesis and predictions against
data from designed experiments. Depending on the type of analysis, research approaches and
design might differ. Confusing the two methodologies might lead to poor scientific practices like
HARKIing — Hypothesizing After the Results are Known (Kerr, 1998; G. Butler et al., 2014).

1.3 Complex systems

This thesis addresses the issue of critical transitions in complex dynamical systems, whose general
concepts are presented here.

A system is termed “dynamical” if it can be aptly modelled as a mathematical construct
defined by a tuple {Q,¢’, i}, where Q is a phase (or state) space, endowed with a family of
evolution functions ¢’ (trajectories) for each time point # € T, and p is a properly defined metrics
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(see also Sec 2.2). In this thesis, the possibility of modelling the considered systems as dynamical
systems is assumed, and the wording “are modelled as” will be often implied.

The term “complex systems” encompasses those systems whose behaviour is intrinsically
difficult to tackle due to dependencies, interactions or relationships between their parts or between
the given system and its environment (Mitchell, 2009; Ladyman et al., 2013). Epistemologically
speaking, “the study of complex systems regards collective, or system-wide, behaviors as the
fundamental object of study; for this reason, complex systems can be understood as an alternative
paradigm to reductionism, which attempts to explain systems in terms of their constituent parts
and the individual interactions between them” (Bar-Yam, 2002). In the biological sciences, com-
plex systems theory includes disciplines and methodologies working towards “replacing black
box geneticism with a larger model of a mutually interacting set of evolutionary/ developmen-
tal/communal/ecological dynamic processes” (Hooker, 2011), running at different sets of time-
and spatial scales. Examples of such disciplines include dynamical systems theory, network theory
(Milo et al., 2002) and control engineering (Iglesias et al., 2010). In general, systems that are
deemed “complex” usually display some of the following properties (Hooker, 2011):

* Non-linear interactions and non-additivity. For some variable x, linearity means that the
interaction law F is proportionately dependent to x: F (kx) = kF (x) (with k a number). When
this relationship breaks, the system is non-linear, and numerical combinations of solutions
are in general not solutions (non-additivity). Non-linearity is a necessary’ condition for
complex dynamical behaviour.

* Irreversibility. In classical mechanics, processes can run forward and backward in time
following the same laws. Real processes are instead dissipative and cannot run in reverse.
A supply of energy from outside the system is necessary to maintain its processes (unless
the system is very close to dynamical equilibrium). Living systems are topic examples of
this kind. Irreversible processes might also be characterised by hysteresis (see Sec. 2.4.2).

* Constraints. Systems’ rules of evolution are derived from a model of dynamical variable
interrelationships, restrictions, and initial conditions (Cauchy problem). Constraints are
limitations on a system’s connections among variables that result from imposed physical
conditions. Many complex systems have state-dependent limitations that aren’t energy-
conserving (non-holonomic).

« Static and dynamic equilibria. Some aspect A of a system is at equilibrium iff

ZFi(A) =0 <or ZJ,(A) _0>, (1.1

that is, there is no net force (or flux) and no net 2" order rate of changes acting on that A.
As aresult, trends in A are conserved. Depending whether the time invariance concerns
state parameters and variables (A = system state), or it concerns process parameters and rate
variables (A = system processes), we talk of static or dynamic equilibrium. Dynamical equi-
libria in dissipative systems are usually maintained by sustaining energy from outside the

7But not sufficient: gravitational interactions are non-linear and non-additive, but the 2-bodies problem is not
particularly complex.
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system. Equilibria can be stable, unstable or meta-stable against some class of disturbances,
depending whether they return to their equilibrium state after the disturbance (see Sec. 2.2.2
for additional information).

* Amplification. Stable equilibria that soon return to their resting state or its vicinity (basin
of attraction) dampen the disturbances. When, instead, the system leaves the basin of
attraction, or this is drastically transformed, the disturbance is amplified.

* Sensitivity to initial conditions. Due to non-linearities, small differences in system state can
be amplified into large differences in subsequent system trajectory. Chaotic systems are
one topical example (Ott, 2002). Systems living close or further to the edge of the basin
of attraction might also undergo different trajectories under small disturbances, as well as
those residing next to critical points (see Sec. 2).

* Path dependence (or “the importance of how you got there” (Ashwin et al., 2015)). In
determining its evolution, not only the position in the state space might be important,
but also the system rate of change and its historicity. They both can drive disturbance
amplification and critical transitions.

* Finite deterministic unpredictability. As small uncertainties might be amplified, system
predictability might be limited to knowledge of the initial state and soon fall into big
uncertainties.

* Symmetry breaking. Symmetries are invariances under an operation, e.g. a rigid body is
symmetric under translation along an axis. Existing symmetries can be disrupted (broken)
either spontaneously or by external influences. Symmetry breaking often privileges some
equilibria instead of others and is normally regarded as yielding emergence, order and
complexity of many natural systems.

* Bifurcation. When structural instabilities (usually modelled as process parameter(s)) in
a system lead to qualitative changes in its dynamical form (interpreted as changes of the
attractor landscape), we speak of bifurcations. They can be local or global and often drive
threshold phenomena next to criticality (see Sec 2.2.3).

* Self-organization. When some overall order emerges from an initially disordered system,
due to local interactions of its parts, we speak of self-organization. The process is sponta-
neous, not needing control by external agents (Camazine, 2003). Biological systems are
thought to have evolved following self-organising patterns, usually close to bifurcation
points (criticality). This also implies the notion of order and organization, somewhere in be-
tween symmetric crystal structures and completely randomic dis-orders like those of gases.
Through self-organising processes, natural systems (living ones in particular) may achieve
autonomy (an internally organized capability for acquiring and directing ordered free energy
from the environment to recover dissipated processes ) and adaptation, adaptiveness and
learning (the ability to maintain autonomy in dynamical environments).

* Emergence. When new qualitative behaviours are unexpectedly observed in complex
systems, scientists might talk of “emergence”. It is usually considered an epistemological,
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not ontological, category. Two definitions are provided, quoting from O’Connor et al.
(2015). Predictive: “Emergent properties are systemic features of complex systems which
could not be predicted (practically speaking, or for any finite knower, or for even an ideal
knower) from the standpoint of a pre-emergent stage, despite a thorough knowledge of the
features of, and laws governing their parts”. Irreducible-Pattern: “Emergent properties and
laws are systemic features of complex systems governed by true, law-like generalizations
within a special science that is irreducible to fundamental physical theory for conceptual
reasons. The macroscopic patterns in question cannot be captured in terms of the concepts
and dynamics of physics”.

* Modularity and hierarchy. If a system consists of separate dynamical modules, its dynamics
can be expressed as the convolution of inter- and intra-modules dynamics. Hence, a tweak on
its components does not directly affect all the others. Modules can be arranged horizontally
(modules at the same level), vertically (certain modules control others as an expression of
hierarchical structures), or mixtures. Modules usually regulate each other through feedback
mechanisms.

« Subdivision in levels/scales/scopes®. The overall processes observed in natural systems
are often multi-scale (coordination from sub-cellular processes to organisms), multi-
dimensional (involving organised interactions among many body parameters), and multi-
phasic (asynchronous and non-stationary): they occur on many different timescales, often
separated in terms of slowly vs fast varying variables and parameters. Whether such subdi-
vision is epistemic (i.e. constructed by the observer) or real (stemming from differentiated
hierarchical structures and modules) is still matter of debates (Ryan, 2007) and of modelling
choices, for which hard discriminations do not exist and consensus has yet to be reached.
The subject of critical transitions heavily involves timescale separations, which will be
further discussed in Sec. 2.2.

In addition to system properties, other two characteristics influence the modelling of complex
systems (Hooker, 2011): lack of analytical solutions for dynamical equations, resulting in the
necessity of computational simulations to inquire their evolution; and condition-dependent laws,
implying that — at least not at all scales and scopes — no simple set of universal laws can be
deduced in advance (contrary to what happens in physics).

8<Level” is a somewhat blurry concept relating to observational levels of attention. “Scope” as a better term has
been proposed by Ryan (2007), while “scale” is often used in the biological sciences in quotes like “bridging the
scales” or*‘multiscale biology” (Eissing et al., 2011). Despite their subtle differences, whose full disclosure is beyond
the scopes of this section, all three concepts refer to natural systems being modelled as layers of micro, meso and
macro-states, and to modelling choices being guided by “zoom” and “resolution” set by the observer. The general idea
is: contrary to “traditional” physical problems, it is hard if not impossible to identify systems’ closures (where does it
start and where does it end). However, some properties help guiding the definition of the system itself, i.e. functions
holding up to certain dimensions or until certain time horizons. In this sense, similarly to photography, scope (or scale)
is defined by both spatial and temporal boundaries, while resolution is defined as the finest distinction that can be
observed between two alternative system configurations. The interplay between processes at different scales might lead
to observational emergence (see above).
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1.4 Thesis objectives and overview

This thesis focuses on the study of so-called Critical Transitions (CT) in complex dynamical
systems, and on bridging mathematical theory and real-world problems. To begin with, the present
work provides a comprehensive review of this rapidly developing research framework; then, it
aims at assessing the power and reliability of theoretical results in the monitoring of biological
and epidemiological systems. To this end, proposed indicators to detect and anticipate critical
transitions (so-called Early Warning Signals, EWS) will be carefully analysed and tested both in
analytical and simulated models, and on real-world data. Their sensitivity to modelling choices
and dynamical settings, as well as their reliability in providing effective signals, will be carefully
evaluated. This way, the present thesis contributes to the study of critical phenomena in natural
(mainly biological and epidemiological) systems and sets solid foundations for the development
of model-based risk assessment methods.

1.4.1 Thesis structure

The thesis chapter division is presented in Fig 1.3. It reflects the project structure (and how it
developed) and is subdivided into three consecutive macro-blocks. The first one reviews literature
results, suggests a coherent system out of the different contributions in various disciplinary
fields and identifies open research questions. The second block contributes to theoretical and
methodological results for EWS, both for general theory and for specific biological models.
The third block pertains testing and applying theoretical results to empirical data (specifically,
epidemiological data from the COVID-19 pandemic), as well as lessons learnt from alternative
methods for real-time surveillance. The thesis is concluded with a Discussion chapter, summarising
the project journey and portraying potentially interesting future directions.

A brief description of each chapter, as well as disclosure of the contributions of the PhD
project, is provided below.

Review and Theory
systematisation development

Testing and applications to
COVID-19 data

2. CT: background

1. Introduction

and systematization

3. EWS: review ad
open questions

5. EWS Sensitivity
and performance

6. Buffers for
biological variability

3 7. Testing EWS on 3

pandemic data

8. Model-driven
alternatives

>

9. Discussion

4. Theory and
Methods

Fig. 1.3 Thesis structure and overview. After the introduction, three chapters are dedicated to reviewing
and systematising literature results, open research questions, mathematical theory and methods for inquiry
and analysis. Then, two other chapters present the contributions to theory development: studying the
sensitivity and performance of EWS in various dynamical regimes; investigating how micro-biological
cooperativity may buffer variability next to critical behaviour and how it modifies the trends of EWS. Two
additional chapters address the use of EWS for epidemic surveillance: one tests theoretical predictions on
COVID-19 data and studies their potential applications for epidemic alerting toolboxes; the other considers
a model-based alternative for real-time monitoring, plus lessons learnt. The final discussion chapter includes
ideas and potential future directions.
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Introduction

* Chapter 1 provides an introduction to methods and modelling vocabulary upon which this
thesis is based, as well as an overview on defining characteristics of complex systems. The
chapter aims at reflecting the interdisciplinary environment where the thesis project was
developed, and to settle some common ground. It also contains the thesis overview and a
list of contributions carried on during the PhD period.

Review and systematisation

» Chapter 2 reviews the topic of critical transitions in dynamical systems, the underlying
analysis framework and the main research topics. It provides an overview of the main
results in the field and a systematic classification of known transitions. The chapter also
overviews the connections between the CT framework, widespread concepts like system
resilience, and other theoretical frameworks that had been investigating critical phenomena.

* Chapter 3 investigates up-to-date results and open research questions regarding early
warning signals, focusing on problems related to biological and epidemiological systems.
To begin with, it inquires how to infer bistability properties from observed natural systems.
Then, it reviews ongoing debates around critical phenomena, as well as challenges and
guidelines to extract EWS from observational data. Finally, it connects the open research
questions to the contributions presented in this thesis.

* Chapter 4 puts together the mathematical theory underlying the study of critical transitions
and the methods to investigate early warning signals. In addition, it groups methods for
analysis of time series in search for EWS and towards risk assessment of systems’ state,
which will be employed in the subsequent analysis.

Theory development

* Chapter 5 systematically studies the sensitivity of EWS to modelling assumptions and
dynamical regimes, and their performance in those. Hence, the chapter assesses the observ-
ability of EWS in classes of systems and sets guidelines for their application, including
optimal combinations of indicators to maximise the alerting performance. The study is
initially carried out onto general models and then refined for a subset of biologically-relevant
ones. Finally, the results are used to interpret experimental data.

* Chapter 6 investigates how cooperativity mechanisms in cell regulation buffer variability
next to critical behaviours, suggests a framework to extract resilience properties from
data and assesses the performance of EWS when cooperativity modifies such resilience
properties. It thus discusses potential applications and interpretations of such measures in
biological studies. Its predictions are compared to experimental data.

Testing and applications on COVID-19 data

* Chapter 7 tests and applies theoretical results to epidemiological data collected during
the COVID-19 pandemic. It discusses practical challenges of pandemic monitoring and
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describes how proposed EWS perform over worldwide collected data. The work provides
an interpretation in light of CT theory and discusses several data analysis procedures to
improve said performance.

* Chapter 8 discusses a model-based approach for epidemic monitoring within a community.
It introduces an extended Kalman Filter (EKF) to automatically and causally process SARS-
CoV-2 RNA abundance in wastewater samples, which are complementary to detected
positive COVID-19 cases. This work investigates the use of such mathematical tools to
complement the pandemic surveillance toolbox, and overviews the lessons learnt towards
real time monitoring of such a complex phenomenon. The goal is to provide insights for the
future applications of real time monitoring.

Discussion

* Chapter 9 concludes the thesis by summarising the current contributions and putting them
in perspective with the open research questions outlined in early chapters. In addition, it
suggests potentially interesting avenues that were not investigated during the project, but
that will likely shape future research developments.

1.4.2 Contributions and dissemination

The present work resulted in a number of publications and contributions to scientific conferences.

Using the CT framework to inquire biological regulation patterns and their resilience was first
discussed in the poster:

* D. Proverbio, J. Goncalves. Critical transitions in systems biology - overview and perspec-
tives, 6th International Synthetic & Systems Biology Summer School — SSBSS 2019 Scuola
Normale Superiore - Pisa, Italy, 2019,

where two preliminary case studies were introduced. One related to the autocatalytic feedback loop,
deeper investigated in Chapter 6. The second case study was inspired by an early publication on
swarming patterns (Proverbio et al., 2020) and, after an excursus on synchronization phenomena,
is still open to further investigations.

The autocatalytic feedback loop case study, leveraged to analyse generic resilience properties,
eventually resulted in a manuscript currently under review:

e D. Proverbio, A. N. Montanari, A. Skupin, J. Gongalves, Buffering variability in cell
regulation motifs close to criticality (under review). (Proverbio et al., 2022a)

The possibility of extending CT concepts to complex diseases (Bélair et al., 1995) was later
discussed in the poster:

* D. Proverbio, J. Goncalves. Dynamical modelling of complex diseases uncovers critical
transitions in their phenotypes. In Proceeding of INCOME - Integrative pathway modeling
in systems biology and systems medicine, Berlin, Germany, 2019.

Advances on the systematic classification of critical transitions and on the investigation of the
performance of their related EWS were presented as posters during two workshops:
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* D. Proverbio. Classification and detection of critical transitions, 2nd CriTiCS Workshop -
the challenges of multi-scale intergration in Biology, Belval, Luxembourg, 2019.

* D. Proverbio, J. Goncalves. A systematic analysis of early warning signals to inquire the
importance of the dynamic context, Critics ITN Workshop, London, 2020.

The corollaries of such classification study in terms of distinction between smooth and abrupt
transitions, and their relevance for the interpretability of diverse complex systems, were presented
to conferences — as invited talk and poster — and as PsyArXiv working abstract:

* D. Proverbio. Smooth or abrupt? How systems can change their state. S5th Behaviour
Change Science and Policy symposium: Complexity Science and Behaviour Change Inter-
ventions, Helsinki, 2020

* D. Proverbio, J. Goncalves. Changing state: smooth or abrupt transitions?, ENABLE
Conference, Milan, 2021.

e M. T. J. Heino, D. Proverbio, K. Resnicow, G. Marchand, N. Hankonen. Attractor land-
scapes: A unifying conceptual model for understanding behaviour change across scales of
observation. PsyArXiv, 2022 (Heino et al., 2022)

Systematising these results and the new outputs presented in Ch. 5 are expected to yield a new
manuscript:

* D. Proverbio, A. Skupin, J. Gongalves, Systematic analysis and optimization of early
warning signals for critical transitions (in preparation).

Bridging critical transitions and observability properties from time-series data of complex systems
was initiated in a manuscript, recently submitted:

* A. N. Montanari, L. Freitas, D. Proverbio, J. Gongalves, Functional observability and
subspace reconstruction in nonlinear systems (under review). (Montanari et al., 2022a)

Perspectives on linking critical transitions modelled on low-dimensional manifolds with network
resilience were discussed as a talk:

* D. Proverbio. Dimension reduction of complex networks to address critical transitions on
low-dimensional manifolds, BeNet conference, Namur, 2021.

The corpus on COVID-19 pandemic and its investigation as a critical transition is composed
by talks, posters and recent publications, which will be further discussed in the corresponding
chapters of this thesis:

* D.Proverbio, F. Kemp, S. Magni, and J. Goncalves. Performance of early warning signals
for disease emergence: a case study on COVID-19 data. Plos Computational Biology,
18(3): €1009958, 2022. (Proverbio et al., 2022c)

* D.Proverbio, FKemp, S. Magni, L.Ogorzaly, H.M.Cauchie, J. Gongalves, A.Skupin, and A.
Aalto. Model-based assessment of COVID-19 epidemic dynamics by wastewater analysis.
Science of the Total Environment, 827, p. 154235, 2022. (Proverbio et al., 2022b)
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F. Kemp, D. Proverbio, A. Aalto, L. Mombaerts, A.F. d’Herouel, A. Husch, C. Ley, J.
Goncalves, A. Skupin, and S. Magni. Modelling COVID-19 dynamics and potential for
herd immunity by vaccination in Austria, Luxembourg and Sweden. Journal of Theoretical
Biology, 530, p. 110874, 2021. (Kemp et al., 2021)

* M. Burzyniski, J. Machado, A. Aalto, M. Beine, J. Goncalves, T. Haas, F. Kemp, S. Magni,L.
Mombaerts, P. Picard, D. Proverbio, A. Skupin, and F. Docquier. COVID- 19 crisis
management in Luxembourg: Insights from an epidemionomic approach. Economics &
Human Biology, 43, p. 101051, 2021. (Burzynski et al., 2021)

* D. Proverbio, F. Kemp, S. Magni, A. Husch, A. Aalto, L. Mombaerts, A. Skupin,J.
Gongalves, J. Ameijeiras-Alonso, and C. Ley. Dynamical SPQEIR model assesses the

effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks.
Plos One, 16(5), p. €0252019, 2021. (Proverbio et al., 2021)

* F. Kemp, D. Proverbio, A. Aalto, C. Ley, J. Goncgalves, A. Skupin, S. Magni, Dynamical
modelling of COVID-19 pandemic, 5th International Conference on Econometrics and
Statistics (EcoSta 2022), Kyoto, 2022

* D. Proverbio, F. Kemp, S. Magni, J. Goncalves. Evaluating the performance of EWS: a
verification study on COVID-19 data, Early Warning Signs for Abrupt Transitions workshop,
Munich, 2021.

* D. Proverbio and F. Kemp. Using mathematical models against epidemics, Vrije Universiteit
Brussel lectures, Bruxelles, 2020.

Extra “grey” literature pertaining COVID-19 studies and the activity within the Research Luxem-
bourg COVID-19 Taskforce WP6 includes weekly reports to the local government (A. Aalto, S.
Martina, D. Proverbio, F. Kemp, P. Wilmes, J. Goncalves, A. Skupin, Update on the current situa-
tion in Luxembourg, 2020-22), daily updates to the Ministry of Health, an in-house developed web-
site for the estimation of R(¢)° in Luxembourg (https://github.com/ResearchLuxembourg/restimator,
together with R3 group at the LCSB) and dissemination articles for the general public:

* D. Proverbio, C. Ley, P. Mangers, Coronavirus technical terms - explained by scientists
from Luxembourg, science.lu, 2020.

* D. Proverbio, Getting back and preventing second waves: with which interventions?,
medium.com, 2020.

In general, mathematical modelling of complex systems can be applied to diverse case studies
and contributes to our knowledge in various sub-fields. Hence, collaborations with colleagues and
scientific partners led to additional publication less strictly related to CT. Those focusing to the
robustness of multi agent systems are:

* J. Markdahl, D. Proverbio, L. Mi, and J. Gongalves. Almost global convergence to prac-
tical synchronization in the generalized Kuramoto model on networks over the n-sphere.
Communications Physics, 4(1), p. 1-9, 2021. (Markdabhl et al., 2020)

9The time-dependent reproduction number, an important indicator that tracks the epidemic trend within a country.
Further discussion is provided in later sections.
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* J. Markdahl, D. Proverbio, and J. Goncalves. Robust synchronization of heterogeneous
robot swarms on the sphere. In 2020 59th IEEE Conference on Decision and Control
(CDCQ), p. 5798-5803, 2020. (Markdahl et al., 2021)

Towards the medical side of the institute’s mission, contributions on the modelling of Deep Brain
Stimulation'? effects on neural tissue are covered in:

* M. Baniasadi, A. Husch, D. Proverbio, 1. F. Arroteia, F. Hertel, J. Gongalves, Initialization
of Deep Brain Stimulation Parameters with Multi-objective Optimization Using Imaging
Data, BVM conference, Heidelberg, 2022.

e M. Baniasadi, D. Proverbio, J. Goncalves, F. Hertel, and A. Husch. Fastfield: An open-
source toolbox for efficient approximation of deep brain stimulation electric fields. Neu-
rolmage, 223, p.117330, 2020. (Baniasadi et al., 2020)

* D. Proverbio and A. Husch. Approxon: Heuristic approximation to the e-field-threshold for
deep brain stimulation volume-of-tissue-activated estimation. bioRxiv, 2019.

Finally, the successful participation to the COVID-19 Lung CT Lesion Segmentation Challenge
2020, powered by NIH, Nvidia and National Children’s’ Hospital, resulted in top 10 finalists
worldwide and the output, together with the project group, of a working abstract:

e LCSBmedAlI team: J. Solter, D. Proverbio, M. Baniasadi, M. N. Bossa, V. Vlasov, B. G.
Santa Cruz, and A. Husch, Leveraging state-of-the-art architectures by enriching train-
ing information - a case study Contribution to the MICCAI COVID-19 Lung CT Lesion
Segmentation Challenge, orbilu.uni.lu, 2021.

10Deep Brain Stimulation (DBS) is a surgical treatment for several neurological disorders, including Essential
Tremor (ET) and Parkinson’s disease (PD). It aims at reducing the symptoms of the disease by stimulating specific
brain regions with electrical impulses delivered by implanted electrodes. Modelling the effects of induced electric
fields on the neural tissue requires balancing mean-field approximations and corrections for the tissue heterogeneity.



Chapter 2

Critical Transitions: a conceptual
framework for critical phenomena

This chapter reviews and systematises the Critical Transitions (CT) framework. To begin with,
it illustrates CT relevance for real-world problems and discusses motivations, aims and inter-
connections with other complex non-linear systems modelling paradigms. The chapter introduces
the modelling background, classifies known transitions and puts them into perspective for theoreti-
cal and applied studies.

2.1 Systematic overview

Increasing evidence suggests that many real-world systems do not evolve smoothly and linearly,
but rather exhibit rapid and hardly reversible shifts from one regime to another (Fig. 2.1). Examples
are manifold and encompass numerous disciplines (Sornette, 2013; Scheffer, 2009; Feudel et al.,
2018; Liu et al., 2021; Biggs et al., 2018). Non-smooth and irreversible changes were first
observed in physical and chemical systems (Zeeman, 1979; Pathria et al., 2011). Ecosystems
present several instances (May, 1977; Sheffer et al., 2001; Mills, 2004; Jiang et al., 2019), from
abrupt eutrophication of shallow lakes (Carpenter et al., 1997; Wang et al., 2012a) to collapses of
food webs (Van Nes et al., 2004; Paine, 1966; Sutherland, 1974) to desertification of grasslands
and forests (Hirota et al., 2011; Demenocal et al., 2000) to bleaching of coral reefs (Wernberg
et al., 2016; Petraitis et al., 2004). Numerous climate elements have been observed shifting or are
suspected to (Ashwin et al., 2012; Thompson et al., 2011; Lenton et al., 2012), like the Atlantic
meridional overturning circulation AMOC (Ritchie et al., 2019; Boers et al., 2021; Alkhayuon
et al., 2019), the compost instability in peatlands (Wieczorek et al., 2011), and past climate
changes (Livina et al., 2010); a list of highly sensitive mechanisms is routinely updated by the
Intergovernmental Panel on Climate Change (Drijthout et al., 2015). Social (Lade et al., 2013;
Macy et al., 2021; Fraccascia et al., 2018) and financial systems also undergo abrupt changes
like mini-crashes in stock markets (Diks et al., 2019; Dmitriev et al., 2017; Jurczyk et al., 2017;
Kostanjcar et al., 2016). Psychology and behavioural sciences are active areas of research to
identify impending mood or behavioural shifts (Stapelberg et al., 2018; Olthof et al., 2020; Foo
et al., 2017) like sudden smoking cessation or depression (Tan et al., 2019; West et al., 2006;
Van De Leemput et al., 2014). Biological systems are not exempt, and can undergo regime shifts
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during cell fate decision (Mojtahedi et al., 2016; Ghaffarizadeh et al., 2014a), function regulation
(Sharma et al., 2017; Hasty et al., 2000; Angeli et al., 2004a), or towards undesired disease states
(Solé, 2003; Trefois et al., 2015; Cohen et al., 2022). So-called “dynamical diseases” have also
been recognised (Mackey et al., 1987; Bélair et al., 1995), including sudden epileptic seizures
(Meisel et al., 2012b; Jirsa, 2014), hearth fibrillation (Quail et al., 2015) and more. The rapid
diffusion of epidemics within populations is another worrying phenomenon often exhibiting
sudden outbreaks (Alonso et al., 2019; Brett et al., 2017; O’Regan et al., 2016; Horstmeyer et al.,
2018; O’Regan et al., 2013). As many of these systems are interconnected, cascading regime
shifts across scales are also feared and monitored (Dobson et al., 2007; Rocha et al., 2018; Klose
et al., 2020).

y coordinate
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time

Fig. 2.1 A generic example of smooth (red) versus abrupt (blue) shift from one state (up) to another (down),
as time progresses. Both simulations relate to stochastic normal forms (cf. Sec. A).

The common denominator among these systems — from small cells to people to societies to
climate — is their complexity and non-linearity, yielding threshold points (often called “critical” or
“tipping”) at which abrupt regime shifts occur (‘“regimes” stand for dynamical equilibria). They
share the following properties (adapted from Kuehn (2011)):

* A qualitative change in the dynamical equilibria;
* Such change occurs rapidly (abruptly) in comparison to the regular dynamics;

» The new state of the system is far away from its previous one (that is, it is clearly distin-
guishable by statistical analysis) and is stable.

Empirically speaking, neither of those three points can be a priori satisfied in any system. For
instance, it is relatively easy to distinguish between cell phenotypes as different states; much more
complicated is to tell between a “stable” and a “oscillatory” behaviour in a system whose “stable”
state is already oscillatory, like for epileptic seizures. Similarly, assessing “rapidity” is a matter
of comparison between scales, not an objective and universally recognized feature. Separating
two equilibria with high confidence is also often hindered by data scarcity and measurements
errors. Finally, the new state of the system should be at equilibrium; however, for excitatory
phenomena (Wieczorek et al., 2011), sudden spiking activities are transient if compared with the
global dynamics. Financial crashes also belong to the latter category.
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Identifying, classifying, characterising and analysing such phenomena is thus a matter of
scientific investigation and modelling (see also Sec. 3.1), which also determines the vocabulary
used. “Regime shift” refers to any abrupt phenomenon observed empirically. If such phenomenon
can be usefully modelled by a set of dynamic variables, whose mutual relations are defined by a
set of parameters, points marking discontinuities and changes of equilibria are termed “tipping”.
Among the various classes of tipping mechanisms (see below), those emerging from discontinuous
noisy bifurcations (Sec. 2.2) are termed “critical'”, and their vicinity is often called “critical
regime” or “criticality”. A subset of those bifurcations, defined by mathematical properties as
well as by their significant effects in the corresponding real-world systems, are sometimes called
“catastrophic” (Thompson et al., 2011). A so-called critical transition (Scheffer, 2009) is thus the
outcome of certain dynamical models. In this sense, the Critical Transitions (CT) framework is an
umbrella for the study of critical events, linked to real-world phenomena by adequate modelling
choices. It is a way of modelling systems, not a class of systems by itself. Its connections with
other theories investigating critical phenomena is further investigated in Sec. 2.5.

A classical way of modelling systems’ evolutions over time, possibly characterised by abrupt
shifts, is by the theory of dynamical systems (Sec.2.2.1 and Katok et al. (1997); Wiggins et al.
(1991)). It considers a system’s state space — a manifold defined by all potential values of its
defining variables, whose inter-relationships are given by parameters — and laws of evolution.
Modelling choices determine what is aptly modelled as variable (usually, the degrees of free-
dom) or parameter (usually, what tunes the inter-relating functions). Often, complex dynamical
systems do not visit the full state space with equal probability, but tend to reside in attractors,
corresponding to more constrained states of stable equilibria (see Sec. 2.2.2). Their “depth”,
associated with properties of the defining dynamics, quantifies their intrinsic stability (La Salle,
1976). Depending on parameters’ values, attractors can morph, disappear or collide. In addition,
multiple attractors might populate the state space simultaneously. Dynamical manifolds are often
rugged and ever-changing, like soft and morphing terrains, see Fig. 2.2 for an illustrative example.
Considering evolving manifolds under the action of dynamical parameters could open new avenues
for modelling and represents a change in perspective from the standard vision of static manifolds.
A brief discussion, including the relevance for biological systems theory, is provided in Sec. 2.6.

On top of the deterministic laws of change, stochastic noise of various nature can be present,
either due to random and/or thermal processes, or to lumping of fast degrees of freedom (Berglund
et al., 2006; Freidlin et al., 1979). Attractors’ stability is normally defined in relation to small to
negligible noise intensity. Should the noise intensity be non-small, a system could be able to visit
wider areas of the state-space and neglect the influence of shallow attractors (the system becomes
ergodic in a wider confined sub-space, example in Fig. 2.2, left). “Mild” noise intensities, in
turn, might cause the system to flicker between nearby attractors (Dakos et al., 2013). Inter-plays
of scales thus matter to identify reasonable state spaces and adequate modelling, and to study
systems’ stability and potential critical transitions (Shi et al., 2016). Further discussion, using the
mathematical concept introduced in Sec. 2.2, is provided in Sec. 2.4.

lCritical” comes from the greek “krisis” (kpic1{) which in turn derives from the verb KRINO, “to separate, to
discern”. Thus, “crisis” refers to a moment (pointwise) that separates two different regimes; a turning point. In this
context, it does not necessarily refer to a “state of emergency” nor to the medical meaning of “dramatic change”.
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Fig. 2.2 Tllustrative example of state space, defined by two variables, with multiple attractors (basins).
This representation associated the z-axis with the potential (first integral of the laws of motion), when it
is well-defined. Depending on the inter-actions of parameters (here, a single one p), the manifold can
morph, with attractors becoming e.g. shallower (centre) or disappearing (right). Attractors are defined
with respect to noise levels. Consider the left panel: if noise intensity is higher than the separatrix between
the two attractors on the right side, they might be counted as one, since the system can visit both indefinitely.
If noise intensity is higher than any separatrix, the system becomes fully ergodic and can visit the entire
state space with equal probability. This conceptual figure is for illustrative purposes. Formal analysis is
given in sections below and in Appendix A.

Systems’ stability among multiple attractors in noisy environments is dual to the concept of
resilience (Fisher, 2015; Liu et al., 2020a; Fraccascia et al., 2018; Bhamra et al., 2011), i.e., the
ability to withstand adversities and return to original states (also known as engineering resilience
(Holling, 1996)), or not tip to a new regime (also known as ecological resilience (Dai et al., 2015)).
In fact, “deeper” and “steeper” attractors make it easier for a system to cope with perturbations,
while “shallower” and “gentler” ones reflect augmented fragility of the system state (Beisner
et al., 2003). In turn, these concepts are closely related to robustness, i.e. system’s ability to
maintain its function (Kitano, 2004), a term often used in biology (Tsimring, 2014) and network
science (Tejedor et al., 2017) — although, in the latter case, it may be linked to node removal and
structural stability rather than to dynamics. These terms — stability, resilience, robustness — and
their antonyms — instability, criticality, fragility — relate to the possibility that a system undergoes
an abrupt regime shift due to combinations of control actions and perturbations. For the purposes
of this thesis, they will be used interchangeably, with a slight abuse of vocabulary. Nonetheless,
they correspond to quantitative nuances related to measurable properties of dynamical systems.
Their exact correlation might not be established when multiple environmental drivers are changed
simultaneously (Dai et al., 2015), so future works might consider exact terminologies. A more
detailed description is provided later in the text, after introducing the mathematical tools that are
useful to characterize them fully.

Relevant classes of critical transitions in open systems are closely related to robustness and loss
thereof, in combination with different scales of noise intensity (see Sec. 2.4 and Sec. 2.3.2). They
derive from systems becoming increasingly fragile and sensitive to perturbations, e.g. because of
dis-balanced regulatory feedback mechanisms, variations of external controls or combinations
thereof. In case multiple attractors co-exist, fragile systems can then tip onto alternative ones.
Depending on the interplays between noise and attractors’ properties, several classes of critical
transitions can be recognised (Ashwin et al., 2012), e.g. those primarily driven from stochastic
switching or those primarily characterised by bifurcation points. Nonetheless, as introduced in Sec.
1.3, validated mechanistic models are seldom available for many complex systems, including the
climate, financial, biological ... ones mentioned above. The main endeavour of the CT framework
is thus to propose, study and verify sets of mathematical indicators to alert against impending
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regime shifts. Such indicators should be as generic as possible, with respect to modelling choices,
to be applied to classes of critical transitions rather than being system-specific. They should
therefore be based upon common dynamical mechanisms and stability properties, and tested
against empirical data to verify their interpretability and adequateness.

When first proposed, these indicators and their relevant temporal patterns were termed “early
warning signals” (EWS, see Scheffer et al., 2009; Drake et al., 2010). However, scholars soon
realised the implicit determinism suggested by the terminology (Scheffer et al., 2015). “Early
warning” could imply that the system is bound to keep becoming increasingly fragile and to
eventually tip. Instead, the driving mechanisms can reverse and robustness be restored, or
unexpected large deviations might drive the system onto alternative states earlier that potentially
expected (Haragus et al., 2018). It was thus suggested (Scheffer et al., 2015; Dai et al., 2015) to
employ the term “resilience indicators”, arguably more precise in highlighting that the most used
indicators are proxies of systems’ resilience. This terminology would also remind that proposed
indicators are risk-assessment rather than predictive tools, because of the strong relevance of
noise (Zhang et al., 2015). Nonetheless, the name “early warning signals” — with its EWS
abbreviation — proved to be good for communication and marketing, with the additional advantage
of encompassing other systems-specific measurements as well (Clements et al., 2016a; Clements
et al., 2018). It thus remained in the literature. Bearing those caveats in mind, the term “early
warning signals” will also be used in the present thesis.

Over the years, several EWS have been proposed. A common denominator is their relationship
with the Critical Slowing Down (CSD, cf. Sec.2.4.1) phenomenon, i.e. diverging response time
in non-linear systems approaching a bifurcation (Scholz et al., 1987; Byrd et al., 2019; Scheffer
et al., 2009; Dakos et al., 2008). This means that, close to criticality, the system takes increasingly
longer times to buffer a perturbation and return to its original stable state, which also implies
higher variability. Increasing variance, autocorrelation, skewness or recovery times (Dakos et al.,
2015; Guttal et al., 2008; Lenton et al., 2012; Lade et al., 2012; Diks et al., 2019; Olde Rikkert
et al., 2016; Dai et al., 2013), spectral reddening (Kleinen et al., 2003; Bury et al., 2020; Carpenter
et al., 2011; Biggs et al., 2009), entropy-based (Lee et al., 2019; Brett et al., 2017) as well as
measures for leading eigenvalues and combinations (Drake et al., 2010; Bury et al., 2021; Brett
et al., 2020a; Williamson et al., 2016; Veraart et al., 2012) have thus been proposed and applied,
with various degrees of success, to diverse systems. Application domains range from technology
(Cotilla-Sanchez et al., 2012; Ren et al., 2015; Gopalakrishnan et al., 2016; Pavithran et al., 2021),
to psychology (Dablander et al., 2021; Wichers et al., 2016; Heino et al., 2022), to epidemiology
(Southall et al., 2021), ecology (Dakos et al., 2012a), climate science (Boers, 2021), biology
(Navid Moghadam et al., 2020) etc. In addition to CSD-based indicators, other suggestions
to target different critical transition classes include ad hoc metrics and flickering for primarily
noise-induced shifts (Shi et al., 2016; Wang et al., 2012a; Drake, 2013; Olthof et al., 2020; Dakos
et al., 2013; Xie et al., 2018). Other indicators have also been proposed specifically for networks
(Aguirre et al., 2015; Chen et al., 2012b; Chen et al., 2019; Aihara et al., 2022; Mojtahedi et al.,
2016; Matsumori et al., 2019; Kuehn et al., 2015; Loppini et al., 2019; Yang et al., 2018) and for
spacially extended systems (Gowda et al., 2015; Kuehn et al., 2019; Rodriguez-Méndez et al.,
2016; Chu et al., 2017).

Since this thesis is primarily focused on developing, interpreting and testing EWS for bio-
logical and epidemiological systems, after this general introduction and EWS derivation from
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dynamical models in Sec. 2.4.2, a full chapter (Ch. 3) is dedicated to their current developments,
open questions, promises and limitations.

2.2 Modelling background

One of the purposes of this thesis is interpreting the mathematical modelling of dynamical sys-
tems as a meaningful representation of observable phenomena, and to study their assumptions
and properties. Consequently, this section provides a selected overview of mathematical con-
structs and concepts that will be used in subsequent analysis. In every subsection, a high-level
overview is presented, along with its relevance for the framework of critical transitions. Formal
definitions and theorems are instead included in the appendices. The introduction and disclosure
of formal concepts will hopefully foster connections between mathematicians, modellers and
experimentalists.

2.2.1 Modelling dynamical systems

The notion of dynamical systems mathematically formalizes the general concept of deterministic
processes that evolve over time. The core motivation to develop such models is the possibility to
determine the future state of a system given its past and some law of evolution. Appendix Sec. A
details formal definitions and theorems.

In this perspective, a modeller first identifies a state (or phase) space €2 that embeds all possible
states u in which the system can evolve, in terms of generalised coordinates x. The generalised
coordinates are an important modelling choice: in physics, position and momenta of moving
bodies have been established as the smallest set of coordinates to describe motion, because of
symmetry and conservation arguments. For other systems, different coordinates or combinations
thereof might be better suited. To describe a cell’s state, gene expression levels are often employed
to construct the phase space (Aalto et al., 2020). It is important that a metrics can be expressed to
define distances between states, in terms of the coordinates. Using terminology from statistical
mechanics (Pathria et al., 2011), a specific configuration of state-space coordinates is called
a micro-state (see Sec. A). Its corresponding macroscopic (possibly emerging) properties are
termed “macro-state”. For a living organism, a microstate could correspond to its genotype and a
macrostate to its phenotype or its function (Kitano, 2002).

Another important ingredient to develop a dynamical system model is its law of evolution
over time. It is expressed as a trajectory ¢’ exploring the subset of Q that is visited by the system
at each time ¢. Reconstructing such law of evolution is among the primary scopes of mathematical
sciences, as it expresses in a quantitative manner the system past, present and future. ¢’ is usually
expressed and analysed in terms of ordinary differential equations ODE, see Th. A.1.1. Should the
system’s evolution depend explicitly not only on time, but also on its state x, the law of evolution
is better described as a partial differential equation PDE. A typical form for an ODE, in terms of
variables x (identifying a state u) and parameters p (quantifying functional relationships between
variables), is given by:

dx
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where f : R” — R"™ is the system of (sufficiently smooth) functions governing the changes of each
component of the variable vector x and A can be interpreted as an adjacent matrix reminding that
elements of x can depend on one another. If p do not depend explicitly on time, the system is
termed autonomous; if p = p(t), the system is called non-autonomous. In the rest of the thesis,
unless otherwise specified, autonomous systems will be mostly considered. Also, since the rest of
the thesis will mostly address low-dimensional systems (cf. Sec. 2.3.2), a notation without the
bold vector form will be employed.

To solve the dynamical system and reconstruct the full evolution, initial conditions (¢, u)
or boundary conditions ¢ (%) should be specified (£ represents the boundary of the domain Q).
Boundary conditions can be expressed on the specific values of the solution (Dirichlet conditions)
or on its first derivative (Neumann conditions). Combinations of the two make Cauchy boundary
conditions. Finding the function that satisfied the differential equations and the constraints posed
by initial or boundary value problems solves a Cauchy problem. A Cauchy problem for Eq. 2.1 is,
in terms of initial values:

{ & =1(x(t),p) A 02

X(t()) =Xy -

Stating initial conditions is particularly important in case of multiple attractors (see later). In fact,
they would determine the basin of attraction and the (possible) hysteresis properties.

Example: for a cell, its state can be defined by its enzymatic activity, quantified by the
concentration x of relevant enzymes (in molar amounts). The initial condition ug is the first
value measured. The set € is characterized by all possible values of enzyme concentrations;
non-biological values are excluded and therefore constitute the exterior of the bounded set Q.
Then, f is the function describing the evolution of enzyme concentration over time, given different
production or degradation rates expressed as parameters. Usually, f can be deduced from enzyme
kinetics rules.

Dynamical models are of primary importance to investigate complex systems as they:

1. Suggest new experiments and guide them (hypothesis generation)

2. Test if all necessary components to explain a phenomenon are known (knowledge checking)
3. Combine mechanisms that are tested in reductionist experiments (synthesis)

4. Allow quantitative predictions for known systems during certain regimes (prediction)

5. Estimate qualitative features like stability and robustness (behaviour prediction)

6. Enable investigating counter-factual (“what if”’) analysis and scenarios.

2.2.2 Equilibria and stability

This section summarises the main concepts of equilibria and stability used for the study of critical
transitions. The main motivation behind the analysis of equilibria and stability is to understand
and predict the overall behaviour of a system, instead of looking for precise values. Questions
like “is my system going to change infinitely or will it settle down to some limit value?”, “has it
reached a resting state?”, ”what about its oscillations?” are thus primarily addressed.
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A dynamical system whose variable values do not vary any more in the phase space is said
to have reached a steady-state equilibrium (formal definitions in Sec. A). Steady-state solutions
might be reached after some transient time. Fixed points and sustained oscillations are examples of
equilibria. The equilibria of a system can be usually? characterised by the properties of its Jacobian

Jst Jij= 3}{; . if its eigenvalues A; are all real and different from zero, then the equilibrium is
called a hyperbolic fixed point. In addition, the sign of the eigenvalues determines the equilibrium
stability. An equilibrium is said to be stable if A; < 0 Vi and all sufficiently small disturbances
away from it damp down in time (see Th. A.4.2). A A; > 0 determines an unstable direction, where
small perturbations get amplified and the trajectory diverges from the equilibrium. Imaginary
eigenvalues characterise spiralling behaviours. The region around a stable equilibrium, defined by
all points from which a trajectory converges to the equilibrium, is called an attractor.

Following the linear stability analysis presented above, one can extract information about
stability and characteristics of its fixed ODE points by considering determinant, discriminant and
trace of the system’s Jacobian J (Strogatz, 2018). This is due to the relationship between matrix
properties and its eigenvalues A;. The discriminant of the characteristic polynomial identifies
the reality or complexity of the eigenvalues; trace TrJ = Y i | A;; determinant DetJ = [\ A;.
Consequently:

* If the discriminant of the characteristic polynomial (for second order polynomials, A =
Tr?J —4DetJ) is A > 0, then A; € R and fixed points are hyperbolic points (trajectories
converge or diverge).

If A <0, then A € C and fixed points are nodes (trajectories revolve around them).

DetJ < 0 characterises a saddle point.

If DetJ > 0 there are different possibilities , according to the trace:

— Unstable point if 7rJ > 0;
— Stable point if 77J < 0;
— Hopf point (to periodic orbits) if TrJ = 0.

A graphical representation is provided in Fig. 2.3 with a Poincaré Diagram.

For 1-D systems x = f(x, p), the picture is even simpler. Suppose f(x, p) is a continuously
differentiable function. Suppose £(p) is an equilibrium point. Then, if f'(£) < 0, then £ is stable;
if f'(%) > 0, then £ is unstable; if f'(£) = 0, then it is necessary to assess its stability with other
methods, like Lyapunov’s functions. Graphically, it is immediate to check when f(x, p) crosses
the zero axis: these are fixed points. Moreover, if f(x, p) goes up, the point is unstable; if it goes
down, it is stable.

Here lies the power of a mathematical formulation: to experimentally verify that a real system
is stable, one should in principle wait an infinite amount of time to check every response to slight
perturbations. On the other hand, thanks to analytical manipulation of an ODE model, stability is
easily checked as a global prediction for the considered system.

2There are cases in which a linear analysis is not sufficient and it is necessary to study system-specific associated
Lyapunov functions.
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Fig. 2.3 Representing the information about the linear stability of the Jacobian in the (DetA,TrA) plane is
know as Poincaré diagram. In this case, example eigenvalues for a 2D system are also shown. Shaded region
corresponds to stable fixed points. The figure is based upon Gernot Salzer, “Poincaré diagram: Classification
of phase portaits in the (DetA, Tra)-plane”, March 20, 2018, https://texample.net//tikz/examples/poincare/.

2.2.3 Bifurcations

Notably, hyperbolic points are structurally stable (robust): small perturbations may distort but
do not change qualitatively the phase portrait near the equilibrium. Instead, non-hyperbolic
points (with at least one eigenvalue with zero real part) are not robust: small perturbations can
result in bifurcation of the equilibrium, marking distinct qualitative changes in the dynamics like
disappearance of the equilibria, emerging instability etc. It is thus of great interest to study what
happens when the leading eigenvalue(s) (the biggest negative A;) of a stable system approaches
and reaches zero — that is, when a bifurcation occurs. Formal notions for the study of bifurcations
in dynamical systems are presented in Sec. A. Here, some notable properties are highlighted.

Bifurcations can be local or global. In this thesis, local bifurcations will be considered.
Consequently, recall that studies on critical transitions usually do not consider the full manifold
spanned by dynamical systems, but concentrate on what happens in low-dimensional sub-regions
characterised by the bifurcations of interest (Th. A.5.1 and Guckenheimer et al. (2013)). Since the
bifurcation is driven by the leading eigenvalue(s), it usually occurs on low co-dimensions (the
minimal number of parameters that elicit a bifurcation). In practice, the approach to a bifurcation
can usually be described by a small number of control parameters or leading combinations of
systems’ parameters (Kuehn et al., 2021). By means of mathematical analysis, it is then possible
to assess which is the minimal combination of controls driving such changes.

Another interesting property of local bifurcations is the existence of normal forms. Normal
forms are simplified forms (often polynomial) that are topologically equivalent to the bifurcation
form and therefore retain the same qualitative information about equilibria and stability (Def.
A.5.7). In practice, normal forms are one-to-one associated to the main bifurcations and are used
to study relevant features and associated metrics, since they are analytically tractable and general.
Section A provides an overview of the main bifurcation normal forms analysed in this thesis,
along with their most relevant properties.
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Among bifurcation normal forms, some are particularly robust against small oddities and
disturbances. They are called “generic” against unfolding (Golubitsky et al., 2012; Kuznetsov,
2013); more details in Sec. B). This property has two consequences. First, that the dynamical
drivers of many systems can be understood in terms of local bifurcations and their unfolding,
therefore fostering unifying modelling across disciplines and scales of observation. Second, that
studying low-dimension and low-codimension bifurcations provide key insights on the qualitative
behaviour of a vast array of complex systems. In fact, given two or more dynamical systems with a
particular behaviour, they are topologically equivalent if they share similar equilibria and stability
properties. In this case, they can be reduced to a subset of simple forms, used to predict e.g.
statistical features. Hence, bifurcation studies are powerful mathematical tools to address different
systems under the same lenses. Further quantitative refinements are subsequently needed to better
identify and characterize specific systems and to connect them to experiments and observations.

A visual example of topological equivalence

When addressing research questions concerning the stability and resilience of dynamical systems,
bifurcation and normal forms provide a unifying modelling tool (Kuehn et al., 2021). Here, one
such example is provided. Consider two systems from diverse disciplines: a model (Scheffer,
2009) for harvested populations from ecology (further described along with Eq. A.9),

dx X X2
dth(l—K)—c’. (2.3)

and a model for enzymatic activity from systems biology (Frigola et al., 2012; Strogatz, 2018),
further described in Sec. 4.1.1:

dv _ g, e

dt 1+ x2
Their global behaviour differ, but locally, next to a bifurcation point, they are topologically
equivalent to a saddle-node normal form (Sec. A). One can visualize it in Fig. 2.4: the vector
fields of the two realistic models (left and centre), when the leading parameter is changed, locally

x. 2.4)

cross the x-axis in the same way as the fold normal form (right).
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Fig. 2.4 Visual example of topological equivalence. Left: plot for f(x,c’) of the harvested population
model Eq. 2.3. Centre: plot for f(x,c) of the protein production model Eq. 2.4. Right: plot for f(x, p) of
the saddle node (fold) normal form x = —p — x> (Sec. A). The red rectangle highlights the local region
where the two realistic models are equivalent to the normal form, as they approach a bifurcation point
(f (x, p) crosses the x-axis) under the change of the parameter ¢’ or c.
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Bifurcation diagrams

A convenient way to represent bifurcations — especially when 1-dimensional and 1-co-dimensional
— are bifurcation diagrams. They are formally defined in Sec. A and briefly presented here, along
with their salient features and interpretation.

Consider the leading (“control”, Strogatz (2018)) parameter driving a bifurcation, p, and the
system equilibrium, %. Plot ¥ = %(p), that is, the set of values taken by X for each value of p.
Then, use a conventional visual identifier for stable and unstable branches. Common examples are
solid or blue lines for stable manifolds and dashed or red lines for unstable ones. Critical points
might be marked separately. Fig. 2.5 provides an example of diagram for the normal form of a
saddle-node bifurcation: x = p+x? (see Sec. A for more details).

Fig. 2.5 Example of bifurcation diagram (&, p) for a fold normal form. Solid line identifies the stable
manifold, dashed line the unstable. The saddle-node point is marked in brown.

2.2.4 Slow-fast systems

As introduced in Sec. 1.3, complex dynamical systems often evolve across various time-scales:
slow, medium and fast. Some processes are relatively faster than others, which unfold over longer
time frames. When the time scale separation is significant, one can focus on fast degrees of
freedom and approximate the slow ones as happening at quasi-steady states (that is, they are
almost constant in time). Alternatively, one can concentrate on slower degrees of freedom while
setting the faster ones at stationary values (they exhausted their transient trajectories and settled to
equilibrium values already). Mathematically, these approximations are formalised by slow-fast
systems models (c¢f. Sec. A and Kuehn (2011); Nyman et al. (2020) for details). A slow-fast
system is expressed as:

E— :f(x7y)
dt (2.5)
dy
E *g(xay)7

where x contains fast degrees of freedom and y the slow ones. 0 < € < 1. A fast variable x can
nonetheless be slower than another process variable z and so on, establishing a time-scale hierarchy.
Often, variables are interpreted as fast degrees of freedom, x = f(x(¢), p) while parameters are the
slow ones, assuming quasi-steady state values y = p = 0. The slow-fast systems interpretation
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can thus be used to understand specific classes of critical transitions (Kuehn et al., 2011; Kuehn,
2013). In addition, this interpretation connects slow-fast systems to the concept of autonomous
and non-autonomous systems (see above), so that extensions can be developed (O’Keeffe et al.,
2020; Ashwin et al., 2017b).

Biologists, facing the enormous complexity of life, have tended to consider at least three time
scales separately: physiology, development and evolution (Saunders, 2018). The Waddington
landscape (Sec. 2.6) addressed some notable properties of development, interacting with the
short-term physiological processes and affect the long-term evolution of organisms. Within
physiological processes, additional time-scale hierarchies can be found, for instance in cell
regulation: proteins have a “slow” mean life, whereas transcription happens quicker. Hence, for
modelling purposes, it is costume to consider “fast” processes as “almost done, at quasi-steady
state” and to concentrate on “slow” processes.

In epidemiology, the typical time scale for epidemic diffusion is dictated by infectivity rates
and recovery/death periods. However, slowly changing behavioural habits, mutating viral variants
or other long-term trends might be accounted for by considering quasi-steady state variations of
model parameters. Sometimes, as observed during the recent COVID-19 pandemic, such changes
happen instead on commensurable time scales, breaking down the slow-fast system approximation
(see Chapter 7 for additional details and the effect on early warning signals).

As the slow-fast is a modelling approximation, other studies extend these simplifications to
account for the role of time delays and finite-speed processes in the emergence of new patterns,
e.g. in neural firing (Izhikevich, 2007).

2.2.5 The “pebble-down-the-hill”’ analogy

A first approximation neglecting inertia views dynamical systems as damped particles moving
down a potential. In fact, given a law of motion in Lagrangian terms, we can obtain an equation
in form of A.1 by setting to zero the second-derivate. Therefore, it is intuitive to represent a
dynamical system as a pebble rolling down a hill while being immersed in a viscous medium that
prevents significant acceleration. The hill represents the potential term that, for a scalar model
such as A.3, is defined as V (x) s.t f(x) = —%. If there is noise acting onto the system, the ball
might also wiggle and be pushed to perturbed directions. This illustration is often called ”potential
landscape”. Adjoint potential landscapes can be formally calculated for noisy dynamical systems,
therefore linking illustrations with actual models, see Sec. B.

The metaphor value of the "potential landscape” representation is that, it is possible to visualize
the behaviour of a system as in Fig. 2.6. Each valley is associated with an attractor. Its depth
and width determine the system stability and resilience properties (Dai et al., 2015): not only
deeper valleys are more difficult to leave due to random fluctuations, but they also yield faster
rates of convergence to the original equilibrium. Asymmetric potentials immediately relate to
hysteresis: “climbing” a barrier on one sense may be easier than on the other sense. A slowly
changing parameter morphs the potential’s shape and depth, which become dynamic. Higher rates
of parameter changes (no quasi-steady state assumption) might modify the associated statistical
properties because the potential would morph faster than the system is able to settle back to the
equilibrium and is therefore constantly “jiggled” around.
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Fig. 2.6 The potential associated to a dynamical system in the form of x = a4 bx — x>, where a and b are
fixed values. The system state is represented by the red ball. Valleys represent attractors. In this case, if the
ball rolls down it will stop at the attractor without oscillating, as it is overdamped (the associated system is
said to be dissipative).

Note that not all systems are associated with a potential (depending to their analytical properties
or their dimension) and that overdamped particles are a subset of a broader range of systems
subjected to inertial effects and no dissipation (Ott, 2002). Hence, one should regard the “pebble-
down-the-hill” as an analogy for certain classes of systems, not as a complete model.

2.3 Critical transitions in noisy dynamical system: systematic clas-
sification

Noise is ubiquitous in real-world systems. In addition to purely random processes like thermal
fluctuations or nuclear decay, many other phenomena and fast degrees of freedom can be modelled
as random processes, neglecting certain specific details but retaining key statistical properties
(Namachchivaya et al., 1990). Noise in biological systems is extremely common (Su et al., 2019;
Hasty et al., 2000; Tsimring, 2014), as well as in epidemiological processes, where it lumps
behaviours, viral dynamics, transmission rates and so on (O’Regan et al., 2018; Brett et al., 2017).
Formal modelling is achieved by the theory of stochastic processes (Gardiner, 1985; Papoulis
et al., 2002) and its extensions to large deviations (Freidlin et al., 1998). A formal introduction is
provided in Sec. A.

Combining noisy processes to dynamic bifurcations can be formalised as a multiple timescale
slow-fast system, where x € R” are state variables, p € R™ are system parameters, & € R/ are
stochastic variables (noise), and t;, i = {x, p, &} are relative time-scales. Blending the framing
introduced by Berglund et al. (2006) and Kuehn et al. (2011) with that of Shi et al. (2016) and
Thompson et al. (2011), one can write the three-timescale systems as:

Tx% :f(xapvé)
Tp% :g(xapaé) (26)
w5 = h(x,p, &)

Using this representation, systems can be classified according to their dimension n and
codimension m, and framed into three main classes of critical transitions on the basis of relative
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timescales (Ashwin et al., 2012):

B-tipping: 7, > 7, > T¢
N-tipping: T, > T, ~ T (2.7)
R-tipping: 7, >~ 7, > T¢

On top of that, the timescale formalism allows to recognise when the system becomes ergodic and
visits the full state-space uniformly without displaying transitions: 7z < 7, (Shi et al., 2016).
For the analysis of such systems, stochastic differential equation (SDE) models or other
formulations from the theory of stochastic processes are usually employed, see Sec. A. SDEs are
usually written in the form:
dx = a(x)dt 4+ b(x)dW . (2.8)

Here, a(x) is a deterministic drift term, b(x) the diffusion function and dW the derivative of a
Wiener process.

2.3.1 Considerations on dimensions and co-dimensions

Many real systems are usually multi-dimensional (Boccaletti et al., 2006), so loss of resilience
and critical transitions sometimes need to be characterised considering the full set of variables and
parameters, particularly when closely entangled. However, in many cases, low dimensional and
low co-dimensional models, for which analytical solutions are often more accessible, can be aptly
used to describe a vast array of situations.

A rather simple case happen when only one (or very few) observables are available, which
are interested by critical transitions. Examples include epidemic outbreaks, measured in terms of
new infections, cells states or phenotypes (e.g. “cancerous” or healthy), or epileptic brain activity,
assessed by unimodal EEG measurements.

Another solution is to lift (or embed) the nonlinear dynamics into a higher dimensional space
where its evolution is approximately linear (Korda et al., 2018). The lifting can be achieved by
using suitable operators or by changing the focus from “dynamics of states” to the “dynamics of
observables” (Budisic et al., 2012).

An additional case considers the distinction between “microstates” and “macrostates” em-
ployed in statistical mechanics (see Sec. A and an illustration in Fig. 2.7). Macrostates are emer-
gent properties (described by reduced amount of variables) from the activity of micro-constituents,
like temperature emerging from atomic configurations and motion, or cells’ phenotypes emerging
from interactions of genes in regulatory networks. Determining and analysing critical transitions
in macrostates, given measures of their microstates, is subject to ongoing research (Pathria et al.,
2011); for instance, several techniques for network systems are introduced in Sec. 4.7.

The final case distinguishes between local and global dynamics and makes use of the center
manifold theorem (Th. A.5.1). In short, it states that complex manifolds can be, next to critical
points, topologically equivalent to bifurcation forms. It is a local property (thus not valid in the
whole state space) and it relates to topological and stability properties rather than to quantitative
mechanisms; it nonetheless allows studying salient features of high-dimensional systems using
low-dimensional bifurcations. As an example, Jirsa (2014) made use of this theorem to construct
a phenomenological model to reproduce epileptic-like signals, without having to consider the
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incredibly varied brain structure. Kuehn et al. (2021) further investigated the relevance of using
center manifold theorem to study critical phenomena and to extract generic signals for CTs.

dx
d - E=f(x.p(t),s‘)

X o _
- = &0,

Fig. 2.7 An illustration for a network system composed by all its “microstates” (resulting in vector
component), and the corresponding “macrostate” (lumping the micro-constituents into a single variable).

Critical transitions in high-dimensional systems are becoming increasingly studied, e.g.
percolation-based (Rodriguez-Méndez et al., 2016), network (Iglesias et al., 2010; Drion et
al., 2015b; Meng et al., 2020; Gao et al., 2016) or spacially-extended (Kiers et al., 2019; Gowda et
al., 2015) transitions. However, much work is still open in this domain, including system-specific
mapping to reduced systems (and conditions for it to hold) and performance of the center manifold
theorem to describe real-world systems. As this thesis primarily focuses on noisy bifurcations,
high-dimensional transitions will be only touched upon marginally.

2.3.2 C(lassification according to leading mechanism

Eq. 2.7 provides an elegant way of distinguishing between classes of critical transitions. Here,
we provide a brief overview on them, bearing in mind that inferring whether a real-world system
belongs in which class is subject to scientific investigation and is often challenging (see also
Sec. 3.3). Over low-dimensional system descriptions, three classes of tipping effects can be
recognised (Ashwin et al., 2012), according to time scale separation:

1. B-tipping: the abrupt shift is primarily driven by a bifurcation on a quasi-static attractor
(slow passage through a bifurcation);

2. N-tipping: noisy fluctuations push the system away from the neighbourhood of a quasi-static
attractor (transition due to random fluctuations);

3. R-tipping: the system fails to track a continuously changing attractor (non-autonomous
system).

More challenging mechanisms occur when separation conditions do not hold and timescales mix
up, or when big stepwise changes in external conditions happen, resulting in big forcing out of the
attractor. Accommodating attractors collisions (Heagy et al., 1994) and other exotic cases in this
or wider frameworks is demanded to future studies.

B-tipping

While slow changes happen and the parameter(s) is slowly (quasi-steady state) varied until a
critical value, the system undergoes a sudden change in its set of equilibria. In this case, the
leading eigenvalue slowly passes through zero across a bifurcation point and there is a transition
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between hyperbolic manifolds (Kuehn et al., 2011). A condition for the correct application of
B-tipping results is that “there is an adequate theoretical basis (or past evidence of threshold
behavior) to show that there are parameters controlling the system that can be combined into a
single control p for which there exists a critical control value p.” (Thompson et al., 2011). Among
existing bifurcations, only a finite subset is recognized as “critical” (Kuehn, 2011) or “dangerous”
(Thompson et al., 2011), see Table 2.1 and Sec.A.

Table 2.1 Detailed discussion of thee most prominent bifurcations is provided in Sec.A.

List of critical bifurcations

Local bifurcations Global bifurcations
1-D, 1-cD 1-D, 2-cD 2-D, 1-cD 2-D, 2-cD
Fold (saddle-node) | Cusp Subcritical Hopf | Bautin Homoclinic
Cyclic fold Supercritical Hopf | Bogdanov-Takens | Boundary crisis
Subcritical pitchfork Period dubling
Transcritical

Fold (point to point) and subcritical Hopf (point to cycle) are usually the most prominent
bifurcations in the context of Critical Transitions (Scheffer, 2009), as they are abundantly observed
in natural systems and are generic, i.e. they survive small imperfections and unfolding, see Def.
A.5.10 and Thompson et al. (2011).

EXAMPLE: let us consider the normal form of a cusp bifurcation (Sec. A):

x=f(x,p) =p1+px—x (2.9)

where x € R is the system state. ODE 2.9, once p; is fixed at some value that allows bistability,
has two stable equilibria (xg‘f,) = 41 after normalization). They correspond to the location of two

stable wells. One additional unstable equilibrium xé?

is located on the ridge between them. The
mechanism that pushes the right-hand equilibrium from stable state to unstable is a local fold
bifurcation: changing parameter p; alters the underlying potential until it vanishes. The system
thus tips onto the second equilibrium (Fig. 2.8). Locally, this mechanism is typical of a fold

normal form x = —p -+ x2, the local center manifold associated to Eq. 2.9.

\ \
\
\
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Fig. 2.8 “Pebble-down-the-hill” illustration of the fold B-tipping mechanism (for the “fold” subclass). As
a parameter is varied, the bowl changes in shape, so that the original equilibrium gets destabilized (goes
from stable to indifferent to unstable). The system “tips” when the equilibrium becomes unstable through a
bifurcation.
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N-tipping

Critical transitions far from bifurcations can happen due to noise. Random fluctuations can
drive the system’s state towards basin boundaries and drive it onto alternative attractors. Noise
properties, e.g. multiplicative (Sharma et al., 2016a; Sharma et al., 2017) or coloured noise
(Dutta et al., 2018; Kuehn et al., 2022), or in combinations with periodic forcing like in stochastic
resonance case (Gammaitoni et al., 1998), can give rise to additional cases. The probability of
tipping due to random occurrences strongly depends on stability and resilience system properties,
and can be quantified using the classical theory of stochastic processes and associated measures
like Kramers escape rate and mean first passage time (see Sec. B).

Due to noise, many authors observed that critical transitions cannot be predicted strictu sensu,
but only alerted for, with associated probabilities (Zhang et al., 2015): the task is therefore more
akin to detection of “dangerous” regimes and risk assessment, than to forecasting. When the noise
component is most prominent, as in the case of N-tipping, some studies argue for the intrinsic
unpredictability of such class of phenomena (Ditlevsen et al., 2010). Nonetheless, possible precur-
sors for a change in regime and a settlement onto alternative states have been put forward and
tested, like the “flickering” phenomenon (Dakos et al., 2015; Olthof et al., 2020). This is related
to general fragility of shallow alternative attractors allowing the system to flicker back and forth, a
signal that the original one lost resilience while the new one cannot yet “trap” the system.

EXAMPLE: let us consider again Eq. A.20. While B-tipping was driven by deterministic
mechanisms, let us now add white noise, so to obtain a Stochastic Differential Equation:

dx = (p1 + pax—x>)dt + cdW (2.10)

If o is high in comparison to the barrier height, it can push the system state from one equilibrium
up to the hill and then down to the second one. If ¢ is still high in comparison to the new ridge,
the system can tip back, thus flickering between states until one equilibrium disappears completely
(due to an underlying bifurcation) or the asymmetry overcomes the noise effects.

\

J

Fig. 2.9 Tllustration for analogy of the N-tipping mechanism (additive noise): the system is already
subjected to noise that makes it oscillate faster than the rate of parameter change (dashed arrow). If the
bowl becomes less resilient, the fluctuations might drive the system over the tipping point, even though the
equilibrium was still stable.

R-tipping

Let us consider a non-autonomous system in which p = p(¢). In this scenario, the attractor moves
under the influence of a time-dependent parameter; if it moves “too fast”, the system might lose its
track and tip without having previously lost stability. Let us follow Ashwin’s argument (Ashwin
et al., 2012; Ashwin et al., 2017b) to construct a minimal model for R-tipping: consider the
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generic fast-slow system Eq. 2.5. It can be re-written as a non-autonomous system:

dx

—=F t 2.11
= F(5p() @1
Suppose that said system has a quasi-static equilibrium £(p) with a tipping radius R > 0. For
some initial condition xo with |xo —£(p)|, we assume that the evolution of x with time is given by:

d

di;:M(x—;e(p)) for [x — £(p)|< R (2.12)
where M is a fixed stable linear operator (recall that the system is linearized around £(p)), that is,
|eM!|— 0 when t — 0. If |x(t) — £(p(t))| < R we say that the system state x(¢) traks (adiabatically)
the quasi-static equilibrium £(p). Otherwise, if there is a fy s.t. |x(z) — £(p(¢))|= R then we say

the solution R-tips at .

Intuitively, one can think of a system with little inertia, under which the attractor is moving
(Ritchie et al., 2016). By using the ‘pebble in a bowl” metaphor, one can imagine moving the
bowl fast enough so that the pebble cannot adjust immediately and rolls over (similar phenomena
might happen when suddenly moving the bowl in an opposite direction as before: the pebble
goes on rolling because of inertia (Haragus et al., 2018)). In a mechanical system, the very
first experiment to identify R-tipping was described by Bonciolini et al. (2018). Alternative
mechanisms involve potentials that vary periodically (periodic forcing) (Williamson et al., 2016)
and other non-obvious thresholds (Perryman et al., 2014). For biological systems, one can think
of an input condition that changes too fast for the system to adjust to it, so that it experiences
an abrupt shift that wouldn’t have happened in case of slow variation.Preliminary research show
that speed dependency may concur in regulating cellular decision making (Nené et al., 2012), but
additional studies are required on this direction.

EXAMPLE: the so-called “compost-bomb instability” (abrupt release of carbon dioxide due to
fast variation of temperatures in Syberian peatlands) was described as a first example of R-tipping
by Wieczorek et al. (2011). Fig. 2.10 provides an visual representation of the mechanism.

| . / \ . s‘/

Fig. 2.10 Tllustration for analogy of the R-tipping mechanism (in its simplest form): the bowl itself is
moving because of time dependent parameter. If such movement is large enough with comparison to
the inertia of the system, the latter is no more able to “track” the equlibrium and thus tips without the
equilibrium losing stability. Solid lines identify the potential at its new positions, dashed lines to its “ghost”
from time 0.
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2.4 Noisy bifurcations

Among the classes above, noisy bifurcations (B-tipping with relatively small noise) are of particular
interest to develop early warning signals based on dynamical systems theory. In fact, they are
rather abundant in natural and societal systems, and they are associated with analytical results that
can be applied on empirical measurements. The present thesis primarily focuses on this class of
noisy bifurcations, the related phenomenon of critical slowing down and on the early warnings
derived from it. This section thus overviews these concepts and their notable properties.

2.4.1 Ciritical slowing down and early warning signals

When a leading eigenvalue approaches zero, the response time to any perturbation diverges and the
system becomes “slow” in returning to its equilibrium point. This effect is termed “critical slowing
down” (CSD, further discussed in Sec. B) and is often looked for as a hallmark for impending
regime shifts. CDS determines the expected trends of summary statistics indicators computed
on fluctuations around an equilibrium — like variance, autocorrelation and other moments. As a
consequence, they are often called “critical slowing down indicators” (Dakos et al., 2008; Dakos
et al., 2012b; Van De Leemput et al., 2014).

The average rate of decay of perturbations to the equilibrium point may differ according to the
bifurcation involved. This scaling, that propagates to CSD indicators as well, has been suggested
as a feature to look for to distinguish bifurcations governing different real-world systems (Meijer,
2014; Bury et al., 2020). CSD scaling for each bifurcation normal form is listed in Sec. A.

Note that CSD is related to the vicinity to a non-hyperbolic point and is not unique to “critical”
bifurcations. In addition, critical slowing down is a property that combines slow approaches to
bifurcation points and the statistics of fluctuations around equilibria (see Stochastic Processes
below). Hence, its theoretically expected properties might be more nuanced in real-world systems,
yielding to modelling and interpretation challenges illustrated in Chapter 3.

The idea of measuring the “critical slowing down” phenomenon with a range of derived indica-
tors, computed as summary statistics on time-series data, led to the development of “early warning
signals” (EWS, Scheffer (2009)). As mentioned in the introduction, the term “resilience indicators”
should sometimes be preferred: they are proxies of losses of resilience due to bifurcations; whether
a transition occurs or not is further due to noise interplays.

Common statistical indicators are analytically derived from first-order expansions near the
equilibrium manifold and from solving the corresponding Ornstein-Uhlenbeck (O-U) processes,
see Sec. B. Variance, autocorrelation, spectral properties, entropy measures and so on are examples
of such indicators. Their expected trends next to criticality can then be used as EWS: a rising
autocorrelation could in fact anticipate a saddle-node-driven critical transition, see Fig. 2.11 for
an example. Deriving the most common indicators and their trends is performed in Sec. B.

As they pertain to certain CT classes and near-equilibrium phenomena, EWS rest on assump-
tions, which should be careful tested before their routine application on real-world problems.
Chapter 3 discusses known results and challenges. Later chapters in this thesis will be specifically
devoted in estimating, quantifying and interpreting the performance of various EWS in general
and on biological and epidemiological cases.
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Fig. 2.11 Simulations from a biological system introduced in Sec. 4.1.1. A critical transition happens
around ¢t = 300 simulation steps. Autocorrelation (“corr’) values increase when measured on windows
closer to the transition. Such increase could be interpreted as an EWS.

2.4.2 Notable properties and visual representations

Due to the interplay of multiple attractors, noise and the local nature of early warning signals,
local bistability is a fundamental property of systems that, in principle can be globally multistable
(Sarkar et al., 2019; Feng et al., 2016; Lu et al., 2013). In fact, global multistability can be
challenging to assess in the absence of valid models, whereas local bistability can be reduced
to more generic bifurcation properties and associated with expected EWS. In addition, local
bistability property is robust and conserved against noise up to certain levels (Shi et al., 2016).
An illustrative example is in Fig. 2.12 (left, centre), with multistability along different degrees of
freedom. The picture is simpler for “series” of local critical transitions in case of multistability
along the same degree of freedom 2.12 (right). For these reasons, local stability will be the primary
focus in the rest of the thesis. Note that the illustrations below mostly pertain saddle-node related
critical transitions, as they are generic and well-represented in literature. Other bifurcations and
related diagrams are considered in Sec. A.
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Fig. 2.12 Example of multistable system. Left: Imagine that noise intensity is such that the two attractors
on the left are visited almost equally. Then, the preferred tipping direction is along the blue ridge. Centre:
This effect may be accentuated when, under the action of control parameter(s), the original attractor
becomes shallower and the system is driven to a bifurcation. The interplay between depth, eigendirections
and noise intensity is to be treated quantitively with system-specific models. Right: multistability along
one degreee of freedom (as if the attractors are aligned in series), viewed with a bifurcation plot. It results
in a series of local saddle-node bifurcations. Figure adapted from Feng et al. (2016), Fig. 3ii.
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As it is linked to local bistability, the low-dimensional “pebble-down-the-hill” analogy (Sec.
2.2.5) can be used to inquire local properties in various systems. Together with the bifurcation
diagram representation (e.g. Fig. 2.5), it can be used to visualize several tipping classes (like in
Sec. 2.3.2) and related properties. The two views are often complementary. For instance, Figs.
2.13 (left and right) correspond to Fig. 2.8 and Fig. 2.9, respectively. System’s trajectories track
the stable manifold (corresponding to equilibrium values) until either tipping at the bifurcation
point (when the attractor disappears) or a bit before because noise intensity drives it past the
unstable point (when the attractor becomes shallower and noise-induced transitions occur).
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Fig. 2.13 Example of tipping classes viewed on bifurcation diagrams. Left: b-tipping. Right: n-tipping.
System’s trajectory (green) tracks the stable manifold (solid black). Red and blue arrows (representing
vector fields) “push” the trajectory towards stability. A critical transition may occur either at the bifurcation
point (attractor vanishes) or before, due to noise intensity driving the system to the unstable manifold and
then away of the original attractor.

A notable property on non-linear bistable systems is hysteresis. It refers to asymmetric
routes to tipping from one or the other attractor. If the asymmetry is too high, there can even be
irreversibility, i.e. a system can tip on one direction but cannot return to the original state. This can
be visualised on the bifurcation diagram, or by considering asymmetric potentials and particles
wiggling into them.
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Fig. 2.14 Observing hysteresis. Left: Simulations of Eq. 4.1 over the bifurcation diagram. Decreasing
parameters from left to right push the system to an “off” state through a CT (yellow route). To return to the
original state, higher parameter values need to be reached to get t a second tipping point (black route).Right:
The corresponding potential for a fixed p value. It derives from the adjoint stochastic potential (see Sec. B),
which link dynamical models and the “landscape” illustration. In case of asymmetry between attractors, it
might take longer to jump from one to another, either depending on random fluctuations or following the
action of a parameter “lifting” the equilibrium, as |V (a) — V(b)|< |V (a) =V (c)].



38 Critical Transitions: a conceptual framework for critical phenomena

Other notable properties are system’s stability and resilience. They are related to the illus-
trations provided by the landscape potential and the bifurcation diagram. Dai et al. (2015) link
stability with the potential’s depth and resilience to its “width”, visualised in the bifurcation
diagram as the amplitude of the fold parabola. Their interplay may yield different routes to CTs
and different EWS performance. Chapter 6 quantitatively investigates these aspects. Formal
definitions for resilience and stability, as well as for robustness, optimality and related concepts,
can be traced back in literature. Their quantitative connection with complex feedbacks, their
magnitude and timescales is still being recently investigated, see e.g. Frank et al. (2002); Franci
et al. (2018); Kéfi et al. (2016).

Sensitivity to initial conditions is immediately observed next to criticality. Under the action of
mild noise, small steps closer or further from the bifurcation point may signify remaining stable
or tipping onto alternative equilibria.

Emergence can also be portrayed in such conceptualizations. In fact, quantitative changes,
potentially deriving from combinations of conditions and influences, may push the system onto
one stable regime or another, which can be regarded as the “emergent”, “macroscopic” observables.
Additional insights on these aspect might unravel modelling concepts and interpretations.

2.5 Connection with other “‘critical” frameworks

The complexity of physical and biological scaling phenomena has been found to
transcend the explanatory power of individual paradigmal concepts. The interaction
between theoretical development and experimental observations has been very fruitful,
leading to a series of novel concepts and insights (Markovic et al., 2014).

The critical transitions framework sits among other research fields addressing critical phenom-
ena from different angles. They are characterised by modelling choices about relevant separations
of time scales (Markovi¢ et al., 2014) or by research objectives and focus. Cross-fertilization
constantly occurs, to unravel fresh aspects of such important and sometimes elusive events.

Historically, statistical mechanics first tackled critical states during phase transitions, although
keeping a rather “static” stance (Pathria et al., 2011; Binney et al., 1992). When the control
parameter is allowed to slowly change in time, the so called “first-order” transitions (having
discontinuities in the first derivative of the energy function) directly relate to critical transitions
(Gondelfeld, 1992; Binder, 1987). First-order phase transitions have been observed in lasers and
other physical devices (Scott et al., 1975), but have also been proposed as analytical tools to
address cell development (Solé, 2003) or synchronization of coupled oscillators, including neural
networks (Kopell et al., 1990). Recently studies started considering EWS in typical statistical
physics systems like the Ising model (Barnett et al., 2013; Morales et al., 2015; Marinazzo et al.,
2019).

Catastrophe theory (Thom et al., 1977; Zahler et al., 1977) tackled critical phenomena from a
topological perspective, identifying “organising centres” like the cusp bifurcation. Key concepts
were, e.g., used to develop conceptual models of behaviour and perception, see Fig. 2.15. The
endeavour of “explaining all critical phenomena” was nonetheless undermined by harsh criticism
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Fig. 2.15 “Gestalt” bistability in perception and its connection to the cusp model (compare with cusp
behaviour in Sec. A). The picture, made by Attneave (1971), represents the biasing sequence for the Fisher
(1967) figure.
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of being abstract and pretentious, without openness to empirical investigation (Zahler et al., 1977;
Kolata, 1977).

No mathematical theory, no matter how elegant it may be, can serve as a substitute
fo the hard work of learning facts about the world. (Zahler et al., 1977)

Nonetheless, analytical instruments like the unfolding of organizing centres now play an important
role to develop more refined models, in particular in the field of mathematical neuroscience
(Izhikevich, 1998). Here, notable efforts have been paid to connect topological concepts to
conductance properties of excitable neurons (Drion et al., 2012; Drion et al., 2015a; Drion et al.,
2018; Franci et al., 2012; Franci et al., 2014; Franci et al., 2013).

Another intriguing framework, primarily concerned about the emergence of power-law scaling
in various natural phenomena, is self-organised criticality (SOC, Bak (1987); Bak (1996)). Starting
from the sand-pile model, it was expanded to interpret many system, ranging from biology (Jensen,
1998), geology (Rundle et al., 2002), finance and so on (Gal et al., 2010; Gal et al., 2013). Its
direct connection to first-order phase transitions was recognised and discussed by Dickman et al.
(2003); Dickman et al. (2000); Di Santo et al. (2016). Both frameworks, augmented with noise
influences, are also addressed by Sornette (2013).

Interest in critical phenomena also diffused in the engineering community, particularly in
the field of systems control (Heinrich et al., 2010; Iglesias et al., 2010). In this case, the main
questions regard the emergence of critical states from feedbacks (Franci et al., 2016; Franci et al.,
2018; Drion et al., 2015b; Dethier et al., 2015; Bokes et al., 2018) and their relevance for control
(Astrom et al., 2010; Skogestad et al., 2005), as well as the identification of noisy precursors of
ruptures (Jeffries et al., 1985).

The CT framework often implies a holistic, top down stance: assess to which CT class a system
is likely to belong, then derive the suitable EWS. Ideally, this work should be complemented with
reductionist, bottom-up approaches investigating the specific underlying mechanisms. Continuos
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developments of systems-specific theoretical understanding would eventually make up for refined
knowledge and better risk-assessment tools.

2.6 Paradigm shift and significance for systems biology

The critical transitions framework introduces a modelling shift: alternatively to the view of a fixed
manifold in which equilibria are already pre-determined (‘“‘community perspective”), CT take an
“ecosystem perspective” (Beisner et al., 2003) by considering the effect of external changes on the
state of a system. The main difference between the community and ecosystem approaches is what
is considered a variable and what is considered a parameter. In the community perspective, all
degrees of freedom are variables; the landscape is fixed and the system can move solely under
the influence of additional forces or noise. In the “ecosystem” perspective, state variables define
the dynamical manifold, morphed by the action of parameters that model relationships between
variables. The manifold itself is thus dynamic and accommodates other routes to tipping events.
This re-conceptualisation thus opens new modelling and analysis avenues.

Developing from its decade-long debates, systems biology could profit from the “ecosystem”
perspective to refine its conceptual archetypes, accommodate modelling strategies and unify
theoretical and empirical observations.

A long-lasting conceptual paradigm has been the so-called Waddington’s (or “epigenetic’)
landscape (Waddington, 1957). It is a metaphor for cell commitment. It is imagined as a rugged
“energy potential”, with systems’ states depicted as marbles rolling down. The marbles sample the
grooves on the slope, and arrest at the lowest points. Eventual cell fates are represented by such
lowest points (Fig. 2.16 left). Ideally, the landscape shape is statically pre-determined by gene
states and fixed (Fig. 2.16 right). Over the years (Ferrell, 2012; Ghaffarizadeh et al., 2014b), the
Waddington’s landscape has been associated to models of cell development and quantified from
steady-states populations. It was thus framed as a “‘community perspective” manifold, multistable
but static and sampled by noise (Wang et al., 2011; Kanamaru et al., 2013; Zhou et al., 2013;
Sardanyés et al., 2018).

Fig. 2.16 Tllustration of the Waddington’s landscape, from its original publication (Waddington, 1957).
Left: the landscape. Right: an illustration off genes shaping the above landscape, like rods on a tarpaulin.

More recently, modelling cells as dynamical systems has become widespread, including the
analyses of their bifurcations towards criticality-driven cell decision (Pal et al., 2015; Duff et al.,
2012; Kerr et al., 2019; Huang et al., 2007; Andrecut et al., 2011; Stanoev et al., 2021). In
addition, cell lineage tools are making increasing use of bifurcation methods to predict discrete
(and sometime discontinuous) commitment states (Richard et al., 2016; Eugenio et al., 2014).
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Noise and bifurcations have often been treated separately as two drivers for cell differentiation,
although some studies considering their combinations exist (Pfeuty et al., 2014).

These studies spurred calls to re-think the role of fixed landscapes crossed by continuous tra-
jectories, and the search for re-conceptualizations of cell-fate decision mechanisms, both in terms
of modelling and of theoretical understanding (Moris et al., 2016; Korolev et al., 2014). During
the development of more refined dynamical systems-driven studies, however, the Waddington
landscape was still used as a powerful metaphor, see e.g. Mojtahedi et al. (2016).

Building on what discussed above, it is quite natural to go beyond, and to look for the
“ecosystem perspective” for dynamical systems evolving at different time scales. Identifying
proper separations of state variables and control parameters, both dynamically evolving in time
with respect to their typical time scales, makes up for a dynamic manifold, with attractors as
states and transitions driven by both deterministic conditions (ramping parameters) and stochastic
occurrences (noise). In the epigenetic interpretation, state variables may correspond to gene
activation states; their trends and inter-relationships are in turn tuned by parameters representing
dynamic controls. Dynamic multistability captures phenotypic plasticity. In addition to being
potentially more flexible and versatile, this conceptual modelling accommodates various nuances
of evolutionary theories, allowing adaptation in changing environments.

Complete gene regulatory networks are impractical to model. Instead, CT theories combine
a holistic perspective and strive to connect it with a reductionist approach. For instance, they
contribute to characterise dynamical pathways defined by common structural patterns (“network
motifs”, Alon (2019)). In this sense, they help connecting microstates (combinations of gene acti-
vation profiles) and macrostates (cell sates). Noisy bifurcations and other transition mechanisms
may thus concur cooperatively in shaping cell development. Continuos as well as discontinuous
transitions may occur, both driven by deterministic or stochastic processes. Heterogeneity can
be accommodated by transients divergences from static equilibria, occurring within attractors.
Asymmetries in cell-fate commitment (Mojtahedi et al., 2016) can be accommodated in unfolding
mechanisms (Def. A.5.9 and Fig. 4.7), further tuned by noise. Dynamic landscapes can be deter-
mined using refined methodologies (many of which discussed later in the thesis) over time-series
population data.

Determining which classes better represent certain cell lineages will thus occupy many future
studies, alongside the progress of dynamical indicators to measure, detect and predict such fate
transitions.






Chapter 3

Early warning signals: the explored
and unexplored avenues

This chapter overviews the debate around the critical transitions framework and around the
application and interpretation of theoretical early warning signals when extracted from real-world
data. The evidence here presented reminds that observational hypothesis ought to be supported
with statistical analysis, compared with model predictions, hopefully verified with controlled
experiments (if available) and validated by iterating the “circle of scientific discovery” (c¢f. Fig. 1.1).
Only by this careful analysis, it is possible to state that a system presents alternative stable states,
that a certain phenomenon is indeed a critical transitions, and that measures associated with CTs
can be used to construct an early warning system. In addition, this section lists known open
questions and paves the motivations for Chapter 5.

3.1 Is an observed system bi- or multi-stable?

Necessary condition for observing signals related to critical transitions in bistable systems is that
the observed system is (at least locally) bistable. Although tautological, this condition is often
difficult to verify in unknown system, for which a mechanistic model is not available or is just
being developed. A few methods for inferring bistable properties from data or scarce information
have been developed: in this section, we review the ones often associated with the literature on
critical transitions.

Bistability is a necessary condition to observe critical transitions, but it is not sufficient to
determine whether a transition is bifurcation-driven or noise-driven. This issue is further discussed
in Sec. 4.3.1 with mathematical examples. Multistability can be established using similar methods
recursively.

3.1.1 Controlled experiments

Ideally, bistable properties of complex systems are assessed with controlled experiments, that
track small and progressive modifications of control inputs and measure the response of the
system output, in search for dependency on initial conditions, hysteresis, or to reconstruct the
bifurcation diagrams. Such experiments are common in the physical sciences and in engineering
applications, and many have been historically (Heller, 1967) and recently (Rosen et al., 2010)
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performed to study critical properties in quantum, electrical and mechanical systems. In 2018, the
first controlled experiment observing rate-induced tipping was carried out onto a laboratory-scale
combustor subject to thermoacoustic instabilities in the presence of turbulence-induced noise
(Bonciolini et al., 2018).

In order to check for critical transitions in ecological and biological systems (using controlled
experiments), a few studies have been conducted only recently. A seminal work of Dai et al.
(2012) performed a controlled study of population collapse in yeast colonies, reproducing the
results predicted by May (1977) and, more recently, by Scheffer et al. (2009). The results of
a whole ecosystem experiment were published by Carpenter et al. (2011), where researchers
gradually added predators to a shallow lake food web, until its collapse. Drake et al. (2010)
conducted an experiment with replicate laboratory populations of Daphnia magna (a small
planktonic crustacean) controlled by deteriorating environmental conditions. Additionally, works
addressing neural activity were performed by Meisel et al. (2015), who also investigated the scaling
associated with different normal forms, as well as the possibility of using it to distinguish between
leading bifurcation. These works have in common the careful control of stressing conditions
and on the surrounding environment, so to adhere to the modelling assumptions of slow forcing,
repeated measurements and white noise. Critical transitions and expected behaviours of statistical
indicators were indeed observed, confirming their existence and evolution in various complex
systems. Additional studies (Reyes et al., 2020) are recently suggesting experimental methods to
detect bistability in chemical and biological networks.

Limitations and future research

This kind of study is arguably the most solid to verify the presence of critical transitions and to
characterize their properties. Unfortunately, controlled experiments are often very complicated or
unfeasible. They might be “just” extremely complicated when the system of interest is complex,
open and subject to additional confounders that are very hard to identify and quantify. In case of
climate or ecological systems, on the other hand, performing such experiments is impossible as no
replicates are available or, in general, it is highly advisable not to wait until the critical transition
to verify that it happened — think of mass extinctions or abrupt climate change. In all these cases,
scholars mostly rely on models — more or less detailed — or on data from the past, hoping that
future evolutions follow similar patterns and are thus amenable to extrapolation.

3.1.2 A posteriori analysis

Once observational data about the evolution of a system are available, it is possible to identify
whether the system changed its condition abruptly. Here, the assumption is that the observations
pertain the variable along which the transition might occur. Verifying regime shifts usually
corresponds to identifying drastic changes in the properties of the observed time series.

When low-dimensional time series data are available, the first check is on the mean itself:
already by eyeball visualization, it is often possible to notice rapidly changing trends. Such
observations can be refined with statistical tools. Wang et al. (2012a) provide several checks to
evidence bistability, critical transition and alternative states, using ecological data as case studies.
These methods, which include checking for bimodality in the distribution density functions and
clustering in the phase space, are discussed in details in Sec 4.3 along with others that we have
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tested on other data sources. An interesting alternative is potential analysis (Livina et al., 2010),
which aims at reconstructing the underlying dynamical potential. It is also discussed in Sec 4.3.

Other methods include fitting minimal bistable dynamical models to data (Lade et al., 2012)
and comparing the goodness-of-fit with that obtained from smoother functions. Checking for
transitions that involve period doubling or other periodicity modifications (e.g. those modelled by
Hopf bifurcations) might require switching to the frequency domain to perform the analysis.

Although not considered later in this thesis, worth mentioning are also spatial data, where
critical transitions are observable in the drastic deterioration of their components (e.g. grasslands
shifting towards desertification) (Scheffer, 2009). Recent works are also considering the use of
spatial indicators like Betti numbers (Storch et al., 2019b) to quantify the observed changes. Future
work will likely build on top of recent image analysis techniques, e.g. extrapolating measures like
Jaccard index or Dice score (Eelbode et al., 2020) for the observables of interest and follow their
trajectory over time.

Finally, the trend of statistical indicators — those called “early warning signals” during detection
and prediction tasks — can be used to support the evidence of alternative states in a a posteriori
analysis. Several papers addressed this possibility in the past (Dakos et al., 2008; Lenton et
al., 2012; Zhang et al., 2016; Wang et al., 2018; Van De Leemput et al., 2014; Burthe et al.,
2016; Veraart et al., 2012; Chen et al., 2012a), but doubts exist whether such indicators are
generic enough to reliably identify a critical transition and to distinguish it from other dynamical
features, if no additional information and modelling of the system itself is available (see Sec. 3.4
for theoretical arguments, Sec. 3.3 for examples of ongoing debates, and Sec. 5 for systematic
analysis). Analogous observations also apply to indicators employed on high-dimensional data,
like dynamical network biomarkers (Chen et al., 2012b) or autocorrelation indexes (Mojtahedi
et al., 2016; Yan et al., 2021).

Limitations and future research

Inferring information from observational data is often partial and subject to interpretation. While
essential to construct hypothesis towards model development and system characterization, such
statistical analysis is often not conclusive. For instance, depending on the sampling frequency and
on the measurement choices, the transition from one state to another might look more or less abrupt,
with consequent fuzziness of the interpretation in terms of critical transitions. Moreover, fitting
piece-wise of smoother functions might be subject to real data seldom been sharply subdivided and
could result to smooth high-order polynomials being preferred according to some cost function
criterion, providing a false positive in system identification.

Fig. 3.1 shows a toy example for such a problem: observational data are potentially taken to
be representative of a critical transition, and even a changepoint analysis (c¢f. Sec. 4.3.4) would
suggest so. Nonetheless, this is a spurious effect induced by irregular sampling next to a gradual
transition, along the smooth branch of an unfolded supercritical pitchfork bifurcation (cf. Sec 2.2)

in the form X

E:K—l—c-(X—l)—(X—lf, (3.1)
with K = 0.01 and control parameter ¢ spanning from -0.5 to 2, with critical value ¢y = 0.
Simulations are performed by adding white noise with intensity 0.02. Although this made-up

example may look arbitrary, similar situations happened several times during the monitoring of
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Fig. 3.1 Toy example: identifying a system as prone to undergoing critical transitions after analysing
its time series. (a) Synthetic data (X) reproducing plausible observations: at a certain point during the
measurement of a system, there is a gap in sampling; data are then clearly divided into two cluster. (b)
Changepoint analysis (Sec. 4.3.4) reveals that the best fit distinguishes the two data clusters, suggesting a
critical transition between the two regimes. (c) Nonetheless, the data derive from noisy simulations over
the smooth branch of an unfolded subcritical bifurcation (Eq. 3.1, with ¢ as control parameter with critical
value ¢y and X as dynamical variable), which does not display critical transitions. Note that, with higher
noise levels, a N-tipping transition could have been observed towards the alternative branch.

wastewater data against the COVID-19 pandemic (see reports on https://www.list.lu/en/covid
-19/coronastep/). Reasons include working shifts, public holidays, and even an unprecedented
flooding (https://bit.ly/3K95Dr1) of the region that disrupted the routine sampling frequency. As
many EWS applications have been designed to target macro-scale real-world phenomena, such
sampling issues should be taken into account and might induce biases in the interpretations. Other
biases might e.g. result from repeated experiments performed at — ideally — constant parameter
values, but without such values being sufficiently fine-grained. If the real system’s evolution
was well described by a supercritical pitchfork bifurcation (which is not critical (Kuehn et al.,
2011)), an observer would get bimodal probability density functions but the interpretation would
potentially be flawed into thinking about bimodality from criticality. Such questions might be
raised to observational studies like e.g. Mojtahedi et al. (2016).

Another issue related to the use of piece-wise or smoother functions to fit observational data
is, that real data are seldom “perfectly” abrupt, but often maintain some smoothness due to system
inertia or noise. Sampling might also play a role in smearing transitions which could otherwise be
modelled as “critical”.

Regarding the use of statistical indicators to check for the criticality of a system form its time
evolution, they are subject to the same questions encompassed by this thesis: are they unique,
reliable and performing signals? Depending on the answers — and on which cases they hold —,
the use of such indicators is more or less appropriate as supporting evidence for the existence
of critical transitions in a given system. A potential risk is to fall into the “prosecutor fallacy”,
that is, to infer that the probability of observing an early warning signal given knowledge that a
system is bistable is equal to the probability of system being correctly interpreted as bistable after
the observation of an EWS (Boettiger et al., 2012a). Instead, the two conditional probabilities
are weighted by the ratio between the probability of observing a trend associated to EWS (which
can depend on other factors, like state-dependent noise), and that a transition occurs in general
(which can also depend to random occurrences). See Sec. 3.4 for more about the fallacy and
the interpretation of warning signals. In addition, if various data sources, analysis methods and
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theoretical results concur in yielding contrasting results, debates might proceed without being
solved by such analysis alone (see Sec. 3.3 for some examples).

Finally, a few words about bistability and abrupt transitions for high-dimensional systems:
although some preliminary studies are being published in the very recent years (Weinans et al.,
2019; Weinans et al., 2021), open questions still remain on how to collect evidence. A brief list of
available techniques is provided in Sec. 4.3.6, while a broader overview of results ad future works
is given in Sec. 9.3. For a recent review about EWS, see also (George et al., 2021).

3.1.3 A prori conditions for bistable networks

Without having curated time series at disposal nor complete models, but only relying on basic
information about the system’s structure and stationary data, is it possible to infer that such system
is bistable? Differently phrased: how much information do we need to reliable infer bistability
properties of an observed system? Such questions has been asked in particular about networked
ecological systems (Kéfi et al., 2016) but, more in general, pertain any observed system described
as a network, such as gene regulatory networks, metabolic pathways, food webs, climate feedbacks
and so on.

The issue was tackled by Angeli et al. (2004a), where the authors established a necessary
and sufficient conditions to infer bistable properties of a dynamical system, given a reduced
amount of information about the system itself. The paper primarily focuses on bistability (or, more
generally, multistability) in cell signalling, but the mathematical properties can be extended to any
other complex system — more complex than very simple feedback systems, for which conditions
already existed. The authors present a graphical method for deducing the stability behaviour and
bifurcation diagrams for a class of feedback systems, mathematically deducing their stability
properties when feedback is blocked.

The first take-home of this work is that, positive feedbacks are necessary but not sufficient
conditions for a system to be bistable (different from what conjectured elsewhere, cf. Scheffer
(2009)). The second contribution is a set of conditions to deduce the bistabiliy of networked
systems for which a complete and mechanistic description is not available, let alone their complete
evolutionary time series. The process works as follows:

1. Consider the system under study as an input-output (I/O) system, that is, identify what the
control input might be and what to measure as output. This is part of modelling design.

2. For experimental studies: block the feedback from output to input. For theoretical studies:
consider the open-loop system.
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3. Obtain the Input/Output incidence graph' (Biggs et al., 1993) at steady state. It is not
necessary to have the full network structure (including regulation functions), but only the
“skeleton”.

4. By following the theorem from Angeli et al. (2004b) (see below), deduce the presence of
bistability.

Theorem-specific conditions to ensure bistability on the incidence graph are:

* Of a system, we can identify its input @ and output 1) and its labelled incidence graph. This
way, we can recognize positive and negative effects. As a rule, activation in an incidence
graph is marked by + and inhibition with —. The sign along a full path on the graph is the
product of the signs along that path (Gross et al., 2005).

* The action of each vertex of the incidence graph has to be monotonous (e.g. activation or
inhibition, but not both).

* Conditions for “strongly monotone I/O system”: (a) Every loop is positive; (b) all of the
paths from the input to the output node are positive (meaning that all possible loops are
positive); (c) there is a directed path from the input node to each node #»;; (d) there is a
directed path from each »; to the output node (the last condition ensures that the graph can
be made).

» Well-defined I/O characteristic of the open-loop system: given any input @, the asymptoti-
cally stable equilibrium exists and is unique for the open-loop system.

* The I/O characteristic is nonlinear (3x*s.z. % = 0; a sigmoidal shape is ideal). It is thus

not necessary to consider the full evolution (including transients) of the system, but only its

stationary responses to disturbances.

Those requirements deduce that the system can be bistable. An additional requirement guarantees
bistability:

* The 1 = w diagonal intersects the I/O characteristic in £; points. Then, stability of those
points comes by looking at the slope s in X;: s > 1 highlights instability, s < 1 stability.

The result is general for n-component sytems. Complex networks can be analysed by making use
of their modularity (bistable modules might build bistable systems). Examples, counterexamples
and details can also be found in the referenced paper (Angeli et al., 2004a).

Under the lenses of dynamical theory, the proposed method assess the existence of a cusp
bifurcation. In fact, the first requirements verify its presence, while the latter guarantees that the

A graph is a triple (V,E,I), where V and E are finite sets, called the vertices and the edges, respectively, and
I:E—V:x 0,1 is called the incidence function. The incidence function tells for each edge its end-vertices, and
whether the edge is directed (1) or not (0). If an edge e is directed, then the first element and the second element of
I(e) denote the origin vertex and the destination vertex, respectively. This generality is required to represent all of
undirected graphs, directed graphs, and mixed graphs, possibly combined with self-loops and multi-edges. A labelled
graph is a graph together with labelling functions Ly : V — Dy and Lg : E — Dg, where Dy and Dg are arbitrary sets,
called the vertex labels and the edge labels, respectively (from http://kaba.hilvi.org/pastel-1.5.0/pastel/sys/incidencegra
ph/incidencegraph.htm and Gross et al. (2005)). Further reading in Sec. A
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“pitchfork-like” parameter is properly tuned to make the system bistable. It follows that, if the
system wants to get from one equilibrium to the other without changing its configuration, it has to
undergo a local CT driven by a fold bifurcation (c¢f. Sec. 2.2). Hence, standard EWS apply and are
suitable to be measured.

Application examples to ecological and physiological networks

Testing the above conditions on various graph models gives insights about their usefulness. In
addition, it provides examples for systems where critical transitions and EWS can be expected
and those where they shouldn’t.

As a first example, consider the reconstructed incidence graph for an ecological system (a
shallow lake) provided by Kéfi et al. (2016) (Fig. 3.2).

Fish Zooplankton

‘ Submerged vegetation ‘

Waves \ Nutrients
/ Allelopathic \

Bottom material substances
resuspension

Phytoplankton

‘ Water clarity ‘

Fig. 3.2 The reconstructed labelled incidence graph for a shallow lake ecological system (adapted from
Kéfi et al. (2016)). Orange arrows mean negative effects — (depletion, predation, ...), green ones mean
positive effects 4+ (enhancement, sustainment, ...).

The methodology introduced above can be applied as follows:

* Identify “Submerged vegetation” as input and ‘Water clarity” as output.

* The incidence graph is already reconstructed from field observations (note that the mechani-
cal properties of the interactions are unknown, meaning that we do not have the network
but just the graph) and is properly labelled. Vertex are monotonous (Kéfi et al., 2016).

* Conditions (a) to (d) for the graph are respected (it is an easy exercise to check that all loops
and paths from I to O are positive).

* It is known from field studies that the I/O response in non linear (Scheffer, 2009).

Hence, the system can be bistable. Unfortunately, Kéfi et al. (2016) do not specify the shape of
the I/O characteristic, so it is not possible to say if the system is a priori bistable after applying the
last condition. Nonetheless, for this specific system, bistability is observed a posteriori (Scheffer,
2009). This implies that the I/O response is actually behaving as expected from the theorem
and that the regime shifts follow a fold bifurcation. As a consequence, the signals measured in
these case studies from shallow lakes (Carpenter et al., 2011; Scheffer, 2009) are likely due to de-
tection of the underlying fold bifurcation and not to other mechanisms at play, like increasing noise.
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Let us consider a second example from physiology and medicine. The brain network in
Fig. 3.3 reconstructs cortex and basal ganglia interactions and has been suggested to be relevant
for studying the development of Parkinson’s disease (Jones et al., 2014). Using the a priori
methodology, we can check whether its alteration might contribute to a critical transition towards
the disease state.

Cortex

Putamen

SNc
GPe

— STN — GPi
SNr

Brain stem
spinal chord

Fig. 3.3 The reconstructed incidence graph (labelled) for dopaminergic pathways between the basal ganglia
and the cortex (adapted from Jones et al. (2014)). Graph variables are the activity of each brain region.
Green arrows represent excitatory connections (+); orange arrows represent inhibitory connections (—).
SNc: substantia nigra pars compacta; GPe: external segment of the globus pallidus; VL: ventrolateral
nucleus of the thalamus; STN: subthalamic nuclus; GPi: internal segment of the globus pallidus; SNr:
substantia nigra pars reticulata

In this case, the pathway is not monotonous and the I/O loops are not positive; therefore, the
system cannot be bistable according to the theorem above. Consequently, either the pathway is
still not complete and new elements might favour a different interpretation, or it is not possible to
interpret the insurgence of Parkinson’s disease as a critical transition towards a new state, after the
reprogramming of the ganglia circuit.

As shown with two contrasting examples, this type of analysis paves the way for the correct
application and interpretation of the theoretical results from the CT framework onto unknown
systems.

Limitations and future research

Deducing in advance whether a system can be bistable or not is beneficial to correctly interpret
and apply the results from the critical transitions frameworks. The theorem described and tested
helps doing so with little information available. However, precise knowledge of the incidence
graph and the I/O characteristic is necessary to fulfil the theorem requirements. Without those, it
is only possible to draw preliminary and incomplete conclusions, like for the first example.

This promising avenue will greatly improve if new conditions are obtained for other experi-
mental and/or modelling challenges, e.g. known missing links, multiplexes networks, time-scale
separations among components, etc. In addition, an interesting direction would be to extend
this methodology to simplicial complexes and hypergraphs (Bick et al., 2021). The underlying
question would then be: how much information do we need to reliably infer bistability properties
in a higher-order network?
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3.1.4 Combining observational data and modelling

Observational data can suggest the existence of alternative states and shifts among them, but
models are essential for good diagnosis (Scheffer et al., 2003). To begin with, models allow
surpassing qualitative reasoning: as discussed in Sec. 3.1.3, positive feedbacks are necessary
ingredients to observe regime shifts, but they lead to alternative states only if sufficiently strong
with respect to other control mechanisms. Thus, quantitative reasoning provided by models is
crucial. Moreover, bifurcations and other elements describing regime shifts are actually modelling
ingredients: a bifurcation does not exist in real life, but is a useful concept to reproduce qualitative
changes inn systems’ state, driven by slowly varying forces. Finally, models — even minimal
models (cf.Sec. 1.2.2) if more refined ones are not available — help distinguishing between
transitions associated to bifurcations, noise or other mechanisms (Sec. 4.3.1).

In general, proving that a system is bistable and that it can undergo regime shifts is bound
to follow the “cycle of knowledge discovery” (Fig. 1.1). It has been asked where does the
burden of proof lie: instead of proving that a system does have alternative attractors, we might
attempt to falsify this hypothesis. Unfortunately, this is anyway difficult in practice. Surely,
inquiring complex systems with observations, experiments and models is a good way to obtain
solid diagnosis on their dynamics, which in turn implies different views on monitoring and
management options.

3.2 The challenges of extracting EWS from data

In systems that have been proven to undergo regime shifts between alternative states, extracting
reliable early warning signals is still challenging. Here are listed several considerations from
past literature and personal investigations, describing challenges for the extraction and accurate
interpretation of EWS from measurement data. The review presented in this section will be
expanded by original works reported in Chapters 5 and 7.

3.2.1 Different classes of models might display different EWS

After being originally associated with fold bifurcations only (Scheffer, 2009), the Critical Tran-
sitions framework now encompasses several classes of tipping mechanisms (cf. Sec. 2.3.2). A
longed-for “generalised model” yielding model-free EWS is thus hard to foresee. Already Schef-
fer et al. (2012) observed that signals designed for fold models are not universally recorded. In
general, CT classes might be associated with different early warning signals (Lade et al., 2012;
Thompson et al., 2011) with varying detecting and alerting performance. More-so, non-bifurcation
mechanisms for abrupt shifts like sudden shocks might not display EWS at all (Dakos et al., 2015).
Other non-bifurcating classes, like noise-induced transitions, are potentially associated with other
footprints like flickering (Dakos et al., 2012a), or might not show signals at all (Boettiger et al.,
2013c; Ditlevsen et al., 2010). Hence, prior knowledge on the mechanism is required to adequately
apply one indicator or another and to aptly intervene against potential falsely positive and falsely
negative signals (Boettiger et al., 2013a; Ditlevsen et al., 2010).

Within the bifurcation-driven CT class, the evolution of statistical indicators associated with
EWS might display differing scales: {(p,t) = f(p*) with potentially different scaling factors
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o for the parameter(s) p, for each indicator { (Meisel et al., 2015; Kuehn, 2013). This would
in turn affect detection performances in real-world applications. Noise could also be a limiting
factor in our capacity to observe meaningful signals. O’Regan et al. (2018) observed that intrinsic
noise described by non-Markovian functions might change the expected trends of commonly
used indicators; Sharma et al. (2016a) and Kuehn et al. (2022) extended similar observations to
the case of multiplicative and coloured noise, suggesting a sort of “colour-blindness” that could
impair the extraction of EWS from data. Noise has been recognised as a relevant issue in spatially
extended systems, too. A modelling study on PDEs observed that statistic indicators are usually
overwhelmed by noise effects (Gowda et al., 2015). In addition, recently explored techniques for
dimension reduction of network systems have been shown to be sensitive to noise distribution
(Weinans et al., 2019).

In addition to noise, another potentially confounding aspect is the separation of temporal
scales: preliminary studies (Kuehn et al., 2011; Brett et al., 2017) suggested that commensurable
time scales in the evolution of the main variables and of the control parameter might alter the
expected EWS trends and shadow their associated alerts. Within the b-tipping class, further studies
are then much needed about the interplay of noise and timescale effects, and how they affect the
detection and prediction performance of various early warning signals.

3.2.2 EWS also precedes non-critical transitions

As discussed in Sec. 2.4, early warning signals are measures associated with the behaviour of
common statistical indicators such as increasing variance or autocorrelation. It come with little
surprise that such trends can be measured even in systems that do not exhibit critical transitions.
Kéfi et al. (2013) reviewed transitions that are not “critical” per se but can still be preceded by
EWS (e.g. continuous transitions in the first derivative like supercritical pitchfork-driven ones).
The reason is that such EWS are associated with the phenomenon of critical slowing down, which
also exists in other noisy bifurcations, including second-order ones. Similar remarks, from studies
on continuous bifurcation, non-bifurcating models with coloured noise and other examples, have
been put forward by recent literature (Boettiger et al., 2012b; Boettiger et al., 2012a; Boettiger
et al., 2013a; Dutta et al., 2018). A simple scaling argument is also provided in Appendix A.
These remarks stress the importance of accounting for the likelihood of the system being
bistable (or at least prone to transitions) in addition to the identification of a potential signal,
in order to minimise false positive signals. An example of such potential fallacy is reported by
Kaur et al. (2020), who observed rising variance at the beginning of the first COVID-19 epidemic
wave. Nonetheless, epidemic first emergences are novelties followed by exponential growth, not
zero-eigenvalue processes: as such, the increasing variance is more likely linked to increasing
case numbers poorly coped with scarce tests, rather than signs of a bifurcation being crossed.

3.2.3 Single EWS are often not sufficient to predict abrupt shifts in real time series
data

From minimal models to real data: single EWS are often not adequate to reliably predict regime
shifts. An extensive survey performed by Burthe et al. (2016) shows that EWS in ecological
real data series do not provide clear insights, while the use of EWS for low populations is not
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recommended (Brett et al., 2017) as the ergodic hypothesis breaks down without a mean field
modelling approach. In this case, there would be extreme sensitivity on individual variability
and noise. Hence, scholars have suggested using different EWS at once or combining them for
decision making (Biggs et al., 2009)

Combining EWS could potentially expand their detection and/or anticipation prowess. Such
combinations can be explored with machine learning approaches for classification (thus solving
optimization problems). However, they would necessarily be system-specific and require sufficient
amounts of data. The advantage would be an improved interpretation of the machine learning out-
put, in terms of dynamical theory. Examples exploring this possibility include Brett et al. (2020b),
trying to anticipate epidemiological data with machine learning, the thesis “Dynamical modeling
techniques for biological time series data” by L. Mombaerts, detecting epileptic seizures with
combinations of statistical indicators, and Bury et al. (2021), applying deep learning anticipation
algorithms, trained on normal forms, to various synthetic and real-world data.

3.2.4 Data curation procedures affect the extraction of EWS

Not only there are theoretical limitations for the immediate application of CT theory on observed
data and for the extraction of associated early warning signals; data analysis challenges also add
up to the complexity.

Data selection

Aptly selecting the considered data is already important. Complex real-world systems might
exhibit transitions over one state-space direction and not on others, meaning that some variables
are more likely to track transitions than others (Wang et al., 2012a). In this regard, modelling
choices involve considering scalar quantities associated to e.g. phenotypes, networked variables,
or anything measurable and subsequently analysed. Depending on the choice, different methods
could then be applied, as well as different EWS, each with its own alerting performance. In gen-
eral, data should derive from those measured quantities associated to variables of CT-prone models.

Studies on epidemiological models provide examples about the effect of selecting among
two potentially useful sets of scalar data. Consider a simple, generic and normalised SIS?
(Susceptible-Infectious-Susceptible) model (Kermack et al., 1927):

ds
— =—BSI+al

dr (3.2)
ar_ BSI —al

dt '

I represents the infectious compartment, S the susceptible one, ¢ and 3 are transmission and re-
covery rates, respectively. In this case, the variable /, which can potentially undergo a transcritical
bifurcation (Kuehn et al., 2011; O’Regan et al., 2013) for varying values of the parameter f3, is
associated with so-called prevalence data, representing active infectious cases over a population.

2 Analogous remarks and results also hold for SIR (Susceptible-Infectious-Removed) models and related ones, see
O’Regan et al. (2013) and Southall et al. (2021).
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A popular alternative for epidemic monitoring, on the other hand, considers incidence data, i.e.
daily new detected cases, without further following their progression along the disease. Incidence
data are a differential quantity derived from prevalence data; instead of being directly captured
by the SIS model, their dynamics is often modelled in terms of the underlying Poisson-driven
transmission processes (Southall et al., 2021; O’Dea et al., 2019):

N, = Poi (/[+Al),(s)ds> ~ Poi(AtA(t)) (3.3)

where N; represent the counting process yielding incidence data, Poi is a non-homogeneous Poisson
process and A (1) = T'(I+ 1|I) represents incoming transmission probabilities in the hypothesis of
no under-reporting. A common form, which links to Eq. 3.2, is T(I + 1|I) = B(¢)S(¢)I(¢). The
last approximation hold for small At.

It has been shown (Southall et al., 2020) that EWS calculated on synthetic prevalence or
incidence data might display different detection performances. Similar results are observed in
our studies on empirical data, described in Sec. 7. In addition, both data types could suffer
from different systematic uncertainties (e.g. related to testing or tracking routines), which would
consequently alter the associated noise distributions with undesired consequences (see above).

Data detrending

Data detrending methods can play a role, too. Recall that statistical indicators for EWS are derived
from fluctuations around stationary equilibria: long-term moving trends thus need to be filtered
from real-world time series. After that, variance and other statistics should be calculated on the
detrended residuals instead of on the original data. The problem of detrending is a compelling
one (Dakos et al., 2015; Dessavre et al., 2019): choosing the most appropriate detrending method
(moving average, Gaussian, lowess, or other kernels filtering, ARIMA models) might yield better
or worst detection and anticipation performances, depending whether the method is able to pick
up spurious fluctuations in the data, long-term patterns and so on. Various authors have so far
mostly used their preferred method (e.g. lowess (Bury et al., 2021), moving average (Southall
et al., 2020; Kuehn, 2013)) and little consensus has so far been reached.

For a discussion on the mostly employed detrending methods, see Section 4.4; for an example of
the impact of detrending method on the value of residuals, see Fig. 3.4.

Moving windows over time series

A procedure to carefully optimise is that of selecting appropriate moving windows to extract
statistical indicators from time series data. Standard early warning signals are computed, under the
assumption of quasi-steady state eigen-parameter, over stochastic repetitions of the same process,
close to the transition. For a system to display analogous features in its time series observation,
some caveats apply. First, the system should be ergodic, so that the statistics over the trajectory of
a sample point are representative of those of multiple repetitions. Second, that data encompassed
in one moving window are representative of such a trajectory. Kuehn et al. (2011) discussed this
necessity on abstract models, while its testing on synthetic epidemiological data was performed
by Brett et al. (2017); Dessavre et al. (2019). In general, tradeoffs are necessary: a window should
be large enough to be representative of the process, but small enough to avoid incorporating past
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Detrending example (7-days moving average)
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Fig. 3.4 Example of different detrended data, depending on method and kernel. Considered data are
daily COVID-19 positively detected cases (incidence, linked to Eq. 3.3 in the discussion above) from late
February to late August 2020. Top: an example of smoothing, using a commonly employed 7-days moving
average. Bottom: residuals obtained with four different methods: 7-days moving average, smoothing with
Gaussian kernel (non-centered, window size of 7 days, std=2 days), smoothing with lowess (fraction to
estimate y values corresponding to 7 days), detrending with ARIMA(2,1,5). In the panel, i is possible to
observe the slightly different residual values obtain with the various methods, which might induce biases or
modified results in the later analysis.

trends unrelated to the approach to the transition and not to be too data-greedy.

One final aspect to recall: centring the window appropriately is necessary to correctly inter-
pret the results. Centring the moving window means: which data point is associated with the
corresponding value of a statistical indicator? Depending on the scopes, there might be several
answers.

For purely retrospective detection purposes, where the full time series is already provided,
centring the window to the central data point might suffice. It might even be desirable, in order
to “peek into the future” and provide an unbiased and performing estimate of the transition point.
One example for such feat is automatically recognising when an epileptic seizure starts on a fully
recorded EEG.

For all other scopes, the window should be non-anticipative, i.e., the centring should be
performed on the rightmost point (window “only looking into the past”). Studies focused on
retrospectively searching for CSD-related signals could thus focus on what happens before the
transition rather then across it, while research on anticipating CTs would properly mimic the
data stream happening during on-line monitoring, which is obviously unaware of future values.
Nonetheless, this practice is associated with two limitations. First, enough past data are necessary
before being able to anticipate anything (or the window would be too short). Second, the same
window should be used for smoothing and for centring the statistical indicators: hence, both
processes should be handled with great care not to induce biases. In addition, the process might
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reduce the lead time for prediction as it needs to wait for some extra data to be available. See
Fig 3.5 for an example.
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Fig. 3.5 Example of moving window to estimate the statistical indicators over a time series of detrended
data. Depending if te window is centred or not, the associated value of the indicator might be shifted (blue
and red pointer, respectively), with consequences on the interpretation (is the analysis non-anticipating or
not) and on the studies about the lead time.

3.3 Inferring modelling frameworks from data: debates

Inferring systems’ properties and identifying appropriate modelling of unknown complex systems
is challenging and proceed with te accumulation of evidence and hints. Although such hints are
suggested by theoretical considerations, debates might progress, depending on available data, the
output of analysis procedures and theoretical interpretations. This section briefly illustrates some
ongoing examples relative to critical phenomena.

Power laws are ubiquitous in nature and are associated with complex dynamics with long
correlation times. They can be derived from self-organised criticality SOC models (Bak, 1987)
and are often used to infer self-organisation in observed dynamical systems (Osorio et al., 2010;
Sornette, 2013). Other explanations are, however, possible. Boffetta et al. (1999) analysed power
laws between successive bursts of solar flares. They compared the observed scaling behaviour with
that predicted by SOC models and by turbulence models, concluding that the latter reproduces
the observations and thus has better explanatory power. The work spurred interest in modelling
approaches targeting critical states and producing power laws. Furthermore, Dickman et al. (2000)
noticed that: “is often hard to distinguish between SOC-like behaviour and other mechanisms for
generating power laws. This task appears almost hopeless in situations where only limited data
sets are available”.

A similar debate is ongoing in neuroscience, whether self-organised criticality is a funda-
mental property of neural systems or something different is more likely to happen. Hypotheses
and evidence for both stances are accumulating. Supporters of the SOC paradigm (Hesse et al.,
2014; Brochini et al., 2016; Cocchi et al., 2017) bring about hypotheses, modelling results and
observational evidence to strengthen their view. Other authors (Touboul et al., 2010; Touboul
et al., 2017) observe that similar power laws can arise in the presence of turbulence or stochastic
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dynamics, suggesting that power-law statistics are not sufficient to establish criticality. In addition,
they argue that such power law heavily depends on the choice of the threshold that is used to
define a neural spike: if such definition is varied, different distributions would possibly arise. As
the brain is, arguably, more complex than solar activity, and data are more prone to uncertainties,
the debate is likely bound to last for long.

Akin to questions about criticality in overall brain activity, another debate is: are epileptic
seizures — sudden and uncontrolled electrical disturbances in the brain, see Fig. 3.6 —related to
critical activities and self-triggering capacities? Not only this question regards the fundamental
mechanisms of brain regulation (Stefanescu et al., 2012; Jirsa, 2014; Gollas et al., 2005; Mandelj
et al., 2002; Ashwin et al., 2016); it also has practical implications for the predictability (including
feature selection) and management of such a harmful condition (Navarro et al., 2002; Carney
et al., 2011; Omidvarnia et al., 2018; Mormann et al., 2000; Schiff et al., 1994).

Many authors have recognised that epileptic activity is characterised by nonlinear dynamics
at multiple time- and spatial levels and with long time- and space correlations (Parish et al.,
2004; Dominguez, 2005; Meisel et al., 2012b; Aur, 2010; Chouzouris et al., 2018; Gal et al.,
2010). However, it is not clear which macro-level theoretical framework — if any on its own —
might better accommodate those observations. A number of scholars have suggested that epilepsy
can be understood in terms of self-organised criticality of brain activity (Osorio et al., 2010;
Osorio et al., 2009; Gal et al., 2013) or failure thereof (Meisel et al., 2012a). Slowly varying
parameters through bifurcations or routes to chaos (Velazquez et al., 2011; Jirsa, 2014; Breakspear
et al., 2006; Hoppensteadt et al., 1998) have also been called upon to tackle the issue, as well
as the critical transitions framework (Kramer et al., 2012; Meisel et al., 2015; Chu et al., 2017).
However, it is not clear whether the expected signals associated with critical slowing down can be
reliably measured in EEG (Maturana et al., 2020) or not (Wilkat et al., 2019). Moreover, some
spectral features observed in EEG (Chu et al., 2017) can be both related to noisy bifurcations
or to turbulent travelling waves (Kuramoto, 1984). Future work, for various epilepsy classes
(Aarabi et al., 2014), will build on micro-scale models of coupled oscillators to study their routes
to anomalous synchronization (Pikovsky et al., 2001; Rodrigues et al., 2014; Boccaletti et al.,
2006; Terry et al., 2012) or on travelling waves in neural excitable media (Ermentrout et al., 2001;
Rubino et al., 2006; Baldzsi et al., 2003; Winfree et al., 1984). Advanced data analysis will also be
an asset, e.g. to distinguish noise from chaos (Rosso et al., 2007) and to refine power law scaling
estimates. In the meanwhile, controversies keep the field moving (Frei et al., 2010).

Finally, an example from climatology illustrates the importance of inferring whether rapid
transitions are triggered by stochastic disturbances or slow changes in environmental conditions.
The Dansgaard-Oeschger events are a series of 25 rapid climate fluctuations that occurred during
the last glacial period (Fig. 3.7). Various mechanisms have been proposed to explain their
occurrence (Petersen et al., 2013), including fluctuations of the Atlantic meridional overturning
circulation (AMOC) (Sima et al., 2004), corroborating hypothesis for their bistability (“sweet
spots” for abrupt climate changes). However, it is still not clear whether rapid shifts between
alternate states are triggered by critical slowing down mechanisms or by random occurrences (or
by a combination of both). In fact, although several studies have looked for early warning signals
associated with CSD (Livina et al., 2010; Lenton et al., 2012; Cimatoribus et al., 2013), others
observe that the statistical distribution of the events would match Poisson processes (Ditlevsen
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Fig. 3.6 Left: EEG recording (2000 Hz sampling frequency) of a Zebrafish larva’s brain activity. The
large spike is a clear symptom of an epileptic seizure triggered by PTX seizure-inducing drug. Data were
collected by A. Oldano from the Integrative Cell Signalling partner group at the LCSB (headed by prof.
Alex Skupin) and processed by L. Mombaerts in his thesis “Dynamical modeling techniques for biological
time series data”. Right: Recurrence plot (see Sec. 4.3.5) of the EEG signal, downsampled to one point
every 1000 for calculation efficiency of the algorithm from Yang (2010). Colour scale reflects the euclidean
distance between points in the embedding space. The vertical ad horizontal stripes clearly identify the
epileptic spike. Other tartan-like patterns across the plot suggest additional trends (autoregressive, chaotic
or of other kinds) that are likely not pure stochastic noise.

et al., 2007) and that, in general, no signals can be reliably recognised (Ditlevsen et al., 2010).
Potentially, future studies based on more refined data-driven techniques (Bury et al., 2021) will
contribute to mechanistic models in better interpreting paleoclimate data.
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Fig. 3.7 Time series data from ice cores samples, displaying the oscillations occurred during the Dansgaard-
Oeschger cycle. Figure from Wikimedia Commons, S. Rahmstorf, 2003. Geophys. Res. Lett. 30 1510-1514
(Creative Commons licence).
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3.4 The “prosecutor’s fallacy”

The prosecutor’s fallacy is termed after courtroom misapplications of statistical reasoning. Famous
cases associated to it are Sally Clark’s, People v. Collins 1968*, and Lucia de Berk’s’ (to name a
few). The fallacy is associated with various misinterpretations of Bayes’ theorem, describing the
probability of an event, given prior knowledge of conditions related to that event:
P(A)
P(A|B) = P(B|A)@ (3.4)
A typical example of the prosecutor’s fallacy is ignoring the scaling on the conditional prob-
abilities and equating the probability of being guilty, given the evidence, to the probability ob
observing the evidence, given the person is guilt. On the contrary, one should also consider
prior knowledge about the possibility of that person being really guilt (e.g. collected from other
hits, trials or social conditions) and of finding similar evidences for other reasons (chance, other
occurrences producing similar outputs and so on).

As EWS are symptoms of critical transitions, but not unique features to them, Boettiger et al.
(2012a) elegantly illustrated how the fallacy might apply when interpreting signals extracted from
data close to critical transitions. They reminded that the attempts to detect early warning signs for
critical transitions follow from the assumption of a slowly changing parameter, which is a different
class than stochasticity-driven transitions (as described in Sec.2.3.2). The signals associated to
different transitions are also different. Without knowing a priori which category the transition
belongs to, the risk of false positives increases. On the other hand, state-dependent noise or other
stochastic effects might modify the trends of summary statistics, so that they might be confused
for early warning signals. In this case, the fallacy argument pertains the — potentially dubious —
inference of the existence of alternative states, given the prior observation of a transition and the
measurement of EWS-like statistical trends.

An analogous problem also arises when using statistical trends, theoretically associated to
early warning signals, to infer the approach of a critical transition. Using Eq. 3.4,
P(CT)

P(EWS|CT) is what’s normally computed when assessing sensitivity and specificity in com-
putational studies and constitutes the very first step towards real-world applications. However, it
might not be immediately equal to P(CT|EWS) (the gold standard for monitoring): depending on
the system, P(CT) might be small thanks to redundancy protocols or design, while P(EWS) might
be large, e.g. due to state-dependent noise. The other way can also happen: P(CT) being large

3In 1998, S. Clark was wrongly found guilt of murdering her two sons. The prosecution case relied on flawed
statistical results provided by paediatrician prof. Meadow (https://en.wikipedia.org/wiki/Sallyclark).

4An American robbery trial, which became famous for misinterpretation of conditional probability and raised
questions about the use of mathematics in courts, that tend to host few mathematically skilled attorneys ( https:
/Iwww.courtlistener.com/opinion/1207456/people-v-collins/ and Boettiger et al. (2012a))

SLucia de Berk was mistakenly convicted for several murders, on the basis of the very low sheer probability of a
nurse shift coinciding with many natural deaths in hospitals. The value was wrongly calculated (https://en.wikipedia.o
rg/wiki/Luciagegerk)
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due to stochastic disturbances and P(EWS) being small because the system has rapidly changing
parameters or is prone to multiplicative noise. This creates ambiguity in case the dynamical
context of the system is not appropriately known and calls for complementary studies to reliably
assess the likelihoods of observing critical transitions in the real world.

3.5 Connecting my contribution to the open challenges

Unexpectedly large shifts may occur in dynamical complex systems. Theoretical results suggest
that such shifts can be attributed to critical transitions between alternative stable states. Moreover,
theory suggests that such transitions can be associated to specific behaviours of statistics indicators,
that can serve as early warning signals during monitoring procedures. However, proposed EWS
are not unique hallmarks of critical transitions and they are not sufficient nor necessary conditions
for impending regime shifts (Boettiger et al., 2013a; Boettiger et al., 2013b). The blind application
of EWS onto unknown systems has already been recognised as a potential source of incorrect
conclusions (Boettiger et al., 2012b). Instead, EWS are mathematical constructs that are expected
to provide meaningful information and good diagnosis if applied and interpreted appropriately,
within each class of critical transitions, with respect to their underlying modelling assumptions.

To properly estimate the sensitivity and specificity of various EWS (and minimise the cases of
prosecutor fallacies, cf. Sec. 3.4), a systematic analysis of the diverse dynamical contexts and
tipping regimes is thus required. Such analysis is anticipated by the “taxonomical” classification
of CTs illustrated in Sec. 2.3.2 and further carried out in Chapter 5 (from a theoretical perspective,
later applied onto biological models and data, and in Chapter 7 (testing theoretical predictions and
modelling assumptions on data from the COVID-19 pandemic).

The challenges described above and the subsequent analysis illustrated in Sec. 2.2 show that
EWS can hardly play the role of universally applicable, “model free” indicators, nor are they
forecasting tools per se (Dakos et al., 2015). Moreover, as current EWS are associated with local
minimal models (see again Sec. 2.2), they are “weak” when it comes to quantitatively predict
regime shifts. As a consequence, scholars have suggested not to look for specific thresholds
in their values, but to consider them as “resilience indicators” to rank systems according to
their fragility (Scheffer et al., 2015) or as “first pass tools” to quickly identify possibly-at-risk
situations, to be then analysed with more advanced techniques (Clements et al., 2018). In this
regard, Chapter 6 discusses how some biological mechanisms are able to buffer the variability
next to critical regimes and quantifies how trends potentially associated to EWS may subsequently
vary. Finally, Chapter 8 presents a refined model-driven method to track epidemic resurgence
using complementary data, and the lessons learned.



Chapter 4

Models and methods to analyse critical
systems

This chapter can be ideally subdivided into macro-blocks. To begin with, it presents two minimal
models that will be used in the thesis and that retain several key characteristics observed in
analysed data. Then, it discusses computational methods for simulation and analysis of stochastic
dynamical systems. Later, it presents data analysis methods, useful for both synthetic and empirical
data, including the computation of early warning signals and the performance assessment. Finally,
it provides a brief review of techniques for multi-dimensional systems, to complement those
mostly focusing on low dimensions.

4.1 Minimal models

The two minimal models described below are paradigmatic of critical transition behaviours in
systems biology and epidemiology. They are used in the thesis for examples and illustrations.
They will also be subject of deeper analysis in later chapters.

4.1.1 An illustrative biological dynamical model

Many biological systems self-regulate their functions through bistable circuits (Angeli et al., 2003).
In particular, the action of positive feedback loops in regulating bistable cellular states have long
been studied in systems biology (Smits et al., 2006; De Mot et al., 2016; Alon, 2019). They are
recognised as key dynamical processes through which cells control fundamental functions like
enzymatic activity or gene transcriptional changes during cell fate decisions (Hasty et al., 2000;
Huang et al., 2007; Fiorentino et al., 2020). Understanding such control mechanisms is an active
area of systems and synthetic biology (Acar et al., 2005; Veening et al., 2008; Pisarchik et al.,
2014; Guinn et al., 2020). Autoactivating positive feedback loop, simple circuit motifs promoting
bistability and fine regulation of dynamical states close to self-organised criticality, are particularly
relevant (Frigola et al., 2012; Tyson et al., 2003). In these regimes, cellular heterogeneity, i.e.,
random cell-to-cell variations (Komin et al., 2017) can further direct the transition (Kaern et al.,
2005; Weber et al., 2013) and lead to regime shifts between alternative stable states of gene
expression or of protein concentration. Some cells may, for example, live in the “off” expression
state of a particular gene, whereas others are in the “on” expression state (Thomas et al., 2014).
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Given the abundance of organisms self-regulating via positive feedbacks while living in noisy
environments, understanding stochastic bistable regulation is a hot sub-topic in the field of systems
biology and control (Lestas et al., 2008; Lestas et al., 2010; Norman et al., 2015). Known examples
of stochastic positive feedback loops have been observed in the transcription networks of E. coli,
(Milo et al., 2002) and in the regulation of 3-galactosidase, which results from a sudden transition
from low to high level states of the lac operon at a critical point of an inducer concentration
(Ozbudak et al., 2004). Other mechanisms for stochastic switching exist; many of them can be
immediately captured by positive feedback models (Norman et al., 2015).

A minimal rate-equation model of gene regulation, incorporating a closed-system auto-
activating feedback loop, is the following (Strogatz, 2018; Alon, 2019):

dx X"
2K
dt +C1—i—x”

The (dimensionless) stochastic equation describes the dynamics of protein production, after

—x+g()n(). @.1)

RNA transcription. x models the protein concentration, K represents the basal expression rate, ¢ the
maximum production rate, # is the Hill’s cooperativity index (Santilldn, 2008) and the dissociation
constant was normalised throughout the equation. The noise term 1) (¢) (integral representation
of a Wiener process) has the following statistical properties: (n) =0, (n(:)n(¢')) =208 —1'),
where o represents the noise intensity. g(x) can be a multiplicative function to make the noise
state-dependent. Here, only additive noise (g(x) = 1) is considered for introductory purposes.
Forms of multiplicative noise and their interpretation will be provided in subsequent chapters.

A detailed derivation and study of Eq. 4.1 is provided by Weber et al. (2013) and Sharma
et al. (2016a). A general overview is the following. Consider a circuit (sketched in Fig. 4.1)
where a single gene activates, after a stream of transcription and translation processes, its own
transcription factor TF. The TF is a regulatory protein, binding to DNA promoters in operator sites
and constructing working homodimers. The circuit is controlled from outside stimuli because
transcription is activated only by phosphorylated TF dimers; dimer phosphorylation depends on
the activity of kinases and phosphatases, which bridge external control signals.
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Fig. 4.1 Schematic picture of an autocatalytic positive feedback loop. Expression of the gene leads to the
production of proteins that, directly after oligomerisation or mediated by the action of transcription factors,
bind to their own promoter (in yellow), acting as a self-activator. In biological circuits, the expression of
the protein results from mRNA translation, which is not considered in the simplified model as its action
on the dynamics is mainly to tune time delays (Strogatz, 2018). Degradation of proteins and mRNA are
denoted by the slashed circles.

There is a natural time-scale separation between fast reactions — binding and mRNA degrada-
tion, for instance, happening in seconds — and slow transcription. Fast reactions can thus be set at
equilibrium, while slow reactions are here considered irreversible (Hasty et al., 2000). The mass
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action kinetics can thus be written as (Sharma et al., 2016a):

RV ISVA%: k
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where X is the TF protein, D and D* are the unbound and bound state of the promoter, @ denotes
degraded states (obtained with rate kqeg), n denotes cooperativity in binding (how many TF need
to cooperate to activate the promoter), R is the basal expression rate, V is the cellular volume,
ki are binding and unbinding rate constants, and k), is the protein production rate. For low copy
numbers, individual jump processes should be considered and a discrete-state Master equation
developed (Gardiner, 1985). However, if we consider a high concentration of cells, therefore
a high number of relevant molecules, we can consider concentrations as dynamical variables':
{x,d,d*} = [{X,D,D*}]. The rate equation can thus be written as (Weber et al., 2013):

dx X"

— =R+ky(d+d")—+—— —kgegX.

ar = Rkl ke

The single equation is achieved by assuming quasi-steady-state for the fast variables (see above
and Frigola et al. (2012)). Finally, Eq. 4.1 is obtained by lumping some rate parameters, setting
K = R/(kdeg v/ Kq) and rescaling x <— x/+/k>/ki and t <— kqeot into dimensionless variables.

The autoactivating feedback loop is bistable for values 0 < K < 1/31/3 and monostable for
other values (cusp-like behaviour, ¢f. Sec. A), provided that n > 2. n — oo yields the logic
approximation for the activating Hill function,

xn

an 1 +x" =06-1),

where ©(-) is the Heaviside step function that renders system (4.1) a perfect toggle without
bistability nor CSD. For many applications studying bistability in the system, 7 is therefore set to
2 without loss of generality (Sharma et al., 2016a; Weber et al., 2013).

Its vector field under the influence of ¢ was shown in Fig. 2.4, along with a visual example of
its topological equivalence to a saddle-node normal form close to the bifurcation point. The other
critical point is also a saddle-node (Strogatz, 2018; Sharma et al., 2016a), see also the bifurcation
diagram in Fig. 4.2.

4.1.2 Variations on the SIR epidemiological model

The description of diffusing epidemics inside of a populations has a long story dating back to the
’20s (Kermack et al., 1927). Depending on the disease characteristics (time scale, infectiousness,
incubation time, possibility of re-infection and so on), refined models have been developed over
the decades, including distinctions between population-based models and individual (or agent)
-based models (Frias-Martinez et al., 2011).

IThis assumption is necessary to interpret the white noise term in Eq. 4.1 as a stochastic alteration of the
“background” production of TF. Alternatively, one can use e.g. the Gillespie (2000b) formalism to derive a multiplicative
noise term for the associated Langevin equation.
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Fig. 4.2 Left: bifurcation diagram of Eq. 4.1 for n = 2. Blue lines are stable branches, red line marks the
unstable manifold. Black dots highlight the fold points. Following one branch until the bifurcation point
and coming back by following the other branch marks a hysteresis loop.

One paradigmatic minimal model is the continuous-time, mass conservative and compartment-
based SIR model (Anderson et al., 1979), see Fig. 4.3, top. “SIR” stands for Susceptible —
Infectious — Removed compartments. It assumes a homogeneously mixing population (or fully
connected networks of individuals) and addresses the evolution of mean properties of the closed
epidemiological system. The basic (deterministic) SIR is:

: SI
s=-5.

=B o1 (4.3)
R=11,

with S+ 7+ R = N = const (N is the population size). Technically, this condition makes the third
equation in (4.3) redundant. In this interpretation, S is the pool of individuals socially active
and at risk of infection; I are individuals having developed the disease and being contagious;
R Iumps those that have processed the disease, being either recovered or dead. Transmission
parameters from one compartment to another are 3, the average contact rate, and 7, the inverse of
mean contagious period. When focusing on infection dynamics rather than disease progression in
patients (Kemp et al., 2021), the latter combines recovery and death rate (Syafruddin et al., 2012).

The SIR model can be subsequently enhanced to more realistic versions, a relevant one being
the SEIR (Fig. 4.3, bottom) and its numerous extensions, see e.g. Yan et al. (2006); Arino
et al. (2005); Gatto et al. (2020); Giordano et al. (2020); Sjoedin et al. (2020). Main feature of
SEIR models is the inclusion of an “exposed” compartment E, accounting for viral incubation in
individuals who have been infected but become contagious after some time (latent carriers). The
flux to E is governed by an extra parameter «, the inverse of mean incubation period, whereas
its outflux is dependent on 7y as before. For their adequacy in describing epidemic diffusion after
latency periods, SEIR models have been especially employed for the modelling of the COVID-19
pandemic, see Currie et al. (2020); Lai et al. (2020); De-Camino-Beck (2020); Anand et al. (2020);
Anderson et al. (2020); Proverbio et al. (2021); Kemp et al. (2021) and many others.

For SIR models and their extensions, the essential control parameter is the basic reproduction
number Ry, which quantifies the average number of new cases that an infectious individual might
provoke, at the beginning of the pandemic (Legrand et al., 2007). For the basic versions of SIR
and SEIR models, Ry = 3/y (Fraser et al., 2009). For more complex models, it is sufficient
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e R

Fig. 4.3 Top: scheme of the SIR model. S, I and R are compartments, 3 and 7 the rate parameters
governing the transition among compartments. Bottom: scheme of the SEIR model, with its additional
compartment E with influx rate o.. Dashed arrows represent the feedback interaction between the S and
I compartment, triggering further infections. More complex extensions can be found e.g. in Kemp et al.
(2021).

to consider the eigenvalues of the transmission matrix to derive it (Diekmann et al., 2010; van
den Driessche P., 2017; Blackwood et al., 2018). During the epidemic progression, isolation
after diagnosis, vaccination campaigns and active mitigation measures are in action. Hence, the
reproduction number may vary in time and we speak of “effective reproduction number” R(r)
(Althaus, 2014). Estimating R(r) has practical purposes as a quantitative proxy for the main
stressors on the healthcare system (Giordano et al., 2020; Sjoedin et al., 2020; Ferguson et al.,
2020) and on the economic system (Alvarez et al., 2020; Atkeson, 2020; Altig et al., 2020;
Burzynski et al., 2021).

Moreover, R(t) acts as a bifurcation parameter for the equilibria of epidemic dynamics:
R(¢) = 1 marks a transcritical® bifurcation from disease exponential diffusion R(¢) > 1 to disease
elimination R(¢) < 1 (O’Regan et al., 2013; Kuehn et al., 2011). Fig. 4.4 shows an example for a
SEIR model from Proverbio et al. (2021): the fixed parameter f3 is tuned by p, with varying values,
possibly over time. Consequently, R = Bp /7. For values of p such that R(¢) > 1, we observe an
exponential epidemic diffusion (which eventually fades due to depletion of the S compartment);
when p = p; ,s.t. R(t) < 1, the disease is immediately eliminated (Fig. 4.4, left). Fig. 4.4 (right)
shows the bifurcation diagram between the equilibrium values at peak (both for I and I+E curves)
versus p.

Interpreting epidemic diffusion in the critical transitions framework, in search for alerting
signals of regime shift to complement the monitoring indicator toolboxes, is therefore an active
area of research (Brett et al., 2017; Brett et al., 2018; Dessavre et al., 2019; O’Regan et al., 2016;
Brett et al., 2020b; Southall et al., 2020). Likewise other system, it is paramount to verify the
relevance of the slow-fast system hypothesis (see Sec. 2.2.4) and to properly consider the noise
properties associated with the considered models, in order to assess and interpret the performance
of EWS in real-world scenarios. Both tasks will be performed in dedicated chapters (7 and 8).

4.2 Simulate and analyse noisy dynamical systems

This section provides an overview of computational methods and resources to support the analysis,
investigation and simulation of stochastic dynamical systems.

2Transcritical bifurcations emerge from minimal models. Additional compartments, coupling and dynamics on
networks may yield saddle-node or backward bifurcations, or even richer dynamics (Zhang et al., 2016; Zarei et al.,
2019; Widder et al., 2016; Horstmeyer et al., 2018; Herrera-Valdez et al., 2011).



66 Models and methods to analyse critical systems

a) Curve of Daily Infectious, for different p a) Peak of daily cases vs p

p=0.1 —— Peak of | curve

p=102 Peak of (E+ 1) curves
p=10.3
p=04
p=105
p=106
p=107
p=10.8

N
AN

©

o

N
L

©

o

o
1
=]
N
o

o e e ©° o
o o o o o
= [ IS o
L L L L L
e e e
o = N
& =) o

Daily infectious (population fraction)
Height of daily cases peak (fraction)

o
o
o
L
o
o
=)

T T T T T T T T T T T T T
0 50 100 150 200 250 300 0.0 0.2 0.4 0.6 0.8 1.0

Time (days) p

Fig. 4.4 Left: evolution of curves of infectious individuals I in a SEIR model, for different values of p
(tuning of B, such that § — pf in Eq. 4.3). The grey area indicates the initial simulation phase, with
p = 1. Right: equilibrium values at peak (both for I and I+E curves) versus p. In this case, p = 0.4 is
a critical value, yielding R(¢) = 1 (the dependency over time is explicit only if p = p(z), at least under
slow-fast assumption). Other parameters values are fixed to COVID-19 relevant ones: 8 = 0.85day™!;

o =0.2day""; y=0.34day™!, so that Ry = 2.5 (Liu et al., 2020b; Wu et al., 2020). Refer to the original
publication (Proverbio et al., 2021) for further details.

4.2.1 Bifurcation analysis

To determine bifurcation existence and properties, analytical methods check for critical values
of control parameters and stability of the corresponding equilibria (see Appendix A). Graphical
methods to inquire the behaviour of dynamical vector fields under the action of relevant parameters
can also be employed (Sec. A). In addition, computer algorithms can support the analysis.

Custom algorithms can be programmed to repeat the steps of identifying equilibria and check
their local stability. Robust and efficient softwares, also providing additional insights on parameter
dependencies and branch analysis, are also available for the community:

* XPP/XPP-Aut is a program running under X11 and Windows to solve a vast array of
differential equations and perform branch analysis. It is freely available here: http://www.
math.pitt.edu/~bard/xpp/whatis.html.

* MATCONT is a continuation and bifurcation software that primarily comes as a toolbox for
MATLAB and is powered by a GUI (Dhooge et al., 2003; Meijer, 2014; Ravnas, 2008).

* The Julia language bifurcation kit (https://rveltz.github.io/BifurcationKit.jl/dev/) recently
got upgraded with a branch switching continuation library. It is available here: https:
//rveltz.github.io/BifurcationKit.jl/dev/branchswitching/. The automatic bifurcation dia-
gram computation (https://rveltz.github.io/BifurcationKit.jl/dev/BifurcationDiagram/) is
still under development at the time of writing.

4.2.2 Simulations

For numerical integration of deterministic systems (ODE), robust methods have been implemented
in numerous software libraries. The simplest one is the first-order Euler method. Its basic idea
is to approximate a continuous curve for the dynamical evolution with a series of small steps,
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computable by finite-state machines. It truncates the Taylor expansion for a function at first order
and employs a time discretization in any desired time interval [0, T:

Yn+1 = Yn +hf<tnayn)

“4.4)
t, =to+nh.

Here, every new value at step n+ 1 for the variable y is iteratively computed, updating its past
value with a small increment of its evolution law. & < 1 is the size of every small step. It should
be chosen such that the resulting simulations are independent to its variations (they are stable,
Bathe et al. (1972)). The Euler scheme is rather basic. Further refinements have been developed
over the years, including the 4th order Runge-Kutta integration methods and other correction
methods to consider stiff, delayed, ... ODE:s.

Numerical simulations of stochastic differential equations (SDE) derive from the original
idea of the Euler method, of iteratively solving a truncation of an adequate expansion. The two
most employed methods are the Euler-Maruyama and the Milstein (Bayram et al., 2018; Zahri,
2014), both based on running Monte-Carlo chains over truncated Ito-Taylor expansions. For the
following explanation, consider a one-dimensional SDE in the form?:

dz=f(t,z)dt +g(t,2)dW(t) 1t <t<T “s)
z(to) = 20

The Wiener process dW satisfies the conditions of W (0) = 0, each increment is independent on
distinct time intervals, and W (t) — W (¢') ~ /|t —¢'|.4#7(0,1) (see Sec. A for further details). The
Itd6 lemma (Gardiner, 1985; Bayram et al., 2018) allows to expand Eq. 4.5 as:

2(6) = x2(t0) + £ (2(t0)) / dt +2(2(to)) / "W (1) +
1

+58(2(10))g'2(t0) {W (1) = W (10)]* = (t —10) } + rem  (4.6)

Here, rem is the remainder containing higher orders of expansion. The numerical integration
scheme employs a time discretization of the time interval [0, 7] into N steps of size At = T /N:

2(ti+1) = 2(1;) + f(2(t)) At + g(2(1;) ) AW; + %g(z(t,-))g’(z(t,-)) [(AW;)? — At] +rem. (4.7

AW; =W (t;+ 1) —W(t;), for each i = 0,1,...N — 1, are independent random variables from a
distribution .#(0, At). Initials conditions z(#y) = zo should be specified.
As anticipated, the Euler-Maruyama scheme truncates at first order, thus requiring:

Z(ti+1) = z(t:) + f(z(t)) At + g(z(t;) ) AW; . (4.8)

3Just here, z is used to distinguish between a generic stochastic variable and the deterministic variable y in Eq. 4.4.
Later in the thesis, the usual x will be mostly employed.
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The Milstein method considers the second term as well, resulting in:

2(ti+1) = z(t:) + f(2(t)) At + g (z(t:) ) AW; + %8(1(%))8'(1(6)) [(AW,)? —Ar];. (4.9)

It better converges to the true It6 integral and was proven to have improved accuracy (Bayram
et al., 2018). A gentle introduction to the method is provided on https://hautahi.com/sdesimulation.
Note that, when g(z(r)) = const (only additive noise without state-dependency), the two methods
are equivalent.

4.2.3 Fitting

Fitting a dynamical model to data essentially means finding the best parameter values such that
the model reproduces the observations. To this end, many methods are available (Schittkowski,
2002). Here, two of them — used in publications — are briefly reviewed.

Least-square method

Fitting a single parameter formally means minimising the distance between simulated values and
measured values. Such distance can be defined in terms of several functions, of which the root
mean square is the most employed for practical and theoretical reasons (Taylor, 1997). In the
example of a single parameter g, its best fit value g is such that

G={q |RMS= miln\/ i (x(’i_x(’))z : (4.10)
q
X and x are, respectively, observed and model-predicted data, and N is the number of considered
points.
Building on this, several libraries have been developed for various languages. Python hosts
the /mfit library for nonlinear curve fitting; MATLAB has a Curve Fitting toolbox available and
many other resources.

Bayesian Markov-Chain Monte-Carlo

A more advanced fitting technique is based on Bayesian inference implemented by means of a
Markov Chain Monte Carlo (MCMC) approach. It allows to identify the probability distribution
associated to each parameter, therefore computing their most likely values and uncertainties, as
well as the constraints on their combinations in the parameter space. It is thus more suited in case
of multiple parameters, whose identifiability (Gallo et al., 2021) is maybe uncertain.

First, defining a likelihood function for the MCMC is necessary. A common one is the sum of
square residuals (SSR) like above::

|:xdata (l) _xmodel (i,f) 2 . (4.11)

=

SSR (T|data) =
1

7T is the array of parameters, i € [1,N] counts the data points, x?¥“ and x°?¢/ are measured and
simulated data, respectively. The SSR is related to the reduced %2, both being ways to measure the


https://hautahi.com/sde_simulation

4.2 Simulate and analyse noisy dynamical systems 69

geometric distance between model simulation and data. In addition, a prior probability distribution,
which will be iteratively updated into a posterior following Bayes’ rule over the chain, should be
included. Unless specific priors are known for some parameters (e.g. because of certain constraints
or previous studies), flat priors are common choices.

Several sampling techniques can be employed to compute the chain and propose values to
the Monte-Carlo sampler. They need to converge fast and to be robust. One employed in two
recent publications (Proverbio et al., 2021 and Kemp et al., 2021) is the Delayed Rejection
Adaptive Metropolis (DRAM) scheme (Haario et al., 2006), from the python package pymcmecstat
(Miles, 2019). It combines two powerful ideas: adaptive Metropolis samplers — which adapts
the covariance matrix of the proposal Gaussian distribution at specified intervals — and delayed
rejection — which delays rejection by sampling from a narrower distribution. Robustness is ensured
by running several chains in parallel for thousands of iteration steps (after some burn-in period).
Convergence of the chain can be assessed by diagnostics such as the Gelman-Rubin’s (Gelman
et al., 1992; Brooks et al., 1998). It analyses variances within each chain set and between each
chain set and returns values of the so-called “Potential Scale Reduction Factor (PSRF)”. If such
values are very close to 1, the chain had converged.

4.2.4 The Kalman filter

The Kalman filter is an efficient estimator for state variables. It is an algorithm using time-series
measures of observed data, including noise and other inaccuracies, and outputs estimates for
unknown variables. It tends to be more accurate than estimates based on a single measurement
alone, as it calculates joint probability distributions over each variable and for each timeframe
(Kalman, 1960).

The filter is based upon a dynamical model, known control inputs for the system of interest,
and sequential measurements. Its goal is to estimate its state variables, updating their values
as new data come in. In addition, it uses estimates of covariance to account for noisy data and
uncertainties. That is used to weight the contribution of each output to the state estimate. The
reciprocal weights are also termed the Kalman “gain”. With a high-gain, the filter weights the
most recent measurements more, and is thus more responsive to conform to them. Low-gains,
on the contrary, produce smoother but less responsive results (higher “inertia” to changes). The
algorithm is repeated recursively. An illustration is provided in Fig. 4.5.

Kalman filters based on linear equations are optimal estimators for linear systems and work
well as signal processing tools. Further extensions have been developed which, even though
not proven optimal, deal effectively with the problem of outputting model simulations that are
representative of uncertainties-prone real system observations (Humpherys et al., 2012). One
such extension, later used in this thesis, is the Extended Kalman filter (EKF), which allows to
use non-linear dynamical models. The EKF has been a standard tool in systems theory, with
many applications ranging from automated control (Stovner et al., 2018) to finance (Davis et al.,
2013), bio-mechanics (Marchesseau et al., 2013), time series analysis (Harvey, 1990), epidemic
reconstruction (Proverbio et al., 2022b) efc. It enables estimating state variables and parameters
in a continuously updating fashion, as well as to perform predictions forward in time using the
estimated parameters and stopping the filtering process. When coupling the filter with ODEs, they
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Fig. 4.5 Schematic illustration of the Kalman filter algorithm. It starts with some prior assumption for state
variables, then makes a prediction; that is compared with measurements and, if necessary, an update step
takes place. Predictions and comparisons are performed on the full joint probability distribution, so that the
filter tracks not only the mean value of the state, but also the estimated variance. Image from P. Aimonen,
https://commons.wikimedia.org/wiki/File:Basic.oncept,fxalmangiltering.svg (Creative Commons licence).

are usually discretised beforehand for ease of computation. An implementation of the Extended
Kalman filter is provided in Chapter 8.

4.3 Evidence for bistability and abrupt transitions: methods

As introduced in Sec. 3.1.2, inferring whether a system is bistable or not (and might thus undergo
critical transitions) from observational data might be challenging. Without repeating the limitations
of this approach, already discussed in Sec. 3.1.2, this subsection reviews different methods that
can be used to gain evidence for bistability and alternative states in time series data. As a toy
example, some methods are illustrated with applications on simulated data from Eq. 4.1.

4.3.1 Increasing bimodality

If multiple observations of the variable of interest are available over the desired time period,
observing the evolution of the probability density function over time would provide information
of the system becoming increasingly bimodal (Wang et al., 2012a). This, in turn, is an insight
about the system exploring different equilibria, separated by a potential barrier instead of being
constrained in a single equilibrium of diffusing over the whole state space (Shi et al., 2016). An
example of increased bimodality observed over time series is presented in Fig. 4.6.

Obviously, the same analysis can be carried out when repeated experiments, ideally covering
one parameter value at a time, are available. In that case, it’s not even necessary to assume that the
windows over a time series are covering the same quasi-steady state parameter values. Common
methods are Gaussian mixture models (Trefois, 2014). Articles employing the distribution method
to inquire bifurcation properties of cell-differentiating systems are, for instance, Mojtahedi et al.
(2016); Eugenio et al. (2014).

Bifurcation-driven transitions in bi-modal systems

Although necessary, observing bimodality with this method is not sufficient to conclude that a
system might undergo a critical transition driven by a fold. In fact, the system behaviour may be
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Fig. 4.6 Left: One example of simulated time series data, from Eq. 4.1, sampled every 30 time points. ¢
=0.1. Simulations are performed from low to high parameter values, including the critical one. In different
colours, the time windows used to estimate the density functions on the left. Right: Example of observing
bistability arising at different times. The density functions (normalised as probability) are computed over
windows at different times (see right figure). We can then appreciate a mono-modal distribution becoming
bi-modal and then mono-modal again when the system settles into a new equilibrium.

well represented by smooth bifurcations exhibiting, at most, noise-induced transitions between
their branches. Fig. 4.7b shows such a case, comparing noise-induced and bifurcation-induced
transitions in a supercritical or subcritical pitchfork bifurcation (whose forms are reported in
Fig. 4.7a).

Fig. 4.7c displays the theoretical evolution of the probability density function, for each
quasi-steady-state value of the control parameter and for both bifurcations. If sufficient and
sufficiently fine-grained data are available, fitting them with one predicted distribution or the
other and performing a model selection procedure could help determining which bifurcation is
more probable. One such preliminary step, distinguishing between a null model and a cusp, was
performed by (Eugenio et al., 2014). Future works might test whether a subcritical pitchfork
bifurcation (which is discontinuous also at the end of the first stable point) better explains certain
differentiation processes.

4.3.2 Potential analysis

Related to the search for bimodality, potential analysis strives to reconstruct the stochastic potential
landscape for the system of interest. It can be based on reconstructing the dynamical framework
(Livina et al., 2010) or on entropy features (Wang et al., 2010), or on combinations and further
methods (Zhou et al., 2012; Nolting et al., 2016).

As the present thesis is based on dynamical theory, let us sketch the basic idea of the dynamical
approach — next to criticality. Assuming a Langevin dynamics like:

dz=—U'(z)dt + cdW 4.12)

where U (z) is a potential function of the state variable z and U’ its derivative, ¢ is the noise
intensity and W a standard Wiener process. Its corresponding Fokker-Planck equation for the
probability density function P(z,7) is given by:

0:P(z,1) = 3,[U' (z)P(z,1)] + %ozafp(z,z) , (4.13)
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Fig. 4.7 Two contrasting transitions mechanisms in bimodal systems, following a supercritical (top) or
subcritical (bottom) bifurcation. (a) Naming and normal form of the two considered bifurcations. Both
present an unfolding term (g) to represent asymmetries and “accidents” that can be encountered in real
systems. (b) Bifurcation diagrams, with ¢ = 0.1 (blue: stable; red: unstable). The arrows indicate possible
paths for a transition. Solid: smooth (on upper branch of supercritical); solid bold: critical (fold, towards
upper branch of subcritical); dashed: noise-induced. (c¢) Probability density functions ¢ (x), for increasing
quasi-steady-state parameter p values, assuming Gaussian noise added to the normal forms. ¢ (x) is given
by the formula on top-right corner, see Sec. B and Eugenio et al. (2014), and for fixed noise intensity.

which has a stationary solution (Gardiner, 1985):

—2U(z)

P(z)~e o (4.14)

If the probability density function can be empirically reconstructed using the data (call it py),

inverting Eq. 4.14 yields:
2

(02
U(z) = —— logpa (4.15)

Beyond the basic sketch, Livina et al. (2010) used a more refined polynomial fit to determine
pa and U(z), assuming gradient functions, while Zhou et al. (2012) reviewed computational
methods to reveal the landscape in non-gradient systems. They also suggest a new decomposition
of vector fields to compute a quasi-potential function that is consistent with Freidlin-Wentzell’s
theory (Freidlin et al., 1979) but is not limited to two attractors.

Potential analysis is becoming widely applied in the biological sciences and would reveal
if multiple attractors exist and, ideally, quantify their depth and stability. Under the assumption
that they can be dynamic under parameter changes, reconstructed bistable potentials are basic
conditions to observe critical transitions.
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4.3.3 Sequential analysis

Sequential analysis (Wald, 1945) is a type of statistical analysis where the sample size is not fixed
in advance but progresses as new data come in. At a certain point, the sampling might be stopped
according to a certain criterion to define a significant result. Wang et al. (2012a) used a Student’s
t-test with p < 0.01 to identify if and when a breakpoint happens in shallow lakes time series data.

4.3.4 Changepoint detection

This method is somewhat related to sequential analysis as it involves looking for clustering
conditions, specifically on time series data. Assuming that the time series can be described as a
piece-wise function, several algorithms have been designed to search if and when a change-point
occurs, based on similarity criteria (Truong et al., 2020).

In python, at least two packages are dedicated to changepoint analysis:

* The rupture library* was adapted from a similar package in R. It uses various search methods,
including Pruned Exact Linear Time (PELT) (Wambui et al., 2015), Binary segmentation
and Window-based. In a nutshell, those methods use different algorithms to find if splits
exist in the time series, either consider it wholly or by computing discrepancies between
adjacent bucks of points. This library is particularly suitable for off-line detection of change
points.

* The changefinder package’ applies a sequentially discounting autoregression time series
modelling (SDAR) (Saaid et al., 2012). It extends autoregressive models, where old
data weight less (are “discounted”), and searches for discrepancies between predicted
and observed data, outputting anomaly scores. The authors suggest that this method is
particularly suitable for on-line detection.

MATLAB also has a few libraries available:

* findchangepts® detects when a statistical property of a signal changes abruptly, by minimis-
ing the residual errors from a parametric global method. It allows choosing among various
properties (mean, standard deviation, spectral characteristics etc.) and is very versatile for
off-line detection.

» ischange’ follows a split-search method to subdivide the time series in piece-wise functions,
based on thresholding upon the variance. It is slightly simpler than findchangepts, but more
easily implemented for on-line detection. Fig. 4.8 displays two examples of change point
detection using ischange: one, using simulated data from Eq. 4.1, the second from real data®
of SARS-CoV-2 abundance in wastewater samples, proportional to active positive cases,
whose dynamics is associated with a passages through a transcritical bifurcation (O’Regan
et al., 2013).

“https://github.com/deepcharles/ruptures

Shttps://github.com/shunsukeaihara/changefinder

Shttps://nl.mathworks.com/help/signal/ref/findchangepts.htm]

7https:/nl.mathworks.com/help/matlab/ref/ischange.html

8Data are provided by the Research Luxembourg COVID-19 initiative CORONASTEP (researchluxembourg.lu/co
ronastep) and are aggregated at https://gitlab.lcsb.uni.lu/SCG/cowwan.
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Fig. 4.8 Using MATLAB’s ischange algorithm on different data sets. Left: Simulated data from Eq. 4.1;
o =0.1. Threshold for ischange is set equal to 3c. The metod correctly distinguishes between the two
regimes and identifies the change point. Right: Real data of SARS-CoV-2 abundance in wastewater
samples from Luxembourg (log scale). Data points are ordered sequentially and no in time, as the sampling
frequency might differ over the year. Threshold for ischange optimised to reproduce the first two waves
of infection and then kept fixed for later data. The algorithm identifies changes in dynamics (decreasing,
increasing, stable) associated with passages through transcritical bifurcations of the underlying epidemic
dynamics (cf. Sec. 4.1.2).

In a similar spirit to SDAR modelling, Wang et al. (2012a) looked for changes between the
observed time series and the predicted evolution using an ARIMA model. When the discrepancy
becomes significant, the authors identify the transition.

Despite the power and usefulness of changepoint algorithms, care should be maintained in pre-
processing the data and in distinguishing between smooth and abrupt transitions, as exemplified in
Fig. 3.1.

4.3.5 Embedding and recurrence plots

Reconstructing the state-space where the dynamics evolves can provide additional insights. Tak-
ens’s theorem (Takens, 1981) provides conditions to reconstruct a delay embedding of the original
attractor from observations made with a generic function. In this case, the embedding is a geomet-
rical object that preserves important morphological properties of the original attractor, but does
not preserve the geometric shape of the structures.

The time-delay embedding theorem provides a convenient (though not unique) representation
of the embedded attractor in terms of delay coordinates. In this case (assuming discrete sampling
of the observed system), a delay vector is:

y(k) = [y(k),y(k—1),...,y(k— (d. — 1)T)]", (4.16)

where k is each time point considered during the reconstruction, 7 is a chosen delay and d, is the
embedding dimension.

This popular method has been used to unveil and classify data patterns in various natural
systems (Sugihara, 1994; Sugihara et al., 1999) and, more recently, to inform non-linear dynamics
forecasting (Ma et al., 2014; Shi et al., 2021). The use of Takens’s theorem to detect — and possibly
anticipate — critical transitions primarily resides in reconstructing a “typical” attractor space and
searching for trajectories that diverge from it. Although appealing, this method can be limited in
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practice. The biggest challenge is how to derive an effective embedding dimension d,. Indications
and conjectures point to the use of diagnostic measures like entropy and nearest-neighbours of
embedding, but they might not be unique or require additional meta-parameters. In addition,
natural noise could make many algorithms fragile and poorly reproducible.

After the embedding is obtained, several methods and metrics can be used to identify diverging
trajectories or changing patterns. Metrics include distance metrics and other dynamical indicators
like cross-entropy and Lyapunov’s exponents. However, preliminary results on epileptic EEG data
were not able to extract reliable detection signals because of the low signal-to-noise ratio (see the
thesis “Dynamical modeling techniques for biological time series data”). Future studies might
better quantify the detection performance of such metrics in different systems.

For oscillatory systems like heart rhythms (Babinec et al., 2005), a common method is using
recurrence plots (Eckmann et al., 1995). The plot is a graph of y(i) ~ y(j) for every pair of
time points i and j. It shows, for each moment i, the times j at which a trajectory visits a
neighbourhood of the phase space as at time j. Instead of immediately defining a threshold & for
the neighbourhood, such that

RG.j) = {1 [x() = x(j)l|< 8 1)

0 otherwise,

for each plot pixel R(i, j), modern algorithms display colourmaps for R(i, j), colour-coded accord-
ing to the distance ||x(i) —x(ij)||. An example is shown is Fig. 3.6.

Recurrence plots are useful to visualize periodic patterns (diagonal stripes, spaced according to
the harmonics), chaotic data (with point “islands” depending on the route to chaos (Ott, 2002)),
multiple trends at different timescales (visual structures), etc. Regions that clearly stand out
from the rest help to visually identify qualitative changes in the oscillatory behaviours and might
indicate dynamical transitions (although noise might confound the plots which should therefore
be carefully interpreted).

4.3.6 Methods for multi-dimensional systems

The methods described above mostly apply to one-dimensional data evolving over time. When
several variables are measured at a time, and it is not clear which is of primarily interest, or
suspects exist that transitions might happen to combinations of variables, other methods could be
employed. As such methods have not been deeply investigated during the present project, this
subsection presents a rapid list.

* Phase space analysis: If more than one variable is available (in multi-dimensional or
networked systems, for instance), looking for clusters in their respective phase space (or
PCA-ed spaces), and confirming that there is a temporal flow along those clusters, might
help uncovering stable states and transitions between them. One such example is provided
by Wang et al. (2012a).

* Weighted multidimensional recurrence network: suggested by Heino et al. (2021), this
method observes whether variable states can be wired to the same states occurring at later
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time, thus observing the recurrence of the same configurations over and over, providing
evidence for attracting states.

¢ Attractor reconstruction: there are several methods available to reconstruct an attractor
using high-dimensional observational data, e.g. Takens’s theorem (see above and, e.g.,
Noakes (1991)) or landscape reconstruction methods.

* Ad hoc indexes from dynamical theory: a line of research is developing indexes, based on
dynamical considerations and expert knowledge about specific biological systems, whose
trend is expected to provide evidence for the existence of critical states in high-dimensional
systems. The underlying idea is to obtain combinations of EWS (from low-dimensional
system), based on considerations about the network structure of the considered systems.
After that, magnify the signal associated with a critical state by using expert knowledge.
For further details, we refer to the original publications (Aihara et al., 2022; Chen et al.,
2012b; Mojtahedi et al., 2016; Yan et al., 2021).

* Dimension reduction and mono-dimensional techniques: the methods described above
can be employed after mono-dimensionalising the data. This can be achieved using e.g. PCA
or MAF techniques (Weinans et al., 2019), that is, looking for the phase space direction that
retains most of the variance or of the autocorrelation. Alternatively, some of the methods
described in Sec. 4.7 can also be employed.

* Eigenvalues of the covariance matrix: instead of reducing the dimension and then comput-
ing indicators associated with critical transitions, one might directly employ the eigenvalues
of the covariance matrix (if it is possible to infer it from multiple time series). The eigenvec-
tor associated with the largest eigenvalue helps uncovering the direction of lowest resilience,
while its evolution might provide indications about a potentially upcoming transition (Chen
et al., 2019).

4.4 Methods for detrending data

As introduced in Sec 3.2.4, different methods to detrend the original time series have been proposed
and employed in studies on critical transitions. In this section, some of the most commonly used
methods are listed, presented and discussed. Although some analysis about their impact in the
signals performance have been recently published (Lenton et al., 2012; Kuehn, 2013; Dessavre
et al., 2019; Dakos et al., 2008; Proverbio et al., 2022c¢), there is still little consensus on which
should be preferred. Moreover, several methods include meta-parameters to be adjusted: when
repeated studies are possible, such parameters might be viable to optimization; otherwise, educated
guesses are expected to guide their selection. For discussion about challenges in data detrending
and in using moving windows over time series, refer to Sec 3.2.4.

4.4.1 Moving average

A commonly used method is to filter the data with an uniform moving average, so that a data point
belonging to the smoothed time series, z(¢), is given by the unweighted mean of k original data
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points x. k defines the width of the rolling window used to filter the original time series. In case of
a non-anticipative rolling window, the smoothed point derives from past data:

1 t
Z(t):% Y, x(7) (4.18)
t'=t—k

This ensures that the smoothing is non-anticipative, but might induce shifts in time (variations
in the mean are not aligned with the variations in the data). In this case, the window size k is
usually a meta-parameter to tune. Previous literature studies (Kuehn, 2013; Dessavre et al., 2019)
suggest choosing window sizes that are not too big (which would require much of the available
data), but not too small either. In the latter case, the ergodic assumption might not hold anymore;
in addition, it might miss important trends for noisy indicators like AC(1).

4.4.2 Gaussian filtering

It uses a filter with a Gaussian impulse response, and corresponds to convoluting the original
signal with a kernel given by a Gaussian function like:

1 2
gx) = \/ﬁcezﬁ2 (4.19)

where o is the standard deviation. In computer applications, the Gaussian kernel is usually

truncated within rectangular moving windows. Both the size of the window and o are meta-
parameters to be adjusted. Similar considerations to the moving average case apply. Most filtering
engines in popular languages allow to centre the kernel or not: the choice depends on whether the
study is performed in a non-anticipative setting (mimicking an on-line mode) or not.

4.4.3 Lowess/loess smoothing

Lowess stands for “locally weighted scatterplot smoothing”; loess for “locally estimated scatterplot
smoothing”. These methods imply a non-parametric local non-linear regression. The difference
lies in that loess relies on weighted quadratic least squares regression, while lowess uses a weighted
linear least squares regression. In recent computer implementations, they might be treated as
synonyms (or as current and predecessor).

The lo(w)ess method (Cleveland et al., 1990) implies evaluating the value of f(x) (for each x
of the time series) by using its k neighbouring samples,determined by a K-Nearest-Neighbours
(KNN) algorithm. The “bandwidth” k is a meta-parameter determining how much of the data
is used to fit each local polynomial; in practice it tunes statistical bias and variance. The most
common weighting among neighbouring points is given by the tri-cube weight function:

{(1—|x|3>3 < 1

0 [x|> 1,

(4.20)

aptly normalized by its highest value. Then, the algorithm performs a linear (lowess) or quadratic
(loess) regression among the k-identified points, using the weighting above.

This method is mostly employed as an interpolant. Using it for on-line studies might require
enforcing the use of past data only, especially when using public libraries that would otherwise
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use all locally available points. An option is to superimpose an additional window, that truncates
the time series at “horizon” values, and then run the lo(w)ess on this subset data.

4.44 ARIMA detrending

The ARIMA is an alternative class of interpolant (also used for forecasting) that uses a more
global algorithm than the loess’. ARIMA stands for AutoRegressive Integrated Moving Average
(Hillmer et al., 1982) and is widely used to separate short- and long-term trends in non-stationary
time series data. Each element of the model is encoded by a meta-parameter (p,d,q). Hence,
several ARIMA models exist depending on the parameters’ combinations, and are identified
as ARIMA(p,d,q). Any parameter can be set to O to get simpler ARMA, AR, I or MA models
(Brownlee, 2017).
In a complete ARIMA(p,d,q) model, the autoregressive part, i.e. linear regression using past data
to anticipate future ones, is modulated by p, which counts how many lagged observations are to
be taken in: )

X = c—l—Za,-x,,,-+8, ) (4.21)

i=1

where the subscript ¢ denotes a discretization of data points, € corresponds to the assumed white
noise and a; are the regression parameters.
To eliminate trends and stabilize the mean, the model performs differencing of raw observations
(hence, the overall integration); the number of times that the raw observations are differenced is
tuned by d. The first order considers:

i =Xi—Xi—1, 4.22)

the second order goes to
zi = (6 —xi-1) = (xio1 —Xi—2) (4.23)

and so on. d = 1 addresses linear trends, d = 2 quadratic trends etc.
Finally, g is the size of the moving average window used to compute the residuals.

Optimising (p,d,q) means choosing parameter combinations such that i) the filtered data

are stationary and ii) the residual mean and standard deviation are minimised. The first point
fixes d, while the second point helps fixing the other two parameters and can be assisted by
additional diagnostic tools such as Partial AutoCorrelation Functions (PACF). ARIMA toolboxes
and libraries are present in the most common programming languages that support statistical
analysis.
In general, the ARIMA is very sensitive to various degrees of inner trends contained in the data
and can be a good tool to inquire time scale separations. On the other hand, they are more
computationally expensive and require optimization steps necessitating abundant data availability.
The remarks about using it for on-line purposes are closely related to those of loess (see above).

4.4.5 Model-based detrending

Theoretically, if a complete model is available, the use of generic early warning signals is
undermined (c¢f. Ch. 1). However, scholars might still want to calculate such estimators as a
validation step of the model choice, or to derive alternative signals to strengthen the observations,
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or to derive other useful statistics. In this case, it is possible to fit? the underline dynamical model,
estimate its parameters and get the residuals as:

r(t) =x(t) —z(t) (4.24)

where r(¢) identify the residuals, x(7) are the original data points and z(¢) are the values estimate
using a dynamical model. To apply the procedure routinely, as soon as new data come in, a
Kalman filter (Kalman, 1960) can also be employed, see Sec. 4.2.4.

4.5 Calculate statistical indicators for early warning signals

Estimating the statistical indicators to extrapolate potential early warning signals is rather straight-
forward, as they correspond to statistical measures often extracted from time-series or distributional
data (Dakos et al., 2012a).

For time series, it is first necessary to detrend the time series, as explained above. Subtracting
the obtained moving average, which should be representative of the deterministic trend, from the
original data returns the “residuals” (or detrended fluctuations), upon which one can calculate the
desired indicators. To perform a non-anticipating analysis, the indicators should be computed on
backward sliding windows, such that the associated time point is the rightmost one. This way,
all estimates are agnostic of future values. Caveats about detrending and moving windows have
been anticipated in Sec. 3.2.4. Derivation and interpretation of statistical indicators, as well as the
underlying mathematical assumptions — including ergodic hypothesis — are described in Sec. B.

All EWS indicators are then estimated on the residuals. For instance, the variance is given by:

. 1 ! A
Var“mel-,t = m Z (A,'7S —Ai75)2

S=to

(4.25)

~

for any time point i with data A, over a sliding window with size t — ¢y including M time points. A
is the moving average.

Similarly, one can estimate any other moment E[x"], as well as autocorrelation at desired lag,
power spectral density and entropy features. Alternatively to detrending and subsequent analysis,
if one suspects that multiple time-scales are convoluted in the data, processing the data with
Fourier or Wavelet transforms (Rosso et al., 2006; Coifman et al., 1992; Wittenberg et al., 1999;
Abdel-Hamid et al., 2016; Meisel et al., 2012b; Kirby, 2005), and then estimating the indicators
at each basis frequency, could be an option. Although potentially useful to look for fine-grained
patterns in the data, this could come with reduced interpretability and transferability to new and/or
unknown contexts.

When distributions, associated to each slowly varying value of the control parameter(s) are
available, the ergodic hypothesis is easily satisfied and it is not necessary to resort to sliding
windows. Instead, all statistical indicators can be immediately calculated from the distribution.

9Fitting methods can range from least-square to more advanced maximum likelihood methods informed by Markov
Chain Monte Carlo samplers, see Sec. 4.2.3.
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This can be the case for data from e.g. single-cell techniques (Kolodziejczyk et al., 2015), in the
assumption that they represent distributions around mean values, for each sampling time-point (at
least, until mono-modality is maintained). For instance, variance is:

Var{s" = N1 Y (B;,—B))* (4.26)
for any point j corresponding to a single parameter value, with N data B distributed around a

mean value B. Other statistical moments and indicators can be computed similarly (Dessavre
et al., 2019).

4.5.1 Quantification of theoretical trends and EWS

Statistical indicators per se are not early warning signals. In fact, it is their theoretically expected
increasing trends, associated with the CSD phenomenon, that could provide EWS (see also Sec.
B). Similarly, it is the reddening of the power spectrum that may provide a warning. It is therefore
necessary to go beyond simple visualization of trends in indicators and to quantify them. Two
methods have been commonly suggested, especially for time-series data: looking for an indicator
to pass a number of 67,45 beyond its basal standard deviation (Dablander et al., 2022; Dessavre
etal., 2019), or to look for the Kendal’s 7 score (Boettiger et al., 2012a; Southall et al., 2020; Brett
et al., 2017; Clements et al., 2016b; Wang et al., 2018). An additional method, akin to checking
for deviations from basal 07,4 and especially useful for distributional data, involves looking for
significant p-values between “basal” and subsequent distributions. Below, a brief presentation for
each method is provided.

* Looking for 6y, thresholds (“Ind” stands for “Indicator”, to distinguish from noise level o).
Normal systems’ activity (far from bifurcation points) is associated with variance and other
indicators fluctuating to low values. Such small fluctuations are associated with an average
trend and a standard deviation oy,, around it. Take that average value as reference. Then,
consider when an indicator increases past a - 07,4, Where a can either be defined a priori
using common statistical knowledge (e.g. a =2 or 3), or it can be determined a posteriori
to optimise some detection performance like AUROC (see below). An example is provided
in Fig. 4.9, left. This method is quite intuitive and helps associating warnings wit absolute
values of indicators; on the other hand, it can be sensitive to fluctuations. In addition, it
could be complicated to transfer the optimal threshold to different cases.

* The Kendall’s 7 score is a non-parametric coefficient of monotonicity. It is defined as

(Kendall, 1938):
o #concordant pairs — #discordant pairs' (4.27)
MM-1)/2

M is the number of considered time points. Two generic points (71,x;) and (t,x;) are said
to be a concordant pair if, for #; <, x; < x, and a discordant pair otherwise. A constant
trend is expected to have T = 0. After calculating each indicator on a moving window, the
Kendall’s T score is normally estimated, for each timepoint, on additional sliding windows
(example provided in Fig. 4.9, centre). Such additional windows to compute thee Kandall’s
score should also be employed for distributional data. As a reference, values far from the
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bifurcation are normally employed. This method is more robust than the o thresholds
against fluctuating scores, but requires the tuning of an extra window and is less intuitive.

* In certain case, like from biological experiments performed with single-cell RNA sequenc-
ing, distributions are available for sparse values of the control parameter. Hence, we can
compare the full distributions (a “basal”” one and others suspectedly closer to the transition)
and check whether they are significantly separated towards increasing values. The signifi-
cance can be assessed e.g. using p-value scores. See Fig. 4.9 (right) for an example. This
method can still be sensitive to fluctuating scores, but it has the advantage of relying on
a-prioristic values. On the other hand, it requires abundant distributional data and is less
suitable for time-series analysis with single repetitions.

6 p-value = 0.0039

7=0.39 35

Fig. 4.9 Left: Example of looking for trends past 0,4 thresholds — in this case, 20y,, (dashed line).
Centre: Example of Kendall’s 7 estimation. Compare the trends within two sliding windows. If the
new one is monotonously increasing with respect to the old one, T > 0 (the steeper the trend, the higher
7). Right: Example of p-value between two distributions corresponding to different parameter values.
Each distribution corresponds to an average value of the statistical indicator (superimposed and shifted for
visualization purposes). p-values’s significance can be checked with standard statistical methods.

All figures use variance computed from simulations of Eq. 4.1, withn =2, K = 0.1 and 6 = 0.02. ¢ is the
critical value for bifurcation point.

4.5.2 Publicly available packages

Despite the ease of self-implementing the statistics needed to extrapolate early warning signals, a
few packages are also publicly available and ready to be used:

* For the R language, the Early Warning Signal toolbox is available on cran at: https:
/lcran.r-project.org/web/packages/earlywarnings/index.html. It has been developed and
curated by Vasiliis Dakos and co-workers of the Sparcs program (https://sparcs-center.org/).

* For python, the ewstools package has been recently published: https://ewstools.readthedocs
.1o/en/latest/. Credits go to Thomas Bury.

4.6 Assessing the performance of early warning signals

Quantifying the performance of EWS means quantifying their adequacy to detect regimes with
losing resilience. Casting the problem as a detection challenge (Zhang et al., 2015; Drake, 2013;
Zhang et al., 2016) enables the usage of tools to quantify sensitivity and specificity of various
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indicators. This way, one could aim at detecting the transition itself, or the detect resilience levels
associated to increasing probabilities of tipping.

A common tool to assess detection performance is the Receiver Operator Characteristics
(ROC) analysis. It returns the ROC curve, a parametric plot of sensitivity and specificity of a
classification method, plotted as a function of the detection threshold (Brett et al., 2020a; Fawcett,
2006). In practice, the ROC analysis sets a classification criterion (Ind > a - oy,4, for instance,
see above) and checks how many true positives (sensitivity) and false positives (1-specificity) are
observed. Then it changes a and repeats. The final curve is composed by points identified by the
coordinates (1-specificity(a); sensitivity(a)). A generic example is shown in Fig. 4.10. The overall
detection performance of each EWS is quantified by the area under the ROC curve (AUC, which
is sometimes called AUROC - area under the ROC curve — to tell it from other “areas under”).
A value AUC= 0.5 means that the statistics detection performance is as good in classifying as
randomly guessing. A good indicator should have AUC close to 1, see also Fig. 4.10.
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Fig. 4.10 Example of ROC curve (made up). Each point returns the proportion of true detections vs
false ones, for each classification threshold. Curves moving closer to the upper-right corner correspond to
best performance (highest AUC): any threshold correctly identifies the true events, so setting the minimal
one suffices to minimise the false positives. Curves closer to the diagonal line display slightly better
performance than a random classifier. Curves in the middle call for decisions about the optimal thresholds,
to set tradeoffs between true and false positives.

4.7 Dimension reduction for critical states

What is discussed above refer to mono-dimensional systems and data collections, which are the
focus of the current project. Nonetheless, multi-dimensional systems are receiving increasing
interest in very recent years. One way of approaching multi-dimensional systems with scarce
information and incomplete models is to perform dimension reduction, and the to apply critical
transitions theory for low dimensional systems. Depending on the research question, these methods
can be used to collect evidence about the existence of alternative states and abrupt shifts, or to
process the data before looking for early warning signals (see workflow sketch in Fig. 4.11). Some
of the recently developed techniques are discussed below.
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Fig. 4.11 Workflow sketch for the use of dimension reduction techniques in combination of critical
transitions theory, either to look for bistability and mechanisms for criticality, or to pave the way for the
application of EWS.

4.7.1 Changing basis

Principal Component Analysis (PCA) is the most employed technique to change the basis to
describe a system and to identify the leading eigen-directions in the phase space. It has been
discussed by Weinans et al. (2019) as a way of identifying the direction of lowest resilience
in multivariate systems, thereby informing about the variables combinations more at risk of
undergoing a critical transition. The same paper also introduces the Mix/Max autocorrelation
factors (MAF) as an alternative method, to reduce the system according to its autocorrelation.

PCA computes the principal components of a collection of points (a sequence of unit vectors
that form an orthonormal basis that best fits the data) and projects the data points onto only the first
few principal components, while preserving as much of the data’s variation as possible. Any data
analysis software contains functions to compute PCA. Care should be taken when cropping the
dimensions after running diagnostic tools: if the first of firsts dimensions retain low percentages of
variability, using a single leading direction is hard to justify (data might be quite evenly scattered
across eigen-directions).

MAF is another transformational algorithm, detecting the direction of maximum autocorrela-
tion (Desbarats et al., 2000). The output factors are not orthogonal but provide an ordering from
highest to lowest autocorrelation, which is in turn related to lowest to highest resilience. It can be
easily implemented by following the process described by Weinans et al. (2019).

The main advantage of such methods is that they are model-free and can be readily imple-
mented with very little knowledge about the system. Nonetheless, both methods are observed
to be highly sensitive to noise type, intensity and distribution over variables. MAF is slightly
more robust, whereas PCA is a better alternative in case data are sparsely collected. Additional
caveats are required when interpreting the results: whether the system’s recovery is slow or fast,
whether local information is sufficiently representative of global behaviours (e.g. spiralling returns
to stable states), and whether the directions of highest variance or autocorrelation match 1:1 the
directions of lowest resilience. Other limitations involve the detection power of EWS calculated
after applying such techniques (Weinans et al., 2021). It has been observed that signals might be
too low, shaded by combinations of fluctuations (also observed in Lever et al. (2020)), or could
provide false positives. A systematic exploration of high-dimensional parameters, dynamical
regimes and techniques is further required to assess the benefits of these methods.
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4.7.2 Weighted dimension reduction

Under the assumption of homogeneous networks, Gao et al. (2016) developed a dimension
reduction technique weighting the contribution of each node by its degree and thus obtaining a
“effective” dynamics over one dimension. A sketch of the idea is the following.

Consider a system consisting of N coupled components (nodes), whose activities X =
(x1,...,xy)T follow the dynamics:

N
X =F(x;)+ ZAijG(xiaxj) ) (4.28)

j=1

where F(x;) describes the self-dynamics of each component, G(x;,x;) describes the interaction
laws between component i and its interacting neighbours and A;; is a positive connectivity matrix.
The effective state x g of the system is obtained by the average nearest neighbours activity,
assuming that A;; has little degree correlation:

I"Ax  (s™"x)
I7TAI  (s) '

Xeff — (4.29)

where (.) is the averaging operation, s°* is the out-degree for every node and (s) = (s°t) = (s')
is the average weighted degree. I is the unit vector. The same procedure is also performed to
obtain an effective coupling parameter, i.e. a macroscopic parameter that the matrix A;; collapses
to:

ITASin <s0utsin>

Betr = TAl (5 (4.30)

This way, the changes in Beg lump al microscopic details of the perturbation on the microscopic
system (node/link removal, weight reduction or any combination). One can thus use Xef and Beg
to reduce the multi-dimensional equation 4.28 into a 1D equation:

Xefr = F (Xetr) + BerrG (Xefr, Xefr) (4.31)

The authors show that this method is able to reconstruct a “universal resilience function”, that
is, a bifurcation diagram x.g vs Begr including the transition point from one stable state to another.
Interestingly, the transition point is fully determined by the dynamics, independent of the network
topology A;;.

The strength of this method relies on its simple assumptions and its ability to reconstruct
and “effective” dynamics that can immediately inform about bistability properties. However, as
observed by other authors, the simple weighting over node degree might not be accurate in case
off heterogeneous networks. In addition, the uncertainties associated with this method might
hinder subsequent EWS signals and limit the precision for estimating the critical value.

This paper spurred the interest for other weighting techniques, that are currently being
developed. They are getting increasingly more accurate in determining the resilience function and
the critical effective-parameter value, at the cost of requiring more information about the system
network, which is an important tradeoff to consider in real-world applications.
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Laurence et al. (2019) developed a spectral dimension reduction technique, based on weighting
the nodes activity onto eigenvalues of the adjacent matrix, to target homogeneous but non-
random networks. Tu et al. (2021) extended the idea to node-specific dynamics, obtaining a
polynomial reduction. Pan et al. (2020) tested phase diagrams and extended them to simplicial
complexes. Other methods, that nonetheless require advanced knowledge of the network topology
and dynamics, are reviewed in Cheng et al. (2021).

Similar in spirit, Jiang et al. (2018) applied a degree- and eigenvalue-weighted averaging with
the goal of obtaining a two variables system (not 1-D). They claimed it was better representative
of the specific class of mutualistic ecological network they considered. As a result, they obtained
resilience functions exhibiting tipping points and analysed the role of several network properties
on the reduced model. Notably, what mostly played a role in this case was not the method itself
(both degree and eigenvalue weighting performed well on synthetic data) but the modelling choice
of conserving two dimensions instead of one, thereby discussing the role of “objective” techniques
versus expert-informed ones.






Chapter 5

EWS sensitivity and performance

5.1 Motivation

To address systems lacking bottom-up mechanistic models and abundant data, dynamical systems
theory has been employed to derive generic early warning signals, that can be extracted from
data. However, they are measures that rest upon assumptions. Whether EWS may perform as
expected, thus providing reliable signals of resilience loss, or fail to do so, largely depends on
their sensitivity to the underlying assumptions and whether they are valid in empirical systems.
Failure to match modelling assumptions and system properties may result in confounding effects
(McNamee, 2003) and in incorrect interpretations of estimated signals.

This chapter aims at systematically investigating the effects that relaxing some key assumptions
have on the behaviour of EWS. In particular, the chapter complements existing literature on the
role of noise properties and expands the investigation to non-slow-fast systems. The results
provide insights as to why applying standard EWS on different complex systems may provide
outputs that contrast with data-driven studies. The theoretical results are then applied to models of
biological regulation, where they are employed to detect and anticipate critical switches. Optimal
EWS are also estimated. Then, they are contrasted with data-driven results from experiments
about mitochondrial activity. Consequently, this chapter provides a set of guidelines to choose
which indicator(s) of resilience is more suitable and best performing for particular systems.

5.2 Introduction

Regime shifts after tipping points are abundant in many real-world complex systems, which often
lack bottom-up mechanistic models and abundant data pertaining different conditions (Chapter 2).
Particularly for such cases, the critical transitions framework aims at developing generic indicators
to detect and alert for impending regime shifts. The most employed method to extract EWS is to
exploit proxies of critical slowing down near noisy bifurcations (Sec. 2.4). This mechanism is
sufficiently generic to capture key properties of certain classes of CTs (see Sec. 2.3.2), but relies
upon several assumptions. Hence, it is not trivial to assess a priori whether EWS can be observed
in systems of interest, and what is their expected performance.

To begin with, one assumes that system reduction to closures around bifurcating manifolds
is possible (Sec. A). This presumes a timescale separation (Sec. 2.3) between the main observ-
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ables, usually embedded in low dimensional systems, the slow (quasi-steady-state) degrees of
freedom, modelled as control parameters, and the remaining fast degrees of freedom, addressed
by considering stochastic terms. The second assumption pertains the stochastic terms themselves,
which are assumed to be white in time. Whether EWS can be extracted from data regardless of
the underlying assumptions, and how their detection and alerting performance is impacted, is still
matter of debates, see chapter 3. In fact, both assumptions may fall short in certain systems of
great relevance.

The influence of noise on statistical patterns prior to bifurcations was observed in ecological,
epidemiological and climate models. For instance, Dakos et al. (2012b) showed that variance
may increase or decrease prior to population collapse, depending on how environmental noise is
associated to model parameters. O’Regan et al. (2018) showed that intrinsic (internal) and extrinsic
(environmental) noise may drastically alter EWS trends. Analysing several normal forms', a
Susceptible-Infectious-Susceptible (SIS) epidemiological model® and an ecology model, the
authors warned against process-specific effects and potential misinterpretation of EWS due to noise
properties. Kuehn et al. (2022) considered coloured noise in non-Markovian (i.e., non-memory-
less) systems, which model long-term historic fluctuations producing relevant autocorrelation
effects over long time scales. As an example, the authors discuss box models for the Atlantic
Meridional Overturning Circulation (AMOC). Forests and coral reefs may also be impacted by
long-term climate memory (Bolt et al., 2018). The authors concluded that observed discrepancies
between data analysis and EWS predictions may result from colour-blindness: coloured noise can
make classical warning indicators to fail and be misinterpreted. In these cases, if noise type in
data is not known, predictability becomes very difficult.

In addition to modelling results, estimation of EWS from empirical data showed that, if one or
both assumptions are incorrect, classical EWS perform poorly to detect and anticipate transitions
in epidemic dynamics, see Proverbio et al. (2022c¢) and chapter 7. Providing possible explanations
for discrepancies in predictability is thus necessary to apply EWS correctly.

Noise and commensurable time scales in threshold processes occur both in systems biology
and epidemiology. Understanding how such dynamical features impact EWS trends is crucial to
interpret those estimated from data and to guide the selection of the best indicators to tackle each
system.

In systems biology, the CT framework has been suggested to provide useful insights and
methods (Korolev et al., 2014; Trefois et al., 2015), and statistical indicators have been applied
directly (Dai et al., 2012) or within composite indicators (Li et al., 2014; Mojtahedi et al.,
2016; Aihara et al., 2022; Richard et al., 2016; Yang et al., 2018; Li et al., 2021b) to extract early
warnings. However, biological systems are known to exhibit various dynamical regimes depending
on specific processes. Microscopic processes, internal regulation and environmental disturbances
can result in white as well as multiplicative (state-dependent) noise even in homeostatic processes
(Kepler et al., 2001; Lestas et al., 2008; Lestas et al., 2010; Bruggeman et al., 2018). Fluctuations
are also known to yield stochastic switching (Norman et al., 2015), a regulation mechanism
better described by the n-tipping class (Sec. 2.3.2) and complementary to deterministic switching

ISee Sec. A for details.
2See Sec. 4.1.2 for an introduction to compartment models in epidemiology.
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through bifurcations. In this case, depending on noise properties, statistical indicators may only
detect just-on-time occurring shifts, rather than anticipating them, or fail completely. For what
concerns the slow-fast system assumption, many driving mechanisms are assumed at quasi-steady
state, like mRINA transcription versus protein degradation (Segel, 1988; Yasemi et al., 2021).
However, comparable mean life-times of chemical compounds may be observed in other control
mechanisms (Del Vecchio et al., 2016; Gunawardena, 2014) or in hormone action (Bradford et al.,
1994). Hence, understanding how relaxing such assumption influences temporal patterns of EWS
is necessary to explain empirical observations.

In epidemiology, the impact of non-white noise has been studied by Brett et al. (2017);
O’Regan et al. (2018) and Southall et al. (2020) among the others. The authors observed a
diminished capability of detecting epidemic outbreaks or elimination in several example models
of multiplicative noise, linked e.g. to small infectious numbers, sampling protocols or population
behaviours. In addition, Brett et al. (2017) computationally inquired the influence of rapid
parameter ramping in certain models, observed a delayed or absent response of several indicators,
compared to stationary theoretical predictions.

In the last years, these observations started a call for caution when using EWS in routine
monitoring practices. Hence, this chapter first theoretically investigates the reason behind such
concerns, assessing the sensitivity of early warning signals to different dynamical contexts and
assessing which ones are expected to best perform in commonly observed settings.

Then, for a specific case of gene regulatory mechanisms, the present analysis derives sets
of indicators that, taken together, optimise the anticipating power of EWS applied to data. The
optimisation problem is solved for different combinations of noise properties, providing guidelines
to tackle realistic measurements.

Overall, the chapter expands the theoretical foundations for the application of EWS in unknown
systems, and sets the stage for the analysis carried out in subsequent chapters, which focus on
testing the theoretical predictions onto empirical data.

5.3 Theory and Methods

This study focuses on early warning signals associated to bifurcation-driven loss of stability
(b-tipping, Sec. 2.3.2). Hence, we hereby consider minimal forms and biological models whose
transitions are characterised by noisy bifurcations. The background theory, as well as notable
results for stationary processes with white noise, is detailed in Sec. 2.3 and Appendix A and B. In
what follows, the most salient points are briefly recalled.

5.3.1 Generic EWS from normal forms

Among the critical bifurcations listed in Table 2.1, the 1-dimensional, 1-codimensional ones —
the most common in CT studies — are studied using their corresponding normal forms (cf. Sec.
A). Focusing on normal forms means considering local behaviours of all dynamical systems that
display such modulating mechanism. Hence, they allow to extract analytical and generic results
for wide classes of systems (Kuehn et al., 2021), at the price of neglecting homeostatic dynamics
far from tipping points. To characterise the behaviour of statistical indicators and their scaling
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next to criticality — and thus derive solutions for the corresponding EWS — normal forms are the
most appropriate modelling constructs.
Normal forms are characterised by dynamical equations in the form

d
jf=f(x,p)
(5.1
L —eglp)
dt_eg P

where x is the variable of interest and p is the control parameter, with a critical point p = 0. If
€ — 0, the dynamics of p is considered at quasi-steady state with respect to x (see an introduction
to slow-fast systems in Sec. 2.2.4).

As a reminder, the normal forms of interest are the following. Saddle-node bifurcation, often
associated with ecological collapses (Scheffer, 2009) or biological state transitions (Alon, 2019),
are defined by f(x,p) = p—x*. At p =0, a stable (¥, = ,/p) and unstable (¥, = —,/p) branch
collide and vanish, resulting in a critical transition to an alternative branch (if it exists). Transcriti-

cal bifurcations f(x,p) = px —x*

are characteristic, for instance, of epidemic outbreaks, see Sec.
4.1.2. Here, x; =0 and x, = p > 0 meet at p = 0 and exchange stability. Finally, the family of
pitchfork bifurcations f(x, p) = px+ x> describe branching processes from one to two states (or
viceversa); [ > 0 identifies subcritical bifurcations, associated to critical transitions, while [/ < 0
defines the supercritical case, with a continuous transition over mean values. This mechanism is

identified in cell regulation processes (Moris et al., 2016).

Noisy bifurcations, from which EWS can be extracted (Berglund et al., 2006), are characterised
by the presence of additional stochastic terms, see Eq. 2.8. Recall that, for the fast variable,
stochastic differential equations for 1D systems can be written, in Itd form, as

dx = f(x,p)dt+h(x,p)dW , (5.2)

where dW is a Wiener process and f : R x R — Z is a suitable normal form from those described
above. Systems and processes may be characterised by different stochasticity, which enters
the SDE models as additive (i(x, p) = 1) or multiplicative terms to the Wiener processes, with
variance o (Allen, 2010). In the second case, if the microscopic kinetics is known, one can derive
the exact form of the noise term from the Master equation using Gillespie formalism (Gillespie,
2000a). Alternatively, one can use a diffusion approximation (Allen, 2010; Van Kampen, 1992)
to derive a noise term proportional to system state (h(x, p) = x) or to the deterministic part of
Eq. 5.2 (h(x,p) < f(x,p)). In the latter case, O’Regan et al. (2018) considered intrinsic noise
with h(x, p) = \/f(x,p); here, h(x, p) = f(x, p) is also studied, to reflect modelling of biological
regulatory circuits as described by Hasty et al. (2000).

Following the procedure detailed in Sec. B, Eq. 5.2 is analysed by solving the slow dynamics,
linearising around a trajectory inside the stable (attracting) manifold and changing the coordinates

to highlight the residuals around the linearization. This procedure gives

dy = o f (%(2),t)ydt + \/ h?>(x)dW (5.3)
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where X; corresponds to the attracting part of the critical manifold. The linearised drift term corre-
sponds to the leading eigenvalue of the deterministic normal form. Its magnitude |9, f(%;(¢),?)| is
the asymptotic decay rate of a perturbation. It corresponds to the concept of engineering resilience
(Holling, 1996). A change of notation |0y f(%,(¢),7)|= k makes explicit that Eq. 5.3 corresponds
to a (possibly non-autonomous) Ornstein-Uhlenbeck process (O-U). It is a well-studied problem
in stochastic processes theory, with analytical solutions for its statistics in different regimes (Allen,
2010; Gardiner, 1985). Such solutions constitute the basis to derive EWS in different dynamical
contexts, including the possibility of p(¢) # const (small ramping in the control parameter, not at
steady-state).

Note that Eq. 5.3 can be regarded as a first order autoregressive model. However, its derivation
from normal forms allows more nuanced interpretation: rather than being hypothesised as a
statistical model to capture simple relationships, it is general for all models that can be reduced to
normal forms. It is therefore linked to phenomenological models rather than purely statistical ones
(see Fig. 1.2 and Kuehn et al. (2021)). In this respect, |9, f(%;(¢),7)|= k hides the dependencies of
the drift term to the control parameter p, depending on different normal forms. This may yield

diverse scaling for the summary statistics, which will be explicitly considered in the results below.
A linear relationship k = p is characteristic of (locally) linear systems used, e.g., in engineering,
and corresponds to the approach to a transcritical bifurcation. If & is a nonlinear function of p, it
accounts for additional non-linearities in the fast-slow system relationship.

5.3.2 Simulations: optimal performance and sensitivity to noise

To investigate the interplay of bifurcation-driven loss of resilience and noise levels, analysing min-
imal analytical models may not be sufficient, due to their underlying approximations. Computer
simulations are thus used to address a representative system, the autoactivating feedback loop
motif described in Sec. 4.1.1.

The simulated model

The model describes protein concentration dynamics embedded in a feedback loop. Its adimention-
alised Langevin equation is given by Eq. 4.1. The system is bistable, with sudden shifts between
equilibria due to fold bifurcations driven by the parameter c (also verified using XPP-Aut, see Sec.
4.2.1). To consider uncertainties associated to distributional data, on top of mean trends, and to
reproduce data analysis protocols, early warning signals are estimated from system simulations.
Since the quasi-steady state assumption is generally accepted for such systems (Del Vecchio
et al., 2016), the current analysis focuses on noise effects, whether yielding n-tipping or possibly
skewing statistical indicators due to multiplicative nature. This is done by setting g(x) (from Eq.
4.1) appropriately, as discussed above. Note that g(x) from Eq. 4.1 corresponds to A(x) in Eq. 5.3.
The nomenclature was chosen to highlight generic or specific systems, but the same results apply.

In all simulations, K = 0.1 to set bistability. The analysis concentrates on the upper stable
branch of the bifurcation diagram (Fig. 4.2) to compare with white noise results. In this case,
multiplicative noise corresponds to intrinsic regulatory mechanisms (Hasty et al., 2000; Norman
et al., 2015) rather than stochasticity due to small numbers (Gillespie, 2000b). Simulations are
performed in MATLAB (R2021b) using the Milstein method (Sec. 4.2.2) with a time step of 0.01



92 EWS sensitivity and performance

(arbitrary units). For quasi-steady state simulations, distributional data for each ¢ from far to close
the bifurcation point are computed upon stable values of system’s state, after a transient.

Computed indicators

Statistical indicators, whose analytical counterpart is derived from normal forms, are first computed
as described in Sec. 4.5. Following theoretical considerations and practice, those selected are:
variance and higher-order moments, autocorrelation at lag 1, coefficient of variation (std/mean),
index of dispersion (var/mean). Shannon entropy Hj, for which the analytical derivation is
particularly challenging in some settings (see Sec. B), is also estimated. All indicators are
computed using their corresponding MATLAB functions.

Test EWS sensitivity to noise levels and n-tipping

Higher noise levels may alter the significance of increasing trends, as uncertainties associated
with statistical indicators may increase accordingly. In addition, higher noise levels may induce
n-tipping events as system trajectories may accidentally collide with unstable branches (see an
illustration on Fig. 2.13). Hence, understanding the robustness and performance of EWS for
different noise levels bridges studies about b-tipping and n-tipping, and the associated robustness
and performance of EWS.

Various noise levels are considered, corresponding to low to medium, ¢ € [0.01;0.05]. Higher
values are not considered as they would yield “pure” n-tipping. For simulations using additive
white noise, g(x) = 1; a relevant case for multiplicative noise is, instead, g(x) = x.

To quantify the increasing trends of the indicators listed above, and whether they can provide
an early warning, the test for significant Welch’s p-value is used (cf. Sec. 4.5.1). In this way, the
study can inform biological experiments, which are often performed over distributional data from
few time points. It also allows to estimate the sensitivity to noise intensities and the expected lead
time for detection or anticipation of critical transitions.

For the latter purpose, the analysis extracts at which value of the control parameter ¢ the
p-value crosses a significance threshold. Using standard significance values from biological
literature, p,;e = 0.05 is chosen. When p-value < pg;,, it means that an indicator has significantly
increased more than the baseline, triggering a warning signal. Consider all ¢; tested during the
simulations, i = 1..N with N = (¢pax — Cmin)/0.002; ¢pax and ¢y are two arbitrary values greater
and lower than the bifurcation value ¢, within the bistable region. Out of all ¢;, estimate ¢y, = c;,
where j is the first index at which p-value; < py;e stably, i.e., without considering small fluctuating
values (for that, a smoothing is employed). This is performed for each indicator .# and each noise
level 6. Hence, the analysis estimates

csfg((f) = c¢j s.t. p-value ;(F) < psig Amin(j) . (5.4)
Complementing the analysis of the lead parameter requires understanding how many noise-
induced tipping events occurred before it. This quantification assesses whether the increasing

indicators are primarily picking losses of resilience or transitions that already happened. This
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analysis is crucial to interpret warning indicators as “anticipating” or “just-on-time detecting” the
tipping events.

To do so, for each parameter value ¢ and for each noise level ¢, count how many trajectories,
out of all repeated simulations, tipped onto the alternative stable manifold. Call the counter % .
A plot €(c,0) (normalised to be interpreted as probability) gives an indication of how much
n-tipping becomes relevant as noise levels increase, and allows estimating what happens at each

cj;Z,(G).

Optimise EWS according to lead parameter

Which is the best combination of statistical indicators to maximise the lead parameter, i.e. how
much before the bifurcation point a significant signal is triggered?
To answer this question, consider a linear combination of indicators, which were previously
tested singularly:
S = Zwkﬂk . (55)
k

Call a set of weights w = {wy }, with the constraint }'; w; = 1. Extract its corresponding cﬁz,(c)
by measuring when p-values of the newly constructed distribution mark a significant increase,

adapting Eq. 5.4 accordingly. Finally, solve an optimization problem by finding the optimal W as

W s.t. max l;cﬁ;(w,m)] , (5.6)

that is, maximising the scores S derived from all ¢y as o is increased. This way, the optimal
parameter is also checked for its robustness against noise. The optimization is performed using a
grid search method.

5.3.3 Experimental data

Analytical and simulation results are used to interpret experimental data about mitochondrial
activity in HeLa cells, described, reported and analysed in the PhD thesis of Trefois (2014). Refer
to it for experimental protocols and analysis methods. Data correspond to critical transition
experiments of mitochondrial membrane potential AW, (state variable) driven by combination
of chemical toxins, namely Oligomycin A (C45H74011, an antibiotic inhibiting mitochondrial
respiration) and Antimycin A (CrgH19N,O9, a compound depleting mitochondrial ATP).

5.4 Results

5.4.1 Analytical results on normal forms

From Eq. 5.3, standard approaches (Gardiner, 1985; Allen, 2010) derive the behaviour of
statistical indicators in different dynamical contexts (slowly ramping parameter and various forms
of multiplicative noise). Sec. B details the derivation of statistical moments, autocorrelation,
spectral density and Shannon entropy in the stationary, white noise case (corresponding to the
common setting). In the case of multiplicative noise for stationary O-U processes, analytical
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results for variance, autocorrelation and spectral density, the three main used indicators, are easily
obtained from literature (Allen, 2010; Sharma et al., 2016a). The lag-7 autocorrelation function
does not depend on the O-U variance 4% (x, p) but only on |9, f (%, p)|= k:

AC =e**. (5.7)
Hence, the common indicator lag-1 autocorrelation only depends on the dampening rate:
AC(1)=e*. (5.8)

Instead, the power spectrum of the Fourier transforms and the variance, two common indicators,
explicitly depend on the O-U variance:

1 (%, p)
S(w)=—5— 59
(@) K+ o? -9
1 (%,p)
Var = ———. 5.10
ar % (5.10)
Consequently, the coefficient of variation also depend on A?(X, p) as it is defined by
Ve
cv=""2 (5.11)
Xs

Entropy-based indicators, on the other hand, are more challenging to derive in case of multiplica-
tive noise and ramping parameters, as their defining integrals may not be solvable. The derivation
in case of white noise is described in Sec. B; for the other cases, their behaviour is estimated using
computer simulations (see sections below).

In all cases, the analytical results for each normal form can be obtained by substituting the
corresponding dependency of the drift term to the control parameter: for the fold k = 2, /p, for the
transcritical kK = p and for the pitchforks k = 2p. In Fig. 5.1, the effect of multiplicative noise on

the trends of common indicators is shown using (%, p) = x and h(%, p) = x°.

Analogous results can be obtained for slowly changing resilience function, linearly ramped as
k = ko — at, where ko is any initial condition, a is a small rate parameter (not enough for r-tipping)
and the ramping stops at the critical value k = 0. Both parameter values are set to 1 to represent
commensurable time scales. Here, only white noise is considered. This is a particular case of an
inhomogeneous process3, for which statistical moment solutions exist (Gardiner, 1985) in the
form

(3(t)) = e~ Ik (5.12)
2 1 1) ”» 4 1
0

3This formalism can also serve as a basis to calculate statistics for generic multi-dimensional inhomogeneous
processes (Gardiner, 1985); however, they are system-specific and, for the reasons discussed previously, outside the
scopes of the present thesis.
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Derived statistics are calculated analogously. Fig. 5.1 shows how trends of common indicators are
changed by the time dependency of the resilience function, after solving the above equations with
the Mathematica software, which particularly helps to calculate the rightmost integral yielding the
non-elementary Error function Erf(t). Note that, since such functions are involved, a linear scaling
is also used for the fold bifurcation (one can think of it as a first-order approximation, or directly
as p = po —d't). Otherwise, combining Erf(t) and a square root scaling yields non-analytical
results.

Fig. 5.1 shows expected trends of common statistical indicators, for the three main normal
forms and in different dynamical contexts. Although the scaling differs, the qualitative trends
are conserved across the bifurcations. This aspect should raise an alert: it is extremely difficult
to infer the existence of a critical transitions by simply analysing statistical indicators extracted
from systems’ data. In fact, the same trends associated to critical slowing down can be observed
in supercritical bifurcations (which are not critical in the current sense, c¢f. Sec. 2.3). Studies
about scaling (Meisel et al., 2015) and in search of bistability (Sec. 4.3) are first required to infer
whether a system undergoes CTs.
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Fig. 5.1 Trends of common statistical indicators (Var, AC(1) and CV) for saddle-node (fold), transcritical
and pitchfork bifurcations, in different dynamical contexts (combinations of noise characteristics and
stationarity for the control parameter, as explained in the main text). MN 1: multiplicative noise where
h(%, p) = x; MN 2: multiplicative noise where h(%, p) = x. As the autocorrelation is independent on noise,
only MN 1 is considered, to show that it overlaps with the simple case.

For what concerns the dependency of statistical indicators and EWS on the dynamical context,
the present analysis complements what was suggested in literature. Depending on the type of
multiplicative noise, the expected increasing trends may be altered or completely disrupted,
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resulting in no early warnings prior to tipping points. In addition, commensurable time scales in
non-stationary processes may modify the expected patterns, so that raising reliable alerts becomes
more challenging.

The dynamical context influences the considered indicators differently. In particular, the
autocorrelation is robust against changing noise properties, whereas the variance is more sensitive
to them, but maintains its expected trends even in case of ramping parameters. The coefficient of
variation is also robust in case of commensurable time scales and copes well in case of certain types
of multiplicative noise. Overall, what matters is the competition between changes in noise and
changes in resilience: depending on which one is more rapid, the indicators and their associated
EWS may perform as expected or fail to anticipate an impending critical transition.

The power spectrum is also altered by multiplicative noise, following Eq. 5.10. Fig. 5.2
shows one example for the case h(%,p) = x (right) compared to the case of white noise (left),
for quasi-steady state parameter values. Note that, as substituting k o< p only induces a different
scaling, the drift parameter k is directly employed. Like above, multiplicative noise alters the
expected behaviours. Hence, extracting reliable early warnings associated to spectral reddening
becomes more challenging and their performance is expected to drop.

S(w)[dB] S(w)[dB]
10\\ — k=0.01 ‘ — k=0.01
0.100 k=0.1 0.01 k=0.1
k=0.4 k=0.4
0.001 — k=07 10 — k=07
10-5 — k=1 — k=1
1 10 100 1ooow[HZ] w[HZ]

1 10 100 1000

Fig. 5.2 Left: power spectral density with white noise, for different values of the drift parameter k. Right:
power spectral density with multiplicative noise.

Measurement uncertainties

The analytical results from above are further used to study the effect of measurement uncertainties
and how they may skew the statistical indicators related to process noise. For this, consider
process standard deviation (square root of Eq. 5.10) and measurement standard deviation oy, as
uncertainties, and perform error propagation by summing them in quadrature (Taylor, 1997). This
results in:

o2, = Var+ 2. (5.14)

Here, 62, represents the total expected (stationary) variance resulting from inner processes and
measurement uncertainties.

To derive the autocorrelation, combine its definition Eq. B.21 with Eq. 5.14. In principle,
we can explicitly consider multiplicative noise like above. However, the goal in this case is to
compute if notable discrepancies exist between ideal measurements (no uncertainty) and realistic
measurements (with some uncertainty, that can be filtered to correspond to white noise). Hence,
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only the case of white process noise is currently considered. The result is:

o2 —k

AC(1)p = L2 (5.15)
2
(5 +3)

Obviously, limz ,AC(1)m =AC(1).

The comparison between statistical indicators computed from ideal measurements and realistic
measurements is shown in Fig. 5.3 (for the variance) and in Fig. 5.4 (for AC(1)). The analysis is
performed on the fold bifurcation; for the others, it suffices to change the scaling k o< p.

As expected, measurement uncertainties only induces a shift in the absolute values of variance,
but do not change its trends (compare Fig. 5.3 left and centre and their scale, as well as the
orange an red lines in Fig. 5.3, right). This indicates that the associated EWS are robust
against measurement uncertainties and guarantees that they can be extracted from empirical data.
Analogous results can be obtained for the CV, that is directly dependent on Var.

Fig. 5.3 also displays the dependency of Var on the process noise ¢. Clearly, increasing noise
yields increasing variance even far from the bifurcation point p = 0. Without proper knowledge
or control on noise levels, this might induce spurious signals, not associated to the vicinity of a
tipping point.

Finally, Fig. 5.3 shows that increasing noise may change the lead time for triggering early
alerts. For higher noise levels, the “elbow” of the Var(p) graph occurs for higher values of p,
thus further from the bifurcation point. However, to trigger reliable alerts, any increase should
be statistically significant (cf. Sec. 4.5.1). Hence, it is necessary to consider the mean trends (as
displayed here) as well as the associated uncertainties. This aspect will thus be further investigated
in the later section, using simulations to extrapolate uncertainties on statistical indicators from
distributional data.
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Fig. 5.3 Left: Dependency of variance on control parameter p and O-U noise level ¢, without measurement
uncertainties. Centre: Dependency of variance on control parameter p and O-U noise level o, with
measurement uncertainty oy, = 0.1. Right: Examples of “sliced” graphs from the previous plots (three
with increasing ¢ and one — dashed — with 6, as well), to allow comparison.

Measurement uncertainties have little impact on AC(1) as well, as shown in Fig. 5.4: small
uncertainties oy, = 0.1 do not modify the trends (compare Fig. 5.4 left and centre and see blue
and yellow lines in Fig. 5.4, right). Only relatively high measurement uncertainty levels change
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the absolute values of expected lag-1 autocorrelation, but maintain the increasing patterns close to
critical points (Fig. 5.4, right).

As already discussed, the autocorrelation does not explicitly depend on noise. Increasing
process noise does not alter its expected values, as observed in Fig. 5.4 (left and centre). Autocorre-
lation is therefore a robust indicator for when system noise is unknown. However, what discussed
above also applies here: for a trend to trigger significant warnings, not only the mean trends should
be considered, but also their associated uncertainties. They help assessing the performance of
indicators and the associated lead times. Such analysis is performed using computer simulations,
in the following sections.
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Fig. 5.4 Left: Dependency of lag-1 autocorrelation on control parameter p and O-U noise level ¢, without
measurement uncertainties. Centre: Dependency of AC(1) on control parameter p and O-U noise level
o, with measurement uncertainty oy, = 0.1. Right: Examples of “sliced” graphs from the previous plots
(without measurement uncertainty or with three different values), to allow comparison.

CYV for “‘realistic” fold

To subsequently compare theoretical predictions with empirical estimations, let us focus on the
fold normal form, which corresponds to the bifurcation observed on experimental data (see Trefois
(2014), Fig. 5.15, and below). In this case, the coefficient of variation (CV. eq. 5.11) depends
on the mean expected value Xy, tracking the stable manifold. On empirical data, it is difficult to
normalise by the critical value and fix the normal form around py = 0 and %;(p) = 0, since such
critical values are largely unknown.

Hence, instead of computing %;(p) — 0 like on perfectly reconstructed normal forms, one
often computes %,(p) — x{, where x{, corresponds to the first value where the system tips, but
which is unknown a priori. This can be modelled as X;(p) = x, + /P, to be used in the denominator
of CV. Hence, Eq. 5.11 becomes
- Var
CxXy+\/P

Its effect is displayed in Fig. 5.5. In case of white noise, the expected increasing trend is

(5.16)

r

conserved. However, in contrast to what is observed in Fig. 5.1, other multiplicative noise forms
are able to alter the behaviour and shadow possible early warnings.

Similar effects have been observed on computer simulations of epidemiological models
(Southall et al., 2020): even thought CV is expected to be robust and well-performing (see also Fig.
5.1), when dynamical mean values induce additional uncertainties, it may perform poorly. This
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Fig. 5.5 Graphs of Eq. 5.16 for white noise and the two multiplicative noise forms used in Fig. 5.1.
Without loss of generality, x{, = 1.

fact is also observed on real-world epidemiological data, see chapter 7. Overall, these observations
suggest that CV may be system-specific and less generic than suggested in early literature studies.

Discussing skewness and kurtosis

For certain simulated systems, the third statistical moment (skewness) has been suggested to
provide useful early warnings (Guttal et al., 2008). However, experimental results (Dai et al.,
2012) were not able to confirm the expectations, estimating a flat and fluctuating trend before a
tipping point. Analytical results are thus required to settle the issue, as skewness has continued to
be tested among other indicators in different systems (Southall et al., 2020).

For a stochastic process with quasi-steady state parameter, its statistical moments can be
expressed as

=)= /_ Z(y’ —w)"P(Y)dy' (5.17)

where P(y’) is the associated probability density function (Sec. B) and u is the expected average
value.

For odd n, if 4 = 0 and P(y') is symmetric, the integral equals O by definition. Symmetric
probability density functions are associated, for instance, with quadratic potentials that are typical
of bifurcation normal forms under white noise, for which (Gardiner, 1985)

2
P(y) = kExp[—GzzU(y)}z LEXP [—Z] (5.18)

no? no?
since the quadratic potential U (y) is expressed as ky?/2. Consequently, the normal forms — in
particular, the saddle-node — considered above are expected to display a flat skewness.
On the other hand, the integral 5.17 may be non-zero, and even dependent on the drift
parameter k, if u # 0 or if P(y) is asymmetrical. In the first case, solving Eq. 5.17 yields
1 (3 4 2kp?)

Skew = —————=. 1
ew o (5.19)

In this case, as k — 0, the skewness is expected to increase, potentially providing an early warning
(Fig. 5.6).

On the other hand, an asymmetric potential can be obtained in case of multiplicative noise
(Gardiner, 1985; Sharma et al., 2016a); see also Sec. B. Depending on the specific form, it may be



100 EWS sensitivity and performance

Skewness
20+

151

10}

k

02 04 06 08 10

Fig. 5.6 Graphs of Eq. 5.19 for u =1

possible to observe increasing trends associated to EWS, but they may be system-specific and not
generalisable. In this sense, there is no ambiguity between the results of Guttal et al. (2008) and
Dai et al. (2012): they were studying systems with different properties, using an indicator that is
not particularly performant and generalisable.

Finally, recall that, for symmetric potentials, all even moments depend on the variance,
including the kurtosis (the fourth moment). In case of i = 0 (typical white noise), kurtosis = 3Var?.
This can be obtained either by solving Eq. 5.17 or by using the well-known Wick decomposition
for polynomial averages (Bloch et al., 1958). If u # 0 (or for other exotic noise forms),

 34+4kp*(3+kp?)

Kurt
ur 42 ’

(5.20)

whose leading term for 0 < k < 1 still equals Var?. Hence, variance is already representative of
higher moments, which do not improve EWS, unless system-specific noise and drift forms are
considered.

A final note: Eq. 5.19 and 5.20 are valid as long as Re[k] > 0, which is true in case of b-tipping.
In both cases, noise level o was normalised to 1 for ease of notation.

5.4.2 Simulation results

To go beyond average trends, computer simulations are used as described in Sec. 5.3.2, considering
both white and multiplicative noise. System Eq. 4.1 at quasi-steady state is used.

White noise

To appreciate how indicators evolve with system Eq. 4.1 subject to additive white noise, refer to
Fig. 5.7. It shows the eight considered indicators, with their mean values and standard deviations
over repeated experiments. Patterns before (right of dash line) and after (left of dashed line) the
transition are considered, to study the alerting and/or detecting performance.

For low noise level (0 = 0.02 used in the figure), the uncertainty region is well constrained
around the mean, but higher ¢ may increase it and therefore modify the significance of increasing
trends. Variance, AC(1) and Hyg peak at the critical value, whereas others peak slightly later as they
are more sensitive to the mean (including that of noise-induced transitions). Visually, skewness
and kurtosis do not provide much early warning, but rather detect when all system’s repetitions



5.4 Results 101

0.1 i ]
5 ‘ = }
@ 0.05
g /\ Q0995 |
\ \
0 : : : ‘ 0.99 ; . ‘ : : :
015 01 -005 0 005 01 015 015 01 -005 0 005 01 015
c-c, c-c,
‘ 15
5 \ \
2 I 10 I
5 L
No ‘
; ‘ \ ‘ ‘ ‘ 0 ‘ !
015 01 -005 0 005 01 015 015 01 -005 0 005 01 015
c-c, c-c,
2 \ \
‘ 0.2 ‘
3o /} Qo1 /\
| 0 \
2 ; ; \ \ ;
015 01 -005 0 005 01 015 015 01 -005 0 005 01 015
c-c, c-c,
0.2 ;
\
\
T’ 041 ‘
\
0 h n | ! ’
015 01 -005 0 005 01 015
c-c,

Fig. 5.7 Example of evolution of considered indicators, for each value of the control parameter ¢. The
x-axis indicates the distance of the control parameter to its critical value cp. The bifurcation point is marked
with a dashed line. As the analysis concentrates on the top branch of Fig. 4.2, ¢ is decreased from high to
lower values. Hence, the approach to the bifurcation is from right to left. Black lines: mean values over
repeated realization. Shaded area: one standard deviation.

tipped. CV and ID display the highest uncertainty bounds, especially after the critical point, as
they are the most influenced by mean values (recall that, after the transition, the stable regime is at
values close to zero, therefore more sensitive to noise).

To estimate the lead parameter, measuring how much in advance an increasing trend be-
comes significant (thus including associated uncertainties), the procedure detailed in Sec. 5.3.2 is
performed. Fig. 5.8 shows the results, for every considered noise level and indicator.

The most stable indicators — not fluctuating across ¢ values — are Var, AC(1) and Shannon
entropy Hs. CV performs averagely for low noise, then becomes sensitive to large deviations in
the mean and its associated c ;g drops. Higher order moments and ID behave poorly: they fluctuate
considerably at different o values and often become significant after the bifurcation point (below
¢sig = 0, dashed line).
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These results, on top of quantifying the performance of various indicators and assessing their
robustness, also inform the subsequent optimization procedure. To construct the set of considered
indicators, only the robust and significant ones — variance, AC(1) and Shannon entropy Hg — will
be considered.

Csig

—o—Var —e—Kurt —e—Hg
-0.06 —e—ACt cv 1
Skew D
-0.08 - - -
0.01 0.02 0.03 0.04 0.05
g

Fig. 5.8 Dependency of ¢, (defined in Eq. 5.4) to o, for each considered indicator .7

Finally, the effect of n-tipping on indicators performance is assessed. In principle, their
increasing patterns (associated to EWS) can be due to loss of resilience, but also to tipping events
happening during simulation repetitions. For systems biology studies, these would correspond
to cells already switching phenotype, while the “average” state of the colony is still the original
one. If such n-tipping occurs, increasing trends should be interpreted as “‘just-on-time” detecting
critical transitions in multi-component systems, rather than “anticipating” them fout court.

Noise-induced transitions are more likely for higher noise levels (Gardiner, 1985); hence,
counting n-tipping events allow to critically evaluate the EWS performance from Fig. 5.8: for
instance, the sharp improvement in lead parameter for ID at o = 0.05 may derive from several
n-transitions happening already and ID picking up the change in mean. Instead, since CV relies
on different scaling between variance and mean that produces high uncertainties, its performance
becomes poor for large ©.

Fig. 5.9 reports the counts % of n-tipping events, for each parameter value ¢ and at increasing
noise levels 0. Normalising 4 by the total number of simulated trajectories allows estimating the
probability of n-tipping. For low &, such probability significantly increases only very close to the
tipping point. Increasing statistical indicators are thus expected to relate to losses of resilience.
However, for higher noise levels, n-tipping is much more probable when the system is still distant
from the bifurcation point. In particular, for ¢ > 0.04, some noise-induced events start occurring
around ¢ = 0.05, which is when EWS may be triggered (see Fig. 5.8). Consequently, for high
signal/noise settings, resilience indicators can just-on-time detect critical transitions, but not
anticipate them much earlier. For low noise levels, on the other hand, EWS correctly pick up
resilience loss, before transitions driven by combinations of noise and bifurcations.
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Fig. 5.9 Counter %, counting how many tipping events occur at each parameter value ¢ — ¢ and for each
noise level ©.
Multiplicative noise

Similar analysis as above is performed by including multiplicative noise in the system. In this case,
g(x) = x (from Eq. 4.1). The linear dependency is the simplest to reproduce state-dependency;
other nuanced and system-specific types can be considered in future studies. The results, obtained
and interpreted as above, are shown in Fig. 5.10.
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Fig. 5.10 ¢y, (left) and € (right) for the multiplicative noise g(x) = x case. See Fig. 5.8 and 5.9,
respectively, to compare with the white noise case.

Like for the white noise case, significant increases can be observed for Var, AC(1) and Hg
as the system loses resilience. ID and CV becomes more reliable: due to the interference of
multiplicative noise, contributions from Var become more prominent than from mean, so ID
and CV follow Var more closely and retain similar performance. On the other hand, high-order
moments confirm their poor ability to anticipate and detect the transition.

Like above, for higher o, the indicators should be interpreted as “just-on-time” detecting
resilience loss rather than anticipating it: the interplay of increasing noise and loss of resilience
makes for several tipping events occurring much before the critical value, at values comparable
with ¢y, Once again, this analysis reveals the importance of considering dynamical settings like
noise intensity to interpret the signals correctly.
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Overall, this analysis performed on multiplicative noise guarantees that, for the specific
considered system, the proposed indicators are sufficiently robust and performant. Note that,
because of the present focus onto the upper stable branch of the system, we can associate the
results to the mean-field approximation still being rather valid. Other studies (Sharma et al.,
2016a), looking at the lower branch where small fluctuations play a bigger role, warned that
some expected trends may be further altered. Prior knowledge and minimal information about
the system under study are thus essential to design experiments and data analysis, in search for
meaningful signals.

5.4.3 Optimising EWS

Following the procedure described in Sec. 5.3.2, let us look for the best combination of indicators,
that can provide the highest lead parameter cy;, to alert for losses of resilience. Note that, in
this case, the overall performance over all ¢ is considered. Hence, the interpretation in terms
of “anticipating” or “just-on-time detecting” gets blurred once again. For that, system-specific
analysis with curated data is recommended.

Consistently with the rest of the section, both white noise (Fig. 5.11, left) and multiplicative
noise (Fig. 5.11, right) cases are subject to the optimisation procedure. Fig. 5.11 shows the scores
S from Eq. 5.6, for the various combinations of weights w (called “Combination index #). The
problem is non convex due to inter-dependencies of indicators. Hence, a grid search with stride
0.1 is used. To interpret Fig. 5.11, note that Hg increases monotonously from left to right, Var
follows a saw-tooth pattern (highest value to lowest, with highest = 1,0.9,0.8,... from left to
right) and AC(1) completes the combinations.
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Fig. 5.11 Score S for white (left) and multiplicative (g(x) = x, right) noise, depending on weight different
combinations, indexed on the x-axis.

For the white noise case, the maximum score is achieved for w = [0.9,0.1,0], that is, high
weight for variance, low for autocorrelation, and no contribution from Entropy. In general, the
high plateau on the left corresponds to wgy, = 0. As Shannon entropy, in this case, is directly
dependent on variance (see Sec. B), it does not contribute significantly to improving the overall
Csig- Since significant increases depend both on mean behaviours and on uncertainties, preferring
simple indicators with low uncertainties is a winning strategy.
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For multiplicative noise, the picture changes. Here, including entropy with high wg provides
the best performance. Note that calculations for entropy in Sec. B do not hold here, but require
other analytical derivations currently not solved. Mixing low contributions from Var and AC(1)
do not particularly help. The maximum is reached for W = [0,0, 1]. Looking at Fig. 5.10, this
preference for entropy is mostly driven by cases with low o.

In the multiplicative noise case, on top of mean trends and uncertainties, the interplay between
noise and dynamics alters the performance of early warning signals. Hence, interpreting the
results becomes more complicated and, for real-world systems, may be further optimised with
data-driven procedures.

Overall, the optimisation analysis confirms that, depending on dynamical features like noise
properties, one or another indicator may be more performant. If one or the other noise type can
be modelled a priori, then the indicators for EWS can be readily selected. In realistic settings,
however, mixed noise types may concur in adding memory to the system or altering the dynamical
responses. The section below address those cases.

Other multiplicative noise classes

The analysis above shows that multiplicative noise requires different optimal combinations of
indicators to provide early warning signals. Is this consistent for other classes of multiplicative
noise, or the optimal combination depends on the specific noise form?

To test this question, other two types of multiplicative noise are used, which are common in

literature for biological systems. The first type assumes g(x) = x*

, L.e., it is proportional to the
deterministic part of the corresponding normal form (O’Regan et al., 2018) and largely amplifies
the fluctuations. The second type assumes g(x) = % i.e., it is proportional to the deterministic
part of the original system (Hasty et al., 2000).

Both cases return consistent results with the above multiplicative noise case. Although cy;e
and % change due to different random perturbations, the optimization procedure returns Shannon
entropy Hy as the best indicator to detect resilience loss before transitions begin. In fact, for both
additional noise cases, W = [0,0, 1].

This means that, in cases where multiplicative noise adds a layer of complexity to the mean
field regime, entropy is in general the best performing indicator. Hence, when facing a system of
interest belonging to the same class as the one considered here, it suffices to determine the type of
noise — white or multiplicative, if the system allows a binary choice — to decide whether to use

variance or entropy to monitor its resilience.

The present analysis concentrates on the upper branch of system Eq. 4.1. On the lower branch,
intrinsic and extrinsic noise effects become more prominent due to low molecule concentrations.
Nonetheless, Sharma et al. (2016a) observed preliminary result that are in line with the present
ones, so one could expect that a similar optimization procedure could output consistent results.

Combination of additive and multiplicative noise

Gaussian additive noise is usually considered an adequate diffusion approximation of many small
amplitude Poisson noises, but experimental results show that gene transcription very often occurs



106 EWS sensitivity and performance

in a bursty, unpredictable and intermittent manner (Chen et al., 2017). These events are mostly
due to “intrinsic” stochasticity, i.e., determined by structure, reaction rates, timescales and species
concentrations of the underlying biochemical processes. The resulting noise distributions are
described as heavy-tailed and are poorly captured by diffusion approximations (Pan et al., 2010).
Instead, differences between cells after measurements, often called “extrinsic noise” (Pan et al.,
2010), are supposedly well captured by Gaussian noise models.

Instead of using simple white noise, several studies showed that correlated noise is more
realistic (Zhang et al., 2012; Sidney et al., 2010), as it aptly combines properties of intrinsic
and extrinsic noise, and fits experimental data better than purely additive processes (Wang et al.,
2012b). In addition, correlated noise is what is observed from dynamical single-cells experiments
(Pedraza et al., 2008; Dunlop et al., 2008). One way of modelling it is to consider time-delayed or
coloured noise (Wang et al., 2015; Wang et al., 2016). Alternatively to coloured noise, combining
additive and multiplicative noise is a valid modelling alternative (Liu et al., 2009). For some
systems like genetic toggle-switches, it is actually a better modelling choice, as the concentration
of reactants is non-negative (Chen et al., 2017).

Hence, this section investigates optimal combinations of indicators for EWS if both additive
and multiplicative noise are present in the system and reverberate onto the data. To do so, take
the system Eq. 4.1 equipped with noise terms g(x) = a + (1 — a)x, where o weights the white
or multiplicative noise component (¢&¢ = 1 corresponds to purely additive white noise, &t = 0 to
purely multiplicative). Note that, following the above results about the generic performance of
EWS indicators for different types of multiplicative functions, the simple linear state-dependent
relation is used as a reference.

The optimisation procedure is repeated like previously. In this case, the optimal combinations
w may further differ. Fig. 5.12 summarises the results. For different o, W changes. If the additive
noise content is higher, Var is preferred as an indicator to maximise the lead parameter. For
cases with prevalence of multiplicative noise, entropy is better. For intermediate realistic cases, a
mixture, with AC(1) also taken into account, optimises the performance.

Note that, since the problem is non-convex, there are cases where more than one combination
solves the optimization. If that is the case, Fig. 5.12 reports the two alternatives (same colour, but
dashed line). For the same reason, there is not a unique law but W may slightly fluctuate. However,
the trends described above remain clear.

This analysis suggests that, in realistic settings with correlated noise due to intrinsic and
extrinsic stochasticity, combining indicators yields higher lead parameters and allows earlier
detection of fragile states.

In particular, choosing “sub-optimal” states leads to lower S, which translates in lower and
more uncertain cy,. Changing W by about 20% induces a relative drop in S of 4%, on average
over the various ¢, with greater drops for & > 0.5. As a comparison, setting the weights on “non-
optimal” values (e.g. using full variance in case of multiplicative noise) results in relative drops of
S up to 18%. Thereby, on average, the loss of resilience is not detected immediately, but the EWS
react to critical transitions that already happened. Hence, depending on the study tolerance levels
and the experimental uncertainties, selecting sub-optimal W may still yield acceptable results,
in particular for realistic combinations of additive and multiplicative noise; however, choosing
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Fig. 5.12 Optimal weight sets W for each o. o = 1 corresponds to pure white noise, o¢ = 0 to multiplicative.
Dashed lines correspond to alternative Ww.

non-optimal weights could results in significant drops of performance which should be improved
with subsequent iterations.

5.4.4 Comparison with experimental data

Consider the system described in Sec. 5.3.3 and its derived experimental data. AW,, measures
mitochondrial membrane potential (state variable) and Antimycin A concentration is the control
parameter.

After some transient time, Antimycin A impairs mitochondrial functions and drives the system
into a bistable region, followed by critical transitions. Fig. 5.13 (right) shows the bifurcation
diagram, at steady-state (all cells evaluated at time=22h), corresponding to mean values for each
mitochondrial condition measured by log(AY,,), estimated with Gaussian mixture models (see
Trefois (2014) for details). For the experiments, Antimycin A was increased from low to high
concentrations (in nano-molars); Oligomycin A is kept constant at 2 g/ml (refer to Table 5.2 of
Trefois (2014)). Bistability is observed for Antimycin concentrations between 8.7 and 15.5 nM.

Note that the experiments were performed only by increasing Antimycin concentrations,
without reducing it. Hence, observing values on the lower branch means that the system was able
to switch before reaching the tipping point, a likely sign of noise-induced transitions. The blue
point in the middle of the imputed unstable branch can be interpreted similarly — a value sustained
by random fluctuations.

After assessing bistability, the coefficient of variation (CV) was estimated as a measure of
variability, to test the emergence of early warnings. Fig. 5.13 (left) shows CV values at steady state
(all cells evaluated at time=22h, after transients), as function of different conditions corresponding
to increasing concentrations of Antimycin A, from 8.7 nM to 18 nM. It is rather flat until condition
16, where it has a small drop followed by an increasing trend. According to Table 5.2 of Trefois
(2014), condition 16 is right before the system enters its imputed region of bistability.

As expected, CV does not display notable patterns before entering the bistable region. On
the contrary, its subtle dip may initially trigger a spurious signal and can be interpreted as a noisy
effect. Then, CV values strongly increase from the 15th to the 36th condition under steady-state
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assumption, as bimodality unfolds. However, it does so much before reaching the bifurcation
point. This aspect, together with the observation from above about likely n-tipping occurring in
the system, suggests that CV increases are strongly driven by the mean suddenly switching to
alternative, low values. Augmented variability thus amplifies and smoothens the transitions to
alternative means ((A%¥,,)), but it is unlikely to anticipate the critical regime. In this case, CV
works fine for just-on-time detection (it identifies when few cells begin tipping) but not for global
anticipation.
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Fig. 5.13 Left: Increasing CV at steady-state, for the mitochondrial experiments. Blue line: CV over all
conditions under steady-state (t=22h). Red line: smoothing with a 5-step window. Figure corresponding to
Fig. 5.9 of Trefois (2014). Right: bifurcation diagram at steady-state (t=22h). Red dots: estimated high
state AW, averages, 1. Blue dots: low state AW, averages, U, for conditions greater than 22. Black dots:
average AW, for concentrations of 0.39, 2.3 and 83.3 nM Antimycin A (two states before the bimodal
region and one after it). Figure corresponding to Fig. 5.15 of Trefois (2014). All figures reproduced with
permission from the author.

5.5 Discussion

The present chapter presents a systematic analysis on the expected behaviour and performance of
CSD-related indicators and associated EWS. The results are significant for several reasons.

First, they complement previous literature on the dependency of EWS to dynamical contexts
and inform subsequent investigations on performance, observability and interpretability of EWS.
In particular, the chapter proves that noise effects and commensurable time scales may alter EWS
behaviours and drastically diminish their performance. Hence, the current results support existing
suggestions (Dutta et al., 2018) that EWS are actually not generic in foto; nonetheless, sub-classes
of CTs exist, defined by the considered dynamical contexts, where EWS are robust and generically
applicable to numerous systems. In addition, the results illustrate the importance of considering
realistic settings — measurements with uncertainties, non-normalizations, etc. — when making
predictions to contrast against data, that should be properly collected and curated. Finally, the
chapter alerts that extracting some patterns in statistical indicators is not sufficient to infer the
existence of critical transitions. Overall, the chapter charts potentials and limitations for the
application of EWS in real-world systems.
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Second, the analytical and general results allow to interpret numerous observations from
simulation and experimental studies, in various research fields. Some examples have already been
provided in the chapter, e.g. the arguments between Guttal et al. (2008) and Dai et al. (2012) on the
role of skewness, or the observations of Brett et al. (2017) about commensurable time scales and of
Southall et al. (2020) about the performance of CV. Another interesting point is the interpretation
of experimental estimation of CV trends from critical transitions in mitochondrial membrane
potential: theoretical results help understanding the role of noise in driving the transitions and
modify the behaviour of EWS.

Overall, this analysis helps understanding EWS trends in different contexts. For future works,
re-interpreting other existing arguments (see chapter 3) in light of the current results may provide
additional insights.

Third, the analysis allows to assess whether the indicators are “anticipating” or “detecting”
the loss of resilience. According to the interplay of approaches to bifurcation points and noise
levels, proposed EWS may succeed in detecting resilience loss before tipping events, therefore
anticipating critical transitions within systems of interest, or simply detecting the very first tipping
events. Such analysis calls for caution against claims and overoptimistic applications of proposed
EWS in real-word monitoring protocols. Even when looking at the optimal combination of
statistical indicators to provide early warning signals, the existence of underlying tipping events
cannot be ruled out. In the example of the genetic toggle switch, the analysis reveals that many
indicators become significant when relevant numbers of cells already changed phenotype. Keeping
in mind this epistemic distinction is important in real-world applications, as further discussed in
Sec. 8.5.4.

Finally, it is possible to provide a set of practical guidelines for using certain resilience
indicators to address specific systems. When the system is known (or suspected) to evolve over
time scales that are not “slow-fast”, it is best to use variance and derived indicators. Variance
is also the best indicator (possibly, combined with autocorrelation) in case of slow-fast systems
subject to white noise, and should be preferred to other ones. In case of multiplicative noise of
various types, however, autocorrelation is more robust, while increasing entropy is in general the
best performing EWS. In case of realistic mixture of additive and multiplicative noise, however,
combining multiple indicators improves the results obtained with univariate strategies.

These results have immediate consequences in routine applications. For instance, two con-
trasting indexes were proposed to evaluate cell differentiation stages, one based on variance (Chen
et al., 2012b) and another on autocorrelation (Mojtahedi et al., 2016). If cell systems are expected
to evolve slowly (w.r.t. their typical time scales) but are characterised by combinations of intrin-
sic and environmental noise (Bruggeman et al., 2018), the second strategy should be preferred.
Moreover, developing additional methods based on entropy, derived from cell distributions, will
further improve the detection and anticipation capabilities. Future studies, improving the present
analytical results and considering additional contexts, will shed light onto their potential use for
online alerting.

By carefully considering EWS robustness and sensitivity to dynamical features, this analysis
observes when confounding and spurious signals may appear. When bistability properties or
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tipping points are not known, relying only on early warning signals from the CT framework
may yield false positives (an increase is observed, but not associated to impending critical
transitions) or false negatives (no significant increase is observed because it is shadowed by noise
or commensurable time scales). Other dynamical contexts, not considered here, may further skew
the expected signals and trick our interpretation, in particular during online monitoring. Overall,
EWS performance for detection and early alert needs to be refined for classes of systems and
tested against empirical data. Building upon the current results, this task is performed in the
subsequent chapters.

Code availability

The code to reproduce the results is available at https://github.com/daniele-proverbio/EwsSensitiv
ityPerformance
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Resilience properties and buffers for
biological variability
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cell regulation motifs close to criticality. Physical Review E, 106: 1032402, 2022 (Proverbio
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6.1 Motivation

Previous chapters and empirical literature (Dai et al., 2015; Radchuk et al., 2019) suggest that
interplays between resilience and stability properties may concur in determining how systems
cope with fluctuations and how performant EWS against impending transitions may be. To inquire
these aspects, a tractable model of high biological relevance is here considered. The model is a
self-activating positive feedback loop, a common regulatory motif found in viruses (Hasty et al.,
2000) and cell circuits (Alon, 2019) producing critical bifurcations with different properties.

This study has two main purposes. First, to identify and characterise buffering mechanisms,
i.e., suppressors for fluctuations and noise-induced regime shifts, close to criticality. Second, to
uncover system’s resilience properties from data, when the regulatory mechanism is not known in
details. EWS derived from the CT theory are thus tested in situations where the positive feedback
loop fold bifurcation is altered by extra parameters. This analysis demonstrates the usefulness of
single metrics for multivariate systems. Since it relies on minimal models, the present framework
can be used to extract robustness and variability properties of other more complex models and
empirical data close to criticality.
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6.2 Introduction and modelling background

Many biological systems self-regulate their functions through bistable circuits, which have been
associated to genetic (Angeli et al., 2004b; Kheir Gouda et al., 2019) as well as growth feedbacks
(Deris et al., 2013). As introduced in Sec. 4.1.1, positive feedback loops are key regulatory mech-
anisms deserving paramount interest by systems biologists. Close to criticality, the dynamical
motif has reduced resilience and the system can exhibit augmented variability in response to noise
(Mojtahedi et al., 2016; Sharma et al., 2016a). This is typical of non-linear systems approaching a
critical bifurcation (Scholz et al., 1987; Scheffer et al., 2009; Byrd et al., 2019) and corresponds to
an augmented sensitivity of the system to random perturbations. The phenomenon corresponds to
critical slowing down (CSD, see Sec. 2.4.1). Mechanisms to buffer variability while maintaining
the critical state are thus necessary to finely control desired transitions (Frank et al., 2002; Qian,
2012), or to better cope with undesired shifts (Scheffer, 2009). In fact, cells and other biological
systems are thought to live close to criticality to quickly respond to changing environmental
conditions (Mora et al., 2011), but they should not respond to random changes (noise), in order
to maintain their evolutionary fitness. Hence, strategies to control drastic switches through b- or
n-tipping (Sec. 2.3) and to buffer variability should be recognised and deeply studied

To this end, two main dynamical strategies can cooperate: moving the system state away from
the bifurcation point, or deepening the basin of attraction to avoid random fluctuations pushing
the system state to undesired attractors. These strategies correspond to changes in different
environmental or regulatory conditions in cellular systems (Dai et al., 2015), allowing organisms
to exploit different mechanisms to buffer variability close to criticality. For instance, the “sponge”
action of molecular compounds (Ebert et al., 2012; Siciliano et al., 2013) is a known biological
buffer, helping to hamper fluctuations around equilibrium states and preventing noise-induced
transitions. Phase separation within cells is also known to provide such effects (Klosin et al.,
2020), as well as temporal relay of signalling molecules (Lestas et al., 2010). However, dynamical
mechanisms close to critical states are less studied. This work identifies one such mechanism to
buffer variability; specifically, the role of cooperative interactions that tune the activation function
of positive feedbacks.

To illustrate this, consider a simple an well-known a-dimensional model for stochastic autoac-
tivating positive feedback (Santillan, 2008; Strogatz, 2018):

n

x=K+c

T —x+n(t). 6.1)

The model describes protein concentration dynamics after RNA transcription by Michaelis-Menten
kinetics around equilibrium reactions (Frigola et al., 2012; Weber et al., 2013). Sec. 4.1.1 discusses
the model in details. Let us recall the key information. Variables and parameters are: x for the
protein concentration, with steady state £, i.e., X|z= 0, K for the basal expression rate, and ¢ for
the maximum production rate. The deterministic terms can be grouped into a single function f(x).
The critical value cq for the control parameter marks a saddle-node bifurcation. The dissociation
constant (in denominator of Hill function) was normalised to 1 without loss of generality (Smolen
et al., 1998). However, it can be re-included as an additional constant ¢, yielding a modified
activation function x" /(g + x").
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The noise term 1 (¢) accounts for intrinsic stochasticity of biological processes (Hasty et al.,
2000). Only additive noise is considered here, to approximate the fast degrees of freedom in a
mean-field regime (Berglund et al., 2006). Noise has the following statistical properties: (1) =0,
(n(t)n(t')) =208(t —1'), where o represents its intensity. Multiplicative (state-dependent) noise,
introduced and discussed in chapter 5, is not primarily investigated here, to concentrate on the
effects of extra parameters on stability properties. In fact, the interplay of cooperativity and
multiplicative noise adds a layer of complexity; it is briefly discussed in Sec. 6.5 and is suggested
to future studies. For an introduction on simple motifs, see Sharma et al. (2016a).

The Hill coefficient n is a non-linear term modelling cooperative binding mechanisms. It is
usually interpreted as the number of transcription factors (TF) that cooperatively promote tran-
scription (Santillan, 2008). Literature suggests that n is associated to measured noise distributions
(Maienschein-Cline et al., 2010), but it is less clear how n concurs in controlling fluctuations and
transitions close to critical states. To have bistability in the circuit, n > 2 is necessary. When
n — oo, the system is modelled using the logic approximation for the activating function:

xn

lim
n—oo | 4 x"

=0O(x—1). (6.2)

Here, ©(-) is the Heaviside step function that turns system (6.1) into a perfect toggle without
bistability nor CSD.

In this chapter, two main investigations are conducted on Eq. 6.1.

The first one inquires the dependence of stability properties on the cooperativity index n.
To begin with, stability properties are quantified by the stochastic potential and the stationary
probability density function (Sec. B) associated to states close to criticality. They show that
increasing cooperativity values do not alter the underlying bistability, but modify the depth
of the potential and increase the separation of alternative states. Then, system sensitivity to
noise close to critical points is investigated in terms of changing variability measures — variance
and autocorrelation. This way, it is tested how cells can keep production rates c¢ close to their
critical values and nonetheless increase resilience and buffer variability using other regulation
mechanisms.

Since the presence of non-linear binding interactions often leads to analytically intractable
models (Cao et al., 2018), a methodology that combines analytical and geometrical analysis on
normal forms (Sec. A) is employed. They are used to derive approximate closed-form solutions
for variance and autocorrelation, which measure systems’ variability close to criticality.

The second investigation considers the impact of changing system resilience to EWS. The
question is: since varying values of n alter some quantitative bifurcation properties, can we
still rely on CT-based early warning signals to detect an impending tipping point? The goal is
to assess in which parameter range the CSD-based early warning signals correctly indicate an
impending regime shift. To better capture noisy effects in b-tipping, which might not be included
in approximated analytical results, numerical simulations are employed for this part of the study.
They are detailed in the sections below, together with the justification for the choice of parameter
values.
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6.3 Stability properties

Increasing values of n modify the bifurcation diagram for Eq. 6.1, as shown in Fig. 6.1, left.
Hence, they do not alter the existence of bifurcations, like K would (Fig. 6.1, right); however,
they modify their quantitative properties and, possibly, the associated system’s resilience and the
way fluctuations are buffered. Note that the following analysis concentrates on the upper branch
of bistable systems (to be consistent with the mean-field assumption) and moving leftwards to
the saddle-node bifurcation point. Consequently, K is always chosen appropriately (c¢f. Fig. 6.1;
K = 0.1 is used without loss of generality).
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Fig. 6.1 Left: Bifurcation diagrams (¥, c) of Eq. (6.1) for different Hill coefficients n. Stable and unstable
branches are represented by blue and red colours, respectively. Black dots identify the bifurcation (saddle-
node) points cp. Each value of n is displayed close to its corresponding diagram. Right: Bifurcation
diagrams (¥, c) of Eq. (6.1) for different K, which acts as a cusp parameter (Sec. A). It yields bistability or
not depending on its value range. For n = 2, bistability occurs for 0 < K < 1/(3v/3) (Weber et al., 2013).

6.3.1 Probability density function

To characterise system stability properties, stationary potentials and probability density functions
(PDF) are analysed in their dependency on #, in analoogy to previous works (Friedman et al.,
2006; Kumar et al., 2014). These characteristics are also useful to derive probability transitions
rates and mean passage times (Sec. B and Zheng et al. (2011)).
Consider the forward Fokker-Plank equation (Sec. B) for the probability density function
P(x,t) associated to Eq. (6.1):
dP(x,t) d 0°

= S )P()]+ 5 0P ()] (63)

Here, f(x) lumps the deterministic terms of Eq. (6.1), i.e.,

n

f(x):K+c1+xn —
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The stationary solution P;(x) is biologically interpretable as the PDF after rapid transients. Its
takes the form (Sec. B)

Py(x) = Noe 99 (6.4)
0 (x) = %lna - é / " H)a 6.5)

Here, ¢ (x) describes the adjoint stochastic potential and its depth is related to system resilience,
i.e., its ability to recover after a perturbation. N, is a normalization constant, so that [, Ps(x) = 1
(Q is the domain). It is computed with corresponding functions of the Mathematica software.

Fig. 6.2 shows the dependency of ¢(x) and P;(x) on n when the system is either in an “off”
state far away from criticality (Fig. 6.2a,b), close to the criticality (Fig. 6.2c,d) or beyond it, where
the “on” state is favoured (Fig. 6.2e,f). Fig. 6.3 provides a complementary view for the stationary
PDF, that is, its phase portrait (Py(x), d,Ps(x)). Each loop identifies a peak in P;(x). The bistable
region is therefore characterised by two loops, of various “radius” and position depending on n.

(a) (c) (e)

$(x)

X

Ps(x)

Fig. 6.2 Effect of the Hill coefficient n on the stochastic potential ¢ (x) (left column) and on the stationary
probability density function Ps(x) (right column), when only additive white noise is present. (a, b) ¢ = 0.8
(“off” state); (¢, d) ¢ = co(n) +0.05 (multistable region); (e, f) c = 2.7 (“on” state favoured). In all cases,
K=0.1and 6 =0.05.

Consider Fig. 6.3. Increasing the cooperativity index n does not alter the underlying bistability,
but modifies the depth of the potential and increases the separation of alternative states For the
“off”” and “on” states, the corresponding equilibria exhibit significantly deep attractor basins with
only minor dependence on #, as also indicated in the bifurcation diagram (Fig. 6.1) and by P(x).

In the bistable region close to critical points, the situation changes. The potential ¢ (x) displays
two commensurable wells, which are more evident and symmetric for larger n, suggesting that
both states become equally occupied in noisy environments. For increasing n, Py(x) displays
sharper peak separation between the bistable states: the system diffuses less to intermediate states
and is more constrained around single equilibrium values, as anticipated due the steeper potential
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Fig. 6.3 Phase plane of the stationary probability density function (P(x) versus its first derivative). Each
loop identifies a peak, corresponding to a stable steady state. Panels correspond to: (a) Monostable region,
on lower branch (“off” state). The loop is not complete as values below 0 for P;(x) are not biologically
consistent. (b) Bistable region, close to criticality. Two loops exist for each n, identifying the two possible
solutions. (¢) Monostable region, on upper branch (“on” state), with a single loop highlighting the only
stable solution. Panels (a,b,c) correspond to panels (a,b), (c,d), (e,f) in Fig. 6.2.

barriers in ¢ (x). Random deviations are thus suppressed faster and transitions from one state to
another are sharper and are therefore more robust against noise.

6.3.2 Variability measures

The close question is: close to criticality, how does n influence variability measures like variance
and autocorrelation? Analytical derivations for variance and autocorrelation are known for mini-
mal models (Gutierrez et al., 2009), but they become more challenging for high n. Nonetheless,
the present goal is to use a generic framework, that can be easily extended to other resilience
patterns in complex networks (Gao et al., 2016) or to other complex activation functions. Hence, a
useful strategy is to focus on local analysis close to bifurcation points and to employ a geometrical
methodology.

To derive generic results for critical manifolds, using their local topological equivalence to
bifurcation normal forms is useful (Sec. A and Kuehn et al. (2021)). For saddle-node bifurcations
like in Fig. 6.1, the associated normal form is

x:p—xZ, (6.6)

with two equilibrium manifolds ¥ = +/p, one stable (+) and the other unstable (—). Note that
the normal form corresponds to a parabola. To study the behaviour of stochastic solutions near
the stable manifold, consider the evolution of its first-order perturbation, y = dx|z, exposed to
the same additive white noise 7n(¢) as in Eq. (6.1) (Kuehn et al., 2011). Now, perform a simple
change of notation:

k=2p. 6.7)

Eq. 6.7 corresponds to the distance of the control parameter p from its critical value pg = 0.
This way, k is proportional to ¢ — c¢g from the original system. The corresponding Langevin
equation, to describe mean-field fluctuations around the stable equilibrium, is given by a typical
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Ornstein—Uhlenbeck (OU) process with exact solutions for statistical moments (Gardiner, 1985):

y=—ky+n(t). (6.8)

For simple systems with known mechanistic model, one can directly use the analytical Eq. A.8;
in the present case, the calculation is performed in Sec. 6.3.3. However, it would be impossible for
incomplete models or for studies based on experimental data. Hence, another method is proposed.

To connect the quantitative effects of n with the more qualitative topological form Eq. (6.6),
recall that n widens or narrows the local parabolic shape of the original bifurcation diagram
for Eq. (6.1) (see Fig. 6.1). From basic geometric considerations, Eq. (6.6) thus needs to be
augmented with an additional term p, that modifies the focal width of its parabolic stable manifold.
The focal width is the width of the parabola at focal level. For a parabola (y — yo) = a(x —x0)?,
the focal width FW is equal to a. Basic geometrical calculations allow to derive it from parabolic
equations. Including the term p, Eq. (6.6) is modified into

X=p— px2 . (6.9)

In this formulation, p corresponds exactly to the focal width of the normal form. As anticipated,
Sec. 6.3.3 contains analytical derivations for the approximation of system (4.1) to the normal
form (6.9), and its relationships with the geometrical results. Propagating p into Eq. (B.9) adds a
tuning term to the bifurcation parameter, k — /pk. Hence, the corresponding O-U process for a
semi-quantitative saddle-node normal form is

y=—vpky+n(t). (6.10)

Spectral properties and statistical moments can be calculated immediately, provided that p is
constant as assumed here. Among them, the primarily interest is for quasi-steady-state variance
(Var) and lag-1 autocorrelation (AC(1)), measures of system variability close to criticality. Recall
that they have been proposed as proxies for system resilience and as the most common EWS
for impending bifurcation points (see chapter 5 and, e.g., Scheffer et al. (2009); Trefois et al.
(2015)). Following the present methodology, future studies might inquire other indicators and
their behaviour under changing n and additional conditions. Analytical solutions for Var and
AC(1), derived from the O-U process (6.10), are (Gardiner, 1985):

Var = J‘;k, (6.11)
ACI = ¢ VPK, (6.12)

Eqgs. 6.11 and 6.12 are generic for noisy bifurcations whose resilience properties are altered
by increasing focal widths, modelled as multiplicative parameters like p. They thus constitute a
general result. Fig. 6.4 plots them as functions of p and k.

To connect with the original autoactivating feedback system, it is necessary to extrapolate
the focal width of the bifurcation diagrams for each n. This is done by fitting a parabolic form
¢ = A& + Bx + y to the data points of each bifurcation diagram in the vicinity of the saddle point.
Using MATLAB Curve Fitting toolbox also provides uncertainties over 6= [, B, 7], resulting
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Fig. 6.4 Left: Theoretical dependence of Var on p (related to focal width) and k (distance measure from
critical parameter values). Solid vertical lines represent slices for fixed values of p (Eq. 6.15) corresponding
to the mean FW shown in Fig. 6.5. The associated n values increase from left to right. Right: same, but
for ACI.

from small deviations from a perfect parabolic shape. By definition, the fitted focal width is
FW =2|%(cp) — XF|, (6.13)

where (¥r, cr) are the coordinates of the parabolic focus, extrapolated from the fit. To get a
reasonable estimate of the corresponding uncertainties, the associated standard deviation is derived

from the fitted parameter uncertainties std(6;) using a first-order approximated propagation method
(Taylor, 1997):

1
IFW ik
td(FW) = td(6; . 6.14
Sa(FW) [;(aeism)] 6.19
The relationship between FW and n is plotted in Fig. 6.4c, with the corresponding std(FW) from
Eq. 6.14. A best fit study is also performed. The pattern decreases quadratically, thereby marking
a rapid decrease followed by almost plateauing. Hence, bounded and relatively small cooperativity
indexes are in principle sufficient to effectively buffer variability close to criticality. This fact may

have important practical implications for synthetic biology studies.

Best fit:
FW=2.7/(-0.30n-1.7)2
Adj. R-squared = 0.9945
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Fig. 6.5 Relationship between FW (Eq. (6.13)) and corresponding values of n, with best fit. Error bars
correspond to one standard deviation from Eq. (6.14).
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The estimated p values from fitted focal widths, for n = 2 to n = 8, are obtained as
p=&(FW), (6.15)

where & is a tuning parameter proportional to the Hill function (see Sec. 6.3.3). Mean p values are
marked in Fig. 6.4a,b with solid vertical lines. Consistently with the trend observed in Fig. 6.4c,
the mean values spread as n increases (from left to right). Low n values yield higher sensitivity
to noise, as both Var and AC1 show substantially higher values for small cooperativity indices
n, even when k is large (i.e., further away from the critical point, but still within the bistable
region, cf. Fig. 6.1). Thus, values of p can belong to two regions: one, where the values for both
metrics are high for all k (left side of Fig. 6.4a,b), or another one where both metrics maintain low
values for most k and increase rapidly close to criticality (right side of Fig. 6.4a,b). The region
p — oo corresponds to the logic approximation (6.2) with n — oo, where Var and AC1 also change
abruptly in a step-wise manner.

The ultra-sensitive region p — 0 is spanned by increasing dissociation constants (in the
denominator of the Hill function, cf. Fig. 6.6), and potentially by changing other parameters, here
not explicitly considered, or by different activation functions describing, for example, wild-type
vs mutant organisms Hasty et al., 2000. Other pathways like growth feedbacks Deris et al., 2013
will likely correspond to additional regions in the parameter space. These investigations are left to
future studies.

005 |
00 05 10 15 20

o

Fig. 6.6 The figure is analogous to Fig. 6.4, with p corresponding to increasing n represented as dashed
lines (also, notice the change of scale). Solid lines, instead, correspond to different values of the dissociation

constant g in the Hill function %. Values are increasing from right to left in [2,2.5,3], towards the

ultra-sensitive region p — 0. For these, n =2 and K = 0.1.

6.3.3 Analytical derivation of normal form results

The normal form associated to a dynamical system x = f(x,c) can be analytically derived from a

Taylor expansion around the bifurcation point (Sec. A):

of 1 9%f 0
W( (x—xo) 4+ ....

%0,¢0)
(6.16)
Here, % identifies the critical value on the equilibrium manifold x = %, ¢y is the critical value

t=fee) = foe)+ F| Gl ematy

(%o,c0)

for the control parameter, and (%o, co) is a saddle-node bifurcation point, i.e., f(%y,co) =0 and
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df/9x|(z, c,)= 0. Hence, the normal form Eq. 6.6 can be derived by truncating higher-order terms,
yielding ,

¥R = (c—co)+1 ) (x —%o)*. (6.17)
(%o,c0) 2 0«2 (%o,c0)

Nonetheless, this procedure is not always possible. Besides the assumption that f is sufficiently
differentiable, it requires prior knowledge of the system model f(x,c), which may not be available
in experimental setups. This justifies the introduction of the geometric methodology in Sec. 6.3.2,
which can be directly applied to data.

Let us discuss the relationships of geometrical and analytical results, when an analytically
tractable model is available. Let f(x,c) = K + cq S
where c is the production rate (control parameter) and ¢ is the dissociation constant. The Taylor

— x be the deterministic terms in Eq. 6.1,

expansion
-n ~n—2
X cong%y, con®qX) (% — q) -2
X~ —(c—co)+ | — - o x —Xo (6.18)
R <2<q+xs>2 TS IR R
N————
p b

is directly related to the saddle-node normal form Eq. 6.6, with a shifted equilibrium . Note
that p (and, hence, k = 2,/p) is proportional to the distance (¢ — o) of the control parameter
from its critical value, tuned by the Hill function & = q;i(}g' Around the bifurcation point (%o, co),
where X = 0, the parabolic form ¢ = ch% + BXo + v can be analytically determined from Eq. (6.18)
as = p/E, B =—2pxy/E, and y = p#3/& + co. Hence, the focal width FW is related to p
according to Eq. 6.15.

The conclusions drawn from numerical fitting in Fig. 6.4, regarding the focal width conver-
gence and p divergence, can also be verified analytically. The critical parameter c( can be derived
from the tangency condition for a saddle-node bifurcation (d f/dx|z )= 0), yielding

o= (noqan?. (6.19)
0
Substituting p and ¢y into Eq. 6.15 of main text leads to
5 2~n+l
FW = (6.20)

E: (n+ D35+ (1—n)q’

which tends to zero in the limit of n — oo, if log(%y) > 0, as seen in Fig. 6.5 for ¢ = 1. Likewise,
lim,, e p = 0. From f(x,c), note that lim, X = K + ¢, so the premise log(%p) > 0 holds if
K +cp > 1, which is satisfied since K = 0.1 and cp = g = 1 in the limit of the logic approximation
Eq. 6.2. Values obtained from Eq. 6.20 can also be used to doublecheck the consistency of fitting
results.

The focal width convergence to zero implies that the parabolic bifurcation diagrams repre-
sented in Fig. 6.1 collapses to a line for n — oo, losing the bistability property of the system as in
the logic approximation Eq. 6.2. This same analysis can also be used to show that p decreases as
the dissociation constant g increases for ¢ > 1, as seen in Fig. 6.6.
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6.4 Generality of EWS

After studying stability properties, the study focuses on performance of EWS against impending
bifurcation points. The motivation is to consider complex systems lacking validated mechanistic
models; in our case, this would translate to a scenario where n—or even the precise activation
function—of an eukaryotic cell is poorly identifiable (Hasty et al., 2000). This consideration
leads to questioning if we can identify statistical signals, computed on empirical data, that provide
reliable information about the system’s loss of resilience. Increasing trends of Var and ACl1
have been widely suggested to work as EWS Scheffer et al., 2009; Trefois et al., 2015 but their
robustness remains elusive. The present goal is to study how generic they are in the identified
parameter range, despite the influence of an extra parameter p altering system resilience.

To account for mean trends and uncertainties, as well as to deeply study the interlinks of loss
of resilience and noise, the system 4.1 is numerically integrated using the Euler-Maruyama method
(see Sec. 4.2.2). To mimic cell populations slowly evolving close to equilibrium, we sample 10*
time points over 200 repeated experiments in dependence of ¢. This leads to a distribution of
statistical indicators, an approach discussed in 4.5. Fig. 6.8a, inset, provides an example.

To distinguish between bifurcation-induced transitions, anticipated by loss of resilience, and
noise-induced transitions, measuring the scale between the distance to bifurcation point and the
noise level is done by means of Kramers’ escape rate (Sec. B):

UG -UG)
1= ¢ (6.21)
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For any saddle-node bifurcation manifold 6.9 equipped with additive noise,
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Hence,

T 4 i3

Technically, T depends on p. However, the difference is very nuanced and practically negligible
with respect to noise variance. To set comparable simulations, the generic (Kuehn et al., 2011)

T~ O(explk’ /o)) (6.23)

is thus considered.

Fig. 6.7 displays 7 from Eq. 6.23 as a function of ¢ and k. Values lying at the exponential
boundary of Fig. 6.7 (between orange and blue colour) provide comparable ranges of control
parameters and noise levels for all simulations with different n. They distinguish two regimes, one
where few noise-induced transitions might occur (7 < 2, Fig. 6.8a,b) and another regime primarily
determined by bifurcation-driven resilience loss (7 2 2, Fig. 6.8c,d). For the considered o = 0.02,
the system is very close to critical points.
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Fig. 6.7 Generic escape rate 7 as a function of noise level ¢ and &, from Eq. (6.23).

Results from computer simulation experiments are shown in Fig. 6.8a—d (average values
shown). Since the original system can be explored, ¢ — c¢ is used instead of the more generic k.
Like above, K = 0.1 without loss of generality.

When the dynamics is mostly characterised by the bifurcation (Fig. 6.8¢c,d), both Var and AC1
display patterns consistent with those predicted in Fig. 6.4. In addition, increasing n better buffers
variability — absolute values for variance and autocorrelation are reached when n is low. When
the noise level becomes comparable to the potentials’ depth (Fig. 6.2c,d), Vars for different n
become very close to one another due to the more prominent role of noise uncertainties. ACls
(Fig. 6.8a,b) remain separated due to lower sensitivity to noise (cf. Eq. 6.12), but with less marked
— and, therefore, harder-to-detect — trends. That the variance is potentially more informative in
these kinds of regimes, as its trends are more easily distinguishable, is similar to observations
from real-world data, see Proverbio et al. (2022c) and Chapter 7.

6.4.1 EWS quantified

As explained in Sec. 4.5.1, EWS are associated to increasing trends of statistical indicators. For
online applications (i.e., as new data come in and without future knowledge of the system evolu-
tion), it is necessary to quantify whether an observed increasing trend is statistically significant,
assessing whether it corresponds to a EWS or some spurious fluctuation (Boettiger et al., 2012a).
Several strategies can be employed to do so (cf. 4.9). Since distributions at each c are available,
this study looks for significant p-values between the computed distributions close to criticality
and those far from the bifurcation (reference). An example is displayed in the inset of Fig. 6.8a.

Sec. 4.5.1 describes the details. In short, once fixed the reference distribution, all the others
are compared with a t-test and the corresponding p-value registered. Notably, all p-values from
different n are mutually consistent with each other: despite the different absolute values, the
increasing trends are conserved. Fig. 6.9 show patterns of p-values from Var and AC1 (top and
bottom, respectively, with the corresponding standard error), averaged over all n.

The p-values are computed closer to the bifurcation in Fig. 6.9a (¢ — cg corresponding to
the parameters in Fig. 6.8a,b) and farther from bifurcation in Fig. 6.9b (c — ¢ corresponding
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Fig. 6.8 Average trends of (a) Var and (b) ACI as a function of ¢ close to bifurcation ¢y, in the regime
where some noise-induced transitions might occur (blue area of Fig. 6.7). Simulations are presented over
200 realizations for different n. For each c, the indicators spread into distributions; example for two ¢
values are in inset (a). (c,d) Average trends of Var and AC1 farther from bifurcation point cy.

to the parameters in Fig. 6.8c,d). After an initial transient where the distributions are poorly
distinguishable, the p-value decreases below significant levels. Whether 0.1 or 0.05 (two common
thresholds, dashed lines in Fig. 6.9) are considered significant determines how much in advance
the impending loss of resilience can be detected. For, ¢ —cp even closer to 0, p-value < 0.01.
Hence, this analysis certifies the potential use of proposed EWS to detect approaching bifurcation
points in biological motifs.
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Fig. 6.9 Evolution of p-values between Var and AC1 distributions at each ¢ — ¢y and the reference
distribution. The latter corresponds to (a) ¢ —co = 0.2 (starting of “closer to bifurcation™) and (b) ¢ —cp =
0.35 (“farther from bifurcation”). Dashed lines represent typically used p-values in biological experiments.
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6.4.2 Application to empirical data

The theoretical framework can be applied on experimental data to interpret and predict the
relationship between resilience properties, bifurcation diagrams and EWS. As a case study,
consider publicly available data' from Dai et al. (2015). They performed an experimental study,
on yeast colonies subject to various degradation conditions towards collapse, to illustrate how
such conditions yield different values for the measured coefficient of variation, used as EWS. The
authors carefully reconstructed the bifurcation diagram for the yeast population, whether stably
living or collapsing, as function of a dilution factor or of sucrose concentration. The population
undergoes a fold bifurcation for critical values of each stressor (Dai et al., 2012; Dai et al., 2013).

Experimental data show that the two bifurcation diagrams for each stressor display different
focal widths (higher for sucrose experiments), that the authors associate to resilience properties
(see (Dai et al., 2015), Fig. 2A,B). Moreover, different increasing trends for the coefficient of
variation, used as early warning signals of impending bifurcation points (see Dai et al. (2015), Fig.
2C,D,E), were observed. In particular, CV calculated on dilution factor experiments show more
substantial increase. The authors hypothesised that such differing trends are associated to altered
resilience properties, due to different environmental drivers.

Using publicly available data from the same study, the empirical bifurcation diagrams are
reproduced in Fig. 6.10 (right) and the coefficients of variations are shown in Fig. 6.11 (right). In
both cases, only average values are reported and rescaling is performed to allow better comparison
between experimental data and theoretical predictions. It consists in extracting the distance from
bifurcation point instead of using absolute values for the control drivers. To do so, the x-axis
is rescaled to DL — Dilution factor, where DL stands for the fold bifurcation point, extrapolated
from parabolic fit, and, respectively, to S — [Sucrose]. In addition, only points close to critical
values are analysed.

The geometrical framework developed above is applied to the empirical data. First, a parabolic
form is fitted to the data points and the corresponding focal width is extracted. That is used to
extract values for empirical p, using Eq. 6.15. In this case, the tuning parameter & is unknown.
As the present goal is to compare two fitted parameters for the same population, & = 1 is assumed.
In addition, uncertainties are presently not propagated, to allow focusing on the proof of concept
results. Since Ppp;, = 2.1e—7 and ps = 9.8e—11 differ by four orders of magnitude, discrepancies
on & and propagated uncertainties are expected to play minor roles in the results.

Having extracted p geometrically, it can be inserted in Eq. 6.9 to derive a semi-quantitative
saddle-node normal form, that explicitly takes into account system resilience. Fig. 6.10 (left)
shows the corresponding bifurcation diagrams, which consistently reproduce the features of
empirical ones (compare in Fig. 6.10). Estimated values of p place them in the sensitive subspace,
leftward in Fig. 6.4.

It is now possible to predict the behaviour of early warning signals as the system approaches
its critical values. To compare with results from Dai et al. (2015), the coefficient of variation is

IDai, L., Korolev, K.S., Gore, J. (2015), Data from: Relation between stability and resilience determines the
performance of early warning signals under different environmental drivers, Dryad, Dataset, https://doi.org/10.5061/dr
yad.k30v3.
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Fig. 6.10 Bifurcation diagrams. Left: for theoretically reconstructed normal forms, following Eq. 6.9.
Inset: zoom-in for the bifurcation diagram related to dilution factor experiments. Right: for experimental
data, from (Dai et al., 2015). The diagram plots stable (upper branch) and unstable (lower branch) population
density values as functions of two environmental drivers leading too population collapse. Scaling of the
X-axis, to better compare with theoretical diagrams, are performed as explained in the main text.

calculated as
Var 6p

" Mean  2p3/4

Ccv (6.24)

Here, we can directly use p from Eq. 6.9 instead of k from Eq. 6.7 to make clear that another
system is considered. & is a term for noise intensity, which is unknown. However, it corresponds
to a scaling factor for the absolute values of CV, not altering its trends nor the associated EWS.
Hence, w.l.o.g, 6 =0.1.

After fixing p = Pppr or p = Ps, it is possible to predict the trends of CV as a function of
P, the distance to critical point. The results are shown in Fig. 6.11 (left) and can be compared
with empirical CV extracted from data, Fig. 6.11 right. Apart from absolute values (linked to
6 and propagated uncertainties), they lead to the same conclusions: both environmental drivers
elicit increasing trends in CV as the bifurcation is approached, but dilution stress entails more
substantial and earlier increase. Even though EWS can be observed in both cases, as the system
is drifting to a critical transition characterised by critical slowing down, the response of yeast
populations to different environmental stress yields more or less substantial trends and lead times.

The analytical framework developed in this chapter was therefore verified using empirical data.
It was also useful to interpret experimental data as influenced by additional parameters linked to
focal widths, which influence resilience properties and early warning signals performance. Hence,
the proposed framework allows to link observations and complex systems to quantitative models,
to foster new results in this direction.

6.5 Introduction to multiplicative noise

Gene regulation is known to be characterised by state-dependent noise (Bruggeman et al., 2018),
depending on the value of the dynamical variables, which enters the describing equations in
a multiplicative way. Most often, combinations of additive (white) and multiplicative (state-
dependent) noise are present, describing extrinsic cell-cell variation or intrinsic fluctuations in
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Fig. 6.11 Coefficients of variation. Left: theoretical CV, obtained from Eq. 6.24 for te corresponding ppy,
and Ps. Right: Average values for the empirical CV, from (Dai et al., 2015). Like in Fig. 6.10, the x-axis
was rescaled.

regulation, respectively (Pan et al., 2010). To go beyond the pure white noise approximation,
consider the case of pure multiplicative noise. Depending on the relative strength of each type of
noise, the two cases considered in this work thus correspond to two extreme cases. Intermediate
values are possible and are discussed in Sharma et al., 2016b for the case n = 2.

To model multiplicative noise, Eq. 6.1 from the main text such that is modified such that:

xn

n(t) = n(x) = n'(t), (6.25)

¢ 1+x"
where 1)/(z) is still an integral of a Wiener process and 1 (x,7) depends on the state variable as
described in Hasty et al., 2000. The resulting system is then simulated using a Milstein method
(Sec. 4.2.2) and analysed using the same protocol described in the main text. The results are
shown in Fig. 6.12. The AC(1) behaves similarly to what observed for the case of white noise
(compare with Fig. 6.8b), while the variance displays different trends. Both behaviours are
expected from Eq. 6.11 and 6.12: Var depends on the Ornstein-Uhlenbeck variance ¢, which is
altered by the multiplicative noise form, while AC(1) does not. This supports the use of reduced
normal forms to study fluctuations near critical points. Let us focus on Var: apart from point-wise
deviations associated to random switches, it maintains slowly increasing linear trends rather than
significantly diverging as in Fig. 6.8a. This suggests that multiplicative noise can be another
mechanism to buffer fluctuation amplitudes but not correlation. Future works may further study
this interesting evidence. Overall, Var is anyway suppressed to smaller absolute values by higher
n, in particular n > 5.

These findings are reflected into the EWS capabilities of statistical indicators, as quantified by
the p-value analysis. In fact, AC(1) trends are significantly increasing like in the white noise case,
thereby providing warning signals that a critical regime is approaching. On the contrary, trends
associated with Var are less consistent, as reflected by oscillating p-values around significant
levels. In this case, signals may be spuriously interpreted, thus calling for caution when using
Var as an EWS indicator in systems strongly affected by state-dependent noise (as anticipated in
chapter 5).



6.6 Discussion 127

3
2 x10 1

0.9985
—n=2 M —Average, over Var ,
0.998 ~__ -—--Std err )
J— _3 ~ /)
15 n= 0.9975 RV PN 0.5 N
I n=4| TN A
;6' 1 J‘H\ —n=5 8 % gEZZZAERGS SALTAES
I
I n=8 = 0.9965 % 0.5 ||—Average, over AC(1) o
o 3 0.996 = - Std err Sy
. — - o > R
—— 0.9955 : A
o 0::::::::—: Ym =
0 0.995
0.05 0.1 0.15 02 0.05 0.1 0.15 02 0.05 0.1 015 02
c—cp c—Co =%

Fig. 6.12 Results for the case of state-dependent noise (from left to right: evolution of Var, AC(1) and
p-values). Compare the figure with Fig. 6.8a,b and Fig. 6.9a.

6.6 Discussion

Understanding how cells regulate variability and cope with fluctuations is an active area of research
(Snijder et al., 2011). This study focused on how dynamic patterns buffer systems’ variability in
critical regimes. Primary attention has been dedicated to the role of the Hill coefficient in shaping
system resilience via alterations of the driving fold bifurcation.

Stability properties were first quantified by means of master equation formalism, associated to
cooperativity values for the positive feedback loop motif. In addition, parameter ranges, where
both variance and autocorrelation display low relative sensitivity to noise, were determined. In
other ranges, however, the system poorly buffers its variability. Investigating whether they could
correspond to other dynamical mechanisms is demanded for future studies, which may unravel
alternative ways by which cells regulate their states or support the hypothesis of a self-organised
fine-tuning in “safe” parameter spaces.

Sate-dependent noise has also been found to buffer variability amplitude near criticality. Ad-
dressing the interplay of noise properties and other regulation mechanisms captured by dynamical
parameters will unravel control strategies employed by biological systems to improve their fitness.

In addition to assessing buffering mechanisms, a second result links them to EWS from the
theory of critical transitions. This analysis shifted the focus from solutions of known mechanistic
models to inference of system resilience from data. To this end, the proposed framework can be
easily applied on different dynamical models and experimental setups. The methodology was
based on the centre manifold theorem A.5.1 for bifurcation normal forms and allows to extrapolate
resilience measures from simulated and empirical data. The methodology and the corresponding
results are local, focusing on the vicinity of critical points rather than being globally applicable in
the full dynamical range of cell functions. Future studies are necessary to test it on other systems,
both theoretical and empirical. Incorporating multiplicative noise and other dynamical regimes is
also left for future studies.

Among EWS proposed in literature, this study first concentrated on increasing variance and
autocorrelation, since several indicators have been subsequently developed upon, to detect cell-fate
decisions (Mojtahedi et al., 2016) and to possibly anticipate undesired shifts to e.g. cancerous
states (Yang et al., 2018; Aihara et al., 2022). This study supplemented analytical results with
numerical simulations of stochastic feedback loop motifs, to better investigate the interplay be-
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tween cooperativity and noise and their effect in the identification of EWS. Hence it assessed their
sensitivity to regulation mechanism, to interpret and apply warning indicators correctly. In the
considered parameters’ range, EWS are sufficiently generic to detect resilience loss. However,
their use should be treated carefully, if other quantitative correlations between noise (including
multiplicative noise) and bifurcations exist, that could shadow theoretical trends. Following our
methodology, future studies might inquire other indicators and their behaviour under changing n
and additional conditions.

This chapters developed an analysis framework to extract stability and resilience properties
of complex systems. The framework was tested on two case studies: an abstract cell regulatory
motif and experimental data about yeast populations. Theoretical predictions were verified in both
cases and enabled interpretations of observations still not covered by quantitative modelling, thus
closing the loop between experimental observations, hypotheses and model-based deduction.

Code availability

The code to reproduce the results is available at https://github.com/daniele-proverbio/Buffer-bio-
variability
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Chapter 7

Testing EWS on pandemic data

Adapted from' : D.Proverbio, F. Kemp, S. Magni, and J. Goncalves. Performance of early
warning signals for disease emergence: a case study on COVID-19 data. PLOS Computational
Biology, 18(3): €1009958, 2022 (Proverbio et al., 2022c¢).

Authors Contribution

DP: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software,
Visualization, Roles/Writing - original draft, Writing - review & editing. FK: Formal analysis,
Investigation, Software, Roles/Writing - original draft, Writing - review & editing. SM: Investiga-
tion, Supervision, Writing - review & editing. JG: Funding acquisition, Project administration,
Supervision, Writing - review & editing.

7.1 Motivation

As overviewed previously, recent research have recommended using the theory of dynamical
systems to derive generic early warning signals (EWS) to tackle critical transitions. In particular,
they have been put forward to expand the set of alerting indicators against epidemic onsets.
Despite substantial theoretical research, their empirical performance has yet to be thoroughly
appraised. This chapter contributes to such testing over empirical data, specifically by analysing
succeeding COVID-19 waves in a number of nations. It shows that, EWS can be beneficial in
detecting new outbreaks when some basic modelling assumptions are met; however, they may
be unable to detect quick or noisy modifications in epidemic dynamics. As a result, thanks to
country-specific dynamical characteristics and careful data collection methods, it is possible to
evaluate potential and limitations of such indicators.

!Preliminary analysis also adapted from: D. Proverbio, F. Kemp, S. Magni, A. Husch, A. Aalto, L. Mombaerts,
A. Skupin,J. Gongalves, J. Ameijeiras-Alonso, and C. Ley. Dynamical SPQEIR model assesses the effectiveness
of non-pharmaceutical interventions against COVID-19 epidemic outbreaks. PloS one, 16(5), p. €0252019, 2021.
(Proverbio et al., 2021)
and from: F. Kemp, D. Proverbio, A. Aalto, L. Mombaerts, A.F. d’Herouel, A. Husch, C. Ley, J. Goncalves, A. Skupin,
and S. Magni. Modelling COVID-19 dynamics and potential for herd immunity by vaccination in Austria, Luxembourg
and Sweden. Journal of Theoretical Biology, 530, p. 110874, 2021. (Kemp et al., 2021)
and from: M. Burzynski, J. Machado, A. Aalto, M. Beine, J. Goncalves, T. Haas, F. Kemp, S. Magni,L. Mombaerts, P.
Picard, D. Proverbio, A. Skupin, and F. Docquier. COVID- 19 crisis management in Luxembourg: Insights from an
epidemionomic approach. Economics & Human Biology, 43, p. 101051, 2021. (Burzynski et al., 2021)
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7.2 Introduction

Epidemics pose relevant and enduring threats to human societies (Hsiang et al., 2020). The recent
COVID-19 pandemic, triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) Pedersen et al., 2020, is a vivid example. It obliged governments to impose lockdowns and
other non-pharmaceutical interventions, with various degrees of effectiveness (Proverbio et al.,
2021). It disrupted social and economic life in unprecedented manners, and triggered changes in
working habits and lifestyle (see Fig. 7.1), often difficult to cope with (Burzynski et al., 2021). It
also spurred rapid re-arrangements of value chains and industrial production, suddenly oriented
to produce and distribute massive doses of vaccines. Mathematical modelling and quantitative
analysis of pandemic patterns become key tools to track its diffusion and inform data-supported
decision making”. Similarly, developing reliable models focusing on various stages of disease
progression and vaccination strategies allowed to quantitatively estimate plausible scenarios,
linking conceptual epidemiological studies and contingent needs (Kemp et al., 2021).

Google Mobility Data
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Fig. 7.1 Mobility trends according to Google Mobility Report, for several countries (COVID-19 Community
Mobility Reports (https://www.google.com/covid19/mobility/), Accessed 14 Jun 2020). Dates correspond
to first lockdowns. Each line corresponds to mobility change averaged across Grocery & Pharmacy, Retail
& Recreation, Workplaces and Transit stations. Generalised reductions of mobility can be observed just
after the first non-pharmaceutical measures were issued. Abbreviations: AT = Austria, CH = Switzerland,
DK = Denmark, IL = Israel, IR = Ireland, LO = Lombardy.

In similar spirit, researchers suggested to aim for rapid and early detection of disease emer-
gence by developing quantitative tools, towards science-based risk assessment (Horstmeyer et al.,
2018). Ideally, detailed mechanistic models could forecast epidemic diffusion. However, their
development is often hampered by combinations of noise, non-linearity and lack of curated data
sets. It comes with little surprise that, despite their potential impact, only a few agent-based
models were successfully developed and updated during the pandemic period, e.g. (Thompson
etal., 2021; Kerr et al., 2021; Cuevas, 2020; Wilmes et al., 2020). Consequently, monitoring is
usually based on theoretically-informed indicators like the reproduction number R, the average
number of secondary infections from a single contagious case in a susceptible population Legrand

ZRefer e.g. to weekly reports to the local government (https://www.researchluxembourg.org/wp-content/upload
$/2022/04/Updatecovidp ssessment; 0220033 1.pdf) or to international reports, widespread during various pandemic
phases, like N. M Ferguson et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality
and healthcare demand. Imperial College, London. DOI: https://doi. org/10.25561/77482, 2020.
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https://www.researchluxembourg.org/wp-content/uploads/2022/04/Update_Covid_Assessment_202200331.pdf
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et al., 2007. As the pandemic progresses and is impacted by viral variants, non-pharmaceutical
interventions, vaccination campaigns, social behaviours and so on, R might vary in time. It can
thus be converted in the effective time-dependent reproduction number R(¢) Althaus, 2014. It can
be estimated, with various methods and levels of precision, from epidemiological data, and lumps
together various mechanisms that drive the epidemic progression. However, R(t) is sensitive to
data collection protocols and uncertainties, in addition to be constructed upon models based on
several assumptions (Proverbio et al., 2021).

In recent years, studies have proposed to expand the toolbox of alerting indicators with
different methods, that could detect shifts in epidemic dynamics without relying on detailed
mechanistic models (Brett et al., 2017; Brett et al., 2020a; Miller et al., 2017; Phillips et al., 2020;
O’Regan et al., 2013). These methods build on the critical transitions theory and look for noisy
precursors of regime shifts. In fact, within epidemiological models, the reproduction number R(t)
acts as a control parameter driving the epidemic equilibria through bifurcations, cf. Sec. 4.1.2.
Specifically, re-emergence of infectious diseases is associated with a transcritical bifurcation at
R(t) =1 (O’Regan et al., 2013). In principle, it is reasonable to expect that EWS could detect
impending epidemic re-emergence.

Several studies have investigated EWS performance on theoretical or computational epidemio-
logical models (Brett et al., 2020a; Southall et al., 2020; Brett et al., 2018; O’Dea et al., 2019).
However, There has been so far limited testing on empirical data. First observations were reported
by Harris et al. (2020), while Brett et al. (2020b) applied data-driven approaches. Liu et al. (2021)
tested a different approach on COVID-19 data, derived from bifurcation theory on networks.
Southall et al. (2021) recently published a review. Despite the growing corpus of studies, practical
application of such early warning signals is still debated: it may be system-specific, or may
depend on the interplay of empirical observed dynamics and modelling predictions. For routine
surveillance procedures, it is required to perform more tests and characterise potential confounders,
which could affect the expected signals.

Here, the aim is to perform controlled tests, to assess the detection performance of EWS
against re-emergence of observed epidemics, and to interpret it according to dynamic features
observed in the data and modelling assumptions. The idea is not to screen all possible EWS on
all empirical datasets, like in Dablander et al. (2021); O’Brien et al. (2021). On the contrary,
it is to test whether some EWS work when they are expected to, what happens in other cases,
and why. Thereby, this work is similar to the strategy of “natural experiments” (Diamond et al.,
2010): construct a data set including relevant time series data; elucidate possible confounders, i.e.
deviations from assumptions or dynamical features that might alter the expected signals; evaluate
the performance of EWS and interpret it according to theoretical results.

To this end, the data set is based on curated worldwide COVID-19 data, extracted from
so-called “second waves” during summer 2020. Such second waves were associated to R(r)
re-crossing 1 from below Xu et al., 2020; Cacciapaglia et al., 2020. Here, the first outbreaks
will not be considered: they were characterised by an exponential diffusion following a sudden
emergence, not by a bifurcation crossing. Subsequent waves will not be considered either, because
countries began issuing combinations of rapid and rarely synchronised interventions, which added
complexity and potential confounders. Analysis of time series data allow to carefully consider
dynamical features associated to modelling assumptions, like rate of evolution of R(¢) and noise
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properties Dakos et al., 2012a. These features allow to interpret the empirically derived EWS and
their performance in different contexts.

To allow comparison with expected EWS behaviour, this chapter first recalls theoretical
results from literature. Then, it describes construction and analysis of the test set. The study
of empirical EWS behaviour and performance will follow, together with their interpretations in
light of dynamical characteristics associated with modelling assumptions. The discussion puts the
results into context, and highlights their relevance or theory and applications.

7.3 Theory and Methods

7.3.1 Mathematical theory and EWS

When consistent with mean-field approximations, the dynamics of COVID-19 infectiousness is
well described by SIR-like models (Anderson et al., 1979; Proverbio et al., 2021). Refer also to
Sec.4.1.2 and Eq. 4.3. Among the various extensions of SIR models, we follow the one described
by O’Regan et al. (2013). It explicitly considers a time-varying suppression parameter that, if
lifted, could drive the leading parameter R(r) past its threshold value 1, across a transcritical
bifurcation. To avoid notation confusion with Rs and other symbols, convert S — X, I — Y and
— Z in the typical model.

So, we have a homogeneous populations of susceptible individuals (X); they can become
infectious (Y) and are eventually removed by death or recovery (Z). Transition rates are, as in
Eq. 4.3, the infection rate 8 and the removal rate ¥, which lumps recovery and death rate. There
is abundant literature to trace empirical values for COVID-19, e.g. (Wu et al., 2020; Proverbio
et al., 2021).To model open systems, consider influx rate y’ and outflux u”, of susceptible
people moving inside or outside the considered regions. We can assume that such fluxes are
small and balanced (u’ = u” = u), since the year 2020 was characterised by many travelling
restrictions preventing large commuting?. On top of those, consider an additional influx rate 7:
this corresponds to random entry of new cases, which can trigger subsequent disease outbreaks.
Finally, consider a probability p that some susceptible individuals are isolated and protected due to
intervention measures. This can happen through “physical” interventions (e.g. non-pharmaceutical
interventions limiting social interaction or changes in people’s behaviour) or by vaccination (Peng
et al., 2020). The extended SIR model is:

X=p(l-p)-BXY —(n+u)X
Y =BXY+nX —(y+u)Y (7.1)
Z=up+yy—uz.

The total population size N is assumed to be constant, that is X +Y +Z = 1 since variables are
normalized. The control parameter R associated to Eq. 7.1 is given by:

_ B
YR

3For a dataset of government measures, refer to the ACAPS website (https://bit.ly/3nFFqUS).

(I—p) (7.2)
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and gets to its critical value 1 when p* = 1— (y+ )/, where a transcritical bifurcation occurs
on the (Y, p) bifurcation diagram (O’Regan et al., 2013). The choice of p being the driver for R(¢)
is specific to this example case, which does not undermine the generality because, eventually,
it is R(¢) to determine the bifurcation. Other specific parameters governing R(¢) can act upon
other compartments and correspond to other interventions, see Proverbio et al. (2021). The
basic reproduction number for COVID-19, at the beginning of the pandemic and without any
intervention, was estimated within 2 < R < 4 (cf,, e.g., Liu et al. (2020a)).

Assuming that p(r) changes slowly over time, the SIR model 7.1 approaching the transition
can be expressed as a slow-fast system:

{ Eq.7.1
(7.3)
p=¢f(X,Y,p).

Here, 0 < € < 1 and f is a ramping function. € — 0 is a limit case of quasi-steady state change.
Under this condition, the dynamical shift can be interpreted as a slow crossing through a bifurcation
point. From this, the summary statistics can be computed as introduced in Chapter. 4. Often
(O’Regan et al., 2013; Ashwin et al., 2012), the function f is assumed to be a constant f = p.
Hence, p is considered a linear function of time:

p=po+pt. (7.4)

Following Eq. 7.2, R — R(t) is linear as well. If p > 0, then R gets reduced (towards elimination
if R was above 1). If p < 0, R increases (towards a new emergence, if it was below 1). COVID-19
data only allow to investigate the second case, since most countries implemented suppression
measures very rapidly (Flaxman et al., 2020), rendering Eq. 7.3 not satisfied in the first case.

Stochastic fluctuations are not negligible when the transition is approached from below,
especially if daily cases are few. So, the system can be inscribed in the framework of noisy
bifurcations (Sec. 2.4) and early warning precursors can be in principle computed. In the presence
of noise, the transitions described above should be modelled by a stochastic master equation.
O’Regan et al. (2013) and Alonso et al. (2007) already reduced the stochastic master equation
to Eq. 7.3 and a Fokker-Plank equation for the fluctuations. Recalling the procedure is useful to
highlight the assumptions underlying the derivation of early warning signals prior to the transition.

The system 7.1 can be reduced to its first two equations using the condition N = 0. Hence, it
suffices to consider the transitions in and out X and Y. Then, the quasi-steady state p is constant
for each small time step dt.

Random jump processes describe the transitions in and out epidemiological states, modelled as
(X,Y), (X —1,Y), (X,Y + 1) and so on. The “stating” state is described by a = (X,Y), any other
state by @. T;(a, &) is the probability of transitioning between states, depending on transition
rates. P(X,Y,t) =Prob(X(¢),Y(¢) = (x,y)) is the probability that the state vector is equal to some
pair of non negative integer numbers (x,y). Jumps in and out states are denoted by the index
i. Depending on the considered system, O’Regan et al. (2013); Southall et al. (2020) provide
examples of T;(a, &). The master equation for the stochastic process is thus:
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In general, it is a nonlinear equation. The van Kampen expansion (Van Kampen, 1992) can be
used to approximate discrete random variables with continuous random variables. This allows
to derive analytical solutions about average behaviours and associated fluctuations. Large N is
required for the expansion: considering the population of medium to big countries (not villages,
for instance) suffices. To leading order, the expansion of Eq. 7.5 is equivalent to Eq. 7.3. To
quantify the fluctuations at next-to-leading order, use the corresponding Fokker-Plank equation
(Sec. B). For Eq. 7.5, it is equivalent to the system of SDEs (Alonso et al., 2007):

CZ—C: :bllﬁ(l‘)‘FblZC(t)"i'Fl(t)
“ (7.6)
E :b216(l)+b22C(t)+F2(t) ’

where I'; are white noise processes. The elements of the B = {bj;} matrix are functions of
transition rates. Eq. 7.6 thus connects the epidemic stochastic description with SIR-like models
like Eq. 7.1, coupled with a noise term.

Eq. 7.6 can be analysed with its Fourier transform. Variance, autocorrelation and other statisti-
cal moments can be obtained by integrating the power spectrum, calculated on the fluctuations
around the infectious state. Specific values depend on the eigenvalues of matrix B and of the
covariance matrices of I';. Fig. 7.2 shows the trends of variance and autocorrelation next to the
transition, calculated similarly to O’Regan et al. (2013), for a fast and slow approach to R(7) = 1.

If the noise is relatively small with respect to the deterministic trend and normally distributed,
the trend of these summary statistical indicators on the fluctuations is expected to increase next to
the transition. Such increases are often quantified by Kendall’s 7 (cf. Sec. 4.5). If this analysis
outputs reliable signals before the transition, they would constitute an early warning.
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Fig. 7.2 Theoretical EWS for epidemic re-emergence. Left: AC(1) increases before the transition if the
approach of R(¢) to 1 is slow (slow-fast assumption satisfied, red); otherwise it increases after the transition
(bifurcation delay, blue). Right: variance increases before the transition (dashed grey line) if the approach
of R(z) to 1 is slow (slow-fast assumption satisfied, red; the inset magnifies the effect). Otherwise, it
increases after the transition (bifurcation delay, blue). Both plots are derived from the analytical results of
O’Regan et al., 2013 and reproduce its Fig. 9, d—e. On the x-axis: values for the recruitment rate [day ']
of new infectious; they could trigger a re-emergence.
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Finally, recall that the results on topological equivalence and normal forms (Sec. A) also apply
in this case. Close to a transcritical bifurcation, the system can be reduced to

6 =q0—6° (1.7)

where ¢ is the bifurcation parameter and 0 the variable of interest (in this specific case, Y from Eq.
7.1). Here, when g reaches its critical value, the extinction state and positive steady state coalesce
and exchange stability. In the presence of noise &, the same linearization procedure around the
equilibrium 6, described in Sec. B, can be employed to obtain a Langevin equation (Berglund

et al., 2006; Kuehn, 2011):
of [ 5202(0

where dW is a Wiener process, 62 is the noise level and g is the diffusion coefficient from the
associated Fokker-Planck equation. Eq. B.8 is an Ornstein—Uhlenbeck process(Allen, 2010)
when |d f/d0|5|= k is linear; it has known statistical moments (Sec. B). Hence, the theoretical
results described above can be complemented with those from the theory of noisy precursors of
normal forms (Berglund et al., 2006; Kuehn, 2011; O’Regan et al., 2018 and chapter 5). Important
remarks and assumptions are: 1) Critical transitions are local phenomena. EWS are thus not
global measures, but are expected to work in the vicinity of the regime shift. 2) It is required
that the epidemic dynamics is expressed in terms of a fast-slow system like Eq. A.3. When
approximating R(¢) — 1 as a linear pattern, the modelling assumption Eq. A.3 is satisfied if the
regression coefficient (the slope of the linear trend) is small. Otherwise, the expected trends will
be either distorted or will not occur (Brett et al., 2017; O’Regan et al., 2013). 3) Multiplicative
noise can modify the indicators trend. For instance, decreasing variance was observed in case
of non-white multiplicative noise (O’Regan et al., 2018). So, the closer random fluctuations are
to be additive noise, the more robust the performance of EWS is expected to be. 4) In case of
non-equilibrium combinations of non-white noise and of non-fast-slow description, bifurcation
delays may occur. They are changes of the system state (and of its indicators) that lag behind
the theoretical bifurcation, yielding warning signals to emerge much later than the epidemic
re-emergence. 5) If the transition is triggered by large random fluctuations — n-tipping, see Sec.
2.3.2 —no EWS is expected to be observed (Ditlevsen et al., 2010).

On top of theoretical studies, the performance of proposed CT-based indicators and related
EWS has been investigated in computational studies. Increases in variance were found to be the
best indicators of re-emergence, in terms of signal-to-noise ratio and of detection performance
(Brett et al., 2017; Brett et al., 2020a). However, it is still not entirely clear when modelling
assumptions are relaxed. This aspect is going to be investigated in the following sections.

7.3.2 Data collection and curation

Recall that the present aim is to verify whether EWS work when they are expected to, and explain
why they might malfunction otherwise. Consequently, to construct the data set, only countries
that faced a re-emergence of COVID-19 cases between beginning of March (starting of wide viral
diffusion) and mid-September 2020 will be considered. Later data points are not collected: many
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countries began issuing new and punctual social measures that rapidly impacted the epidemic
trends, which could hinder the careful analysis of confounders.

When possible, prevalence data are employed, i.e. active cases A over the whole population
of a regional area. This complies with SIR-like models’ variables and with what was suggested
in literature (Southall et al., 2020). For Luxembourg, active cases are directly retrieved from the
government website (COVID19.public.lu/fr/graph). They are sampled over the whole population,
with large scale testing (Wilmes et al., 2021) and careful control of the hospital system. For
other countries, prevalence data are often not available. Hence, they are estimated by the proxy
(Giordano et al., 2020):

A=C—-D—-R. (7.9

C indicates the cumulative positive cases, D is the number of registered deaths and R counts
the number of recovered patients. Data for each country are obtained from public repositories
of confirmed detected, deceased and recovered cases: the John Hopkins University collection
Dong et al., 2020 and the European Centre for Disease Prevention and Control database (https:
/Iwww.ecdc.europa.eu/en/COVID-19/data). Italian data from the Veneto region are also employed,
as an example of regional data with an identifiable second wave during the considered time interval.
They are retrieved from the Github repository of the Italian "Dipartimento della Protezione Civile
- Emergenza Coronavirus" (https://github.com/pcm-dpc/COVID-19). All databases were accessed
up to 15/09/2020.

Data quality, particularly about R cases, is relevant to obtain a robust estimator for A. To
enhance data quality, several selection criteria are designed (see below). Consequently, the origi-
nal publication (Proverbio et al., 2022c) focuses on prevalence data to compare the results with
interpretations from various literature sources. Similarly, the investigation on the use of incidence
data will be briefly reported at the end of this chapter. It uses registered daily new cases from the
same sources listed above. Beware that incidence data might as well be influenced by testing bias,
like lower testing over weekends and other factors. The second analysis complements that on
prevalence data, by investigating EWS performance on real-world monitoring protocols.

As anticipated, selection criteria ae initially performed to best curate the database. To begin
with, time series with very few active cases are rejected: there, intrinsic transmission stochasticity
and measurement noise likely dominate the deterministic behaviour captured by SIR-like models.
Another quality check is on the share of positive cases over performed tests: if it is > 5%
around the transition, WHO guidelines suggest possible undertesting (see WHO reports such as
https://bit.ly/3dARcy1). Corresponding information is obtained from the OurWorldInData curated
dashboard Max Roser Hannah Ritchie et al., 2020 and is reported as a summary in Tab. 7.1. Since
EWS from critical transitions are based on mean-field homogeneous SIR-like models, whole
countries with clear spatial heterogeneity like Italy (Rivieccio et al., 2020) are also discarded.
Regional data can be used instead, if available. Finally, it was necessary to discard some public
time series that behave clearly differently from the typical epidemiological curves described, e.g.
in Giordano et al. (2020); Reno et al. (2020); Reiner et al. (2020); Kemp et al. (2021). The latter
case is mostly due to data management and sharing, or to different reporting frequencies for
recovered cases. This would result in “sawtooth” curves for active cases, where the detrended
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fluctuations are associated to reporting standards rather than being representative of intrinsic
dynamics. Some examples are displayed in Fig. 7.3.

The list of countries eventually selected, together with relevant characteristics, is in Tab. 7.1.
Corresponding curves of active cases, their smoothing and the associated R(¢) are displayed in
Fig. 7.4.
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Fig. 7.3 Examples of discarded time series, following some of the criteria explained above. Among others,
France (left) and Belgium (centre) had epidemic curves that differ from the typical “bell-shaped” SEIR-like
behaviour. This is related to reporting protocols for recovered and dead patients. Finland (right) is an
example of “sawtooth” evolution, due to recovered cases being reported with different frequencies than

daily cases. Data are from Dong et al. (2020).

Country Population Area [km?] Testratio Share tests + Date re-emerg.
State of Victoria (AUS) 6.681 227.444 1.8 <0.1% 27/06/2020
Austria (AUT) 8.917 83,879 0.6 [0.1;0.6]% 01/07/2020
Denmark (DNK) 5.831 42,933 2.0 [0.1; 1]1% 03/08/2020
Israel (ISR) 9.217 22,145 1.9 [0.3; 2]% 01/06/2020
Japan (JPN) 125.8 371,975 0.1 [1; 3.9]% 28/06/2020
Korea, South (KOR) 51.78 100,210 0.15 [0.3; 0.7]% 13/08/2020
Luxembourg (LUX) 0.632 2,586 10  [0.1;0.4]% 29/06/2020
Nepal (NPL) 29.14 147,516 0.2 [0.3;4.7]% 29/07/2020
Singapore (SGP) 5.686 728.6 5.1 [1.7;3.7]% 25/07/2020
Veneto (VEN) 4.906 18,345 0.7 [0.4;2.7]% 29/07/2020

Table 7.1 Information about the selected countries: population (in millions inhabitants), area (in km?),
average number of daily tests per 1000 inhabitants (test ratio), performed during the considered period
(March - August 2020), share of positive (+) tests (in the same considered period, in percentage range
from min to max values) and re-emergence date. The last two indicators derive from Max Roser Hannah
Ritchie et al. (2020),where the full time evolution is reported. Following the large scale testing strategy,
Luxembourg stands out for its higher number of tests performed per inhabitant. Sec. 7.3.3 describes how
the most likely date of COVID-19 re-emergence is estimated.

7.3.3 Analysis of dynamical features

Before analysing EWS next to a transition, it is necessary to identify such transition a posteriori
and get a "ground truth" date of re-emergence. To this end, one option is using a data-driven
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estimation of the time-dependent R(¢) (recall that R(¢) = 1 marks the transition point*. Here, it
is done with Bayesian inference by means of a Markov Chain Monte Carlo (MCMC) method,
similarly to Brett et al. (2020a); Systrom et al. (2020); Abbott et al. (2020). This method estimates
the probability of observing a certain value of R(¢), by calculating the likelihood of seeing k
new cases given the candidate R(r), following a Poisson transmission process. When modelling
“arrivals” of discrete-state stochastic processes, Poisson transmissions are widely employed, e.g.
for Ebola (Ajelli et al., 2016) and Influenza (Liu et al., 2018) models. Pre-processing with a
Gaussian 7-days window smoother is performed to avoid fitting spurious bumps. Note that, since
this is only used for a retrospective analysis, it does not modify the non-anticipating scheme for
the EWS.

A previous implementation from Systrom et al. (2020) was adapted for the estimates (also
refer to it for further details). Given an average rate of A new cases per day, the probability of
seeing k new cases is distributed according to the Poisson distribution:

Ake=2
pklA) = =3 (7.10)
In turn, A depends on R as (Bettencourt et al., 2008):
A =k_eV &1 (7.11)

for all time points. v is the reciprocal of the serial interval, which is close to 4 days for COVID-19,
original variant (Du et al., 2020; Park et al., 2020). Since the estimate comes with uncertainties, 7y
is treated as a random sample from a Gaussian distribution, centred at 4 days with an assumed
standard deviation of 0.2. Consequently, the probability of observing a time series x = {x, } for
each ¢ between £ (first report date) and any 7', discretised by small steps 9, is given by:

T-6
p(x|R) = [I plkislA) (7.12)

Following Bayes’ rule, the posterior distribution of R(z), for each time point, is given by (up to a
normalization constant):

P(R|x) =< p(x|R)q(R), (7.13)

where ¢(R) is a prior distribution. For each time point after 7y 4 1, the prior equals the preceding
posterior. We follow the implementation of Systrom et al., 2020 to generate thousands of MCMC
samples with the Metropolis Hastings algorithm, starting from a Gaussian prior .4 (R, &), with
o = 0.15 (assumption).

The method outputs a posterior distribution p(R|data), with a most likely R(¢) and credible
intervals. To derive a transition date with high confidence, p(R|data) is integrated to obtain the
probability that R(¢) is indeed greater than 1:

PR > 1) = /1 " p(R|data)dR . (7.14)

4With a slight abuse of notation, both the theoretical and data-based reproduction number are identified with the
same symbol R(¢). This, to stress their close connection and to ease the notation, as only the data-based one will be
employed in the analysis.
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Fig. 7.4 Curves of active cases for two example countries with their associated R(z) (median values and
50% credible intervals). The vertical dashed line identifies the day marked for the transition, see Tab. 7.1.
Examples for Luxembourg (left) and Nepal (right) are shown here; all plots are available on Proverbio
et al. (2022c), supplementary material.

Since R(t) > 1 is associated with an exponential increase of infectious cases after a transcritial
bifurcation, Z(R(t) > 1) can be interpreted as the probability of actually seeing an epidemic
outbreak. The most likely day of transition occurrence, ,,, corresponds to the first day when
P (R(t) > 1) from Eq. 7.14 reaches its maximum value of 1. 7, is assumed as the “ground truth”.
Fig. 7.4 shows the results of the Bayesian R(f) estimation (median values and 50% credible
intervals) for the considered countries.

After calculating the outbreak date, the modelling assumptions of normally distributed fluctua-
tions and of slow approach to the critical transition are also tested.

The global distribution of stochastic fluctuations, filtered from the complete time series with
a 7-days moving Gaussian kernel (Dessavre et al., 2019; Lenton et al., 2012), is analysed to
check the additive noise assumption. The window size reflects typical cycles of data reporting
and of COVID-19 fluctuations (Ricon-Becker et al., 2020). Out of the distribution, skewness and
kurtosis ae computed to measure deviations from Gaussian noise, characterized by skewness=0
and kurtosis=3 (Taylor, 1997).

The rate of approach of the control parameter to its critical value is instead measured to test
the assumption of slow approach to the transition. For this, compute the time-dependent R(t) like
above. Then, consistently with the fast-slow system description of Eq. A.3, fit a linear function:

R(t)=a+b-t (7.15)

in the interval ¢ € [7,7,,,]. Here, t,,, is the day associated with novel disease emergence as explained
above; 7 is the day associated with the minimum of R(z) after the first wave. The control parameter
ramping speed is captured by the regression coefficient b & 63, along with its uncertainty. As an
indication, R(t) is said to be "slowly evolving" if it goes from its minimum value to 1 in much
more time than the COVID-19 serial interval (about 4 days (Nishiura et al., 2020)); that is a proxy
of the disease time scale. The fitting is performed with the scipy Python library, considering as
uncertainty the 50% credible interval from the distribution of R(z). The goodness of fit is evaluated
with the reduced y? score: )crzed < 1 guarantees the goodness of the linear fit.
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Fig. 7.5 Estimate of transition rate to R critical value. R(¢) evolution (blue line; dashed lines are £50% CI)
is fitted with a linear trend (Eq. 7.15) before the transition, to estimate the rate of approach to the threshold
value 1. The fit starts around the minimum of R(z) (excluding small fluctuations) and proceeds until the
median value crosses 1 (horizontal line). The best fit curve is in red. szed < 1 guarantees that a good fit is
achieved. The regression coefficient b is a proxy for the rate of approach to 1. Examples for Luxembourg
(left) and Nepal (right) are shown here; all plots are available on Proverbio et al. (2022c), supplementary
material.

7.3.4 Estimation and quantification of EWS

Estimation of early warning signals from time series data is performed as explained in Sec. 4.5:
detrend the time series, obtain the residuals and compute the statistical indicators associated to each
point with a backward sliding window, i.e. one where the associated time point is the rightmost
one. As anticipated in Sec. 4.4, there are several concurrent detrending methods. To corroborate
the current analysis with an investigation of their effects, three methods are used and compared:
a uniform moving mean, a Gaussian kernel, and ARIMA models. The latters are specifically fit
for each country by tuning the (p,q,d) parameters appropriately. All detrending methods are
non-anticipating. Hence all estimates are agnostic of future values and reflect real-world practices:
calculations are performed as soon as a new data point becomes available.

Estimated indicators are variance, suggested to be the most robust indicator for epidemic re-
emergence, lag-1 autocorrelation AC(1), coefficient of variation (CV) and skewness. Consistently
with Sec. 4.5, the variance is:

1 ¢ < o
Vari, = - — A;)(Ai,s —Ajy) (7.16)

for any time point i with active cases A, over a sliding window with size ¢ — ¢y including M time
points. A is the moving average. The others are computed similarly, over the same sliding window.
Due to 1-day sampling frequency of COVID-19 data, power spectrum reddening (Biggs et al.,
2009) and sample entropy (Brett et al., 2017) cannot be estimated. All indicators are computed
with MATLAB functions. Note that the estimation of Z?(R(r) > 1) is done a posteriori, that is,
once the complete time series is available. Instead, EWS indicators are calculated a priori, without
knowing in principle if a transition is approaching.

The increasing trends of each indicator are quantified with the Kendall’s 7 coefficient of
monotonicity (see Sec. 4.5). Constant trends are expected to have T = 0. This is a “null” value,
compared with the 7 scores from time series with identified transitions. After calculating each
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indicator on a moving window (its size is discussed later in the text), the Kendall’s 7 score is
calculated, for each timepoint, on windows of the same size, over an overall period —30 < t,,, < 5
days around the transition — the positive data set. r > —30 is chosen to avoid significant overlaps
with the first epidemic wave, ¢ < 5 to account for possible small bifurcation delays (Kuehn, 2013).
For the negative data set, T values are taken way before the transition onset, i.e. < —30.

The ROC analysis (Sec. 4.6) is used to classify each time point as either before or after
disease re-emergence. To do this, determine whether the estimated 7 is higher or lower than some
threshold value at each considered timepoint and determine whether each time series is classified
correctly by that threshold. This gives a proportion of true positives and false positives. Various
values for 0 < 7 < 1 are compared to those belonging to the positive and negative data set, for
each country. Specificity and sensitivity results over all countries time series are grouped, to
obtain the final ROC curve. The overall detection performance of each EWS is quantified by
the area under the ROC curve (AUC). AUC= (0.5 means that the statistics detection performance
is as good as a random classifier. A good indicator should have AUC close to 1, to identify the
transition by its increasing trend. AUC close to 0 indicates good classification, although resulting
from a decreasing indicator. This does not correspond to the predetermined theoretical prediction
and can be regarded as a spurious signal.

7.4 Results

7.4.1 Analysis of country-wise dynamical characteristics

After constructing the dataset (Tab. 7.1), the dynamical characteristics are investigated. Fig. 7.6b
shows various ranges of noise distribution, measured by skewness and kurtosis. Those of Austria,
Luxembourg, Nepal, Singapore and Veneto are close to Gaussian. This is not true for the other
countries, possibly due to social dynamics or imperfect data reporting (Bauchner et al., 2020).

The rate of approach of R(¢) to its critical value also differs, as indicated in Fig. 7.6¢ by the
regression coefficients (recall Eq. 7.15). State of Victoria, Austria, Luxembourg, Singapore and
Veneto display a slow approach to the critical value; they are better suited to be appropriately
described as slow-fast systems like Eq. A.3. Japan and South Korea show intermediate values,
while other countries - Denmark, Israel and Nepal - have a faster evolution of the control parameter,
which does not satisfy the assumption of slow evolution.

This analysis allows to subdivide the considered countries into two test sets, based on whether
the assumptions of slow approach and whit-ish noise distribution are satisfied. Group clustering
is employed to make the subdivision. State of Victoria, Austria, Luxembourg, Singapore and
Veneto are grouped together, under the assumption of slow rate. Except for Australia, their noise
distribution is also close to Gaussian. They thus form the test set %/, used to further assess the
performance of EWS. On the other hand, Denmark, Israel and Nepal display higher rates of
approach to R(¢) = 1 and large deviations for Gaussian noise distribution and are grouped in a
set 4. A is used to interpret the performance of EWS in settings that diverge from theoretical
models and represent possible limitations of the predetermined predictions. South Korea and
Japan are more ambiguous when clustering over the slope of R(¢); hence, they are split into %
and ./, respectively, based on their relative vicinity to Gaussian noise distribution.
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Luxembourg is peculiar: it satisfies the modelling assumptions and is the closest to being
a “controlled experiment”. From literature and practical experience, we know that the country
is small, homogeneous population-wide interventions were in place, and a Large Scale Testing
(LST) strategy was implemented, reaching more than 70.000 tests per week over a population of
about 600.000, thus allowing extensive and frequent monitoring. Hence, Luxembourg is employed
as an initial sample to test the theoretical predictions about the local behaviour of EWS.
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Fig. 7.6 Analysis of the dynamical characteristics of the countries included in the data set. (a) An example
of an epidemiological curve of active cases from Luxembourg. The dashed line indicates the transition,
measured by R > 1. (b) Skewness u indicates the symmetry of the distribution, whereas kurtosis y indicates
the relevance of its peak with respect to the tails. Large deviations from y = 0 (dashed line) and y =3
are associated with non-normal distributions, so we display the excess of kurtosis ¥ — 3. (¢) Regression
coefficient of R(¢) and its associated uncertainty, obtained from the linear fit Eq. 7.15.

7.4.2 Local trends on controlled data and impact of detrending methods

Now, focus on Luxembourg, which displays the best data in terms of curation of prevalence data
(see Methods) and of satisfaction of theoretical assumptions (see above). Theoretical predictions
about the local behaviour of common EWS can be immediately tested.

The effect of detrending methods in generating residuals is first tested. To do so, compare the
fluctuations around the deterministic trend obtained with a Gaussian kernel smoothing, a moving
average filtering and an ARIMA(2,1,3) model. Fig. 7.7 (left) shows the time evolution of the
residuals obtained with the three methods, as well as their mutual correlations. Gaussian and
moving average filtering have similar output (Pearson correlation coefficient p = 0.95). This is
likely related to the Gaussian bandwidth of 7 days, used to reflect known weekly fluctuations
related to testing routines. Consequently, the Gaussian kernel smoothing is used in the rest of the
analysis. However, the ARIMA method returns residuals that are less correlated with the previous
ones (p = 0.23); its effect on EWS thus needs further investigation.

Then, study the behaviour of the variance (theoretically, the most robust EWS Brett et al.,
2020a) next to the transition point. Fig. 7.7 (left) shows its increase prior to the transition, as
expected from theoretical studies. The trend is independent of the moving window size and on the
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detrending method. The corresponding Kendall’s T measure of monotonous increase is similar for
both methods and all window sizes (cf. values reported in Fig. 7.7, right). The lead time is instead
slightly advanced for shorter window sizes. Larger window sizes produce smaller fluctuations but
a visually reduced absolute increase; in addition, they might capture old decreasing trends, that
should not be analysed. On the contrary, smaller window sizes yield less smoothed curves but
larger absolute variance values. Nonetheless, they might not include enough data points to capture
the trends in more noisy estimators like AC(1) (Dessavre et al., 2019).

For the rest of the analysis, a window of 14 days will be used as a reasonable trade-off: it
collects enough data to be robust without being over-dependent on past history. In addition, the
ARIMA residuals produce a visually clearer increase in variance, but with comparable Kendall’s
T (even slightly lower). So, to make for a complete analysis, both detrending methods will be
considered to study EWS empirical performance. These findings confirm that, in a controlled
setting that satisfy the modelling assumptions (Luxembourg), the transition to disease emergence
can be anticipated by increasing variance, used as EWS.
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Fig. 7.7 Left: Analysis of the residuals from different detrending methods (case study from Luxembourg
shown). a) The detrended fluctuations time series. b) Correlation between residuals obtained from Gaussian
or moving average filtering. ¢) Correlation between residuals obtained from Gaussian or ARIMA filtering.
Right: Analysis of the variance in the Luxembourg setting. Its increase is evident prior to the transition
(dashed vertical line). The variance is computed over the residuals from Gaussian filtering and ARIMA
detrending. The increasing trend during the considered time window is quantified by the associated 7
values, which is little sensitive to the sliding window size.
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7.4.3 Global trends of EWS

After confirming the local expected behaviour of the variance, using Luxembourg as a highly
controlled setting, let us widen the analysis to the global performance of other EWS. To do this, set
the “zoom” far from the bifurcation and look for different countries from the pre-defined dataset
(Tab. 7.1). This way, theoretical predictions and EWS potential use in more general contexts can
be investigated. Lag-1 autocorrelation (AC(1)), skewness and coefficient of variation (CV) are
considered as common alternatives to variance. The moving window size is set to 14 days as
discussed above. To compare the trend of EWS with the approach to the bifurcation, Z(R(r) > 1)
(Eq. 7.14) is also calculated and reported.

From the test set %/, Fig. 7.8 shows the results for Luxembourg, Austria, State of Victoria.
It also includes Israel, which does not satisfy the EWS assumptions (cf. Fig. 7.6), to inspect a
deviant case. The figure considers EWS trends after the first wave, up to about a month after
the second epidemic insurgence. The left column refers to indicators estimated after Gaussian
filtering; the right one refers ARIMA detrending. All the other graphs, for other countries from
Tab. 7.1 can be found in supplementary material of (Proverbio et al., 2022c).

In Luxembourg and Austria, the variance trend is in accordance with the theoretical increasing
one: it has a small but visible increase prior to the transition and a subsequent monotonous trend
along the second wave. In Austria it however displays some fluctuations after the relaxation of the
first wave. The coefficient of variation CV is similar; in fact, it depends on the variance and on a
stable equilibrium in infectious numbers. Instead, AC(1) shows an increasing trend very close to
the transition point, but gives possibly spurious signals during the global time series. In turn, the
skewness does not display immediately detectable relevant trends. This could have been expected
from computational studies (Southall et al., 2020) and might be related to noise properties, as
suggested by Guttal et al. (2008).

On Australian data, when processed by eye, Variance and CV start increasing close to the
transition, and the trend becomes more pronounced around the 7 of July. This might be a
hallmark of bifurcation delays, often associated with deviations from Gaussian noise (Kuehn,
2013; O’Regan et al., 2018); it could also relate to delays in tests results reporting or symptoms
onsets. Israel is an interesting case study. It diverges from the theoretical assumptions (Fig. 7.6):
its transition to epidemic re-emergence is rapid, and the noise distribution is far from being
Gaussian. As a consequence, theory predicts that EWS trends might be disrupted — which is what
happens. In fact, the variance remains flat around the transition (it slightly decreases, too); CV
and skewness slightly decrease, while AC(1) is not associated with informative patterns. A delay
occurs more than 20 days after the transition, as abrupt as the exponential increase in infectious
data . It is clear that applying early warning signals on appropriate contexts is crucial to obtain
reliable information.

Expand to ARIMA-related indicators: similarly to what observed in Fig. 7.7, the variance
trends are similar, and so are those of CV and AC(1). On the other hand, the skewness looks
different. For instance in Austria, it increases when the detrending is performed with Gaussian
kernel, but it decreases after ARIMA (compare the two panels of Fig. 7.8). It is known that the
skewness is very sensitive to noise distribution (Guttal et al., 2008): small changes in the residuals,
due to the different filtering procedure, might suffice to modify its trend.
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Fig. 7.8 Evolution of EWS far from the transition point. Four example countries are shown: Luxembourg
and Austria, with controlled features; State of Victoria (Australia), with small deviations from controlled
features; and Israel that does not satisfy theoretical conditions. Considered EWS are the most common
ones (variance, lag-1 autocorrelation, coefficient of variation, skewness). In addition, to mark the approach
to the transition, £ (R(t) > 1) from the Bayesian estimation (see Eq. 7.14) is displayed. The vertical line
reports the transition date. Orange box: Gaussian filtering. Grey box: ARIMA detrending.

7.4.4 ROC analysis of EWS performance

Consider the problem of online detection of incoming re-emergence. Distinguishing between
robust increases and spurious fluctuations is crucial to optimise the true positive signals and
minimise the false negatives. A retrospective analysis of time data is often not sufficient and is
only useful for offline detection. This is why non-anticipative methods have been used so far,
and why quantitative estimations of EWS performance in robustly detecting the transition is now
performed.

Like before, the increasing trend is quantified with Kendall’s 7 score, for each indicator and
over the same 14 days window. Then, assess which values are associated with a passage through
the transition point and estimate the ROC curve and AUC values, as described in Sec. 7.3.4.
Fig. 7.9 shows the ROC curves for the considered indicators, grouping all countries in %, Fig. 7.9a
is for ROC curves derived from Gaussian filtering; Fig. 7.9b focuses on ARIMA detrended data.
Tab. 7.2 reports the corresponding AUC values, for both methods.

Variance consistently performs better than a random classifier, while the lag-1 autocorrelation
seldom performs slightly better than that. This agrees with aforementioned results from literature,
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e.g. Southall et al. (2020); Brett et al. (2020a). The skewness does not improve detection
performance, probably because of its fluctuations around the O value, in turn associated with
noise distribution of original data. Interestingly, the coefficient of variation is overall the worst
performer. This could depend on its sensitivity to data fluctuations: they are often non negligible
even in countries belonging to the test set % (cf. Fig. 7.6). Note that our findings are sensitive
to the estimated time of re-emergence. Since it comes with uncertainties, it also complicates the
estimation of the lead time, which is best for Luxembourg (5 days), a setting that is close to the
analytical assumptions.

ARIMA detrending method yields overall better performances. AC(1) is an exception: both
methods return similar values close to random classifiers. ARIMA estimates finer trends at
different time scales, thus returning more accurate fluctuations: this might explain why ARIMA
residuals yield higher AUC. On the contrary, Gaussian filtering might be slightly more rough:
it considers average time scales and returns approximated estimates for the fluctuations. This
argument might explain the improved performance of skewness: over fine-grained time scales, the
ARIMA may pick the slight asymmetry in residual distributions, yielding skewness-related signals.
In general, this analysis highlights the importance of choosing the right detrending method, to
increase the detection performance of various indicators.

The same analysis is performed over the set .4". Their AUC values are reported in Tab. 7.2:
the considered indicators are not able to detect the transitions, performing worse than random
classifiers. This supports what was already noticed for Israel in Fig. 7.7: disrupted trends can
occur, contradicting what is expected and thus returning false negative signals. For variance
and CV, AUC values close to 0 indicate that the transition is well detected by decreasing trends.
This contradicts the theoretical predictions. Such features are possibly linked to non-complete
relaxation of the indicators after first waves, or to delays. Most likely, it is an instance of spurious
signal, to be carefully interpreted. Hence, if a system is not known or there is difficulty in
determining the type of data, incorrect conclusions could be drawn when interpreting the time
series trend. Care should therefore be maintained.
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Fig. 7.9 ROC curves for each considered indicator, with sensitivity and specificity calculated on each
timepoint for all countries in %/. Each point corresponds to a test value for 7, to define if the detection
is positive. Diagonal line corresponds to the ROC of a random classifier. Curves above it imply better
performance. (Left) Computed on Gaussian filtered data; (Right) Computed on ARIMA detrended data.
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Gaussian det. ARIMA det.
Indicator over % over ./ | over % over N

Variance 0.6671  0.1981 | 0.7123  0.0934
AC(1) 0.5258 0.4995 | 0.5182  0.2840
CV 0.3968 0.1043 | 0.3626  0.0368
Skewness 0.4664  0.2925 | 0.5482  0.4609

Table 7.2 AUC scores for different indicators, over % and .4 datasets, after Gaussian or ARIMA
detrending methods.

7.5 Incidence data

The analysis on prevalence data is complemented with that on incidence data (daily new cases).
The latter avoids potential bias induced by the estimation of recovered patients, but might be more
sensitive to systematic fluctuations associated with testing routines. The two analysis can thus be
regarded as representative of real-world monitoring capacities.

In accordance with preliminary studies that investigated incidence data for re-emergence of
infectious diseases (Southall et al., 2020; O’Dea et al., 2019), the results are similar and consistent
with those for prevalence data. However, there is a number of differences worth stressing.

The distribution of fluctuations around the average trend is different than what observed in
Fig. 7.6. In the case of incidence data, the deviation from Gaussian noise distribution is more
pronounced (see Fig. 7.10b), reflecting the larger fluctuations associated with testing protocols,
like reduced weekend testing (see Fig. 7.10a). Interpreting the subsequent results as consequences
linked to the noise distribution is therefore more challenging. In addition, Japan and South Korea
have different skewness and excess of kurtosis than in Fig. 7.6. Therefore, as the rate of approach
to R(¢) = 1 is conserved (Fig. 7.10c), the initial criterion of placing one country in the test set
% and one in ./ still holds. However, they are swapped: Japan is placed in % and South Korea
in .#". This is done for consistency with the previous analysis; it is anyway verified that the
following results are little sensitive to this choice. Other countries are grouped identically.

As for the trends of statistical indicators, both next to the transition and far from it, the results
are comparable with those from prevalence data. Gaussian-based and ARIMA-based results are
even closer (Fig. 7.11). However, there are some interesting differences. To begin with, variance
and CV on the .1 set are less associated with decreasing trends close to the transition, but are
closer to random classifiers (see Tb. 7.3). This might suggest that, as discussed above, the result
on prevalence data was likely spurious and related to relaxations from the first wave. Daily new
cases are not delayed because of recovered cases; hence, such effect is less marked.

The second, more striking difference regards the skewness. As shown in Fig. 7.12, and
quantified in Table 7.3, the skewness is particularly good in detecting the transition to disease
emergence on the test set 2. This differs from Southall et al. (2020)’s results but is more in line to
what was suggested by Guttal et al. (2008). Since there are only few studies connecting observed
EWS to noise distribution, making a conclusive interpretation is very challenging. Speculatively,
the detection performance might be linked to skewness sensitivity to noise distributions (as
already introduced in Guttal et al. (2008) themselves): potentially, the correct combination of
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Fig. 7.10 Analysis of the dynamical characteristics of the countries included in the data set, for incidence
data. (a) An example of an epidemiological curve of daily new cases from Luxembourg. The dashed line
indicates the transition, measured by R > 1. (b) Measures of the distribution of data fluctuations. Skewness
u indicates the symmetry of the distribution, whereas excess of kurtosis y — 3 indicates the relevance of
its peak with respect to the tails. Large deviations from g = 0 (dashed line) and y = 3 are associated with
non-normal distributions. (¢) The regression coefficient of R(¢) and its associated uncertainty.

fluctuations and approach to R(¢) = 1 might have yielded the observed result. Further analytical
and computational studies might better investigate this issue, which is solely reported here. In any
case, the skewness is again no better than a random classifier on the .4 set.

Gaussian det. ARIMA det.
Indicator over % over A4 | over % over AN

Variance ~ 0.6718  0.4681 | 0.7334  0.2561
AC(1) 0.5234 03132 | 0.2624 0.6021
CvV 0.3370  0.2019 | 0.4380 0.1813
Skewness  0.7826  0.5005 | 0.6805  0.4991

Table 7.3 AUC scores for different indicators, over % and .4  datasets, after Gaussian or ARIMA
detrending methods.

This complementing analysis on incidence data provides additional insights and questions, to
be further compared with theoretical studies. It highlights the importance of choosing observable
data, as anticipated in Sec. 3.2.4. It also stresses that, as the considered indicators rely on a
number of assumptions, we are justified in using them when such assumption are satisfied, but this
is not always the case in real-world settings. Otherwise, the EWS sensitivity to such assumptions
might yield spurious signals and hinder our capability to extend them in uncertain contexts.
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Fig. 7.11 Left: Analysis of the residuals from different detrending methods (case study from Luxembourg
shown). Right: Analysis of the variance in the Luxembourg setting. This figure is computed on incidence
data; compare with Fig. 7.7 and refer to its caption for explanation.
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Fig. 7.12 ROC curves for each considered indicator, with sensitivity and specificity calculated on each
timepoint for all countries in %. Each point corresponds to a test value for 7, to define if the detection if
positive. The diagonal line corresponds to the ROC of a random classifier. Curves above it imply better
performance. Left: Computed on Gaussian filtered data. Right: Computed on ARIMA detrended data.

7.6 Discussion

This study focused on verifying and interpreting empirical analysis according to theoretical
assumptions. It is based on a curated dataset, to perform observational studies and check for
possible confounders. Like R(#) and other indicators (Adam, 2020), EWS are estimates that rest
on assumptions; hence, the study screened the dataset to assess the matching of empirical features
and theoretical assumptions. It also investigated the impact of different detrending methods on the
final EWS performance, informing researchers about the importance of data processing methods.
Its results suggest that some EWS from the CT framework are able to detect the transition to
disease re-emergence when necessary theoretical assumptions like normal distribution of data
fluctuations and slow change rates are satisfied. On the contrary, noise and commensurable time
scales may obscure the early warning signals. These observations call for caution when interpret-
ing monitoring outputs. Future studies might relate the dynamical features observed to social
behaviours, political strategies or monitoring protocols. Such information would significantly
impact the reliability of EWS for online epidemic surveillance.
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This study comes with limitations that might be overcome when new and better curated data
sets become available. First, data quality could be a limiting factor, despite being representative
of real world monitoring capacities. In particular, the proxy of active cases A relies on reliable
estimates of recovered and dead patients. Moreover, the official numbers of positives might neglect
undetected asymptomatic cases. Both cases are investigated by considering incidence data. Such
analysis supports earlier results, but highlights again the importance of quality data and recall that,
from a practical point of view, looking at a measure or another might make a difference for the
monitoring efficacy.

Secondly, the used estimators come with uncertainties. The empirical R(¢) is an estimate of
the true reproduction number, based on the assumption of homogeneous dynamics. Moreover, the
use of moving windows might produce odd behaviours of EWS (Dessavre et al., 2019) which can
contribute to poor signals; window size should also be optimised for every epidemic and sampling
protocols.

Third, the current definition of “ground truth” transition date is somewhat conservative: it
is requested to get maximum probability of R(¢) to be greater than 1. In the real world, ap-
propriate detection thresholds are conditional to the costs of late outbreak alerts. They require
careful assessment by public health authorities, which could modify the estimated lead time -
how much in advance a re-emergence can be predicted. Because of this, quantification of lead
time is not performed here. Challenges related to lead time assessment are also discussed in
Chapter 8. The interpretation of “bifurcation delays” is closely connected: depending on the
definition of “ground truth”, they might be less severe than what discussed before. COVID-19
latency periods and reporting delays could be alternative explanation for observed delays; this
aspect can be elucidated when extra data are available, using nowcasting methods (Wu et al., 2020).

Real epidemics might behave differently that what is usually modelled; however, the present
analysis supports the use of minimal dynamical models to predict relevant aspects of complex
epidemics. While detailed and complete multivariate models are being developed, insights and
indicators to detect epidemic re-emergence can be provided by macro-scale models based on
complex systems theory. The current results corroborate theoretical literature findings and their
basic assumptions and warn against naive applications of summary statistics as EWS: if not
correctly applied, they could return possibly misleading spurious signals. These findings also
call for developing forecasting techniques based on pattern recognition, in different dynamical
regimes. For instance, Machine Learning-based algorithms (Brett et al., 2020b) could be built,
augmented and interpreted using validated EWS. Epidemic monitoring and control will likely
take advantage of such dual synergies.

Code availability

The code to reproduce the analysis is available at https://github.com/daniele-proverbio/EWS_epidemic.
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8.1 Motivation

The previous chapter introduced the importance of real-time epidemic monitoring. It highlighted
the potential and limitations of signals derived from the CT framework and discussed the chal-
lenges on quantifying lead time. One option to continuously early alerting systems is to consider
additional indicators from complementary measures. A similar line of reasoning, that resonates
with practical needs in real-world contexts, was for instance suggested by Clements et al. (2018)
in ecology. To this end, data from viral RNA load in wastewater samples are used and coupled
with mathematical tools, to reconstruct the epidemic diffusion within a population and to provide
warnings that could anticipate epidemic curves from personal testing procedures. This chapter
also illustrates the challenges to connect ideal mathematical methods with real-world data retrieval
protocols and additional procedures.
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8.2 Introduction

Accurately estimating epidemic dynamics is essential for targeted and effective interventions. In
particular, attentive monitoring is required to detect — and possibly prevent — subsequent outbreaks,
even in situations of reduced active RT-PCR or antigen testing. While this is true for any pandemic,
it is of paramount importance for the current COVID-19 one, likely the most impactful pandemic
of the current century as elucidated in Chapter 7.

A cost-effective alternative to population-based testing is the analysing SARS-CoV-2 abun-
dance in wastewater (Farkas et al., 2020; Larsen et al., 2020): it studies viral load produced by
infected patients, whether symptomatic or not, and is largely independent of personal decisions to
get tested or seek for healthcare (Peccia et al., 2020). In principle, it does not depend on symptom
onset delays or waiting time for testing results. During long-term epidemic surveillance, it is thus
potentially faster and more reliable for alerting indications (Weidhaas et al., 2021; Wurtzer et al.,
2020; Randazzo et al., 2020). At the time of writing, more than 60 countries and 270 universities
have activated wastewater surveillance systems against COVID-19, for a total of more than 3,300
active registered sites' (Naughton et al., 2021) and many practical uses (Ahmed et al., 2021;
Quilliam et al., 2020; Reeves et al., 2021). In Luxembourg, such analysis was performed within
the Research Luxembourg COVID-19 taskforce, for our local government.

Much still needs to be done to sensitively improve the method. Experiments and data
processing are constantly being refined, but modelling procedures should, too (Daughton, 2020;
Bandala et al., 2021; Lahrich et al., 2021). In particular, it is necessary to go from qualitative
understanding of epidemic trends to quantitative estimates of the shedding population size,
considering data uncertainties and allow inference of future outcomes (Tiwari et al., 2021; Zhu
et al., 2021). These methods would also allow to quantify the expected lead time, which is
essential for alerting systems.

Some methods exist in the literature. Some build upon qualitative and semi-quantitative
retrospective studies of lagged correlations (Nemudryi et al., 2020; Kumar et al., 2020). Others
employ regression models (Cao et al., 2021; Vallejo et al., 2021; Li et al., 2021a; Hasan et al.,
2021; Huisman et al., 2021). An alternative study (McMahan et al., 2021) uses an SEIR model,
supported by data-driven estimates of viral evolution within individuals. All models are country-
specific and highlight the challenges listed above, in particular regarding noisy data (potentially
biased by detected case numbers) and varieties of individual infection periods. In addition, they
do not reconstruct the full epidemic trajectory nor make extrapolations: hence, they are limited in
studying the alerting time.

The work described here suggests an alternative, automated and causal-based approach, termed
CoWWAn (COVID-19 Wastewater Analyser). It couples a SEIR model (see Sec. 4.1.2) with an
extended Kalman filter (EKF, see Sec. 4.2.4). This way, the method produces simulation results,
representative of real system observations, that account for uncertainties. Hence, it is possible,
for each time step, to estimate and interpret a selected number of free parameters from the SEIR
model. Population-wide epidemic diffusion can thus be quantitively and causally reconstructed,
interpreted in light of the epidemiological model, and projected forward in time, overcoming the
extrapolation limitations of correlation-based statistical approaches (Cao et al., 2021; Li et al.,
2021a). The method is also adaptable to different sampling routines and regional areas. On a

I'A curated dashboard can be accessed at: https://www.covid19wbec.org/covidpoops19
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side note, the Kalman filter was applied on wastewater viral data by Cluzel et al. (2022) and
textCourbariaux et al., 2022. However, a linear first-order autoregressive model was used there,
making it a signal processing tool primarily. Although good to smooth noise from wastewater
measurements, it lacks the other features mentioned above.

In particular, CoWWAn allows to compare the timing of wastewater-based alerts with that from
population-testing-based alerts. It was indeed suggested (Cao et al., 2021), D’ Aoust et al., 2021;
Kumar et al., 2021 COVID-19 resurgence in a community could be anticipated with wastewater
analysis. This idea should be investigated beyond retrospective analysis: for real-time detection
of impending epidemic resurgence, it is in fact imperative to distinguish between fluctuations
and robust increases. This observation is connects to the ROC analysis described in the previous
chapter and aims at optimising the true positive signals and minimise the false ones. CoWWAn
uses EKF-based predictions to capture robust trends in the epidemic dynamics and compare early
alerts from case-based monitoring and wastewater-based predictions. Several lessons can thus be
learned from this study.

8.3 Materials and Methods

Before proceeding to make predictions and use them for early alerts, performing the quantitive
reconstruction is required. Several data sources, as well as mathematical integration of the
aforementioned models, are needed.

8.3.1 Data

At least three types of data are necessary to fully calibrate the pipeline: COVID-19 RNA load
in wastewater, detected cases from the area spanned by the sewage infrastructure, and possibly a
proxy of the true case numbers, like the ratio off detected versus true, at a certain moment of time.
The latter can be estimated, for instance, with seroprevalence studies.

The pipeline was tested and applied onto several countries, also outside Luxembourg (for
which routine calculations are still performed at the time of writing). Some criteria were applied
to construct the dataset. The list of wastewater sampling projects comes from the COVID19 Poops
Dashboard (Naughton et al., 2021). Among them, only a few have readily accessible databases.
From those, we opted for time series ranging from beginning 2021 up to at least six months
later, to allow proper calibration. We also required that the sampling was at least weekly (on
average), and that the corresponding case numbers were available. Smoothed data were discarded,
to prevent bias and avoid breaking the causality of projections. If a single regional database had
time series from multiple treatment plants, two representative ones were selected; usually they
corresponded to the largest served population.

The corresponding detected case numbers, confirmed with positive RT-PCR tests, corre-
sponded to officially reported numbers from the same databases. When available, region-
specific seroprevalence studies like Snoeck et al. (2020); Pollan et al. (2020) were used to
better tune the pipeline. Data from Luxembourg sewage sampling were supplied by the Re-
search Luxembourg COVID-19 initiative CORONASTEP (researchluxembourg.lu/coronastep);
detected case numbers and R.g were obtained from the Luxembourg Ministry of Health website
(COVIDI19.public.lu/fr/graph).


researchluxembourg.lu/coronastep
COVID19.public.lu/fr/graph
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The selected datasets are reported in Tab. 8.1, together with their official sources, experimental
protocols, units of measure for wastewater data, associated equivalent population, and detected
case numbers. All datasets are updated up to August 2021. Note that different normalization pro-
tocols are considered: this illustrates the generality of the present method, but hinders quantitative
comparison between fitted parameters. The equivalent populations is a proxy of the number of
people who contributed to the wastewater load: it is the ratio between the sum of the pollution
load collected during 24 hours by sewage facilities and services, and the individual pollution load
in household sewage produced by one person in the same time.

Summary investigations are performed onto the collected data, to inform the development
of the model. Some counties display peculiarities: Raleigh county rounded the data, after
normalization: up-scaling might yield additional uncertainties. Netherlands reports countrywide
averages over weeks and daily data from communal treatment plants: we use the latter to improve
the temporal resolution, averaging over samples from the same day. Kitchener displays a sudden
jump on May 17, 2021 during a time when case numbers remain stable. Scaling subsequent by a
factor of 0.4 considerably improved CoWWAn'’s estimates, suggesting possible sudden changes in
testing or sampling strategies. In the original publication (Proverbio et al., 2022b), both scaled and
unscaled results are presented in the supplementary material. Following results rely on un-scaling.

For all countries, correlation analysis between tested positive case numbers and of RT-qPCR
wastewater data was performed. An example is reported in Fig. 8.1; all other plots are available in
supplementary material of Proverbio et al. (2022b). The correlation is rather close but not perfect:
this aspect stresses the usefulness of wastewater data for epidemic monitoring, but reminds
that more developed models based on complex epidemiological dynamics are necessary for
quantification. Such correlation values, along with good but not perfect linear fitting, also justify
the inclusion of a scaling parameter in the cost function used for parameter fitting (Eq. 8.10).
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Fig. 8.1 Left: time series of detected cases (blue) and of SARS-CoV-2 RNA abundance in wastewaters,
from Luxembourg data. Right: correlation between the two, together with adjusted R-square diagnostic of
linear fitting (straight line).

8.3.2 The SEIR stochastic model

As anticipated, a modified SEIR model is used as basis for the Extended Kalman filter. They
accurately describe COVID-19 epidemic dynamics (Proverbio et al., 2021; He et al., 2020). This
simple yet descriptive model structure was chosen in stead of more complex ones — more difficult
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Country City/area Population served Time range yy/mm/dd Units of mea- | Source
sure
Spain BarcelonaPratde Llobregat 2,000,000 20/08/24 —21/07/26 (11 months) | SARS-CoV- doi:10.5281/ze
2 RNA | nodo.4147073
copies/day
https://sarsaigu
a.icra.cat/
Canada Kitchener 242,000 21/01/11—21/08/22 (7months) | SARS-CoV-2 https://www.re
RNA  copies | gionofwaterloo
/PMMoV .ca/en/health-
copies and-wellness/c
ovid-19-wast
ewater-surveil
lance.aspx
Slovenia Kranj 40,000 20/10/08 —21/08,/02 (10months) | SARS-CoV- https:
2 RNA | //github.com/s
copies/PMMoV | ledilnik/data
copies
Switzerland Lausanne 240,000 20/10/01 —21/08/04 (10months) | SARS-CoV- https://sensors-
2 RNA | eawag.ch/sars/
copies/day/10° | lausanne.html
equivalent
inhabitants
Slovenia Ljubljana 280,000 20/09/10—21/08/02 (11 months) | SARS-CoV- https:
2 RNA | //github.com/s
copies/copies ledilnik/data
PMMoV
Luxembourg Luxembourg 610,000 20/02/25—21/08/02 (17 months) | SARS-CoV- https://www.li
2 RNA | st.lu/en/covid-1
copies/day/10° | 9/coronastep/
equivalent
inhabitants
USA Milwaukee 615,934 20/08/25—21/08/04 (11 months) | MGC/person/day| https://www.dh
(gene copies | s.wisconsin.go
per person per | v/covid-19/was
day) tewater.htm
Netherlands Netherlands 17,178,109 20/09/07 —21/07/30 (11 months) | SARS-CoV- https:
2 RNA | //data.rivm.nl/c
copies/day/10° | ovid-19/COVI
equivalent D-198$grioolwa
inhabitants terdata.csv
USA Oshkosh 78,300 20/09/15—21/08/19 (11 months) | MGC/person/day| https://www.dh
(gene copies | s.wisconsin.go
per person per | v/covid-19/was
day) tewater.htm
USA Raleigh 460,000 21/01/03—21/08/08 (7months) | SARS-CoV- https:
2 RNA | //covid19.ncdh
copies/day/10° | hs.gov/dashboa
equivalent rd/wastewater-
inhabitants monitoring
Spain RieradelaBisbal 100,000 20/07/06 —21/07/26 (13months) | SARS-CoV- doi:10.5281/ze
2 RNA | nodo.4147073
copies/day
https://sarsaigu
a.icra.cat/
Switzerland Zrich 450,000 20/10/01 —21/08/04 (10months) | SARS-CoV- https://sensors-
2 RNA | eawag.ch/sars/
copies/day/10° | zurich.html
equivalent
inhabitants

Table 8.1 Considered regions, associated equivalent population served by sewage facilities (according to
official sources), time ranges of data, units of measure of wastewater data, and their sources. The sources
listed here also include the case numbers, detected in the same area covered by the sewage system of
interest.
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to calibrate and identify (Roda et al., 2020; Kemp et al., 2021) — to reliably estimate community
incidence from noisy data. As introduced in Sec. 4.1.2, SEIR models considers Susceptible S(z),
Exposed E(t), Infectious /(¢) and Removed R(¢) compartments, and population flows governed
by rate parameters. Recall that the standard interpretation of E is of individuals who have been
exposed and infected, but who are not yet infectious due to incubation lag (Lai et al., 2020). The
transition to becoming contagious is accommodated by an additional mean incubation period o~
parameter. Properties include conservation of mass, S(t) + E(¢) +1(t) +R(t) = N (with constant
N) and no possibility of re-infection (R /> S) during each period of infection transmission. In fact,
although waning immunity has been registered, it usually occurs over months (Goldberg et al.,
2021).

The original SEIR model is augmented into a stochastic version, to model intrinsic stochasticity
in transmission processes and viral shedding. To do this, associate each transition between
compartments with a random process. Similarly to what described in Chapter 7, the SEIR model
assumes that each susceptible person has probability (¢)I(¢)/Ndt to become infected on an
infinitesimal time interval [¢,¢ 4 df), and that infection events are independent. The number
of new infections at [¢,7 4 dr) is thus a random variable from a binomial distribution #(n, p)
with n = S(¢) and p = B(¢)I(t)/Ndt. Assuming high enough number of cases and stationary
rate parameters over a time interval Ar = 1 day (Gillespie, 2000a), the binomial distribution
can be well approximated by a normal distribution with mean f3(r)S(¢)I(¢) /N dt, and variance
B()I(t)/Ndt(1—B(t)I(t)/Ndt)S(t) = B(¢)S(¢)I(t)/Ndt + O(dt*). The same reasoning can be
repeated for all other transitions between compartments. As a result, the stochastic SEIR model is

given by:
dg(p) = PO _ | [BOSOID,,, ()
%E(I):W_QEO)_F WWKZ‘)— aE(t)Wz(t)

(8.1)

where w; are mutually independent white noise processes. The B parameter is allowed to be time-
varying, to reflect changes in mitigation measures (masks, vaccines, etc.), social interaction, and
varying infectivity of emerging viral variants. () is considered a state variable to be estimated
by the Kalman filter.

The viral flows into wastewater is modelled by a companion variable A(z). It models effec-
tive number of active shedding cases producing virions to wastewater. A stochastic process is
incorporated like above, to obtain a dynamics:

L gy = BOSOIO oy 4 JBOSOND ) - i), 62)
t N N

The A compartment is parallel to E, I, and R, so S(¢) + E(t) +1(t) + R(t) = N still holds. The
influx to the A compartment is the same as that to the £ compartment, while the outflux lumps
together the dynamics of viral production (which is known to follow some kinetic trajectory in
the hosts’ body (Néant et al., 2021)), the decay rate of SARS-CoV-2 RNA in water (Gundy et al.,
2009; Sala-Comorera et al., 2021), and inertia in abundance dynamics due to mixing in wastewater
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collecting pools. Since the parameter ¥ lumps together properties of the virus and details on
wastewater sampling; it is separately fitted for each region. Delays associated with in-sewer travel
time are not considered, as they were estimated to be significantly lower than the transmission
time scales (median of 3.3h versus 1 day (Kapo et al., 2017)). The A compartment thus allows to
better follow the time evolution, including potential decaying inertia, and to consider explicitly the
uncertainties associated to the shedding mechanism instead of the disease progression. Together,
Eq. 8.1 and Eq. 8.2 form the combined SEIR-WW system.

Real-world measurements are compared with the following outputs from the model: number
of daily detected cases, and virion abundance in wastewater. The number of detected cases on day
t € Nis assumed to be a share of people passing the incubation period on that day:

yelt) = /t’l OE(s)ds (83)

where ¢, € [0,1] is the share of detected cases out of all cases. This parameter accounts for
under-testing and asymptomatic cases (see Sec. 8.4.1 and Eq. 8.8 for further discussion). ¢, might
depend on the day of the week, since there often are some weekday-dependent fluctuations in
testing. The virion abundance in wastewater is assumed to be linearly dependent on A,

yw(t) = VA(t)' (8.4)

Here, v is a tuning parameter to reflect the incubation, production and shedding of viral load from
infected people (Néant et al., 2021; Wolfel et al., 2020; Miura et al., 2021) and normalisation of the
wastewater data. Explicit corrections linked to precipitations or other environmental factors are not
considered: previous studies evaluated them to be poorly correlated with RT-qPCR observations
(Vallejo et al., 2021; Li et al., 2021a). An implicit tuning is nonetheless included in the fitting, cf.
Eq. 8.10.

8.4 Developing the complete SEIR-WW-EKF model

The inputs for the EKF algorithm? (see Sec. 4.2.4) are the update function f(x) to implement Eq.
8.1, the observation matrices C(¢) (for case numbers and wastewater data), the state noise Q (uncer-
tainty on estimated variables), and the measurement error covariance U (¢) (uncertainties on empir-
ical data). Then, the method evaluates the set of variables of interest (x;_¢(¢) = [S,E,I,A,D, B](1))
and their associated uncertainty matrix P. As introduced in Sec. 4.2.4, embedding a continuos-
time dynamical system like Eq. 8.1 in the EKF is better performed after time-discretising it. The
explicit Euler method is a reasonable option:

x(t+Ar) = x(t)+ f(x(2)) At +w(r). (8.5)
An auxiliary dynamic state variable D(¢) is also defined, related to the modelled number of daily

D(t)=0, forteN,
4D(t) = aE(t).

new infections on each day:

2The algorithm implementation was performed primarily by the co-author A. Aalto.
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Practically, D(¢) is the differential counterpart of y.(¢) and allows direct comparison with monitor-
ing data. It is reset every day to keep track of current new infections.

Including the auxiliary variable, the state space has 6 dimensions: x| _¢(t) =[S, E,I,A,D, B](1).
R(t) is redundant because N is conserved, it is therefore omitted. Eq. 8.5 is complemented with the
resetting of xs(¢) to zero once per day. The function f(x) can be de-coupled into a stoichiometric
matrix B and a reaction function r(x):

—x1x3x7/N ] —1 0 0 0]
x1x3x7 /N — 00x3 1 -1 0 O x1x3x7 /N
f(x) _ axy; — TX3 _ 0 1 —1 0 oxp — Br(x) ‘
x1x3x7 /N — Yx4 1 0O 0 -1 X3
(05%) 0 1 0 0 VX4
I 0 | lo o o o,

As argued in the previous section, the state noise w(z) can be well approximated as normally
distributed with mean zero and covariance

O(x) = K’ AtBdiag(r(x))B" +AtQp

arising from the stochastic model Eq. 8.1; each white noise process w; for j =1,...,4in (8.1)
corresponds to its respective reaction r;(x). The coefficient x accounts for modelling errors, like
deviations from the SEIR’s assumption of homogeneous and perfectly mixed population. It can
also be interpreted as a sensitivity tuning parameter: lower x leads to higher sensitivity but noisy
estimates; higher k decreases sensitivity but increases robustness against noise. The parameter
B has no dynamics through f(x), but it is updated by the Kalman filter; its contribution to the
covariance is in the matrix Qg. This is zero everywhere, except for the element Qg (6,6) = qp; it
acts as a tuning parameter controlling the magnitude of change of (¢) in one day.

The measurements from the model are either detected cases on a given day and/or wastewater
sampling. To this end, possible observation matrices are defined:

C.(t)=[0000¢,0], C,=[000v00], andCy(t)= [Cé(’)] , (8.6)

where the sub-indices refer to cases (c¢), wastewater (w), and both (b). Recall that ¢, is the share of
detected cases on a day ¢. It is a coefficient to reflect the testing strategy, which often depends
on the day (reduced testing on weekends and on public holidays). Empirical measurements are
assumed to come with an additive, normally distributed noise with mean zero and covariance
U(t) = diag(U.(t),Uy) (or just U(t) = U.(t) or U(t) = U,, if only one of the measurements is
available). The variance of observed cases, U.(f), is obtained by assuming that cases are detected
independently with probability ¢;. This leads again to a Binomial distribution for detected cases
with mean ¢,D(¢) (D(t) is the number of new infections on day 7). This is unknown; so, a smoothed
estimate D(t) = y.(t) /¢, is used (barred variables stand for 7-days moving averages). The variance
of the Binomial distribution is given by U.(r) = D(t)c,(1 — ¢;). For Raleigh, recall that rounding
off case numbers might yield additional uncertainties: 237 is thus added to the variance U.(t) to
account for the (independent) uncertainty (23 is the largest possible rounding error, N /20,000).
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The complete SEIR-WW-EKF algorithm is reported in Algorithm 1. It is used to calculate
three different state estimates: £.() using only case number data (C(¢) = C.(t)); £,,(¢) using only
wastewater data (C(¢) = C,, on days when wastewater sampling is done, otherwise Kalman update
is skipped); £5(¢) using both case and wastewater data (C(¢t) = C,(¢) on days when wastewater
sampling is done, C(t) = C,(t) otherwise). These were then used to estimate the data that were
excluded from the state estimation, initially for calibration and reconstruction of daily cases,
and then to perform the desired predictions. Hence, we calculated J,, () := C,(t)%:(¢) and
Ve(t) := Cc(t)%,(t) (C; are the Kalman filter observation matrices, Eq. 8.6).

A simple outlier saturation for the wastewater data complements the Kalman filter. The model-
predicted value for a wastewater measurement is given by C,.X, with prediction error variance
C,PC, +U,,. If the measurement differs from the model-prediction by more than four standard
deviations, the measurement is replaced by the saturated value C,,X + 4(CW13CVI +U,) 172,

Set Py € R8¢ and £(0);
fortr=1,...,T do
set ¥ =%(r—1) and 5 = 0;
set P=P,_; and I3j.’5 = F’57j =0forj=1,...,6;
for i=1,...,.M do
P = (I+ Ay (2) P+ A (5)T) + 0():
F=F+Af(F);
end
Measurement error covariance: S = C(t)PC(t)" + U (t);
State update: £(¢) =X+ PC(¢) TS~ (y(¢) — C(£)%);
Error covariance update: P, = P— PC(t)'S~'C(t)P;

end

Algorithm 1: The Extended Kalman filter for the SEIR-WW model with time step At = 1/M
(we use M = 10 d™"). J; is the Jacobian of the function f(x), obtained from the Jacobian of
the reaction function by J; = BJ,. The algorithm is standard, but the prediction step consists
in solving a time-discretised ODE. The observation matrix C(¢) is chosen from the three
possibilities described in (8.6). Note the resetting of D(¢) = %5 before the prediction loop.

The final workflow is illustrated in Fig. 8.2. It combines a model of a dynamical system
with measurements (case numbers y., wastewater measurement y,, or both) obtained from the
real system that is being modelled. At each time step, CoWWAn first predicts the next state
x1.6(t) by propagating the old state estimate using the underlying model. From the predicted state
estimate, the predicted measurement is calculated using the measurement model. Finally, the state
estimate is updated based on the discrepancy of the true measurement and the model-predicted
measurement. The model’s state estimate reflects the state of the real system, and it can be used to
predict the system’s dynamics in the future.

8.4.1 Model parameters

CoWWAn has some free parameters, to be fixed upon data or with educated assumptions. Sensi-
tivity of model estimates upon assumptions is performed and displayed in Fig. 8.3.
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Fig. 8.2 Model workflow. The Kalman filter combines measurements from the real system with predictions
from the dynamical model, which extends a SEIR model. Empirical data are daily positive cases, shown in
blue as the smoothed moving average, and wastewater sampled data, shown in orange with unit of measure
of RNA copies/day/100,000 equivalent inhabitants (example for Luxembourg). Details of the SEIR blocks
are described above.
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Most time series data begin after the pandemic already diffused within a region, so the initial
sizes for the E and I compartments are automatically computed from the data by

_ No > yc(t) o Mo > )Q‘(t>
15(0)_OC<1+[_Z1 s ) and 1(0)_f(1+,_21 s ) (8.7)

Here, o and 7 are the transition rates £ — I and I — R, respectively. Their inverses are the average
duration of staying in the original compartment (see also Ch. 7). 1 is the average ratio of total
and detected cases at day ¢. 5 data points are a trade-off between approximating values on the
first day and considering sensitivity to noise. The model is little sensitive to this choice, cf. Fig. 8.3.

7 should also be estimated to link the measurements of population testing with those of
wastewater analysis (ideally objective and insensitive to testing capacities). For the first wave in
Luxembourg until June 1, 2020, n; = 3 following the results of early prevalence studies (Snoeck
et al., 2020). Later, 1, = 1.8; this choice was cross-validated with an independent SEIR model
fitted to Luxembourg data (Kemp et al., 2021). The reduction is linked to a large scale testing
campaign (Wilmes et al., 2021), and to overall increased testing activity.

Other regions, are more challenging: the available prevalence studies usually consider early
epidemic stages, when there ae little to no available wastewater data. Large changes between
first and subsequent waves are expected; hence, estimates from these prevalence studies are not
usable for later stages. In the absence of additional reliable values, 17, = 1.8 is maintained for all
other regions and its impact on modelling results is assessed in Fig. 8.3. It is possible to further
calibrate such values with new and tailored prevalence studies. In principle, one initial estimate
for m; is sufficient, to match virion abundance in wastewater with total case numbers. Once the
calibration is done, CoWWAn estimates the total number of infections, including both detected
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and undetected cases. To obtain an estimate of detected cases, a potentially time-varying estimate
of 1, is necessary.

Daily ratios ¢; of detected and total cases are obtained from 7, modulated by a weekly testing
rhythm. ¢, is automatically estimated, by first averaging over five weeks, and then by a moving
average over three weeks:

35 Lioye(mod(i—1,7)+1+7)

— I() <
E = > Zfilyc(s) Tt 35’
t _
21 Yt =Ny (1= 14) +ye(1=21) ¢
3 Zi‘:tfzoyc(s) ort > 35.

These values are normalised by the weekly moving average:
76

S — (8.8)
N Zts:t76 Cs

Ct

The procedure for the first five weeks is not causal, but some data is anyway needed for model

calibration. Later, values for ¢, are causally determined from data. To obtain final values on public

non-weekend holidays, ¢, is reduced by a factor of 4 from the value given by Eq. 8.8 to account for

reduced testing. In case the weekly rhythm is not regular, manual tuning could help improving the

performance. Alternatively, one can estimate ¢; based on number of performed tests, for example.
The variance of the wastewater measurements U,, is also estimated from data, by

2
) . 8.9

Each ¢; is the time point when wastewater sampling is done. The scaling factor K is either 1,/10

| 2
ywtj_* Ywlli
(t)-5 ¥ i)

U,, = K | median
i=j—2

when wastewater data is used alone and K = 1 when both case and wastewater data are used, like
for the outlier detection. In the plots of wastewater data reconstruction, K = 1 is used to plot the
uncertainty envelope.

When optimising the model to reproduce the observations, there is a final detail to consider:
the dependency of wastewater measurement to the number of detected cases is not perfectly linear
due to dilution, non-mixing environment and other factors, (¢f. Vallejo et al. (2021) and Fig. 8.1).
A simple power transformation is applied to the wastewater samples, for which the exponent € is
regarded as a tuning parameter of slight nonlinearity. € and the other proportional parameters y
and v are fitted by calculating the Kalman filter state estimate using the wastewater data, and then
minimising the cost function

M
i c _Cc Aw NS 2
min Y, () = Ce8u(157:v.€))

such that y € [0.2,4], € € [0.4,1].

(8.10)

This minimises the error in estimating the case numbers by the EKF state estimate using only
wastewater data.

All model parameters, either fixed by literature or fitted from Eq. 8.10, are reported in Tab. 8.2.
Note that, due to different wastewater data normalisations, vV parameters are not comparable be-
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tween regions. Similarly, € parameters might depend on the used techniques. Data from different
laboratories may contain significant differences (Cluzel et al., 2022).

Symbol Explanation Value Source

o Rate E — I 0.44 471 (Kemp et al., 2021)
T Rate ] — R 0324d°! (Kemp et al., 2021)
B(0) Initial infectivity 0.44 d~! —

At Time step length 0.14d —

qg,1 Variance of B(r+1) — B(¢) when r <30 0.05%d? —

482 Variance of B(r+ 1) — B(¢) when ¢ > 30 0.0052d7% —

K EKF sensitivity parameter 4 —

N Population size regional see Supplementary Tab. 1
Y RateA — @ regional Fitted by Eq. 8.10

Y Ratio of y,,/A regional Fitted by Eq. 8.10

£ Exponent in nonlinear mapping of WW data regional Fitted by Eq. 8.10
Uw Measurement error variance of wastewater data  regional Estimated by Eq. 8.9
E(0) Initial size of E-compartment regional Estimated by Eq. 8.7
1(0) Initial size of /-compartment regional Estimated by Eq. 8.7
var(E(0))  Uncertainty of E(0) regional (E(0)/2)?

var(7/(0))  Uncertainty of 7(0) regional (1(0)/2)?

Table 8.2 Model parameters: description. Parameter symbols, descriptions, values, and their sources. The
parameter gg, controlling the allowed change of B(¢) in one day, is changed after 30 days. This is done
to allow rapid changes in the beginning of the pandemic, when a strict lockdown quickly suppressed its
propagation and to account for errors in initial B(0). d stands for “days”. When the source is not indicated,
the parameter values is first initiated as an educated guess and then tested with sensitivity analysis (see Fig.
8.3).

Fig. 8.3 assessed the sensitivity of model performance on assumed parameter values, with
Luxembourg as a reference. It demonstrates the robustness of the model and justifies the current
parameter choices. Sensitivity analysis involves varying the reference parameters up to £50% of
their original value. In general, the projections are consistent and slightly vary for values very far
from reference ones. The model is most sensitive to the parameter c;, which is usually estimated
with independent methods. The minimal error corresponds to the reference value, while deviations
induce larger errors. Changes in ¢; are normally compensated in the pipeline by a likewise change
in v. This observation justifies the differing fitted values reported in Tab. 8.3 for each region. It
also recall the relevance of accurate seroprevalence studies to reduce projection errors. In fact,
projection errors grow slower for overestimated ¢, than for underestimated c;. Therefore, in case a
good estimate of efa, is missing, using a possibly overestimated rather than underestimated value
is advised for short-term projections. However, this may lead to higher overshoots in long-term
projections due to overestimation of the susceptible population size.

8.4.2 Analysis of model outputs

To obtain variables of epidemiological interest, state estimates outputted by the CoW WAn model
are further analysed. Note that two estimates using only wastewater data are computed: one
without interpolating data between sampling days (WW) and one with linear interpolation (ipWW).
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Parameter Barcelona  Kitchener Kranj Lausanne Ljubljana Luxembourg
N 2,000,000 242,000 40,000 240,000 280,000 634,730

y 0.20d~! 4.00 d~! 14347" 3.0547' 321d47' 1.624d7!
v 4.86-1072  2.73 1.38 6.67-10'0 277 6.40-10*
£ 0.40 0.40 0.40 1.00 0.526 0.613

Uy 656 2.68 58.5 3.43-102 511 1.75-10"2
E(0) 1,824 379 17 156 76 8

1(0) 2,527 525 24 203 105 11
Parameter Milwaukee Netherlands Oshkosh Raleigh Riera Zurich

N 615,934 17,178,109 68,000 460,000 100,000 450,000

y 4,00 d™! 0368d~!  40047' 4004' 12047! 0.54747!
v 0.134 185 3.73 2.58-10° 127 1.87-107
£ 1.00 0.500 0.866 0.434 0.400 0.789

Uy 1.03 2.50-10'"" 507 6.00-10%  1.69-10° 3.44-10"
E(0) 298 4,412 166 1,815 4 238

1(0) 413 6,112 231 2,514 6 330

Table 8.3 Model parameters: fitted values, for each region. Initial values for SEIR compartments are in
units of equivalent inhabitants.
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Fig. 8.3 Sensitivity analysis against changes in hand-picked parameters. The plots show the changes in
7-day window prediction performance for Luxembourg when a parameter is changed. The no-change
numbers (0%) are those shown for Luxembourg in Tab. 8.3. The “normalised error” corresponds to the
measure employed throughout the analysis and defined in Eq. 8.12. Changes in ¢; (the share of detected
cases) is compensated by changes in v by the same amount. Note that other parameters are kept fixed.
Some changse could be compensated by re-running the parameter tuning pipeline. Note that +50% change
in ¢; corresponds to a situation where 83% of total cases are detected.
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The time-varying effective reproduction number R (cf: Ch. 73) is directly extrapolated as
(Kemp et al., 2021): B() ()
1) S(t
Reff—TW, (8.11)
where f3(¢) and S(¢) are state estimates. For N and 7, see Tab. 8.2.

Short and mid-term projections are possible at any time #: stop the Kalman filtering and
simulate the model forward in time, starting from the latest state estimate and keeping the
infectivity parameter constant (f(¢) = E (f0)). The effect of uncertainty in the parameter estimate
B (o) can be also quantified: simulate envelopes using E(to) +2,/P,(6,6); for every t, P(6,6)
represents the variance associated to 3 in the Kalman filter update, as discussed in Algorithm
1. Other uncertainties are omitted in these simulations; therefore, the envelope of short-term
projections might be underestimated.

As introduced in Sec. 8.2, quantifying the quality of short-term projections using either case
data only, wastewater data only, or both provides more reliable estimates of the epidemic unfolding
over short time horizons. So, at each time step when wastewater data is available, the Kalman
filter state estimation is stopped, and the SEIR-WW model is simulated 7" days forward without
taking into account any new data. The total number of observed cases from the projection is
calculated and compared with the actual number of observed cases during the same time horizon.
Their absolute difference constitutes the prediction error. The prediction errors are standardised by
the square root of the true number of cases. The latter represents the standard deviation estimate
assuming case numbers on a given time are binomially distributed. Thereby, standardised scores
are averaged over all time points on which the prediction is made, obtaining an overall average
normalised error. This is scaled per 100,000 equivalent inhabitants to enable comparison between
countries. Overall, the scaled average standardised prediction error & is:

ézéf‘xﬁiﬂlooﬁm. 8.12)
= VX N

Here, i is the index of each point in any time horizon [fy, T| with M points in total; j is an index
that considers the original type of data used for projections, i.e. j = {c,w,b} for case data only,
wastewater data only, or both combined. In the state estimate using combined data, the wastew-
ater data are not interpolated. Tilde-ed variables are the Kalman projections while non-tilde-ed
variables correspond to measured data. N is the equivalent population of interest (cf. Tab. 8.3).

8.5 Results

As introduced, the implemented pipeline aims at quantitatively mapping wastewater data to cases,
reconstruct and project epidemic dynamics, and assess predictions and early-warning capabilities
to assist healthcare management.

3Note the slightly different notation, to highlight the different contributions to the term. Time dependence is implied.
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8.5.1 Inference of case numbers and epidemic indicators

To begin with, the model is calibrated to test cases via parameter fitting, whose results are in Tab.
8.3. After that, CoOWWAn infers state variables and parameters, and quantitatively reconstructs
the time evolution of observed cases from wastewater data. Reconstruction results are in Fig. 8.4a.
Thanks to the model structure and the interpretation of he underlying SEIR model, the results can
be compared with the true number of detected cases. They are shown in Fig. 8.4a, red and black
lines, for Luxembourg. The global magnitude of the shedding population is in Fig. 8.4a, blue line,
from mean estimates. The latter is an extrapolation from CoWWAn estimates and information
about the “dark number” of undetected cases (provided as a model parameter, see above); further
independent studies to estimate this quantity help to fine-tune the results.

The results are overall better than those from simpler linear regression models (even after
data curation to reduce the noise, like Vallejo et al. (2021)): CoWWAn’s inferences achieve
consistently higher correlation (Fig. 8.4b, blue and red sets), with ppears € [0.7;0.9] for all con-
sidered regions. Additional details concur in further improving the reconstruction performance.
On the data collection side, frequent sampling yields ppears = 0.91 and 0.95, respectively for
Luxembourg and Milwaukee with two or more samples/week, while Barcelona has ppeas = 0.7
with one sample/week (Fig. 8.4d). Here, interpolating wastewater data points before the EKF
estimation can improve the reconstruction. In general, an adequate sampling rate is recommended
to improve the EKF performance, since it improves its predictions as new data points are available.
In addition, unnoticed changes in the share of detected cases or in testing/sampling strategies
yield discrepancies, as well as augmented positivity rates during high case numbers (Max Roser
Hannah Ritchie et al., 2020). On a side note, detecting such discrepancies can provide additional
evidence about under-testing and could guide targeted scaling of population tests. In general, the
Extended Kalman filter improves its predictions as new data points are available, so an adequate
sampling rate is recommended to improve its performance.

Using reconstructed data and Eq. 8.11, one can derive the effective reproduction number R
to characterise diffusion trends within a community (Huisman et al., 2021). Fig. 8.4a reports an
example for Luxembourg: the inference is consistent with the indicator reported by the Ministry
of Health on its website (see Section 8.3.1). Importantly, it highlights the same noteworthy trends
that, in practical use, are often more useful than the exact values. Observe the three waves in 2020
(March, June and late October), a small rebound in March 2021 attributed to the emergence of
the alpha variant and one wave in late June 2021, attributed to the gamma and delta variants; all
waves are characterised by R.g > 1. Supplementary material of Proverbio et al. (2022b) reports
values for all other countries.

8.5.2 Short-term predictions of epidemic trends

After case numbers reconstruction, the mechanistic model underlying CoW WAn allows inter-
pretable and causal-based predictions. This represents a plus with respect to correlation or
extrapolation-based alternatives. To make such predictions, it is sufficient to simulate the model
forward at any desired time, starting from the latest state estimate and keeping the transmission
parameter 3 constant (cf. Section 8.4.2).
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Fig. 8.4 Reconstruction of case numbers and inference of epidemic indicators. (a): Reconstruction example
for Luxembourg. Top: Comparison of case numbers: official detected data (black line), reconstructed from
wastewater data (red) including the 2 Standard Deviations ~ 95% confidence interval (shadowed region),
and total positive cases inferred by CoWWAn (blue). Bottom: R, estimated (red, with its associated
2 SD shadowed region) or officially reported by the Luxembourg Ministry of Health. (b): Pearson’s
correlation coefficients Ppeyrs from linear regression between detected cases and measured wastewater
data (blue), ppears between detected cases and CoW WAn-reconstructed case numbers from wastewater
data (red, corresponding to correlation values from panels c¢), and ppears between CoW WAn-reconstructed
case numbers from wastewater data (after interpolating wastewater data) and detected cases (yellow). (¢):
Reconstruction results for all considered regional areas, compared with detected case numbers. The dashed
line represents equal values.

For short-term periods, predictions with CoWWAn are good. For Luxembourg, Fig. 8.5a
shows an example of such 7-days predictions for each day of wastewater sampling, where the
number of detected cases (blue) is compared with the predicted numbers derived from wastewater
data or from case number data. Wastewater-based short-term predictions are well correlated both
with case-based projections (ppears = 0.95) and with true case numbers (Ppears = 0.94). For all
other countries, similar figures and summary tables can be found in supplementary material of
Proverbio et al. (2022b). They display consistent results.

The prediction performance is determined by Eq. (8.12), as the average standardised prediction
error. As one could expect, performances of the wastewater-based pipeline are usually slightly
lower than those from pure case numbers, as the former reconstructs the case numbers themselves
before making the predictions. Nonetheless, all regional estimates lie within one standard deviation
of the 1:1 (equal performance) line (Fig. 8.5b), thus bearing acceptable performance. The only
exceptions are Oshkosh, probably due to under-testing during late 2020, and Kranj, whose low
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case numbers are subject to larger uncertainties. In general, the largest discrepancies are observed
when case numbers plateau or decline after a rapid increase. These are associated with 8 # cost
and yield potential overshoots of the predictions (see also Fig. 8.5a). This effect is associated to
large changes in social activities during epidemic waves and rapid implementations of stricter
restrictions; they are not explicitly included in the model but implicitly learned from the epidemic
curve by the EKF, with some delay.

The standardised error grows quite linearly with increasingly long prediction horizons
(Fig. 8.5¢). There, wastewater predictions, usually less susceptible to daily fluctuations, are
more “stable” than those based on case numbers: in fact, their uncertainty grows slower for longer
prediction horizons. This aspect allows quantifying and comparing the precision for different
horizons.

One final practical remark: CoWWAn’s EKF-based approach enables integrating different
types of data to further improve the quality of predictions. It can thus include both wastewater and
case data together, slightly but systematically improving the prediction accuracy (Fig. 8.5c). This
further suggests that wastewater data contains independent information about the epidemics state,
as previously suggested by Fernandez-Cassi et al. (2021).
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Fig. 8.5 Predictions of future epidemic trends using CoOWWAn. (a): Prediction examples for Luxembourg,
comparing predictions over the 7-days ahead of each point (either estimated from case numbers or wastew-
ater data) with the true detected cases in the same time period. (b): Comparison of wastewater-based and
cases-based predictions. The performance is evaluated in terms of average standardised error, normalised
to equivalent population. The dashed line represents equal values. Error bars correspond to one standard
deviation. (c¢): Predictions performance for different time horizons (mean and 80th percentiles over the
considered regions) for three inputs: case numbers, wastewater data, or both data combined. For all panels,
“inh.” stands for inhabitants.

8.5.3 Long-term projections of epidemic scenarios

Typically, heterogeneous and evolving adaptations of population behaviour and institutional mea-
sures make epidemic forecasts only meaningful for relatively short time horizons. In fact, the
assumption of constant § might not hold any-more; moreover, it is known that small uncertainties
for short-term predictions are amplified over longer periods and the precision drops, similarly
to what happens in weather forecasts (Petropoulos et al., 2020). Over long-term time horizons,
we thus speak of “projections” of contrasting scenarios. They assume no changes in infection
dynamics and allow counterfactual analysis of differing unfoldings from current social or phar-
maceutical measures and/or changed viral infectivity (Fig. 8.6a,b). They can also be used to
investigate plausible scenarios, by artificially modifying the model parameters.
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As for other models applied to complex systems, projection uncertainties increase with longer
time horizons (Fig. 8.6b), reflecting the set of potential changes of conditions. Nonetheless,
projections based on case numbers or on wastewater data are consistent with each other within
error bounds, supporting the possibility of using wastewater data for consistent what-if analysis. In
addition, the mechanistic-based model allows assessing the changes in desired precision. Models
applied in quickly changing conditions are known to be uncertain (Santosh, 2020). Similarly, our
projections’ precision varies depending on whether they are conducted during a rapid increase of
case numbers or during stable trends, calling for caution in interpreting these results as plausible
projections rather than forecasts.
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Fig. 8.6 Long term projections using CoOWWAn. (a): Long-term projected curves of daily cases compared
with daily detected case numbers. (b): Long-term projected curves of cumulative cases compared with
cumulative detected case numbers. Blue and red ribbons represent +2 SD error bounds (SD stands standard
deviation); note that the ribbons might overlap. Both panels (a) and (b) report examples for Luxembourg
data, with projections starting at the date marked by the green triangle.

8.5.4 Modelling assesses wastewater warning performance

Finally, consider the assessment of wastewater data early-warning capabilities. To begin with,
let us clarify what we mean by “early”. In this specific case, the pandemic is unfolding, and
wastewater data capture viral load shed by already infected individuals. So, anticipating re-
emergences tout-court is not the scope. Instead, the aim is to give immediate alerts and possibly
anticipate the curves of detected positive cases, which often lag up to 7-10 days beyond real
infections (Wu et al., 2020). In turn, this would constitute an early alert for hospitalizations and
healthcare burdens, which usually follow by another two-three weeks (Kemp et al., 2021).

Cao et al. (2021), D’ Aoust et al. (2021) and Kumar et al. (2021) had suggested that wastewater
analysis could provide early warnings for COVID-19 resurgence in a community. They employed
a retrospective analysis to identify peaks in wastewater data that occurred before or close o
peaks in detected case numbers. However, for the real-time detection of impending epidemic
resurgence, distinguishing between fluctuations and robust increases is crucial to optimise the
true positive signals and minimise the false negatives. What if, in real time, the marked peak was
instead considered spurious? Or, if a peak that had been considered significant at day 7 is instead
judged irrelevant by some retrospection performed at day 7+ some weeks? Fig. 8.7 provides
an example on a dummy variable Y. At time 7 = 20, only the blue time series is available. Is
Y (7) the first hallmark of an increase? Three scenarios are possible: a noteworthy subsequent
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increase (orange), a stabilization on slightly higher values (green) or a spurious jump followed
by “standard” dynamics (red). Only observers at time 7 + 5 (or more) can confidently assess the
value of Y (). However, at 7, one can test the likelihood of different scenarios using causal-based
models.
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(I) é 1‘0 1‘5 2‘0 25
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Fig. 8.7 Example time series of dummy data Y, to illustrate how observers can get dilemmas when new
data points become available. Is Y (7) a signal of a true increase? Three scenarios are instead possible.

To evaluate the alerting power of on-line (real time) systems, it is thus not sufficient to compare
developed time series with a retrospective analysis. CoWWAn addresses this challenge by the
EKF-based predictions that, thanks to the causal structure, capture robust trends in the epidemic
dynamics. The shot-term predictions introduced in Sec. 8.5.2 do the job, as they well characterise
spurious or significant trends. CoWWAn thus allows to see if case-based and wastewater-based
predictions provide early warnings of COVID-19 resurgence.

Fig. 8.8 displays the 7-days predictions about pandemic trends, obtained from wastewater
data (red) and from detected case numbers (yellow), and compare them with the true observed
evolution (blue). Do red and yellow curves correctly track the increasing trend of the blue curve?
Observe that, overall, the prediction curves accurately increase when a new COVID-19 wave is
observed in a region. However, the timing might slightly differ depending, e.g., on the testing
frequency”®. On one hand, this analysis demonstrates the potential of wastewater data to detect
incoming increasing trends; on the other, it quantitatively verifies the recent calls by Bibby et al.
(2021) for cautious interpretation: alerts based on wastewater analysis might be just-on-time or
even lagging slightly behind the true infection waves.

Nonetheless, wastewater-based reliable alerts are often more advanced than those based on
case numbers alone, e.g. for Kitchener or Raleigh. As a result, wastewater-based monitoring
could indeed be an effective method to detect new waves of infection, but the lead time should be
carefully assessed case-by-case, according to the sampling frequency and other characteristics
of the wastewater-analysis pipeline. In short, reliable warnings can be triggered, but properly
verifying how “early” is still demanded to future and tailored studies.

8.6 Discussion

This chapter discussed a mathematical model to leverage alternative data to construct a monitoring
system, ideally capable of anticipating detected epidemic insurgence. The whole pipeline, termed
CoWWAn, combines a SEIR model with an extended Kalman filter to process wastewater data in

4Other examples, for the remaining increases observed in the considered countries, are reported as supplementary
material for Proverbio et al. (2022b).
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Fig. 8.8 Zoom into the epidemic resurgences visually recognised in the considered regions. Short-term
projections used to identify robust trends in epidemic resurgence, for different examples (one per region;
other examples in Supplementary Fig. 16). We compare 7-days projections from case numbers and from
wastewater data with the true detected case numbers.

an automated and mechanistic-based manner. The model supports the reconstruction of infection
curves from wastewater data and allows short-term prediction and long-term projections of
future trends. Such predictions can provide early and robust information, particularly relevant
for healthcare management since hospital admission is downstream of the susceptible-exposed-
infectious flow (Kemp et al., 2021).

The model itself is interesting and useful in practice. In fact, CoWWAn can be easily applied
and extended to different areas, and it overcomes some of the limitations of previous studies. In
addition to mapping wastewater data to case numbers, it allows improving Reg estimation. Previ-
ous studies attempted that (Huisman et al., 2021), but did not achieve such good performances.
In addition, CoWWAn allows quantitative analysis of early-alert capabilities of wastewater data,
building an additional step for the estimation of lead times in real-world settings. Overall, it
connects mathematical theory and its recent developments with real-world capabilities and needs.

Obviously, the approach comes with some limitations. To begin with, it provides information
on a community level but does not single out the infected individuals. Hence, it does not relate to
contact tracing or to detailed information like age distribution or infection clusters. This is typical
of wastewater-based monitoring.

The reconstruction of case numbers depend on the mean-field SEIR approximation: although
meaningful when concentrating on average epidemic trends (Kollepara et al., 2021), it might
yield uncertainties in case of heterogeneous behaviours like clusters. In addition, tailoring
region-specific model parameters is recommended to fine-tune the performance and reduce the
uncertainties over the estimates. Usually, the parameters can be estimated with independent
methods or educated prior information, in particular concerning seroprevalence. The current set
of proposed parameters might not be complete for all countries and some system-specific tuning
is necessary despite the generality of the method.

The projections are somewhat sensitive to the ratio of total and detected cases, see Fig. 8.3.
Long-term projection are more influenced, due to potential errors in the estimated level of natural
immunity in the population. Short-term projections are less sensitive, since any error in the
estimated size of the susceptible population is compensated by the infectivity parameter estimate.
Note that this sensitivity is a shortcoming of every model-based projection. Reliable estimates for
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the ratio of true versus detected cases are thus necessary during model calibration. Seroprevalence
studies may provide best estimates, especially if they can distinguish between antibodies from
previous infection and vaccination (Suhandynata et al., 2021).

Data quality and sampling frequency are key for good predictions: escalating the sampling
precision and rates improves the model estimations. Future studies could optimise the data needs
to obtain desired precision levels, depending on the costs associated.

Interestingly, the model can be used for additional studies. To begin with, it is generic enough
to be expanded to other epidemic contexts. Future discrepancies between wastewater-based
estimates and detected cases might be used as indications about changes in the share of detected
cases and could be used to trigger a warning against potential undertesting.

Finally, the present study provides several lessons learned for on-line early warning systems.
It allows investigating the conceptual difference between “predictions” and “projections”, which
apply depending on the assumptions of constant parameters hold or until the uncertainty estimates
become significant and overcome the desired confidence. The study also allows making sense of
short-term predictions associated with noisy data and probabilistic estimates. Depending on the
nature of complex systems under study, their associated uncertainties and dynamic characteristics,
such “predictions” and early alerts might pertain more to the field of dynamic forecasts or of
risk assessment. This study thus paves the way to future studies, that further quantify lead times,
precision/recall and real-time implementations.

Code availability

The code to reproduce the analysis is available at gitlab.lcsb.uni.lu/SCG/cowwan.


 gitlab.lcsb. uni.lu/SCG/cowwan




Chapter 9

Discussion

This thesis addresses the topic of critical transitions in natural systems and the challenge of
providing reliable warnings against them. To verify or falsify theoretical predictions and claims,
the thesis bridges mathematical theory with real-word data, thus setting solid foundations for the
applications of warning signals.

The present work provides a systematic classification of critical transitions and of correspond-
ing dynamical regimes, reviews state-of-the-art ideas, methods and EWS, highlights their strengths
and open research questions, and tests hypotheses and performances on biological and epidemio-
logical systems. To this end, a combination of techniques from various fields have been employed,
such as non-linear dynamical systems theory, stochastic processes, systems control, time series
analysis, statistics and signal processing, as well as knowledge about biology, epidemiology and
risk assessment. In addition to deriving modelling results, this combination of approaches allows
to interpret their significance within scientific paradigms.

Below, the main findings and significance of previous chapters are briefly summarised and
discussed, together with potential future directions of research.

9.1 Conceptual remarks

To begin with, let us consider the conceptual improvements brought about by the CT framework,
as well as their relevance for specific disciplines.

Interdisciplinary outlook

The CT modelling framework focuses on abrupt regime shifts in dynamical complex systems.
As such, it employs a variety of mathematical approaches to contribute to knowledge discovery
and model-based predictions (see Chapters 1 and 4). In addition, the CT framework is inherently
interdisciplinary, as it combines mathematical results with domain-specific knowledge. In fact, its
baseline modelling concepts — e.g., dynamical attractors and noisy bifurcations — are, in principle,
generically applicable to many systems satisfying certain basic conditions (Chapter 2). This
explains the rapid adoption in many research fields, from climatology, to ecology, to psychology,
epidemiology and so on. In addition to main chapters, the Appendices provide formal definitions
and mathematical instruments to foster interdisciplinary and transversal collaborations.
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Model development, as well as interpretation of derived results and applications, requires
domain-informed inputs. This is particularly true for the flagship contribution of the CT framework:
early warning signals against impending regime shifts (see Chapter 3; see also Sec. 2.1 for remarks
on terminology). Although ideally generically applicable to a wide variety of noisy bifurcation-
driven phenomena, they are measures that rest upon assumptions. As such, it is necessary
to carefully verify EWS validity, in each system of interest, before applying, interpreting and
routinely employing them.

Summarising what discussed in details in Chapters 2, 3 and 5, three defining elements should
be combined: alternative regimes, EWS, and “dynamical context”, i.e., the mix of system’s
dimension and co-dimension, noise properties and reciprocal time scales. Given two of them, the
third element can be inferred. Verifying a single element may not be sufficient to rule out spurious
signals or to support modelling choices. Overall, EWS should be used carefully within risk
assessment toolboxes, as they could be associated with spurious signals. They can be aptly used
for detection or as “first pass tools” (Clements et al., 2018) to trigger scholars’ attention towards
specific systems and regimes. In these cases, false positives are not problematic if compared with
complementary signals, but the risk of false negatives should be minimised using combinations of
approaches.

Alternative Dynamical
regimes context

EWS

Fig. 9.1 A simplex is formed by the presence of alternative regimes (e.g. due to bistability), resilience
indicators (EWS) and dynamical context (the combination of system’s dimension and co-dimension, noise
properties and reciprocal time scales; sometimes they constitute modelling assumptions, other times they
can be assessed from data).

Deterministic vs stochastic changes

A conceptual benefit of the CT framework is to put determinism back into perspective. Stochastic
processes have been long studied for their role in overcoming potential barriers and driving
systems onto alternative attractors. In systems biology in particular, the Waddington’s landscape,
a long-standing illustrative paradigm, is implicitly based on the assumption that a cell is “bound”
to evolve under some potential action, but that its fate choices are primarily driven by noise
(¢f- Sec. 2.6). On the contrary, introducing the effect of dynamical bifurcations, driven by
control parameters, adds a layer to the picture. The potential is not static any more, but gets
modified by the action of deterministic changes. The interplay between deterministic resilience
and noise-induced shifts makes up for a richer modelling framework to accommodate and describe
real-world phenomena.

Making this paradigm shift explicit in this thesis contributes to the sparse but insisting calls
in systems biology communities to go beyond the Waddington’s landscape picture, looking for
alternative or complementary modelling tools that could spur new testable predictions and methods.
Thereby, time series analysis strategies like those presented in Chapter 4 and Appendix A, as
well as additional derived tools, may be employed in biology and other disciplines towards better
systems’ understanding, prediction and control.
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9.2 Summary of main results

This thesis develops, refines and tests warning indicators against critical transitions. Specific at-
tention is dedicated to EWS derived from the theory of noisy bifurcations. Old and new analytical
and data-analysis methods have been combined and employed, see Chapter 4, not only to propose
new indicators, but also to verify their validity and to assess their performance on real-world data.
In addition to general theoretical settings, two domain-specific case studies have been considered:
biological regulatory circuits and epidemiological dynamics.

In Chapter 5, the observability of EWS is systematically analysed, depending on theoreti-
cal modelling assumptions . The analysis demonstrates that trends of main indicators may be
altered or disrupted if the time-scale separation assumptions breaks down, or if noise is non-white.
In the first case, variance-based indicators are particularly robust, while autocorrelation-based
indicators should be preferred in the second case. When noise types are mixed, which is com-
mon in realistic settings, combining indicators — instead of using single ones — optimises the
performance. These findings thus guide the application and interpretation of resilience indica-
tors for detection or anticipation of regime shifts. This allows interpreting experimental findings
and informs subsequent studies, thereby supporting the “cycle for knowledge discovery” (Fig. 1.1).

Chapter 6 studies the ability of cell regulatory mechanisms to hamper fluctuations and noise-
induced transitions. This analysis constitutes a system-specific verification of EWS generality
when certain modelling assumptions are loosened and quantifies EWS performance in detecting
impending cell-function decisions from distribution data. The findings provide novel insights onto
control mechanisms in cellular processes, as cooperativity is shown to concur in fine-tuning sys-
tem resilience close to criticality. The analysis provides quantitative information to experimental
observations about bistable systems’ resilience (Dai et al., 2015) and paves the way for systematic
monitoring of cell states, towards desired functions or away from harmful ones.

Chapter 7 focuses on testing theoretical predictions and analysis methods on real-world epi-
demiological data, and on assessing the corresponding performance of EWS. Worldwide data
from the COVID-19 pandemic are analysed, characterised by different dynamical regimes (rate of
approach of control parameter R(#) to its critical value 1 and noise distribution). Such regimes in-
fluenced the ability of CT-derived warning signals to consistently detect and anticipate impending
epidemic waves. Furthermore, EWS performance was shown to be sensitive to data processing
like detrending methods. These findings verify the theoretical prediction from literature and
from previous chapters, and provide useful information about their applicability to real-world
monitoring programs.

Chapter 8 provides a model-driven alternative to epidemic monitoring, using complemen-
tary data about COVID-19 diffusion within communities — SARS-CoV-2 RNA abundance in
wastewater samples. The approach uses an extended Kalman filter, coupled with epidemiological
modelling, to reconstruct patterns of epidemic diffusion and to perform causal short-term pre-
dictions and long-term projections. For many countries, the pipeline work well and outperforms
statistical-based methodologies in complementing individual testing campaigns, estimating quan-
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titative future epidemic developments and computing the early warning provided by wastewater
data. The study provides several lessons for real-time monitoring of complex systems and suggests
a proof-of-concept for the use of Kalman filters for risk assessment of critical phenomena.

9.3 Future perspectives

Studies of complex systems, and of critical transitions in particular, call for many future investiga-
tions. Several open research questions are discussed in Chapter 3; as many were triggered during
the PhD thesis. Each Chapter already contains limitations and perspectives of specific studies. In
this section, a selection of broad and inspiring future directions is presented and discussed.

Equilibrium and non-equilibrium

Abrupt regime shifts occur over different time-scales and dynamical contexts. Further including
non-equilibrium and non-quasi-steady-state modelling will provide deeper capabilities to under-
stand natural phenomena and to develop more refined and performing EWS. Additional insights
will come from considering exotic noise-related effects and their interplay with non-equilibrium
phenomena. These studies would go beyond what presented and discussed in Chapters 5 and
7, and would embrace other CT classes described in Sec. 2.3.2. Mathematical advancements,
physical understanding and model-based predictions are necessary; identifying natural phenomena
and experimental setups to test theoretical results is also crucial.

Data-driven inference of CT classes

Often, there is little consensus about the driving mechanisms of critical transitions (cf. Sec.
3.3). Bury et al. (2021) recently started developing a Machine Learning-based classification of
diverse bifurcations (within b-tipping), with the goal of comparing EWS performance. Instead,
inferring the class of critical transition (Sec. 2.3.2) with data-driven methods is still unexplored.
Distinguishing between b-tipping and n-tipping (to begin with) is crucial not only to make sense
of data and foster better models, but also to infer whether certain transitions are mostly driven
by deterministic or stochastic factors. This would have immediate consequences in the correct
interpretation of e.g. cell fate decision or glacial shifts (Ditlevsen et al., 2010). Developing such
tools would thus be a valuable asset.

Deep learning classifiers, based on suitable network architectures, could do the job. Prelimi-
nary training and validation data would come from simulated time series of normal forms and
known models, undergoing various bifurcations and/or noise-induced transitions, in different
dynamical contexts. They would provide a sufficiently large library of examples to develop
proof-of-concept studies. Normal forms are blueprints of diverse transitions, irrespective of full
mechanistic models. Subsequently, the proof of concept could, in principle, be tested on real-world
data like atrial fibrillation or epilepsy time series, which are present in our institute.

Distinguishing leading bifurcations in cell differentiation processes

Aforementioned developments in non-linear dynamics theory find domain-specific applications.
Congruously with the rest of the thesis, let us focus on systems biology first.
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Determining which dynamical process leads differentiation routes in various cell lineages
is important to develop better models, to test existing ones and, in general, to better understand
such key developmental processes (Moris et al., 2016). Having refined and precise models allow
developing gene expression dynamics inference methods (Eugenio et al., 2014; Aalto et al., 2020)
to reveal the epigenetic landscape (Li et al., 2015) and to foster better comprehension of the
underlying bistability mechanisms (Pomerening, 2008).

Assessing which type of transition drive differentiation processes close to criticality is a
delicate issue. Possibly depending on the cell type and developmental stage, the process might be
primarily driven by deterministic mechanisms (following a b-tipping scheme), or by noise and
other disturbances (n-tipping), or even by rate-dependent mechanisms (r-tipping), see Sec.2.3.2.
In addition, transitions might be smooth or abrupt, with different routes towards the alternative
stable state and with different associated EWS. When deterministic routes are known, preliminary
steps may test which bifurcation better represents the differentiating dynamics. A starting point is
to fit their predicted probability density functions (see Sec. 4.3.1 and Chapter 6) to experimental
data and to contrast the corresponding goodness of fit. One readily available dataset to test is
provided by Eugenio et al. (2014); others may also be considered.

Online risk assessment

In addition to knowledge discovery, the CT field aims at developing reliable warnings against
impending shifts. However, EWS still need advances and refinements before being applied. Sev-
eral thesis chapters elucidated their promises and limitations, including data collection protocols,
consensus on data analysis methods (detrending schemes, moving windows and so on) and com-
pliance with the “detection simplex” (Fig 9.1). For both low-dimensional and high-dimensional
systems, future studies will confirm whether online (i.e, real time) risk assessment using EWS
upon real-world problems (or, a least, on well-defined subsets) is a matter of refinements and
theoretical developments, or wishful thinking (Ditlevsen et al., 2010).

Additional strategies may complement or supplement existing ones. One such example is
topological analysis of embedding state spaces; an application on financial crashes has been
carried by Gidea et al. (2018); Gidea et al. (2020). Alternatively, one can exploit the recently hy-
pothesised link between singularities and observability properties of complex systems (Montanari
et al., 2022a), and develop consistent indicators like SVD minimum coefficients, after time series
embedding.

New indicators can also be tested on time series data, after changing basis. An interesting
case is the wavelet entropy. It was first used, among other features, to detect transitions to seizure
activity, and looked promising (cf. thesis “Dynamical modeling techniques for biological time
series data”). Given a signal s and its decomposition (s;); in an orthonormal basis, an entropy
measure can be defined as a functional satisfying the additivity property. The orthonormal basis
can be constructed using Fourier decomposition or, instead of working in the frequency domain
only, the wavelet transform (Burrus, 1997). A corresponding (non-normalised) entropy measure is
thus defined as (Abdel-Hamid et al., 2016; Coifman et al., 1992):

E,=-Y silogs;, 9.1)
i
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with the convention 0log 0 = 0. This is often called a “Shannon”-type entropy since it has the same
properties of distance between the signal and the decomposition, and because we can interpret
||Py s||>= s? as a “quantum-mechanics”-like probability (Coifman et al., 1992). Here, Py is an
orthogonal decomposition operator to the subspace H. For instance, the Poisson wavelet is used
to reproduce the Fourier power spectrum (Kirby, 2005) and enhance interpretability. This or alike
indicators may foster new avenues, when frequent and abundant data are available.

Machine learning (ML) techniques may be potential allies. Bury et al. (2021) started de-
veloping generic proof-of-concept algorithms, but applications on real-world data are so far
system-specific, e.g on epilepsy (Rasheed et al., 2020; Usman et al., 2017; Mombaerts, 2019
(thesis)) or atrial fibrillation (Ebrahimzadeh et al., 2018; Hill et al., 2019; Olier et al., 2021;
Gavidia, 2022). They also require abundant data, which are seldom available. Nonetheless, ML
algorithms may extract features related to approximations of order greater than one (hence, beyond
O-U processes) to improve performances. Alternatively, theory-based indicators may guide fea-
ture selection in ML models, see Chapter 5 and Brett et al. (2020b), enhancing their interpretability.

An appealing alternative for online risk assessment could come from extended Kalman filters,
coupled with non-linear models (when available) or with generic normal forms. They may
provide reasonable predictions and contrasting scenarios, linking mathematical models and noisy
measurements. However, normal forms are only valid locally, in the vicinity of critical points.
Hence, tradeoffs between recognising impending bifurcations and refining the analysis with
EKF-like methods are still necessary.

Critical transitions in multi-dimensional systems

So far, low-dimensional systems have been primarily considered. High-dimensional ones are
nonetheless of paramount importance, as many real-world systems have been aptly modelled as
networks of various orders and multi-varied data are becoming increasingly available.

Studying critical transitions on networks is current ongoing work. Some research focuses
on graph properties like node removal or centrality (Morone et al., 2019; Loppini et al., 2019;
Moutsinas et al., 2020); others consider the dynamical effects of evolving link parameters (Meng
et al., 2020; Bhandary et al., 2021). Future works within network theory might unravel other
general mechanisms, like those introduced by Gao et al. (2016) and discussed in Sec. 4.3.6 and
Sec. 4.7. For instance, Kuehn et al. (2015) proposed methods to obtain the explicit centre manifold
A.5.1 on simple network systems escaping through a saddle node. Looking for early warning
signals in networks is another open research direction (see again Sec. 4.3.6 and Sec. 4.7, as well
as Rodriguez-Méndez et al. (2016); Chen et al. (2019); Matsumori et al. (2019)).

Complementary researches focus on conditions for certain transition classes to happen in
high dimensional systems. Kiers et al. (2019) discussed conditions for r-tipping, while look-
ing for evidences of multistability and alternative states in high-dimensional data sets is under
development (¢f. Sec. 3.1). Extending necessary and sufficient conditions for bistability to
higher-order networks and simplicial complexes (Bick et al., 2021) is another intriguing idea, as
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well as checking for the possibility of critical transitions and associated warning patterns. As of
now, no publication on this direction is known.

Spatially extended systems are also of great interest. The study of critical transitions and EWS
in PDEs counts a few works (Gowda et al., 2015; Kuehn et al., 2019). Moreover, understanding
transitions and warning indicators in systems that stretch over wide areas is of environmental and
ecological relevance. Although the problem is known and recognised, only recently quantitative
measures are being developed, including the use Betti numbers to characterise topological con-
nectedness (Storch et al., 2019a). ML-based image segmentation measures (Taha et al., 2015) like
Dice-score or Jaccard-index may potentially add value in providing univariate measures of spatial
changes. Alternatively, one can reconstruct the state space using embedding techniques (see Sec.
4.3.6) and then predict new time points (Ma et al., 2014) or detect topological changes using e.g
persistent homology (Zomorodian et al., 2005; Gidea et al., 2020) or observability properties
(Aparicio et al., 2021; Montanari et al., 2022a).

Bridging theoretical and computational studies with real-world data is a necessary next step.
A recent work on this direction applies dimension reduction techniques (Sec. 4.7) on behavioural
data from the COVID-19 pandemic (Fan et al., 2020), to characterise rapid changes in people’s
perception and compliance to public rules, in turn modelled as correlation networks. Many other
studies within different domains are nonetheless required.

Cascading regime shifts

As complex systems evolve on different time-scales and a different levels, it is immediate to ask
whether tipping on short timescales could be connected to, or restricted or enslaved by tipping
on long timescales. In literature, investigations on this direction are still limited (Rocha et al.,
2018; Zhong et al., 2019; Ashwin et al., 2017a). One possible way of developing related theories
could consider one “fast” variable that is tipping as the “slow variable” of another system (i.e.
its parameter). So, the tipping on one system might produce large pushes on the second. If that
is sufficiently large, a cascade effect occurs. On the contrary, one may consider similar time
scales and consecutive tipping due to network effects. Dedicated studies are recommended in this
promising research direction, to develop better understanding, derive warning indicators (if any)
and identify natural systems that may be prone to tipping across scales.

System resilience

In general, many studies dedicated to critical transitions are dual to those addressing systems’
resilience, a long-recognised property of complex systems and networks (Liu et al., 2020a). Many
new avenues exist. Improving theoretical definitions, conceptualization and analysis is a necessary
first step. Then, there lies the problem of uncovering resilience properties from time series data,
which is particularly complicated when mechanistic models and parametrizations are not available.
Indicators for loss of resilience and related phenomena should therefore be continuously developed
and tested, even beyond the CSD umbrella.

Another crucial step is bridging the gap between theoretical studies and empirical testing
on real-world systems. This can be done by refining the classification of system properties and
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dynamical contexts and by improving modelling and data-driven methods to infer the class of
empirical systems. In addition, methods to cope with incomplete information — hence, towards the
engineering side of the CT framework — are recommended to identify the functional observability
space (Montanari et al., 2022b).

Finally, after understanding and prediction, it comes the control of tipping-prone systems,
in the identification of safe operating spaces and in the apt steering of their behaviour towards
desired transitions or away from dangerous ones.

9.4 Conclusion

Critical transitions in complex dynamical systems are a fresh topic of great relevance for scientific
research and practical applications. It has connections with various fields and strives to address
many open questions. It brings many results for knowledge discovery and provides novel insights
upon systems’ variability in critical regimes. In addition to improving theoretical results, this
thesis analysed and verified the ideas and hypothesis about application of derived indicators within
monitoring systems.

Based on theory and analysis of empirical data, the current results assessed that such applica-
tion should be done carefully to avoid spurious signals, and should be potentially coupled with
model-based methods. For offline detection, EWS have the potential to complement other analysis
methods; for online prediction, though, they still require refinements, in particular when critical
points are not known at all. In both cases, knowledge about the dynamical context is crucial, to
properly frame the CT class that is being observed.

Overall, this thesis provides solid foundations for future studies on critical transitions — both
from a theoretical and an applied side. As a wise man said', “There are more things on heaven
and earth, Horatio, than are dreamt of in your philosophy”. Many exciting things lie ahead.

Code availability

The code to reproduce the figures not associated to specific papers is available at https://github.c
om/daniele-proverbio/thesis.

'W. Shakespeare. Hamlet, 1603.
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Appendix A

Formal Definitions

A.1 Dynamical systems and notable features

This subsection provides formal definitions for dynamical systems and notable features intro-
duced in Sec. 2.2.1. Most of definitions and theorems come from and are detailed in Strogatz,
2018; Kuznetsov, 2013; Golubitsky et al., 2012; Berglund et al., 2006; Thompson et al., 2011;
Dobrushkin, 2014. A dynamical systems is defined as follows:

Definition A.1.1. A dynamical system is a triple {Q.,¢", T}, where T is a time set, Q is a
(Banach) state (or phase) space with a properly defined metrics on it and ¢' : Q — Q is a family
of evolution operators parametrized by t € .7 and satisfying:

i 00=id
ii. ¢'7=¢'o0¢* (o isthe convolution operator).
Definition A.1.2. An orbit (or trajectory) starting at ug is an ordered subset of the state space S,

Or(ug) = {u € Q:u= ¢'up,Vt € 7 such that ¢'u is defined}

Definition A.1.3. The phase portrait of a dynamical system is a partitioning of the state space
into orbits.

For analysis purposes, one can explicit a dynamical system as a set of differential equations
where algebraic operations are well defined. In fact, the main result of the following theorem is
that a system of ordinary differential equations can be regarded as a dynamical system'.

Theorem A.1.1. Consider a system of ordinary differential equations
= f(up,t), uecR", peR" (A1)

where f :R" — R" is smooth in an open region U C R". Then there is a unique function
u=u(t,up), u:RxR" — R that is smooth in (t,ug) and satisfies, for each u, € U, the following
conditions:

! Another way to represent dynamical systems whose time is discretized are maps. However, they are not of primary
interest in this thesis.
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i. u(0,up) =uo

ii. there is an interval & = (—ri(ug),r2(uo)), where ri o > 0, such that, for all't € .7,
y(t) = u(t,up) €U

and

y=f0)"
The function u(t,ug) produces a solution curve
Cr(uo) ={(t,u) :u=u(t,up),t € £} CRxR"

and an orbit
Or(up) ={u:u=u(t,up),t € &} CR".

Note that the orbit is the projection of the solution curve onto the state space R". The evolution
operator ¢' : R — R can thus be written

O'up = u(t,up)

As a consequence, we can regard the system of ordinary differential equations like Eq. A.1 as a
dynamical system.

When ODE A.1 does explicitly depend on time, it is termed nonautonomous; when it does not,
it is termed autonomous. u are state variables that univocally define the state of the system. n is
the system dimension, namely the minimum number of state variables (in physics, it is also called
the “number of degrees of freedom”). m represents the number of free parameters that specify the
evolution function. The function(s) f(u, p,t) can depend linearly or non-linearly to its variables.

A.2 Slow-fast systems

Many systems of non-linear ODEs are characterized by different time scales. When such time
scales are well-defined mathematically, or when we can assume such separation by observing the
desired phenomenon, the system can be written as a slow-fast ODE in the form:

dx

EE = f(x,y) (A2)
dy
E _g(x’y)a (A3)

where 0 < € < 1 is a small parameter. x contains fast degrees of freedom and y the slow ones.
Alternatively, one can write the system in terms of fast time s =7 /€ as

dxs

Z - f(xsays) (A4)
dys

l — gg(xs7ys) . (A.S)

ds
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There are different methods to verify the time scale separation in models, the most notable ones
involve spectral theory and large deviation theory (Berglund et al., 2006). Empirically, one can
consider the rates (or times) in which a process and its coupled ones occur and compare e.g. their
orders of magnitude.

Definition A.2.1. A slow manifold is a set of equilibria onto which the system is projected if an
asymptotically stable equilibrium %(y) is admitted for each quasi-steady-state y.

By doing so, the complexity of the system is largely reduced and analytical results can be
more easily obtained (Strogatz, 2018). As a matter of fact, as y is almost fixed, one can interpret it
a the usual slowly varying parameter p.

A.3 Equilibria, cycles, invariant sets

Definition A.3.1. A point ii € Q is called an equilibrium point (fixed point) if ¢'ti = ii for all
te 7.

Note a slight abuse of wording when referring to “equilibrium”. In fact, this mathematical
term refers to the physical notion of “steady-state”, given by the no-change condition % =0in
the associated ODE. It is different from the mechanical definition of equilibrium as balance of
forces acting on the system Y ; F; = 0 or the thermodynamic requirement of absence of net flux of
energy though the system ) ;J; = O (adiabatic regime).

Definition A.3.2. A cycle is a periodic orbit, that is, a nonequilibrium orbit Cy such that each
point ii € Cy satisfies ¢' it = ¢'ii for all t € 7. The minimal T > 0 with this property is called
the period of the cycle.

Definition A.3.3. A cycle of a continuous-time dynamical system, in a neighbourhood of which
there are no other cycles, is called a limit cycle.

Definition A.3.4. An invariant set of a dynamical system is a subset . C Q such that ii € ./
implies ¢'ii € & forallt € T.

An equilibrium point is an invariant set, so is a cycle.

Definition A.3.5. An equilibrium ii is called hyperbolic (or generic) if there are no eigenvalues
of 9, f (u)|a on the imaginary axis. Otherwise, the equilibrium is called elliptic.

A.4 Stability

We get now into the definition of stability, of primary importance to assess how sensitive a
system is to small perturbations.
Theorem A.4.1. An invariant set . is stable if the following conditions hold:

i. for any sufficient small neighbourhood U O . there exist a neighbourhood V O . such
that 'u € U forallu € V and all t > 0;

ii. there exist a neighbourhood Uy D .7 such that ¢'u — . for all u € Uy, as t — oo
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Condition (i) is often called “Lyapunov stability”, whereas condition (ii) is referred to as
“asymptotic stability”. A stable invariant set is often called an attractor. Fixed points and limit
cycles are classified as (linearly) stable or unstable depending on the eigenvalues of their associated
Jacobian.

Theorem A.4.2. Consider a dynamical system A.1, where f is smooth. Suppose that it has a fixed
point Q. Then il is (linearly) stable if all eiganvalues Ay, ..., A, of d,f (i) satisfy Re(A) < 0.

Extracting stability information from determinant, discriminant and trace of the Jacobian is
described in Sec. 2.2.1, along with their graphical representation with a Poincaré Diagram, Fig 2.3.

A.5 Bifurcations

Mathematically speaking, when the behaviour of a system changes, we encounter a bifurcation.
Hence, it is necessary to formalize the notion of “behaviour” and that of “change” in terms of the
elements presented so far. Note that, once the phase space is defined by the state variables, its
properties are then given by the parameters introduced in Eq. A.1.

Definition A.5.1. A dynamical system {7 ,R",¢"} is called topologically equivalent to a dynam-
ical system {7 ,R, y'} if there exist a homeomorphism h : R" — R" mapping orbits of the first
system to orbits of the second system while preserving the direction of time.

Definition A.5.2. A dynamical system {7 ,R",¢'} is called locally topologically equivalent
near an equilibrium 4 to a dynamical system {7 ,R,y'} near an equilibrium ¥ if there exist a
homeomorphism h : R" — R" that:

i. is defined in a small neighborhood U € R" of ii;
ii. satisfies § = h(i);

iii. maps orbits of the first system in U onto orbits of the second system in V = h(U) C R"
preserving the direction of time.

Definition A.5.3. The appearance of a topologically non-equivalent phase portrait under varia-
tion of parameters is called a bifurcation.

Definition A.5.4. The codimension of a bifurcation system A.l is the difference between the
dimension of the parameter space and the dimension of the corresponding bifurcation boundary.

Definition A.5.5. A bifurcation diagram of the dynamical system is a stratification of its param-
eter space induced by the topological equivalence, together with representative phase portraits
for each stratum.

Definition A.5.6. The normal form of a dynamical system is a simplified form (in scalar system,
a function) that can be useful in determining the system’s behaviour. All systems exhibiting a
certain type of bifurcation are locally (around the equilibrium) topologically equivalent to the
normal form of the bifurcation.
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Formally speaking (Kuznetsov, 2013), consider a dynamical system
x=f(x,p),xeR", peR" (A.6)
and a polynomial system

=gl piB),eR" ,peR" BeR! (A7)

having dimension n, codimension k and polynomial order /. Without loss of generality, we can
assume that the tipping point occurs at (x, p) = (0, po). A translation would do it. Then:

Definition A.5.7. System A.7 is called a topological normal form for the bifurcation if any
generic system A.6 with the equilibrium x = 0 satisfying the same bifurcation conditions at p' =0
is locally topologically equivalent near the origin to A.7 for some values of the coefficients ;.

Here, generic means that the system satisfies certain conditions around the critical point:

%’; |(07 po)» Where j is the derivate order and ¢ = {x, p}. In particular, %‘f are called nondegeneracy

conditions and are related to the “criticality” of a bifurcation (Kuehn, 2011), while %’; are called
trasversality conditions and govern the bifurcation unfolding (see below) and thus its genericity.
Bifurcations can be divided into two principal classes:

* Local bifurcations, which can be analysed through changes in the local stability properties
of equilibria, periodic orbits or other invariant sets as parameters cross through critical
thresholds;

* Global bifurcations, that cannot be detected purely by a stability analysis of the invariant
set. They are harder to detect because they involve large regions of the phase plane rather
than just the neighbourhood of a single fixed point.

One important concept to reduce dynamical systems to local, low-dimensional normal forms is
the center manifold (Haragus et al., 2010; Crawford, 1991). According to the linearized systems
and its stability properties (see above), a dynamical system has invariant manifolds of which one
is the center manifold, having the same dimension of the stable manifold (attractor) and tangent to
the center subspace at every equilibrium point (Guckenheimer et al., 2013). A center manifold
corresponds to a slow manifold (Def. A.2.1) when the eigenvalues of the center subspace are all
precisely zero, rather than just real part zero.

Theorem A.5.1. The center manifold emergence theorem says that a neighbourhood around an
equilibrium point may be chosen so that all solutions of the system staying in that neighbourhood
tend exponentially quickly to some solution y(t) on the center manifold.

The theorem allows to reduce complex multi-dimensional dynamics to low dimension dynam-
ics, locally described by bifurcation normal forms. This guarantees that, for stability analysis and
related locally “qualitative” features, it is sufficient to study bifurcation normal forms and their
properties, to which the system reduces and that represent universal (local) routes to phase changes.
Generalising centre manifold theorems and techniques to non-autonomous systems (Potzsche
et al., 2006) unleashed, among the others, studies of rate-induced tipping points (Sec. 2.3.2).
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Models are idealized assumptions of reality (Chapter 1). When proved wrong or inadequate,
they can be improved by adding small terms that were initially neglected and that would model
e.g. impurities or asymmetries in real-world systems.

Definition A.5.8. A model obtained by adding small parameters to a given system is called an
unfolding of the original system.

Unfolding is nicely described in singularity theory (Golubitsky et al., 2012; Kuznetsov, 2013),
to which the reader is referred for formal studies involving advanced topological structures whose
definition is beyond the scopes of this appendix. Let us now consider those systems with finite
codimension with respect to their topological equivalence, and let us limit our attention to the
equilibria solutions. Hence, let us focus on bifurcation unfolding.

Definition A.5.9. An unfolding of a dynamical system under static equivalence is one that exhibits
all possible bifurcations of the equilibrium (rest) points, up to topological equivalence of the set
of equilibria.

In other terms, it investigates what happens when small terms are added to the original
bifurcation, mimicking extra parameters, small offsets or “impurities”.

Definition A.5.10. A (local) bifurcation is said to be generic if it results from the unfolding of
other bifurcations and does not result in other bifurcations if unfolded.

A.6 Ciritical normal forms

As anticipated in Def. A.5.7, a normal form characterises a topological equivalence to bifur-
cations observed in complex systems. Hence, it locally retains the qualitative features (stability,
sensitivity to small perturbations, etc.), in a more compact and analytically tractable form. In
addition, according to the centre manifold theorem A.5.1, bifurcation normal forms are adequate
descriptors of multi-dimensional dynamical systems near equilibrium points. In this regard, they
have often been called “universal patterns” to critical and explosive phenomena (Thom et al.,
1977; Kuehn et al., 2021).

Reducing a system to its (local) normal form may involve different techniques. direct and
general center manifold calculation (Guckenheimer et al., 2013; Kuehn et al., 2021). A simpler
technique is Taylor expansion around x ~ x. and p ~ p. up to second or third order (Strogatz,
2018):

) af af 1 ) 0 f
x:f(xap):f(xc'7pc)+(x_xc')7 +(p_pc>7 +*(X—XC) =5 +...,
9% | (5, ) P (5. ) 9% | (5. 1)

(A.8)
where subscript ¢ identifies “critical” values. However, this procedure is not always possible and it
is often necessary to hypothesise the bifurcation to decide which order to truncate in the expansion.
Graphical inspection might help crafting the hypothesis by checking how the diagram (f(x, p),x)
changes while varying p and comparing its local properties next to the x-axis with those of normal
forms (reported below). An example is provided in Fig. A.1. It analyses a harvested population
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model from Scheffer (2009):

dXx X X?
Zox(1-2) - A.
dr < K) ‘X2 r1 @9)

where X is population density, K is the carrying capacity and ¢’ is the maximum harvest rate.
Another common option is the spectral analysis of the Jacobian (Sec. A) and the verification
of specific conditions ( listed below) defining each normal form (Strogatz, 2018). A web service
curated by prof. A. J. Roberts (http://www.maths.adelaide.edu.au/anthony.roberts/sdenf.php)
provides assistance by solving the computer algebra for a range of finite-dimensional systems.

flx,c f(x,c')

~

ﬁ) D e .
25 \\ -04

Fig. A.1 Left: graph representation of f(x,c’), at different values of ¢/, for model A.9. Centre: zoom-in
the the previous plot, around x ~ 0.47, to compare with the next plot. Right: sketch of fold vector field (cf.
Fig.A.2, right) for different values of ¢’. Compare it with the centre plot: when ¢’ is varied, both graphs
move from black to light gray. Although (Xp,co) # (0,0) due to translations and specific quantitative
properties of the realistic model, the qualitative behaviour around the bifurcation is the same.

The remaining of this section lists and briefly discusses the normal forms (Def. A.5.7) of the
main low-dimensional bifurcations. Each normal form is presented as x = f(x, p) and accompa-
nied by figures about f(x, p) and its bifurcation diagram? (%, p). We also list the critical sowing
down (CSD) scaling of each bifurcation, anticipated in Sec. 2.2 and further discussed in Sec .B.
In addition to critical bifurcations, the supercritical pitchfork bifurcation has been added for its
importance as a counterexample, for its historical connection to second-order phase transitions and
for its potential relevance in the biological disciplines, cf. Sec. 2.6. Further reading in Kuznetsov
(2013); Strogatz (2018).

A.6.1 Fold (saddle-node)

This is the basic mechanism by which fixed points are created and destroyed. A fold (or saddle-
node, or “blue-sky”) bifurcation is characterized by the following conditions for a dynamical

system f(x,p):

2 0
Tf(o’pO) =0 Tg(oap()) 7&0
82
TXJZF (07 p 0) 7é 0
ZPots for bifurcation diagrams and vector fields are adapted from Suba Thomas, "Bifurcation Diagrams with Flow

Fields" http://demonstrations.wolfram.com/BifurcationDiagrams WithFlowFields/, Wolfram Demonstrations Project,
Published: March 7 2011.
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The fold is a 1-dimension, 1-codimension bifurcation. Its normal form is:
x=p+x>. (A.10)

For p <0, there are two equilibria £; = 4=1/—p. £ is stable and £, is unstable. For p > 0 there
are no equilibria in the system. When p = 0 the two equilibria collide and disappear, so pp = 0 is
the critical value for the parameter.

Remark A.6.1. The system x = p — x> can be considered the same way, as well as any system
mapped with x — —x and p — —p.

Lemma A.6.1. Near the origin, the system X = p + x>+ O(x?) is locally topologically equivalent
to the system x = p +x°.

To visualize how f(x,p) is varied under the action of p, see Fig. A.2 (left). The fold
mechanism is given by a translation, driven by p, of f(x, p) across the 0-axis, that destroys (or
creates, depending on the direction) the equilibria. In addition, Fig. A.2 (centre) shows the
evolution of the associated analytical potential V (x, p)s.t. f(x,p) = —%—‘; while p is varied. It it
straightforward to associate it to the “pebble-down-the-hill” analogy (see Sec. 2.2.5). Fig. A.2
(right) shows the fold normal form bifurcation diagram, that displays the picture at once. For each
value of the parameter there are different equilibria. Solid lines: stable equilibria; dashed lines:
unstable equilibria. (x,p) = (0,0) is the critical point.

CSD SCALING:

W' = d(p+x?)

eyl =—2y/—pu=O(p"*)u. (A.11)

Therefore the recovery exponent is @ = 1/2, that is, perturbations get recovered with rate propor-
tional to the square root of the parameter. If p — 0, the speed of recovery goes to zero as well,
hence the “Slowing Down” phenomenon.

f(x,p) 075 V(x.p) 075 Y ’ |

/ --- p=0.40
-1.25 > 4 -0.75 3

p

Fig. A.2 Left: evolution of f(x, p) for a fold normal form, when p changes from negative to positive
values. Red diverging arrows indicate the direction of instability; blue converging arrows that of stability.
For p = pg = 0 a saddle node is created, with a stable and an unstable direction. Centre: quasi-steady state
potential V (x, p) for different values of p. For p < 0, a stable steady-state is present (valley); that becomes
flat when p = 0 and unstable for p > 0. In the latter case, the “pebble” will roll down towards another, far
away equilibrium. Right: bifurcation diagram of the fold normal form A.10. The equilibrium manifold
is in black (solid line: stable; dashed: unstable).Vector field lines indicate whether the system is pushed
upwards or downwards.
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A.6.2 Transcritical

There are certain situations when a fixed point always exist (e.g. populations with zero
individuals will never grow even thought the growth rate increases); however, such equilibrium
changes stability. Transcritical bifurcations does the job by following the conditions:

2
2L(0,p0) =0 (0, po) #0
2 n
5£(0,p0) 0 5£(0,p0) =0

The associated normal form is:
)'c:px—xz. (A.12)

It has one fixed equilibrium at £; = O that switches stability according to the sign of p, while the
other equilibrium is X, = p and changes stability in reverse order as compared to X;. The evolution
of f(x, p) with respect to the parameter looks as in Fig. A.3. The bifurcation diagram is depicted
in Fig. A.4.

CSD SCALING:

/ 2
U = d(px—x°)|s—ou=O(p)u, 0 =1. (A.13)
f(x,p) f(x,p) f(x,p)
025{ T P=0:40 0254 T p=0.00 025 - p=040
T « = > *
-1.0 5 olo 0.5 1.0 -10 05 oo . 05 1.0 -10  -05 _.“0o 0%, 10
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Fig. A.3 Evolution of f(x, p) for a transcritical normal form when p changes from negative to positive
values. f(x, p) moves in a tilting fashion. Red diverging arrows indicate the direction of instability; blue
converging arrows that of stability. p = 0 is the critical value.
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Fig. A.4 Bifurcation diagram of the transcritical normal form A.12. The equilibrium manifold is in black
(solid line: stable; dashed: unstable).Vector field lines indicate whether the system is pushed upwards or
downwards.
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A.6.3 Subcritical pitchfork

This is common in problems where there is symmetry (e.g. spatial symmetry) so that the
system can choose in which equilibrium to converge. Generic conditions are:

2
—f(x,p) = f(=x, p) (symmetry) 35950, po) #0
2 3
9(0,po) = 5:£(0,p0) = 5£(0,p0) =0 5.£(0,p0) >0

Its normal form is:
x:px+x3. (A.14)

It has three equilibria for p < 0, of which 3 = 0 is stable and two symmetrical &; , = +/—p are
unstable. After pg, the unstable points collide with the stable one and vanish, while %3 becomes
unstable. Thus, trajectories diverge to infinity. The evolution of f(x, p) is depicted in Fig. A.5.
Fig. A.6 shows its bifurcation diagram.

CSD SCALING

! 3
U = o(px+x7)|smou=O(p)u, . =1. (A.15)
f(x,p) f(x,p) ) f(x,p) v

0.251 0.251 0.25 1
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Fig. A.5 Evolution of f(x,p) for a subcritical pitchfork normal form when p changes from negative to
positive values. Red diverging arrows indicate the direction of instability; blue converging arrows that of
stability. p = 0 is the critical value.

|

Fig. A.6 Bifurcation diagram of the subcritical pitchfork normal form A.14. The equilibrium manifold
is in black (solid line: stable; dashed: unstable).Vector field lines indicate whether the system is pushed
upwards or downwards.

When zooming out the purely local behaviour of real systems, the explosive instability is
often counterbalanced by the stabilizing influence of higher order terms. To respect the symmetry
conditions, &'(x°) is then inserted in Eq. A.14 to obtain the canonical form of a global subcritical
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pitchfork:
x:px+x3—x5. (A.16)

Coefficients of higher order terms can be considered = 1 after proper non-dimensionalization.
Fig. A.7 (left) displays f(x, p) for different values of p and unravels local mechanisms analogue
to systems A.14 (close to x = 0) and A.10 (close to x ~ £0.8). The bifurcation diagram of system
A.16 is shown in Fig. A.7 (right) after numerical estimation. A subcritical pitchfork bifurcation is
a key mechanism to produce tri-stability (co-existence of three stable points) and sharp transitions
between attractors. Fig. A.7 (right) shows hysteresis as effect of non-reversibility of the process.
Imagine starting at (p,X) = (—1,0) and increasing the parameter. When p = py = 0 the system
jumps on the upper or lower branch, mostly depending on random fluctuations. Then, to go back
to its original state, it is necessary to decrease the parameter values below p = 0, finally getting to
a fold point and having a second abrupt shift towards the origin. The evolution of its associated
potential is reported in Fig. A.7 (centre). We can observe a vanishing tri-stability when p =0,
which then settles into bistability. That, however, it reached in a critical manner, not smoothly as
for a supercritical pitchfork bifurcation (see below).

f(x,p) ! V(x.p) ; /

== p=0.15 i os 05 o4 02 2 o4 os p

Fig. A.7 Left: evolution of f(x, p) for a global subcritical pitchfork form, when p changes from negative
to positive values. Red diverging arrows indicate the direction of instability; blue converging arrows that of
stability, in the case of p = —0.15. Close to x = 0, the behaviour is the same as in Fig. A.6. Further from it,
the local behaviour is topologically equivalent to that of a saddle-node. To observe that, follow the light grey
plots along the direction pointed by the arrow. Close to x = —0.8 and x = 0.8, the “hunchbacks” approach
the x-axis with a similar mechanism to that in Fig. A.2. They correspond to the local fold bifurcations
marked in the bifurcation diagram. Centre: quasi-steady state potential V (x, p) for different values of p.
For p < 0, a stable steady-state is present (valley); that becomes flat when p = 0 (while other two stable
states exist) and unstable for p > 0, where only the two extreme stable states reman. Right: bifurcation
diagram of the global subcritical pitchfork normal form A.16, estimated with custom numerical methods.
Red branches: unstable; blue: stable. Solid arrows indicate the directions followed when p is increased.
Dashed lines: directions followed when p is decreased.

A.6.4 Supercritical pitchfork

Although not strictly critical in the sense of CTs (Kuehn et al., 2011), the supercritical
pitchfrok bifurcation is worth being studied for several reasons. First, it provides an example of
smooth transition in the first derivate of the potential (whereas critical transitions are discrete);
hence, it allows to directly compare its notable features with those of “more” critical bifurcations.
This helps in distinguishing necessary and sufficient conditions for the application of EWS (Kéfi
et al., 2013; Dutta et al., 2018). Second, it is historically relevant as it connects to second-order
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phase transitions studied in statistical mechanics and thus provides mutual insights (Pathria et al.,
2011). The conditions determining a supercritical pitchfork bifurcation are:

*‘\

—f(x,p) = f(—x, p) (symmetry) 2£(0, o) =0

SNBSS

9(0,p0) =0 72,0(0,190) =0
2
afiafp (0,po) #0 9L(0,po) <0

The last condition distinguishes the supercritical from the subcritical case, in a way that makes
the former case stable and the latter unstable and thus critical (Kuehn, 2011). Following the
conditions, its normal form is:

X=px—x>. (A.17)

It is characterized by one stable point X3 = 0 for p < 0 that becomes unstable at pg, while two
other stable points % > appear. It is the main mechanism that continuously creates bistability,
in a way that one single attractor splits in two as the control parameter is varied, thus allowing
different configurations for the system. However, this transition is not abrupt and no hysteresis
is present. As mentioned, the mechanism is associated with second-order phase transitions in
Statistical Mechanics Strogatz, 2018.
Fig. A.8 shows the evolution of f(x, p) and Fig. A.9 (left) its associated bifurcation diagram. In
addition, Fig. A.9 (right) reports the evolution of the associated potential.
It is interesting to compare it with that of the subcritical pitchfork bifurcation (Fig. A.9, right),
in that both potentials evolve towards a two-state equilibrium, but the mechanism (around the
bifurcation values) is strikingly different when considering the smoothness of the transition, its
reversibility and the co-existance of multiple states. These characteristics are also reflected when
small perturbations are considered (see section below) and inform the modelling of processes with
similar asymptotic states but different evolution mechanisms.
CSD SCALING
U = d(px—x°)

s—ou=0(pu, a=1. (A.18)

Which is indicative for the fact that also non-critical (CT-wise) transitions have CSD and thus can
exhibit Early Warning Signals, as discussed in Sec. 3.2.2.
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Fig. A.8 Evolution of f(x, p) for a supercritical pitchfork normal form when p changes from negative to
positive values. Red diverging arrows indicate the direction of instability; blue converging arrows that of
stability. p = 0 is the critical value.
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Fig. A.9 Left: bifurcation diagram of the supercritical pitchfork normal form A.17. The equilibrium
manifold is in black (solid line: stable; dashed: unstable).Vector field lines indicate whether the system is
pushed upwards or downwards. Right: evolution of V (x, p) for a subcritical pitchfork normal form when
p changes from negative to positive values. Notice that the final steady state is with two minima, but the
mechanism to reach this state is different from that of a subcritical pitchfork shown in Fig. A.7, centre.
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A.6.5 Cusp

The cusp is a dimension-1, codimension-2 bifurcation, for which is generic. According to R.
Thom’s classification of catastrophes Thom et al., 1977, the cusp is the main “organising centre”
in one dimension. It is defined according to the conditions:

af _9f _df _ 9 _
5, 0:p0) = 55(0,p0) = Tp(O?PO) = 8p&x(0’p0) =0
83
2L (0.p0) #0
(A.19)
The cusp normal form is:
X=a+bx—x. (A.20)

It can be regarded as an “intersection” of supercritical pitchfork and fold bifurcations (see
Fig. A.10, left), or as an unfolding (Def. A.5.8) around a supercritical pitchfork bifurcation. The
projection of its stable region in the (a,b) plane is shown in Fig. A.10, right. Appendix C reports
a historical example of a simple toy model displaying cusp-like behaviour, that can be (and was,
during the thesis) studied experimentally.

In this case, CSD is dictated by the direction of evolution, whether it is along the fold or
pitchfork eigenvector.

A.6.6 Subcritical Hopf

It is a critical 2-dimensions, 1-codimension bifurcation from stable point to cycle. Its normal
form is:

X1 = px1 —x3+1Ix (x% +x§)

Xp = X1 + pxa + o (x] +43). (A.21)
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Fig. A.10 Left: artistic representation of a cusp stable manifold, its projection on the (a,b) plane and the
“intersection” of supercritical pitchfork and fold bifurcations, according to the direction marked by one or
the other parameter. Figure from Stamovlasis (2014). Right: projection of its stable region in the (a,b)
plane. Values from Catastrophe Machine (cf. Appendix C).

The meta-parameter / is called Lyapunov coefficient. Its sign identifies the Hopf criticity (/ > O for
subcritical, [ < 0 for supercritical).

Its qualitative properties can be obtained by inquiring the subcritical pitchfork, as there exist a
change of coordinates that connects the two.
Proof. Equations A.21 are symmetrical with the (x% —I—X%) term that closely resembles a radius.
Thus it is natural to ask for a change of coordinates from planar to polar:

(x1,%2) = (p, V). (A.22)
So that:
{ X1 = peosv (A.23)
X, = psind

whose differential is:

3?1:90.0519—1351“191? (A24)
Xo =psind +pcosd.
Substituting Eq. A.23 and A.24 into Eq. A.21 gives:
pcos® — Bpsintd = cos }(pp +p3) — psin (A25)
psin® —dpcos® =sind(pp +p3) — pcosd. )
Which is valid if:
{ g :’ip P (A.26)

That is, if the evolution of the system along the radial parameter follows a subcritical pitchfork
bifurcation and the angular speed is constant. O

CSD ScALING Using the previous result, CSD comes from the very same calculation as that
of the pithcfork:

[ = p(pp+p?)lp—ou=O(p)u, a=1. (A27)



A.6 Critical normal forms 195

A.6.7 Supercritical Hopf

It is the “non-abrupt” counterpart of the subcritical case. It emerges when complex eigenvalues
become zero in their real part. It let a stable point become a fixed cycle in a continuous fashion.
Its radial evolution is connected to the supercritical pitchfork by following similar reasoning to
that of the subcritical Hopf (see above). Its normal form is:

X1 = px1 —x2+1x (x%—i—x%)
X2 = x| + pxa + Doy (x] +x3) . (A.28)

The meta-parameter [ is called Lyapunov coefficient. Its sign identifies the Hopf criticity (/ > O for
subcritical, / < O for supercritical).

p<0 p=0 p>0

Fig. A.11 Evolution of the trajectories for a Hopf pitchfork normal form when p changes from negative to
positive values, displayed on the phase portrait along (x,x) = (x,y). b = —I is the (negative) Lyapunov
coefficient for subcritical Hopf. For p < 0, only fixed point solutions are stable. For p = 0 there is
a Hopf point, leading to limit cycles for p > 0. Discriminant, trace and determinant (cf. Sec A) are
also reported. The figures are generated with code adapted from Suba Thomas, "Bifurcation Diagrams
with Flow Fields" http://demonstrations.wolfram.com/BifurcationDiagramsWithFlowFields/, Wolfram
Demonstrations Project, Published: March 7 2011.

CSD ScALING Using the previous result, CSD comes from the very same calculation as that
of the pithcfork:

' = 3p(pp+p?)|p—ou=O(p)u, a=1. (A.29)

A.6.8 Other - possibly critical - bifurcations

Higher-dimension and -codimension bifurcations exist and can be critical depending on
their parameter settings. However, they have not been further considered in this thesis. For
completeness, the most relevant ones for continuous systems (Kuehn, 2011) are listed below.

* Bautin (generalized Hopf): 2D, 2¢-D (plus Lyapunov parameter / that defines its criticity

depending on the sign). Similarly to the Hopf bifurcation, it describes shifts from fixed
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points to limit cycles. Its normal form is:

X1 = p1x1 — X2+ pax (x% —i—x%) +Ix; (x% —i—x%)2
X2 = x1 + prxa+ paxa(x] +33) + oo (x] +33)°. (A.30)

* Bogdanov-Takens: 2D, 2¢-D (plus Lyapunov parameter s that defines its criticity depending
on the sign). It emerges from the coalescence of a saddle-node and a Hopf. Its normal form
is:

X] =X)

Xp = pi+ paxa +X] +sx1%7. (A31)

* Hopf-fold and Hopf-Hopf (3D, 2 c-D) may be critical depending on parameter settings.

A.7 Stochastic Processes

The way scientists model random phenomena (or phenomena that involve random or sup-
posedly randomic processes) is through the theory of stochastic processes. It is a discipline that
combines kinetics, dynamical systems, probability theory and information theory to study noise.
This section lists a few important concepts that will be used in the thesis. Most of the definitions,
as well as more extensive presentations of the discipline and related problems can be found in
(Freidlin et al., 1998; Gardiner, 1985). This section assumes that the reader is familiar with basic
concepts of probability and statistics (suggested further reading in Papoulis et al. (2002)).
Definition A.7.1. A random or stochastic variable X is a number associated to the outcome of a
random phenomenon &.

£ x(E) (A.32)

Definition A.7.2. Given a fixed value x and having defined the concept of “probability”>, we
define the distribution function F,(x) as

F.(x) = 2{x<x} (A.33)
Notable property: Fy(x) > 0 and is monotonously increasing.

It records all the probabilities implying that a random variable assumes values that are lower
than a certain number. Another (more common) way to represent the same concept is by means of
the probability density function.

Definition A.7.3. The probability density function is defined as

fulx) = di’l‘ix) (A.34)

Notable property: f,(x) > 0. Moreover, f(x) =Y, P;0(x —x;) for discrete cases.

3Defining probability and discussing its theorems is beyond the scope of this appendix. Refer to Papoulis et al.,
2002 for advanced explanation.
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Definition A.7.4. A stochastic process is a rule to associate values to the outcome of a random
phenomenon that evolves in time:

sp:E(r) = X(&,1) (A.35)

There are discrete or continuos stochastic processes, depending on the domain of ¢ and of
possible values of X, with different properties. As this thesis focuses on the assumption of variable
continuum, only continuous stochastic processes will be considered below. In order to study the
evolution of such processes, the most used equations are the associated Langevin equations and
their corresponding Fokker-Planck equations, described below. Connecting Langevin equations
to fine-grained descriptions like Master equations can be done, e.g. according to Gillespie’s
formalism (Gillespie, 2000b), but will not be discussed further.

Definition A.7.5. A Wiener process is a Gaussian process, continuos in time. It models a
Brownian motion (random motion with independent increases). It is identified as the integral of a
white noise process (stochastic process with zero mean).

Definition A.7.6. An equation that takes into account the deterministic driving force of a process
and its stochastic component (often in the form of white noise) is called the associated Langevin
equation to that process. Its general form is:
. dx N e
Xi = I a;(¥) + Z by (X)gm(t) (A.36)
m=1

where the superscript” was dropped for simplicity. a; and b; are generic functions. g,(t) are
random functions, typically the derivative of a Wiener process dW. In terms of differential forms,

a Langevin equation reads:

du=a(x)dt+b(x)dW (A.37)

The general form of a Langevin equation can be more complicated and can involve differently
“coloured” noise, or noise that is state-dependent or has other properties. It can be solved with
different techniques and its moments can also be estimated if the distribution of every g,,(7) is
known.

The Langevin equation describes the evolution of the process. The evolution of its associated
probability density function (meaning the rule to transit from one state to another), on the other
hand, is given by the associated Fokker-Planck equation.

Definition A.7.7. The associated Fokker-Planck equation to a stochastic process is a diffu-
sion equation for its probability density function P that locally approximates an It stochastic
differential equation. In its simplest form it reads:

O P(x,1|x0,10) = — 0k [A(x,1)P(x,1]x0,10)] + %8)? [B(x,1)2P(x,t|x0,10)] (A.38)

where P(x,t|xo,to) is the “probability to go to value x at time t given the value xy at time ty, A(x,t)
is a “drift” term that accounts for the deterministic forces acting on the system and B(x,t) is a
diffusion term.

Obviously, Eq. A.38 can be extended to its multivariate case. As a PDE, it can be rarely
solved analytically (most of the time by means of path integral techniques) unless one considers
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its stationary values (d,P = 0). Boundary conditions need to be specified. In case of multiplicative
noise (b(u) # const in Eq. A.37), A and B can be combinations of a and b (Risken et al., 1996).

Definition A.7.8. Let us consider stationary processes in which a(x) = — a‘gix) (case of a potential

well) and b(x,t) = \/2D. An Ornstein-Uhlenbeck process is then defined as

du = —kudt+v2DdW (A.39)
or, alternatively, by its Fokker-Planck representation
0P = d,(kxP) +Dd>P. (A.40)

Linking stochastic processes (driven by pure noise) to slow-fast systems (A.3) is not trivial.
Khasminskii was among the first to suggest that the effect of fast degrees of freedom on the
slow variable dynamics could be approximated as noise term (Khas’ minskii, 1966). Later on,
various scholars (Namachchivaya et al., 1990) assessed the equivalence of stochastic averaging
and stochastic normal forms. Nowadays, it is a widely employed first approximation (Berglund
et al., 2006) to model fast fluctuations as stochastic processes on top of the slowly varying degrees
of freedom. The “double nature” encompassed by such modelling (genuine random realizations
and fast dynamics) can be tackled by specifying functional forms for the noise terms, which might
be described by non-Gaussian distributions or non-Markovian processes.

A.8 Graphs and Networks

Definitions are adapted from Gross et al. (2005); Boccaletti et al. (2006).
Definition A.8.1. A graph is a triple (V,E,I), where V and E are finite sets, called the vertices
and the edges, respectively, and I : E — V>0, 1 is called the incidence function. The incidence
function tells for each edge its end-vertices, and whether the edge is directed (1) or not (0).

If an edge e is directed, then the first element and the second element of I(e) denote the
origin vertex and the destination vertex, respectively. This generality is required to represent all
of undirected graphs, directed graphs, and mixed graphs, possibly combined with self-loops and
multi-edges.

Definition A.8.2. A labeled graph is a graph together with labeling functions Ly : V — Dy and
Lg : E — Dg, where Dy and Dg are arbitrary sets, called the vertex labels and the edge labels,
respectively

Definition A.8.3. A network is the realistic counterpart of a mathematical graph. It may have an
associated dynamics, links can have associated functions for activation and so on.

As long as we bear in mind that “graph” is a topological representation whereas “network’ is
also involving dynamics, they can be used pretty much interchangeably. Just recall the following
terms (Barabasi et al., 2016):
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A.9 Microstate and macrostate

“Macrostate” and “microstate” are terms derived from Statistical Mechanics. An intuitive
outline that extends the more formal definition from physics (Pathria et al., 2011) is:
Definition A.9.1. A microstate is a specific configuration of individual constituents that, once
coupled, give rise to emerging macrostates.

In thermodynamics, given a system with & degrees of freedom and its phase space Q = (g;, p;),
the microstate is specified by a single point in the phase space. g; are generalised coordinates
and p; the generalised momenta. When & — oo, the phase space can be divided into cells of
size A9 = Aq;Ap;, each treated as a microstate. Similar reasoning can be put forward for other
systems, where the generalised coordinates relate to other quantities. For instance, gene regulatory
networks can be described in gene state spaces (Wu et al., 2020), where each combination of gene
expression levels can be treated as a microstate.

Definition A.9.2. A macrostate of a system refers to its macroscopic (possibly emergent) proper-
ties that account for its function, such as temperature or density.

Overall, a macrostate is what results from interactions of single components of a complex
system. It is an “emerging” property. In statistical mechanics, different configurations of molecule
speeds (its microstate) create a single temperature value (associated macrostate). Any given
macrostate may be associated with many different microstates.

Example: for a biological system, we can think of a macrostate as a functional state. Impor-
tantly, it can be observed and measured. We conjecture that gene expression profiles can be related
to microstates in a biological context. These are often inferred. If a circuit is known, we can think
of its control parameters as microstates, as different combinations may produce the same outcome
(e.g. the same function, or macrostate).






Appendix B

Notable results for stochastic
dynamical systems

This appendix puts together notable theoretical results for stochastic dynamical systems, that are
of crucial importance to study systems’ resilience and early warning signals. It is introduced by
revising and exemplifying the concept of generic bifurcation, for their importance in the study of
B-tipping.

B.1 Generic bifurcations

As introduced in Def. A.5.10, a bifurcation is generic if it is not mapped onto another one after
an unfolding (slight additive perturbation). Among low dimension bifurcations, fold and Hopf
bifurcations are generic for codimension one (Kuznetsov, 2013). In fact, the real part of an
eigenvalue can reach zero (vanish) in two ways: either A = 0 (appearance of a fold bifurcation),
or a complex conjugate pair of eigenvalues reach the imaginary axis, A = +ayi (appearance of a
Hopf bifurcation). The cusp bifurcation is generic for codimension two. Pitchfork and transcritical
bifurcations are generic only if additional constraints about symmetry and asymptotic behaviour
are considered, otherwise their unfolding maps them into a fold.

Envisioning realistic applications, when small perturbations or deviations from an ideal
model are always present, the standard way of considering B-tipping is through the analysis of
fold bifurcations and their associated early warning signals. Unless other types are considered
for different scopes, the fold bifurcation is thus a good candidate to address local analysis
and prediction of regime shifts driven by B-tipping mechanisms. To visualize this, consider a
subcritical bifurcation (Fig. B.1) and observe how its critical neighbourhood is locally mapped
onto a fold after a small unfolding introduced by an additive parameter ¢, such that Eq. A.14
becomes x = px+x> +g¢.

B.1.1 Example: the Euler buckling problem

An example of unfolding is the “Euler buckling problem”. The swiss mathematician was the
first to pose the following problem: imagine a slender, straight column sustaining a burden. What
is its behaviour when the burden increases in weight? It was soon found that there exist a critical



202 Notable results for stochastic dynamical systems

. '
08

05 05

04 "

02

s
‘p 4 08 s -4 02 0 0z 04 08 o8 1p

Fig. B.1 Left: bifurcation diagram of a subcritical pitchfork bifurcation A.14. For better visualization, the
vector field has been removed and the fixed equilibrium manifold coloured according to the stability of
its points. Blue = stable; red = unstable. Right: bifurcation diagram of an unfolded subcritical pitchfork
bifurcation x = px + x> + g, where ¢ is the unfolding parameter. In this case, its value is fixed to ¢ = 0.01
for visualization purposes. Note that locally (region highlighted by the green square) the bifurcation
corresponds to a fold (cf. Sec. A).

weight value that makes the column buckle. This behaviour, known as “Euler’s buckling”, is well
known in engineering, including control engineering (Venkadesan et al., 2007). For idealized
slender columns, it is described with a subcritical pitchfork bifurcation Thompson et al., 2011;
Kuehn, 2013. 8 (angle of the column with respect to upright position) is the only degree of
freedom available given the rotational invariance; .7 is the control parameter and is viewed as
the force applied to the column. The model is (Venkadesan et al., 2007):

0 = pi1(F;—p2)0+p30° — ps6°, (B.1)

where p; are additional parameters to be fixed.

Fig. B.2 Sketch of a column subjected to pressing force .7 (Kuehn, 2013), eventually buckling.

When considering realistic columns, it is necessary to consider slight imperfections. This
breaks the symmetry of the column, resulting in asymmetric buckling. Model-wise, these imper-
fections are inserted in the normal form as additive terms. The modified model is:

9ZPl(ﬁf—P2)9+p393—p495+q- (B.2)

q is the unfolding parameter that destroys the bifurcation in a similar fashion to Fig. B.1, right.
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B.2 Ornstein-Uhlenbeck processes and critical slowing down

When studying critical transitions close to tipping points, Ornstein-Uhlenbeck (O-U) processes
(Eq. A.39) are of utmost importance to approximate their dynamics subject to small fluctuations.
In fact, they correspond to continuous-time counterparts of autoregressive models, which are in
turn the archetype of critical transition-prone systems, Scheffer (2009). Overall, O-U processes
describe the motion of a particle moving in a quadratic potential with an escape barrier — related
to fold bifurcation normal form (cf. Sec. A) — and subject to noise, that can model either random
disturbances or the action of fast degrees of freedom (Berglund et al., 2006). To recall the working
hypothesis, they are:

1. The system is evolving along the leading eigenvector of the bifurcation, that is, we are
hypothesising a centre manifold setting. This modelling simplification holds as long as the
system approaches a tipping point characterized by a shrinking manifold along the leading
direction. This is also valid as long as we define a single macroscopic variable that accounts
for a global mean field.

2. Slowly varying parameter allowing the system to follow its changes adiabatically (slow-fast
system and equilibrium hypothesis).

3. Noise level is low, and a high signal-to-noise ratio is maintained. To begin with, let us
consider additive white noise.

To obtain the theoretical results leading to the existence and identification of early warning
signals, hypothesis 1-3 must be satisfied. Relaxing one or more might yield different conclusions
in the expected behaviour of EWS (see Chapter 5).

Historically, Ornstein-Uhlenbeck processes have been deeply studied and many results and
demonstrations are available in books covering stochastic processes (e.g. Allen (2010); Gardiner
(1985); Berglund et al. (2006); Risken et al. (1996); Papoulis et al. (2002)). Hence, this sec-
tion concentrates on results that are of direct relevance for the current development of the CT
framework, while further reading is directed to the books just mentioned.

B.2.1 Studying how perturbations evolve in B-tipping driven by a fold

Recall the normal form of a generic fold bifurcation, Eq. A.10:
i=p+x2, (B.3)

It has two steady states:

X1 = —+/—p—0 (stable) (B.4)
X = —+/—p—0 (unstable) (B.5)

where the term “—0” explicits the distance from the saddle point that, from the properties of the
normal form, is located in x, = 0. Let us now “sit” in a neighborhood of the attractor (stable fixed
point) x| to see what happen after small perturbations. Hence, we perform a local linearization by
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considering 6x = (x — £;). Thus:

dox .. df )

So, using Eq. B.3 and Eq. B.4, we obtain:

d—éx ~2+/—pdx. (B.7)

dt
Let us now convert this deterministic form into a stochastic one by adding a Wiener process with
diffusion term o. This modelling choice converts the family of ODEs into SDEs. Here, we skip
some mathematical formalism, which has been covered during the years by Khas’ minskii (1966),
Namachchivaya et al. (1990) and Berglund et al. (2006) among the others, and concentrate on the
physical interpretation. In addition, a change x — y makes the notation lighter into:

dy =2v/—pydt+ cdW . (B.8)

The equation describes a system evolving under small noise in a neighbourhood of the stable
equilibrium, when this is not far away from the saddle node (linearization). An illustrative sketch
is presented in Fig. B.3.

Fig. B.3 Bifurcation diagram of the saddle-node, with uncertainty band given by the noise level

The term (X} —0) = \/—p is precisely the distance of the stable equilibrium from the saddle
node and depends on the leading parameter p. From now on, we rescale it to a new variable —k.

dy = —kydt + cdW (B.9)

“—"in “—k" is inserted to be consistent with the following interpretation: Eq. B.9 is the

The sign
associated Langevin equation to a Ornstein-Uhlenbeck process (compare with Eq. A.39 and see
Papoulis et al. (2002); Gardiner (1985)).

Consequently, we can interpret the term that multiplies the deterministic drift as —%—‘; where
V(x) is the potential governing the drift of the particle subjected to random noise. In our case,

thanks to the choices made,
1
V= 5kyz, (B.10)

that is, a quadratically shaped adjoining potential typical of an overdamped oscillator under noise,
of which k represents the depth. The quadratic potential can be termed differently, according to
the points of view of different sub-fields: “effective potential” in nonequlibrium phase transitions
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(Zaikin et al., 2001), “quasi-potential” in large deviation theory (Freidlin et al., 1998; Nolting
et al., 2016; Zhou et al., 2012). The working hypothesis is that boundary of the ideal potential V
can grasp the boundary of the attracting basin of the original model after sufficiently long time.
Hence, it proves to be analytically tractable and presents the necessary steps to understand the
main qualitative features of more complicated critical transitions. However, it requires ad hoc
extensions when studying system-specific quantitative details like observability boundaries and
lead times.

Given the relationship £ = 2(0+ /—p) from Eq. B.8, when the equilibrium approaches a
saddle point (p goes towards zero from negative values) the associated analytical potential gets
flatter as k approaches zero, see also Fig. A.2 (centre). Intuitively, recall the “pebble-down-the-hill”
analogy (Sec. 2.2.5). The potential governs the acceleration under which a rolling ball moves;
hence, it is connected to the recovery time after a perturbation that moves the ball away from the
equilibrium. When the system approaches its saddle node, the recovery time slows down. Thus
we get the phenomenon of Critical Slowing Down CSD. The scaling of slowing down depends
on the specific dependence of k to p. For a fold, it goes as a square root; or other bifurcations, it
might vary (see sections above).

Thanks to the discussed methodology, we can now study saddle-node driven B-tipping using
the formalism of Stochastic Processes, where the potential depth (at quasi-steady state) plays the
role of the control parameter. In the remaining of this section, the general distance-to-critical-point
k will be employed. For each specific bifurcation, it will suffice to substitute the dependence
k = k(p) (see also Kuehn et al. (2011)) to get the correct scaling of each notable characteristic
(statistical indicators, power spectrum, etc.). Estimating the scaling of observed regime shifts has
been proposed as a notable feature to distinguish the (potentially) underlying bifurcations (Meisel
et al., 2012b; Bury et al., 2020).

B.2.2 Critical Slowing Down (CSD)

In statistical mechanics, CSD is a phenomenon connected to second-order phase transitions.
At the equilibrium point, decays of small perturbations are slower, as they follow lower order
polynomials Strogatz, 2018. First-order phase transitions, which are in turn related to critical
transitions, are also affected by CSD when approaching a tipping point. Let us first concentrate
on critical slowing down in fold transitions (around saddle-node points). According to centre
manifold theory, it is sufficient to study the behaviour of the vector field in a neighbourhood of
the tipping point in order to inquire the relaxation coefficient (often called Lyapunov coefficient,
Kuehn et al. (2011)).

Similarly to the subsection above, we begin from the normal form Eq. B.3 and concentrate
around the stable equilibrium point £;. Let us consider small deviations y around £. For sufficiently

small deviations, they are described by a linearization y = f(£+y) — f(£)y ~ (Dxf)|zy, where
f(x) is the vector field (right hand term in Eq. B.9). Therefore, for the fold we get:
u’:—2x|\/_7,u: —2v/—pu (B.11)

Hence, any perturbation decays as O(— p/ 2) back to the equilibrium, with a relaxation coefficient
is oo = 1/2. Determining the relaxation coefficients for other bifurcations allows assessing their
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CSD scaling (reported in Sec. A or each normal form).

B.2.3 Stochastic indicators towards tipping points

In an Ornstein-Uhlenbeck process, the drift coefficient (distance to tipping) can be interpreted
as the potential depth, and is thus immediately related to system’s resilience. As the trends of
statistical indicators of O-U processes is known to depend on the drift term, it is also immediate to
study how such trends change when the leading parameter is varied. The corresponding results
have been proposed to provide early warning signals for an impending shift. Let us express Eq.
B.9 using another typical notation for stochastic processes, y; = y(¢) and ¢ = v/2D.

dy, = —ky, dt +/2DdW, (B.12)

The statistical indicators of the stationary process' Eq. B.12 are derived as (Papoulis et al., 2002;
Gardiner, 1985):
* Covariance (temporal self-correlation): (y,yy) = %e*k"*t,‘.

* Variance: (y7) — (v)? = 2(1—e72¥). Hence, for  — oo,

(oo} D
Var =2 - (B.13)
« Autocorrelation: e %', Hence,
AC(1) =e k. (B.14)

* In general, all other statistical moments can be expressed as:
o) =) = [0 =Py (B.15)

where P(x) is the probability density function, a Gaussian in case of white noise or derived
from the Fokker-Plank equation (see Sec. B), and u is the mean expected value.

* Power spectral density:

D
» Shannon entropy:
1
H(y) = 5 log(2mVar) + 1 (B.17)

Additional entropy and auto-information measures can be further derived for other processes
obeying other evolution laws (Frank, 2004; Heseltine et al., 2016; Heseltine et al., 2019; Chapeau-
Blondeau, 2007) or being analysed with diverse orthogonal basis like wavelets (Coifman et al.,
1992; Kirby, 2005; Abdel-Hamid et al., 2016).

I'A stochastic process is said to be stationary if its mean does not depend on time (mean = 1 = const) and its
covariance only depends on time differences: (x(¢)x(t')) = {(x(t)x(t + 7)), where T =¢t' —1t.
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Proof. Proof for Variance, Covariance and Autocorrelation. Equation B.12 is solved with an
It6-like integration and the method of constants for differential equation solution :

1. Ansatz of solution: z =y, ¥
2. Itd differentiation:
d (ek’yt) = kely, dr + eMdy,
= kek’y, dt + e (—kyt dt+ v 2Dth)

= \/2Ddw,.

3. Integration and re-substitution for z
1
My —yo = VZD/O ek aw,

t
Ve = yoe M 4/ ZD/ &= aw, .
0

(B.18)

This is the stochastic trajectory.
If the initial condition is deterministic or Gaussian, it is straightforward to estimate mean and time

correlation function:

1
(ye) = (voe M + v 2D/ D aw) Mean
0
!
= (yoefkt> + (\/E/ ek(sft)dWQ
0

t
:yoefkt + /2D/ ek(sft) <dW3>
0

=yoe M +0 =50

! 2 4 t/ ! !
i) =33 M4 (VaD) [ [0 awaw) Covar.
0 JO
= y(z)e_k(t_’/) +2D e k) /t /t ek<‘Y+S/)3(s —s")dsds'
o JO

where we used the property of Wiener processes (dW;dWy) = 6(s —s')dsds’. 6(s—s') is the
Dirac delta. Then:
min(t,t")

2k—min(s,s’)

2k

Oye) = y%efk(tﬂ’) LoD e ki) €
0
_ y%efk(tﬂ’) + %efk(tﬂ’) <62k7min(t,t') . 1)
_ y%e—k(z—s-t/) + %e—k\t—ﬂ _ %e—k(tﬂ’)
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By neglecting the rapid initial transient, we finally get:

1i' e D —k|t—t'|

vy = e (B.19)

Finally, to estimate the variance, use its definition:

2 2 » D —2ks
OF) = ()2 = Ouvlems) = 0 = = (1=e7) (B.20)
The autocorrelation follows as:
C t)x(t /
Autoc = ovx()x(t)) = e Kl fort,t’ — oo (B.21)
\/Var(x(t))Var(x(t'))

]

Proof. Proof for the power spectral density S(o).
In a stationary stochastic process, its spectral density is defined as the Fourier transform of the
Covariance function Papoulis et al., 2002:

S(@) = Z [E {y(t + 0)y(1)}] = % /_ ‘:R(r)e*iwfdt (B.22)

where R(7) is the covariance function and the dimension of the spectral density is [S(®)] = dB.
In case t,t' — o we already have the expression for the covariance function (Eq. B.19), so the
calculation is straightforward as long as we perform a change of coordinates |¢' — ¢|— |¢| which is
valid for stationary processes:

1~ _...D
S _ —iot = —klt]
(@) 27 /7 ¢ ke

D —iw+k) / t(io+k)
— )dt )dt
T 2k </ *

D 1
T 2k <—la)+k 1a)+k>
D k
TRk k2 + 02

So the final expression is:
D

@)=y

Alternatively, we can consider the O-U process as a stochastic input process with R, (1) =

(B.23)

g6(7) (white noise input) and linear transfer function /(7) given by /#'(7) + ch(t) = 8(7) (linear
response given by potential). Then, in Fourier space,

1

=i g2

where ¢ = D/m and ¢ = k (from the potential). O

Proof. Proof for the Shannon entropy of a stationary process subject to Gaussian noise.
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Consider a Gaussian distributed variable y ~ .4"(u, Var). Its entropy is:
Hy(y) = — / p(y)log p(y')dy =

1 1 27
= Elog (27:Var)+mE [(x—p)*] =

1
=5 (log(2mVar) +1)

O

Eq. B.19 and B.20 express how covariance and variance evolve when a quasi-steady parameter
shapes the potential towards a tipping point. The limit 7,/ — oo is representative of system
timescales that are much longer than that of the noise (the system relaxes to its equilibrium). It is
possible to recognize an increase in both measurements when k£ — 0. This phenomenon, illustrated
in Fig. B.4, was suggested by Scheffer et al. (2009) as an early warning signal (EWS) to detect
the approach towards a tipping point. Since the spectral density also depends on k, it can also be
studied to suggest other early warning signals, as well as entropy measures.

<y(t)y(t)> Variance
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Fig. B.4 Left: Covariance, with 0t = 1, vs parameter k. (Right) Variance vs k. Note that both measures
increase when k — 0. Such an increase has been suggested to provide an early warning signal.
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Fig. B.5 Left: Power spectral density for frequencies ®, at different values of the parameter k. The
reddening (increasing power on low frequencies) happening for decreasing k has been associated to
potential EWS (Thompson et al., 2011; Biggs et al., 2009). Right: Full dependency of S(®, k) on both ®
and k, provided that the latter is varied at quasi-steady sate and hat the process is overall stationary.

From the theoretical derivation of early warning signals, one immediately recognise some
important features that have been studied more in detail in recent computational works, i.e. (Kuehn,
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2013; Dessavre et al., 2019; Brett et al., 2017; O’Regan et al., 2018) and assessed against empirical
data in (Proverbio et al., 2022c). The variance is generally more “stable” than covariance and
autocorrelation against the choice of a moving window, as it does not depend on a ot = |r —1'|. As
shown in Fig. B.6, for higher 07, the time correlation remains flat for wider intervals of &, but then
increases more rapidly. This induces a tradeoff between its sensitivity (how big its differential
change is, which is related to how well we can discriminate between a real signal and a sampling
of noise) and the predictability lag (how far from the critical value it is possible to determine
an increase). On the other hand, the autocorrelation does not depend explicitly on the noise
distribution and is thus insensitive to its details, contrary to the variance.

These characteristics hold as long as we have repeated measurements over an ergodic dis-
tribution. The assumption of ergodicity? might be true if we allow the system to relax back
to its equilibrium, that is, k is almost fixed with comparison to the system timescale and the
measurement rate. However, a sliding window technique might yield invalid estimates if the
ergodic assumption is not valid.

<y(y(t)>

— 6t=1
4r 6t=5
St=10

L - N L LK
0.2 0.4 0.6 0.8 1.0

Fig. B.6 Temporal correlation vs k at different 67: (y(¢)y(t + t)).

B.3 Fokker-Plank equation and stationary probability density func-
tions

The Fokker-Planck equation A.38 describes the evolution of the probability density function
P(x,t|x0,1y) that a process takes the value x at time #, from its previous state. Let us recall it here:

O, P(x,t|xq,t0) = —dy [A(x,2)P(x,t|x0,10)] + %axz [B(x,1)*P(x,t|x0,10)] (B.24)

From now on, the terms ““|xq,#y”” will be implied. Solving the Fokker-Planck provides information
about the full evolution of P(x,), which is paramount to estimate statistical moments for the

whole process as (Papoulis et al., 2002):
E[h(x)] = / (X )P()dX (B.25)
X

where E[-] denotes the expected value.
Solving the Fokker-Plank equation might be complicated, depending on the specific shape
of A(x,t) and B(x,t). For stationary processes and for differentiable and integrable functions,

2 An ergodic system is such if the mean over repeated measurements equals the mean over time.
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it is instead possible to estimate the stationary probability density function (SPDF) by solving
d;P(x,t) = 0 as (Risken et al., 1996):

P(x) = e exp< XA(xl)dx’) (B.26)

B(x')

N, is a normalization constant to interpret [ P;(x’)dx’ as a probability. Ps(x) can also be put in the
form:
Py(x) = Noe ¢ (B.27)

Here, ¢(x) is called the stochastic potential of the system. This function maps the equilibria
of the stochastic dynamical system and their basins of attraction, allowing an interpretation
of “pebble down the hill” for the asymptotic behaviour of the system. It thus reconstructs the
“adjoint”/"effective”/*“quasi-” potential introduced before, starting from the PDE associated to the
considered system. Application examples include (Sharma et al., 2016a; Su et al., 2019).

B.4 Kramers’ escape rate and mean first passage times

Essentially, the idea behind early warning signals for critical transitions is: given a stochastic
process, how do its statistical indicators change when the underlying potential is varied under the
influence of a leading parameter?

As a consequence, one can use the manifold results in stochastic processes theory, analyse
their dependence on parameters and interpret them accordingly. Two additional measures that
provide insights onto the behaviour of stochastic dynamical processes are the mean first passage
time (MFPT) and the Kramers’ escape rate. In escape problems from a potential well, they
respectively measure how long a system is expected to jump onto an alternative equilibrium for
the first time, or how often the system is expected to reach the top of the potential barrier. Since
they are directly related to probabilities of shifting equilibria, both the MFPT and the Kramers’
rate have been proposed as measures of system’s resilience (Sharma et al., 2016a; Arani et al.,
2021). Like above, this section provides an overview of salient features for both measures. Further
reading and proofs can be found in Van Kampen (1992) and Gardiner (1985).

Consider a double-well potential like that in Fig. B.7. Assume it is (locally) quadratic near
the attractor and (locally) quadratic around the barrier tip. Also assume we work in the damped
regime and thus we can write the stochastic dynamics as a Langevin equation. Because of noise,
the system can fluctuate away from the equilibrium (point a) and reach the top of the barrier (point
b) by chance. From there, it can rapidly fall into a new attracting state. As above, we work with
the ergodic hypothesis that the average time evolution of a system equals its statistical repetitions.
Another assumption is that the well is deep compared to noise level. The rate at which many
copies of the system can reach the potential top, in a stationary process at equilibrium under
Gaussian noise and in time-independent potential, is solved by Kramers’ escape problem (Van
Kampen, 1992). A clear derivation, accounting for each assumption presented above, is provided
by Ritchie Jr (2016). As a bottom line, the Kramers’ escape rate, for any left(right)-adjointed
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potential, is given by:
eV(b)Z)V(a)
T(y)) ~2f———— (B.28)
oy V"(a)[V"(b)]
where V" denotes second derivate and a and b are, respectively, the point of potential minimum
and maximum. Recall that, in this section, the variable y denotes the local linearization next to a

quadratic potential.

0.2

Fig. B.7 Representation of a double-well potential.

In case of O-U process, associated to a linearised approach to saddle-node, evaluating the
mean Kramers’ escape rate (T (y)) vs the parameter k is straightforward. k represents both the
potential height difference and its second derivative nn the equilibrium points (see Eq. B.10 and
substitute Eq. B.5 into it.). Thus, by substituting & into Eq. B.28, we get:

(T(y)) ~ 2%6% (B.29)
where the absolute value is dropped since k € R . Fig. B.8 shows how the escape rate changes
according to k — 0 and for different levels of noise intensity D. The mean escape rate of particles
flowing from the original well increases rapidly as the tipping point is approached. With high noise,
(T (y)) is already non-zero even for large k, which is indicative of the N-tipping phenomenon.
Therefore, provided that abundant measures and prior knowledge of noise levels are available,
the mean escape rate can be used as a proxy for the potential depth and thus for the system’s
resilience.

— D=10
D=1
D=0.1

Fig. B.8 Kramers’ escape rate T'(y) vs k, at different noise levels D from Eq. B.12.
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Instead, considering the full potential U (x) = —px+ 1/3x> generated by a fold normal form
% = p—x2. It yields an excursion time (Freidlin et al., 1979; Berglund et al., 2006)

TE=0 <exp (ZO_A;J>) , (B.30)

with AU = U(,/p) —U(—+/p) = 4/3p./p. Excursions are very rare if the noise level is small
compared to the time scale separation, 0 < ¢ < /€ < 1. If this is not true, random excursions
are much more likely and n-tipping might occur with high chance.

Finally, consider a generic double-well potential elicited by a generic bistable function
dx = f(x)dt + cdW. (B.31)

Call %; and %, the left and right stable steady-states separated by an unstable potential barrier £,. A
moving particle subject to noise can exit from its potential well (say, from £,) and cross the barrier.
When does the first passage occur (on average)? The question is addressed by the exit time. When
the first-passage time is averaged over many realizations, we get the mean first-passage time
MFPT. Let us call .7 (x) the MFPT towards £, starting in a generic x > £} (around a, if we keep
the same image from Fig. B.7). .7 (x) satisfies the following diffusion equation (Gardiner, 1985):

07 1 9?7
) a)EX)UG axz’(X)

— (B.32)

given boundary conditions 7'(£,) = 0 and T (xg) = 0, where xg denotes the rightmost boundary of
the potential well. The MFPT is obtained by solving Eq. B.32.The average passage time from the
basin of attraction of X, towards state X}, is given by:

. ! ® y(z)
Fey=2 [ [T¥Dy,
( ) Xp W(Y) Y y o

w(x) = exp ( / ) zf(x/)dx’> (B.33)

o O

To estimate the MFPT from the leftmost attractor, it suffices to set the boundary conditions
appropriately. It is also possible to extend the calculation to non-homogeneous processes and to
multi-dimensional domains (Gardiner, 1985; Arnold et al., 1983).






Appendix C

The Catastrophe Machine

The Zeeman’s catastrophe machine is a historically important example to illustrate critical transi-
tions governed by a cusp bifurcation. It can be easily constructed and allows to showcase the effect
of control parameters towards abrupt shifts. Since it is governed by classical laws of mechanics, it
is also possible to reproduce its dynamics and to predict its stability behaviour. In addition, the
Catastrophe Machine is a powerful tool for teaching: it is among the simplest (closed) systems
that exhibit tipping and hysteresis, which can be shown simply and intuitively. More advanced
machines can be used to illustrate different critical transitions (Woodcock et al., 1976) or the
appearance of chaotic behaviour when multiple nonlinear systems are coupled (Nagy et al., 2013).

Because of its benefits (didactics, intuition, manipulation, modelling), the catastrophe machine
is a nice tool to have. Thanks to the support of the LCSB maintenance team, I constructed a
simple machine (described in details below) and a more advanced one, that shows routes to chaos.
The photographs in this section depict our catastrophe machine during practical exercises.

C.1 What is the Catastrophe Machine

The Catastrophe machine was invented by E. C. Zeeman as a toy for illustrating the at-that-
time new Catastrophe Theory (Poston et al., 1973; Zeeman, 1979). It consists on a wheel governed
by a couple of elastics, connected to the wheel by a pivot; one elastic is fixed to a pin, while the
other can be controlled by the user. Everything is set on a board, see Fig. C.1.

The machine empirically exhibits sudden shifts: if the second elastic is stretched past a
threshold, the wheel turns abruptly. Hysteresis is also observed when the second elastic is relaxed:
to tip back, it must shrink past the point of the first tipping (Fig. C.2a—d). The machine shows the
same qualitative behaviour regardless of wheel radius, un-stretched elastics lengths and distance
from pin to wheel centre. This is a“structural stability” property: changes in parameters make no
essential qualitative difference (Poston et al., 1979). Hence, the catastrophe machine is a perfect
toy model to study critical transitions: it is controllable, it is possible to calculate its potential and
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Fig. C.1 The catastrophe machine is composed by wheel and elastics, one of which is fixed by a pin
while the other is held by the user. The angle 8 is considered as state variable; o represents the reciprocal
position of the two elastics; p is the force exerted by the user (forcing); it also accounts for the friction, that
is always opposing the movement. In order for the machine to move, the friction should not be too high
(Poston et al., 1979)).

to study different configurations leading to similar qualitative behaviours (Thom et al., 1977).

C.2 Solving the stability problem

As anticipated above, the state variable is identified by the angle 6, while the parameter o
represents the ratio between the angle spanned by the second elastic w.r.t. the x axis and 0; p
is the forcing (see Fig. C.1). To study the stability of the machine, it is sufficient to look at its
potential. It is possible to study the Lagrangian (Nagy et al., 2013) or, in the simple static case, to
consider the forces acting on the system (see Fig. C.3) and then integrate. We follow the second
approach. Let us define:

* OP =1. Itis the wheel radius; its value is set to unitary measure without loss of generality.

e L, and L;: lengths at rest of the two elastics.

* Fu1 and Fpp are, respectively, the elastic forces stored by elastic 1 and 2; they follow Hook’s
law F,; = —ke AL. kg is the elastic constant.

 T,, represents the machine’s torque.

Let us also employ the long distance approximation: AB is almost parallel to the x axis (to select
order of expansions for 0).

By applying simple mechanic considerations, we first estimate the potential term related to
the elastic forces at rest. Start by:

Fei1 = —ke1 :CD = kei (1 —cos 0).

Considering the small angles approximation helping to truncate the Taylor expansion up to O(8°3),

62 63
T ~ Fy; sin0 = ke (1 —cos0)sin 0 ~ kg (1 —1—|—2> 6 :k617+0(94).
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(@) (b) © (d)

Fig. C.2 Tipping and hysteresis can be observed in the evolution of the system (from left to right). (a): The
machine is at equilibrium: a small forcing is not enough to move it. (b): the forcing overcomes a threshold,
and the wheel turns rapidly to a new equilibrium. (¢): such equilibrium is kept stable by the friction; if we
let the elastic shrink, the wheel does not return to the initial position by passing through the previous point.
(d): when a second threshold is passed, the wheelturns back to the first equilibrium. A video animation is
provided, see link in Appendix D

>

Fig. C.3 Sketch of the forces acting on the machine.

Hence, the potential is
V(0) o< ke 0* 4 perturbations .

The “perturbations” are added to account for whatever moves the configuration from its resting
state. We thus estimate the perturbative terms with respect to additional parameters:

* o quantifies the shift from the “AB || x” assumption. By applying a Taylor expansion to the
elastic force! we get (in the simplest, linear case) Foerg o< 006

* p is directly the exerted force minus the friction.

As a consequence, the potential is:

V(0) o< 6* — 6>+ p6. (C.1)

IF(6+A8)~F(0)+ ‘é—g (6 —0) +0(6?); if we assume (simplest form) that F is linearly dependent on 6 (ansatz,
for small angles) then we get F(6 +A6) ~ F(6)+ 0.6
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We can now play with this potential which is, up to numerical constants, the same one obtained
using Langrangian methods (Poston et al., 1979). Numerical constants are neglected for two
reasons: a) to concentrate on the effect of the parameters on the stability landscape, b) we here
focus on qualitative predictions, therefore it is unnecessarily complex to take constants into
account as the final result is independent on such details (Thom et al., 1977).

C.2.1 Analysis of the potential

Depending on the parameters values, the potential takes different shapes underlying different
stability properties. This section studies the effect of bending parameter ¢ and tilting parameter p

on the potential and on its associated vector field f(6,p) = — W, p being the parameter set.

Bending parameter o

First, focus on the effect of o alone. It is called “bending parameter”, as it describes how the
second elastic is bended compared to 6. In addition, & has a bending effect on the potential (see
Fig. C.4, right). Set p = 0 and consider :

V(0)=6*—ab? (C2)

and
f(6)=46°-20a6. (C.3)

« is akin to the control parameter of a supercritical pitchfork bifurcation (Sec A) governing the
bistability and the degree of hysteresis of the system, namely the possibility to develop smooth
(low alpha) or critical transitions (high alpha). In fact, Eq. C.3 represents the normal form of a
vector field associated to a supercritical pitchfork bifurcation (also compare Fig. C.4 left with Fig.
A.8).

. V(x,p) ‘ V(x,p)
Vi —— p=0.00 \
(1 T p=0.25
--= p=0.50
—1'.0 1?0
6
S’ ~0.25 1

Fig. C.4 Left: f(6) for various steady-state values of «. If the bending parameter is augmented from zero
to any other value, the vector field is deformed from being monotonous to having three different regions
of monotonicity. Right: when o increases, the potential goes from a single equilibrium point to three, of
which two are stable and the latter is unstable. The system is develops bistability: it is now susceptible to
undergo critical transitions. The process is exactly analogous to a pitchfork bifurcation, Sec A.
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Tilting parameter p

p is termed “tilting” because it tilts the potential, see Fig. C.5. To empathize what happens to
the equilibria, let us fix @ =1 to be in a bistable configuration. Then, study:

V(0)=6*—6%+p6 (C.4)

and
f(0)=46°-20+p. (C.5)

Increasing values of p cause the critical transition (provided that the system was already bistable),
as one equilibrium suddenly loses stability and the other is pushed onto an alternative one. This
follows the typical phenomena related to a fold catastrophe (saddle-node bifurcation, Sec A). In
fact, in the neighbourhood of the second equilibrium, the vector field can be expanded in the
normal form of a fold (fioca >~ —p — 62).

Fig. C.5 Left: The vector field is translated upwards under increasing p. Initially, three equilibria exist,
then only two (of which one is stable and the other unstable). Finally, one equilibrium is destroyed and only
one survivor hosts the system state. Right: the tilting parameter deforms to the potential as if it was tilted.
One equilibrium goes from stability to instability and then disappears. Hence, any system state lying on
the right branch will eventually transit critically towards the left-hand equilibrium. The process is exactly
analogous to a fold bifurcation, Sec A.

Combining parameters

What happens, then, if we combine the effect of the two parameters? The potential, Eq. C.1, is
bended and tilted at the same time (Fig. C.6), yielding a) asymmetric stable configurations (solid
line), b) asymmetric bistable configurations (dashed), c) configurations with critical transitions
happening at lower forcing p than before (dash-dotted). In general, the two parameters com-
bined set the degree of hysteresis of the system and the possibility of observing a critical transition.

C.2.2 Analytical calculation

Since the explicit potential is known, it is possible to analytically calculate the values for
which the tipping happens, as well as the functional form of the parameters relationship leading
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Fig. C.6 Left: Different f(6) coming from different parameter combinations.Right: different V(0)
associated with different parameter combinations. The shape of the potential (ruled by ) is necessary to
set the susceptibility of a system to tip, but the intersection with the zero axis is what drives the CT. So,
both parameters should be taken into account while studying similar systems.

to critical transitions. The critical transition point is given by the intersection of the vector field
manifold and of its tangent space. We can verify this fact in two ways:

1. Formally, consider the unfolding of the associated bifurcation, and study its associated

vector field. Look for steady states and their stability. From this, identify the fold point and

the stability of the associated manifold (Kuehn, 2013). The process is akin to solving the

following system:
=0
4 (C.6)
Dxf‘C(): 0

where Cy represents the fold manifold.

2. Intuitively, we need to check when a minimum in the potential coalesces into a flexus point
(this is the condition for indifferent equilibrium). Hence, the system to be solved is:

av _
E—O
v, _
dx2 )?_O

(C7

where the first equation finds the minima X and the second calculates a flexus point in the
minima.
Obviously, the two formulations are equivalent in 1D (our case) thanks to the equivalence of the
derivate operator and the manifold algebra (and do not forget that, in 1D, ‘% = ).

Critical Transition
Let us assume that the system is already at a bistable configuration (set @ = 1 w.l.o.g.). Then,
estimate the critical value of p for which the system undergo a CT. Let us solve Eq. C.7. In our

case,
483 —28+p =0
FoeTh (C.8)

1282 -2 =0.
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The solution is:

172 (C.9)

X identifies the steady state points and pcr is the critical value of the parameter for which a critical
transition occurs. Those values have no real quantitative meaning when compared to the actual
machine, as the potential was already rescaled to avoid constant dependencies on empirical values;
it is difficult to get them from an artisanal machine, unless under perfectly controlled conditions.
Nonetheless, this depicts the general procedure to study critical values in a model.

Rising bistability followed by Critical Transition

When both parameters are considered, we have to look at combinations for which a CT happens.
Hence, we search for a set (@, p) for which the system is bistable and tipping. There are two
parameters to consider, so we can look at the reduced curve (Kuehn, 2013) defined by p(c).
Following the same procedure as before, thus solving system C.7 again, we eventually get, from

)21: ,
2
p= (ga) (C.10)

as a solution. The other three solutions are given by %, and by considering the case where
6 — 6 — & (corresponding to the opposite side of the pivot in the Catastrophe Machine). By
plotting all four relationships p = f(a), we obtain the diamond-shaped plot shown in Fig. C.7
(left). This is the hallmark of a cusp bifurcation, see Sec. A and Fig. A.10, left. Fig. C.7 (left)
predicts the set of points (qualitatively speaking) that is obtained empirically by playing with the
machine and by pinpointing with a pencil when it tips (see Fig. C.7, right).

Fig. C.7 Left: The shape of p = f(a).Right: The diamond-shaped drawing that was empirically obtained
by following the tipping behaviour of the machine with a pencil. It is not perfectly symmetric because of
the friction and of elastic properties.

Two side notes on the analysis just performed. First, I wrote “qualitative” for the following
reason: we are asking “does the machine exhibits CT? If so, under which conditions?” rather than
“What is the exact value of the forcing after which the machine tips over”? Second, the present
analysis was possible thanks to an available mechanistic model, developed from first principles of
Newtonian dynamics. On the other hand, it might not be conclusive to observe a diamond shape
on a board and infer that it was produced by a potential like C.1.
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C.3 Limitations and challenges

Limitations: the catastrophe machine can be analysed thoroughly thanks first principles
yielding a closed-form potential. Then, the emphasis on the two parameters controlling the system
inscribes this study on the theory of catastrophes (Thom et al., 1977), that works fine for those
systems whose potential is known. On the other hand, as several authors pointed out (Zahler et al.,
1977; Kolata, 1977), it is not fruitful nor informative to speculate about the existence of such
potential in any system that behaves vaguely similarly. It is the proponent who, in principle, should
have the burden of proof, starting from experiments ad developing models. Using Catastrophe
Theory as a mathematics-based philosophy could be misleading, as it detaches the modelling
attempts from the experimental practice. On the other hand, such theory - and the Catastrophe
Machine in particular - has already proven to be useful in controlled contexts and as an heuristic
guide for experiments and speculation (hypothesis formulation). Further developments will also
include diminishing the friction and coupling two wheels to obtain a chaotic behavior (Nagy et al.,
2013). The latter case, which was initiated with a new machine (Fig. C.8) but was not further
studied during the PhD period, will help to assess conditions for chaoticity rising from coupled
nonlinear systems.

Fig. C.8 The upgraded Catastrophe Machine. It consists of two wheels, with increased distance from
the pivots (to make the infinity approximation better), of which one can be adjusted in different positions.
Moreover, friction was consistently reduced thanks to the material (plastic instead of wood).



Appendix D

Animations

The study of dynamical systems involve movies, rather than static pictures. Hence, a collection of
animations and videos about normal forms and example systems accompanies this thesis. They
are stored in the following Dropbox folder as supplementary material:

https://www.dropbox.com/sh/ryw36uz92nj04gs/AAAf-x2K-9YJOtL6f23tf1TMa?dl=0

Fig. D.1 QR-code linking the shared folder with supplementary animations.

List of contents

* cat_mach_tipping: video of tipping behavior exhibited by a catastrophe machine (Sec. C).

* cusp_vector-field: how the normal form vector field of a cusp bifurcation (Eq. A.20)
changes under the effect of varying p and .

* hopf_vector-field: how the normal form vector field of a supercritical Hopf bifurcation (b>1,
corresponding to / in Eq. A.28) changes under the effect of varying a (corresponding to p
in Eq. A.28).

* protein-production_vector-field: how f(x, p) from the protein production model (Eq. 4.1,
without noise) changes with varying p.


https://www.dropbox.com/sh/ryw36uz92nj04gs/AAAf-x2K-9YJ0tL6f23tflTMa?dl=0
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Animations

saddle-node_bif-diag: exploring the bifurcation diagram of a saddle-node normal form (Eq.
A.10) when p is increased; the point corresponds to system’s state. Compare with Fig. A.2,
right.

saddle-node_vector-field: how the normal form vector field of a saddle-node bifurcation
changes under the effect of varying p. Compare with Fig. A.2, left.

saddle-node_potential: how the normal form potential of a saddle-node bifurcation changes
under the effect of varying p. Compare with Fig. A.2, centre.

subcritical-pitchfork_bif-diag: exploring the bifurcation diagram of a subcritical pitchfork
normal form (Eq. A.14) when p is increased; the point corresponds to system’s state.
Compare with Fig. A.6.

subcritical-pitchfork_vector-field: how the normal form vector field of a subcritical pitchfork
bifurcation changes under the effect of varying p. Compare with Fig. A.S.

subcritical-pitchfork_ potential: how the normal form potential of a (global) subcritical
pitchfork bifurcation changes under the effect of varying p. Compare with Fig. A.7, centre.

supercritical-pitchfork_bif-diag: exploring the bifurcation diagram of a supercritical pitch-
fork normal form (Eq.A.17) when p is increased; the point corresponds to system’s state.
Compare with Fig. A.9, left.

supercritical-pitchfork_vector-field: how the normal form vector field of a supercritical
pitchfork bifurcation changes under the effect of varying p. Compare with Fig. A.8.

supercritical -pitchfork_ potential: how the normal form potential of a supercritical pitchfork
bifurcation changes under the effect of varying p. Compare with Fig. A.9, right.

transcritical-pitchfork_bif-diag: exploring the bifurcation diagram of a transcritical normal
form (Eq. A.12) when p is increased; the point corresponds to system’s state. Compare
with Fig. A.4.

transcritical_vector-field: how the normal form vector field of a transcritical bifurcation
changes under the effect of varying p. Compare with Fig. A.3.

transcritical_ potential: how the normal form potential of a transcritical bifurcation changes
under the effect of varying p.
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