
73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright © 2022 by the International Astronautical Federation (IAF). All rights reserved.

IAC–22–C1.3.9

Pose Estimation of a Known Texture-Less Space Target using Convolutional Neural Networks

Arunkumar Rathinama*, Vincent Gaudillièrea, Leo Paulya, Djamila Aouadaa

a Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg,
arunkumar.rathinam@uni.lu
* Corresponding author

Abstract
Orbital debris removal and On-orbit Servicing, Assembly and Manufacturing [OSAM] are the main areas for future
robotic space missions. To achieve intelligence and autonomy in these missions and to carry out robot operations, it
is essential to have autonomous guidance and navigation, especially vision-based navigation. With recent advances in
machine learning, the state-of-the-art Deep Learning [DL] approaches for object detection, and camera pose estima-
tion have advanced to be on par with classical approaches and can be used for target pose estimation during relative
navigation scenarios. The state-of-the-art DL-based spacecraft pose estimation approaches are suitable for any known
target with significant surface textures. However, it is less applicable in a scenario where the target is a texture-less and
symmetric object like rocket nozzles. This paper investigates a novel ellipsoid-based approach combined with convo-
lutional neural networks for texture-less space object pose estimation. Also, this paper presents the dataset for a new
texture-less space target, an apogee kick motor, which is used for the study. It includes the synthetic images generated
from the simulator developed for rendering synthetic space imagery.
Keywords:spacecraft pose estimation; ellipsoidal modelling; akm dataset; textureless pose estimation

1. Introduction
Over the last two decades, vision-based navigation

(VBN) for spacecraft has been pursued to achieve auton-
omy in mission scenarios where higher time delays restrict
the ground segment from having direct control over the
spacecraft. With recent technological advancements com-
bined with increased reliability of the software systems,
the VBNs are being adapted for a wide range of on-orbit
operations to increase autonomy. For example, ISS resup-
ply missions are a well-known example of VBN with a
cooperative target, where the target vehicle and the ap-
proaching spacecraft (i.e. servicer or chaser) can share
information with each other. However, when the target
is non-cooperative such as a defunct satellite, considering
the mission scenario of On-Orbit Servicing (OOS) and Ac-
tive Debris Removal (ADR), the navigation scenario poses
several challenges to the Visual GNC systems. OOS and
ADR are considered key capabilities for spaceflight in this
century, and multiple technology demonstration missions
are either carried out or planned for the future, including
PROBA-3 [1] by ESA and PRISMA [2] by OHB Swe-
den. The first commercial OOS of a geostationary satel-
lite (IntelSat-901) was launched by Space Logistics using
the MEV-1 (Mission Extension Vehicle) satellite platform.
MEV-1 docked with the IntelSat satellite, re-positioned it
to the designated spot, and continues to provide in-orbit
station-keeping services [3].

With more complex missions, the modern Guidance,

Navigation, and Control (GNC) solutions need to be more
autonomous to allow the robotic systems to perform au-
tonomous relative navigation, rendezvous, and robotic ac-
tions like capturing the target or debris ∗. ADR mission
may include removing some of the existing launch vehi-
cle parts to clean up the highly sought orbital space or to
remove the threat to space assets. With the above mis-
sion scenarios, any proximity operation requires on-orbit
relative navigation with respect to the target. For space-
craft relative navigation operations, the fundamental re-
quirement is the real-time estimation of the target’s posi-
tion and orientation (i.e. pose). This enables the chaser
or servicer spacecraft to generate trajectory and perform
control updates. In the above scenarios, the target is usu-
ally known but non-cooperative. During the approach se-
quence in every orbital robotic operation, the GNC system
needs an estimate of the target’s six Degree-of-Freedom
(DOF) pose, i.e., the relative position and attitude repre-
sent key information for the navigation system. Monocu-
lar cameras are widely preferred over other sensors (such
as LIDARs and RADARs) for relative navigation scenar-
ios. This is mainly due to their relative simplicity, small
size, low weight and power requirements and can be easily
adapted to a wide range of spacecraft configurations. The
limitations of 2D images from monocular cameras include

∗https://spaceflight101.com/
re-entry-detla-ii-payload-assist-module/
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no depth measurements and sensitivity to adverse illumi-
nation conditions.

Deep Learning [DL] approaches for spacecraft pose
estimation have gained interest in the last few years [4],
[5], [6], [7]. The state-of-art approaches are suitable for
a known target spacecraft where they have significant tex-
tures on the surface. However, it is less suitable when the
target is a texture-less and symmetric object like rocket
nozzles. For example, ADR missions targeting spent
rocket stages or apogee kick motors require an approach
that estimates the pose without using keypoints.

In this work, we present a dataset for texture-less space
targets, i.e. Apogee Kick Motor (AKM), with relative pose
labels. Further, we investigate a novel pose estimation
framework for combining position estimation using a con-
volution neural network and inferring the orientation infor-
mation from the estimated position information using el-
lipsoid parameters. The paper is arranged as follows: Sec-
tion 2 presents background on related spacecraft pose es-
timation literature works. Section 3 presents the details on
the AKM dataset, followed by the description of the Pose
Estimation Framework based on an ellipsoidal model in
section 4. Section 5 present the details of different exper-
iments and is followed by the analysis of results in terms
of orientation accuracies in section 6. Section 7 presents
the conclusion and future work.

2. Related Works
Recent advancements in deep learning and the popu-

larity of the ESA’s Spacecraft Pose Estimation Challenges
† enabled new developments with the state-of-the-art per-
formance in the visual pose estimation algorithms. Several
research works and their results are published based on this
competition, including Spacecraft Pose Network (SPN)
[6], Pose Estimation with Deep Landmark Regression [5],
Pose Estimation with soft classification [7], segmentation
driven approach [8]. Typical deep-learning-based pose es-
timation for space targets can be classified into two cat-
egories. They are a). End-to-End or Direct approaches
b). Hybrid approaches using deep learning in combina-
tion with PnP. The direct approach estimates the pose from
a single image, which can be done by directly regressing
the position and the unit quaternion vectors [9]. However,
previous studies indicate that the orientation regression,
i.e. a norm-based loss of unit quaternions, doesn’t pro-
vide good estimates and results in a larger error than the
position estimates[7]. This behaviour is attributed to the
loss function and its inability to represent the actual angu-
lar distance for any orientation representation. A second
approach is a keypoint-based approach [5], [10] that relies
on estimating interesting target features in the image and

†https://kelvins.esa.int/

is followed using PnP to solve the problem of estimating
the target pose. One of the challenges in both approaches
is that they heavily rely on the texture of the spacecraft.
The algorithms based on the two approaches are mainly
validated on the two standard datasets, SPEED [11] and
SPEED+[12].

Pose estimation for textureless space objects by con-
tour points matching was investigated in [13], and the ap-
proach utilizes the shape and contour information. Usage
of geometric factors was investigated to establish 2D–3D
correspondences to calculate confidence probabilities and
construct a weight matrix to perform pose estimation.
Other works in the field of computer vision including [14],
[15], [16] tackles the problem of texture-less pose estima-
tion for objects used in general purpose applications.

3. AKM Dataset
A brief review of the currently available datasets for

spacecraft or space objects was summarized in our pre-
vious work [17]. One of the limitations of the currently
available datasets is that they don’t tackle the problem of
the textureless object. The target in this dataset addresses
two specific characteristics, they are a). texture-less b).
rotational symmetry.

Fig. 1: Sample images of Solid Rocket Motor (Apogee
Kick Motor) Left: STAR 48 Right: STAR 24

The target object in this dataset is the AKM motor,
similar to the STAR 24 motor as shown in fig. 1 (Ref:
‡), a radially symmetric and textureless object. The mo-
tor dimensions include a diameter of 24.5 inches (0.62 m)
and a length of 42.0 (1.0668 m). The dataset is generated
using Blender with lighting conditions similar to the or-
bital environment. A brief review of different simulators

‡https://www.northropgrumman.com/wp-content/
uploads/NG-Propulsion-Products-Catalog.pdf
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available for synthetic dataset generation for space objects
in orbital lighting conditions is summarised in [18]. The
dataset contains 10000 images with an image size of 1024
x 1024 pixels and is generated with a camera model hav-
ing a field of view of 55 degrees. Sample images from the
AKM dataset are shown below in fig. 2. The target po-
sitions are obtained from a uniform random distribution
between 1m and 10 m, and orientations are obtained from
a uniform random distribution. The dataset is available in
[19] 10.5281/zenodo.7043325.

Fig. 2: Sample images from the AKM dataset

4. Pose Estimation Framework
Our model-based pose estimation method leverages an

ellipsoidal approximation of the spacecraft. Therefore, it
relies on a compact and generic model able to encapsu-
late the object’s position, attitude and coarse dimensions
while supporting analytical relations between these quan-
tities. In particular, given the size of the ellipsoid (known
model), one can derive the spacecraft attitude from its lo-
cation up to the model symmetries [20]. Moreover (even if
not in the scope of this paper), detecting the ellipsoid pro-
jection in the picture (i.e. ellipse) does not require any low-
level image analysis (e.g. keypoint detection), thus making
the method suitable at longer ranges and on texture-less
targets.

4.1 Ellipsoidal Modeling
In Euclidean geometry, and following the notations in-

troduced in [21], an ellipsoid is characterised by its centre
position C = (Cx, Cy, Cz)

T ∈ R3 and a 3×3 symmetric

Fig. 3: Illustrating the projection plane, projection centre,
ellipsoid and projected ellipse.

positive definite matrix

A = R

1/a2 0 0
0 1/b2 0
0 0 1/c2

R⊤

encompassing its orientation R and radii a, b, c (all posi-
tive), so that its equation is in the form

(X−C)⊤A(X−C) = 1, where X ∈ R3.

Considering a camera with centre E whose intrinsic
parameters are known, and given the ellipse resulting from
the ellipsoid projection into the image, one can generate
the so-called backprojection cone from the lines passing
throughE and any point on the ellipse (see Fig. 3). A 3×3
symmetric matrix characterises the shape and orientation
of this cone denoted B′, so that its equation is

(X−E)⊤B′(X−E) = 0.

Then, denoting ∆ the vector connecting the ellipsoid
centre C to the camera centre E, the cone of vertex E tan-
gent to the ellipsoid, referred to as the projection cone, is
characterised by the 3× 3 symmetric matrix

B = A∆∆⊤A+ (1−∆⊤A∆)A,

where B plays the same role as B′ in the corresponding
cone equation [21].

Finally, the projection and back-projection cones be-
ing aligned, i.e. there exist a scalar σ such that B =
σB′ [21], the projection equation linking the ellipsoid, el-
lipse and intrinsic camera parameters is as follows:

A∆∆⊤A+ µA = σB′, (1)
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where µ = 1−∆⊤A∆.
It has been demonstrated that, given the size of the el-

lipsoid (i.e. given a, b, c), σ, µ and then A can be analyt-
ically retrieved from ∆ and B′ [20]. In other words, the
orientation of the ellipsoid can be derived from its posi-
tion, given its size, its projected ellipse and the parameters
of the projection (camera intrinsics). This calculation is
detailed in Section 4.3.1.

4.2 Position Regression
We use a CNN regression model with a

ResNet152 [22] backbone to regress the coordinates
of the ellipsoid centre (Cx, Cy, Cz) directly from the
pictures. The regression model consists of 152 residual
layers, followed by a fully connected layer to regress the
3D coordinates. The network is optimised with an SGD
solver [23] using the Mean Square Error (MSE) objective
loss function. The models are trained for a total of 120
epochs. An initial learning rate of 1e−3 is used and is
reduced by a factor of 0.1 after every 48 (40% of total)
epochs.

4.3 Orientation Derivation
Given the regressed ellipsoid position, one can ana-

lytically compute the corresponding orientation. Such a
derivation is presented in Section 4.3.1. Unfortunately,
this process is sensitive to noise on the position, even when
all the other parameters (i.e. intrinsics, ellipse, ellipsoid
size) are known (see Section 6 for more detailed sensitiv-
ity analysis). For that, we propose to learn the closed-form
solution using a MultiLayer Perceptron (MLP) and further
propose to use a so-called Positive Definite (PD) MLP bet-
ter to exploit the properties of the A matrix. These strate-
gies are presented in Section 4.3.2.

4.3.1 Closed-Form Solution
The scalar parameter σ, involved in Equation (1),

is linked to the camera-ellipsoid distance ∥∆∥ through
Equation (2) [20]:(

tr(B′−1)
)2

σ =
det(A)

det(B′)

(
tr(A−1)− ∥∆∥2

)2 . (2)

It is important reminding that, in our problem, A
eigenvalues are known, and consequently, the same holds
for A−1. Their determinants (det) and traces (tr) are thus
also known. Moreover, B′ is fully known, since camera
intrinsics are known and since detecting the ellipse is not
in the scope of this paper (i.e. we consider ground-truth
projections of the ellipsoidal model as ellipse detection).
Therefore, σ can be derived from ∥∆∥ using Equation (2).

Then, µ can be retrieved from σ using Equation
(3) [20]:

µ = −

√
det(B′)

det(A)
σ3. (3)

Finally, A is computed according to Equation (4) [20]:

A =
σ

µ

(
B′ − σB′∆∆⊤B′) . (4)

The ellipsoid orientation is then obtained by eigen-
value decomposition.

For more information, please refer to [20] (Section
5.2).

4.3.2 MLP-based Regression
We created a simple multi-layer perceptron to regress

the orientation parameters, in the form of the upper tri-
angular part of A (symmetric), from the ellipse and cam-
era intrinsic parameters, encoded in the upper triangular
part of B′ (symmetric), and from the regressed position
C. There are 6 + 3 = 9 parameters as input and 6 param-
eters as output in total.

PD-MLP regression To improve the network’s effi-
ciency and to constrain the loss functions based on our
prior knowledge about A, we tuned the network layers
and defined custom loss functions. In detail, the final
layer of the network is adjusted to confirm the Symmet-
ric Positive Definite (SPD) property of the matrix using
SPD enforcement layers § [24]. The loss function (LWS)
was adapted from the Wasserstein loss, with only repre-
sentations from the covariance term. More precisely, let
µ1 = N (m1, C1) and µ2 = N (m2, C2) be two normal
distributions on Rn, with respective expected values m1,
m2 ∈ Rn and symmetric positive definite covariance ma-
tricesC1, C2 ∈ Rn×n. Then the 2-Wasserstein divergence
between µ1 and µ2 is given by

W2(µ1, µ2)
2 =

∥m1 −m2∥22 + tr
(
C1 + C2 − 2

(
C

1/2
2 C1C

1/2
2

)1/2).
Our loss is, therefore

LWS = tr
(
Agt +Apred − 2

(
Agt

1/2 Apred Agt
1/2

)1/2),
(5)

where Apred refers to the predicted matrix and Agt to the
ground-truth one.

5. Experiments
We have tested our method on two spacecraft pose es-

timation datasets. The first one is the AKM Dataset, in-
troduced in Section 2. The second one is the SPEED+
Dataset [12], which was introduced for the purpose of an
international challenge¶. The two sets of experiments are
presented in Sections 5.1 and 5.2.

§https://github.com/LLNL/spdlayers
¶https://kelvins.esa.int/pose-estimation-2021/home/
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5.1 AKM Dataset Experiments
Since the AKM object is not textured, keypoint-

based pose estimation methods are likely to fail in most
cases. Moreover, its axial symmetry makes its attitude
ambiguous, leading direct regression methods such as
PoseNet [25] to failure. The results of the AKM dataset
experiments are summarised in table 1.

The maximum error is 90◦ due to the ellipsoidal model
symmetries, i.e. an axis and a plane orthogonal to that
axis.

Fig. 4: AKM Dataset: position error histogram. Posi-
tions are obtained by direct CNN regression. Mean:
9.97cm; median: 8.48cm; standard deviation: 5.92cm.

Fig. 5: AKM Dataset: orientation error histogram. Ori-
entations are analytically derived from regressed po-
sitions using ellipsoidal model equations. Mean:
50.03◦; median: 50.91◦; standard deviation: 22.16◦.

Fig. 6: AKM Dataset: orientation error histogram. Ori-
entations are predicted from regressed positions using
a standard MLP. Mean: 23.45◦; median: 21.84◦; stan-
dard deviation: 15.52◦.

Fig. 7: AKM Dataset: orientation error histogram. Ori-
entations are predicted from regressed positions us-
ing a Positive Definite MLP. Mean: 23.99◦; median:
19.85◦; standard deviation: 17.59◦.

5.2 SPEED+ Dataset Experiments
The SPEED+ dataset [12] contains 59960 synthetic

images of the TANGO spacecraft∗∗ along with their pose
labels. The dataset is split into training/test sets following
an 80%/20% repartition. To build the validation subset,
we apply another 80%/20% split to the training set. As a
result, 38374 images were used for training, 9594 for val-
idation and 11992 for testing. The results of the SPEED+
dataset experiments are summarised in table 2.

∗∗https://www.eoportal.org/satellite-missions/
prisma-prototype
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Fig. 8: Reprojections of the ellipsoid into two images from
the AKM Dataset, based on the regressed or ground-
truth pose. Red-predicted ellipse; Green-ground-truth
ellipse.

Approach mean median std. dev.
ResNet (pos.) 9.97cm 8.48cm 5.92cm

Closed-form (ori.) 50.03◦ 50.91◦ 22.16◦
Standard MLP (ori.) 23.45◦ 21.84◦ 15.52◦

PD MLP (ori.) 23.99◦ 19.85◦ 17.59◦

PoseNet (pos.) [25] 30.66cm 27.06cm 17.36cm
PoseNet (ori.) [25] 105.83◦ 86.33◦ 72.84◦

Table 1: Summary of position (pos.) and orientation
(ori.) errors based on different approaches presented
for AKM dataset.

Approach mean median std. dev.
ResNet (pos.) 12.52cm 9.54cm 11.16cm

Closed-form (ori.) 47.86◦ 46.55◦ 25.39◦
Standard MLP (ori.) 45.63◦ 42.99◦ 25.84◦

PD MLP (ori.) 49.40◦ 47.61◦ 24.43◦

Table 2: Summary of position (pos.) and orientation
(ori.) errors based on different approaches presented
for SPEED+ dataset.

6. Orientation Accuracy Analysis
In terms of orientation accuracy, the reported results

are poor. This section is to analyse the reasons why.

6.1 Analytical Derivation
The analytical derivation of the orientation (A) from

the position (∥∆∥), described in Section 4.3, consists in
a nutshell in computing the scalar σ (see Equation (2)),
then µ (Equation (3)) and finally A (Equation (4)). How-
ever, one can observe the norm of the prediction ∥∆∥ is
raised to the power of 4 to obtain σ, which is itself raised to
the power of 1.5 to compute µ. This drastically heightens
the error resulting from the regression of ∆. Moreover,
the matrix ∆∆⊤ is made of the pairwise products be-
tween ∆ elements, here again, multiplying the error. This
makes the analytical orientation derivation highly sensi-
tive to noise on the position prediction.

6.2 MLP-based regression
To circumvent the difficulties mentioned above, we

proposed to learn position-to-orientation mapping. How-
ever, the results are also not convincing. We believe the
reasons for that lie in the problem structure itself. Indeed,
given a single image, there is already an infinite number
of ellipsoids that project into the given ellipse [20] (see
Figure 9). However, our datasets showcase one solution
per image, i.e., the one corresponding to the spacecraft
ground-truth pose. Therefore, the network will likely learn
a mapping between the ellipse and an average solution to
the ellipsoid pose estimation problem (1). One argument
to support this explanation is that the performance of the
MLP is almost identical whether we input the ground-truth
position or the predicted one (see Figures 7 and 10).

7. Conclusion
In this paper, we investigate the use of a generic 3D

ellipsoidal model for texture-less spacecraft pose estima-
tion. Despite the interesting mathematical properties of
the model, we demonstrate that the set of solutions is large
and highly sensitive to noise. Future work will therefore
focus on expanding the data to cover the space of solu-
tions better, and on considering a particular case of ellip-

∗https://members.loria.fr/VGaudilliere/files/Ellipsoid.mp4
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Fig. 9: Loci of the centres (black) and principal axes end-
points (red, green, blue) of the ellipsoids solutions of
Equation (1) for a given image. A video is available††.

Fig. 10: AKM Dataset: orientation error histogram.
Orientations are predicted from groundtruth posi-
tions using a Positive Definite MLP. Mean: 24.01◦;
median: 19.85◦; standard deviation: 17.60◦. This Fig-
ure is to be compared with Fig. 7.

soid having an axis of symmetry (spheroid), since then the
pose estimation problem has only two solutions [20].
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