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Abstract—Beam Hopping (BH) is a popular technique con-
sidered for next-generation multi-beam satellite communication
system which allows a satellite focusing its resources on where
they are needed by selectively illuminating beams. While beam
illumination plan can be adjusted according to its needs, the main
limitation of convectional BH is the adjacent beam avoidance
requirement needed to maintain acceptable levels of interference.
With the recent maturity of precoding technique, a natural way
forward is to consider a dynamic beam illumination scheme with
selective precoding, where large areas with high-demand can be
covered by multiple active precoded beams. In this paper, we
mathematically model such beam illumination design problem
employing an interference-based penalty function whose goal is
to avoid precoding whenever possible subject to beam demand
satisfaction constraints. The problem can be written as a binary
quadratic programming (BQP). Next, two convexification frame-
works are considered namely: (i) A Semi-Definition Programming
(SDP) approach particularly targeting BQP type of problems, and
(ii) Multiplier Penalty and Majorization-Minimization (MPMM)
based method which guarantees to converge to a local optimum.
Finally, a greedy algorithm is proposed to alleviate complexity
with minimal impact on the final performance. Supporting
results based on numerical simulations show that the proposed
schemes outperform the relevant benchmarks in terms of demand

matching performance while minimizing the use of precoding.

Index Terms—Dynamic Beam Illumination, Selective Precod-
ing, User Scheduling, Binary Quadratic Programming
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I. INTRODUCTION

HE roll-out of the next generation of wireless commu-
Tnication systems is expected to deliver faster internet
access and increased capacity, providing customized services
in a variety of use cases [2]. Despite the global growth of
digital technologies, the United Nations (UN) has recently
announced in the General Assembly that half of the world’s
population still have no internet access [3]]. It is because of
that there are still many remote locations where fiber and
general terrestrial infrastructure cannot be deployed (or not
worth the investment), or where the ground equipment is with
high probability subject to disruption by man-made events.

Exploiting satellite communications has been identified as a
key solution to deliver ubiquitous and high-quality connectiv-
ity anywhere in the globe [4]. Conventional High-Throughout
Satellite (HTS) systems have employed the spot beam technol-
ogy with which satellite capacity is equally distributed across
the multiple beams and contiguous coverage over a specific
region can be provided [5]. While HTS with multi-beam
architecture has dramatically improved the satellite system
throughput, there have been increasing interests in developing
fully reconfigurable satellite schemes that can smartly allocate
the high capacity “hot-spot” areas [6].

The recent advances on space technology have opened a
door to unprecedented flexibility and adaptability to satel-
lite resources. As highlighted by the major satellite industry
experts in Europe [7], “the continuous development of new
technologies and the huge increase in satellite interest and
investment, witnessed in recent time, have indeed pushed the
satellite communication potentialities towards higher limits
that need now to be explored to support the efficient and
sustainable development of new markets and smart services”.
In the same document [7], spectrum usage and smart resource
management are identified as major research challenges that
need to be resolved to unleash the potential of the next
generation satellite communication system.

Concerning the satellite industry interest in the aforemen-
tioned challenges, next we provide an overview of two of
the most advanced GEO HTS systems developed recently.
One of the flagship flexible HTS satellites, so-called Eutelsat



Quantum, developed under an ESA Partnership Project with
the satellite operator Eutelsat and the prime manufacturer
Airbus, was launched in July 2021. Eutelsat Quantum is
claimed to be the first commercial fully flexible software-
defined satellite in the world [8]]. Coverage, spectrum and
capacity can all be reconfigured in-orbit via its innovative
reconfigurable payload, to efficiently serve any applications
and ensure optimal use of its resources. According to the
technical capabilities of Eutelsat Quantum [9]], beams can be
hopped to spatially diverse regions rapidly and seamlessly.
With a similar vision in mind, SES, the satellite operator,
worked with Thales Alenia Space to manufacture SES-17.
The satellite was launched in October 2021 and incorporates a
digital transparent processor (DTP), enabling unique features,
such as re-configurable resource allocation, to meet real-time
traffic demands [10]. In addition, most of the industry-led
projects are still in testing phase, where the algorithm to
optimally unleash the flexibility of satellite is still in early
stages. For instance, the European Commission has recently
launched two 3-year projects related to optimal on-board
resource management [[11} [12].

Furthermore, similar to the situation in terrestrial domain,
the rapid development of data-hungry services has also re-
sulted in spectrum scarcity context in satellite domain. As a
consequence, the satellite digital broadcasting standard (DVB-
S2X) introduced the possibility to use precoding techniques
to enable efficient spectrum management while increasing the
spectrum reuse across satellite spot-beams [13} [14]. The feasi-
bility and potential of precoding applied to HTS systems have
been recently validated via live experiments on a GEO satellite
scenario [15} [16], confirming its relevance for future HTS
deployments. In this work, we therefore address a combination
of the two aforementioned challenges, namely (i) optimization
of payload flexibility; and (ii) spectrum reuse.

Within the flexible satellite payload architectures, this paper
focuses on the so-called time-domain flexibility which is
commonly implemented via beam-hopping (BH) over time.
BH became promising in the early 2010s since this technique
can provide a good compromise between complexity and
cost. The most attractive feature of BH is the payload mass
reduction which is reflected into a reduced cost. Essentially, a
BH-enabled satellite scheme can activate a sub-set of beams at
each time slot following a time-space transmission pattern and
this mechanism can be repeated periodically. In such schemes,
the bandwidth can be re-used fully across all activated beams
and the inter-beam interference can be well-managed by avoid-
ing the geographically-adjacent-beam activation. While BH
provides certain degree of flexibility, an extremely asymmet-
rical traffic demand scenario over the coverage may critically
challenge the conventional BH methods. In particular, high-
demand areas expanding over multiple adjacent beams neces-
sitate of clusters of beams to be simultaneously activated while
making use of the full available spectrum. An example can
be the surroundings of an international airport with multiple
high-demand mobile platforms flying around or a highly dense
populated area with multiple backhauling satellite terminals.

A. Related Works

The works presented in the literature related to multi-beam
HTS systems involving BH can be classified into two main
categories:

1) Conventional Beam Hopping: The benefits of BH ap-
plied to Geostationary (GEO) satellite systems have been well-
demonstrated in multiple academic works. Additionally, BH
has attracted much attention from some key industrial players,
e.g. [17, [18], and has been taken into account in the updated
DVB-S2X standard [[19]]. However, exploiting the conventional
BH techniques has also raised some challenges. Conventional
BH was conceived to exploit the full available spectrum (i.e.
full frequency reuse) over a subset of selected beams, ensuring
that the geographical distance between selected beams is far
enough to work under a noise-limited scenario [20]. The main
technical challenge addressed in the literature has been the
design of effective illumination patterns, i.e. determining the
different set of beams that need to be activated at each time slot
while trying to align the offered capacity with the beam traffic
demands over time. The design of illumination patterns for
conventional BH usually involves binary variables representing
the beam activation simultaneously. Therefore, the problem
typically falls within the general mixed integer non-linear
programming problem (MINLP) [21]], which is very difficult
to solve. The authors in [22] considered genetic algorithm
targeting a global optimal solution at the expenses of high
computational time. In a similar vein, [23] proposed to employ
a simulated annealing method which also requires a long time
of implementation. As an alternative to optimization-based
methods, the works in [24} 25] developed heuristic iterative
procedures which operate in a much faster and more efficient
fashion by sacrificing optimality. Clearly, the key challenge
identified in early works is the fact that exploiting the beam-
activation binary variables results into a large searching space
which exponentially aggravates due to the increasing number
of potential beams. Following the trends of Machine Learning
(ML) applied to optimization problems, [26} 27] investigated
the applicability of deep learning tools within the BH il-
lumination pattern optimization procedure. In addition, the
conventional BH methods normally focus on no-multiplexing
transmission across activated beams, which limits its capability
coping with some irregular traffic-demand scenarios in the IoT
era [28]).

2) Cluster Hopping: The activation of an adjacent set
of beams (referred as cluster) was investigated within the
European Space Agency (ESA) [28] and proposed in [29, 30]
with the so-called Cluster Hopping (CH) scheme, where linear
precoding [14] was considered to mitigate the resulting intra-
cluster interference. The downside of the works in [29} [30] is
the fact that the overall virtual multi-beam grid is split into a
set of non-overlapping clusters of fixed size and shape. This
is done to reduce the search space and exclude the cluster
design from the optimization problem. While some practical
guidelines about the clustering design have been discussed in
[30], the problem remains largely unsolved, especially when
considering the complexity added by the precoding within the
clusters.



B. Our Contribution

In this paper, we propose a general framework for the illu-
mination pattern design, where the transmission of activated
beams in separating clusters can be jointly precoded. The
objective is to minimize the interference-based penalty with
the aim of reducing the use of precoding while constraining
the system to satisfy a certain beam demand in a given time-
window. The such technical design can be stated into a Binary
Quadratic Programming. Whenever high-demand expands over
multiple adjacent beams, the solution from the proposed
framework considers precoding to deal with the resulting inter-
beam interference. With such selective precoding mechanism,
complexity at the ground-segment is reduced where precoding
operation can be considered flexibly.

To linearize the BQP problem, we first present a procedure
to convert the beam demand constraint into a more tractable
notation involving required illuminated time-slots per-beam.
Next, we present different ways to convexify the BQP prob-
lem. First, inspired by the mathematical works in [31), 32],
we reformulate the BQP into a Semi-Definite Programming
(SDP) form which can be solved efficiently by employing
some standard optimization solver tools. In another approach,
we also propose a novel solving framework MPMM which
integrates Multiplier Penalty (MP) [33] and Majorization-
Minimization (MM) [34] methods. In particular, we relax the
binary constraint and add its augmented Lagrangian function
into the objective function by using the so-called penalty
parameters. Then, the new penalty-form problem is solved
iteratively by sequentially updating the penalty multipliers and
driving the solution to binary values. In particular, in each
iteration, we adopt the MM method to transfer the penalty-
form problem into a sequence of simple problems, each of
which can be solved optimally. The sequence generated by
the optimal solutions of these simple problems is proved to
converge to a stationary point. According to the convexity
of the penalty-form problem, one also concludes that the
stationary point is the optimal solution. Since the previous
proposed methods prioritize performance versus computational
complexity, we complement this paper by proposing an heuris-
tic greedy algorithm which provides a sub-optimal but efficient
solution.

Our main contributions are summarized as follows.

o We propose a general framework and its mathematical
formulation to support dynamic and flexible cluster hop-
ping, where geographically adjacent beams are allowed to
be simultaneously activated whenever needed according
to its demand request. The resulting intra-cluster interfer-
ence is mitigated with linear precoding, whose utilization
is minimized by focusing the design into an interference-
based penalty function.

« Based on probability theory, we propose an effective way
to reformulate the beam demand constraint and convert
it into the number of illuminated time-slots required per-
beam in order to satisfy the demand. Such simplification
convexifies the constraint and helps easing the tractability
of the problem.

o Three different methodologies are proposed to address

the BQP problem. We first make use of a novel SDP
notation specifically designed for BQP problems. As a
more accurate alternative, we propose an algorithm that
integrates MP and MM methods. Finally, a novel heuristic
algorithm is presented to rapidly provide a solution with
acceptable performance.

+ We provide a detailed complexity analysis for each of the
proposed methods.

« Finally, an extensive numerical evaluation is carried out,
where the proposed methods are compared with conven-
tional BH and the previously proposed C The results
evidence the effectiveness of the proposed algorithms and
demonstrate the flexibility of the proposed framework in
adapting to any demand distribution.

Please note that, although this paper focuses its notation and
simulations on GEO satellite systems, the methodology itself
can be applicable to the beam placement problem encountered
in NGEO constellations. However, the precoding application
to distributed satellite swarms is still in early stages of inves-
tigation and may need further discussion.

The remainder of this paper is organized as follows. In
Section we present the system model. In Section
we present the general formulation of the dynamic beam
illumination design problem. To solve the problem, Section
provide the method to simplify the non-convex demand
constraints into the linear forms based on which the BH-design
problem is reformulated as a BQP. In Section [V] two efficient
optimization-based algorithms and a greedy mechanism are
presented to deal with BQP. In Section we present nu-
merical simulations. Finally, Section concludes the paper.
Notations used in this paper are summarized in Table [X]

II. SYSTEM MODEL

This paper studies the forward link of a bent-pipe multi-
beam geostationary (GSO) satellite system, whose coverage
area is divided into a virtual grid of N spot beams. In this
system, the illumination pattern is designed over a specific
BH window, which is periodically repeated over time. The
BH window is divided into a set of M time-slots (TSs), and
within each TS no more than K beams (K << N) can
be illuminated. The duration of one TS is denoted as 7%
(seconds) which also represents the minimum dwelling time
of the hopping mechanism. Let g; be the traffic demand in
bps of beam [/, and g = [g1, . .., gn]T represents the all-beam
demand vector. For simplicity, one-user-per-beam scenario is
assumed, i.e. a single virtual user located inside the beam
footprint (e.g., 4 dB contour) is assumed whenever this beam
is activated. Note that the single virtual user is assumed to
aggregate the demand of the whole beam user density. The
assumption of a single virtual user per beam is performed to
abstract the user scheduling. User scheduling is out of the
scope of the general BH design for different reasons. The
multiplexing of multiple users is assumed to be performed
in a time-division-multiple access (TDMA) fashion.

IThese benchmarks are detailed in the numerical results section.
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Fig. 1: Proposed flexible cluster hopping scheme

A. Channel Model

Let H € CV*N be the channel matrix containing all the
channel coefficients of the forward link. In particular, the chan-
nel between antenna of the satellite payload corresponding to
beam [ and user k on the ground is modeled following the
approach in [5]], and can be written as,

! . d
Hit = \JGW Gy (2, o) 3901 <47rj>, (1)

where G%f) is the receiving antenna gain at user k; G; (zk, yi)
stands for the beam pattern gain due to beam [ at k¥ which can
be estimated according to the user’s longitude x; and latitude
Yi; Pk, 1s the phase component associated with the antenna
beam pattern; d;, represents the distance from the satellite to
that user; A denotes the wavelength of the carrier frequency
band.

Doppler and absorption loss are intentionally not included
in our model. The movement of GEO satellite is maintained in
a very tight box and has a negligible Doppler shift (note that
daily maneuvering is performed to maintain the satellite in its
position). Concerning the absorption loss, this would appear
as a constant loss in our link budgeting thus not making an
impact in our study. This is because the beam hopping window
time is usually below few hundreds of frames. For instance,
considering a frame duration of 1.3 msec (the number of
symbols in a super-frame is 612540, and its duration is about
1.3 msec for a 500 MHz bandwidth), and considering 256
frames, the total BH window-time is approximate to 330 msec.
Clearly, the atmospheric loss has a longer coherence time.

B. Selective Precoding Strategy

As depicted in Fig. [T} we envision an illumination pattern
design that dynamically activates clusters of beams. Whenever
the cluster size is greater than one, precoding is needed to
alleviate the inter-beam interference. The illumination pattern
design is discussed in Section Herein, we detail how
precoding is implemented for a given illumination patterrﬂ It
is worth noting that the precoding operation entails significant
complexity at the gateway side, which exponentially scales

Note that precoding refers to the exploitation of instantaneous CSI and
it is implemented at the ground segment. It needs to be distinguished from
the beam pattern formation, which is implemented on-board the satellite and

is assumed to be fixed in this work.

with the number of involved beams [35]. Hence, the precod-
ing strategy should be designed smartly by grouping active
beams into different precoded-clusters, which are subsequently
precoded independently. In what follows, we provide a detail
description of the two-step procedure grouping beams in
clusters and how the precoding matrix is designed for a
specific cluster.

1) Precoded-Clustering Strategy: Given the illumination
pattern, at TS ¢, the definition of precoded-clusters is given as
follows. The general idea is that beams generating strong in-
terference to each other should be grouped into one precoded-
cluster. First, we introduce the so-called influence factor w; ;,
which captures the impact of the inter-beam relative interfer-
ence from beam ¢ to beam j, and it is defined as

B s, |Hyi|? Pyday dyx ® s, Gi (wr,yn) dak dys

ffsj |Hk:,j|2 Pjdxy, dyy, ffsj G (xr, yx) dy, dyy,

2)
where P; denotes the transmission power of beam ¢ and S;
stands for coverage area of beam j which is defined by the
beam contour at -4 dB from the maximum gain. As can
be seen, w; ; represents the ratio of the interference power
from beam ¢ to beam ;. Here, the power of signals are
calculated as the average value over coverage area of beam
J, () in @) implies the simplified influence factor when the
same transmission power for all activated beams and the same
receiving gain at all users are assumed.

In a second step, these factors w; ; are compared to a
predetermined threshold ﬂ Two beams corresponding to an
influence factor greater than the threshold will be located in
one cluster. The proposed threshold-based clustering strategy
is summarized in Algorithm E} Particularly, in each TS, one
starts by setting every activated beam as a separate cluster.
Then, if there are any two beams in two separate clusters
that their corresponding influence factor is greater than the
threshold, these two corresponding clusters are merged into
one. This process is iteratively repeated until there is no
change in the clustering structure. Note that the outcome of
Algorithmﬂ] classifies all actives beams into clusters, some of
which may contain one beam. Only those clusters with size
greater than one will be considered for precoding process.

Wi, j

3The value of the threshold can be easily set, as there is an evident
abrupt drop in influence values for those beams that are not causing harmful

interference.



Algorithm 1 THRESHOLD-BASED CLUSTERING ALGORITHM

1: Initializaion &, w; ;

2: Let B2<[t] be the set of activated beams in TS ¢.

3: Define Ci, = {k} initial cluster consisting user k (k € B2°[t]).

4: Define ®[t] = {Ci|k € B>[t]} initial set of clusters, ¢[t] = B[t]

initial set of cluster indices.

5: repeat

6:  for k € ¢[t] in ascending order do

7: for [ € ¢[t] that I > k do

8: if 3i € C; that max;cc, w;; > & then

9 Cr = Ci N CL. DIt] = B[t]/{C1}. Blt] = lt]/{1}.
10: end if

11: end for

12: end for

13: until There is no change of ®[t] and ¢[t].

2) Precoding Design: Once the clusters are formed, the
precoding matrix is designed separately for each of them.
Let L[t] be the number of clusters in TS ¢; here, all non-
illuminated beams are grouped into a non-transmission cluster
for convenience. Denote W; € C%*% as the precoding
matrix of cluster ¢ where ¢; stands for its cardinality. For the
non-illuminated beams, the corresponding precoding matrix
must be zeros since they are silent during that particular TS.
For the clusters consisting of only one beam, the precoding
matrix can be defined simply as \/P,, where P, denotes
the per-beam transmit power. For the remaining clusters (the
ones which are formed with more than one active beams),
their corresponding precoding matrices are obtained using the
MMSE-based strategy as given in [14, [36]. In particular, the
MMSE-based precoding matrix W, can be expressed as

W, = VRH!I (HH! +a1)” 3)

where H; represents the channel matrix of all the users in
cluster ¢ and « stands for a predefined regularization factor.
Then, W; is determined based on W by normalizing every
column vector of the matrix to meet the per-beam power
constraints P

Let zi[t] be the received signal at user k in TS ¢, and z;[t] =
[2x[t]|k € Ci]T be the vector of received signals corresponding
to cluster 4. The vector z[t] = [z1[t], ..., zL[t]]T including all
users’ received signal can be expressed as

z[t] = HW]t]s[t] + n = H BDiag (Wy,..., W) s[t| + n

“)
where BDiag(*) stands for the block-diagonal matrix opera-
tion, W[t] € CNV*N represents to the precoding matrix for all
beams, s[t] € CV*! denotes the transmitted symbol vector;
and n stands for the noise vector. In this paper, the zero-
mean additive Gaussian noise is assumed at all the users
where [E [nnH} = U%I and op = /71Tr,B; 7 denotes the
Boltzmann constant and T, is the clear sky noise temperature
of the receiver [3]].

III. BH ILLUMINATION PATTERN DESIGN FORMULATION

Let us denote z,; € {0,1} as the binary assignment
variable indicating the illumination of beam n in TS ¢. Then,
the number of illuminated beams in TS ¢ can be described

as 2521 Znt. Due to the typical payload mass limitations
of a BH-enabled satellite, the number of active beams must
remain not greater than the number of RF chains K, i.e.,
N
Zn:l Tn,t S I(7 Vt.
The achievable rate of user n in TS ¢ can be expressed as

xn’t|hnwfz |2

+ )
2kt ThotBn W[ + U%)

where w!, denotes the precoding vector designed for user n
in TS ¢, e.g. column of W t] corresponding to that user. Note
that Wt] is also a function of illumination pattern x which
determines the way to do clustering for precoding. Considering
the average traffic demand of user n, g, [bps], we can express
the per-user demand constraint as,

R, [t] = Blog, <1

1 M
17 2 Bnlt] = gn [bps]. 6)
t=1

The main objective of this work is to develop a BH illumi-
nation pattern design such that the users’ demands are satisfied
while avoiding the use of precoding whenever possible (to ease
the complexity burden). For this purpose, we shall avoid the
strong cross interference among the illuminated beam in every
TS as much as possible. To formulate such problem, we make
use of the influence factors defined in (2)) to generate a penalty
matrix 2 € RVXN ag

Q] = wiy, 1 <4,5 <N, (7

where [Q?]; ;) indicates the element on the i-th row and j-th
column of €. Using this penalty matrix, one can state the BH
design problem asﬂ

N

. M
(Po) : min CoxPQx; st
t=1%t
X1y XM 1
n=

M
(CQ) : ZRn[t} Z Mgna ﬁ
t=1

(03) g € {0? 1}7 Vtan(:

where X; = [714,Z2.4,...,ZN.] . Problem (Pp) is an integer
programming (IP) which is a NP problem in general. The
challenge of solving this problem does not come from the
binary assignment variables but also from the non-convex
function of R,[t] in constraint (C3) which is a function of
X.

Remark 1: It is worth mentioning that problem (Py) is
stated in a general form in which € can take any values. In
particular, for different designing goals, 2 can be determined
carefully. Therefore, the BH strategy proposed in the following
parts can stand in many schemes with appropriate penalty
matrices.

4The satellite is assumed to be dimensioned according to the expected
demands, i.e. to have enough resources to address the expected demand g,
Vn.

(C1) > wny <K, VE, (



IV. PROBLEM REFORMULATION

In this section, effective approaches for dealing with the
challenging problem given by () are presented. Particularly,
according to the idea on estimating the average supplied
capacity, we first simplify the complicated non-convex traffic-
demand constraints (C) to linear forms. Based on which, the
problem is re-formulated as a binary quadratic programming

(BQP).

A. Demand Constraint Simplification

The actual supplied capacity R, [t] is a non-convex function
of the variable x; and, therefore, it causes a big challenge
for the BH protocol design. Some works in literature have
suggested different frameworks to address this issue, such as
simple interference-free relaxation given in [37], limiting the
set of illuminated beams to avoid the strong interference in
[29]. Considering a different approach dealing with this issue,
we aim to convert the demand g,, [bps] into minimum number
of TSs that each beam must be activated in order to meet
its traffic demand. To do so, we first consider the following
proposition.

Proposition 1: Let (, be the average achievable rate of
beam n, i.e., (, Zf\il Tt = Zi\il R, [t]. Then, constraint

(C3) can be re-formulated as

M
(Ca): D elx; >dy, Vn, )

t=1
where e,, denotes a vector in which the n-th component equals

to one and all others are zeros,

dn, = [Mgn/CnL

and [«] stands for the ceiling operator.
Proof: The pro;;osition can be proved as follows. Since,
M N .
Cn Doty Tnt = g Rn[t] and elx; = T, constraint (Cy)
is equivalent to

M M Mg

T n
Eext:Ex,tZ—Vn.
t=1 ! t=1 "’ Gn 7

Additionally, Z,{Vi L elx; is an integer. Hence, the right hand
side of () can be replaced by d,, = [M £*]. This has closed
the proof. ’ [

(10)

Y

In constraint (6’4), dy, can be considered as the minimum
number of TSs in each of which beam 7 is illuminated. Next,
the following theorem regards the relation between the optimal
solution of problem (Py) and d,,.

Theorem 1: Let x;’s be the optimal solution of (Pg),
then we have "M eTxt = d,,, Vn, if ¢,’s are estimated

accurately, which means constraints (6’4) hold for all beams.

Proof: This theorem can be proved easily by using the
contradiction method. In particular, one assumes that there
exists at least one beam that the corresponding constraint (6'4)
does not hold. Denote this such beam as n* which yields
Zi\il Ty > dp-. Selecting any TS t* that z7,. ,. = 1,
we generate the new solution of (Py), x;’s, that x7, , = a7, ,
Y(n,t) # (n*,t*) and x7,. ;. = 0. It is easy to observe that
x,’s satisfies constraints (C). Moreover, this new solution
meets the requirement of constraints (C7) and (C3) while re-
sults in the lower objective function. It follows by a contradict
since x;’s is the optimal solution. Therefore, constraint (6'4)
holds for all beams with any optimal solution of problem (7).

|

Thanks to Theorem [I] the following lemma can stand.
Lemma 1: If (,,’s are estimated accurately, one can replace
constraint (C3) by the following one without changing the

optimal solution of problem (Py).

M
(Co: > elxy=dy, n=1,...,N. (12)
t=1
Due to this result, in what follows, we propose an iterative
framework to estimate the average achievable rate (,, for each
beam by appraising the expected interference.

1) Average Achievable Rate Estimation Framework: Ac-
cording to the mean field theory[38], we assume the uniform
distribution of beams to be activated over the time window.
Thanks to Lemma (1| the illuminating probability of beam n
in a specific TS, e.g., TS ¢, can be given by

pn, = Prob{x,, = 1|t} =d,, /M. (13)

Regarding the clustering and precoding processes, the ex-
pected interference to beam n can be expressed by taking
into account the interference from the beams with low cor-
responding influence factors and their illuminating probability
as ¥, = Zj,jEAnijb|H"J 2 where A, = {i | Qi <
k,1 € N;i < N,i # n}. Based on that, the expected average
achievable rate of beam n can be described as

Pb|hn n 2
= Blog, 1+ 22%nnl )
Although one of (dy,, pn, ¥n, (,)’s can be defined if the others

are given, determining the accurate values of these factors

(14)

is very challenging. Exploiting the expectation maximization
(EM) algorithm given in [38], we propose an iterative frame-
work to estimate (,,’s as summarized in Algorithm [2| Partic-
ularly, the algorithm initializes with zeros illuminating proba-
bility for all beams and repeatedly updating (dy,, P, ¥n,Cn)’s
in each iteration. Each iteration processes two steps, namely,
expectation (E-Step) and maximization (M-Step). The E-Step
is called for updating the interference based on the illuminating
probabilities of the previous iteration while the M-Step stands

for calculating (,,’s, d,,’s, and adjusting the probabilities. The



Algorithm 2 AVERAGE CAPACITY ESTIMATION
1: Initializaion P, B,o7,H,Q, k, An,p°d =0
2: while || ¢"V — ¢ |12< , do
3: For all n =1, ..., N, update:

E Step: P =37 sea,, PPyl 512,

Pb|h71771‘2 dnew — [M 9n_ “
B A crew

M Step: (" = Blog, (1 + po

4: end while

iterative process stops at the convergence according to the
following proposition.
Proposition 2: Algorithm [2 converges after a finite number

of iterations.

Proof: As can be observed, p,’s increase while (,’s
decrease in every iteration. Since, p,’s are upper bounded
by ones and (,,’s are lower bounded by zeros. The iterative
process must converge to a stable point after a finite number
of iterations. ]

Remark 2: Note that if the required demand g, is higher
than (3% in a specific iteration, d>" will be re-set as M - the
highest number of TSs. One also notices that problem (Py) is
infeasible if K is smaller than the average number of active
S /M.

Remark 3: It is worth noting that (C3) and (Cy) may be

beams K, 4 which is expressed as Kq,,q =

not equivalent if (, is not estimated accurately. In addition,
once G, is well evaluated as in Algorithm [2| and d,, is
calculated as in (10), the unmet capacity of beam n must be
+
_ [hn.nl> P
smaller than, {Mgn d, Blog, (1 + S e PR Tl
since Y 2y, |hin|?Py is the highest interference power suf-

fering beam n in any TS.

2) Problem Reformulation: For the sake of simplicity, we
compact our notation by rearranging all TSs ¢ into a single
tall vector x” = [x{ x3 x}7]. Thanks to Lemma

problem (Py) can be re-stated as

(P1): min xTAx s.t. (C5):Bx < K-1y, (Cs) : Dx
. (17)

where d = [dl,dg, .. .,dN]T, A=1,,90 B=I,® 1%,

D = 1{/1 ® In. Herein, ® denotes the Kronecker product,

1, stands for the vector with M one elements and I, is the
identity matrix with dimension of M.

B. Objective Function Convexification

As can be observed, problem (P;) is a BQP which is NP-
hard in general. To ease the tractability of (P;), we aim to
characterize the objective function convexity by considering

the following theorem.

old _

Theorem 2: For any value of a, problem (P;) is equivalent

to the following problem
(Pa) : xT(A + al)x
15)
e Proof: Due to the constraint (Cs), if x’ is a solution
“ofiptbBlem (Py), then we have ax”Ix = a Y."_, d,, which
is a constant. Then, x’ must be a solution of problem (P,).
Inversely, it is easy to prove that any solution of (P,) must
a solution of (P;). Hence, (P1) and (P,) are equivalent for
any value of a. [ ]
In addition, the convexity of the objective function (P,) can
be guaranteed if a is selected so that it is not less than —A(A)
- the minimum eigenvalue of A. Thanks to Theorem 2] we can
state that problem (1) is equivalent to a integer QP with a
convex objective function, i.e., x” Ax where A = A —\(A)L
To this end, instead of solving (P;), we will focus on the
following

(P1) :

t. (Cs), (Cs), (C7). (18)

min
X

min  xTAx  s.t. (Cs), (Cg), (Cr). (19)

V. BINARY QUADRATIC PROGRAMMING OPTIMIZATION

In this section, three optimization approaches are introduced
to deal with the BQP problem (751) Particularly, two efficient
solving approaches using the SDP relaxation and MPMM
method, respectively. For completeness, a low-complexity
greedy algorithm is also proposed. Finally, a complexity
analysis for the proposed solution mechanisms is presented.

A. SDP-based Algorithm

Problem (751) corresponds to a BQP form, i.e. a problem
involving a quadratic objective function with binary variables,
which could be solved by relaxing the binary constraint
[39]. Firstly, the binary constraint (C7) is equivalent to two
equations [40], i.e

x € {0, 1}MY «—= X =xx' and (Cg) : diag (X) = x.
(20)

T can be further

Herein, the “rank-one” constraint X = xx

laxed as [40
= 0,1y,
X
1

€ |

21
Then, problem (751) can be approximate to the following
semidefinite problem,

(Psoe) smip Tr (AX) st. (Cs). (Co), (Cs). (Co), (Cho).

(22)
Problem (Pspp) in (22) can be solved efficiently by employing
the advanced mixed-integer optimization toolboxes such as
CVX [41]. If the matrix obtained by solving (Pspp) is “rank-
ne”, then it provides the optimal solution to the problem. In
case of SDP providing a solution matrix whose rank is higher
than one, the SDP-based branch and bound method [42, 43|
can be applied to obtain the final solution.

} > 0 (equivalent to X = xx!) and (Cro) : X € S™



B. MPMM Algorithm

In this section, we first introduce the general principles of
MP and MM methods based on which a novel multiplier
penalty and majorization-minimization (MPMM) algorithm
is proposed to solve problem (P;) efficiently. Then, the
convergence of this approach is also discussed.

1) Multiplier Penalty Method: The MP method is an
efficient approach for solving the constrained optimization
problem. Considering, a general equality-constraint problem
as follows,

min f (x)

mig st. hi(x)=0,i=1,...

7m7

(23)

where & is a convex set. Following the MP method, this prob-
lem could be solved by minimizing the following sequential
problems

xl = arg min f (x)+>_ 7k 0+ 22 3 [h (012, 24)
i=1

2
xex i=1

where ¢ is the index of iteration, {n[}, {p!)} stand for se-
quences of penalty factors. Here, the penalty term is introduced
by its augmented Lagrangian function. The feature of MP
method is the way to update 0l step by step [44], which
is given by

M) = + ol (x) .

The result given in [33] also concludes that the sequence of
{n!1} will converge to a fixed point at which {x[“} converges
to a local optimum of problem (23).

2) Majorization-Minimization Method: The MM method is
a well-known approach dealing with a complicated problem
by transferring it into a sequence of simple problems which
can be solved effectively. The main idea of this scheme is
to construct the surrogate function u (X | X(k.)) which ap-
proximates the original objective function, then solve the
constructed problems in sequence until convergence. For the
general minimization problem, minyey f(x) where X is
convex set. The constructed surrogate function (x | x(k))
should satisfy

(25)

f (X) <u (X | X(k)) ,Vx € X, and f (X(k)) <u (X(k) | X(k)) .

(26)
Then the sequence of {x()} is given by xpy1) =
arg min, ¢y u (x | x(k)), which will converge to a stationary
point of the original problem [45]. If the problem is convex,
then the stationary point is the global minimum.

3) Proposed MPMM Method: The challenge on solving
P, mainly comes from the binary constraint (CT7). To cope
with this challenge, we aim to employ MP method to relax
the binary constraint and deal with a sequence of penalty
problems. In particular, the augmented Lagrangian function
is added to the objective function with penalty parameters
while the binary constraint (C7) is relaxed to form the penalty
problem as

(Pmpmm) x = arg min f <x|nm,pm> , 27)
xeY

where f(x\n[@]vpm) = xTAx + Ziny] (ml—xf) +
(¢

=3 (xifxf)z and Y = {x|Bx < K -1,;,Dx=4d,0 <

Algorithm 3 MPMM ALGORITHM

1: Initialization: ¢ = 1,711 = 0, pl1] = 1,x£}j) -0

2: repeat
3: Set k = 0.
4 repeat
5 Solve X%C]Jrl) = arg min,cy u (x \ x[(%,n[e],pm).
6: Update k£ = k + 1.
7: until Convergence
10 — 4
8 Set x!l = Xk ,
9:  Update [pl‘+1]; = [nlfl]; + pl (a&y] - (xy]) ) pltH1l =
Bl plel,

10: Update £ = ¢+ 1.

11: until Convergence

x; < 1,Vi}. It is worth noting that z;; € {0, 1} is equivalent to
T;— xf = 0, Vi. Moreover, the MP-based framework focus on
solving (Pvpmm) iteratively and updating penalty parameters
N, pl¥l to drive the solution of (Pypmm) to a point that
|z; — 22| is closed to zero. Here, the binary constraint is
strengthened by adding 0 < z; < 1, ie., a:f —x; <0, Vi
to the convex set X'. According to the MP-based framework
given in [44], the penalty parameters can be updated as

[n[E—&-l]]i _ [n[é]]i+p[£] <l‘£[] _ (l'y])2> and p[E—H] — B[f]p[€]7

(28)
where 3[4 is the parameter to update p step by step. Usually,
pl¥l would be initialized with a small value and then increase
with iterations. Note that plf can also keep fixed after certain
iterations [33]. Due to the high order of variable x appearing
in the objective function, it is very challenging to solve
(Prpara) directly. To overcome this issue, we employ the
MM method by constructing surrogate function and then
finding the optimum solution in a sequence. The proposed
algorithm is summarized in Algorithm [3] The surrogate func-
tion is constructed by linearizing the binary constraint with its
first order Taylor series and is given by

¢ ) y
XEk}H) = ar)g(;;;nnu (x | XEk])’ n[E]’p[é}) ,

(29)

where u <X|X£,£) nl ,p[e]) = xTAx4Y", nzm (1 —2(z;) Eﬂ)) i+

(2 ¢ a\2]°
%ZCL(%}&%%QE&%}’EZ@Q@QQ d]ng the same approach
analyzing the convergence of the MP method given in [33],
one can prove the convergence of the proposed algorithm by
addressing two facts: 1) for given 5l¥, pl¥, the MM procedure
converges to the global optimum of x!¥; ii) the sequence {n[e]}
updated as in (28) converges to a fixed Lagrangian multiplier
of 7)1.

Lemma 2: da > ag such that the objective function

f (x\nm,pm) is convex.
The proof is presented in Appendix [B] Then the convergence

of sequence {XE@} will converge to the global optimum of
[l
x!



Algorithm 4 GREEDY ALGORITHM

1: Round x" into binary solution, named xP", by setting d,, highest

con

M
elements of the set {rn t} to 1 and setting the remaining elements
=1

to 0.

2: Calculate B € RNXM a5 B, , = 3° (Aj,n + An,j) abin, Y(n, ).
j#n ’

3: while xP" is not a feasible solution do
N .
4:  Denote ST = t1<t<M,Zx?L'"t>K} , ST
n=1 ’

%
50 LetT =

Solve (n*,t*,u*) = arg min(, ¢ u)e7 Bn,u — Bn.t.

N
1<t< M, Zm‘;;"t<K}.
n=1 !

(TL,t,'LL)'t € S+7u € S_vwbin

bin, = 1,87, = 0}.

»n,u

7 Swap the values of x'jliﬂyt* and xfliﬁyu* by setting xfliﬂyt* =
bin _
07xn*,u* =1.
8: end while

Beam Index

]

Therefore, the iteration number of “repeat” loop must be less
than B;. Regarding “for” loops, we can observe that for each
couple (k,I) in ¢[t], one has to compare w;; to x for all
(i,7) € C; x Cg. Then, according to |¢[t]], |Cx| < B for all
k € B3[t], the complexity of Algorithm || can be estimated
as O (B}).

2) SDP-based Algorithm: As given in [46], the com-
putational complexity involved in solving the SDP is
O(max(m, n)*n'/?) where n and m are the numbers of vari-
ables and constraints, respectively. As can be observed, these
numbers corresponding to problem (Pspp) are (M N)?+MN
and M + N + 1, and (MN)? + MN must be much greater
than M + N + 1. Therefore, the complexity of solving
problem (Pspp) by employing SDP method can be estimated
as O ([MN(MN + 1)]*9).

3) MPMM Algorithm: MPMM algorithm consists of two
loops where the inner loop attempts to solve problem (29)
in each inner iteration while the outer loop aims to update
the penalty parameters in each step as in (28). Generally,
problem (29) is a convex QP with M N variables which
can be solved in polynomial time with the complexity of
O ((MN)?) [47]. Hence, the complexity of MPMM algo-

Fig. 2: The process of Greedy Algorithm to design the illumination pattern. Tllli:t eman

d . .
P eshobe expressed based on the number of iterations as

TSs of user n is dy,. At TS ¢, the number of active beams is greater the limitatjgats, while 3 t
" Toenia Cagm© (MN)?) + O (MN)) where I5iy and

the number is less than K at TS w. The exchange of active beam for user n will ?appﬁ,n if

exchange would bring in the minimal increase of the objective function.

C. Greedy Algorithm

In this section, we propose an heuristic approach solving
(P1). The basic idea is to firstly solve the relaxed problem, i.e.
(Prix), in which the binary variables are relaxed as continuous
one, i.e.

(Pax) : min xT Ax. (30)
x€eYy
The continuous optimal out-comes, denoted as x°°", are then

rounded to binary solution, x”". The rounding mechanism is
developed so that all the practical requirement of (751) are
guaranteed. In addition, the approach also aims to minimize
the total penalty. In particular, after solving the problem (Py),
for each user n, the first d,, highest elements among the set
{@3} M | are set to be ones while the others are down-rounded
to zeros. Then, the illumination of beams over TSs can be
further swapped to satisfy constraint (C5) and keep the total
penalty as small as possible. The greedy algorithm presented
in Algorithm [4] and described in Fig.

D. Complexity Analysis

In this section, the complexity of our proposed algorithms
is investigated based on the number of required operations.

1) Threshold-based Clustering Algorithm: Let By =
|B2<[t]| be the number of activated beam in TS ¢ where |X|
stands for the cardinal number of set X'. As can be observed,
Algorithm [I] consists of three loops, i.e., one “repeat” loop
and two “for” loops, and it initializes with B; clusters each of
which contains one beams. In each iteration of the “repeat”
loop, the number of cluster decreases if ®[t] changes. More-
over, the “repeat” loop stops when there is no change of ®[¢].

MPMM the average iteration numbers of outer and inner
loops required in Algorithm [3|to solve problem (P ), respec-
tively.

4) Greedy Algorithm: The initial step of this algorithm
attempts to solve the QP (7P;) with continuous variable x
with the complexity of O ((MN)?) [47]. Then, it requires to
calculate elements of matrix B before iteratively updating sets
ST, 87, and T. At the end of each iteration, the comparison
procedure is processed to select the two specific beams in
two different TSs for swapping. It is worth noting that the
cardinality of 7 cannot exceed M N and decrease after every
iteration. Hence, the number of iterations in Algorithm ] must
be smaller than M N. Hence, the complexity of the greedy
algorithm can be estimated based on that due to solving QP,
calculating B and iterative process as O ((MN)?) + M N +
(MN)?* = O (MN)?).

VI. NUMERICAL RESULTS

Monte Carlo simulations are conducted to evaluate the
performance of the proposed three algorithms in terms of
demand matching, the total computation for precoding and
average number of active beams per TS, comparing with two
benchmarks: conventional beam hopping (BH) and cluster
hopping (CH). In particular, the conventional BH method
is given in Appendix while CH benchmark solution is
proposed in [29, 30].

A. Simulation Setup

We consider a GEO satellite system with 67 spot beams,
i.e., N = 67. The setting parameters are summarized in Table
[l The simulation setup is the same as the one considered in
[28L130]]. Unless mentioned otherwise, the number of TSs is set
to M = 20. The traffic demand of all the users are generated
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TABLE I: Simulation Parameters 100+ E
Satellite Orbit 13°E (GEO) y 95+ ,
Satellite Beam Power 30 W < 90 i
OBO 3dB S
Addition Payload Loss 2 dB 85+ 4
Number of Virtual Beams (N) 67
Beam Radiation Pattern (G (x,y) e?®*¥) | Provided by ESA 80 7
Downlink Carrier Frequency 19.5 GHz
User Link Bandwidth, B 500 MHz 751 1.5 2 25 3 35 4
Roll-off Factor 20% Outer Loop Iteration
Temperature 50 K
Number of TSs (M) 20 (b) Evolution of the objective function xT Ax
Threshold do precoding(x) 0.08

TABLE II: Clusters’ Distribution (r = 0.25)

Size SDP MPMM  Greedy BH CH
1 4494 12549 12225 13061 0
2 1801 36 119 0 0
3 795 0 27 0 0
4 264 0 9 0 0
5 100 0 4 0 0
6 53 0 1 0 1814
7 25 0 1 0 186
8 8 0 1 0 0
9 3 0 0 0 0

The total relative computation for precoding is 1.0000,
0.0031, 0.0418, 0.0000 and 4.9754 in the order of
SDP, MPMM, Greedy, BH and CH.

uniformly at random between 400r and 15007 (Mbps), i.e.,
400r < D,, < 15007 Vn. Herein, r represents the demand-
density factor which is selected in {0.25,0.3,0.35,0.4,0.45}
where r = 0.25 implies the low demand setting while » = 0.45
refers to the high demand. For each selected value of r, 50
demand instances are generated for testing. A single represen-
tative user within each beam is assumed, which aggregates the
overall beam demand.

B. Estimating Number of Time-Slots per-Beam Required to

Satisfy Demand

Fig. B]illustrates the convergence of Algorithm [2] where the
evolution in term of average numbers of activated beams per
TS, i.e., Kqug, is shown with respect to iterations. In Fig. EI,

Fig. 4: The Convergence of MPMM.

we have illustrated the convergence for five demand instances
based on the values of r € {0.25,0.3,0.35,0.4,0.45}. It can
be observed that the algorithm converges after 2 — 3 iterations,
where K, increases before saturating at a constant values.
Moreover, Fig. |§| also shows that the larger the value of r
(i.e. the higher the demand), the higher number of average
numbers of activated beams per TS. According to Remark [2]
the users’ demand cannot be satisfied if K is less than K43
hence, unless mentioned otherwise, we set K = Ky, in the
subsequent simulations.

C. Discussion on MPMM Convergence

1) The Convergence of MPMM Algorithm: In Fig. fi] we
regard the convergence of Algorithm [3] In order to illus-
trate the convergence, three parameters are considered, i)
gap (x;) = min{|z; —0|, |x; —1|} which describes the minimal
distance between the continuous element z; and a binary
variable; ii) T'(z) = {z;| gap(z;) < z,4 = 1,...,MN}
is the set of elements which belongs to the variable x, whose
gap (x) is not greater than z; iii) P (z) = |]TVI(7\2| describes the
percentage of the elements in variable x whose gap () is less
than z.

Fig. [4a] shows the geometric distribution of elements in
X, i.e. P(z) achieved in each outer-loop iteration. For the
sake of clarity, in this simulation a single demand factor r
is considered, being » = 0.3. It can be observed that the
elements in x are closer to binary values after each iteration.
As can be observed, the curves corresponding to iteration 3




TABLE III: Clusters’ Distribution (r = 0.35)

Size SDP MPMM  Greedy BH CH
1 3895 16562 14774 16865 0

-_ 2 1693 514 1207 0 0
P 3 1024 80 134 0 0
5 10 15 20
Time-Slots 4 532 29 41 0 0
) 5 292 6 19 0 0
(a) Illumination pattern 6 216 5 7 0 1814
- ' ‘ ' :/FWT 7 119 1 8 0 186
70 : o ennTE 8 91 0 0 0 0
- 9 51 0 3 0 0
on 10 35 0 2 0 0
O 60
=, 11 16 0 1 0 0
(5]
2 50l 12 10 0 1 0 0
§ 13 5 0 0 0 0
= 40| 14 1 0 0 0 0
15 1 0 0 0 0
30 16 1 0 0 0 0
; ‘ — ! The total relati ion f ding is 1.0000
e total relative computation for precoding 1s 1. N
-40 -30 -20  -10 0 10 20
Longitude [de ] 0.0273, 0.0788, 0.0000 and 1.2061 in the order of
g g SDP, MPMM, Greedy, BH and CH.
(b) Beam pattern at the 15-th TS. TABLE IV: Clusters’ Distribution (r = 0.45)
Fig. 5: Example of Illumination Pattern obtained with MPMM. Size' SDP MPMM  Greedy BH CH
1 3066 13076 11265 16963 0
and 4 illustrates that P (z) close to one with very small gaps. 2 1270 1585 2222 0 0
Certainly, this has confirmed that the final solution converges 3 893 798 1028 0 0
to binary variables. 4 532 432 425 0 0
Fig. [ib] shows the variation of the objective function of > 3B 207 0 0
problem (P,), i.e., xT Ax, achieved in every outer-loop iter- 6 267 148 14 0 1814
. . o ) n _ 7 174 81 64 0 186
ation. The algorithm initiates with penalty parameters n'*) = ¢ 147 35 “ 0 0
0,p 1 which will increase after each iteration. 0 ”™ 3 28 0 0
10 109 18 18 0 0
D. Performance Evaluation 8 13 13 0 0
) ) ) 12 66 9 5 0 0
In this section, we aim to evaluate the performance of the 13 35 5 ) 0 0
proposed algorithms in terms of two main aspects: (i) per- 4 47 6 4 0 0
beam demand matching, and (ii) number of beams that would 15 46 3 5 0 0
require implementation of precoding to deal with co-channel 16 32 0 1 0 0
interference. 17 19 0 1 0 0
To begin with, Fig. [5a] shows an example of an illumination 18 9 0 0 0 0
pattern design obtained by implementing Algorithm [3| for 1912 0 0 0 0
a particular demand instance obtained with r = 0.25. In 20 2 0 0 0 0
. . . . 21 3 0 1 0 0
this figure, the white rectangles imply that the corresponding ” . o . 0 0
beams are illuminated while the blacks refer to the inactive ’ . 0 0 0 0

ones in a specific TS. In addition, illumination map of beams
corresponding to TS 15 of this simulation is illustrated in ! The total relative computation for precoding is 1.0000,
Fig. [5b] where the green areas represents the foot-prints of 0.1697, 0.1820, 0.0000 and 0.2829 in the order of
the illuminated beams. SDP, MPMM, Greedy, BH and CH.

Next, we consider the precoding utilization in the proposed
algorithms in Table[[T} [l and[TV] which will have an impact on
the system complexity. In is worth noting that the complexity
for MMSE-based precoding of a cluster of N beams is
estimated as O (N 3) in general [14, 136]. Therefore, we aim



TABLE V: Average Number of Active Beams

SDP MPMM Greedy BH CH
r=0.25 12.62 12.62 12.62 13.06 12.19
r=0.35 18.01 18.01 18.01 16.87 12.19
r=0.45 23.88 23.88 23.88 16.96 12.19
TABLE VI: Jain’s Fairness Index
SDP MPMM Greedy BH CH
r=0.25 0.9892 0.9852 0.9873 0.9842 0.8582
r=0.35 0.9924 0.9916 0.9911 0.9760 0.8582
r=0.45 0.9952 0.9955 0.9952 0.9651 0.8583

to demonstrate the precoding complexity corresponding to
different BH mechanisms by illustrating the number of clusters
with different sizes. In particular, Tables and [IV] show
the distribution of clusters in various sizes at different demand
instance assuming r = 0.25,0.35 and 0.45, respectively. In
addition, based on the numbers given in these tables, the total
computation for precodinj% due a specific BH mechanism can
be estimated as T = >, _,m; - (n;)® where n; represents
the size of clusters and m,; represents the total number of
the corresponding clusters at a demand density instance. At
footnote of these tables, we show the total relative computation
cost for precoding by comparing 7’s, where SDP is set as the
baseline. Particularly, the precoding complexity due to a BH
method is defined as the ratio of its 7 to that of SDP.

For the three proposed algorithms, these tables have demon-
strate that: (i) the number of larger-size clusters is smaller,
(i1) increasing the traffic demand results in the higher number
of larger-size clusters. Interestingly, MPMM method shows its
superior when it on the smaller size of cluster which may result
in less computation for precoding. When r = 0.25, the total
computation for precoding with SDP method is more than 300
times of that of MPMM. In addition, no adjacent beams will
be illuminated simultaneously with BH method, then there is
an upper bound of the maximum number of activated beams.
So the total number of active beams will not change much
with the increase of the density of demands. The CH method
predefines the clusters where the cluster size is 6 or 7.

Next, we analyze the average number of active beams per
TS, which determines the resulting interference as well as the
operating power consumption of the satellite. In principle, one
would like to minimize the number of active beams but making
sure that the demand requirements are met. Table [V] shows the
average number of beams activated per TS for the different
methodologies. For the proposed algorithms, the number of
activated beams per TS is fixed and given by Algorithm [2]
while the conventional methods provide different values. For
the CH technique, the number of active beams is fixed and
does not depend on the demands, which typically results in
an inaccurate demand-matching performance. Regarding the
BH technique, the number of active beams slightly increases
as the demand increases, but the illumination design is limited
to non-adjacent beams, and therefore the increase in number
of active beams is not so prominent. Unlike the benchmarks,
the proposed techniques are more flexible in activating more
number of beams and adapting to the demand increases. The

results in Table [V] match the distribution of of cluster number
with different size depicted in Tables [[I} [ITT] and [TV]

To evaluate the fairness of users’ satisfactory corresponding
to the proposed and benchmark methods, we consider the
Jain’s Fairness Index proposed in [48]]. The definition of the

n 2
index is given as J (y) = (nzfnilyy)z where y; is the chosen
metric and is given by y; = ;; in which ¢; is defined as
1 M ’

37 2oi—1 Rn[t]. This index aims to determine whether users
are receiving a fair demand matching or not. “One” value of
J (y) implies the highest fairness level among all users. The
Jain’s fairness indices achieved by implementing various BH
mechanisms, the proposed and benchmark methods, for dif-
ferent demand factors are given in Table From the results,
it can be concluded that all the three proposed methods can
provide better fair indices than the benchmark, specially in the
high-demand scenarios. In addition, it can be observed that the
CH method stays at around 0.86 independent of the demand
entry. Furthermore, the Jain’s index of the conventional BH
method suffers to maintain a good level of fairness as the
demand increases.

In the subsequent results, we focus our evaluation on the
capabilities of the proposed techniques to match the offered
capacity with the actual demand. In particular, Fig. [6]illustrates
the cumulative distribution function (CDF) of C/D — the ratio
of provided capacity of the beam to its required demand, for 3
different demand factors » = 0.25,0.35 and 0.45. On the top
of Fig. [f] we show the performance of the proposed methods
with respect to the benchmarks. On the bottom of Fig. [6}
the reader can find a zoom-in figures to better discern the
performance of the proposed techniques. The vertical dashed
line indicates the ideal scenario where ¢;/g; = 1, Vi.

First, Fig. [6] confirms that the CH technique suffers from the
limitation of pre-defined clustering shapes, which unavoidable
illuminate low-demand beams with high-demand beams. On
the other hand, the conventional BH is shown to experience
significant degradation when the demand factor increases. This
is because BH falls short in supplying enough capacity due to
its inability to illuminate high-demand areas at once. Focusing
on the proposed techniques, we can see from Fig. [6{b) and
Fig. [f[c) that all three outperform the benchmarks, specially
for moderate and high demand factors. It can also be observed
that SDP-based method provides ¢;/g; > 1 for almost all cases
which implies that this approach can provide the capacity
larger than the demand. It may not be expected in some
specific circumstances which one avoids spending expensive
network resources to serve the users much more than what
satisfies them. The MPMM approach seems to provide a
better trade-off as its curve is closer to the ideal case. The
greedy algorithm provides a performance in between SDP and
MPMM methods, and seems to be closer to SDP solution for
low demand factor while it approaches the MPMM solution
for the high demand factor.

E. Impact of number of TSs in BH window

Herein we evaluate the impact of the parameter M, which
determines the number of TSs within a BH window. In
particular, Fig. [/| evaluates the number of average precoded
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beams within a hopping-window with respect to M shows
the CDF of (¢;/g;) for different values of M. In Fig. [7} we
focus on the MPMM method’s behaviour, which was found
to be the best in demand matching fairness among users in
the previous simulation result. As usual, we evaluate three
different demand factors, i.e. » = 0.25,0.35 and 0.45. From
Fig. [/(a), Fig. [7{b) and Fig. [7(c), it can be observed that a
higher value of M translates into a lower average number
of precoded beams. This is an expected result where as the
more TSs are available, the less number of beams need to
be activated simultaneously. Another interesting result is that
the average number of precoded beams increases with the
users’ demand. Focusing now on the CDF curves, depicted
in Fig. [(d), Fig. [/(e), and Fig. [/(f), we can observe that
the longer window length can push the achievable capacity
closer to the users’ demand. This is because of that the higher
value of M gain the higher degree-of-freedom in selecting the
illuminating TSs for each beam to meet their demand.

F. Impact of imperfect CSI

Simulations above based on perfect CSI which is unrealistic
in practical. In this subsection, following [49], we model the
CSI uncertainty with an additive complex Gaussian error with
parameters (mean, standard deviation) as shown in Table [VII]
Note that (I /N) in Table[VII]denotes the Interference-to-Noise
Ratio, which is a measurement of how strong are the signals
(coming from different beams) to be measured.

Table [VIII] compares the performance with perfect CSI and
imperfect CSI in terms of estimated demand (d,,) and Jain’s
fairness index for different demand densities r, where the
results are averaged for 50 Monte Carlo simulation. The only
difference between each simulation is the channel information,
one of which is with perfect channel and the other is with
estimated channel. First thing we observe is that the estimated
average demand d,, is lower with imperfect CSI. The latter
occurs due to the nullification of certain CSI components
in the imperfect CSI (note that I/N lower than -10dB are
not measured at all). The nullification of the channel matrix



translates in a reduction of the assumed interference levels.
This biased demand estimation could be compensated by
modifying the way we calculate the average demand, maybe
adding a margin, but this is out of the scope of this work. When
comparing the values of Jain’s fairness index in Table [VIII] we
can observe an evident performance loss for the imperfect CSI
case, which is justified essentially by the reduced estimated
demand. Fig. [§] illustrates the demand matching for the same
cases evaluated in Table for completeness. As expected,
the figure shows that the perfect-CSI scheme outperforms the
imperfect-CSI one where it can supplies more beams as their
demands than the other.

G. Impact of Random User Location

The assumption of a single virtual user per beam is per-
formed to abstract the user scheduling. However, the assumed
location of such virtual user may have some impact on the final
performance. For instance, having the virtual user on the beam
edge will not have a strong impact whenever the active beam
is isolated. However, for high-demand instances, we expect the
edge users to impact on the selective precoding and generate
a higher miss-match between the estimated capacity and the
actual supplied capacity. For the latter, estimating the capacity
with a user on the edge will provide lower capacity than a
user in the beam center, therefore requiring more number of
TSs to satisfy the demand.

To evaluate this, we have run some results by randomly
selecting the virtual user location within its —3 dB beamwidth.
For the sake of comparison purposes, for each instance of
random user location, the same beam traffic demand (in bps)
as the user in the beam center is assumed. In addition, there are
50 instances, each of whose demands are randomly generated.
Table compares the performance in terms of demand
satisfaction between random user and centered user at different
density of demand. It can be observed that, as the demand r
increases, the error in the demand matching increases when
non-centered virtual user is considered.

VII. CONCLUSION

In this paper, we propose an analytical framework, a class of
BQP problems, to support dynamic beam illumination design
considering selective precoding for the next generation of
time-flexible satellite broadband systems. Three algorithms are
proposed to solve the problem: (i) SDP-based approach, (ii)
MPMM methodology and (iii) low-complexity greedy algo-
rithm. All three methods target the cross-beam interference
minimization, such that the number of beams that need to be
precoded are kept to minimal in an attempt to reduce system
complexity.

An extensive evaluation has been carried out based on
numerical simulations. The results have shown interesting
gains provided by the proposed algorithm with respect to
the relevant benchmark schemes. In particular, the proposed
framework provides an efficient solution to deal with high-
demand areas while keeping the precoding-related complexity
low.

APPENDIX A
CONVENTIONAL BEAM-HOPPING METHOD

The conventional BH method is one of the methods to
design the illumination pattern and is developed by solving
the following problem

(PConv) :

M
ZZ:IJ;lQC Et'A,

max t s.t.
Xt

)

X (i) + X (§,2) 213,V (i, )

(31a)
1)

1AX < K -1%;, and x; € {0,1§3c)

where X = [x1,X9, -+ ,xp] and B = {(4,) |Q:; = 1, =
1,---,N;j = 1,--- ,N}, Q is the adjacent matrix of the
graph G = (V,€) and ¢ € RY represents the estimated
capacity for all the beam, which is given by where no
inter-beam interference is considered. Herein, G = (V,&)
is defined as follows. Each beam center is considered as a
vertex v € V and any two vertices are connected with an
edge e € £ if those vertices represent geographically adjacent
beams. To solve the problem, one need to estimate the capacity
¢ first and then calculate the set B according to the adjacent
matrix of the graph. In the last, the problem (Pcony) could be
solved by advanced optimization toolboxes such as CVX[41]].
After calculating the illumination pattern X, one could exactly
calculate the capacity for each beam.

APPENDIX B
CONVERGENCE OF MM PROCEDURE
The Hessian matrix of f (x|nl¥, pl*l) is given by

i (X\W[ZLPW) = A+al-Diag (2n¥], 2”%}N) +6pl 0P
(32)
where Diag (*) represents the diagonal matrix operator, and

& = Diag((m—3)" o (oan — 3)°)

2
quences {pl1} and [n¥)]); = Z[,i_:% pl¥l xgk] — (IEH) are
bounded, then Ja > ao such that V2 £ (x|nll, pll) = 0. So
f (X\nm, pm) is convex. Additionally, the set ) is convex.

Therefore, the resulting stationary point of the problem is the
global optimum point.

Since the se-
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