
Evolutionary Algorithm-based Adversarial Attacks Against

Image Classification Convolutional Neural Networks

Raluca Ioana Chitic

University of Luxembourg, Department of Computer Science

Date of defence

Jury
Prof. Dr. Pascal Bouvry - University of Luxembourg

Prof. Dr. Louis Goubin - University of Versailles - Paris Saclay
Prof. Dr. Franck Leprévost (supervisor) - University of Luxembourg

Prof. Dr. Emeritus Jean-Charles Pomerol - Sorbonne University, President
d’Agoranov

Prof. Dr. Ulrich Sorger (president) - University of Luxembourg

Acknowledgements

I am grateful to my supervisor for the very nice professional relationship we have created, for being
actively involved throughout all stages of my doctoral studies, both guiding me academically and
giving practical support in all aspects of the PhD. I also have deep appreciation for my colleague
Nicolas Bernard, whose vast science knowledge always led to interesting conversations, and whom
I could always count on to receive valuable feedback. In addition, I thank my colleague Ali Topal,
with whom I have had numerous insightful discussions and enjoyed a very pleasant collaboration.
I would also like to thank my other co-authors Nathan Deridder and Elmir Avdusinovic, whose
quality work led to some of the results presented in this thesis. Additionally, I appreciate the
continuous useful feedback I have received from my CET members Ulrich Sorger and Pascal
Bouvry, as well as the positive atmosphere they created at all evaluations. Moreover, I thank my
jury members Louis Goubin and Jean-Charles Pomerol for expressing an interest in this work
and accepting to be part of the PhD evaluation. Last but not least, I would like to express my
gratitude to Speedy Graphito and to Bernard Utudjian for the provision of two artistic images
used in the feasibility study of Chapter 5, Subsection 5.4, and for their interest in this work.

Abstract

The remarkable performance that Convolutional Neural Networks (CNNs) achieved in automatic
image classification has led to their adoption in safety-critical scenarios such as autonomous cars,
traffic control, manufacturing, medical devices and avionics. It is thus essential that CNNs can
be trusted. However, a line of research has developed into the field of adversarial attacks, whose
purpose is to expose CNNs’ vulnerabilities. An adversarial attack consists of taking an original
image A that is classified by a CNN C as belonging to a category ca and modifying it to create a
new, adversarial image D, that is humanly indistinguishable from A, and classified in a different
category, potentially chosen in advance.

This thesis introduces a practical black-box adversarial attack based on an evolutionary algo-
rithm (EA). We show that our attack is highly efficient for various attack scenarios performed
on multiple CNNs trained on different datasets. Moreover, the attack is made robust to a large
series of image filters. For a better understanding of the EA attack, we also analyze it from dif-
ferent perspectives such as noise frequency, transferability, behaviour at local regions and texture
change, all while comparing it with the BIM white-box attack.

To summarize, this work shows that our EA-based attack is flexible, efficient and robust.

Contents

1 Introduction 4

2 Background 8
2.1 Convolutional Neural Networks . 8
2.2 Adversarial attacks on CNNs . 10
2.3 Evolutionary algorithms . 11

3 Attack Method 13
3.1 Common features between EAtarget

d and EAflat
d 13

3.2 Image similarity . 15
3.3 The fitness function of EAtarget

d . 16

3.4 The fitness function of EAflat
d . 16

3.5 Motivation for EAd’s design: Adapted EA” versus ”classic EA” 17

4 Attack Performance 21
4.1 Target and flat scenarios: attack against VGG16 trained on Cifar10 21

4.1.1 Dataset, Neural Network Architecture and Parameters of the two EAs . . 21
4.1.2 Running EAtarget

d : Examples, Results and Discussion 23

4.1.3 Running EAflat
d : Examples, Results and Discussion 26

4.1.4 Summary of the outcomes . 31
4.2 Target scenario: attack against 10 CNNs trained on ImageNet 32

4.2.1 Choice of the EA’s population size . 32
4.2.2 One EA versus 10 CNNs: Methodology 34
4.2.3 One EA versus 10 CNNs: Results . 37
4.2.4 Summary of the outcomes . 41

5 Attack on High Resolution Images: Method and Performance 43
5.1 Introduction . 43
5.2 The target scenario lifted to H . 45
5.3 Attack strategy for the target scenario on HR images 46

5.3.1 Construction of adversarial images in H 46
5.3.2 Indicators: the loss function L and L2-distances 47
5.3.3 Static tests with non-adversarial images natively in H 48

5.4 Feasibility study . 48
5.4.1 Selection of ρ and λ . 49
5.4.2 EAtarget,C parameters . 50
5.4.3 Running the strategy to get adversarial images with the EA 50
5.4.4 Visual quality . 53

1

5.5 Direct attack in the H domain . 54
5.6 Summary of the outcomes . 58

6 Robustness of Attack Against Filters 59
6.1 Introduction . 59
6.2 EAtarget,C parameters . 61
6.3 The adversarial images obtained by EAtarget,VGG-16

L2
. 62

6.3.1 With one ancestor per category . 62
6.3.2 With 50 distinct ancestors per category 63

6.4 Robustness of EAtarget,VGG-16
L2

against filters . 65
6.4.1 Selection of filters . 65
6.4.2 VGG16’s classification of filtered images 66
6.4.3 Indicators addressing the robustness of filtered adversarials 66
6.4.4 Robustness analysis of the adversarial Da,t(Aa) against filters 67

6.5 The filter-enhanced F -fitness function . 69
6.5.1 Running EAtarget,VGG-16

L2,F5
with one ancestor per category 69

6.5.2 Running EAtarget,VGG-16
L2,F5

with 50 ancestors per category 70

6.5.3 Robustness of DF5
a,t(Aa) against VGG16◦Fk for all filters 71

6.6 Summary of the outcomes . 72

7 Comparative Analysis of the EA and BIM Adversarial Attacks 74
7.1 Introduction . 74
7.2 Adversarial images created by BIM and by EAtarget,C 76

7.2.1 Selected CNNs, ancestor and target categories 76
7.2.2 Design of BIM . 76
7.2.3 Creation of 0.999-strong adversarial images by EAtarget,C and by BIM . . 77

7.3 Local effect of the adversarial noise on the target CNN 77
7.3.1 Is each individual patch adversarial? . 78
7.3.2 Is the global random aggregation of local adversarial effect sufficient to fool

the CNNs? . 79
7.3.3 Summary of the outcomes . 80

7.4 Adversarial noise visualization and frequency analysis 80
7.4.1 Adversarial noise visualization . 80
7.4.2 Assessment of the frequencies present in the adversarial noise 81
7.4.3 Band-stop filtering shuffled and unshuffled images: which frequencies make

an image adversarial? . 82
7.4.4 Summary of the outcomes . 84

7.5 Transferability and texture bias . 84
7.5.1 Transferability of adversarial images between the 10 CNNs 84
7.5.2 How does CNNs’ texture bias influence transferability? 84
7.5.3 How does texture change relate to adversarial impact on the CNNs? . . . 85
7.5.4 Summary of the outcomes . 87

7.6 Transferability of the adversarial noise at smaller image regions 87
7.6.1 Generic versus specific direction of the adversarial noise 88
7.6.2 Effects of shuffling on adversarial images’ transferability 89
7.6.3 Summary of the outcomes . 91

7.7 Penultimate layer activations with adversarial images 91
7.7.1 Relevance of analyzing the activation of ct- and of ca-related units 92
7.7.2 How are the CNNs’ classification layers affected by adversarial images? . 92

Page 2 of 147

7.7.3 Summary of the outcomes . 95
7.8 Summary of the outcomes . 95

8 Conclusion and Perspectives 97

9 Appendix 99
9.1 Target and flat scenarios: Attack against VGG16 trained on Cifar10 100

9.1.1 Target scenario . 100
9.1.2 Flat scenario . 101

9.2 Target scenario: attack against 10 CNNs trained on ImageNet 105
9.2.1 Ancestor images . 106
9.2.2 Adversarial images . 109

9.3 Attack on High Resolution Images: Method and Performance 114
9.3.1 A . 114
9.3.2 B . 116
9.3.3 C . 119

9.4 Robustness of Attack Against Filters . 122
9.4.1 Without filters . 123
9.4.2 With filters . 130

9.5 Comparative Analysis of the EA and BIM Adversarial Attacks 133
9.5.1 Ancestor and adversarial images . 133
9.5.2 Local effect of adversarial noise on target CNNs 136
9.5.3 Adversarial noise visualization and frequency analysis 137
9.5.4 Transferability and texture bias . 141
9.5.5 Effects of shuffling on the transferability of the adversarial images 142
9.5.6 Layer activations . 143

Page 3 of 147

Chapter 1

Introduction

Trained Convolutional Neural Networks (CNNs) are one of the dominant tools for automatic
object recognition [58]. Their success has led to their use in safety-critical scenarios, such as au-
tonomous cars [20], traffic control, manufacturing, medical devices and avionics [50]. However,
with such success comes high responsibility. It is therefore essential to rely on very robust CNNs.
Recent research into CNN robustness has proven that these algorithms are actually vulnerable
to slight perturbations in the input. This line of research has developed into the broad field of
adversarial attacks (see [9] for a survey on this subject).

The ingredients of an adversarial attack are a given CNN C, which is trained to classify images,
and an ancestor image A that is classified by C as belonging to a category ca. With these in-
gredients at hand, an adversarial attack consists in perturbing A to create an adversarial image
D(A). The creation of a successful attack imposes two main requirements, namely that C classi-
fies D(A) as a category cd that differs from ca, and that D(A) is humanly indistinguishable from
A. Although the latter requirement is not systematically met (see [55, 32, 46]), we respect this
requirement in the present thesis.

A multitude of attacks have been implemented in prior work, with vastly differing strategies,
assumptions and goals. One way of differentiating between attacks is based on the criterion of
the adversary’s knowledge. According to this, attacks can be sorted into white-box, gray-box,
or black-box attacks [9].

The majority of existing attacks are white-box methods (such as [26], [36], [42]), meaning that
they require complete information about the attacked CNN, such as its architecture and pa-
rameters. Although obtaining this information can be achieved in a research environment, it is
unlikely in a real-life scenario, where the attacker only has access to the model’s output.

Gray-box attacks are named as such due to the fact that they are a combination of white-box
and black-box attack methods. More specifically, gray-box attacks begin by using other already
established white-box attacks to create several adversarial images and by gathering the generated
adversarial images into a dataset. Then, in the black-box part of the attack, the attacker no
longer needs any information about the CNN, since the generation of further adversarial images is
done by simply selecting points from the distribution of the above-created dataset. As the points
are selected from a distribution of adversarial images, it is expected that the chosen points also
represent images that are adversarial. Even if gray-box attacks are not knowledge-demanding

4

at all stages, it is impossible to perform this type of attack without having all CNN information
available. Said otherwise, the requirements of gray-box attacks are of a similar nature as those
of white-box attacks.

In contrast, black-box attacks only require access to the CNN’s output, which is an assumption
that is closer to what one can expect in real life. Depending on the employed method, there
are at least three possible approaches of circumnavigating the lack of knowledge available to the
attacker.

One approach consists in using a second, surrogate CNN. Although the surrogate model’s pa-
rameters and architecture cannot be the same as those of the CNN targeted by the attack, they
perform the same task of image classification. The method begins by inputting several images
to the targeted CNN and extracting their respective predicted output. All the images and their
respective predictions are gathered into a dataset that reflects the targeted model’s behaviour.
The next step is to create the new, surrogate CNN and train it with the dataset obtained above.
The purpose of this new CNN is to be a replica of the targeted CNN. Since the parameters of
the newly designed CNN are known, it can be attacked through white-box methods. Finally,
the adversarial examples generated for the replica model can be sent to the targeted CNN. This
method counts on the transferability of adversarial examples, meaning that an adversarial image
created for one CNN can also fool a different CNN [9]. Needless to mention, this method is not
straight-forward, as it requires gathering a training dataset and training a different CNN.

Another black-box approach is illustrated by the Zeroth Order Optimization (ZOO) [10]. This
type of attacks ultimately use white-box methods to create adversarial images. However, to use
a white-box method, one must have access to the CNN parameters in order to calculate by how
much the original image has to be perturbed to reach a certain loss in the CNN’s predictions. In
other words, one needs to calculate the gradient of the model with respect to the input. Since
the ZOO method cannot access the CNN parameters, it attempts to approximate the gradients.
It does this by making slight modifications in the input and by noting the change produced in
the predicted ca probability. Once the gradient is approximated, the attack creates adversarial
images by using other already established white-box methods. Therefore, this attack still needs
to obtain the model’s gradient with respect to the input in order to function.

Finally, there is a sub-group of black-box attacks which do not have, nor attempt to approximate
the model’s gradients. This sub-group includes attacks such as the One-Pixel attack [55], Few-
Pixel attack [46] and the Scratch attack [32]. However, although they have minimal requirements
in terms of knowledge of the CNN parameters, they all have one major drawback. The malicious
images they produce have very visible perturbations.

Another criterion for the differentiation of adversarial attacks (be they white-box, gray-box, or
black-box) is their goal. Depending on whether the attacker interferes in the training phase or
in the inference phase of a CNN, the attack is called a poisoning attack or an evasion attack,
respectively [9]. Since in real-life scenarios attackers only have access to the already trained
model, evasion attacks are more practical. Based on the attacker’s goal, an additional separation
factor refers to the category towards which the attacker attempts to send the image. In case of
untargeted attacks, the only imposed condition is that D no longer belongs to ca, according to C.
Meanwhile, targeted attacks involve choosing a particular target class ct ̸= ca and determining
C to classify D precisely in ct. Since targeted attacks are much more restrictive with respect to
the adversarial image’s classification, they are more challenging than untargeted attacks.

Page 5 of 147

This study first proposes an alternative to the above works in the form of an evolutionary algo-
rithm (EA)-based adversarial attack which falls under the category of black-box, evasion attacks.
Our attack not only satisfies all requirements for a successful attack, but has minimal information
requirements and is able to complete the more challenging task of producing targeted adversarial
images. Moreover, the EA-based attack is highly practical, since it can be applied on any image
to fool any CNN, and requires neither training other models, nor extracting the gradient of the
attacked CNN with respect to the input.

This thesis, which is a continuation of the research program expressed in [6] and [5], is essentially
made of 4 published papers ([11, 13, 12, 15]) and 3 submitted papers ([57, 38, 14]). The goal of
this work is firstly to create the attack and measure its performance in typical circumstances.
Secondly, the aspect of the algorithm’s robustness is covered, by evaluating the degree to which
the attack remains successful when the targeted CNN is protected by image filters. Additionally,
in a move towards more challenging images, the thesis explores methods of applying the attack
to create high-resolution adversarial images. Lastly, the goal of this thesis is also to understand
the underlying manner in which the EA-based attack manages to fool models, in an attempt to
shed some light on CNNs’ vulnerabilities.

The thesis is organized as follows. After Chapter 2 gives a brief introduction to the concepts of
CNNs, adversarial attacks and EAs, the details of the proposed method are given in Chapter 3,
which is largely based on our papers [11, 13]. Apart from presenting and motivating the main
attack method, Chapter 3 details the algorithm variants that are created and used in this thesis.

The performance of the EA-based attack is then measured in Chapter 4. Firstly, both the tar-
geted and the flat versions of the EA-based attack are tested on the VGG16 [24] CNN trained on
Cifar10 [34]. This part is based on the results exposed in [11, 13], which is an extension of our
paper [11]. Then, the EA-based attack is evaluated against 10 different CNNs trained on Ima-
geNet [18]. This part is extracted from our submitted paper [57]. Out of 1000 tests performed
with 10 CNNs and 100 ancestor images, the targeted, good enough version of our attack (see
Section 2.2 for explanations on good enough attacks) was successful in 96.8% of cases, requiring
an average of 2712 generations and 16 minutes of computing time.

The following Chapter 5 (which is linked to our submitted paper [38]) evaluates the difficulty of
transitioning from the attack performed on low-resolution images to the more complex situation
of attacking high-resolution images. It identifies two possible methods of attacking large-sized
images and evaluates both of them experimentally by using 10 different CNNs trained on Ima-
geNet. One of the methods, in particular, identifies the best degradation function to transform
high-resolution images into low-resolution images and the best interpolation function to perform
the inverse process. These functions are then used as part of the EA-based attack on high-
resolution images, which is proved to have a success rate of 90%.

Then, Chapter 6 (which is linked to our papers [12, 15]) explores whether image filters placed in
front of the CNN input would protect the CNN from the EA-based attack. After one particular
combination of filters (the median [23] and the unsharp mask [4] filters) is found to have this
protective ability, the EA-based attack is modified in order to produce adversarial images that
circumvent this defence. The modified attack is then proven to achieve robustness under this
circumstance, without suffering a negative change in its success rate.

Page 6 of 147

The following Chapter 7 (which is linked to our submitted paper [14]) analyzes the EA-based at-
tack from various perspectives, such as noise frequency, image texture change, adversarial image
transferability, CNN penultimate layer activations and behaviour at lower image regions. The
above-mentioned perspectives are also adopted in the simultaneous analysis of a well-known, op-
posite white-box attack named Basic Iterative Method (BIM). The comparison is done in order
to better understand the type of adversarial noise introduced by the two attacks, as well as which
CNN vulnerabilities the attacks exploit.

Chapter 8 summarizes the achievements of this thesis and offers a series of directions for future
research.

This work is completed by an Appendix containing tables and figures referred to throughout the
different chapters.

Finally, before delving into the chapters described above, let us mention that, implementation-
wise, all algorithms and experiments presented in this thesis use Python 3.8 [60] with the NumPy
1.17 [45], TensorFlow 2.4 [1], Keras 2.2 [16], and Scikit 0.24 [61] libraries. Computations are
performed on nodes with Nvidia Tesla V100 GPGPUs of the IRIS HPC Cluster at the University
of Luxembourg.

Page 7 of 147

Chapter 2

Background

2.1 Convolutional Neural Networks

Brief history.

Although the field of computer vision has received significantly increasing attention only recently,
computer scientist have been attempting to extract meaning from visual data for approximately
60 years. In 1959, neurophysiologists David Hubel and Torsten Wiesel designed an experiment
that led to the groundbreaking discovery that visual processing always begins with neurons in
the primary visual cortex reacting to simple image structures, such as edges. In parallel, the first
digital image scanner was invented by Russel Kirsch in that same year. The next important in-
sight was offered by neuroscientist David Marr in 1982, when he stated that vision is hierarchical.
He created a representational framework where algorithms that detect low-level, simple image
features such as edges and corners are used as first steps towards a high-level understanding of
visual data [17].

These findings led Kunihiko Fukushima to create the first deep neural network, called Neocog-
nitron. Through filters that would slide across an image 2D array, it would perform calculations
in order to extract features from the image, which would then be fed as input to the next layer.
Once Yann LeCun added the backpropagation learning algorithm to the Neocognitron, he cre-
ated the groundbreaking LeNet-5, which was the first modern convolutional neural network. The
next important moment was in 2001, when Paul Viola and Michael Jones created the first face
detection framework, which, although it was not based on deep learning, would learn which sim-
ple features could help localize faces [17].

While until 2009 the field of computer vision was still limited by the scarcity of datasets, in
2009 the Cifar10 [34] dataset was introduced, with 60000 images belonging to 10 classes, and in
2010 the ImageNet [18] dataset was introduced, containing more than 1 million images and 1000
object categories. They immediately became benchmarks for the task of object recognition from
images. Using ImageNet, a team from the University of Toronto created and trained the AlexNet
CNN, which showed remarkable results and represented a breakthrough moment. Since then,
multiple variants of CNNs with ever increasing accuracies have been created, and they remain
the dominant method for object recognition [17].

8

Figure 2.1: Convolution operation. The 2D filter in this example is slid along the 2D input image
and the dot product between the filter and an image section of the same size is calculated at
each step. The output value of each dot product is written in the corresponding location in the
output activation map [20].

How do they work?

CNNs are typically used with image inputs and have the following 3 main types of layers: con-
volutional, pooling, and fully-connected (FC) [20]. Most of the computation occurs in the con-
volutional layers, which are the main components of CNNs. The constituents of a convolutional
layer are the input data, a filter, and a feature map. These constituents of a convolutional layer
are displayed in Figure 2.1. If we assume that the input is a color image, the input has three
dimensions, which correspond to height, width, and depth, where the depth consists of the three
RGB channels [20].

The filter is a 3D array which can vary in size, and whose constituent numbers are the weights
that represent a particular image feature. The filter is slid along the input image to perform
a dot product (convolution operation) between the filter and an image section of the same size
as the filter, with the goal of checking whether the feature represented by the filter is present
in the respective image section. After the convolution with one section of the image is done,
the filter is shifted along the image by a given stride, to repeat the process in a new image
section. This operation is repeated until the entire image has been covered. The series of dot
products with a single filter leads to a 2D output array called activation map or feature map [20].

The size of the activation map is not necessarily the same as the input size, since each output
value in the activation map is obtained from the convolution of the filter with an input image
area that can be larger than one single pixel. The input image area covered by one filter is called
receptive field. Another worthwhile observation is that the weights are constant as the filter is
moved across the image [20].

Page 9 of 147

During the training phase, the weights are adapted. However, there are three hyperparameters
which are constant and need to be chosen prior to the training. The first is the number of filters,
which determines the depth of the activation map. The stride is the number of pixels by which
the filter is moved across the input image. Finally, padding is used when the filters do not fit
the input image. It enlarges the input image by adding borders of zeros [20].

Each convolutional layer is followed by an activation function, which is typically the Rectified
Linear Unit (ReLU) transformation. The activation function is applied to the feature map in
order to introduce nonlinearity to the model. Multiple such convolutional layers can be stacked
one after the other to capture increasingly higher receptive fields and create a feature hierarchy
within the CNN [20].

Pooling layers typically follow convolutional layers and they perform dimensionality reduction
by decreasing the number of parameters. In a similar way to convolutional layers, pooling layers
also pass a filter across their input. However, as opposed to the weights of convolutional layers,
pooling layers have no parameters, but they are rather aggregation functions applied to the val-
ues within the receptive field. The most common types of pooling are max (which extract the
maximum value from a given input section) and average (which extract the average of all values
from a given input section). While the pooling operation removes some useful information, it
helps to reduce complexity and increase efficiency [20].

The fully-connected (FC) layer connects each node of its layer with all nodes from the previous
layer. This is in contrast with convolutional layers, where the value of a particular number in
the output only stems from a portion of the input (the receptive field). While convolutional
and pooling layers are used to extract features from the input image, FC layers are used for
classification based on the extracted features. Also, in object recognition, while non-final FC
layers use the ReLU activation function, the last FC layer of a CNN is typically followed by the
softmax activation function. This function converts the output of the last FC layer to a vector
of numbers between 0 and 1, whose sum equals 1. In this vector, each number represents the
probability of the image belonging to a particular object category [20].

2.2 Adversarial attacks on CNNs

Due to their high performance in the task of object recognition, CNNs have begun to be applied
in real-life scenarios. Some of these scenarios are even safety-critical, such as recognizing road
signs in autonomous vehicles. In such contexts, it is essential that the CNN is robust. However,
recent works have proven just the opposite, through the creation of various adversarial attacks
that are capable of fooling CNNs [64].

Adversarial examples are inputs that have intentionally been modified by the attacker in order
to lead the machine learning model to make mistakes. While there are multiple types of attacks
with differing characteristics, in the case of fooling object recognition CNNs they all begin by
choosing an original image A, that both humans and the CNN C to be fooled classify as ca. In
other words, the probability attributed to ca is the maximum of C’s output vector oCA:

a = arg max1≤j≤M

(
oC
A
)

(2.1)

where M is the total number of categories present in the dataset that C was trained on. Adver-
sarial attacks can be categorized based on the following criteria: the adversary’s goal and the

Page 10 of 147

adversary’s knowledge [64].

The adversary’s goal can lead either to a poisoning attack or to an evasion attack. Poisoning
attacks imply that the attacker introduces several fake inputs in the CNN’s training dataset,
which affects the model’s accuracy. This scenario is common when the training database is
freely available, such as with web-based repositories. In the case of evasion attacks, the classifier
is already trained and usually well-performing. The attacker crafts malicious inputs only for the
inference phase of the CNN, which will misclassify the given inputs. The attacker’s goal can also
separate between untargeted and targeted attacks. In the former case, the aim is to perturb A
into an adversarial image Dk

a , which is classified by C as a class cu different than ca (cu ̸= ca),
with no particular preference [64]:

cu = arg max1≤j≤M

(
oC
Dk

a

)
(2.2)

In the case of targeted attacks, the attacker chooses a target class ct ̸= ca and perturbs A into
an adversarial image DC

a,t, which is classified by C as ct:

t = arg max1≤j≤M

(
oC
Dk

a,t

)
(2.3)

Equation 2.3 would be sufficient to create a valid targeted attack, and so we define the images
which satisfy this condition as good enough adversarial images. However, for a stronger attack, an
additional condition can be imposed on the adversarial image’s classification. We define τ -strong
adversarial images as those that satisfy the following requirement, where τ is a fixed constant
threshold value ∈]0, 1] that imposes a minimum confidence in the classification:

oCk

Dk
a,t(Aa)

[t] ≥ τ (2.4)

The adversary’s knowledge separates between white-box attacks, black-box and gray-box at-
tacks. In white-box attacks the attacker has access to the model’s parameters, architecture,
gradients, etc., and can use this information to carefully craft adversarial examples. In con-
trast, black-box attacks can only feed inputs to the model and query its outputs, without having
access to its internal configuration. Gray-box attacks initially use the CNN’s architecture and
parameters to generate adversarial examples, which are then used to train a generative model to
produce similar adversarial images. Once the generative model is trained, the attack no longer
requires information about the CNN [64].

Finally, for all adversarial attacks, irrespective of their nature, there is one common requirement,
namely that the adversarial image D be visually indistinguishable from the original A.

2.3 Evolutionary algorithms

Evolutionary algorithms are search-based optimization techniques that take inspiration from
natural selection. The process of natural selection implies the selection of the fittest individuals
from a population. The offspring produced by these individuals inherit some of their parents’
traits, but they are completely new individuals, different from both parents. They thus have the
chance of having a higher fitness than their parents, and the repetition of this process represents
the evolution.

In algorithm terms, the general principle in optimization is that an input to a process is modi-
fied, such that its output is better than the original input. Although the definition of ”better”

Page 11 of 147

varies with the problem at hand, the same mathematical concept is used, namely maximizing
or minimizing one or more objective functions. This class of algorithms was developed by John
Holland and his colleagues at University of Michigan. There are five phases in an evolutionary
algorithm, namely: initial population, fitness function, selection, crossover, and mutation [59].

Evolutionary algorithms begin with a population, namely a pool of possible solutions to the
given problem, where each individual is characterized by a set of parameters referred to as genes.
The fitness function captures the goal of the entire evolution. It evaluates how fit the indi-
viduals are by assigning them fitness scores. This fitness score impacts the probability that an
individual will be selected for reproduction. The selection phase compares the fitness of the indi-
viduals and selects the population members with the highest fitness. The individuals with higher
fitness are prioritized for reproduction, such that they pass their genes to the next generation [43].

The crossover phase starts by selecting pairs of parents to reproduce. Next, a crossover point
is selected at random somewhere along the genes. To produce offspring, the algorithm selects
the parents’ genes until the crossover point is reached, and exchanges the two series between
themselves. Once the offspring is created, some of them might have randomly selected genes be
mutated. The role of mutations is to diversify the population and prevent premature conver-
gence. The algorithm ends once the termination condition has been reached. This termination
condition checks whether the population has converged, meaning that there is very little im-
provement from one generation to another, thus the algorithm has found a good set of solutions
to the problem [43].

By making use of the notions introduced here, the following chapter gives details about the
precise implementation of our EA-based adversarial attack on CNNs.

Page 12 of 147

Chapter 3

Attack Method

This chapter is mostly extracted from [13], with the exception of Subsection 3.5, which is ex-
tracted from [15]. The chapter offers a detailed explanation of the EA-based adversarial attack’s
functioning. Our algorithm is an EA that aims to deceive both CNNs and human beings. Clearly,
the design of the EA depends on the scenario governing this dual deception. The two scenarios
addressed here start the same way. One is initially given an image, the “ancestor” A, labelled
by the CNN as belonging to cA.

The first scenario is the ”target” scenario. A target category ct ̸= cA is chosen. The task of the
EA is to evolve A to a new image D (a “descendant”) that the CNN classifies into ct, but in
such a way that the evolved adversarial image D remains very similar to the ancestor A. With
perturbations kept as least visible as possible, a human being should still consider D as obviously
belonging to category cA.

In the second ”flat” scenario, the task of the EA is to evolve A into a descendant D, that the
CNN is unable to classify with certainty to any specific category, in the sense that the CNN
ranges D to all categories with the same plausibility modulo a tiny and controlled margin. The
same constraint of similarity between D and A as in the first scenario remains: a human being
should still consider D as belonging to cA.

EAtarget
d refers to the evolutionary algorithm of the first scenario, and EAflat

d to the evolutionary
algorithm of the second scenario, where d referres to the similarity measures detailed in Section
3.2. The EAtarget

d algorithm or variants of it are used in all chapters, while EAflat
d is used in

Chapter 4 Section 4.1. In all chapters and sections we run our EA-based attack to generate τ -
strong adversarial images. However, in Chapter 4 Section 4.2, we also run our EA-based attack
to generate untargeted and good enough adversarial images.

3.1 Common features between EAtarget
d and EAflat

d

While the fitness functions of EAtarget
d and EAflat

d differ, and hence so does the evaluation step,
the population initialization and the evolution steps are similar between the two attack variants.

Population initialization. A population size being fixed, the initial population is set to a
number of copies of the ancestor A equal to the chosen population size.

13

The Evaluation step consists in running the fitness function on all population individuals
to measure how well each of them is approaching the goal of the evolution. Even if the fitness
functions of EAtarget

d and of EAflat
d differ, they are similar conceptually, and the evolution aims

at maximising their values. In both cases, as shown in Sections 3.3 and 3.4, the fitness function
is the sum of two components. One component of the equation defining the fitness function deals
with deceiving machines (which differs according to the ”target” or ”flat” scenario), the other
with deceiving humans. This latter aspect is addressed in Section 3.2.

Evolution encompasses multiple steps:

• Segregation. After evaluation, the scores are used to segregate the population into three
classes:

– the elite consists of the top ten individuals, which pass unchanged to the next gener-
ation

– the ”didn’t make it” consists of the lower scored half of the population, which is
discarded. It is replaced by the same number of mutated individuals from the elite
and middle class

– the middle class contains the remaining individuals

• Mutations. Two types of mutation are considered, namely small and large scale ones:

– For pixel mutations, a power law is used to randomly select the number of pixels
to be mutated. By following a power law, this number is often small, encouraging
exploitation. However, the occurrence of larger values also takes place, encouraging
exploration and offering ergodicity properties. Once this number is selected, the pixels
are randomly chosen and modified by a random ±δ. In order to maintain a high
similarity between the images, the mutations added throughout generations can be
clipped and not be allowed to exceed a certain range [x - ϵ, x + ϵ] imposed by the ϵ
constant, where x is the original pixel value.

– For circle intensifying mutations, the intensifying factor is chosen with a normal law
centred on 1 with a standard deviation decreasing from 0.6 to 0.1 as the generation
number increases. The radius and location of the circle are chosen uniformly random.

Individuals in the elite are not mutated. The members replacing the “didn’t make it” group
are all mutated, while half of the middle class members are mutated.

• Cross-overs occur after the mutation step. Two children are created simply by swapping
a randomly selected rectangular area between two parents. The number of parents and
the individuals are selected randomly. After the cross-over, the parents are discarded and
replaced by the children. This step is applied to all but the elite class.

The Termination conditions signal the end of the algorithm’s run, if any of them is met. For
this purpose, we introduce two parameters. Since this EA-based attack is targeted, the τ ∈]0, 1]
parameter is a threshold that refers to the target class’s probability of the best-fit individual. The
termination condition checks whether the target class probability o[ct] exceeds the τ threshold

Page 14 of 147

(o[ct] ≥ τ). The second possible termination condition is the exceedance of a given maximum
number of generations G.
As in [5], an equivalence is made between the population of the EA and a batch of the CNN so
that the CNN can process the EA population in parallel, as a single batch, using a GPGPU.

3.2 Image similarity

The difference between two images (of the same size) i and i′ can be evaluated in many ways.
But only some of them give a hint at the similarity between two images, as a human being would
perceive it. We explore here two of them, namely d = L2 and d = SSIM , that assess proximity
in a different way. The former belongs to the family of Lk norms acting on vector spaces. In
the present context, the Lk norms address performed modifications pixel for pixel. Based on
a series of experiments, we found that there is no convincing advantage to use larger k’s than
k = 2. On the other hand, it is useful to consider an alternative measure, like SSIM, that assesses
modifications performed on more structural components of a picture, rather than the pixel for
pixel approach.

• The L2-distance, which calculates the difference between the initial and modified pixel
values:

L2 (i, i
′) =

∑
pj

∣∣∣i[pj]− i′[pj]
∣∣∣2, (3.1)

where pj is the pixel of the image in jth position, and 0 ≤ ı[pj] ≤ 255 is the corresponding
pixel value of the image i.

A minimisation of the L2-norm in the fitness function would lead to a minimisation of the
overall value change in the images’ pixels.

• The structural similarity (SSIM [62]) method attempts to quantify the perceived change
in the structural information of the image, rather than simply the perceived change. The
Structural Similarity Index compares pairs of sliding windows (sub-samples of the images)
Wx and Wy of size N ×N :

SSIMW (Wx,Wy) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
. (3.2)

The quantities µx and µy are the mean pixel intensities of Wx and Wy, σ
2
x and σ2

y the
variance of intensities of Wx and Wy, and σxy their covariance. The purpose of c1 and c2
is to ensure that the denominator remains far enough from 0 when both µ2

x and µ2
y and/or

both σ2
x and σ2

y are small.

The NW window pairs to consider equals the number of pixels (times the number of colour
channels if appropriate) of the picture cropped by a frame that prevents the windows from
“getting out” of the picture. With pictures of size h× w × c and windows of size N ×N ,
one gets:

NW =

(
h− 2

⌊
N − 1

2

⌋)
×
(
w − 2

⌊
N − 1

2

⌋)
× c. (3.3)

Page 15 of 147

The SSIM value for two images i and i′ is the mean average of the values obtained for the
NW window pairs (ik, i′k):

SSIM(i, i′) =
1

NW

NW∑
k=1

SSIMW (ik, i
′
k) . (3.4)

Unlike the L2-norm, the SSIM value ranges from −1 to 1, where 1 indicates perfect simi-
larity.

Whether for d = L2 or d = SSIM , the EA might consider preferable to slightly modify many
pixels, as opposed to changing fewer pixels but in a more apparent way. This contrasts with
the approach of Su et al. [55], where only one pixel is modified, possibly being assigned a very
different colour that can make it stand out.

3.3 The fitness function of EAtarget
d

The fitness function performing the evaluation in the ”target” scenario combines the two following
factors. On the one hand, the evolution is directed towards a larger classification of the images as
belonging to ct. On the other hand, similarity between the evolved and ancestor images is highly
encouraged. Our fitness function therefore depends on the type of similarity measure that is used.

If using the L2-norm, it can be written as

fittargetL2
(ind, gi) = Atarget

L2
(gi)oind[ct]−Btarget

L2
(gi)L2(ind,A), (3.5)

where ind designates a given individual (an image), gi the i
th generation, and oind[ct] designates

the value assigned by the CNN to ind in the target category ct. The quantities AL2
(gi), BL2

(gi) >
0 are coefficients to weight the members and balance them. They vary with the generations dealt
with by the EA, since we chose to assign different priorities to the different generations. The
first generations were thus assigned the task of evolving the image to the target category, while
the later generations focused on increasing the similarity to the ancestor, while remaining in ct.

In the case of structural similarity, a higher value translates into a higher fitness of the individual.
Therefore, mutatis mutandis, the difference in the fitness function becomes a sum:

fittargetSSIM (ind, gi) = Atarget
SSIM (gi)oind[ct] +Btarget

SSIM (gi)SSIM(ind,A), (3.6)

3.4 The fitness function of EAflat
d

In the ”flat” scenario, the fitness function also combines two factors. On the one hand, the
evolution is directed towards a ”flat” classification of the image in all categories c1, · · · , cℓ. The
measure Dflat of the ”flatness” of a classification is defined by the equation (3.7), where flat is a
vector of ℓ values, all set to flat[k] = 1

ℓ .

Dflat(ind) =

ℓ∑
k=1

(
(oind[k]− flat[k]) log10 (oind[k])

)2

≥ 0. (3.7)

Page 16 of 147

A larger value of Dflat(ind) means that ind is further away from the desired ”flatness”. Similarity
between the evolved and ancestor images is highly encouraged. For d = L2, our fitness function
is given by:

fitflatL2
(ind, gi) = −Aflat

L2
(gi)Dflat(ind)−Bflat

L2
(gi)L2(ind,A), (3.8)

and for d = SSIM by:

fitflatSSIM (ind, gi) = −Aflat
SSIM (gi)Dflat(ind) +Bflat

SSIM (gi)SSIM(ind,A). (3.9)

3.5 Motivation for EAd’s design: Adapted EA” versus ”clas-
sic EA”

In this section, we show, from a ”pure” evolutionary algorithm point of view, that EAtarget,C
d

(reffered to here as ”adapted EA”) presents a series of important and substantial differences
compared to the approach classically ([21]) adopted for EAs performing similar tasks, and we
prove that these differences lead to a comparative advantage in terms of performance. At first,
we examine these differences from a conceptual point of view, meaning independently from any
specific task. For simplicity, we refer to our version as ”adapted EA” and to its classical version
as ”classic EA”. We then compare the performances of these algorithms for the task consisting
in fooling VGG16 [7] trained on CIFAR-10 at image recognition for the target scenario. In other
words, these algorithms are given the task to evolve an ancestor image A into an adversarial
image D. We specify the parameters of the EAs, and run the algorithms for four different an-
cestor/target combinations.

Conceptual differences between ”adapted EA” and ”classic EA”

To illustrate the differences between our version (”adapted EA”) and the classic version (”clas-
sic EA”, as described in [21]) of an EA, let us provide their respective algorithmic pseudo-codes.
We assume that both have a fixed population size, that remains constant generation for gen-
eration. For both, we set the initial population as made of identical copies of the considered
ancestor. Based on our experiments, we took a population size of 160 as the best trade-off in
terms of speed and accuracy.

Algorithm 1 ”Classic EA” algorithm pseudo code

1: BEGIN
2: INITIALISE population;
3: EVALUATE each candidate;
4: REPEAT UNTIL (Termination condition is satisfied) DO

5: 1 SELECT top 10-20% (16 to 32 individuals) as parents;
6: 2 RECOMBINE pairs of parents resulting in offsprings;
7: 3 MUTATE the offsprings;
8: 4 EVALUATE new candidates;
9: 5 SELECT individuals for the next generations;

10: END
11: END

Page 17 of 147

Algorithm 2 ”Adapted EA” algorithm pseudo code

1: BEGIN
2: INITIALISE population;
3: EVALUATE each candidate;
4: REPEAT UNTIL (Termination condition is satisfied) DO

5: SELECT
6: split into 3 groups;
7: Elite: top 10;
8: ”didn’t make it”: last 80;
9: Middle-class: 70;

10: RECOMBINE
11: elites + middle-class resulting in offsprings;
12: replace ”didn’t make it” with offsprings;

13: MUTATE
14: middle-class and offsprings;

15: EVALUATE each candidate;

16: END
17: END

The main difference between ”classic EA” (as described in Algorithm 1) and our version (as de-
scribed in Algorithm 2) is the process of selection, recombination and mutation. In ”classic EA”,
the best 10-20% of the population are selected as elites (hence between 16 and 32 individuals),
and new offsprings are generated with these elites by recombination and mutation. Then the
last 10-20% (idem) of the population are eliminated, and only these 10-20% are updated at each
generation. However, in our version, the number of elites is set to the first 10 individuals, then
the algorithm starts to modify the whole rest (150 individuals) of the population by eliminating,
mutating, and recombining with elites just after the first generation.

The task on which we shall evaluate the performances of both approaches is the construction
of adversarial images for CNNs. Although our algorithm EAtarget,C

d is efficient for a series of

CNNs, we make our point here for the instantiation EAtarget,VGG-16
L2

of this algorithm (Algorithm
2) and of its classical EA version (Algorithm 1), for C = VGG16 trained on CIFAR-10 (see
Subsection 4.1.1 for a description of VGG16 trained on Cifar10), and for metric d = L2. Starting
from a common ancestor image A of size 32 × 32 × 3 labelled by VGG16 as belonging to ca,
and from a target category ct ̸= ca, the specific parameters and choices of the algorithms are as
follows: B(gp, ind) = 10−5, A(gp, ind) = 10− log10 oind[ct], τ = 0.95 and a maximum number of
generations of 7000. Pixel values are modified in a range ±3 in both EA versions used here. The
algorithms use the same parameters and techniques for mutation and crossover operations.

If the EAs terminate successfully, one namesDa,t(A) the adversarial image resulting of EAtarget,VGG-16
L2

(Algorithm 2) run on A, and Dclassic
a,t (A) as the result of the classic (Algorithm 1) version of the

EA also run on A. The algorithms terminate after 7000 generations at the latest, whether or
not they succeeded in creating such an adversarial image.

Experimental comparison of ”adapted EA” with ”classic EA”

We compare experimentally the efficiency of both versions of the EA for four ancestor/target
pairs of categories Animal/Animal, Object/Object, Animal/Object, and Object/Animal.

Page 18 of 147

Concretely, the Animal ancestor categories are bird and dog, with the image A3 as ancestor for
the bird category c3, and A6 as ancestor for the dog category c6. Similarly, the Object ancestor
categories are plane and ship, with the images A1 as ancestor for the plane category c1, and the
image A9 as ancestor for the ship category c9.

With these ancestors, we performed 10 independent runs (meaning with 10 distinct, randomly
chosen seed values) of the algorithms for each of the following combinations: the bird/cat pair
(Animal/Animal), the plane/truck pair (Object/Object), the dog/car pair (Animal/Object) and
the ship/horse pair (Object/Animal).

Performance comparison. In all cases, the 10 independent runs of each algorithm succeeded
in (far) less than 7000 generations. Table 3.1 gives the minimum number of generations (mingen),
the maximum number of generations (maxgen), and the mean generations (meangen) obtained
over the 10 independent runs of each algorithm. The convergence graph, plotted in Figure 3.1,
pictures the convergence speed of both algorithms for all cases. The horizontal axis of these
graphs is the number of generations, and the vertical axis is the average log probabilities of
target category obtained for these 10 independent runs.

Table 3.1: Comparison of classic EA and adapted EA in generating adversarial images for the
target scenario for 4 different Ancestor/Target combinations (Aa is the ancestor image in ca
used in the experiments) to fool VGG16 trained on CIFAR-10. The results are over the 10
independent runs of each algorithm.

Ancestor/Target Algorithms mingen maxgen meangen

bird (A3)/cat
classic EA 1726 2433 2172.9
adapted EA 1353 2177 1629.2

plane (A1)/truck
classic EA 1311 1810 1547.5
adapted EA 1050 1439 1194.8

dog (A6)/car
classic EA 1132 1334 1199.3
adapted EA 811 1050 907.0

ship (A9)/horse
classic EA 1972 3412 2582.1
adapted EA 1543 3171 2377.8

Results and Discussion. As can be seen in Table 3.1, ”adapted EA” outperforms ”classic EA”
in all cases. The former requires less generations than the latter to obtain adversarial images
with 0.95 confidence. Figure 3.1 confirms that ”adapted EA” converges faster than ”classic EA”.
The graphs indicate that apparently both algorithms exhaust most of their generations to find
correct regions and/or pixels to modify. Once done, their learning curves accelerate drastically,
still with ”adapted EA” leading the race against ”classic EA”.

Although both algorithms start the search with the same 160 identical images, their respective
performances differ substantially, as a consequence of their distinct updating process of the pop-
ulation. Indeed, ”adapted EA” starts these updates for the whole population, except for the
elite individuals passed unchanged to the next generation, and does so right after the 1st gener-
ation. However, ”classic EA” only updates 20% of its population in each generation. Changing
only 32 individuals, as opposed to changing 150 individuals, makes it much slower for the classic
version compared to its adapted competitor. These results not only legitimize the choices made
in our earlier work ([5, 6, 11, 13, 12]). In addition, they provide some evidence, that for similar

Page 19 of 147

0 250 500 750 1000 1250 1500 1750 2000
Generation

12

10

8

6

4

2

0

Lo
g

Pr
ob

ab
ilit

y

Ancestor/Target: Bird/Cat
adapted_EA
classic_EA

(a)

0 200 400 600 800 1000 1200 1400
Generation

10

8

6

4

2

0

Lo
g

Pr
ob

ab
ilit

y

Ancestor/Target: Plane/Truck
adapted_EA
classic_EA

(b)

0 200 400 600 800 1000 1200 1400
Generation

14

12

10

8

6

4

2

0

Lo
g

Pr
ob

ab
ilit

y

Ancestor/Target: Dog/Car
adapted_EA
classic_EA

(c)

0 250 500 750 1000 1250 1500 1750 2000
Generation

12

11

10

9

8

7

6
Lo

g
Pr

ob
ab

ilit
y

Ancestor/Target: Ship/Horse
adapted_EA
classic_EA

(d)

Figure 3.1: Convergence characteristics of classic EA and adapted EA for different ances-
tor/target pairs. These experiments are performed with ancestors A3 (in the bird category),
A6 (dog), A1 (plane) and A9 (ship).

exploration problems with a starting point made of the same individuals (hence not only for
the construction of images adversarial for a CNN), the generic selection and mutation process
adopted in ”adapted EA” (algorithm 2) shortens the learning period of the algorithm and en-
hances up the convergence speed.

We complete this comparative analysis by assessing the potential difference of behavior between
the adversarial images created by each version of the EA. To this purpose, we computed the
Kullback-Leibler divergence [35] between the probability densities derived from the normalized
histograms of the pixel modifications induced by each of them. In all cases, the values (averaged
over the ten independent runs) of the Kullback-Leibler divergences are negligible (they vary
between 2.24e− 04 and 5.17e− 03), indicating that the noise created by one version of the EA
significantly differs from the noise created by the other. Hence, while both versions of the EA do
create adversarial images, the introduced modifications by each of them differ strongly, although
both these modifications introduced by each EA on the one hand, as well as their differences on
the other hand, are not perceptible by a human.

Page 20 of 147

Chapter 4

Attack Performance

In this chapter, we present the experiments that were performed to measure the algorithm’s per-
formance for three different scenarios. We first show that the attack is efficient in the targeted
and flat (Section 4.1) scenarios for VGG16 trained with the Cifar10 [34] dataset. We then show
that the attack is efficient for the targeted scenario (Section 4.2) on 10 different CNNS trained
with the ImageNet [18] dataset.

4.1 Target and flat scenarios: attack against VGG16 trained
on Cifar10

A large part of this section is extracted from [13], which is an extension of [11]. The section
presents the experiments and results obtained with EAtarget

d and EAflat
d on the Cifar10 dataset.

4.1.1 Dataset, Neural Network Architecture and Parameters of the
two EAs

VGG16 trained on Cifar-10

The feasibility study regarding the two scenarios is tested against one concrete example: Cifar-10
and VGG16. The dataset Cifar-10 [34] contains 50, 000 training images and 10, 000 test images
of size 32x32x3. Cifar-10 sorts ℓ = 10 categories (see Table 4.1) into two groups: 6 categories
(c3, c4, c5, c6, c7 and c8) form the group of animals, and 4 categories (c1, c2, c9 and c10) the group
of objects.

VGG16 [52] is a convolutional neural network (CNN) that passes input images through 16 layers
to produce a classification output. As shown in Figure 4.1, the model consists of 5 groups of
convolution layers and 1 group of fully-connected layers. Each convolution filter has a kernel size
of 3× 3 and a stride of 1. Meanwhile, pooling is applied on regions of size 2× 2, with no overlap.

21

Table 4.1: Cifar-10.– For 1 ≤ i ≤ 10, the 2nd row specifies the category ci of Cifar-10. The 3rd

row specifies the numbering of the image belonging to ci, taken from the test set of Cifar-10, and
used as ancestor in our experiments. These images are pictured on the diagonal in Figures 9.1,
9.2, or on the first row of Figure 9.3 in Appendix 9.1.2

i 1 2 3 4 5 6 7 8 9 10
ci airplane automobile bird cat deer dog frog horse ship truck
N0 281 82 67 91 455 16 29 17 1 76

Figure 4.1: Architecture of VGG16. There are 5 convolution groups and 1 fully-connected group
of Dense layers, in which every neuron is connected to every neuron of the next layer. Each
convolution group ends with a pooling layer.

Since VGG16 was initially designed for the ImageNet dataset [18], a series of adjustments were
necessary for its use with the Cifar-10 dataset [24]. The CNN used here was therefore an adapted
VGG16 architecture obtained through the steps described in [40]. Specifically, VGG16’s input
size was adjusted to 32×32×3, Batch Normalization layers were added before every nonlinearity
and the first two fully-connected layers were reduced in size from 4096 to 100. Moreover, dropout
was added to all 6 groups of the network with the following rates: 0.3 for the first 3 convolu-
tion groups, 0.4 for the fourth group, 0.5 for the fifth group and 0.5 for the fully-connected layers.

We made use of this adjusted VGG16 pre-trained on Cifar-10 with a validation accuracy of
93.56% [24]. The same pre-trained model was used throughout the evolutionary algorithms
EAtarget

d and EAflat
d .

EA Parameters

Both EAs run with δ = 3, no maximum limit G on the number of generations and a population
of size 160, the ancestor images being chosen from the Cifar-10 [34] test set. For any source
category out of the 10 categories of Cifar-10, a random image was selected from the 1000 test
images belonging to that category. This image was then set as the ancestor for both EAs. The
specific ancestor images used in our experiments are referred to in Table 4.1’s last row, and
pictured in the first row of Figure 9.3 in Appendix 9.1.2.

In the flat scenario, Aflat
d (gi) and Bflat

d (gi) take constant values, independent of gi. In the target
scenario, the values of Atarget

d (gi) and of Btarget
d (gi) vary, depending on the generation, although

they do so in a different way.

Target scenario: the target category was selected from all labels, excluding the source category.
This led to 90 (source, target) couples of categories altogether (10 source categories and 9 different

Page 22 of 147

Figure 4.2: Target scenario with the dog→horse combination.– Comparison of the original (on
the left) with 3 evolved pictures created by EAtarget

L2
(3 next from the left), and 3 created by

EAtarget
SSIM (3 last) at different stages, classified by VGG16 as the target category “horse” with

probabilities 6.08× 10−6, 0.5, 0.90, and 0.95.

target categories for each source category), and therefore to 90 adversarial images. For any gi,
we set Btarget

d (gi) = 10− log10(d(ind,A)) for d = L2 or d = SSIM (in this latter case, one assumes

that SSIM(ind,A) > 0, meaning that ind and A are close enough). The value of Atarget
d (gp)

depends on oind[ct] (note that log10 oind[ct] ≤ 0).

• If oind[ct] < 10−3, then Atarget
d (gp) = 103−log10 oind[ct].

• If 10−3 ≤ oind[ct] < 10−2, then Atarget
d (gp) = 102−log10 oind[ct].

• And if 10−2 ≤ oind[ct], then Atarget
d (gp) = 101−log10 oind[ct].

The goal for the target class probability was set to 0.95, meaning the algorithm would stop when
the fittest evolved image reached this value.

Flat scenario: we considered this scenario for each of the 10 source categories, leading to 10
adversarial images. For any gi, we set Aflat

L2
(gi) = Aflat

SSIM (gi) = 1, and Bflat
L2

(gi) = 10−8,

Bflat
SSIM (gi) = 10−3. This led to the values of both fitflatL2

(ind, gi) and fitflatSSIM (ind, gi) being
negative. We let the evolutions run until both flatness and image similarity were achieved, with
no compromise on either side. Following a trial and error process, the goal for the individuals’
fitness was set to −0.001, meaning the algorithm would stop when the fittest evolved image
reached this value.

4.1.2 Running EAtarget
d : Examples, Results and Discussion

To illustrate, Figure 4.2 shows an original image in the dog category and evolved images classified
by VGG16 as the target horse category with probabilities 0.5, 0.9, and 0.95. They were created
by EAtarget

d in 26, 32, 34 generations with d = L2, and 21, 24, 25 generations with d = SSIM .

Figure 4.3 shows the graph of the source dog and target horse class probabilities obtained along
the evolution referred to in Figure 4.2. The paths of the two probabilities appear to be the inverse
of each other, with their sum remaining almost constant at a value of about 1.0 throughout the
evolution process. This suggests that the increase of the target class probability and the decrease
of the source class probability take place at the same pace.

Page 23 of 147

Figure 4.3: Target scenario with the dog→horse combination of Figure 4.2.– Linear (left) and
logarithmic (right) scale plots of an evolution of source (dashed line) and target (solid line) class
probabilities using the L2 norm (top) or using SSIM (bottom), with respect to the generation
number. Both plots display in addition the sum (dash-dotted line) of the source and target
probabilities: The sum remains about constant at a value of 1.0 throughout the evolution process,
suggesting that the increase of the target class probability and the decrease of the source class
probability take place at the same pace.

Figure 4.4 shows examples of the four possible (source, target) combinations created by EAtarget
d ,

where source and target are animals or objects, with d = L2 and d = SSIM . The number of
generations required to evolve these images is presented in Table 4.2.

Table 4.2: Number of generations required by EAtarget
d to evolve the four animals and objects

combinations of images of Figure 4.4 with d = L2 and d = SSIM .

Generations
Source → Target L2 SSIM

bird → dog 45 47
deer → ship 45 48

airplane → automobile 18 46
truck → frog 31 31

Page 24 of 147

Figure 4.4: Target scenario with (source, target) combinations, where source and target are ani-
mals or objects.– Comparison of ancestor (1st image) and descendant images obtained by EAtarget

d

for d = L2 (2nd image) and d = SSIM (3rd image). At the top, animal→animal and ani-
mal→object combinations: From left to right, VGG16 outputs the following class probabilities:
0.999 bird, 0.954 dog, 0.953 dog; 0.999 deer, 0.951 ship, 0.954 ship. Below, the object→object
and object→animal combinations: From left to right, 0.998 airplane, 0.951 automobile, 0.952
automobile; 0.999 truck, 0.952 frog, 0.958 frog.

Results

Depending on the chosen source and target categories, reaching the probability of 0.95 required
between 5 and 124 generations, for the 90 altogether evolutions, as specified in Appendix 9.1.1 (in
Figure 9.1 with L2 and Figure 9.2 with SSIM). The average computation time per generation is
0.03±0.01s for L2 and 0.15±0.02s for SSIM. Organizing the 10 categories of the Cifar-10 dataset
into the group of animal categories and the group of object categories, the animal→animal and
object→object evolutions took fewer generations than the animal→object and object→animal
ones. The required number of generations varied significantly not only with the category of an
ancestor, but also with the particular image extracted from a given category. Table 4.3 presents
the mean number of generations for the 4 combination types for the 90 evolutions of Figure 9.1
and of Figure 9.2 in Appendix 9.1.1.

Table 4.3: Mean value and standard deviation for the number of generations required by EAtarget
d

in the 4 different combination types for d = L2 (2nd row) and d = SSIM (3rd row) for the
altogether 90 possible evolutions, as specified in Figure 9.1 and Figure 9.2 in Appendix 9.1.1.

Mean number of generations needed (with standard deviation)
d animal → animal animal → object object → animal object → object

L2 36.42 ± 16.23 42.47 ± 22.93 46.58 ± 23.28 45.04 ± 19.51
SSIM 41.25 ± 21.07 37.77 ± 22.31 44.42 ± 19.50 49.92 ± 20.99

When one compares the adversarial images created by EAtarget
L2

and by EAtarget
SSIM , neither appears

in general to be clearly better than the other (see Figures 4.2 and 4.4 for example, as well as
Figures 9.1 and 9.2 in Appendix 9.1.1) for the human eye. Both EAs were able to produce mis-
classification with high confidence, while keeping the adversarial image very close to the original.
In some image areas, the similarity to the original is higher with L2, while in other image areas
it is higher with SSIM . One should note, however, that the final aspect of the evolved image

Page 25 of 147

does not only depend on the used similarity measure. The randomness inherent to the evolution
process may indeed contribute to the observed differences.

To summarize, the algorithm EAtarget
d (for d = L2 and d = SSIM) achieved the objective set

in the target scenario. Adversarial descendant images were constructed, which VGG16 labeled
in the target category with a probability exceeding 0.95, while simultaneously remaining highly
similar to their ancestors for the human eye. However, they are not entirely indistinguishable,
the modified image being usually noisier than the unchanged one. Subsection 4.1.2 addresses
this issue specifically.

Visualising the performed modifications: SSIM vs L2

In order to visualise the modifications that were performed, the difference between the descendant
and ancestor images was computed. An example is given in Figure 4.5, where this difference is
displayed, both spatially as an image and as a plot of the difference between original and evolved
pixels for the descendant.

Experiments show that the difference consists of noise distributed almost evenly across the image,
with no particular area of focus. This noise is naturally not random, but fine-tuned by our EA
(it has already been proven than random noise is not sufficient to deceive a CNN, since they are
only vulnerable to targeted noise [22]). The majority of pixels were modified by an absolute value
lower than 10. Histograms of the pixel modification values were computed for both the L2-norm
and SSIM (see Figure 4.6 for one example. Note however that the figures were averaged on six
runs to reduce the possible impact of random fluctuations) for all 90 source-target combinations
(Note that the Kullback-Leibler values given in Table 9.1 are performed only on one and not on
six runs. Nevertheless, they remain small enough to indicate that the patterns are similar). The
most prominent value is 0 in both histograms, corresponding to unchanged pixels.

Normalising the two histograms into probability densities, the Kullback-Leibler divergence [35]
KL between them indicates the proximity of the pattern of the two sampled distributions. Since
KL(pa||pb) ≥ 0 is not a symmetric function of the probability distributions pa and pb, one needs
to compute two values. It turns out that in the case of Figure 4.6, the Kullback-Leibler diver-
gence values between the probability distribution associated with the L2 and SSIM histograms is
0.015, while the vice-versa value is 0.016, hence providing evidence that the patterns are indeed
very similar.

However, the SSIM results are more symmetrical than the L2-norm ones (see Figure 4.6 for
an example of this phenomenon). Although a human being is unlikely to perceive a difference
between the descendant images obtained either with L2 or with SSIM , the histograms (see
again Figure 4.6 for an example) indicate that EAtarget

L2
tends to leave more pixels unchanged

than EAtarget
SSIM .

4.1.3 Running EAflat
d : Examples, Results and Discussion

Figure 4.7 shows an ancestor image in the dog category (category c6 of Table 4.1), and descen-
dant evolved images reached by EAflat

d after 238 generations with L2, and after 233 generations
with SSIM. The label values in the categories c1, · · · , c10 outputted by VGG16 for these evolved
images are given in row c6 of Table 4.4 for L2 and of Table 4.5 for SSIM. These label values
are 0.100 with extremal variations of +0.007 and −0.017 with L2, and +0.023 and −0.015 for

Page 26 of 147

Figure 4.5: Target scenario.– Difference between ancestor and descendant images obtained by
EAtarget

d (d = L2 in the top row, d = SSIM in the bottom row) for the truck→frog combination
of Figure 4.4. The image on the left gives an idea of the spatial distribution of the changes, each
pixel being a combination of three channels, the range of each being given by the scales in the
middle. The plot on the right ignores the 2D structure of an image to show more clearly by how
much each of the 1024 pixels is changed on the three different channels. Despite the goal oriented
nature of the evolution, these changes look like noise, almost evenly distributed across the image.
L2 and SSIM exhibit slightly different patterns, with noise peaking at different pixels. For this
particular combination of ancestor and descendant images, an increase in the contribution of the
blue channel is observed when replacing L2 with SSIM.

SSIM. Note that these extremal values occur for both d’s for the same categories c4 and c5.
The image pixel modifications necessary to reach these label values are visualised in Figure 4.8
for both L2 and SSIM. The probability densities of L2 and SSIM are highly similar, leading to
Kullback-Leibler divergences of 0.004.

Figure 4.9 shows the evolution of the class probabilities outputted by VGG−16 during the flat-
tening of the dog ancestor image with L2 and SSIM. One sees that the label value of a first
category, namely the category c4, takes off (around 20 generations) while the label value of
cA = c6 decreases, so that the sum of both label values is around 1, while the label values of
the other categories remain insignificant. Note that in this process, the label value of c4 exceeds
largely that of c6. Then the label value of a second category, namely c8, takes off (around 80
generations), while the label values of c6 and c4 decrease (with a similar phenomenon as before,
namely the label value of the newcomer c8 exceeds the label values of c6 and of c4).

Page 27 of 147

Table 4.4: Flat scenario: Label values predicted by VGG−16 for the 10 different flattened images,
using L2. For any row 1 ≤ i ≤ 10 one considers the adversarial descendant image created by
EAflat

L2
and pictured on the ith position on the 2nd row of Figure 9.3. For 1 ≤ j ≤ 10, the

value given on the jth column is the label value for the category cj output by VGG16 for this
adversarial image. The column Dflat gives the value of the function Dflat for the descendant flat
image obtained by EAflat

L2
. The columns ∆+ and ∆− indicate the maximal deviation exceeding

0.100 from above or from below in the row.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 Dflat ∆+ ∆−

c1 0.102 0.115 0.102 0.083 0.111 0.113 0.092 0.092 0.096 0.093 1× 10−3 0.015 0.017
c2 0.102 0.111 0.097 0.101 0.104 0.094 0.095 0.106 0.103 0.087 4× 10−4 0.011 0.013
c3 0.098 0.101 0.104 0.100 0.102 0.098 0.098 0.097 0.101 0.101 4× 10−5 0.004 0.003
c4 0.088 0.113 0.101 0.094 0.107 0.096 0.102 0.107 0.104 0.086 7× 10−4 0.013 0.017
c5 0.100 0.099 0.100 0.100 0.100 0.100 0.100 0.101 0.100 0.100 1× 10−6 0.001 0.001
c6 0.102 0.096 0.106 0.107 0.083 0.098 0.099 0.107 0.098 0.104 5× 10−4 0.007 0.017
c7 0.100 0.100 0.101 0.098 0.099 0.100 0.100 0.099 0.101 0.100 8× 10−6 0.001 0.002
c8 0.097 0.112 0.094 0.106 0.098 0.095 0.103 0.100 0.095 0.100 2× 10−4 0.012 0.006
c9 0.105 0.092 0.101 0.086 0.103 0.104 0.103 0.102 0.103 0.100 3× 10−4 0.005 0.014
c10 0.101 0.099 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 2× 10−6 0.001 0.001

Table 4.5: Flat scenario: Label values predicted by VGG−16 for the 10 different flattened images,
using SSIM. For any row 1 ≤ i ≤ 10 one considers the adversarial descendant image created by
EAflat

SSIM and pictured on the ith position on the 3rd row of Figure 9.3. For 1 ≤ j ≤ 10, the
value given on the jth column is the label value for the category cj output by VGG16 for this
adversarial image. The column Dflat gives the value of the function Dflat for the descendant flat
image obtained by EAflat

SSIM . The columns ∆+ and ∆− indicate the maximal deviation exceeding
0.100 from above or from below in the row.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 Dflat ∆+ ∆−

c1 0.106 0.114 0.105 0.082 0.105 0.113 0.090 0.091 0.101 0.093 1× 10−3 0.014 0.018
c2 0.091 0.118 0.100 0.101 0.108 0.096 0.095 0.105 0.105 0.081 9× 10−4 0.018 0.019
c3 0.088 0.111 0.113 0.102 0.108 0.088 0.092 0.088 0.113 0.097 1× 10−3 0.013 0.012
c4 0.090 0.119 0.099 0.095 0.110 0.093 0.103 0.105 0.104 0.083 1× 10−3 0.019 0.017
c5 0.102 0.095 0.092 0.114 0.114 0.093 0.084 0.092 0.106 0.109 1× 10−3 0.014 0.016
c6 0.100 0.100 0.108 0.123 0.085 0.090 0.092 0.105 0.094 0.103 1× 10−3 0.023 0.015
c7 0.094 0.097 0.096 0.078 0.099 0.116 0.102 0.105 0.106 0.108 1× 10−3 0.016 0.022
c8 0.087 0.125 0.095 0.092 0.101 0.099 0.111 0.102 0.096 0.092 1× 10−3 0.025 0.014
c9 0.102 0.086 0.108 0.078 0.102 0.107 0.100 0.106 0.109 0.104 1× 10−3 0.009 0.022
c10 0.114 0.092 0.084 0.091 0.090 0.102 0.113 0.108 0.099 0.108 1× 10−3 0.014 0.016

Page 28 of 147

Figure 4.6: Target scenario for the dog→horse evolution.– Changes in pixel intensity of the
dog ancestor shown in Figure 4.2, with the L2-norm (left) and SSIM (right). To reduce the
possible impact of random fluctuations on the results, the figures are averaged on six runs. In
both cases, the predominant value is 0, corresponding to a lack of pixel modification. Although
both histograms are somewhat bell-shaped, SSIM’s is more symmetrical. The Kullback-Leibler
divergence computed between the L2-norm and SSIM probability densities is 0.015; Reversing
this order leads to 0.016.

Figure 4.7: Flat scenario with the dog original image.– Comparison of the original (on the left)
with 2 evolved pictures created by EAflat

L2
and EAflat

SSIM . The number of generations required by
the two evolutions was 238 and 233.

Results

Depending on the chosen source category, reaching almost flatness required between 142 and
552 generations for the 10 altogether evolutions, as specified in Appendix 9.1.2 (Table 9.4). The
average time required per generation was 0.04± 0.01s with L2 and 0.17± 0.02s with SSIM. For
the flattening process, the horse category took the fewest number of generations, and the deer
category the largest number of generations, at least with the ancestor pictures taken in these
categories.

When one compares the adversarial images created with EAflat
L2

and those created with EAflat
SSIM ,

neither appears better than the other (see Figure 4.7 for an example of the flattening of an ances-
tor in the dog category, and Figure 9.3 in Appendix 9.1.2 for examples for all categories) for the

Page 29 of 147

Figure 4.8: Flat scenario for the dog original image.– Changes in pixel intensity of the dog ances-
tor shown in Figure 4.7, with the L2-norm (left) and SSIM (right). To reduce the possible impact
of random fluctuations on the results, the figures are averaged on six runs. The Kullback-Leibler
divergence computed between the L2-norm and SSIM probability densities is 0.004; Reversing
this order also leads to 0.004.

Figure 4.9: Flat scenario with the dog original image of Figure 4.7.– Linear scale plots of an
evolution of the 10 class probabilities using the L2 norm (left) or using SSIM (right), with
respect to the generation number.

human eye. Both EAs produced adversarial images remaining very close to the ancestor image.

Tables 4.4 and 4.5 display the label values of VGG16 for the 10 flattened images of Figure 9.3
created by EAflat

d , with d = L2 and SSIM. The amplitudes ∆+ and ∆− with respect to the goal
value 1

ℓ = 1
10 should be interpreted with caution. On the one hand, although these amplitudes

are very small in some cases (reaching ±0.001), they can achieve far larger values (+0.015 and
−0.017 for L2; +0.025 and −0.022 for SSIM). On the other hand, when one takes into account
the starting points ≃ 10−6 in most cases, of the label values of the categories distinct from the
ancestor category, it is fair to consider that reaching label values so close to 0.1 modulo ∆+ and
∆− indeed makes our point. We nevertheless come back to this aspect in the conclusion part.

Page 30 of 147

Visualizing the performed modifications

Like for the target scenario, we studied the way noise is distributed. Histograms of the pictures’
modification values exhibit a bell shape, for both the L2 norm and SSIM (see Figure 4.8 for one
example, again with numbers averaged on six runs to reduce the potential impact of random
fluctuations). The Kullback-Leibler divergence values computed provide again evidence that
the patterns are indeed very similar. Note that the Kullback-Leibler values given in Table 9.3
are performed for all 10 possibilities of the flat scenario, but only on one and not on six runs.
Therefore the values are larger than they would be on an average of six runs. Nevertheless, they
remain small enough to lead to the same conclusion, namely that the patterns are similar.

Although the evolutions of the class probabilities corresponding to the 10 flattened images have
different patterns, it is a general rule that during the initial generations only a few classes
dominate, interchanging their order. More precisely, similar to what happens in Figure 4.9 for
the flat scenario with the dog ancestor pictured in Figure 4.7, where the successive label values
”taking off” are first those of animal categories, the first label values taking off are those of
the categories which, excluding the ancestor class, rank highest in the classification of their
corresponding ancestor image, thus having a higher starting point in both the L2 and SSIM
evolutions. They typically belong to the same animal or object category as the ancestor class.

4.1.4 Summary of the outcomes

Pursuing the research program announced in [6], this work substantially complements [11] by
demonstrating the validity of an approach using evolutionary algorithms to produce adversar-
ial samples that deceive neural networks performing image recognition, and that are likely to
deceive humans as well. Our two evolutionary algorithms, EAtarget

d and EAflat
d , that differ by

their fitness functions, successfully fool, for two target and flat scenarios, the VGG16 [52] CNN,
trained on the Cifar-10 [34] dataset to label images in 10 categories. The similarity between the
adversarial images and the original ones, aiming at ensuring that humans would still classify the
modified image as belonging to the original category, is measured by two distances d, namely
d = L2 and d = SSIM. These distances differ conceptually, since they assess different quality
features of pairs of images. An outcome of our experiments (thanks to the computation of the
Kullback-Leibler divergence values, the number of generations required, etc.) is that none seems
qualitatively better than the other. Furthermore, experiments performed with L2 tend to be 4
to 5 times faster than SSIM. Therefore, as a consequence, the choice of L2 rather than SSIM
seems a reasonable trade-off. The study shows that taking advantage of SSIM requires at least
to introduce mutations that would not impact the values of L2 and those of SSIM the same way.

Page 31 of 147

4.2 Target scenario: attack against 10 CNNs trained on
ImageNet

A large part of this section is extracted from [57]. This section first presents the tests that were
performed to find the best population size for the EA attack. Then, the section continues by
presenting the experiments and results obtained with EAtarget

d on the ImageNet dataset [18].

4.2.1 Choice of the EA’s population size

The purpose of this subsection is to describe a series of tests performed on our EA with different
population sizes. The outcome leads to the selection of a convenient population size for the
challenges addressed in Subsections 4.2.2 and 4.2.3.

Population size according to the size of the images

We perform in this Subsection a series of tests on EAtarget,C with different population sizes. The
main reason for these tests is that the population size of the EA impacts its efficiency, in a way
that strongly depends on the size of the addressed images.

Indeed, in [11, 15], we constructed an EA (a variant of EAtarget,C) that successfully fooled VGG16
trained on the Cifar-10 dataset. Starting with ancestor images of size 32× 32× 3, we found that
N = 160 was the best population size trade-off regarding the effective construction of adversarial
images on the one hand, and the computation time and number of generations required to do so
on the other hand.

The situation differs here, since we attack CNNs trained on the ImageNet dataset. The ancestor
images are now of size 224× 224× 3 (usually; sometimes they are even larger before being pro-
cessed to fit the CNNs constraints). Said otherwise, starting with ancestor images of ImageNet
size, EAtarget,C has to deal with a search space that is a 49-fold larger than the search space
for images of Cifar-10 size. Therefore, finding the balance between achieving the goal of the
construction of convenient adversarial images, and the time and number of generations required
to do so, implies to adjust the population size of the EA accordingly.

Tests.— To find the optimal population size N for the threshold value τ = 0.75, mutation
magnitude δ = 1, A = 1, B = 0 and the maximum number of generations G = 10, 000 (these
choices are consistent with the experiments performed in Subsection 4.2.3), we run EAtarget,C

with N = 40, 80, 120, and 160 for C =VGG16 trained on the ImageNet dataset, for a series of
combinations (ca, ct).

More precisely, we pick at random 5 pairs (cak
, ctk) (1 ≤ k ≤ 5) of ancestor and target categories,

and an ancestor image Aak
in cak

(see Table 4.6). To increase the robustness of the results, we
perform 10 independent runs for each population size with random seeds, and assess the average,
over these 10 runs for each population size N , of significant indicators: average time (avgTime) in
seconds, average number of generations (avgGens), average time/generation, average L2-distance
between the ancestor image and the adversarial images.

Results and interpretation.— Table 4.7 summarizes the results of these tests. Note that all
runs successfully created 0.75-strong adversarial images in less than 6000 generations. There-
fore, setting the maximal number of generations to 10, 000 turns out to be a conservative and

Page 32 of 147

k 1 2 3 4 5

(cak
, ak) (hippo, 344) (red wine, 966) (frying pan, 567) (armadillo, 363) (ruler, 769)

Aak

cak
-label value 0.6900 0.5948 0.9999 1.000 0.96960

(ctk , tk) (gibbon, 368) (banjo, 420) (printer, 742) (saluki, 176) (junco,13)

Table 4.6: For 1 ≤ k ≤ 5, the ancestor image Aak
, taken from the ImageNet test set, classified

by VGG16 in the category cak
, with its corresponding cak

-label value. The last row indicates
the chosen target category ctk .

altogether appropriate and reasonable choice for the experiments performed in this paper (see
Section 4.2.3).

N avgTime avgGens time/gen L2-distance
40 840 2957 0.283 3220
80 1747 2551 0.686 3091

120 2434 2355 1.039 3029
160 3095 2256 1.382 2983

Table 4.7: Performance comparison of EAtarget,C for C = VGG16 trained on ImageNet in creating
0.75-strong adversarial images for the target scenario (cak

, ctk) performed on Aak
, with different

population sizes. The results are the average of the 5 pairs of Table 4.6 over 10 independent runs
for each population size.

Table 4.8 illustrates the quality of the adversarial images obtained by our algorithm. The first
image (from the left) is the ancestor image Aa1

, the others are 0.75-strong adversarial images
created by our EA with a population size N = 40, 80, 120 and 160. For N = 40, 80, and 120, the
worst adversarial image (from a L2 perspective) of the 10 independent runs is pictured, and, for
N = 160, the best (still from a L2-distance perspective) adversarial image is represented. The
outcome is clear: a human is unlikely to notice any difference between any of these adversarial
images and the ancestor image.

Since there is no humanly visual difference between adversarial images obtained with a popu-
lation size N = 40, 80, 120 or N = 160, and since, moreover, the measures of the L2-distances
between the ancestor image and the adversarial images obtained with a population size of N = 40
versus a population size N = 160 remain very close (differing by only 8%), what really matters
is the speed in creating the adversarial images.

Page 33 of 147

Ancestor image
Adversarial images

N = 40 N = 80 N = 120 N = 160

Table 4.8: 0.75-strong adversarial images created by EAtarget,C for C = VGG16 trainet on Ima-
geNet, with different population sizes of N = 40, 80, 120, and 160.

The algorithm with N = 40 completes a generation in 0.283 seconds on average , almost five
times (exactly 4.88) faster than with N = 160, and terminates within 840 seconds in average,
hence more than 3.68 times faster than with N = 160. This speed gain (per generation, and
altogether) significantly compensates the 31% increase of the number of generations required
with N = 40 as compared with N = 160.

Conclusion.— A population size N = 40 provides an appropriate choice for EAtarget,C against
C = VGG16 trained on ImageNet. We more generally extrapolate this choice of N = 40 for
EAtarget,C against any CNN trained on ImageNet. In particular, we use therefore N = 40 in the
remainder of this paper.

4.2.2 One EA versus 10 CNNs: Methodology

The generic methodology used by our EA-based attack against a series of trained CNNs is de-
scribed in this Section. This provides the theoretical ground for the experiments performed in
Section 4.2.3, which concretely evaluate the efficiency of EAtarget,C at generating within 10, 000
generations adversarial images against the 10 CNNs trained on ImageNet (0.75-strong adversar-
ial images or good enough adversarial images for the target scenario, or adversarial images for
the untargeted scenario).

Specifically, Subsection 4.2.2 lists the 10 CNNs trained on ImageNet that we intend to challenge
with our EA, and gives the rationals that led us to their choice. Subsection 4.2.2 explains how
we obtained the (ancestor, target) category pairs, and the ancestor images. Subsection 4.2.2
describes how we intend to run EAtarget,C on a significant number of cases for each specific CNN
C, and defines the indicators that assess the effectiveness and quality of this EA-based attack,
mainly for the target scenario, but also for the untargeted scenario.

Network Domain

We challenge EAtarget,C against the following 10 CNNs trained on ImageNet: C1 = DenseNet121
[29], C2 = DenseNet169 [29], C3 = DenseNet201 [29], C4 = MobileNet [28], C5 = NASNetMobile
[66], C6 = ResNet50 [27], C7 = ResNet101 [27], C8 = ResNet152 [27], C9 = VGG16 [52] and C10 =
VGG19 [52].

Page 34 of 147

Ck Name of the CNN Parameters
Top-1

Accuracy
Top-5

Accuracy
C1 DenseNet121 8M 0.750 0.923
C2 DenseNet169 14M 0.762 0.932
C3 DenseNet201 20M 0.773 0.936
C4 MobileNet 4M 0.704 0.895
C5 NASNetMobile 4M 0.744 0.919
C6 ResNet50 26M 0.749 0.921
C7 ResNet101 45M 0.764 0.928
C8 ResNet152 60M 0.766 0.931
C9 VGG16 138M 0.713 0.901
C10 VGG19 144M 0.713 0.900

Table 4.9: The 10 CNNs trained on ImageNet, their number of parameters (in millions) and
their Top-1 and Top-5 accuracy.

These 10 CNNs were chosen for the following reason. First, due to implementation considera-
tions, we considered only CNNs that have an ImageNet pre-trained version already available in
Keras [16]. Out of them, 15 handle images of size 224× 224 natively, while 11 handle images of
larger sizes, varying from 240× 240 to 600× 600.

From this list, we considered only CNNs whose implementation is stable. These considerations
led us to disregard the EfficientNetB family altogether in the present study, since these CNNs
are only available in the nightly build tensorflow of Keras. Lastly, being able to compare the
behavior of the CNNs once exposed to EAtarget,C led us to restrict this study to CNNs handling
images of size 224×224. This comparison criteria leaves a group of 14 CNNs (all CNNs handling
images of size 224× 224 except EfficientNetB0; note furthermore that the other members of the
EfficientNetB family handle images of larger size).

These 14 CNNs are made of a group of 10 CNNs with different characteristics, and of a group
of 4 remaining CNNs that are variants of those 10. The study is therefore limited here to the
group of the 10 stable CNNs, that on the one hand handle images of equal sizes (224× 224), and
that on the other hand illustrate the maximal diversity in terms of characteristics and features,
as illustrated in Table 4.9. In particular, the 3rd column gives the number of parameters of each
CNN (in millions).

The performance of the CNNs is presented in terms of Top-1 and Top-5 accuracies (in the last
two columns) for the target scenario. Recall that the CNN’s classification satisfies the Top-1
(respectively Top-5) accuracy if the target label category exactly matches the model’s prediction
(respectively is one of the five best model’s predictions). Based on Top-1 and Top-5 accuracy,
DenseNet201 (C3) has the best performance, while VGG16 (C9), VGG19 (C10), and MobileNet
(C4) have the worst.

Image Domain

We take at random 10 pairs (caq
, ctq) of distinct categories among the 1000 categories of Im-

ageNet. For 1 ≤ q ≤ 10, the first component caq
is the ancestor category, and the second

component ctq is the target category. Then, for each ancestor category, we take at random 10

Page 35 of 147

distinct images A1
q, · · · ,A10

q from the ImageNet validation set for the specific category caq . This
process leads to 100 ancestor images Ap

q altogether, namely 10 for each of the 10 ancestor cate-
gories.

Table 4.10 specifies the ancestor categories and the target categories obtained that way. Figure
9.4 in Appendix 9.2.1 shows the 100 selected ancestor images, and Table 9.5 in Appendix 9.2.1
gives their caq -label values for the 10 CNNs. The CNNs classify the ancestor images in the
correct caq

category in almost 97% cases (966 out of 1000 possibilities; the remaining 34 cases
are classified in a different category since the caq

-label value given by the corresponding CNN is
not dominant among all categories).

q 1 2 3 4 5 6 7 8 9 10
caq

aq

abacus
398

acorn
988

baseball
429

broom
462

brown bear
294

canoe
472

hippopotamus
344

llama
355

maraca
641

mountain bike
671

ctq
tq

bannister
421

rhinoceros beetle
306

ladle
618

dingo
273

pirate
724

Saluki
176

trifle
927

agama
42

conch
112

strainer
828

Table 4.10: For 1 ≤ q ≤ 10, the 2nd row gives the ancestor category caq and its index number aq
among the categories of ImageNet (Mutatis mutandis for the target categories, 3rd row).

Experiments and Indicators

For a threshold value τ and a bound G of the number of generations to be specified in the con-
crete experiments performed in Section 4.2.3, we run EAtarget,C for each C = Ck (for 1 ≤ k ≤ 10)
on each ancestor Ap

q (for 1 ≤ q ≤ 10, 1 ≤ p ≤ 10). We therefore perform 100 attacks per CNN,

aiming at creating, within G generations, τ -strong adversarial images Dk(Ap
q) = EAtarget,Ck(Ap

q)
for the target scenario (caq

, ctq) with the ancestor image Ap
q from the ancestor category caq

. We
consider that running each of these altogether 1000 attacks (100 attacks per CNN × 10 CNNs)
with one seed value is enough to make the point regarding the efficiency of our attack.

Various metrics are used to assess the effectiveness and quality of our targeted (but also untar-
geted) attack against each CNN. We clearly want to limit potential biases, for instance due to
the specific choice of an ancestor-target pair, of a specific ancestor image, of a specific seed value
in running the EA, etc. To reduce such potential issues, we focus on the mean behavior of the
attack. Therefore, these metrics are (for most of them) averaged on the 100 attacks performed
per CNN. In other words, these metrics aggregate for each CNN the outcomes of the attacks on
the 10 ancestors per ancestor category × the 10 pairs of (ancestor, target) categories.

This leads us to define three success rates SRτ
C , SR

ge
C and SRuntarg

C for a CNN C, the two former
dealing with the targeted attack and the latter with the untargeted attack.

The τ -Success Rate SRτ
C is the percentage of runs of EAtarget,C that successfully created at least

one τ -strong adversarial image within G generations. The good enough Success Rate SRge
C is

the percentage of runs of EAtarget,C that successfully created at least one good enough adversar-
ial image within G generations, while the EA was aiming at constructing τ -strong adversarial
images. Finally, the untargeted Success Rate SRuntarg

C is the percentage of runs of EAtarget,C

that successfully created at least one adversarial image for the untargeted attack within G gen-
erations, while the EA was aiming at constructing τ -strong adversarial images. In this latter
case however, one considers only runs performed on ancestor images that are classified in the

Page 36 of 147

ancestor category by the CNN (it indeed happens that a CNN does not classify some images in
the correct category despite being chosen from the validation set, see Table 9.5).

One collects some relevant information regarding the production of good enough adversarial im-
ages or of adversarial images for the untargeted attack on the way toward the creation of τ -strong
adversarial images. Note that the fitness function used by the EA was not designed to focus
on the untargeted attack. Therefore the outcome for the untargeted attack can be seen as a
by-product of the targeted attack. The inequality SRτ

C ≤ SRge
C ≤ SRuntarg

C generally holds (the
first one does hold systematically, and the second one usually holds).

With notations consistent with Subsection 4.2.1, we measure for each CNN, the average number
of generations (avgGensallC) and the average time (avgTimeallC , in seconds) required by all attacks
(successful or not). We then define similar quantities, but restricted to targeted attacks that
either successfully create at least one τ -strong adversarial image within G generations (leading
to avgGensτC , avgTimeτC), or successfully create at least one good enough adversarial image within
G generations (leading to avgGensgeC , avgTimegeC). Mutatis mutandis, we also consider the con-

sistently defined quantities avgGensuntargC and avgTimeuntargC for successful untargeted attacks.

For each CNN, we also report average L2 distances, that assess the visual quality of the adver-
sarial images obtained by successful attacks. For the target scenario, on the one hand, avgτCL2 is
the average of the L2 distances between the ancestor image and the τ -strong adversarial images
created by the EA. On the other hand, avggeC L2 is the average of the L2 distances between the
ancestor image and the good enough adversarial images created by the EA. For the untargeted
scenario, one defines in a similar way avguntargC L2 as the average of the L2 distance between
the ancestor image, and first adversarial image that is no longer classified as belonging to the
ancestor category.

This series of indicators contribute to the assessment of the convergence characteristics of EAtarget,C
L2

for each of the 10 CNNs considered.

4.2.3 One EA versus 10 CNNs: Results

The methodology described in Section 4.2.2 is applied with parameter values τ = 0.75 and
G = 10, 000.

Subsection 4.2.3 summarizes the outcomes of these experiments and gives their interpretation.

The notations used in this Subsection are consistent with those used in Subsection 4.2.2, espe-
cially regarding the indicators, given of course for τ = 0.75, δ = 1, A = 1, B = 0, and G = 10, 000
(or for increasing values of the maximal number of generations up to 10, 000, see Table 9.6 in
Appendix 9.2.2).

Experimental results

Table 4.11 gives the respective performance of our EA for each CNN, for the chosen parameters
τ = 0.75 and G = 10, 000. The indicators are averaged over the 100 attacks per CNN, and the
Table is sorted according to growing values of the average number of generations avgGens0.75C
required by EAtarget,C .

Page 37 of 147

CNNs avgGensallC avgGens0.75C avgGensgeC avgGensuntargC avgTime0.75C avgTimegeC avgTimeuntargC avg0.75C L2 avggeC L2 avguntargC L2

C4 MobileNet 2201 2122 1662 1503 562 440 398 2461 2225 2079
C7 ResNet101 3428 3154 2586 2550 1285 842 659 3002 2716 2377
C2 DenseNet169 3786 3172 2434 2329 1198 919 879 2601 2295 2179
C3 DenseNet201 4232 3293 2736 2410 1348 1119 984 2962 2580 2433
C8 ResNet152 4054 3466 2985 2385 1246 1073 930 3128 2882 2607
C1 DenseNet121 3999 3477 2459 2081 1192 841 712 2801 2450 2214
C6 ResNet50 3794 3535 2839 2050 1452 1166 979 3233 2891 2577
C9 VGG16 3954 3893 2999 2006 1254 965 644 3892 3429 2715
C5 NASNetMobile 5148 3935 3231 2495 1426 1170 902 3214 2882 2485
C10 VGG19 4244 4126 3188 2019 1370 1060 675 4024 3548 2699

Average 3884 3417 2712 2183 1233 960 776 3132 2790 2436

Table 4.11: Performance comparison of EAtarget,C against each CNN, for τ = 0.75 and G =
10, 000. Results are averaged over the 100 attacks, and given in terms of number of generations,
time, and L2-distance between the ancestor and the adversarial images.

CNNs SR0.75
C SRge

C SRuntarg
C

C9 VGG16 99 100 100
C4 MobileNet 99 99 99
C10 VGG19 98 100 100
C6 ResNet50 96 99 99
C8 ResNet152 96 99 99
C1 DenseNet121 92 95 95
C7 ResNet101 91 98 98
C2 DenseNet169 91 96 97
C3 DenseNet201 86 96 96
C5 NASNetMobile 80 86 87

Average 92.8 96.8 97.0

Table 4.12: Success rates of EAtarget,C for each CNN, for τ = 0.75 and G = 10, 000.

Table 4.12 gives the success rates of our attack against each CNN, and is sorted according to
decreasing values of SR0.75

C . Table 9.6 in Appendix 9.2.2 details the progression of the success
rates of EAtarget,C as the maximal number G of generations increases from 1, 000 up to 10, 000.

Finally, Figure 4.10 shows the convergence characteristics of EAtarget,C for each CNN. In a sense,
each curve shows how fast EAtarget,C is improving the target category label value towards 0.75
throughout running generations. The running generation number is given on the horizontal axis,
and the vertical axis gives the average of ct-label values over 100 attacks for this generation.
Each of the 10 curves is the result of the average runs of EAtarget,C over 100 attacks performed
against C = Ck for 1 ≤ k ≤ 10.

Let us explain on the example of MobileNet = C4 how Figure 4.10 should be understood while
taking into account the values of avgGensallC of Table 4.11 that includes all attacks (including
those that stopped at 10, 000 generations without creating any 0.75-strong adversarial image).

For MobileNet, avgGensallC4
= 2201 while the convergence characteristics of EAtarget,C4 gives an

average target probability of 0.2604 after 2201 generations. Indeed, out of the 100 attacks, 66
successively created a 0.75-strong adversarial image in ≤ 2201 generations, 33 needed more than
2201 generations to do so, and 1 terminated without success. In particular, the ct-label value of
these 34 latter cases remained small for the 2201th generation. This explains why altogether one

Page 38 of 147

obtains an average ct-label value of 0.2604 at generation 2201.

Figure 4.10: Convergence characteristics of EAtarget,C for each CNN. Each of the 10 curves is the
result of the average runs of EAtarget,C over 100 attacks performed against C = Ck for 1 ≤ k ≤ 10.

Interpretation

Let us analyse the success rates of EAtarget,C , the speed at which it creates adversarial images,
and assess the visual quality of adversarial images.

Success rate of EAtarget,C.— With average success rates ≥ 92.8, all CNNs considered and
whatever the success rate SR0.75

C , SRge
C or SRuntarg

C considered, experiments (see Table 4.12)

clearly prove that EAtarget,C is highly efficient against all 10 challenged CNNs, at least when
G = 10, 000.

Table 9.6 (Appendix 9.2.2) completes the study, by showing that EAtarget,C is already very ef-
ficient for lower values of the maximum number G of generations taken for the termination
condition. For instance, the algorithm achieves average success rates (all CNNs considered,
whatever the success rate) ≥ 76% already for G = 5000.

Page 39 of 147

Obviously, these success rates of EAtarget,C vary with C. Our algorithm EAtarget,C with G =
10, 000 (see Table 4.12) proves particularly efficient against VGG16 and MobileNet, with suc-
cess rates ≥ 99%, and less efficient against NASNetMobile and DenseNet201, with success rates
≥ 80% still. The situation is slightly different if one restricts G to G = 5, 000. In this case (Table
9.6, Appendix 9.2.2), MobileNet remains the most vulnerable (97%), but is followed by ResNet50
(82%) this time, while the most resistant CNNs is still NASNetMobile (58%), but followed by
VGG19 (71%) this time, where the percentages given in bracket are those of SR0.75

C (the others
are higher).

Note that the number of parameters of a CNN does not alone explain its resistance against our
attack, since the two extremes MobileNet and NASNetMobile have both 4M parameters (Table
4.9), and since a CNN with a large number of parameters, VGG16, is more exposed to our attack
than another with significantly less parameters, namely DenseNet201. However, CNNs with a
lower Top-1 and Top-5 accuracy appear in general easier to fool than those with larger such ac-
curacies (although NASNetMobile seems different in this regard). Our experiments indicate an
apparent correlation between Top-1 and Top-5 accuracy on the one hand, and relative resistance
to our attack on the other hand. We do not state any strict causality from one phenomenon to
the other though.

Speed at creating adversarial images.— Table 4.11 (completed by Table 9.6 in Appendix
9.2.2) shows that these success rates are achieved between 2122 generations in average for the
fastest CNN to fool, and 4126 generations for the most resistant CNN, and overall in 3417 gen-
erations in average for a CNN of the list. Moreover, the additional effort, measured in terms
of additional generations required to move from good enough to 0.75-strong adversarial images,
is 25, 72%, and it is of 24, 50% to move from adversarial for the untargeted scenario to good
enough for a CNN in general. Said otherwise, on the way to a successful creation of 0.75-strong
adversarial images for a given CNN, the first 56% of the total amount of generations are used
to create an adversarial image for the untargeted scenario, about 74% are used to create a good
enough adversarial image, and the remaining 26% are used to achieve the goal set.

In terms of computational time on the machine used, roughly 13 minutes are necessary in av-
erage to create an adversarial image for the untargeted scenario, 16 minutes for a good enough
adversarial image, and 20 minutes for a 0.75-strong enough adversarial image.

As shown by Figure 4.10, the learning curve of EAtarget,C differs substantially from one CNN to
another. The fastest learning curve (on the short to mid term) is achieved for MobileNet (C4), and
the slowest (on the mid- to long term) is achieved for NasNetMobile (C5). Although the learning
curves start very modestly for VGG16 and VGG19 (C9, C10) since the EA’s learning curves for
these two are the slowest (hence even slower than for C5) until to circa the 3000th-generation,
their slopes sharply improve, and outperform the others from the ≃ 7000th-generation on.

Visual quality of the adversarial images.— In terms of the L2-distance between adversarial
and ancestor images, if one takes as reference point the value 2436 obtained as the average L2

distance between such images for the untargeted scenario (Table 4.11), the average divergence
from this value for a good enough adversarial image is +14%, and is +28% for a 0.75-strong
adversarial image.

Beyond these numerical measures, we actually claim that the perturbations added by EAtarget,C ,
to create adversarial images for any of the tested CNNs, are unnoticeable for a human eye (at

Page 40 of 147

least according to the paper authors). For instance, Figure 4.11 compares an ancestor image and
the obtained adversarial images (modulo resizing) for the most difficult CNNs, namely VGG19
and NasNetMobile (C10, C5), and the easiest CNNs, namely MobileNet and ResNet101 (C4, C7), as
assessed by the values of avgGens0.75 in Table 4.11. More precisely, the image on the left of Fig-
ure 4.11 is A10

8 , the ancestor image in the llama category c355 pictured in Figure 9.4 in Appendix
9.2.1. Performing EAtarget,C on this ancestor image for the (llama, agama) ancestor-target pair
for each of these CNNs with τ = 0.75 and G = 10, 000 leads to the 3 groups of adversarial images
pictured on Figure 4.11. The 1st group is composed of the first obtained 0.75-strong adversarial
images, mutatis mutandis the 2nd group with good enough adversarial images, and the 3rd group
with adversarial images for the untargeted scenario. These experiments provide evidence that a
human eye is unlikely to notice any difference between these images, a fortiori between any of
the obtained adversarial images and the ancestor one.

4.2.4 Summary of the outcomes

Here, we proved that the EAtarget,C evolutionary algorithm is highly efficient as a generic black-
box attack against a series of CNNs, trained on ImageNet to perform image classification. We
selected 10 such CNNs, that are well-known, stable, and with diverse architectures, and chal-
lenged these CNNs both for the untargeted scenario and the target scenario. In particular, for
each CNN C in the list, starting from an ancestor image, EAtarget,C aimed at creating 0.75-strong
adversarial images, that C classifies in a predefined target category with probability ≥ 0.75 on
the one hand, and that are indistinguishable from the ancestor for a human on the other hand.
100 attacks per CNN were performed (for 100 original images sorted by groups of 10 images into
10 different ancestor categories, and for 10 associated target categories), leading to 1000 attacks
altogether. A set of meaningful indicators was designed to assess the success rate and the speed
of the attack, as well as the visual quality of the adversarial images.

EAtarget,C achieved a success rate of 92.8% at creating such 0.75-strong adversarial images, and
required 3417 generations in average. As a by-product, EAtarget,C also successfully created in
96.8% of all cases good enough adversarial images within 2712 generations, and in 97% of all cases
adversarial images for the untargeted scenario within 2183 generations. On the way towards the
creation of a 0.75-strong adversarial image, about 56% of the total amount of generations ex-
plored the search space before creating an adversarial image for the untargeted scenario, and
74% led to the creation of a good enough adversarial image.

In terms of the difficulty of the assigned task, our algorithm compares favorably to other EA-
based blackbox attacks against ImageNet classifiers. For instance [55, 32, 3] either focus solely
on untargeted attacks, or on targeted attacks but with no target label value threshold. The task
set to EAtarget,C , fulfilled successfully, was therefore strictly harder in this regard, since we set
a minimal label value for the target category, which moreover could be parametrized at will.
Actually our approach allows even more flexibility.

For instance, we can even design a targeted attack, where the main termination condition is to
create an adversarial image whose label value, given by the CNN in the target category, not
only dominates the others (as is currently the case with our definition of good enough adversarial
images), but does so with a gap with the second-best label value defined at will. Aiming at
0.75-strong adversarial images ensures that this gap exceeds 0.5, and hence that the classifica-
tion by the CNN is beyond any doubt. The variant sketched above would allow such certainty

Page 41 of 147

Original Image

VGG-19 NASNetMobile MobileNet

0.75-strong

ResNet-101

good enough

untargated

Arabian camel: 0.35Arabian camel: 0.38frilled_lizard: 0.21Arabian camel: 0.49

agama: 0.11 agama: 0.19 agama: 0.24 agama: 0.24

agama: 0.75 agama: 0.75 agama: 0.75 agama: 0.75

VGG-19 - llama: 0.966

NASNetMobile – llama: 0.949

MobileNet – llama: 0.988

ResNet-101 – llama: 0.917

Adversarial Images

Figure 4.11: Visual comparison of ancestor and adversarial images obtained by EAtarget,C for
the C = VGG19, NASNetMobile, MobileNet, and ResNet101 (C = C10, C5, C4, C7), for the (llama,
agama) ancestor-target pair and the ancestor image A10

8 taken from Figure 9.4 in Appendix 9.2.1.

without necessarily waiting for the creation of a 0.75-strong adversarial image. We performed
some experiments in this direction, which we plan to further expand.

Additionally, the difficulty of the task assigned to the EA was substantially raised since we
required that the perturbations added by EAtarget,C to create an adversarial image remained
unnoticeable to humans. This is a major advantage against the adversarial images created for
instance in [51, 32, 55], where a human immediately sees the introduced differences. Our EA-
based attack went therefore further, since a human eye is not able to notice any difference between
the ancestor and the adversarial images it constructs.

Page 42 of 147

Chapter 5

Attack on High Resolution
Images: Method and Performance

This chapter is extracted from [38].

5.1 Introduction

So far, the EA-based attack addressed images of moderate size, referred to here by the R domain,
ranging from 32 × 32 (typically for CNNs trained on CIFAR-10) up to 224 × 224 (typically for
CNNs trained on ImageNet), or resized to these values that the CNNs handle natively. The
construction of adversarial images by adding some carefully designed adversarial noise to the
potentially resized original image is illustrated in Figure 5.1.

Figure 5.1: Generating an adversarial image of size 224× 224.

In particular, the adversarial noise created by all these attacks is in the R domain handled
natively by the CNNs, so that the obtained adversarial images are as large as the CNN’s input
size. Said otherwise, attacks in the ”traditional” context create an adversarial noise of size equal
to the size of the CNN input, independently on the size of the original image. This means that
the size of the search space of these attacks does not depend on the size of the original image,
but coincides with the size of the CNN input (note en passant that the smaller the input size of

43

the CNN, the easier the creation of adversarial noise).
However, if the adversarial image should preserve almost all the details of an original image of
large size, what we call here an image in the H domain, in particular of a high resolution (HR)
image, the adversarial noise should have the same size as the original image, and consequently
the adversarial image should as well have the same size as the original one. A key point is that
the adversity character of a modified image is measured only when it is exposed to the CNN,
hence when it is resized to fit into the R domain. The adversarial character of an image should
show up when the CNN proceeds to the classification of its resized version, as illustrated in the
process given in Figure 5.2.

Figure 5.2: Generating adversarial images in the H domain.

Creating adversarial images of large size leads to three challenges in terms of speed, adversity
and visual quality challenges. Firstly, the complexity of the problem increases drastically with
the size of the images, as the search space for the adversarial noise grows quadratically. For
instance, the noise search space provided by the original image represented in Figure 5.2 is 86
times larger than it is in the 224× 224 domain. Secondly, the noise introduced in the H domain
should be assessed as adversarial in the R domain: it should ”survive” the resizing process to
fit the CNN. In the example of Figure 5.2, it would essentially mean that it survives a 86-fold
squeezing process. Thirdly, the noise introduced in the H domain should be imperceptible to
a human eye looking at the images at their native size, and not merely once they are reduced
to fit the R domain. For the example in Figure 5.2, it means that a human should not notice
any difference between the first and the second images of size 1824×2364 when looked at full size.

Already the first challenge is a very serious one. Indeed, should it even succeed, getting directly
such a HR adversarial image can take a very long time, even on a performing HPC. This is
probably the reason for which, to the best of our knowledge, so far, no attack — black-box
or not — has attempted to address large size images, in particular high-resolution images, by
creating convenient adversarial noise in the H domain, so that the modified image, resized to
the size handled natively by the CNN, becomes adversarial. Applying existing methods does not
work, at least in reasonable time. Although efficient in the R domain, their extension to the H
domain is not.
This work is a first step towards the creation of adversarial noise of size of the original image,
whatever this size may be. Our contribution is essentially threefold.

Firstly, we describe an indirect attack strategy that leads to the construction of HR images in the
H domain that are adversarial for the target scenario performed on a trained CNN (Subsection
5.3). The conceptual design of the strategy is flexible enough to lift to the H domain attacks

Page 44 of 147

considered as efficient in the R domain. Furthermore, it lists indicators relevant to the problem,
and it describes appropriate tests to assess the behavior and the efficiency of potential resizing
functions.

Secondly, we perform a feasibility study of this strategy with 10 explicit HR images and on
10 CNNs trained on ImageNet. We lift our EA-based attack to the H domain. We prove
experimentally that our strategy is highly efficient in terms of speed and of adversity, and is
reasonably efficient in terms of visual quality (Subsection 5.4). Concretely, we show that our
method succeeds in 900 out of 1000 trials, that the most appropriate resizing function is the
Lanczos function, and that the successful attempts require in average between 48′ and 119.2′ to
create 0.55-strong high resolution adversarial images (and between 35.7′ and 98.8′ to create good
enough high resolution adversarial images).

Thirdly, this study is completed by an attempt to apply the EA-based attack directly in the H
domain (Subsection 5.5). After 48 hours of computation time, our algorithm is unable to create
0.55-strong high resolution adversarial images for any of the 10 CNNs. Although the learning
curve of the algorithm improves, and although it creates images with a ct-label value increased
by a factor in the range [1.71, 5.5] according to the CNN, the attack is not fast enough. These
outcomes, that experimentally substantiate the seriousness of already the first challenge, are an
additional argument in favour of alternative strategies like ours, in order to efficiently construct
adversarial images in the H domain.

Two subsections and an appendix complete this article. Subsection 5.2 fixes some notations
about the ”lifted” version in the context of high resolution images, while Subsection 5.6 provides
our findings. The Appendix contains additional evidence of our findings.

5.2 The target scenario lifted to H
In the experiments of Subsection 5.4, we shall consider a CNN C that handles images of size
224× 224, and that is trained on ImageNet. We denote the vector outputted by C as

V = {(ci, vi), where vi ∈]0, 1] for 1 ≤ i ≤ 1000}.

To express the target scenario in the context of high resolution (HR) images, let H denote the
set of images of various sizes h×w, and R denote the set of images of size natively adapted to C,
for instance 224 × 224 for the specific CNN considered in Subsection 5.4. The only assumption
on the size of an image ∈ H is to be larger than the CNNs input size. One assumes given a fixed
degradation function

ρ : H > R, (5.1)

that transforms any image I of H into an image ρ(I) of R. The well-defined composition of
maps

H ρ
> R

V

C
∨C◦ρ >

(5.2)

allows C to classify, in particular, the reduced image Aa = ρ(Ahr
a) ∈ R in some class ca, with τa

being the ca-label value outputted by C for Aa, so that C(Aa) = (ca, τa).

Page 45 of 147

In this context, an adversarial HR image for the (ca, ct) target scenario performed on Ahr
a ∈ H is

an image Dhr
t (Ahr

a) ∈ H satisfying the two following conditions. On the one hand, a human should
not be able to notice any visual difference between the original Ahr

a and the adversarial Dhr
t (Ahr

a)
HR images. On the other hand, C should classify the reduced adversarial image Dt(Ahr

a) =
ρ(Dhr

t (Ahr
a)) in the category ct for a sufficiently convincing ct-label value. The target scenario

(ca, ct) performed on the HR image Ahr
a can be visualized by the following scheme.

Ahr
a ∈ H > Dhr

t (Ahr
a) ∈ H

Aa ∈ R

ρ

∨
Dt(Ahr

a) ∈ R

ρ
∨

(ca, τa) ∈ V

C
∨

(ct, τt) ∈ V

C
∨

(5.3)

The image Dhr
t (Ahr

a) ∈ H is then a good enough adversarial image or a τ -strong adversarial image
if its reduced version Dt(Ahr

a) = ρ(Dhr
t (Ahr

a)) is.

5.3 Attack strategy for the target scenario on HR images

We present here a strategy that attempts to circumvent the three challenges about speed, ad-
versity and visual quality cited in the Introduction.

In a nutshell, the first step consists in getting an image in R that is adversarial against the image
Aa ∈ R reduced from Ahr

a ∈ H. Although getting such adversarial images in the R domain is
crucial for obvious reasons, the strategy does not depend on how they are obtained. It applies to
all possible attacks that work efficiently in the R domain. This feature contributes substantially
to its flexibility. In a second step, one lifts this low-resolution adversarial image up to a high
resolution image, called here the HR tentative adversarial image. In the last step, one checks
whether this HR tentative adversarial image fulfills the criterias stated in the last paragraph of
Subsection 5.2, namely becomes adversarial once reduced. A HR tentative adversarial image
that does so is a HR good enough adversarial image or a τ -strong adversarial image, depending
on the outcome of C for its reduced version in the R domain.

5.3.1 Construction of adversarial images in H
The starting point is a large size image Ahr

a ∈ H, and its reduced image Aa = ρ(Ahr
a) ∈ R,

classified by C as belonging to a category ca.

For Step 1, one assumes given an image D̃t,τ̃t(Ahr
a) ∈ R, that is adversarial for the (ca, ct) target

scenario performed on Aa = ρ(Ahr
a) for a ct-label value exceeding a threshold τ̃t. As already

stated, it does not matter how such an adversarial image is obtained.

To perform Step 2, one needs a fixed enlarging function

λ : R > H (5.4)

that transforms any image of R into an image in H. Anticipating on Step 3, it is worthwhile
noting that, although the reduction function ρ and the enlarging function λ have opposite pur-
poses, these functions are not necessarily inverse one from the other. In other words, ρ ◦ λ and

Page 46 of 147

λ ◦ ρ may differ from the identity maps idR and idH respectively (usually they do differ).

One applies the enlarging function λ to the low-resolution adversarial D̃t,τ̃t(Ahr
a) ∈ R to obtain

the HR tentative adversarial image Dhr
t,τt(A

hr
a) = λ(D̃t,τ̃t(Ahr

a)) ∈ H.

For Step 3, the application of the reduction function ρ on this HD tentative adversarial image
creates an image Dt,τt(Ahr

a) = ρ(Dhr
t,τt(A

hr
a)) in the R domain. One runs C on Dt,τt(Ahr

a) to get
its classification, in the hope to obtain a classification in ct.

The attack succeeds if C classifies this image in ct, potentially for a ct-label value exceeding the
threshold value τ fixed in advance, and if a human is unable to notice any difference between
the images Ahr

a and Dhr
t,τt(A

hr
a) in the H domain.

Scheme 5.5 essentially summarizes the different steps encountered so far:

Ahr
a ∈ H > Dhr

t,τt(A
hr
a) ∈ H

Aa ∈ R

ρ

∨
> D̃t,τ̃t(Ahr

a) ∈ R

λ

>

Dt,τt(Ahr
a) ∈ R

ρ

>

(ca, τa)

C
∨

(ct, τ̃t)

C
∨

(ct, τt)

C
∨

(5.5)

5.3.2 Indicators: the loss function L and L2-distances

Although both D̃t,τ̃t(Ahr
a) and Dt,τt(Ahr

a) stem from Ahr
a , and belong to the same set R of low

resolution images, these images nevertheless differ in general, since ρ◦λ ̸= idR actually. This fact
has two consequences that affect the design of our attack, and clarifies the adjustment described
below.

On the one hand, it justifies the necessity of the verification process performed in Step 3 on the
HR tentative adversarial image, namely to check whether its reduction indeed belongs to ct. On
the other hand, should it be the case, it implies as well that τ̃t and τt differ. It is then natural
to define the real-valued loss function L for a given Ahr

a ∈ H as

L(Ahr
a) = τ̃t − τt (5.6)

Our attack is effective if one can set accurately the value of τ̃t to match the inequality τt ≥ τ for
the threshold value τ , or to make sure that Dt,τt(Ahr

a) is a good enough adversarial image in the
R domain, while controlling the distance variations between Ahr

a and the adversarial Dhr
t,τt(A

hr
a).

For this, one needs to assess the statistical behavior of the loss function L on the one hand, and
of the L2 distance of a series of images on the other hand.

Indeed, while the loss function, that measures differences of values coming from images in the
R domain, assesses the objective of getting an image in the H domain that fools the CNN,
other indicators assess the objective of the visual proximity between images for a human eye.
Therefore, one computes the L2 distance of 4 pairs of images. The value of L2(Ahr

a ,Dhr
t,τt(A

hr
a)),

actually the most important one, is between images that live in the H domain. The values of

Page 47 of 147

L2(Aa, D̃t,τ̃t(Ahr
a)), L2(Aa,Dt,τt(Ahr

a)) and L2(D̃t,τ̃t(Ahr
a),Dt,τt(Ahr

a)) are for images that all live
in the R domain.

The values of these quantities, and therefore the performances and adequacy of the resized
adversarials to the addressed problem, clearly depend on the reducing and enlarging functions ρ
and λ selected in the scheme.

5.3.3 Static tests with non-adversarial images natively in H
To find out which functions ρ and λ are the most appropriate, we designed a series of tests
with promising candidates. These static tests, called that way since they are performed with
non-adversarial images, are convenient to evaluate the candidates. Scheme 5.7 shows the path of
the test performed with an image Ahr

a ∈ H as starting point, knowing that the test is performed
with different ancestor images in H, and the results are averaged among all trials.

Ahr
a ∈ H H

Aa ∈ R

λ
>

ρ

>
R

ρ

>

(ca, τ̃a) ∈ V

C
∨

(ca?, τa) ∈ V

C
∨

(5.7)

First Ahr
a is reduced to an image Aa ∈ R, thanks to the reduction function ρ. One obtains the

classification (ca, τ̃a) = C ◦ ρ(Ahr
a). Then one resizes Aa first up with λ then down with ρ. One

gets the classification of the resulting image C ◦ ρ ◦ λ(Aa) = (ca?, τa), where τa is the ca-label
value, whether the resized image is classified to ca or not. Note that the resized non-adversarial
image obtained that way is likely to be classified in ca. Still, the design of the test can not make
this assumption a priori.

One evaluates the value of the loss function L(Ahr
a) = τ̃a − τa, and of the distance function

L2(Ahr
a , λ ◦ ρ(Ahr

a)).

This later value with images in H gives a hint at a lower bound on the expected L2 distance be-
tween Ahr

a and the adversarial image in the H domain our strategy is aiming at. By construction,
it is indeed unlikely that an adversarial in the H domain could be closer to Ahr

a than λ ◦ ρ(Ahr
a)

will be. Therefore the L2 distance of a HR adversarial to Ahr
a is likely to be ≥ L2(Ahr

a , λ◦ρ(Ahr
a)),

what makes this latter evaluation relevant.

5.4 Feasibility study

The feasibility study is performed with the 10 CNNs trained on ImageNet shown in Table 4.9,
and with the 10 HR images Ahr

1 , · · · ,Ahr
10 shown in Table 5.1. Out of them, 8 are taken from the

Internet (under Creative Commons Licenses), and 2 are images from the French artist Speedy
Graphito (pictured in [54], the corresponding files were graciously provided by the artist).

Table 5.1 gives the size of each original HR image, the category ca and the ca-label value out-
putted by VGG16 for Ahr

a . It also provides the target category ct, chosen at random among
the categories ̸= ca of ImageNet, that is used for the target scenario (ca, ct) to perform on each

Page 48 of 147

Ahr
a . Table 9.7 (in Appendix 9.3.1) completes Table 5.1 by providing, for each CNN, the corre-

sponding ca-categories and label values (all for the Lanczos interpolation method, as explained
in Subsection 5.4.1).

One interest of adding the two specific artistic images is that, while a human may have difficulties
in classifying them in any category, the CNNs do it, although with relatively small label values
(see Table 5.1 for VGG16 and Table 9.7 in Appendix 9.3.1 in general).

Table 5.1: For 1 ≤ a ≤ 10, the image Ahr
a classified by VGG16 in the category ca (interpolation

= ”lanczos”).

a 1 2 3 4 5 6 7 8 9 10

ca Cheetah Eskimo Dog Koala Lamp Shade Toucan Screen Comic Book SportsCar Binder Coffee Mug

w × h 910 × 604 960 × 640 910 × 607 2462 × 2913 910 × 607 641 × 600 1280 × 800 1280 × 800 1954 × 2011 1740 × 1710

Ahr
a

0.95 0.34 0.99 0.53 0.45 0.70 0.49 0.48 0.28 0.08

ct poncho goblet Weimaraner weevil wombat swing altar beagle triceratops hamper

We run the static tests to select the ρ and λ functions out of 4 candidates (Subsection 5.4.1).
Then we briefly describe the evolutionary algorithm EAtarget,C that we shall use as a black-box
attack against each of the 10 CNNs (Subsection 5.4.2). We apply the strategy with the evo-
lutionary algorithm and get the HR adversarial images that fool CNNs for the target scenario
with the threshold value set to τ = 0.55 (Subsection 5.4.3). Finally, we discuss the visual quality
of the obtained HR adversarial images, especially from a human point of view (Subsection 5.4.4).

For 1 ≤ a ≤ 10, the HR ancestor image Ahr
a , its resized version λ ◦ ρ(Ahr

a) ∈ H obtained
by the static tests (Subsection 5.3.3), and one sample of an adversarial image Dhr

t,τt(A
hr
a) ∈ H

per (ca, ct) combination of the target scenario performed on VGG16, can be retrieved from
https://github.com/aliotopal/HRad-versImgs/blob/main/original-advers.md.

5.4.1 Selection of ρ and λ

To select the functions ρ and λ, we evaluate four interpolation methods that convert an im-
age from one scale to another. The Nearest Neighbor [49], the Bilinear method [2], the Bicubic
method [33] and the Lanczos method [19, 47] are non-adaptive methods among the most common
interpolation algorithms, with the additional advantage of being available in python librairies.

The static tests designed in Subsection 5.3.3 are performed on the 10 HR images of Table 5.1
with the 10 CNNs of Table 4.9 for all 16 possible ρ and λ combinations coming from this se-
lection. Figure 5.3 summarizes the results in two heatmaps (see Figure 9.8 in Appendix 9.3.1
for individual heatmaps per CNN). They represent the average values (for all CNNs) of the loss
function LC(Ahr

a) = τ̃a − τa (Figure 5.3(a)), and of L2(Ahr
a , λ ◦ ρ(Ahr

a) (Figure 5.3(b), the two
images being in H).

Figure 5.3(a) shows that the best performing loss value, namely 0.039 (which is quite close to
the optimal 0 value), is achieved when the images are scaled down with the Bicubic method and
up with the Lanczos method (observe that the Nearest Neighbor method is the default upsizing

Page 49 of 147

https://github.com/aliotopal/HRadversImgs/blob/main/original-advers.md

0.056

Lanczos 0.068 0.063 0.077 0.058

Lanczos

Nearest

Neighbor 0.090 0.093 0.100 0.092

Bicubic 0.051 0.046 0.059 0.039

 ρ λ
Nearest

Neighbor
Bicubic Bilinear

Bilinear 0.063 0.059 0.076

(a)

36564Lanczos 42656 37113 38583

Bicubic 42400 37542 39099 36958

Bilinear 42899 39210 40866 38560

Bilinear Lanczos

Nearest

Neighbor 49958

ρ λ
Nearest

Neighbor
Bicubic

42155 39029 43277

(b)

Figure 5.3: The overall average values of the loss functions LC(Ahr
a) = τ̃a − τa in Table (a), and

of L2(Ahr
a , λ ◦ ρ(Ahr

a) in Table (b).

and downsizing method in Keras).

However, Figure 5.3(b) shows that this combination for (ρ, λ) gives the second best L2 distance
while (ρ, λ) = (Lanczos, Lanczos) gives the best. Additionally, Figure 5.3(a) shows that the
loss achieved by the (Lanczos, Lanczos) combination is the 4th best performing combination and
remains very moderate.

Since human visual quality of the adversarials in the H domain should prevail, especially at a
very tolerable cost in terms of the Loss function, we select (ρ, λ) = (Lanczos, Lanczos). This
choice is used in all further experiments.

5.4.2 EAtarget,C parameters

The maximum pixel modification on individuals is limited to a fixed range given by ϵ = 16
throughout the search process to maintain the proximity of the evolved images with the ancestor
image. The step size per selected pixel is set to δ = 1, the population size is set to 40 and the
maximum number of generations is set to G = 35000. Additionally, we set A = 1 and B = 0.

5.4.3 Running the strategy to get adversarial images with the EA

With the rescaling functions (ρ, λ) = (Lanczos, Lanczos), we deploy the strategy detailed in
Subsection 5.3.1 with the evolutionary algorithm EAtarget,C for the 10 CNNs and the 10 ancestor
images Ahr

a . The goal is to create 0.55-strong HR adversarial images as well as good enough HR
adversarial images for the target scenario (ca, ct) specified in Table 5.1 (see also Table 9.7).

Since different seed values for the EA may lead to different results, we increased the robustness
of the outcomes by performing 10 independent runs with random seeds for each (ca, ct) pair and
ancestor Ahr

a , leading to altogether 100 trials per CNN, hence to 1000 trials altogether.

Page 50 of 147

Table 5.2: Average performance over the successful runs of EAtarget,C for each C trained on
ImageNet in creating 0.55-strong and good enough HR adversarial images for the target scenario
(ca, ct) performed on Ahr

a .

CNNs avgGensgeC avggeC,τt avgGen0.55
C AddE0.55

C,ge avgTimeC avgTimegeC avgTime0.55C
C1 DenseNet121 4561 0.150 7765 70.2 0.532 40.5 68.9
C2 DenseNet169 8112 0.241 11221 38.3 0.608 82.2 113.7
C3 DenseNet201 5288 0.166 8077 52.7 0.609 53.7 82.0
C4 MobileNet 4201 0.191 5640 34.9 0.510 35.7 48.0
C5 NASNetMobile 10765 0.224 12981 20.6 0.550 98.8 119.2
C6 ResNet50 4336 0.142 5891 35.9 0.575 41.6 56.5
C7 ResNet101 6261 0.151 8656 38.3 0.578 60.4 83.5
C8 ResNet152 6268 0.143 8477 35.2 0.649 67.8 91.8
C9 VGG16 4069 0.112 6250 53.6 0.567 38.5 59.1
C10 VGG19 5683 0.109 8180 43.9 0.570 54.0 77.7

Overall Avg. 5954 0.163 8314 39.6 0.575 57.3 80.7

90% of the runs terminated successfully in less than 35, 000 generations. The detailed success
rate for each CNN is shown in Table 9.8 (Appendix 9.3.1).

For each CNN, Table 5.2 gives the average of four indicators, computed over the successful runs
for the specific CNN considered. avgGens0.55C is the average number of generations required to
obtain the 0.55-strong adversarial images Dhr

t,τt(A
hr
a) ∈ H, avgGensgeC is the average number of

generations required to obtain good enough adversarial HR images Dhr,ge
t,τt (Ahr) while being on

the way to 0.55-strong adversarial images, and avggeC,τt is their average ct-label values. The last

indicator AddE0.55
C,ge shows the additional effort to move up from a good enough HR adversarial

image, to a 0.55-strong HR adversarial image, measured as a percentage assessing the proportion
of additional generations required.

The three last columns of Table 5.2 contain the average computational time per generation
(avgTimeC , in second), the average total computational time required to create a good enough
adversarial image (avgTimegeC , in minutes) and the average total computational time required to
create a 0.55-strong adversarial image (avgTime0.55C , in minutes).
Out of the 900 successful trials from 1000 attempts, Table 5.2 shows that, on average, good
enough HR adversarial images are created by our algorithm in 5954 generations, and 0.55-strong
HR adversarial images in 8314 generations (of course with large variations, depending on the
CNN considered). Measured by the number of additional generations required, the effort neces-
sary to move up from a good enough HR adversarial image, that has a ct-label value of 0.163 in
average, to a 0.55-strong HR adversarial image is 39.6%.

In terms of the average computational time (on the hardware specified at the beginning of this
article), roughly 57 minutes were necessary to create a good enough adversarial image, and 80
minutes for a 0.55-strong adversarial image, again with large variations from one CNN to another.

For each ancestor image Ahr
a for which the algorithm succeeds at least once, one computes the

convergence characteristics of the algorithm EAtarget,C for τ̃t and for τt on the way to the HR
0.55-strong adversarial image Dhr

t,τt(A
hr
a).

Page 51 of 147

(a) Ahr
7 (b) Ahr

10

Figure 5.4: Convergence characteristics for τt and τ̃t for Ahr
7 (a) and Ahr

10 (b) of EAtarget,C for
C = VGG16.

Table 5.3: Average of the minimum and maximum values of L(Ahr
a) = τ̃t − τt.

CNNs Avg. LossC (min) Avg. LossC (max)
C1 DenseNet121 -2.09E-04 2.87E-01
C2 DenseNet169 -3.96E-05 3.58E-01
C3 DenseNet201 -1.28E-05 3.25E-01
C4 MobileNet -4.50E-06 3.32E-01
C5 NASNetMobile -2.89E-06 3.48E-01
C6 ResNet50 -2.45E-05 2.18E-01
C7 ResNet101 -2.31E-05 2.13E-01
C8 ResNet152 -1.53E-05 1.96E-01
C9 VGG16 -7.05E-04 3.94E-02
C10 VGG19 -1.30E-03 4.00E-02

Overall Avg. -2.34E-04 2.32E-01

An example, representative of the overall behavior (see Appendix 9.3.1, Figures 9.9 and 9.10),
is given for VGG16 in Figure 5.4 for Ahr

7 , and for Ahr
10, where the graphs are capped on the

horizontal axis at their respective avgGens0.55C9
values.

Table 5.3 completes the information provided by the convergence graphs. It gives the average,
over the successful among the 10 independent runs per ancestor image, of the minimum and
maximum values of the loss function L(Ahr

a) = τ̃t − τt.

A thorough study of the loss function as the algorithm proceeds, generation for generation, to-
wards the construction of the HR 0.55-strong adversarial image Dhr

t,τt(A
hr
a), shows the following

outcome, at least for the successful runs performed in this study (see Appendix 9.3.2, Figure 9.11
for one detailed example). During the first generations, the values of the loss function are alter-
natively positive and negative, and remain very small, typically of order 10−4. Then, at some
point, namely from some generation on (that differs from one HR ancestor image to another,
and from one CNN to another as well), the loss function becomes ≥ 0, and remains so until
the algorithm terminates. Moreover, although some slight fluctuations occur, the asymptotic
behavior of the loss function is to almost strictly grow from there on.

Page 52 of 147

Table 5.4: The three distances L1
2, L

2
2, and L3

2 of images in the R domain, and the distance L4
2

in the H domain.

CNNs L1
2 L2

2 L3
2 L4

2

C1 DenseNet121 2357 2266 4096 28112
C2 DenseNet169 2122 2204 1529 33355
C3 DenseNet201 2392 2468 1593 35439
C4 MobileNet 2182 2255 1463 33437
C5 NASNetMobile 2610 2562 1641 28501
C6 ResNet50 2631 2485 1426 28040
C7 ResNet101 2724 2620 1626 34568
C8 ResNet152 2771 2649 1665 34683
C9 VGG16 3211 2951 1485 35424
C10 VGG19 3227 3009 1490 35428

Overall Avg. 2623 2547 1801 32699

A consequence of the convergence graphs given in Figures 9.9 and 9.10 and of the numerical
values given in Table 5.3 is that setting a threshold ct-label value τ̃t = τt + Avg.LossC(max)
seems a reasonable choice, at least if one aims at getting 0.55-strong HR adversarial images by
our method. A safer choice would be to add a value exceeding slightly the absolute maximum
value of the loss function among all such values for all 10 ancestor images. For VGG16 for
instance, it would mean to set the threshold ct-label value to τ̃t = τt + 0.065 since the largest
Lmax value is 0.064 for that CNN. However, for some CNNs, these values vary largely from one
ancestor image to another, so that, in a first approach, we would recommend to add the average
loss function instead.

5.4.4 Visual quality

We first assess numerically the quality of the obtained HR adversarial images as compared to
the HR ancestors. Table 5.4 gives the three L2 differences of images in the R domain, namely
L1
2 = L2(Aa, D̃t,τ̃t(Aa)), L

2
2 = L2(Aa,Dt,τt(Aa)), and L3

2 = L2(D̃t,τ̃t(Aa),Dt,τt(Aa)), and the L2

difference (in the H domain) L4
2 = L2(Ahr

a ,Dhr
t,τt(A

hr
a)).

The most saying outcome of Table 5.4 is that the average value of the L2 distance between
the HR ancestor and adversarial images remains comparable, actually even smaller, than the
corresponding value (namely for Lanczos-Lanczos) measured for non-adversarial images in the
heatmap in Figure 5.3(b). In other words, at least in average, our attack does not arm the
numerical performance of the resizing functions. It even enhances it, what is probably due to
some statistical artefact.

Still, the ”true” visual quality for a human eye is assessed by looking at some representative
examples either from some distance, or by zooming on some areas.

For instance, let us consider the HR ancestor image Ahr
7 represented in Figure 5.5a, and a zoom

of that picture on some restricted area (taken at random). Figure 5.5b shows the non-adversarial
resized image λ ◦ ρ(Ahr

7) with (λ, ρ) = (Lanczos, Lanczos). Finally, Figure 5.5c shows the HR
0.55-strong adversarial image created by EAtarget,C for C = VGG16. To further illustrate the
phenomenon, we proceed similarly (still for VGG16) with another ancestor HR image, namely
Ahr

10 in Figures 5.6a, 5.6b, and 5.6c.

Page 53 of 147

At some distance, both the non-adversarial resized original image and the HR adversarial seem
to have a good visual quality as compared to the HR ancestor. However, the zoomed areas show
that details from the HR ancestor images become blurry for a human eye, not only in the HR
adversarial images (as seen from Figures 5.5c and 5.6c) but in the non-adversarial resized images
as well (as seen from Figures 5.5b and 5.6b). Moreover, a human eye is not able to distinguish
the blurriness that occurs in the non-adversarial resized image from the one that shows up in
the HR adversarial: the loss of details looks the same in both cases.

This experiment, representative of the general behavior over the CNNs, shows that the observed
blurry effect is not due to an inefficiency of our strategy, nor of the algorithm EAtarget,C , at
least to a large extent, but is due to the lack of high-quality interpolation methods. Indeed,
these experiments show that scaling up to the H domain images belonging to the R domain,
adversarial or not, results in a loss of high-frequency features on the up-scaled images. Moreover,
the very fact that the loss of details looks the same for a resized non-adversarial image as for the
adversarial image created by our algorithm in the H domain speaks in favor of our attack, since
it makes our attack harder to detect.

5.5 Direct attack in the H domain

In this last part, we show that a direct attack in the H domain, that would aim at making effec-
tive the top arrow of scheme 5.3 without applying our indirect strategy, is a non-trivial problem
in practice.

Concretely, for each C = C1 · · · , C10, we challenge EAtarget,C to perform a direct attack in the
H domain for the most promising (ancestor, target) pair and the corresponding ancestor image
Ahr

a , in order to create directly a 0.55-strong HR adversarial image. In all cases, the process
stops when either a direct attack turns out to be successful, or if the computing time exceeds 48
hours. The most promising pair, and the corresponding ancestor, is defined as the combination
for which the indirect attack with the algorithm EAtarget,C is the fastest in terms of the number
of generations required to succeed.

Computation shows that the (toucan, wombat) pair, with the corresponding ancestor image Ahr
5 ,

is the most promising for C4, C9, C10, and that the (comic book, altar) pair, with the correspond-
ing ancestor image Ahr

7 , is the most promising for the 7 remaining CNNs.

Clearly, EAtarget,C goes beyond the previous experiments since it now processes a search space
of size 910× 607 in the case of Ahr

5 and of 1280× 800 in the case of Ahr
7 , instead of 224× 224 for

the indirect attack.

Figure 5.7 illustrates the convergence characteristics of EAtarget,C when working directly in the
H domain, at least for the combinations and ancestor images considered (see Figure 9.12 in
Appendix 9.3.3 for all 10 CNNs). Figure 5.7(a) shows the outcome for C = VGG16 when one
proceeds with the ancestor image Ahr

5 , and Figure 5.7(b) shows the outcome for C = ResNet152
when one proceeds with the ancestor image Ahr

7 . The horizontal axis of the graph is the number
of generations, capped at what one gets after 48 hours, and the vertical axis is the ct-label value
for the fittest individual.

Page 54 of 147

(a) Ahr
7

(b) λoρ(Ahr
7)

(c) Dhr
τ (Ahr

7)

Figure 5.5: Visual comparison in the H domain of Ahr
7 (a) with its non-adversarial resized

version (b) and its adversarial obtained by EAtarget,C for C = VGG16.

Page 55 of 147

(a) Ahr
10

(b) λoρ(Ahr
10)

(c) Dhr
τ (Ahr

10)

Figure 5.6: Visual comparison in the H domain of Ahr
10 (a) with its non-adversarial resized

version (b) and its adversarial obtained by EAtarget,C for C = VGG16.

Page 56 of 147

(a) VGG16 - Ahr
5 (b) ResNet152 - Ahr

7

Figure 5.7: Convergence characteristics of EAtarget,C aiming at generating within 48 hours a
high-resolution adversarial image by directly evolving (a) Ahr

5 for the (toucan, wombat) pair and
C = VGG16, and (b) Ahr

7 for the (comic book, altar) and C = ResNet152.

Although the search space increased by around ”only” 11 times for Ahr
5 and 20 times for Ahr

7 ,
the EA was nevertheless unable to create high-resolution adversarial images within 48 hours, as
shown in Table 9.9, Appendix 9.3.3. The EA stopped at ≈ 50, 000 generations for the 3 CNNs
considered in the former case, at ≈ 28, 000 generations for the 7 CNNs considered in the later
case, with the fittest individual obtained still classified by the corresponding CNN as belonging
to the ancestor category (toucan or comic book).

More precisely, the ca-label value of the fittest individual takes values in the range≈ [0.084, 0.748],
the actual values depending on the CNN considered. Its target category label value remains very
small, culminating at 7.0E − 04 in the best case, achieved by C1, one of the 7 CNNs considered
for the (comic book, altar) pair.

Although the learning curve of the EA improves (see Figure 5.7 and Figure 9.12 in Appendix
9.3.3), the ct-label value of the fittest individual increases by a factor in the range [1.71, 5.5]
depending on the considered CNN (see Table 9.9, Appendix 9.3.3), and the critical regions to
modify are narrowed down as the EA works, the EA is not fast enough to create images that
converge to the target category in reasonable time. Although difficult to assess precisely, our
experiments indicate that attacking directly in the H domain may take weeks or maybe months
to succeed. It may also come out that even reaching the threshold ct-label value of 0.55 may be
out of reach in some cases by such a direct attack.

The reasons for this slowness are twofold. On the one hand, a search space of between 11 to 20
times larger than the size 224×224, for which EAtarget,C has proven to be efficent, makes it dicf-
ficult for the EA to narrow down quickly the regions on which to focus. On the second hand, the
average time per generation, that was ≈ 0.575 seconds in the R domain, is now ≈ 5.74 seconds
in the H domain. Out of the operations purely linked to the EA, Table 9.10 and 9.11 (Appendix
9.3.3) show that the most consuming one is the mutation process, and that this operation of
the algorithm consumes 3× more time in the H domain than it used to take in the R domain.
Although with a lesser timing effect, the crossover operation of the algorithm also consumes 3×
more time in the H domain than in the R domain. This again is due to the size of the images
given to the EA.

Page 57 of 147

Therefore, creating high-resolution adversarial images from Ahr directly in theH domain requires
new methods. The results of this subsection also sustain, in a way, the indirect strategy adopted
in the remaining of this paper to address high-resolution images.

5.6 Summary of the outcomes

Trained CNNs performing image recognition convert input images to some fixed and moderate
size, say 224 × 224 for CNNs trained on ImageNet typically. This process transforms the input
image into a low resolution image that the CNN is able to analyze. So far, attacks, aiming at
creating adversarial images fooling these CNNs, create some adversarial noise of size equal to
the input size of the CNN.

The method presented in this work is the first effective attempt to make the search space for the
adversarial noise depend on the size of the original image, and not on the CNN’s input size. In
particular, it is effective for high resolution images in terms of speed, adversity and visual quality.

More specifically, the designed indirect strategy lifts any existing attack, efficient in the low
resolution domain, to an attack that applies in the high resolution domain. We performed an
experimental study for 10 CNNs trained on ImageNet, by lifting our EA-based attack EAtarget,C ,
with the aim to create high resolution images adversarial for the target scenario, that these CNNs
classify in the target category with confidence ≥ 0.55. Our algorithm succeeded in 900 cases out
of 1000 attempts to create 0.55-strong high resolution adversarial images.

To sustain this indirect strategy, we also showed that attacking directly in the high resolution
domain is not feasible in practice. After 48 computation hours, no high resolution adversarial
image was obtained by the direct attack for any of the 10 CNNs, even for the most promising
pairs of target and ancestor categories and corresponding ancestor. A contrario, for the 900 suc-
cessful attempts, our indirect attack succeeded to create 0.55-strong adversarial images within,
in average, 48′ for the easiest CNN to fool, and 119′ for the hardest CNN to fool.

Page 58 of 147

Chapter 6

Robustness of Attack Against
Filters

This chapter is mostly extracted from [15].

6.1 Introduction

dog

cat

(a)

horse

truck

(b)

man

fish

(c)

 mitten

hamster

(d)

dog

ship

(e)

Figure 6.1: The images in the first row represents the original images and in the second row the
adversarial images and their respective class labels that are created by (a) One-Pixel attack [55],
(b) Few-Pixels attack [46], (c) Fooling Transfer Net (FTN) [63], (d) Scratch that! [32], and (e)
our EA-based attack [13, 11] .

The purpose of this paper, that very substantially enhances most aspects of [12], is to address
three issues: (1) Intrinsic performance of this EA-based attack, (2) Filter resistance of the ad-
versarial images created by the EA, (3) Creation of natively filter resistant adversarial images.
Before being more specific, let us point out that all experiments in this article are performed
with the distance d = L2 for the CNN C = VGG16 [24, 52] trained on the Cifar-10 [34] dataset
to classify images according to 10 categories, and address mainly the target scenario, but also,
to a lesser extent though, the untargeted scenario (see Section 6.2).

59

We address issue (2) by a thorough and extended efficiency study of our EA-based attack. In
a first series of experiments with one ancestor per category of Cifar-10, we perform 10 indepen-
dent runs per ancestor per target category, leading to altogether 900 attacks. The algorithm
EAtarget,VGG-16

L2
obtains a success rate of 100% (all ancestor-target categories are achieved for at

least one of the 10 runs performed on each ancestor), requiring between 290 and 2793 genera-
tions in average, depending on the (ca, ct) target scenario. To better assess the importance of
the choice of the ancestor in a given category ca, and the impact of the seed value used for a
specific run, we extend these experiments. In a second series of experiments, we pick randomly
50 distinct ancestors for each of the 10 categories of Cifar-10, and run altogether 4500 attacks for
the target scenario. In this case, our algorithm achieves a success rate of 98%, requiring between
461 and 1717 generations in average. Moreover, both series of experiments show that a run of
EAtarget,VGG-16

L2
has more than 96% (actually 96, 56% for the former, and 98, 06% for the latter

series) to terminate successfully, and to create images that fool humans and VGG16 trained on
Cifar-10, despite our demanding requirements for a successful termination.

The issues (3) and (4) (addressed respectively in Sections 6.4 and 6.5) deserve to be put in the
following broader perspective. Let A be an image classified by a CNN C in some category ca,
and D be an adversarial image, say for the target scenario, that C classifies in a distinct category
ct (at this stage, the type of attack that leads to D does not matter). One now considers a
function F , that acts on such images, to create images F(A) and F(D) of the size handled by
the CNN (what coincides with the same common size of A and D in the present case). How does
the CNN classify these new images? Does F(D) remain adversarial, or does the composition
C ◦ F (that consists in putting F ahead of C) protect C against the attack? If this latter case
holds, can one adapt the attack to create images that fool not only C, but also the F-enhanced
CNN C ◦ F? If yes, would such images, adversarial for C ◦ F , be adversarial as well for C ◦ G
for G ̸= F , hence have the capability to fool the same CNN C but enhanced by other functions G?

Among the different meaningful functions F one could think of in this context, we undertake the
study for filters. Indeed, daily used in image processing, filters substantially impact the visual
appearance of images for a human eye on the one hand, and potentially affect the classifica-
tion process of a trained CNN on the other hand. It is therefore tempting to check whether
adding filters may prevent CNNs from misclassification, or may reduce this risk to some extent,
when facing an adversarial image. Additionally, one may also want to evaluate the quality of ad-
versarial images by their capacity to mimic the ancestor’s image behavior when exposed to filters.

For reasons given in Section 6.4, in which is discussed the issue (3), we proceed to the selection of
5 filters, namely the Inverse filter (F1), the Gaussian blur filter (F2), the Median filter (F3), the
Unsharp mask filter (F4), and the combination F5 of the two last ones. We filter by each of them

the ancestor Aa and the adversarial images Da,t(Aa) created by the algorithm EAtarget,VGG-16
L2

in Section 6.3. VGG16 is then challenged with these filtered images. The values of a series of
specifically designed indicators lead to two conclusions. On the one hand, the Inverse, and the
Unsharp mask filters are significantly inefficient against our EA, since for instance 95% of the
adversarial images filtered by F4 remain adversarial for the target scenario, and 95% remain
adversarial for the untargeted scenario (in a relaxed sense to be made precise in this Section).
A contrario, the other filters, especially the combination F5, render our EA-based attack less
effective, for both the target and the untargeted scenario.

This leads us to address the final issue (4). For a filter F , we conceive a filter-enhanced F -

fitness function (see Section 6.5), and the corresponding algorithm EAtarget,VGG-16
L2,F

, obtained

Page 60 of 147

from EAtarget,VGG-16
L2

by updating the fitness function accordingly. For reasons given in Section

6.5, we select F = F5, and allocate to EAtarget,VGG-16
L2,F5

the task to create adversarial images that
are moreover natively immune against the filter F5. In other words, these adversarial images fool
simultaneously C and C ◦ F5 for C = VGG16 for the target scenario (still with the demanding
target label value ≥ 0.95), while remaining so close to the ancestor that no human eye would
notice any difference. We perform similar experiments as for the issue (2). A first series of 900
attacks (one ancestor per ancestor category, 10 independent runs for each (ca(Aa), ct) scenario)

shows that EAtarget,VGG-16
L2,F5

achieves a success rate of 96, 66% (3 combinations were not achieved),
and that the probability that it terminates successfully for a given run is 95, 77%, requiring in
average between 798 and 2746 generations for the successful (ca(Aa), ct) considered. In a second

series of 4500 attacks performed with 50 different ancestors per category, EAtarget,VGG-16
L2,F5

showed
a success rate of 88%, with between 1250 and 2404 generations in average.

We complete the study (4) by exploring whether an adversarial image, constructed by EAtarget,VGG-16
L2,F5

to fool both C and C◦F5, would also be adversarial against C◦Fk for the other filters F1, F2, F3, F4

for C = VGG16. Our study shows that it is so for F3 and F4 with (depending on the target or
untargeted scenario) between 83% and 89% of the images remaining adversarial against these
filters. 56% of theses images are also adversarial for F1 for the untargeted scenario, while this
percentage drops to 23% for F2. Therefore, the EAtarget,VGG-16

L2,F5
attack, designed to be robust

against C and C◦F5 for C =VGG16, is also robust to some significant extent against all individual
filters for the untargeted scenario.

Section 6.6 summarizes the conclusions of this case study, and provides a series of research
directions.

6.2 EAtarget,C parameters

Although applicable to any CNN trained at image classification on some dataset, we instantiate
our approach on the concrete case of VGG16 [52] trained on Cifar-10 [34]. Table 6.1 presents
the chosen ancestors, their respective categories and their reference numbers in the test set of
Cifar-10.
Table 6.1: For 1 ≤ a ≤ 10, the image Aa (and its reference number no in the test set of Cifar-10)
classified by VGG16 in the category ca, with its corresponding ca-label values. These images are
used as ancestor in most of our experiments.

a 1 2 3 4 5 6 7 8 9 10
ca plane car bird cat deer dog frog horse ship truck
no 281 82 67 91 455 16 29 17 1 76

Aa

0.6900 0.9999 0.9999 0.9998 0.9999 0.9996 0.9999 0.9998 0.9996 0.9984

For all tests run here, we used τ = 0.95 (termination with success), G = 7000 (termination),
δ = 3, a population size of 160, B(gp, ind) = 10−5, A(gp, ind) = 10− log10 oind[ct] and d = L2.

Page 61 of 147

6.3 The adversarial images obtained by EAtarget,VGG-16
L2

For an ancestor Aa in a category ca, and the target scenario for the category ct, one defines
Da,t(Aa) = EAtarget,VGG-16

L2
(Aa, ct), provided the algorithm terminates successfully. One writes

more simply Da,t, or even Dt, if there is no ambiguity about the choice of the ancestor Aa chosen
in category ca (mutatis mutandis in Sections 6.4 and 6.5).

6.3.1 With one ancestor per category

We pick from Table 6.1 the ancestor image Aa in the category ca, and perform 10 independent
runs (with random seed values) of EAtarget,VGG-16

L2
for all 9 possible target categories ct ̸= ca.

An example of the quality of the obtained adversarial images is highlighted by the comparison
between the dog ancestor A6 of Table 6.1, and its corresponding 9 evolved adversarial images Dt,
with t ̸= 6 (obtained after the first of the 10 independent runs of the EA) pictured in Figure 6.2.
More generally, Figure 9.13 (Appendix 9.4.1) contains the adversarial images obtained by the

first successful run out of the ten independent runs of EAtarget,VGG-16
L2

for each of the ancestor
images of Table 6.1, and Table 9.12 (Appendix 9.4.1) give their respective label values.

This example already illustrates that, by slightly changing many pixels instead of heavily chang-
ing a few pixels, our approach enhances the indistinguishability between the adversarial image
and the ancestor image. In particular, our method differs substantially from [32, 46, 55], where
a small fraction of pixels is changed, but at the cost of being noticeable for a human without
difficulty (see Figure 6.1).

plane car bird cat deer dog frog horse ship truck

Figure 6.2: From the left, comparison of the ancestor A6 in the 6th position with the adversarial
images Dt in the tth position (t ̸= 6). VGG16 classifies A6 in the dog category with probability
0.9996386, and classifies Dt in the target category ct with probability ≥ 0.95.

For the ancestor image Aa (from Table 6.1) in the category ca specified in its ath row, the tth

column of Figure 6.3 gives the average number of generations required by EAtarget,VGG-16
L2

to
terminate, computed over 10 independent runs. In 4 ancestor/target combinations, this number
is followed by a symbol (⋆x) or (⋆x, ‡y). These symbols indicate that the algorithm did not
achieve the τ = 0.95 threshold value within 7000 generations for x of the 10 runs, and there-
fore terminated without success for the corresponding seed values. The ct-label values of the
corresponding best descendant images remained stuck at a local optimum < 0.95, whose quality
is also indicated by the symbol. In the case of the symbol (⋆x), this local optimum was quite
close to 0.95 (not less than 0.9370 actually; we call quasi-adversarial the corresponding images

produced by EAtarget,VGG-16
L2

). In the case of the symbol (⋆x, ‡y), the complementary number y
specifies the number of runs among the x unsuccessful runs for which the local optimum stayed
very low (between circa 10−4 to 10−5).

Page 62 of 147

plane car bird cat deer dog frog horse ship truck Row Average

64 275 2188 702 613 337 798 147 1108 692

1095 451 1246 768 1545 543 676 422 725 830

1080 665 1823 925 6921(*9) 559 2719 872 1092 1850

494 341 250 263 217 113 411 526 555 352

2700 6233(*5, ‡5) 343 460 239 834 712 6683(*8, ‡8) 6939(*9, ‡9) 2793

879 882 460 129 938 397 280 971 545 609

690 520 295 488 717 536 834 927 685 632

454 221 300 204 223 303 371 309 228 290

318 182 1291 432 2599 1502 823 2065 484 1077

145 663 383 1411 437 864 919 271 292 598

872 1085 449 931 841 1415 544 974 1238 1373
Column
Average

plane ()

car ()
bird ()

cat ()

deer ()

dog ()

frog ()

horse ()

ship ()

truck ()

Figure 6.3: EAtarget,VGG-16
L2

’s performance on all possible ancestor/target combinations with one
ancestor per category. The rows give the ancestor category ca (and the specific ancestor Aa in
ca), the columns indicate the target class ct, and the cell values indicate the average number of

generations required by EAtarget,VGG-16
L2

to terminate, computed on 10 independent runs.

For each 1 ≤ a ≤ 10, the ”Row Average” value, displayed in the rightmost column of the ath

row, indicates the average number of generations required to perform our attack on the ancestor
Aa in the category ca for all ct ̸= ca (Mutatis mutandis the ”Column Average” value displayed
in the bottom row of the tth column).

Our EA shows a success rate of 100 % since all possible target categories were achieved with
at least one of the ten runs for the considered ancestors. Still, some attacks are easier than
others. The ancestor image for which EAtarget,VGG-16

L2
needs the least amount of effort in general

is the horse ancestor image A8, and bird (c3) is the easiest target category whatever the ancestor
category (with the considered ancestor images at least). At the other end of the scale are the

deer ancestor image A5 and the bird ancestor image A3 for which EAtarget,VGG-16
L2

requires the
largest amount of effort in general, while dog (c6), truck (c10) and ship (c9) are the hardest
target categories. These correspond precisely to the categories (and the ancestors) for which

some runs of EAtarget,VGG-16
L2

terminated without having created an appropriate adversarial im-
age within 7000 generations. Indeed, out of the altogether 900 attacks (10 runs for each of the

90 ancestor/target combinations) performed by EAtarget,VGG-16
L2

, Figure 6.3 shows that only 31
did not succeed. It is worthwhile noting the homogeneity and the non-diversity of the quality of
the rare unsuccessful cases. For such unsuccessful (ca, ct) combination, either the local optimum
is close to the τ = 0.95 value for all failed cases (this occurs for the 9 unsuccessful runs of the
(bird (A4), dog) combination), or it is very far of this threshold value for all failed cases (this
occurs for the 22 unsuccessful runs with the deer (A5) ancestor for the car, the ship and the
truck targets).

Therefore, as a consequence of this study with one ancestor Aa per category ca, our experiments
show that the probability that EAtarget,VGG-16

L2
terminates successfully for a given run is 96, 56%,

and that its termination requires between 290 and 2793 generations in average.

6.3.2 With 50 distinct ancestors per category

To further evaluate our attack’s efficiency beyond the case of one single ancestor Aa per category
ca as described in subsection 6.3.1, and to assess the importance of a specific ancestor chosen in a

Page 63 of 147

given category, we considered 50 distinct images taken randomly (from the Cifar-10 testing set)
in each of the 10 categories ca. Unlike the 10 independent runs per ancestor of subsection 6.3.1,
we considered that running EAtarget,VGG-16

L2
with one single run per ancestor was enough to make

our point. Therefore, we performed altogether 50× 10× 9 = 4500 attacks with EAtarget,VGG-16
L2

.
Figure 6.4, that summarizes the outcome of this experiment, is to be interpreted in a similar
way as Figure 6.3, with the difference that the averages are computed over the 50 ancestors per
category ca. Note also that the (⋆x) and (⋆x, ‡y) symbols added to some cell values for a given
(ca, ct) scenario have a different interpretation in Figure 6.4 compared to Figure 6.3, since they
apply globally to different ancestors here, as opposed to applying to different runs performed on
the same ancestor in Figure 6.3.

plane car bird cat deer dog frog horse ship truck

plane 1201 284 606 415 859 752 858 304 1042 702

car 1807 1740 2618 1751 2154 1492 2425 988 478 1717

bird 416 1029 376 390 537 397 679 575 844 583

cat 653 703 358 381 152 234 321 834 519 462

deer 762 1459 208 290 274 382 269 855 1139 626

dog 772 799 319 203 492 344 392 609 686 513

frog 527 646 306 302 321 463 588 532 466 461

horse 1343 1869 851 692 310 325 1085 1679 2252 1156

ship 454 708 890 1044 684 1246 734 1319 639 858

truck 576 495 813 912 1059 1077 994 908 395 803

812 990 641 783 645 787 713 862 752 896
Column
Average

Row Average

(*2, ‡2) (*1) (*1, ‡1) (*3, ‡3)

(*5, ‡5) (*3, ‡3) (*8, ‡8) (*3, ‡3) (*4, ‡4) (*2, ‡2) (*8, ‡8) (*1, ‡1)

(*1, ‡1) (*1, ‡1)

(*1)

(*2, ‡2) (*4, ‡3) (*1, ‡1) (*4, ‡4)

(*1, ‡1)

(*2, ‡2) (*4, ‡3) (*1, ‡1) (*4, ‡4) (*9, ‡9)

(*2, ‡2) (*1, ‡1) (*1) (*2, ‡1)

(*1, ‡1) (*1, ‡1) (*1, ‡1) (*2, ‡1)

Figure 6.4: EAtarget,VGG-16
L2

’s performance on all possible ancestor/target combinations with 50
distinct ancestors per category. The rows give the ancestor category ca, the columns indicate the
target class ct. The cell values give the average number of generations required by EAtarget,VGG-16

L2

to terminate, and computed on one run performed on each of the 50 ancestors in the category
ca.

Performance differs again from one category to another. The ancestor categories for which
EAtarget,VGG-16

L2
needs the least amount of effort in general are the frog, the cat and the dog

categories. In addition, EAtarget,VGG-16
L2

achieves the target categories bird and deer fairly fast,
whatever the ancestor categories. Conversely, the ancestor categories car and horse are those
for which EAtarget,VGG-16

L2
requires the largest amount of effort in general, while the car and the

truck are the hardest target categories.

In this context, the comparison of these results with those of Figure 6.3 shows the relevance
for EAtarget,VGG-16

L2
’s performance of the specific ancestor image chosen in a given category ca.

Indeed, while for instance the specific ancestor A8 in the horse category was optimal in a sense
(achieving all possible target categories in 290 generations in average), this property did not
extend to the horse category as a whole as just seen. A contrario, while for instance the com-
bination (deer, truck) with the ancestor A5 in the deer category was (with 6939 generations in
average) the toughest to achieve among all trials of subsection 6.3.1, it proves reasonably easy
to achieve in general (with 1139 generations in average) with the 50 ancestors chosen for our
experiment.

Page 64 of 147

Finally, out of the altogether 4500 trials performed by EAtarget,VGG-16
L2

, only 87 did not ter-
minate successfully. Therefore, this experiment provides a heuristic evidence that one run of
EAtarget,VGG-16

L2
has a probability of 98, 06% to terminate successfully. To better assess the

strength of the failed cases, we run again the 87 unsuccessful cases 10 times with different seed
values: out of them 28 succeeded in less than 10 runs, while 59 did not. This result, together with
the fact that our algorithm required between 461 and 1717 generations in average in this case,
and compared to the outcome of the similar experiments performed in the previous Subsection
6.3.1 with other ancestors, sustains further the impact of the specific ancestor Aa taken in a
given category ca, and of the seed value used to run the EA. It also shows that the success rate
of our attack, namely the capacity for EAtarget,VGG-16

L2
to terminate successfully for at least one

of ten runs out of a small number of trials, is ≥ 98, 68%.

6.4 Robustness of EAtarget,VGG-16
L2

against filters

For the reasons given in the introduction to this paper (Section 6.1), the study undertaken in
this Section essentially amounts to checking whether adding filters may prevent VGG16 from
misclassification, or may reduce this risk to some extent, when facing an adversarial image created
by EAtarget,VGG-16

L2
.

6.4.1 Selection of filters

Although a large list of filters exists, we focus on the following four that have a significant impact
on images [39, chapters 7 and 8].

The inverse filter F1 replaces all colors by their complementary colors. This operation is per-
formed pixel for pixel by subtracting the RGB value (255, 255, 255) of white by the RGB value
of that pixel.

The Gaussian blur filter F2 uses a Gaussian distribution to calculate the Kernel, G(x, y) =

1
2πσ2 e

− x2+y2

2σ2 , where x is the distance from the origin on the x-axis, y is the distance from the
origin on the y-axis and σ is the standard deviation of the Gaussian distribution. By design, the
process gives more priority to the pixels in the center, and blurs around it with a lesser impact
as one moves away from the center.

The median filter F3 is used to reduce noice and artefacts in a picture. Though under some
conditions it can reduce noise while preserving the edges, this does not really occur for small
images like those considered here. In general, one selects a pixel, and one computes the median
of all the surrounding pixels.

The unsharp mask filter F4 enhances the sharpness and contrast of images. The unsharp masked
image is obtained by blurring a copy of the image using a Gaussian blur, which is then weighted
and subtracted from the original image.

Any such filter F , or any combination of filters Fi1 , Fi2 , · · · , Fik operating successively (in that
order) on an image I, creates a filtered image F (I) or Fik ◦ · · · ◦ Fi2 ◦ Fi1(I).

We make use of these four filters F1, F2, F3, F4 either individually, or as the combination F5 =
F3 ◦F4. The reason for the choice of the latter F3 ◦F4 is that F4 is used to amplify and highlight

Page 65 of 147

detail, while F3 is used to remove noise from an image without removing detail. Therefore, a
combination of these filters could remove the noise created by the EA while maintaining a high
level of detail. Moreover, since the computations are performed on images of size 32 × 32, we
shall take a filter-size f = 1 for F1 and f = 3 for the others.

6.4.2 VGG16’s classification of filtered images

For 1 ≤ a ≤ 10, the 10 images composed of the ancestor Aa on the one hand, and its correspond-
ing 9 adversarial images Da,t(Aa) obtained by EAtarget,VGG-16

L2
on the other hand, and pictured in

Figure 9.13 (Appendix 9.4.1) are exposed to the 5 filters F1, F2, F3, F4 and F5 = F3 ◦F4. Figure
6.5 shows the outcome for the dog ancestor image A6, and the adversarial images Dt (t ̸= 6).

Figure 6.5: Comparison of the impact of filters on the ancestor A6 and on the adversarial images
Dt. The kth row represents F (Dt) in tth position (with D6 = A6), where F = Fk for 1 ≤ k ≤ 5.

For each F = Fk, 1 ≤ k ≤ 5, we then challenge VGG16 with these altogether 100 filtered images
F (Aa) and F (Da,t(Aa)).

The complete classification and the corresponding label values outputted by VGG16 for F (Aa)
and F (Da,t(Aa)) for the 5 considered filters and for all (ca, ct) combinations are given in Tables
9.13 to 9.17 (Appendix 9.4.1). In these tables, an image is classified as belonging to a category
c, if c has the largest label value outputted by VGG16 among all categories.

6.4.3 Indicators addressing the robustness of filtered adversarials

Filters differ substantially in their individual capacity to sustain the adversarial component of
the filtered F (Da,t(Aa)). Additionally, it may also happen that VGG16 classifies F (Aa) in a
category different from the ancestor category ca. Since we consider in this Section (and the next
one) that the classification of an image in a given category c means that the label value given
by VGG16 for c is the largest among all possible categories, we relax accordingly the formula-
tion of the target scenario: in this context, one does not necessarily require a target label value
exceeding the threshold value 0.95, but only asks that it is the largest one. The formulation of

Page 66 of 147

the untargeted scenario in the filtered context, made precise below in this Subsection, requires
to pay attention to the potential difference between the categories ca and cF (Aa).

The following indicators assess the above stated issues quantitatively for each filter Fk, with
the ancestors and adversarial images considered. These indicators take integer values, and we
specify their theoretical bounds (which clearly depend on the number 10 of ancestors, and on
the number 9 of target categories considered in this study).

For each 1 ≤ a ≤ 10, one first defines ρk(Aa) as the number of target categories ct such that
VGG16 classifies Fk(Da,t(Aa)) (including potentially Da,a(Aa) = Aa) back to the ancestor cat-

egory ca. One computes Σk =
∑10

a=1 ρk(Aa) ∈ [0, 100].

One sets δk(Aa) = 1 if ρk(Aa) = 10, namely if the filtered ancestor and all filtered adversar-
ial images are classified back to the ancestor category. Otherwise δk(Aa) = 0. One computes

∆k =
∑10

a=1 δk(Aa) ∈ [0, 10].

One sets µk(Aa) = 0 if VGG16 classifies Fk(Aa) back to ca, and µk(Aa) = 1 if it does not. One

defines Mk =
∑10

a=1 µk(Aa) ∈ [0, 10].

Of interest for the target scenario is τk(Aa), the number of t ̸= a for which Fk(Da,t(Aa)) is clas-

sified as belonging to ct (namely those that ”really succeed”), and its sum Tk =
∑10

a=1 τk(Aa) ∈
[0, 90].

Finally, one considers τ̃k(a) to assess the untargeted scenario: τ̃k(a) counts the number of
t ̸= a for which Fk(Da,t(Aa)) is classified as belonging to c ̸= cFk(Aa). One computes its sum

T̃k =
∑10

a=1 τ̃k(Aa) ∈ [0, 90].

Observe en passant that the inequality Tk ≤ T̃k may theoretically not hold (as opposed to what
happens in the absence of any filter, where the corresponding inequality necessarily holds). The
reason is that one considers ct ̸= ca for the left-hand side of the inequality, and c ̸= cFk(Aa) for
the right-hand side. Since the quantities ca and cFk(Aa) may differ, the set whose number of

elements is Tk may not be included in the set whose number of elements is T̃k.

6.4.4 Robustness analysis of the adversarial Da,t(Aa) against filters

Let us now proceed to the analysis of Table 6.2, that provides these quantities resulting from,
and summarizing Tables 9.13 to 9.17 (Appendix 9.4.1).

Looking at Σk shows that, although all filters F1, · · · , F5 bring some filtered images back to
ca, the Unsharp mask (F4) and the Inverse (F1) filters are the less efficient in this regard. A
contrario, the three other filters bring back a majority of filtered images back to ca. Noticeably
the Median median (F3) filter and foremost the combination (F5) of the Unsharp and Median
filters are highly effective since more than 80% of all filtered images are classified back to ca.
The three filters F = F2, F3 and F5 are also those that bring all filtered images back to ca for 5
(in the case of F2), 6 (in the case of F3) and 7 (in the case of F5) ancestors, including a fortiori
the filtered ancestor.

Consistently, the consideration of Tk and of T̃k shows that EAtarget,VGG-16
L2

resists highly effi-

Page 67 of 147

Table 6.2: Indicator values assessing the robustness of adversarial images Da,t(Aa) against
filters. For each ancestor Aa, computation of (ρk(Aa), δk(Aa), µk(Aa)) in the 1st row, and of

(τk(Aa), τ̃k(Aa)) in the 2nd row. The last two rows give the sums
∑10

a=1 of these quantities.

Aa

k
1 2 3 4 5

A1 (10,1,0) (0,0,1) (2,0,0) (0,0,1) (7,0,0)
(0,0) (2,7) (1,8) (9,8) (1,3)

A2 (1,0,0) (3,0,0) (9,0,0) (3,0,0) (10,1,0)
(1,9) (2,7) (0,1) (7,7) (0,0)

A3 (7,0,0) (10,1,0) (10,1,0) (1,0,0) (10,1,0)
(1,3) (0,0) (0,0) (9,9) (0,0)

A4 (3,0,0) (10,1,0) (10,1,0) (1,0,0) (10,1,0)
(1,7) (0,0) (0,0) (8,9) (0,0)

A5 (1,0,1) (10,1,0) (10,1,0) (1,0,0) (10,1,0)
(3,7) (0,0) (0,0) (9,9) (0,0)

A6 (0,0,1) (0,0,1) (1,0,1) (1,0,0) (4,0,0)
(3,5) (1,0) (1,1) (9,9) (1,6)

A7 (5,0,0) (10,1,0) (10,1,0) (2,0,0) (10,1,0)
(1,5) (0,0) (0,0) (8,8) (0,0)

A8 (0,0,1) (10,1,0) (10,1,0) (1,0,0) (10,1,0)
(3,7) (0,0) (0,0) (9,9) (0,0)

A9 (6,0,0) (1,0,1) (8,0,0) (1,0,0) (8,0,0)
(2,4) (2,2) (1,2) (9,9) (1,2)

A10 (0,0,1) (0,0,1) (10,1,0) (1,0,0) (10,1,0)
(1,1) (1,0) (0,0) (9,9) (0,0)

(Σk,∆k,Mk) (33, 1, 4) (54, 5, 4) (80, 6, 1) (12, 0, 1) (89, 7, 0)

(Tk, T̃k) (16, 48) (8, 16) (3, 12) (86, 86) (3, 11)

ciently against the Unsharp mask filter F4, since 95 % (86 out of 90) filtered images remain
adversarial for the target scenario (with target label values no less than 0.5505, see Table 9.16),
and altogether 95 % (86 out of 90) filtered images are adversarial for the untargeted scenario. Our
EA remains also significantly efficient against the Inverse filter F1, since 17 % (16/90) filtered
images remain adversarial for the target scenario (with target label values ≥ 0.4415, see Table
9.13), and altogether 53 % (48/90) are adversarial for the untargeted scenario.

On the other hand, the Gaussian blur (F2), the Median (F3), and the Median and Unsharp

combined (F5) filters are effective to a far larger extent against EAtarget,VGG-16
L2

, with F3 and
F5 being particularly efficient at removing the adversarial property of the descendant images.
Indeed, only 3 filtered adversarial images (hence 3 % of all filtered) remain adversarial for the
target scenario for each of these two filters (with target label values ≥ 0.4978 for F3, and ≥ 0.8131
for F5, see Tables 9.15 and 9.17). For the untargeted scenario finally, the proportion of filtered
images that are adversarial drops to 13 % (12/90) for F3, and to 12 % (11/90) for F5.

This study proves that the Inverse (F1) and the Unsharp mask (F4) filters are significantly to
largely inefficient against our EA, but that the Gaussian (F2), and foremost the Median (F3)
and the Combination (F5 = F3 ◦ F4) of the Unsharp mask and the Median filters render our

Page 68 of 147

EA-based attack significantly less effective, for both the targeted scenario and for the untargeted
scenario, at least with the ancestor images considered.

6.5 The filter-enhanced F -fitness function

Results of the previous section lead to the conception of a new fitness function, that natively
forces the EA to create adversarial images that remain adversarial in a targeted sense once
filtered. For a filter F , the filtered-enhanced F -fitness function is obtained as the following
variant of the fitness function defined in Equation (3.6):

fitFL2
(ind, gp) = A(gp, ind)

(
oind[ct] + oF (ind)[ct]

)
−B(gp, ind)L2(ind,A), (6.1)

where the component oF (ind)[ct] measures the probability that the individual filtered with F is

classified as the target category. One obtains EAtarget,VGG-16
L2,F

from EAtarget,VGG-16
L2

by updating
accordingly the fitness function. The termination and termination with success criteria are the
same as in Section 6.2.

Since F5 = F3◦F4 is not only highly efficient against EAtarget,VGG-16
L2

, but is the filter that reverts
the largest proportion (89 %) of images Da,t(Aa) back to ca, we limit this study to this case.

6.5.1 Running EAtarget,VGG-16
L2,F5

with one ancestor per category

For 1 ≤ a ≤ 10, one performs 10 independent runs of EAtarget,VGG-16
L2,F5

on the ancestor Aa in the

category ca given by Table 6.1. If EAtarget,VGG-16
L2,F5

terminates successfully, one writes DF5
a,t(Aa)

for the first adversarial image obtained by EAtarget,VGG-16
L2,F5

in less than 7000 generations. By
construction, this image and its F5 filtered version are classified by VGG16 as belonging to the
target category ct with probability ≥ 0.95, while remaining so close to Aa for a human eye that
no one would notice any difference.

Figure 6.6 pictures the adversarial images DF5
6,t(A6) obtained that way for the dog ancestor A6

(all first runs succeeded for the dog ancestor).

plane car bird cat deer dog frog horse ship truck

Figure 6.6: From left to right, comparison of the ancestor A6 in the 6th position with the
adversarial images DF5

6,t(A6) in the tth position (t ̸= 6).

For the ancestor image Aa (taken from Table 6.1) in the category ca specified in its ath row,

the tth row of Figure 6.7 gives the average number of generations required by EAtarget,VGG-16
L2,F5

to
terminate, computed over 10 independent runs. With a terminology adapted from the one used
in Figure 6.3, this number is followed by a symbol (⋆x, ‡y, †z) in 5 of the 90 cells. The occurrence
of this symbol means that the algorithm did not terminate successfully for x out of the 10 runs
(obviously, the average value = 7000 if x = 10). Not succeeding means that the ct-label value

Page 69 of 147

of the most performing descendant images D or of the filtered image F5(D) is stuck at some
local optimum < 0.95. The symbols ‡y and †z measure the quality of these local optimum.
‡y (respectively †z) counts the number of runs among the x unsuccessful ones for which the lo-
cal optimum for the descendant D (respectively F5(D)) stayed very low (between 10−3 and 10−6).

plane car bird cat deer dog frog horse ship truck Row Average

169 435 2455 7000 866 512 1330 174 1562 1611

1600 562 1704 1170 1911 832 1640 655 1010 1231

1320 7000 1508 1197 2201 5132 3440 1111 1808 2746

1468 1320 459 559 359 266 839 1016 1466 861

2931 4797 723 810 431 1098 1217 2266 2924 1910

1582 1275 723 189 2171 775 573 1440 1365 1121

1761 1574 576 1074 1262 1037 1863 1775 1695 1401

768 503 475 450 435 814 753 7000 391 1287

475 262 1333 740 2333 1226 1186 3279 811 1293

225 1011 638 1224 706 1391 1051 436 503 798

1347 1990 658 1128 1870 1137 1289 1624 1771 1448
Column
Average

plane ()

car ()
bird ()

cat ()

deer ()

dog ()

frog ()

horse ()

ship ()

truck ()

(*10, ‡0, 10)

(*10, ‡0, 10)

(*7, ‡0, 7)

(*10, ‡0, 10)

(*1, ‡1, 0)

Figure 6.7: EAtarget,VGG-16
L2,F5

’s performance on all possible ancestor/target combinations. The rows
give the ancestor categories ca (and the specific ancestorAa in ca), the columns indicate the target

class ct, and the cell values give the average number of generations required by EAtarget,VGG-16
L2,F5

to terminate, computed on 10 independent runs.

Out of the 900 performed runs, 38 did not terminate successfully, and 3 out of the 90 possible
ancestor/target scenarios were not achieved, namely the pairs (plane(A1), deer), (bird(A3), car),

(horse(A8), ship). Therefore, the experiments show a success rate of EAtarget,VGG-16
L2,F5

of 96, 66%,
and a probability that the algorithm terminates successfully for a given run of 95, 77%.

Comparing Figure 6.7 to Figure 6.3 when all 10 runs terminate successfully for both EAtarget,VGG-16
L2

and EAtarget,VGG-16
L2,F5

for a (ancestor(Aa), target) pair (83 cases altogether), the latter algorithm
requires usually more generations than the former in average (with 3 notable exceptions, namely
the (ship(A9), deer), the (ship(A9), dog) and the (truck(A10), cat) pairs for which it needs 10%,

18% and 13% less generations). The fact that, for the 80 remaining pairs, EAtarget,VGG-16
L2,F5

re-
quires between 1.12 and 3.87 (depending on the pair considered) times more generations than

EAtarget,VGG-16
L2

to terminate successfully is not surprising since there are 3 and no longer 2 cri-
teria to fulfill.

For all 87 combinations (ancestor(Aa), target) for which EAtarget,VGG-16
L2,F5

terminated success-
fully in at least one of the 10 independent runs, Figure 9.14 (Appendix 9.4.2) displays the first

adversarial image DF5
a,t(Aa) obtained by EAtarget,VGG-16

L2,F5
(with DF5

a,t(Aa) = Aa repeated on the
diagonal for the sake of consistency and comparison), and Table 9.18 (Appendix 9.4.2) gives the
corresponding label values.

6.5.2 Running EAtarget,VGG-16
L2,F5

with 50 ancestors per category

For the sake of completeness, we performed the same experiments as in Subsection 6.3.2 with
the same 500 ancestor images (50 ancestor images per ancestor category), but this time with

EAtarget,VGG-16
L2,F5

instead of EAtarget,VGG-16
L2

. Figure 6.8 shows the outcome. Out of 4500 attacks,

543 were unsuccessful, hence the success rate of EAtarget,VGG-16
L2,F5

is 88%, and requires between

Page 70 of 147

1250 and 2404 generations in average.

plane car bird cat deer dog frog horse ship truck

3423 1038 1914 2348 2438 1920 2816 2190 3546 2404

(*17, ‡1, †16) (*4, ‡0, †4) (*8, ‡0, †8) (*12, ‡0, †12) (*15, ‡0, †15) (*6, ‡0, †6) (*15, ‡0, †15) (*8, ‡1, †8) (*22, ‡1, †21)

1829 1552 2168 1964 1786 1898 1187 2814 1066 1807

(*1, ‡0, †1) (*1, ‡1, †0) (*2, ‡2, †0) (*3, ‡1, †2) (*2, ‡0, †2) (*2, ‡2, †0) (*7, ‡5, †2) (*2, ‡1, †1)

1505 3280 2112 1821 1491 1514 2144 2246 3254 2152

(*2, ‡0, †2) (*11, ‡2, †8) (*10, ‡0, †10) (*8, ‡0, †8) (*5, ‡1, †4) (*7, ‡0, †7) (*7, ‡0, †7) (*10, ‡0, †10) (*15, ‡0, †15)

1406 3132 894 2260 855 1842 1745 2820 3876 2092

(*1, ‡0, †1) (*15, ‡2, †12) (*3, ‡0, †3) (*12, ‡0, †12) (*4, ‡0, †4) (*10, ‡0, †10) (*7, ‡0, †7) (*13, ‡0, †13) (*21, ‡0, †21)

1367 3680 535 870 723 1362 1189 1485 2524 1526

(*3, ‡1, †3) (*18, ‡12, †8) (*1, ‡0, †1) (*2, ‡0, †2) (*5, ‡0, †5) (*4, ‡0, †4) (*2, ‡0, †2) (*8, ‡3, †7)

1842 2911 1027 603 1856 2120 1781 2419 3028 1954

(*5, ‡0, †5) (*12, ‡0, †12) (*4, ‡0, †4) (*2, ‡0, †2) (*8, ‡0, †8) (*11, ‡0, †11) (*7, ‡0, †7) (*10, ‡0, †10) (*14, ‡0, †14)

1481 3712 613 734 895 904 1961 1775 2583 1629

(*16, ‡8, †8) (*2, ‡0, †2) (*3, ‡1, †2) (*4, ‡0, †4) (*10, ‡1, †9)

1419 2687 779 1215 956 997 1866 1783 2959 1629

(*1, ‡0, †1) (*5, ‡0, †5) (*2, ‡0, †2) (*3, ‡0, †3) (*2, ‡0, †2) (*7, ‡0, †7) (*2, ‡0, †2) (*10, ‡1, †9)

1218 2724 1222 1494 2649 1710 2431 2056 2490 1999

(*2, ‡0, †2) (*9, ‡0, †9) (*1, ‡0, †1) (*2, ‡0, †2) (*13, ‡0, †13) (*2, ‡1, †1) (*12, ‡0, †12) (*4, ‡2, †2) (*11, ‡0, †11)

1355 1180 978 1199 1584 1337 1302 1157 1157 1250

(*2, ‡0, †2) (*4, ‡0, †4) (*2, ‡1, †1) (*3, ‡0, †3) (*1, ‡1, †0) (*2, ‡0, †2) (*1, ‡0, †1) (*1, ‡0, †1)

1491 2970 960 1368 1815 1360 1806 1782 2077 2814

frog

horse

ship

truck

deer

dog

plane

car

bird

cat

Column
Average

Row Average

Figure 6.8: 500 attacked images with 50 samples per ancestor class. Rows correspond to source
classes, columns correspond to target classes, and cell values correspond to the average number
of generations needed by EAtarget,VGG-16

L2,F5
to terminate.

Comparing Figure 6.3 with Figure 6.7 and Figure 6.4 with Figure 6.8 shows that EAtarget,VGG-16
L2,F5

usually requires more generations than EAtarget,VGG-16
L2

to construct adversarial images, what is

to expect since EAtarget,VGG-16
L2,F5

must satisfy not two, but three conditions.

6.5.3 Robustness of DF5
a,t(Aa) against VGG16◦Fk for all filters

Using again the images of Figure 9.14 (Appendix 9.4.2) obtained as described in Subsection 6.5.1,
the ancestor Aa and the corresponding adversarial images DF5

a,t(Aa) are then tested against all
five filters of subsection 6.4.1. Figure 6.9 shows the outcome of this process for the dog ancestor
A6 and the adversarial images DF5

6,t(A6).

Page 71 of 147

Figure 6.9: Impact of filters on the ancestor A6 and adversarial images DF5
6,t(A6). The kth row

represents F (DF5
6,t(A6)) in tth position (with DF5

6,6(A6) = A6), where F = Fk for 1 ≤ k ≤ 5.

These filtered images are given to VGG16 for classification (see Appendix 9.4.2, Table 9.18 for
F5, and Table 9.19 for F1, F2, F3 and F4, with DF5

a,a(Aa) = Aa to ease the notations).

Mutatis mutandis, one obtains Table 6.3 in a similar way as Table 6.2. Note that the upper
bounds of the indicators are impacted by the fact that 3 combinations (ca(Aa), ct) were not
achieved. Indeed, one has 0 ≤ ρF5

k (Aa) ≤ 9 for a = 1, 3, 8, and 0 ≤ ρF5

k (Aa) ≤ 10 otherwise. One

writes δF5

k (Aa) = 1 if the filtered ancestor and all filtered adversarial images are classified back

to the ancestor category whenever possible. Consistently, one has 0 ≤ τF5

k (Aa), τ̃
F5

k (Aa) ≤ 8 for

a = 1, 3, 8, and 0 ≤ τF5

k (Aa), τ̃
F5

k (Aa) ≤ 9 otherwise. As a consequence, one has 0 ≤ ΣF5

k ≤ 97,

0 ≤ ∆F5

k ,MF5

k ≤ 10, and 0 ≤ T F5

k , T̃ F5

k ≤ 87.

Table 6.3 clearly shows that the produced images are not only adversarial for F5, but also for
F3 and F4 to a large extent for the target scenario (88% and 84% respectively), and for the
untargeted scenario (89% and 88% respectively) as well. Additionally, 56% of these images are
efficient against F1 for the untargeted scenario, while this percentage drops to 23% with F2.

This study shows that the EAtarget,VGG-16
L2,F5

attack, designed to be robust against F5, is also robust
to some significant extent against all individual filters considered for the untargeted scenario,
the Gaussian filter (F2) being the most efficient at removing the adversarial character of the
constructed images.

6.6 Summary of the outcomes

This work successfully addresses the four issues raised in the chapter’s introduction. First, an ex-
tensive experimental study further showed the intrinsic efficiency of our algorithm EAtarget,VGG-16

L2

at constructing adversarial images for the target scenario performed against VGG16 with images
from Cifar-10. We then challenged the adversarial images obtained against a series of filters, and

Page 72 of 147

Table 6.3: Indicator values assessing the robustness of adversarial images DF5
a,t(Aa) against

filters. For each ancestor Aa, computation of (ρF5

k (Aa), δ
F5

k (Aa), µ
F5

k (Aa)) in the 1st row, and of

(τF5

k (Aa), τ̃
F5

k (Aa)) in the 2nd row. The last two rows give the sums
∑

a of these quantities for
all possible a.

Aa

k
1 2 3 4 5

A1 (9,1,0) (0,0,1) (1,0,0) (0,0,1) (1,0,0)
(0,0) (2,6) (8,8) (8,7) (8,8)

A2 (1,0,0) (2,0,0) (1,0,0) (4,0,0) (1,0,0)
(1,9) (4,8) (9,9) (6,6) (9,9)

A3 (6,0,0) (9,1,0) (6,0,0) (1,0,0) (1,0,0)
(2,3) (0,0) (3,3) (8,8) (8,8)

A4 (5,0,0) (9,0,0) (1,0,0) (1,0,0) (1,0,0)
(2,5) (1,1) (8,9) (5,9) (9,9)

A5 (0,0,1) (10,1,0) (1,0,0) (1,0,0) (1,0,0)
(3,8) (0,0) (8,9) (9,9) (9,9)

A6 (0,0,1) (0,0,1) (0,0,1) (1,0,0) (1,0,0)
(3,6) (1,0) (7,6) (9,9) (9,9)

A7 (6,0,0) (8,0,0) (1,0,0) (5,0,0) (1,0,0)
(2,4) (2,2) (9,9) (5,5) (9,9)

A8 (0,0,1) (6,0,0) (1,0,0) (1,0,0) (1,0,0)
(1,8) (2,3) (8,8) (7,8) (8,8)

A9 (6,0,0) (1,0,1) (2,0,0) (3,0,0) (1,0,0)
(1,4) (2,2) (8,8) (7,7) (9,9)

A10 (0,0,1) (0,0,1) (1,0,0) (1,0,0) (1,0,0)
(1,2) (2,1) (9,9) (9,9) (9,9)

(ΣF5

k ,∆F5

k ,MF5

k) (33,1,4) (45,2,4) (15,0,1) (18,0,1) (10,0,0)

(T F5

k , T̃ F5

k) (16,49) (16,23) (77,78) (73,77) (87,87)

finally designed a variant EAtarget,VGG-16
L2,F

of the EA, designed specifically to fool VGG16 and
VGG16 composed with a filter F , and demonstrated the efficiency of the produced adversarial
images not only against the specific filter chosen, but also against other filters as well.

Page 73 of 147

Chapter 7

Comparative Analysis of the EA
and BIM Adversarial Attacks

The work presented in this chapter is extracted from [14].

7.1 Introduction

This chapter focuses on understanding the underlying manner in which the EA-based attack de-
ceives the CNNs. A thorough analysis is performed through various perspectives and experiments
with the adversarial images and their noise. Additionally, the entire study is simultaneously per-
formed on another successful, but opposing attack, which allows for their comparison.
This study aims at gaining an insight into the functioning of adversarial attacks by analyzing
the adversarial images on the one hand, and the reactions of CNNs when exposed to adversarial
images on the other hand. These analyses and comparisons are performed from different perspec-
tives: behaviour while looking at smaller regions, noise frequency, transferability and changes in
image texture, penultimate layers. The reasons for considering these perspectives are as follows.
The first question we attempt to answer is whether adversarial attacks exploit the CNNs’ bias
towards texture [25]. This issue is related to the frequency of the noise, in the sense that changes
of image texture are reflected by the input of high frequency noise [53]. This issue is also related
to what happens at smaller image regions, since texture modifications should also be noticed at
these levels. The transferability issue measures how far the adversarial noise is specific to the
attacked CNN, or to the training data. Finally, studying the behaviour of the penultimate layers
of the addressed CNNs provides a close look at the direction of the adversarial noise with respect
to each object category.

This insight is addressed via a thorough experimental study. We selected 10 CNNs that are very
diverse in terms of architecture, number of layers, etc. These CNNs are trained on the ImageNet
dataset to sort images of size 224 × 224 into 1000 categories. We then intentionally chose two
attacks that are on opposing edges of the attacks’ classification. More precisely, here we consider
the gradient-based BIM [36] and the score-based EAtarget,C [57, 5, 11, 13], both having high
success rates against CNNs trained on ImageNet [31, 57].

We run these two algorithms to fool the 10 CNNs, with the additional very demanding require-
ment that, in order for an image to be considered adversarial, its ct-label value should exceed

74

0.999. Starting with 10 random pairs of ancestor and target categories (ca, ct), and 10 random
ancestor images in each ca, hence 100 ancestor images altogether, out of the 1000 performed runs
per attack, the two attacks succeeded for 84 common ancestors, leading to 2 distinct groups (one
for each attack) of 437 adversarial images coming from these 84 convenient ancestors. The 2×437
adversarial images and the 10 CNNs are then analyzed and compared from the above-mentioned
perspectives. Each of these perspectives is addressed in a dedicated subsection, that contains
the specific obtained outcomes.

The study is organized as follows.

Section 7.2 explains the criteria leading to the selection of the 10 CNNs, of the ancestor and
target categories, as well as the choice of the ancestor images in each category. We recall the
design of our algorithm EAtarget,C and of BIM, and explain how we obtained the 0.999-strong
adversarial images used in our experiments.

In Section 7.3, we analyze whether the adversarial noise introduced by the EA and by BIM has
an adversarial impact at regions of smaller size. We also explore whether this local noise alone
is sufficient to mislead the CNN, either individually or globally but in a shuffled way.

In Section 7.4, we provide a visualization of the noise that the EA and BIM add to an ancestor
image to produce an adversarial image. In particular, we identify the frequencies of the noise
introduced by the EA and BIM, and, among them, those that are key to the adversarial nature
of the images created by each of the two attacks.

Section 7.5 explores the potential transferability of the adversarial images from one CNN to
another. The issue is to clarify whether adversarial images are specific to their targeted CNN,
or whether they contain rather general features that are perceivable by others. Since ImageNet-
trained CNNs are biased towards texture [25], we examine whether texture is changed by the EA
and by BIM, and whether CNNs with differing amounts of texture bias agree on which image
modifications have the largest adversarial impact.

The transferability issue is pursued in Section 7.6. We explore whether the adversarial noise at
regions of smaller sizes is less CNN-specific, hence more transferable, than at full scale. This
issue is addressed in two ways. First, we check whether and how a modification of the adversarial
noise intensity affects the ca and the ct-label values predicted by a CNN when fed with a differ-
ent CNN’s adversarial image, and the influence of shuffling in this process. Secondly, we keep
the adversarial noise as it is (meaning without changing its intensity), and we check whether
adversarial images are more likely to transfer when they are shuffled.

Finally, we delve inside the CNNs in Section 7.7. We study the changes that adversarial images
produce in the activation of the CNNs penultimate layers.

The concluding Section 7.8 wraps up our results. This study is completed by Appendix 9.5,
which displays the ancestors, the convenient ancestors, and some 0.999-strong adversarial images
obtained by the EA and by BIM. The Appendix also contains a series of tables and graphs
supporting our findings.

Page 75 of 147

7.2 Adversarial images created by BIM and by EAtarget,C

This section first lists both the 10 CNNs and the (ancestor, target) category pairs on which
the targeted attacks are performed (Subsection 7.2.1). Since this paper’s focus is on performing
experiments with the adversarial images, rather than evaluating the attacks’ functioning or
performances, we only give a brief overview of the two algorithms used here, namely EAtarget,C

and BIM (Subsection 7.2.2). Lastly, we specify the parameters used by EAtarget,C and BIM to
construct the adversarial images used in the remainder of this paper (Subsection 7.2.3).

7.2.1 Selected CNNs, ancestor and target categories

We challenge a significant series of well-known CNNs, that cover a large part of the existing deep
learning approaches to object recognition. For practical reasons and for comparison purposes,
we require the availability of their pre-trained versions in the PyTorch [48] library, and that they
handle images of similar size. These criteria led us to select the following 10 CNNs, trained on
ImageNet, and handling images of size 224 × 224: C1 = DenseNet121 [29], C2 = DenseNet169
[29], C3 = DenseNet201 [29], C4 = MobileNet [28], C5 = MNASNet [56], C6 = ResNet50 [27],
C7 = ResNet101 [27], C8 = ResNet152 [27], C9 = VGG16 [52], C10 = VGG19 [52] (Two additional
CNNs BagNet17 [8] and ResNet50-SIN [25] are considered in Section 7.5 for reasons explained
thereof).

Among the 1000 categories of ImageNet, we randomly pick ten ancestor a1, · · · , a10 and ten target
categories t1, · · · , t10. These are given in Table 7.1. For each (ancestor, target) pair (caq , ctq)
(with 1 ≤ q ≤ 10), we randomly select 10 ancestor images Ap

q (with 1 ≤ p ≤ 10), resized to
224×224 using bilinear interpolation if necessary. These 100 ancestor images, pictured in Figure
9.15 in Appendix 9.5.1, are labeled by the 10 CNNs as aq in 97% cases, with negligible ctq -label
values (approximately between 9e−11 and 2e−3). Two different algorithms are used to perform
targeted attacks on all 10 CNNs, all 10 (caq , ctq) (1 ≤ q ≤ 10) pairs and all 10 Ap

q (1 ≤ p ≤ 10).

Table 7.1: For 1 ≤ q ≤ 10, the 2nd row gives the ancestor category caq
and its index number aq

among the categories of ImageNet (Mutatis mutandis for the target categories, 3rd row).

q 1 2 3 4 5 6 7 8 9 10
caq

aq

abacus
398

acorn
988

baseball
429

broom
462

brown bear
294

canoe
472

hippopotamus
344

llama
355

maraca
641

mountain bike
671

ctq
tq

bannister
421

rhinoceros beetle
306

ladle
618

dingo
273

pirate
724

Saluki
176

trifle
927

agama
42

conch
112

strainer
828

7.2.2 Design of BIM

Given a trained CNN C, this section summarizes the key features of BIM [36]. The algorithm’s
purpose is to evolve an ancestor image A into a τ -strong adversarial image (for some convenient
value of τ) that deceives C at image classification.
As opposed to the EA, BIM is a white-box attack, since it requires the knowledge of the CNN’s
parameters and architecture. The algorithm does not stop when a particular ct-label value has
been reached, but rather once a given number N of steps has been performed. More concretely,
BIM can be seen as an iterative extension of the FGSM [26] attack. It creates a sequence of
images (Xadv

ℓ), where the initial value is set to the ancestor A, namely Xadv
0 = A, and the next

images are defined step-wise by the induction formula:

Page 76 of 147

Xadv
ℓ+1 = Clipϵ{Xadv

ℓ − αsign(∆A(JC(X
adv
ℓ , ct)))}, (7.1)

where JC is the CNN’s loss function, ∆A is the gradient acting on that loss function, α is a
constant that determines the perturbation magnitude at each step, and Clipϵ is the function
that maintains the obtained image within [A − ϵ,A + ϵ], where ϵ is a constant that defines the
overall perturbation magnitude. Once the number N of steps is specified, BIM’s output is the
image Xadv

N . This image is then given to C in order to get its ct-label value, and its classification.

A major difference between BIM and the EA is that with BIM, the ct-label values are measured
a posteriori, while with the EA the τ -threshold is fixed a priori.

7.2.3 Creation of 0.999-strong adversarial images by EAtarget,C and by
BIM

For both algorithms, we set δ = 2/255 and ϵ = 8/255. Specifically for the EA-based attack,
we set A = 1, B = 0, and a population size of 40. For C = Ck, we write atk = EAtarget,C or
BIM, and use Datk

k (Ap
q) to denote a 0.999-strong adversarial image obtained by the correspond-

ing algorithm for the target scenario performed on the (ancestor, target) category pair (caq
, ctq)

against Ck with ancestor image Ap
q . The τ threshold value was set to 0.999 mainly due to BIM’s

behaviour, as explained below.

With a number N of steps equal to 5, all BIM runs led to images satisfying equation (2.3). Out
of the 1000 images obtained that way, 549 turned out to be 0.999-strong adversarial. It is pre-
cisely because so many BIM adversarials had such a high ct-label value that we set τ = 0.999 for
EAtarget,Ck as well, in order to obtain adversarial images that are comparable to those created by
BIM. We also fixed the second stopping condition for EAtarget,Ck , namely the maximal number
of generations, to G = 103, 000. This very large value was necessary in order to allow the EA to
create τ -strong adversarial images for a τ as high as 0.999. The EA successfully created 0.999-
strong adversarial images in 716 cases. Note that our point is not to compare the performance
of the algorithms, but to study the adversarial images they obtain.

In order to reduce any potential bias when comparing the adversarial images, we only considered
the combinations of ancestor images Ap

q and CNNs for which both the EA and BIM successfully
created 0.999-strong adversarial images for the corresponding (caq , ctq) pairs. This notion defines
”convenient ancestors” and ”convenient combinations”.

In Appendix 9.5.1, Figure 9.16 lists the 84 convenient ancestors. Table 9.20 shows that there are
437 convenient combinations (Note that all 10 CNNs belong to at least one such combination).
Figures 9.17 and 9.18 provide examples of the obtained adversarial images for some convenient
ancestors.

All experiments of the subsequent sections are therefore performed on the 84 convenient ancestors
and on the 2× 437 corresponding adversarial images.

7.3 Local effect of the adversarial noise on the target CNN

Here we analyze whether the adversarial noise introduced by the EA and by BIM also has an
adversarial effect at regions of smaller size, and whether this local effect alone would be sufficient

Page 77 of 147

to mislead the CNNs, either individually (subsection 7.3.1) or globally but in a ”patchwork” way
(subsection 7.3.2).

7.3.1 Is each individual patch adversarial?

To examine the adversarial effect of local image areas, we replace non-overlapping 16×16, 32×32,
56×56, and 112×112 patches of the ancestors with patches taken from the same location in their
adversarial versions (this process is performed for BIM and for the EA separately), one patch at
a time, starting from the top-left corner. Said otherwise, each step leads to a new hybrid image
I, that coincides with the ancestor image A everywhere except for one patch, taken at the same
emplacement from the adversarial Datk

k (A). At each step the hybrid image I is sent to Ck, to
extract the ca and ct-label values, o

Ck

I [a] and oCk

I [t]. Figure 7.1 shows an example of the plots of
these successive ca and ct-label values, step-by-step, for the ancestor image A4

5, the CNN C6, and
the adversarial images obtained by the EA and by BIM. The behaviour illustrated in this example
is representative of what happens for all ancestors and CNNs (see Figure 9.19 in Appendix 9.5.2).

Figure 7.1: Single patch replacement for A4
5 and C = C6. The 4 pairs of graphs correspond to

patches of size 16 × 16, 32 × 32, 56 × 56 and 112 × 112, respectively. Each pair represents the
step-wise plot of log(oCI [a]) (left graph) and of log(oCI [t]) (right graph) for the EA (blue curve)
and BIM (orange curve). The red horizontal line recalls the ca-label value (left graph) or the
ct-label value (right graph) of A4

5 with no replaced patch.

For all values of s and with both attacks, almost all patches individually increase the ct-label
value and decrease the ca-label value. The fact that the peaks often coincide between the EA
and BIM proves that modifying the ancestor in some image areas, rather than others, can make
a large difference. However, BIM’s effect is usually larger than the EA’s. Also note that no
single patch is sufficient to fool the CNNs, in the sense that it would create a hybrid image with
a dominating ct-label value.

Page 78 of 147

7.3.2 Is the global random aggregation of local adversarial effect suffi-
cient to fool the CNNs?

Firstly, replacing all patches simultaneously and at the correct location is by definition enough
for a targeted misclassification, since its completion leads to the adversarial image. Secondly,
most of the patches taken individually have a local adversarial impact, but none is enough indi-
vidually to achieve a targeted attack.

The issue addressed here is whether the global aggregation of the local adversarial effect is strong
enough, independently on the location of the patches, to create the global adversarial effect we
are aiming at.

We proceed as follows. Given an Image I, and an integer s so that patches of size s× s create a
partition of I, sh(I, s) is a shuffled image deduced from I by randomly swapping all its patches.
With these notations, sh(Datk

k (Ap
q), s) (with atk = BIM or EA) is sent to the Ck CNN. One

obtains the ca and the ct-label values, as well as the dominant category (that may differ from
ca, ct). The values of s used in our tests are 16, 32, 56, 112, leading to partitions of the 224× 224
images into 196, 49, 16 and 4 patches respectively.

Table 7.2 gives the outcome of these tests. For each value s, each cell is composed of a triplet of
numbers. The left one corresponds to the tests with the ancestor images, the middle one to the
tests with images obtained by the EA, and the right one to the tests with images obtained by
BIM. Each number is the percentage of images sh(Ap

q , s) or of images sh(Datk
k (Ap

q), s), taken for
all ancestor images Ap

q , all (ancestor, target) category pairs, and all C1, · · · , C10, that are classified
in category c, where c is the ancestor category ca, the target category ct, or any other class. To
allow comparisons, the randomly-selected swapping order of the patches is only performed once
per value of s. For each s, this uniquely defined sequence is applied in the same way to create
the sh(Ap

q , s), sh(DEA
k (Ap

q), s), and sh(DBIM
k (Ap

q), s) shuffled images.

s Number of patches c = ca c /∈ {ca, ct} c = ct
16 196 0.4, 0.1, 0.1 99.6, 99.9, 99.9 0.0, 0.0, 0.0
32 49 18.0, 9.2, 5.3 82.0, 90.8, 94.4 0.0, 0.0, 0.3
56 16 67.6, 39.3, 15.8 32.4, 60.3, 70.1 0.0, 0.4, 14.1
112 4 88.4, 62.3, 22.3 11.6, 33.2, 35.9 0.0, 4.5, 41.8

Table 7.2: Percentages of shuffled images sh(Ap
q , s) (1st percentage), sh(DEA

k (Ap
q), s) (2nd per-

centage), and sh(DBIM
k (Ap

q), s) (3
rd percentage) for which the predicted class is c.

Contrary to what happens with s = 32, 56 and 112, the proportion of shuffled ancestors sh(Ap
q , s)

classified as ca is negligible for s = 16. Therefore, s = 16 seems to lead to patches that are too
small for a 224 × 224 image to allow a meaningful comparison between the ancestor and the
adversarials, and is consequently disregarded in the remainder of this subsection. At all other
values of s, the classification of the shuffled adversarial image as a class different from ca (ct or
other) is more common with BIM than with EA. With s = 112, it is noticeable that as many
as 41.8% of BIM shuffled adversarials still produce targeted misclassifications. Enlarging s from
56 to 112 dramatically increases the proportion of shuffled adversarials classified as ct with BIM
(with a modest such increase with the EA), and as ca with the EA (with a modest such increase
with BIM). Moreover, the shuffled EA adversarials behave similarly to the shuffled ancestors,
whose ca probability increases considerably as the size of the patches gets larger and the original

Page 79 of 147

ca object becomes clearer (despite its shuffled aspect).

7.3.3 Summary of the outcomes

Both the EA and BIM attacks have an adversarial local effect, even at patch sizes as small as
16× 16, but they generally require the image to be at full scale in order to be adversarial in the
targeted sense. Still, a difference between the attacks is that, as the patch size increases (without
reaching full scale, and while being subject to a shuffling process) and the ca shape consequently
becomes more obvious (even despite the shuffling), the EA’s noise has a lower adversarial effect,
while BIM’s ct-meaningful noise actually accumulates and has a higher global adversarial effect.

7.4 Adversarial noise visualization and frequency analysis

This section first attempts to provide a visualization of the noise that the EA and BIM add
to an ancestor image to produce an adversarial image (Subsection 7.4.1). We then look more
thoroughly at the frequencies of the noise introduced by the EA and BIM (Subsection 7.4.2).
Finally, we look for the frequencies that are key to the adversarial nature of an image created by
the EAtarget,C and by BIM (Subsection 7.4.3).

7.4.1 Adversarial noise visualization

The visualization of the noise that EAtarget,Ck and BIM add to Ap
q to create the 0.999-strong

adversarial images DEA
k (Ap

q) and DBIM
k (Ap

q) is performed in two steps. Firstly, the difference

Datk
k (Ap

q) − Ap
q , between each adversarial image and its ancestor, is computed for each of the

RGB channels. Secondly, one displays the histogram of the adversarial noise. This leads to a
measurement of the magnitude of each pixel modification. An example, typical of the general
behaviour whatever the channel, is illustrated in Figure 7.2, showing the noise (the fact that
the displayed dominating colors of the noise representation on Figure 7.2 are green, yellow and
purple stems from the ’viridis’ setting in Python’s matplotlib library, which could be changed at
will. Still, a scale gives the amplitude of the noise per pixel in the range [−ϵ, ϵ] = [−0.03, 0.03],
and hence justifies the position of the observed colors) and histogram of the perturbations added
to the red channel of A4

5 to fool C6 with the EA and with BIM.

Figure 7.2: Display of the noise and histogram of the perturbations added by the EA (left pair)
and by BIM (right pair) to the red channel of A4

5 to fool C6.

Recall that both attacks perform pixel perturbations with a maximum perturbation magnitude
of ϵ = 0.03 (see subsection 7.2.3). However, while with BIM the smaller magnitudes dominate
the histogram, the adversarial noise is closer to a uniform distribution with the EA. Another
difference is that, whereas with BIM all pixels are modified, a considerable amount of pixels

Page 80 of 147

(9.3% on average) are not modified at all with the EA. Overall, there is a larger variety of noise
magnitudes with the EA than with BIM, which can also be noticed visually in the image display
of the noise.

7.4.2 Assessment of the frequencies present in the adversarial noise

The adversarial perturbations Datk
k (Ap

q) − Ap
q having been assessed (subsection 7.4.1) for each

RGB channel, we proceed to the analysis of the frequencies present in the adversarial noise
per channel. Concretely, the Discrete Fourier Transform (DFT) is used to obtain the 2D-
magnitude spectra of the adversarial perturbations. One computes two quantities, magn (diff)
= |DFT (Datk

k (Ap
q)−Ap

q)|, and diff (magn) = |DFT (Datk
k (Ap

q))|−|DFT (Ap
q)|. Figure 7.3 displays

a typical example of the general outcome regarding the adversarial noise in the red channel added
by the EA or by BIM. For each image, the low frequencies are represented in the centre, the high
frequencies in the corners, and the vertical bar (on the right) maps the frequency magnitudes to
the colours shown in the image.

Figure 7.3: For atk = EA (left pair) and atk = BIM (right pair), representation of
|DFT (Datk

6 (A4
5)−A4

5)| (magn (diff), 1st image) and |DFT (Datk
6 (A4

5))|−|DFT (A4
5)| (diff (magn),

2nd image) for the red channel.

Figure 7.4: For atk = EA (left) and atk = BIM (right), autocorrelation of Datk
6 (A4

5) − A4
5 for

the red channel.

A clear difference between the EA and BIM is visible from the magn (diff) visualizations. With
the EA, the high magnitudes do not appear to be concentrated in any part of the spectrum (with
the exception of occasional high magnitudes in the centre), indicating the white noise nature of
the added perturbations. Supporting evidence for this white noise nature for the EA comes from
the 2D autocorrelation of the noise. Figure 7.4 shows that the 2D autocorrelation for both at-
tacks have a peak at lag 0, which is to be expected. It turns out that this is the only peak when
one considers the EA, which is no longer the case when one considers BIM. Unfortunately, this
is hard to see on Figure 7.4, since the central peak takes very high values, hence the other peaks
fade away in comparison. With BIM, the magn (diff) visualizations display considerably higher
magnitudes for the low frequencies, indicating that BIM primarily makes use of low-frequency

Page 81 of 147

noise to create adversarial images.

In the case of diff (magn), both the EA and BIM exhibit larger magnitudes for the high frequen-
cies than for the low frequencies. This can be interpreted as a larger effect of the adversarial
noise on the high frequencies than on the low frequencies. Natural images from ImageNet have
significantly more low-frequency than high-frequency information [65]. Therefore, even a quasi-
uniform noise (such as the EA’s) has a proportionally larger effect on the components that are
numerically less present than on the more numerous ones.

7.4.3 Band-stop filtering shuffled and unshuffled images: which fre-
quencies make an image adversarial?

So far, the results of this study divulge the quantity of all frequency components present in the
adversarial perturbations, but their relevance to the attack effectiveness is still unknown. To
address this issue, we band-stop filter the adversarial images Datk

k (Ap
q) to eliminate various fre-

quency ranges, and we check the effect produced on the CNN predictions. In order to evaluate
the proportion of low vs. high frequencies of the noise introduced by the two attacks, the process
is repeated with the shuffled adversarials sh(Datk

k (Ap
q), s) for s = 32, 56 and 112.

We first obtain the DFT of all shuffled or unshuffled ancestor and adversarial images, followed
by filtering with band-stop filters of 10 different frequency ranges Fbst,rc, where the range centre
rc goes from 15 to 115 units per pixel, with steps of 10, and the bandwidth bw is fixed to 30
units per pixel. For example, the last band-stop filter Fbst,115 removes frequencies in the range
of (115− 15, 115+ 15) units per pixel. The band-stopped images are passed through the Inverse
DFT (IDFT) and sent to the CNN, which results in 10 pairs of (ca, ct)-label values for each
image, be it an ancestor or an adversarial. Figure 7.5 presents some results that are typical of
the general behaviour (also see Appendix 9.5.3 Figures 9.20 and 9.21 for the EA and Figures
9.22 and 9.23 for BIM).

For both the EA and BIM, the ct probability tends to increase as rc becomes larger. This means
that lower frequencies have a larger impact on the adversarial classification than higher frequen-
cies. As shown on the left column of each pair of graphs, it is the low frequencies that matter for
the correct classification of the ancestor, as well. Although with both attacks the ct probability
tends to increase at higher values of rc, with BIM it is dominant at considerably smaller values
of rc, whereas the EA adversarials are usually still classified as ca. Hence, the EA adversarials
require almost the full spectrum of the perturbations to fool the CNNs, while the lower part
of the spectrum is sufficient for the BIM adversarials. This result matches those of magn (diff)
in Figure 7.3, where the EA and BIM were found to introduce white and predominantly low-
frequency noise, respectively.

As for the shuffled images, it is clear that their low-frequency features are affected by the shuffling
process and, as a result, the ct probability cannot increase to the extent it does in the unshuffled
images. With BIM and s = 112, at high rcs the band-stop graphs show a slower increase of the
ct probability than when the images are not shuffled. This means that a large part of the BIM
adversarial image’s low-frequency noise is meaningful only for the unshuffled image. When this
low-frequency noise changes location through the shuffling process, one needs to gather noise
across a broader bandwidth in order to significantly increase the ct probability of the shuffled
adversarial.

Page 82 of 147

Figure 7.5: For atk = EA (1st and 2nd row) and atk = BIM (3rd and 4th row), the following
images are fed to C6: A4

5 and Datk
6 (A4

5) (1st pair), sh(A4
5, 32) and sh(Datk

6 (A4
5), 32) (2nd pair),

sh(A4
5, 56) and sh(Datk

6 (A4
5), 56) (3rd pair), sh(A4

5, 112) and sh(Datk
6 (A4

5), 112) (3rd pair). In
each pair of graphs, the left graph displays the ca-label values given by C6 as the images are
band-stop filtered with bandwidths centred on different rc values, and the right graph displays
the ct-label values, mutatis mutandis.

Page 83 of 147

Even if the BIM adversarials require a larger bandwidth in order to be adversarial when shuffled,
they still reach this goal. By contrast, the shuffled EA adversarials have band-stop graphs that
closely resemble the shuffled ancestors’ graph. Only BIM’s remaining low and middle frequencies
are meaningful enough to ct and still manage to increase the ct probability.

7.4.4 Summary of the outcomes

The histogram of the adversarial noise introduced by BIM follows a bell shape (hence smaller
magnitudes dominate) while it is closer to a uniform distribution with the EA (hence with a
larger variety of noise magnitudes in this case). In addition, BIM modifies all pixels, while the
EA leaves many (circa 14000 out of 224× 224× 3, hence 9.3% on average) unchanged.

In terms of the frequency of the adversarial noise, the EA introduces white noise (meaning that
all possible frequencies occur with equal magnitude), while BIM introduces predominantly low-
frequency noise. Although for both attacks the lower frequencies have the highest adversarial
impact, the low and middle frequencies are considerably more effective with BIM than with EA.

7.5 Transferability and texture bias

This section checks whether adversarial images are specific to their targeted CNN or whether
they contain rather general features that are perceivable by other CNNs (Subsection 7.5.1). Since
ImageNet-trained CNNs are biased towards texture [25], it is natural to ask whether adversarial
attacks take advantage of this property. More precisely, we examine whether texture is changed
by the EA and by BIM, and whether this could be the common ”feature” perceived by all CNNs
(Subsection 7.5.2). Thanks to heatmaps, we evaluate whether CNNs with differing amounts of
texture bias agree on which image modifications have the largest adversarial impact and whether
texture bias plays any role in transferability (Subsection 7.5.3).

7.5.1 Transferability of adversarial images between the 10 CNNs

For each attack atk ∈ {EA,BIM}, we check the transferability of the adversarial images as
follows. Starting from an ancestor image Ap

q , we input the Datk
k (Ap

q) image, which is adversarial
against Ck, to a different Ci (hence i ̸= k). We then extract the probability of the dominating
category, the ct probability and the ca probability given by Ci for that image.

Then, we check whether the predicted class is precisely ct (targeted transferability), or if it is
any other class different from both ca and ct. Out of all possible CNN pairs, our experiments
showed that none of the adversarial images created by the EA for one CNN are classified by
another as ct, while this phenomenon occurs for 5.4% of the adversarial images created by BIM.
As for classification in a category c ̸= ca, ct, the percentages are 5.5% and 3.2% for the EA and
BIM, respectively.

7.5.2 How does CNNs’ texture bias influence transferability?

Knowing that CNNs trained on ImageNet are biased towards texture, we assume that a high
probability for a particular class given by such a CNN expresses the fact that the input image
contains more of that class’s texture. Our goal is to check whether this occurs for adversarial
images as well.

Page 84 of 147

Table 7.3: Images, adversarial for the CNNs of the rows, are fed to the CNNs of the columns
to get their ca and ct label values. Each cell of the Table gives a pair of numbers, the left one
corresponding to atk = EA, and the right one to atk = BIM . Each number is the average
difference in the ca (Table a) and ct (Table b) label values between the adversarial Datk

Tt
(Ap

q) and
the ancestor Ap

q .

T1 T2 T3

T1 -0.03, -0.05 0.01, 0.02
T2 -0.15, -0.22 1.9e-3,-0.01
T3 -0.15, -0.15 -0.05, -0.13

(a) ca

T1 T2 T3

T1 5.6e-5, 2.0e-5 1.0e-5, 4.1e-5
T2 2.9e-4, 1.1e-3 5.0e-5, 1.2e-4
T3 2.4e-4,6.8e-5 5.3e-5, 5.7e-4

(b) ct

We restrict our study to adversarial images obtained by the EA and by BIM for the following
three CNNs, that have a similar architecture, and that have been proven [30] to gradually have
less texture bias and less reliance on their texture-encoding neurons : T1 = BagNet17 [8], T2 =
ResNet50 and T3 = ResNet50-SIN [25]. The experiments amount to checking the transferability
of the adversarial images between these three CNNs. The fact that the statement about the
graduation is fully proven only for these three justifies that we limit our study to them, since no
such hierarchy is known for other CNNs in general.

Even in this case of three CNNs with a similar architecture, experiments show that targeted
transferability between the three CNNs is 0%, whichever the attack. As a consequence, checking
whether ct becomes dominant for another CNN is pointless. We rather calculate the difference
produced in a CNN’s predictions of the ct and ca probabilities between the ancestor and another
CNN’s adversarial image. The average results over all images are presented in Table 7.3.

When transferring from T2 = ResNet50 to T1 = BagNet17, experiments show that the ca-label
value decreases, while the ct-label value increases, with the former being larger in magnitude
than the latter. If the assumption formulated in the first paragraph holds, this phenomenon
implies that the attacks change image texture. Still, the similarly low transferability from T1 =
BagNet17 to T2 = ResNet50 proves that texture change is not sufficient to generate adversarial
images. The texture change observed in T2 = ResNet50 adversarials might simply be a side-effect
of the perturbations created by the EA and BIM.

Nevertheless, Table 7.3 (a) reveals that texture bias seems to play a role in transferability. It
shows that the more texture-biased the CNN you are transferring the adversarial images to, the
larger the decrease of its ca-label values. Indeed, this ca decrease is larger when transferring
from T3 = ResNet50-SIN to T2 = ResNet50 and from T2 = ResNet50 to T1 = BagNet17 than
vice-versa.

7.5.3 How does texture change relate to adversarial impact on the
CNNs?

In this subsection, BagNet17 is used to visualize, thanks to heatmaps, whether texture change
correlates to the adversarial impact of the obtained images for the 10 CNNs C1, · · · , C10.

Although we have seen that both attacks affect BagNet17’s ca probability on average, here we
attempt to find the image areas in which these changes are most prominent, and to compare the
locations in the Ck adversarials that have the largest impact on BagNet17 and on Ck.

Page 85 of 147

To do so, we proceed in a similar way as in Subsection 7.3.1, with the difference that we allow
overlaps. We replace all overlapping 17 × 17 patches of the ancestor Ap

q with patches from the

same location in Datk
k (Ap

q), one single patch at a time, and we extract and store the ca and ct
probabilities given by Ck of the obtained hybrid image I at each such step. Contrary to the
situation in Subsection 7.3.1, note that there are as many patches as pixels in the present case.
Simultaneously, these patches are also fed to BagNet17 (leading to 50176 predictions for each
adversarial image) to also extract the ca and ct-label values of these patches. The stored ca and
ct label values (and combinations of them) can be displayed in a square box of size 224 × 224
(hence of size equal to the size of the handled images), resulting in a heatmap.

More precisely, given an ancestor image Ap
q , all hybrid adversarial images obtained as above via

the EA lead to 5 heatmaps, and all those obtained by BIM lead to 5 heatmaps as well. For
both attacks, the first four heatmaps are obtained thanks to BagNet17, and the fifth is obtained
thanks to Ck for comparison purposes. Each heatmap assesses the 10% largest variations in the
following sense.

We have a first sequence (ca(P (D(A))))P of ca-label values coming from the evaluation by Bag-
Net17 of the patches of the adversarial images, and a second similar sequence (ca(P (A)))P
of ca-label values coming from the patches of the ancestor images. Both sequences are nat-
urally indexed by the successive same patch locations P . We then consider the sequence,
also indexed by the patches, made of the differences ca(P (D(A))) − ca(P (A)). The selec-
tion of the locations of the smallest 10% out of this sequence of differences leads to the first
heatmap. One proceeds similarly for the second heatmap, by selecting the location of the
largest 10% among the values of ct(P (D(A)))− ct(P (A)) (with obvious notations). The process
is similar for the third and fourth heatmaps, where one considers the location of the largest
10% of the values of ca(P (D(A))) − ct(P (D(A))) for the third heatmap, and of the values of
ct(P (D(A)))− ca(P (D(A))) for the fourth heatmap.

Finally, the fifth heatmap is obtained by considering the largest 10% among the values ct(IP (D(A)))−
ct(A), where the two members of the difference are the ct-label values given by the CNN Ck for
a full image, the right one for the ancestor image, and the left one for the hybrid image obtained
as explained above.

Figure 7.6 shows the outcome of this process for C6= ResNet50 and ancestor A8
10 (see Figure 9.24

in Appendix 9.5.4 for other examples). Figure 7.6 (a) shows the adversarial images DEA
6 (A8

10)
(top) and DBIM

6 (A8
10) (bottom). Figure 7.6 (b) to (e) are the four heatmaps obtained thanks to

BagNet17 (in the order stated above), and Figure 7.6 (f) is the heatmap obtained thanks to C6
(the top row corresponds to the EA, and the bottom row to BIM). The 10% largest variations
are represented by the yellow points in each heatmap.

With both attacks, actually stronger with BIM than with the EA, modifying the images in and
around the object locations is the most effective at increasing Ck’s ct probability, as shown in
Figure 7.6 (f).

For both attacks, the locations of ca texture decrease coincide with the locations of most ad-
versarial impact for Ck (Figure 7.6 (b) and (f)), while the ct texture increase is slightly more
disorganised, being distributed across more image areas (Figure 7.6 (c)). Still, even though the
ca texture decreases, it remains dominant in the areas where the ca shape is also present (Figure

Page 86 of 147

Figure 7.6: Heatmaps obtained with the ancestor A = A8
10 and the adversarial image D(A) =

Datk
6 (A8

10) pictured in (a), where atk = EA in the 1st row and atk = BIM in the 2nd row.

7.6 (d)), without being replaced by the ct texture, which only dominates in other, less ca object-
related areas (Figure 7.6 (e)). The ca texture and shape coupling encourages the classification
of the image into ca, which may explain why the adversarial images are not transferable.

7.5.4 Summary of the outcomes

Both attacks’ adversarial images are generally not transferable in the targeted sense. Although
some ca texture is distorted by the attacks, the ct texture is not significantly increased (while the
opposite is true for the targeted CNNs’ ca and ct probabilities) and this increase is nevertheless
not correlated with an adversarial impact on the CNNs. However, we find that EA’s and BIM’s
adversarial images transfer more to CNNs which have higher texture bias.

7.6 Transferability of the adversarial noise at smaller im-
age regions

On the one hand, the very low transferability rate observed in Section 7.5 shows that most ob-
tained adversarial images are specific to the CNNs they fool. On the other hand, the size of
the covered region increases linearly with successive CNN layers [41]. Moreover, the similarity
between the features captured by different CNNs is higher in earlier layers than in later layers
[37, 44]. Roughly said, the earlier layers tend to capture information of a general nature, common
to all CNNs, while the features captured by the later layers diverge from one CNN to another.

The question addressed in this section goes in the direction of a potential stratification of the
adversarial noise’s impact according to the successive layers of the CNNs. Put differently, this
amounts to clarifying whether it is possible to sieve the adversarial noise, so that one would
identify the part of the noise (if any) that has an adversarial impact for all CNNs up to some
layers, and the part of the noise whose adversarial impact becomes CNN-specific from some layer
on. This is a difficult challenge since the adversarial noise is modified all the way along until a
convenient adversarial image is created. In particular, the ”initial” noise, created at some early
point of the process and potentially adversarial for the first layers of different CNNs, is likely to
be modified as well during this process, and to lose its initial ”quasi-universal” adversarial char-
acteristic, potentially to the benefit of a new adversarial noise. Note en passant that a careful

Page 87 of 147

study in this direction may contribute to ”reverse engineer” a CNN, namely to reconstruct its
architecture (up to a point). This direction is only indicated here, and is not explored in full
details at this stage.

More modestly, and more specifically, in this Section we ask whether the adversarial noise for
regions of smaller sizes is less CNN-specific, hence more transferable, than at full scale, namely
224× 224 in the present case, where we know that, in general, it is not transferable.

This issue is addressed in two ways. First, we check whether and how a modification of the
adversarial noise intensity affects the ca and the ct-label values of an image, adversarial for a
given CNN, when exposed to a different CNN, and the influence of shuffling in this process
(Subsection 7.6.1). Secondly, we keep the adversarial noise as it is, and we check whether
adversarial images are more likely to transfer when they are shuffled (Subsection 7.6.2).

7.6.1 Generic versus specific direction of the adversarial noise

One is given a convenient ancestor image Ap
q , a CNN Ck, and the adversarial images DEA

k (Ap
q)

and DBIM
k (Ap

q) obtained by both attacks.

We perform a first series of experiments, that consists in changing the adversarial noise magnitude
of these adversarial images by a factor f in the 0%− 300% range, and in submitting the corre-
sponding modified f -boosted adversarial images to different Ci’s to check whether they fool them.

Figure 7.7 (a) shows what happens for the particular case of A4
5, k = 6, and the Ci’s equal to

C1, C6, and C9 (the f -boosted adversarial image is sent back to C6 as well), representative of the
general behaviour. In particular, it shows that the direction of the created noise for the EA
adversarials is highly specific to the targeted CNN since the images cannot be made transferable
by any change in magnitude. A contrario, the noise of BIM’s adversarials has a more general di-
rection, since amplifying its magnitude eventually leads to untargeted misclassifications by other
CNNs.

A second series of experiments is performed in a similar way as above, with the difference that this
time, it is on the shuffled adversarial images sh(DEA

k (Ap
q), s) and sh(DBIM

k (Ap
q), s) for s = 32,

56 or 112.

Figures 7.7 (b), (c), (d) show the typical outcome of this experiment. It reveals another differ-
ence between the adversarial noise obtained by the two attacks, namely that when s is enlarged
from 32 to 56 and to 112, BIM images have a higher adversarial effect on other CNNs, whereas
EA images only have a higher adversarial effect when s is increased from 32 to 56. As the size
of the shuffled boxes increases to s = 112 and reveals the ancestor object more clearly, the EA
adversarials actually have a lower fooling effect on other CNNs.

Moreover, in contrast to Figure 7.7 (a) where the considered region is at sull scale, i.e. coincides
with the full image size, Figures 7.7 (b), (c), and (d) show that the noise direction is more general
at the local level, and that an amplification of the noise magnitude is able to lead the adversarial
images outside of other CNNs’ ca bounds, even with the EA.

To make sure that the observed effects were not simply due to shuffling, but were also due to
the adversarial noise, we repeated the experiment of Figure 7.7 with random normal noise. As

Page 88 of 147

(a) no shuffle (b) s = 32

(c) s = 56 (d) s = 112

Figure 7.7: Evolution of log(o[a]), log(o[t]), and log(max(o)) for Datk
6 (A4

5) (a), and for
sh(Datk

6 (A4
5), s) for s = 32 (b), s = 56 (c) and s = 112 (d) when fed to C6, C9 and C1 (1st,

2nd and 3rd row of each set of graphs, respectively), when the noise is impacted by a factor
f ∈ [0%, 300%].

expected, it turned out that, with random noise, the ca-label value always remained dominant
and the ct-label value barely increased as f varied from 0% to 300% (see Figure 9.25 in Appendix
9.5.5). The close to zero impact of random noise on unshuffled images was already known [22].
These experiments confirm that this also holds for shuffled images. Therefore, the observed
effects were indeed due to the adversarial noise’s transferability at local level. Nevertheless,
although the adversarial noise is general enough to affect other CNNs’ ca-label values, its effect
on ct-label values is never as strong as for the targeted CNN.

7.6.2 Effects of shuffling on adversarial images’ transferability

Here, we do not change the intensity of the noise. In other words, f = 100%. The point is no
longer to visualize the graph of the evolution of the ct-label values of shuffled adversarials, but
to focus on their actual values for the ”real” noise (at f = 100%). The issue is to check if the
adversarial images are more likely to transfer when they are shuffled.

We proceed as follows. We input the unshuffled ancestor Ap
q and the unshuffled adversarial

Datk
k (Ap

q) to all Ci’s for i ̸= k (hence all CNNs but the targeted one). We extract the ca and ct-

label values for each i, namely cia(Ap
q), c

i
a(Datk

k (Ap
q)), c

i
t(Ap

q) and cit(Datk
k (Ap

q)). We compute the
difference of the ca-label values between the two images for each i, and, similarly, the difference
of the ct-label values, to get

Page 89 of 147

∆k,i
a (Ap

q) = cia(Datk
k (Ap

q))− cia(Ap
q), ∆k,i

t (Ap
q) = cit(Datk

k (Ap
q))− cit(Ap

q).

For s = 32, 56 and 112, this process is repeated with the shuffled ancestor sh(Ap
q , s) and the

shuffled adversarial sh(Datk
k (Ap

q), s), and we get the differences:

∆k,i
a (sh(Ap

q , s)) = cia(sh(Datk
k (Ap

q), s))− cia(sh(Ap
q , s)),

and
∆k,i

t (sh(Datk
k (Ap

q), s)) = cit(sh(Datk
k (Ap

q), s))− cit(sh(Ap
q), s).

These ∆k,i assess the impact of the adversarial noise both when unshuffled and when shuffled.

Regarding the ca-label values, both differences are ≤ 0 (the ca-label value of the ancestor domi-
nates the ca-label value of the adversarial, shuffled or not). We take the absolute value of both
quantities (k and i are fixed). Finally, we compute the percentage over all k, all i ̸= k, of all
convenient ancestors Ap

q for which

|∆k,i
a (sh(Ap

q , s))| ≥ |∆k,i
a (Ap

q)|.

Regarding the ct-label values, both differences are ≥ 0 (this is obvious for the unshuffled images,
but it also turns out to be the case for the shuffled one). In this case, there is therefore no need
to take the absolute values. We compute the percentage over all k, all i ̸= k, of all convenient
ancestors Ap

q for which

∆k,i
t (sh(Ap

q , s)) ≥ ∆k,i
t (Ap

q).

Table 7.4 presents the outcome of these computations for each value of s, and for the adversarials
obtained by both attacks.

Note that we do not simply present the ct-label values of shuffled adversarial images, because
then the measured impact could have two sources: either the adversarial noise or the fact that
the ca shape is distorted by shuffling, leaving room for the ct-label value to increase. Since our
goal is to only measure the former source, we compare the ct-label values of shuffled adversarials
with that of shuffled ancestors.

Table 7.4: For the ca-label value (2nd row) and the ct-label value (3rd row), percentage of cases
where the adversarial noise has a stronger impact when shuffled than unshuffled. In each cell,
the 1st percentage corresponds to atk = EA, and the 2nd to atk = BIM .

s = 32 s = 56 s = 112
|∆k,i

a (sh(Ap
q , s))| ≥ |∆k,i

a (Ap
q)| 52.02, 45.41 66.94, 64.29 57.58, 54.67

∆k,i
t (sh(Ap

q , s)) ≥ ∆k,i
t (Ap

q) 52.69, 49.79 65.09, 58.37 48.24, 43.11

Whenever the percentage is larger than 50%, the adversarial images have on average a stronger
adversarial effect (for the untargeted scenario if one considers ∆k,i

a , and for the target scenario

if one considers ∆k,i
t) when shuffled than when they are not. The adversarial effect is then per-

ceived more by other CNNs for regions of the corresponding same size than at full scale.

Page 90 of 147

For all values of s, the 1st percentage is larger than the 2nd one. This means that distorting
the shape of the ancestor object (done by shuffling) helps the EA more than BIM towards fool-
ing other CNNs than the targeted Ck. This occurs although computation shows that shuffled
BIM adversarials are typically classified with a larger ct-label value than shuffled EA adversarials.

The percentages achieved with s = 56 are not only the largest as compared to those with s = 32
or 112, but they also exceed 50% by far. Said otherwise, a region size of 56× 56 achieves some
optimum here. An interpretation could be that a region of that size is small enough to distort
the ca - related information more, while also being large enough to enable the adversarial pixel
perturbations to join forces and create adversarial features with a larger impact on different
CNNs than the targeted one.

7.6.3 Summary of the outcomes

The direction of the created adversarial noise for the EA adversarials is very specific to the
targeted CNN. No change of magnitude in the adversarial noise make them more transferable.
The situation differs to some extent with the noise of BIM’s adversarials. This latter noise has
a more general direction, since its amplification leads to untargeted misclassifications by other
CNNs. When images are shuffled, and the noise is intensified, BIM’s adversarials have a higher
adversarial effect on other CNNs as s grows. This is also the case with the EA’s adversarials as
s grows from 32 to 56, but not anymore when s grows from 56 to 112.

A second outcome is that the EA and BIM adversarial images get closer to being transferable in
a targeted sense when shuffled with s = 56 than when unshuffled (at their full scale), and that
s = 56 is optimal in this regard as compared to s = 32 or 112. In the untargeted sense, this
happens at regions of sizes 56×56, and 112×112 (for both attacks the corresponding percentages
exceed 50%).

7.7 Penultimate layer activations with adversarial images

In this section, we intend to closely examine (in Subsection 7.7.2) the changes that adversarial
images produce in the activation of the CNNs’ penultimate layers (for reasons explained in Sub-
section 7.7.1). In the work that led to this paper, we performed a similar study on the activation
changes of the CNNs’ convolutional layers. However, to the difference of what happens with
the penultimate layers, the results obtained with adversarial noise were identical to those ob-
tained with random noise. Hence, visualizing the intermediate layer activations requires a more
in-depth method than the one employed here, and we restrict the current paper to the study of
the penultimate classification layers.

It is important to notice that we do not pay attention here to the black-box or white-box nature
of the attack. We use the adversarial images independently on how they are obtained. Indeed, we
assume full access to the architectures of the CNNs. This full access to the CNNs’ architectures
goes without saying when one considers BIM, since it is a prerequisite for this attack. But it is
worthwhile explicitly stating for the EA, since the EA attack excludes any a priori knowledge
of the CNNs’ architectures.

Still, the study of the way layers are activated by the adversarial images may reveal differences
of behavior according to the methods used to construct them. It is not excluded that patterns
of layer activations differ according to the white-box or black-box nature of the attack that

Page 91 of 147

created the adversarial images sent to the CNNs. Should it be the case, this difference of
patterns according to the nature of the attack may lead to attack detection measures or even to
protection measures. The study of this issue is not undertaken in this paper.

7.7.1 Relevance of analyzing the activation of ct- and of ca-related units

The features extracted by the convolutional CNN layers pass through the next group of layers of
the CNN, namely the classification layers. We focus here on the penultimate classification layer,
i.e. the layer just before the last one that gives the output classification vector.

When a CNN C is exposed to an adversarial image D(A), the perturbation of the features prop-
agates and modifies the activation of the classification layers, which in turn leads to an output
vector oCD(A) (drastically different from the output vector oCA for the ancestor) in which the prob-
ability corresponding to the target class ct is dominant. To achieve this result, it is certain that
previous classification layers are modified in a meaningful manner, with higher activations of the
units that are relevant to ct.

However, it is not obvious how the changes in these classification layers take place. Since the
penultimate layer has a direct connection with the final layer and the impact of changes in ac-
tivation are thus traceable, we delve here into the activations of the CNNs’ penultimate layers
to answer two questions essentially: Do all ct-relevant units have increased activation? Do ca-
related units have decreased activations?

The connection between the penultimate and final layers is made through a weight vector W ,
which, for each class in the output vector, provides the weights by which to multiply the penul-
timate layer’s activation values. Whenever a weight that connects one penultimate layer unit
with one class is positive, that particular unit of the penultimate layer is indicative of that class’
presence in the image, and vice-versa for negative weights. We can thus know which penultimate
layer units are ca- or ct-related.

7.7.2 How are the CNNs’ classification layers affected by adversarial
images?

For each CNN Ck, we do the following. The aforementioned weights are extracted and, for both
ca and ct, they are separated into positive and negative weights. Then, we compute the dif-
ference of activation values in the penultimate layer between each adversarial Datk

k (Ap
q) and its

ancestor Ap
q . Since our intention is to measure the proportion of units, relevant to a class, that

are increased or decreased by the adversarial noise, we compute the average percentage of both
positively- and negatively-related units – Table 7.5 for ca and Table 7.6 for ct (see Tables 9.21
and 9.22 in Appendix 9.5.6 for an individual outcome) – whose activation increased, stagnated or
decreased. For ca and ct, Table 7.7 presents the average change in penultimate layer activation
for both the positively- and negatively-related units.

Note en passant that C9 and C10 have a different behavior than the other CNNs as far as the
values of Wpos∆0 and Wneg∆0 are concerned. The EA and BIM change the activations of C9
and C10 much less frequently than with the other CNNs. Indeed, between 50.28% and 74.85% of
the activations of these two CNNs are left unchanged, and this is valid for ca and for ct and for
both attacks. Observe that the group of units that contribute to the values taken by Wpos∆0

and by Wneg∆0 for ca coincides with the group of units that contribute to the values taken by

Page 92 of 147

For ca Wpos∆pos Wpos∆0 Wpos∆neg Wneg∆pos Wneg∆0 Wneg∆neg

C1 DenseNet121 (51.28,48.83) (0.02,0.04) (48.70,51.13) (65.36,65.19) (0.13,0.09) (34.51,34.72)
C2 DenseNet169 (49.03,49.26) (0.03,0.03) (50.95,50.72) (62.42,61.13) (0.11,0.05) (37.47,38.82)
C3 DenseNet201 (49.48,48.66) (0.07,0.03) (50.45,51.31) (61.04,60.45) (0.06,0.06) (38.90,39.49)
C4 MobileNet (43.73,46.59) (0.46,0.31) (55.81,53.10) (62.64,65.80) (1.24,0.71) (36.12,33.48)
C5 MNASNet (47.64,49.93) (4.81,3.43) (47.55,46.64) (58.34,61.04) (8.77,6.17) (32.89,32.79)
C6 ResNet50 (45.80,45.61) (0.02,0.00) (54.17,54.39) (65.86,66.11) (0.02,0.00) (34.13,33.89)
C7 ResNet101 (48.26,46.05) (0.01,0.00) (51.73,53.95) (67.63,67.75) (0.05,0.02) (32.32,32.23)
C8 ResNet152 (46.84,45.56) (0.00,0.00) (53.16,54.44) (67.18,66.92) (0.01,0.00) (32.81,33.08)
C9 VGG16 (23.67,19.64) (50.63,52.98) (25.71,27.39) (22.08,19.15) (72.50,74.85) (5.43,6.01)
C10 VGG19 (23.85,20.38) (50.28,51.30) (25.87,28.33) (21.44,20.46) (73.02,73.23) (5.54,6.31)

Table 7.5: For ca, average percentage of both positively-related (Wpos, columns 2-4) and
negatively-related (Wneg, columns 5-7) units whose activation increased (∆pos), stagnated (∆0)
or decreased (∆neg). Each cell contains the results for EA (left) and BIM (right).

For ct Wpos∆pos Wpos∆0 Wpos∆neg Wneg∆pos Wneg∆0 Wneg∆neg

C1 DenseNet121 (70.06,67.06) (0.04,0.04) (29.90,32.90) (50.00,50.30) (0.12,0.10) (49.89,49.60)
C2 DenseNet169 (64.88,64.26) (0.03,0.03) (35.09,35.72) (49.32,48.95) (0.11,0.05) (50.58,51.01)
C3 DenseNet201 (64.72,63.61) (0.08,0.06) (35.21,36.32) (48.80,48.52) (0.05,0.03) (51.15,51.45)
C4 MobileNet (69.74,71.62) (0.52,0.31) (29.74,28.07) (38.13,42.25) (1.24,0.74) (60.63,57.01)
C5 MNASNet (64.51,66.94) (5.60,3.50) (29.89,29.56) (42.75,45.32) (8.13,6.23) (49.12,48.44)
C6 ResNet50 (75.16,73.24) (0.01,0.00) (24.82,26.76) (46.29,47.73) (0.03,0.00) (53.69,52.27)
C7 ResNet101 (77.68,74.77) (0.01,0.00) (22.31,25.23) (48.16,48.78) (0.05,0.02) (51.79,51.20)
C8 ResNet152 (75.37,73.43) (0.00,0.00) (24.63,26.57) (48.21,48.39) (0.01,0.00) (51.78,51.61)
C9 VGG16 (35.62,31.40) (52.69,55.55) (11.70,13.04) (12.51,9.81) (70.75,72.61) (16.74,17.58)
C10 VGG19 (35.35,32.82) (53.13,53.65) (11.52,13.53) (12.13,10.51) (70.80,71.31) (17.06,18.17)

Table 7.6: For ct, average percentage of both positively-related (Wpos, columns 2-4) and
negatively-related (Wneg, columns 5-7) units whose activation increased (∆pos), stagnated (∆0)
or decreased (∆neg). Each cell contains the results for EA (left) and BIM (right).

Page 93 of 147

Wpos Wneg

C1 DenseNet121 (-0.02±0.07, -0.05±0.09) (0.17±0.05, 0.21±0.06)
C2 DenseNet169 (0.01±0.06, -0.01±0.06) (0.13±0.03, 0.14±0.06)
C3 DenseNet201 (0.00±0.05, 0.00±0.06) (0.09±0.04, 0.12±0.04)
C4 MobileNet (-0.09±0.10, -0.05±0.16) (0.18±0.06, 0.26±0.10)
C5 MNASNet (-0.01±0.07, 0.02±0.09) (0.12±0.04, 0.18±0.09)
C6 ResNet50 (-0.02±0.07, -0.05±0.09) (0.17±0.05, 0.20±0.08)
C7 ResNet101 (0.00±0.07, -0.04±0.15) (0.21±0.05, 0.25±0.10)
C8 ResNet152 (-0.02±0.07, -0.06±0.07) (0.21±0.04, 0.22±0.04)
C9 VGG16 (-0.14±0.15, -0.16±0.20) (0.20±0.05, 0.23±0.10)
C10 VGG19 (-0.09±0.08, -0.17±0.12) (0.21±0.06, 0.20±0.07)

(a) ca

Wpos Wneg

C1 DenseNet121 (0.27±0.08, 0.30±0.10) (-0.06±0.06, -0.07±0.08)
C2 DenseNet169 (0.18±0.05, 0.20±0.09) (-0.02±0.05, -0.03±0.05)
C3 DenseNet201 (0.15±0.05, 0.17±0.05) (-0.02±0.03, -0.03±0.04)
C4 MobileNet (0.27±0.06, 0.38±0.14) (-0.16±0.08, -0.15±0.11)
C5 MNASNet (0.19±0.05, 0.28±0.12) (-0.06±0.06, -0.06±0.07)
C6 ResNet50 (0.30±0.11, 0.32±0.14) (-0.04±0.04, -0.05±0.06)
C7 ResNet101 (0.35±0.08, 0.39±0.17) (-0.03±0.05, -0.04± 0.07)
C8 ResNet152 (0.33±0.05, 0.35±0.09) (-0.03±0.04, -0.05±0.04)
C9 VGG16 (0.29±0.14, 0.35±0.28) (-0.14±0.06, -0.17±0.07)
C10 VGG19 (0.33±0.10, 0.29±0.18) (-0.13±0.05, -0.17±0.04)

(b) ct

Table 7.7: For ca (a) and ct (b), average and standard deviation of the activation change in the
positively-related (Wpos, column 2) and negatively-related (Wneg, column 3) units. Each cell
contains the results for EA (left) and BIM (right).

Page 94 of 147

Wpos∆0 and by Wneg∆0 for ct.

Overall, Tables 7.5 and 7.6 show that neither the EA, nor BIM increase the activation of all
positively ct-related penultimate layer units; the percentages where such an increase happens is
similar between the two attacks, and varies between 31.40% and 77.68% throughout the different
CNNs. Still, in all cases, more positively ct-related units are increased, rather than decreased in
activation. Meanwhile, for ca, this preference for increasing, rather than decreasing the activa-
tion is present for the negatively ca-related units.

These observations are consistent with the results of Table 7.7, which show that the average
activation changes are large and positive for (Wneg,ca) and (Wpos,ct) for both attacks. Addi-
tionally, the averages and standard deviations corresponding to (Wpos, ct) are higher than those
corresponding to (Wneg, ca), with both attacks. However, both the averages and the standard
deviations are larger with BIM than with the EA.

In order to verify how the penultimate layer activations of a CNN are changed by adversarial
images that are designed for other CNNs, we perform the experiments that led to Tables 7.5
and 7.6 with the change that all CNNs are fed the adversarial images of C1 (DenseNet121). The
results (see Tables 9.21 and 9.22 in Appendix 9.5.6) are that, with both attacks, the percentages
of positive and negative activation changes are approximately equal. Therefore, the pixel per-
turbations are not necessarily meaningful towards decreasing the ca-label value or increasing the
ct-label value of other CNNs.

Therefore, it appears that the attacks do not significantly impact the existing positively ca-
related features. They rather create some features that relate negatively to ca and some that
increase the confidence for ct. Also, although both attacks usually (except against C1 and C2,
where the proportion is only around one third) increase the activation of around two thirds of
the positively ct-related and negatively ca-related units, BIM does so with a larger magnitude
than the EA. The latter change is in particular the most striking difference between the attacks.
It could explain why the band-stop graphs in Figure 7.5 show a much larger decrease of the
ca-label value with BIM than with the EA, and why BIM adversarial images are more likely to
transfer than those coming from the EA.

7.7.3 Summary of the outcomes

In terms of the penultimate layer, the most prominent changes of both attacks are the increase in
activation value of the units which are positively related to ct and of those which are negatively
related to ca. However, BIM performs the latter activation changes with a larger magnitude
than the EA.

7.8 Summary of the outcomes

Through the lens of frequency, transferability, texture change, smaller image regions and penul-
timate layer activations, this work investigates the properties that make an image adversarial
against a CNN. To this purpose, we consider 10 ImageNet-trained CNNs, and the adversarial
images created by a white-box, gradient-based attack and by a black-box, evolutionary algorithm-
based attack, to fool them.

Page 95 of 147

This study, performed on 84 convenient ancestor images belonging to appropriate ancestor cate-
gories cas, and two groups of 437 adversarial images (one group per attack) belonging to appro-
priate target categories cts, gives an insight into the internal functioning of the considered attacks.

The main outcomes are that the aggregation of features at smaller regions is generally not suf-
ficient for a targeted misclassification. We also find that image texture change is likely to be a
side-effect of the attacks, rather than play a crucial role, even though EA and BIM adversarials
are more likely to transfer to more texture-biased CNNs. While the low-frequency noise has the
highest adversarial effect for both attacks, in contrast to the EA’s white noise, BIM’s mostly
low-frequency noise impacts the local ca features considerably more than the EA does. This
effect intensifies at larger regions.

Although in the penultimate CNN layers neither the EA, nor BIM affect the features that are
positively related to ca, BIM’s gradient-based nature allows it to find noise directions that are
more general across different CNNs, introducing more features that are negatively related to ca,
and that are perceivable by other CNNs as well. However, with both attacks, the ct-related
adversarial noise that targets the final CNN layers is specific to the targeted CNN when the
adversarial images are at full scale. On the other hand, its adversarial impact on other CNNs
increases when the considered region is reduced from full scale to 56× 56.

Page 96 of 147

Chapter 8

Conclusion and Perspectives

The broad topic of this thesis falls under adversarial attacks in the context of image classifica-
tion by Convolutional Neural Networks (CNNs). Specifically, this work introduces a black-box
attack based on an evolutionary algorithm (EA) that is designed to evolve an original image into
an adversarial one against CNNs. The introduced algorithm is generic, since it can be applied
on any original image to fool any CNN in any scenario tested here, such as untargeted, flat,
good enough targeted, or τ -strong targeted. Moreover, its black-box nature makes the EA-based
attack highly practical, since the attacker only requires access to the input and the vector of
probabilities outputted by the CNN.

After describing the attack method, this thesis proves the algorithm’s high success rate at at-
tacking VGG16 trained on the Cifar10 dataset [34] in both the targeted and flat scenarios, as
well as at attacking 10 different CNNs trained on the ImageNet [18] dataset. Moreover, this
work proposes and experimentally evaluates two different ways to apply the EA-based attack on
high-resolution images, which have much greater sizes than the images typically contained in the
Cifar10 and ImageNet datasets.

To assure that the EA-based attack could not be defended against by image filters placed in front
of the CNNs, we thoroughly evaluate the algorithm’s robustness in the specific context of VGG16
trained on Cifar10. After discovering a set of filters which could reduce the attack’s success rate,
we return to the construction of the EA method and improve it such that it becomes robust to
all tested filters.

Lastly, part of the goal of this thesis is to understand the inner functioning of the EA-based attack
and to find the reasons for its high success rate at fooling CNNs. In an effort towards this goal,
we perform several experiments with the attacked CNNs, as well as with the adversarial images
and their contained noise. In studying them, we adopt perspectives such as image frequency,
image transferability, behaviour at lower image regions, penultimate CNN layer activations, and
image texture change. In order to place the findings into a broader context, we simultaneously
perform all above-mentioned experiments on an attack with a similarly high success rate, but
which differs greatly from the EA-based attack, since its white-box, gradient-based nature re-
quires access to all parameters of the CNN to be fooled.

Although this thesis is extensive, it is not comprehensive, as it can surely be expanded in multiple
ways. Starting from one of the findings of this thesis, one option is to investigate the efficiency

97

of an attack detection algorithm based on image shuffling. Additionally, the attack on high-
resolution images can be improved in efficiency, by using attention maps to find the specific image
areas where the CNNs place more importance and then reduce the search space of the EA-based
attack to these particular regions. Another possible direction towards a higher explainability
of the EA-based attack is the small-dimension visualization of the attacked CNNs’ decision
boundaries. Yet another option would be to apply the EA-based attack on Spiking Neural
Networks, to evaluate the degree to which they could be robust alternatives to CNNs.

Page 98 of 147

Chapter 9

Appendix

99

9.1 Target and flat scenarios: Attack against VGG16 trained
on Cifar10

9.1.1 Target scenario

Table 9.1: Target scenario.– For i ̸= j, the element at the intersection of the ith row and jth

column is
(
103KL

(
pL2(ci → cj)||pSSIM (ci → cj)

)
, 103KL

(
pSSIM (ci → cj)||pL2(ci → cj)

))
,

where KL
(
pL2

(ci → cj)||pSSIM (ci → cj)
)
is the Kullback-Leibler divergence computed between

the L2 and the SSIM probability densities of the normalisation of the histograms representing
the changes in pixel intensities through the ci → cj evolution of the ancestor Ai on ith diagonal
position in Figure 9.1 (and Figure 9.2). Mutatis mutandis KL

(
pSSIM (ci → cj)||pL2(ci → cj)

)
.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
c1 (54,68) (25,38) (77,58) (74,70) (63,80) (67,75) (51,40) (57,75) (41,33)
c2 (82,84) (66,69) (81,56) (62,71) (109,93) (62,58) (56,110) (80,123) (74,63)
c3 (104,92) (68,60) (66,73) (76,55) (56,64) (47,22) (80,81) (116,67) (39,56)
c4 (5,60) (67,74) (77,75) (54,78) (66,58) (77,68) (53,29) (44,74) (63,75)
c5 (36,80) (126,87) (73,74) (62,101) (95,93) (59,57) (92,69) (59,42) (82,76)
c6 (116,79) (63,104) (49,39) (80,80) (66,77) (60,43) (68,93) (145,135) (69,63)
c7 (89,96) (53,72) (66,70) (49,63) (63,61) (77,87) (57,51) (90,67) (55,71)
c8 (84,98) (155,157) (43,75) (62,51) (74,50) (40,46) (74,52) (41,49) (93,92)
c9 (57,77) (48,53) (48,39) (57,76) (69,54) (78,53) (183,192) (57,75) (156,121)
c10 (68,70) (81,77) (75,98) (53,68) (81,60) (79,75) (96,103) (90,81) (56,60)

Table 9.2: Target scenario.– The pair of integers at the intersection of the ith row and jth column
(for i ̸= j) represents the number of generations necessary to create the adversarial image with
in the evolution ci → cj , as specified in Figure 9.1 with L2 (left-hand side of the pair) and in
Figure 9.2 with SSIM (right-hand side of the pair).

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
c1 (52,55) (5,5) (24,23) (83,79) (45,44) (41,44) (29,31) (51,53) (12,13)
c2 (59,46) (37,40) (27,29) (53,61) (39,38) (66,65) (38,39) (49,46) (29,30)
c3 (56,48) (60,59) (47,49) (58,56) (52,47) (84,87) (34,31) (77,82) (38,37)
c4 (36,41) (42,47) (34,32) (26,24) (26,25) (24,21) (11,11) (31,34) (36,36)
c5 (105,98) (91,105) (118,124) (30,31) (39,34) (24,24) (50,48) (55,55) (62,61)
c6 (54,58) (39,42) (45,41) (35,36) (11,11) (56,53) (31,36) (26,23) (41,41)
c7 (52,54) (56,53) (47,43) (30,26) (40,38) (51,54) (44,42) (59,53) (65,62)
c8 (34,33) (21,20) (21,20) (27,26) (18,18) (22,19) (26,26) (29,30) (26,26)
c9 (27,28) (33,37) (16,17) (72,62) (39,36) (96,91) (82,60) (43,52) (69,95)
c10 (14,16) (54,50) (32,31) (67,62) (30,34) (55,54) (57,45) (27,24) (24,26)

Page 100 of 147

9.1.2 Flat scenario

Table 9.3: Flat scenario.– For 1 ≤ i ≤ 10, the element in ith position in the 2nd row

is
(
103KL

(
pL2

(ci)||pSSIM (ci)
)
, 103KL

(
pSSIM (ci)||pL2

(ci)
))

, where KL
(
pL2

(ci)||pSSIM (ci)
)
is

the Kullback-Leibler divergence computed between the L2 and the SSIM probability densities
of the normalisation of the histograms representing the changes in pixel intensities through the
ci → flat evolution of the ancestor Ai on ith position on the first row in Figure 9.3. Mutatis
mutandis KL

(
pSSIM (ci)||pL2

(ci)
)
.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
(112, 110) (56, 51) (77, 60) (43, 53) (86, 121) (67, 67) (58, 62) (29, 37) (57, 93) (42, 46)

Table 9.4: Flat scenario.– The pair of integers on the 2nd row represents the number of generations
necessary to create the adversarial image in the evolution ci → cj , as specified in Figure 9.3 with
L2 (left-hand side) and SSIM (right-hand side).

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
(298,152) (245,247) (288,276) (178,183) (552,421) (238,233) (212,212) (142,142) (434,380) (274,280)

Page 101 of 147

Figure 9.1: Target scenario, case L2.– Pictures on the diagonal are the ancestors Ai belonging
to the category cAi = ci, for 1 ≤ i ≤ 10. On each row 1 ≤ i ≤ 10, the picture on the jth column,
with j ̸= i, is the descendant picture Dij , obtained by applying EAtarget

L2
to Ai, that VGG16

classifies as belonging to cj .

Page 102 of 147

Figure 9.2: Target scenario, case SSIM .– Pictures on the diagonal are the ancestorsAi belonging
to the category cAi = ci, for 1 ≤ i ≤ 10. On each row 1 ≤ i ≤ 10, the picture on the jth column,
with j ̸= i, is the descendant picture Dij , obtained by applying EAtarget

SSIM to Ai, that VGG16
classifies as belonging to cj .

Page 103 of 147

Figure 9.3: Flat scenario.– Pictures on the 1st row are the ancestors Ai belonging to the category
cAi

= ci, for 1 ≤ i ≤ 10 (they are the same as those on the diagonals of Figures 9.1 and 9.2).
For 1 ≤ i ≤ 10, the picture in ith position on the 2nd row is the adversarial descendant picture
obtained by applying EAflat

L2 to Ai, and that VGG16 is unable to classify with certainty. Mutatis
mutandis 3rd row with EAflat

SSIM .

Page 104 of 147

9.2 Target scenario: attack against 10 CNNs trained on
ImageNet

Page 105 of 147

9.2.1 Ancestor images

abacus

acorn

baseball

broom

brown bear

canoe

hippopotamus

llama

maraca

mountain bike

Figure 9.4: The 100 ancestor images Ap
q used in the experiments. Ap

q pictured in the pth column

and qth row (1 ≤ q, p ≤ 10) is randomly chosen from the ImageNet validation set of the ancestor
category caq

specified on the left of the qth row.

CNNs p abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike

1 1.000 0.981 0.997 0.999 0.953 0.992 0.999 0.997 0.607 0.942

2 1.000 0.997 0.989 1.000 0.994 0.909 0.998 0.987 0.883 0.987

3 0.998 0.845 1.000 1.000 0.996 0.836 0.987 0.997 1.000 0.891

4 0.996 0.997 1.000 1.000 0.997 0.620 0.239 0.984 0.648 0.619

5 1.000 0.999 1.000 0.998 0.955 0.811 1.000 1.000 0.145 0.986

6 1.000 1.000 0.957 0.998 1.000 0.990 0.997 0.916 0.692 0.999

7 0.998 0.999 0.999 0.973 0.977 0.525 0.985 0.974 0.756 0.940

8 1.000 0.999 0.993 0.993 0.995 0.913 1.000 1.000 0.999 0.962

9 1.000 0.998 0.981 1.000 0.997 0.820 0.999 1.000 0.999 0.992

C1

DenseNet121

10 1.000 0.996 1.000 0.999 0.995 0.923 0.999 0.886 0.572 0.870

1 0.998 0.978 1.000 0.999 0.997 0.997 0.997 0.999 0.952 0.873

Page 106 of 147

Table 9.5 continued from previous page

CNNs p abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike

2 1.000 0.999 0.998 0.992 0.782 0.764 0.998 0.999 0.995 0.861

3 1.000 0.998 0.999 1.000 0.999 0.880 1.000 0.994 1.000 0.977

4 0.990 0.996 1.000 1.000 1.000 0.549 0.553 0.981 0.900 0.973

5 1.000 1.000 1.000 0.994 1.000 0.915 1.000 0.994 0.530 0.997

6 1.000 1.000 0.998 1.000 1.000 0.997 0.995 0.975 0.091 0.991

7 1.000 1.000 1.000 1.000 0.998 0.827 0.996 1.000 0.857 0.945

8 1.000 1.000 0.998 0.998 0.999 0.951 0.999 1.000 1.000 0.975

9 1.000 1.000 0.943 1.000 0.999 0.905 1.000 1.000 0.993 0.964

C2

DenseNet169

10 1.000 1.000 0.999 1.000 0.997 0.952 0.999 0.998 0.258 0.478

1 1.000 0.975 0.998 1.000 0.992 0.990 0.998 0.996 0.323 0.986

2 1.000 1.000 0.984 1.000 0.884 0.957 0.996 0.996 0.993 0.997

3 0.987 0.950 0.998 1.000 0.998 0.669 0.999 0.994 1.000 0.886

4 0.886 0.994 1.000 1.000 0.998 0.822 0.870 1.000 0.878 0.947

5 1.000 1.000 0.999 0.983 0.980 0.586 1.000 0.998 0.141 0.980

6 1.000 1.000 0.995 1.000 1.000 0.994 0.999 0.724 0.693 0.996

7 1.000 1.000 1.000 1.000 0.993 0.865 0.997 0.970 0.876 0.917

8 1.000 1.000 0.993 1.000 0.874 0.978 0.990 0.999 0.997 0.993

9 1.000 0.999 0.877 1.000 0.984 0.995 1.000 0.999 0.987 0.988

C3

DenseNet201

10 0.996 1.000 0.998 0.999 0.978 0.984 0.987 0.963 0.253 0.983

1 0.999 0.994 1.000 0.995 0.999 0.999 0.998 0.954 0.329 0.938

2 0.994 0.936 0.993 0.998 0.972 0.620 0.991 0.914 0.946 0.631

3 1.000 0.979 1.000 1.000 1.000 0.825 1.000 0.999 1.000 0.947

4 1.000 0.999 1.000 0.998 0.999 0.826 0.758 1.000 0.762 0.966

5 1.000 0.984 1.000 0.955 0.997 0.944 1.000 0.944 0.906 0.978

6 1.000 1.000 1.000 0.992 1.000 0.961 0.992 0.589 0.645 0.862

7 0.999 0.998 1.000 0.989 0.996 0.812 0.264 1.000 0.999 0.729

8 1.000 1.000 1.000 0.632 0.997 0.952 0.997 1.000 0.809 0.998

9 1.000 0.991 0.915 0.997 0.997 0.989 1.000 1.000 0.525 0.988

C4

MobileNet

10 1.000 1.000 1.000 1.000 0.982 0.930 1.000 0.988 0.618 0.706

1 0.932 0.945 0.885 0.948 0.902 0.925 0.914 0.945 0.288 0.869

2 0.947 0.946 0.905 0.892 0.961 0.932 0.829 0.951 0.957 0.902

3 0.903 0.884 0.858 0.978 0.948 0.059 0.926 0.754 0.911 0.923

4 0.844 0.929 0.895 0.961 0.910 0.358 0.656 0.928 0.994 0.667

5 0.943 0.930 0.886 0.914 0.936 0.586 0.921 0.976 0.091 0.972

6 0.973 0.945 0.949 0.972 0.925 0.792 0.846 0.936 0.040 0.854

7 0.983 0.897 0.842 0.944 0.906 0.869 0.893 0.941 0.803 0.781

8 0.962 0.950 0.870 0.908 0.887 0.864 0.824 0.965 0.930 0.904

9 0.975 0.904 0.691 0.949 0.925 0.783 0.925 0.949 0.965 0.957

C5

NASNet

Mobile

10 0.925 0.957 0.851 0.955 0.809 0.860 0.941 0.929 0.397 0.028

1 0.937 0.795 0.998 0.841 1.000 0.998 0.999 0.999 0.801 0.986

2 0.411 1.000 1.000 1.000 0.999 0.991 1.000 0.998 0.850 0.995

3 1.000 0.901 1.000 1.000 1.000 0.778 1.000 1.000 1.000 0.993

4 1.000 0.993 1.000 1.000 0.999 0.897 0.881 0.999 0.646 0.929

5 1.000 1.000 1.000 0.969 0.996 0.945 1.000 0.381 0.001 0.995

6 0.999 1.000 1.000 0.999 0.999 0.995 1.000 0.771 0.211 0.941

7 1.000 1.000 1.000 0.988 0.996 0.743 1.000 1.000 0.993 0.892

8 1.000 0.998 0.998 0.999 0.997 0.993 0.962 1.000 0.999 0.987

9 1.000 1.000 0.695 1.000 0.999 0.971 1.000 1.000 0.998 0.999

C6

ResNet50

10 1.000 0.999 1.000 0.999 0.959 0.994 0.970 0.723 0.003 0.965

1 0.998 0.982 0.999 0.995 0.985 0.999 1.000 1.000 0.984 0.969

2 1.000 1.000 0.973 1.000 0.998 0.986 1.000 0.988 0.975 0.997

3 1.000 0.929 1.000 1.000 1.000 0.882 1.000 1.000 1.000 0.895

4 0.778 0.999 1.000 1.000 0.993 0.467 0.680 0.999 0.951 0.970

5 1.000 1.000 1.000 0.991 0.945 0.835 1.000 0.940 0.001 0.990

6 1.000 1.000 0.994 0.998 0.999 0.996 1.000 0.722 0.002 0.998

7 1.000 1.000 1.000 1.000 0.981 0.961 1.000 1.000 0.753 0.756

8 1.000 1.000 1.000 0.996 0.910 0.994 0.976 1.000 0.995 0.990

Page 107 of 147

Table 9.5 continued from previous page

CNNs p abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike

9 1.000 1.000 0.979 1.000 0.997 0.848 1.000 1.000 0.959 0.980

C7

ResNet101

10 1.000 0.993 1.000 1.000 0.927 0.975 0.996 0.917 0.003 0.984

1 0.994 0.998 1.000 0.996 0.997 0.987 0.999 0.999 0.954 0.991

2 0.713 1.000 0.997 1.000 0.996 0.983 1.000 1.000 0.956 0.998

3 1.000 0.665 1.000 1.000 1.000 0.205 0.999 1.000 1.000 0.969

4 0.998 0.997 1.000 1.000 1.000 0.347 0.872 0.972 0.960 0.960

5 1.000 1.000 1.000 1.000 0.999 0.841 1.000 0.927 0.067 0.993

6 1.000 1.000 1.000 0.994 1.000 0.997 0.999 0.805 0.436 0.986

7 1.000 1.000 1.000 1.000 0.967 0.442 0.995 1.000 0.973 0.860

8 1.000 1.000 1.000 1.000 0.951 0.965 0.999 1.000 1.000 0.991

9 1.000 1.000 0.857 1.000 0.978 0.979 0.992 1.000 0.949 0.999

C8

ResNet152

10 1.000 1.000 1.000 1.000 0.861 0.871 1.000 0.872 0.161 0.961

1 1.000 0.392 1.000 0.272 0.991 0.990 0.999 0.940 0.112 0.862

2 0.952 0.997 1.000 0.918 0.472 0.918 1.000 0.968 0.683 0.979

3 0.998 0.688 1.000 1.000 1.000 0.896 1.000 1.000 1.000 0.952

4 0.996 0.999 1.000 0.993 0.998 0.764 0.214 0.999 0.259 0.740

5 1.000 0.999 1.000 0.913 0.997 0.678 1.000 0.918 0.090 0.936

6 1.000 1.000 0.674 0.972 0.999 0.883 1.000 0.828 0.027 0.952

7 0.999 0.998 0.999 0.999 0.995 0.595 0.935 1.000 0.018 0.640

8 0.987 0.995 1.000 0.844 0.999 0.952 0.999 1.000 0.979 0.973

9 1.000 0.999 0.896 0.992 0.915 0.382 1.000 1.000 0.918 0.895

C9

VGG16

10 1.000 1.000 1.000 0.998 0.964 0.981 1.000 0.998 0.745 0.614

1 1.000 0.959 1.000 0.491 0.981 0.547 1.000 0.977 0.507 0.909

2 0.990 0.998 0.999 0.957 0.991 0.812 1.000 0.983 0.514 0.903

3 1.000 0.767 1.000 0.996 1.000 0.946 1.000 1.000 1.000 0.912

4 0.995 0.980 1.000 0.994 0.996 0.663 0.241 0.995 0.079 0.270

5 1.000 0.999 1.000 0.617 0.997 0.267 1.000 0.134 0.008 0.934

6 1.000 1.000 0.998 0.975 0.999 0.779 0.999 0.932 0.064 0.957

7 1.000 0.999 1.000 0.999 0.999 0.586 0.995 1.000 0.221 0.422

8 1.000 1.000 1.000 0.956 0.997 0.846 0.997 1.000 0.994 0.930

9 1.000 1.000 0.575 0.991 0.988 0.441 1.000 1.000 0.660 0.752

C10

VGG19

10 1.000 1.000 1.000 1.000 0.993 0.859 0.999 0.966 0.731 0.862

Table 9.5: For 1 ≤ p ≤ 10, the ancestor category caq
-label values given by the 10 CNNs of the

image Ap
q pictured in Figure 9.4. A label value in red indicates that the category caq

is not the
dominant one.

Page 108 of 147

9.2.2 Adversarial images

Page 109 of 147

X S
u
cc
es
s
R
at
es

C 1
-D

en
se
N
et
12
1

C 2
-D

en
se
N
et
16
9

C 3
-D

en
se
N
et
20
1

C 4
-M

o
b
il
eN

et

C 5
-N

A
S
N
et
M
o
b
il
e

C 6
-R

es
N
et
5
0

C 7
-R

es
N
et
1
01

C 8
-R

es
N
et
1
52

C 9
-V

G
G
16

C 1
0
-V

G
G
1
9

Average

1000

SR0.75
C 5 1 2 10 4 2 1 2 2 2 3.1

SRge
C 10 9 7 23 7 12 4 7 4 2 8.5

SRuntarg
C 27 19 18 34 26 31 21 23 23 27 25.0

2000

SR0.75
C 19 27 19 57 15 26 26 19 15 12 23.5

SRge
C 45 48 34 71 28 39 35 37 27 29 39.3

SRuntarg
C 53 51 41 76 46 56 49 48 64 62 54.7

3000

SR0.75
C 47 53 40 85 33 50 43 46 35 31 46.3

SRge
C 70 75 69 89 47 68 62 59 57 51 64.7

SRuntarg
C 74 76 73 89 55 82 70 72 84 78 75.2

4000

SR0.75
C 66 71 64 90 46 73 61 61 58 50 64.0

SRge
C 83 82 82 97 61 87 80 83 77 72 80.4

SRuntarg
C 84 83 85 97 72 90 83 86 89 88 85.7

5000

SR0.75
C 74 77 74 97 58 82 75 79 75 71 76.2

SRge
C 87 90 84 97 73 92 88 91 91 88 88.1

SRuntarg
C 88 90 87 97 77 93 89 93 93 96 90.1

6000

SR0.75
C 82 81 80 98 66 89 83 87 86 82 83.4

SRge
C 92 91 89 98 76 94 92 92 95 94 91.3

SRuntarg
C 92 91 91 98 80 96 93 94 97 97 92.8

7000

SR0.75
C 84 86 84 98 72 93 86 90 93 89 87.5

SRge
C 93 92 92 98 81 96 92 95 98 97 93.4

SRuntarg
C 93 92 93 98 83 97 93 96 99 97 94.0

8000

SR0.75
C 88 88 85 98 73 94 89 92 97 94 89.8

SRge
C 95 95 93 99 81 97 92 97 99 99 94.7

SRuntarg
C 95 95 94 99 86 98 93 97 99 99 95.4

9000

SR0.75
C 90 90 86 98 78 95 91 94 98 97 91.7

SRge
C 95 96 95 99 85 98 96 98 100 100 96.2

SRuntarg
C 95 97 95 99 87 98 96 98 100 100 96.5

10000

SR0.75
C 92 91 86 99 80 96 91 96 99 98 92.8

SRge
C 95 96 96 99 86 99 98 99 100 100 96.8

SRuntarg
C 95 97 96 99 87 99 98 99 100 100 97.0

Table 9.6: Success rates of EAtarget,C for increasing values ofX while τ = 0.75 for the experiments
designed in subsection 4.2.2 and performed in subsection 4.2.3.

Page 110 of 147

C1
DenseNet-121

C2
DenseNet-169

C3
DenseNet-201

C4
MobileNet

C5
NASNetMobile

C6
ResNet-50

C7
ResNet-101

C8
ResNet-152

C9
VGG-16

C10
VGG-19

abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike

Figure 9.5: Samples of 0.75-strong adversarial images generated by EAtarget,Ck for 1 ≤ k ≤ 10.

Page 111 of 147

C1
DenseNet-121

C2
DenseNet-169

C3
DenseNet-201

C4
MobileNet

C5
NASNetMobile

C6
ResNet-50

C7
ResNet-101

C8
ResNet-152

C9
VGG-16

C10
VGG-19

abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike

Figure 9.6: Samples of good enough adversarial images generated by EAtarget,Ck for 1 ≤ k ≤ 10.

Page 112 of 147

C1
DenseNet-121

C2
DenseNet-169

C3
DenseNet-201

C4
MobileNet

C5
NASNetMobile

C6
ResNet-50

C7
ResNet-101

C8
ResNet-152

C9
VGG-16

C10
VGG-19

abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike

Figure 9.7: Samples of untargeted adversarial images generated by EAtarget,Ck for 1 ≤ k ≤ 10.

Page 113 of 147

9.3 Attack on High Resolution Images: Method and Per-
formance

9.3.1 A

Table 9.7: For 1 ≤ a ≤ 10, the image Ahr
a classified by each CNN in the category ca (interpolation

= ”lanczos”).

a 1 2 3 4 5 6 7 8 9 10

Ahr
a

w × h 910 × 604 960 × 640 910 × 607 2462 × 2913 910 × 607 641 × 600 1280 × 800 1280 × 800 1954 × 2011 1740 × 1710

C1
cheetah Eskimo dog koala lampshade white stork screen fountain sports car book jacket buckle

0.872 0.691 0.987 0.512 0.484 0.659 0.223 0.840 0.237 0.249

C2
cheetah Eskimo dog koala lampshade Granny Smith screen comic book sports car rubber eraser book jacket

0.986 0.822 0.997 0.673 0.213 0.818 0.322 0.587 0.327 0.168

C3
cheetah Eskimo dog koala table lamp toucan screen comic book sports car handkerchief book jacket

0.976 0.737 0.997 0.614 0.194 0.724 0.453 0.808 0.194 0.237

C4
cheetah Eskimo dog koala table lamp flamingo screen totem pole sports car tray book jacket

0.816 0.516 0.999 0.884 0.497 0.706 0.161 0.740 0.297 0.439

C5
cheetah Eskimo dog koala table lamp spoonbill screen fountain sports car book jacket manhole cover

0.923 0.613 0.902 0.488 0.209 0.804 0.951 0.711 0.372 0.116

C6
cheetah Eskimo dog koala lampshade macaw screen gasmask sports car pillow coffee mug

0.972 0.704 0.994 0.507 0.433 0.697 0.280 0.813 0.163 0.175

C7
cheetah Eskimo dog koala lampshade white stork screen fountain sports car book jacket buckle

0.948 0.629 0.555 0.686 0.224 0.904 0.204 0.470 0.378 0.378

C8
cheetah Eskimo dog koala table lamp toucan screen fountain sports car envelope matchstick

0.899 0.760 0.979 0.641 0.163 0.699 0.702 0.546 0.243 0.569

C9
cheetah Eskimo dog koala lampshade toucan screen comic book sports car binder coffee mug

0.953 0.343 0.997 0.536 0.455 0.706 0.492 0.480 0.283 0.084

C10
cheetah Eskimo dog koala table lamp lorikeet screen comic book sports car lighter prayer rug

0.867 0.412 0.964 0.588 0.145 0.665 0.553 0.649 0.229 0.158

ct poncho goblet weimaraner weevil wombat swing altar beagle triceratops hamper

Page 114 of 147

Lanczos

0.115

0.123 0.132 0.121

0.064

0.024

0.124

Bilinear

0.118

0.015 0.011 0.023

Bicubic

0.130

0.061 0.073 0.057

Nearest

Neighbor 0.123

 ρ λ
Nearest

Neighbor
Bicubic Bilinear Lanczos

(a) C1

Lanczos 0.050 0.041 0.043 0.049

Bilinear 0.058 0.048 0.058 0.050

Bicubic 0.074 0.053 0.055 0.061

Nearest

Neighbor 0.092 0.084 0.075 0.093

 ρ λ
Nearest

Neighbor
Bicubic Bilinear Lanczos

(b) C2

Lanczos 0.009 0.002 0.007 -0.003

Bicubic 0.005 -0.001 0.011 -0.009

Bilinear 0.024 0.022 0.039 0.015

 ρ λ
Nearest

Neighbor
Bicubic Bilinear Lanczos

Nearest

Neighbor 0.095 0.088 0.096 0.086

(c) C3

Lanczos 0.087 0.095 0.084 0.091

Bicubic 0.047 0.064 0.061 0.057

Bilinear 0.052 0.053 0.071 0.055

 ρ λ
Nearest

Neighbor
Bicubic Bilinear Lanczos

Nearest

Neighbor 0.088 0.106 0.123 0.109

(d) C4

Bilinear 0.124 0.112 0.130 0.107

Lanczos 0.017 -0.005 0.034 -0.015

Nearest

Neighbor 0.142 0.138 0.156 0.141

Bicubic 0.024 0.005 0.034 -0.013

 ρ λ
Nearest

Neighbor
Bicubic Bilinear Lanczos

(e) C5

Bilinear 0.037 0.033 0.042 0.035

Lanczos 0.113 0.110 0.122 0.102

Nearest

Neighbor 0.089 0.087 0.105 0.078

Bicubic 0.056 0.046 0.055 0.048

 ρ λ
Nearest

Neighbor
Bicubic Bilinear Lanczos

(f) C6

Lanczos 0.098 0.090 0.115 0.082

Bicubic 0.057 0.038 0.059 0.024

Bilinear 0.087 0.082 0.104 0.076

 ρ λ
Nearest

Neighbor
Bicubic Bilinear Lanczos

Nearest

Neighbor 0.058 0.071 0.081 0.058

(g) C7

Bilinear 0.067 0.060 0.076 0.058

Lanczos 0.061 0.050 0.067 0.053

Nearest

Neighbor 0.134 0.131 0.120 0.126

Bicubic 0.057 0.047 0.057 0.043

 ρ λ
Nearest

Neighbor
Bicubic Bilinear Lanczos

(h) C8

Lanczos 0.048 0.057 0.070 0.051

Bicubic 0.051 0.059 0.076 0.052

Bilinear 0.056 0.066 0.094 0.056

 ρ λ
Nearest

Neighbor
Bicubic Bilinear Lanczos

Nearest

Neighbor 0.058 0.074 0.077 0.084

(i) C9

Bilinear 0.099 0.102 0.134 0.090

Lanczos 0.070 0.065 0.092 0.051

Nearest

Neighbor 0.020 0.024 0.048 0.030

Bicubic 0.078 0.082 0.108 0.070

 ρ λ
Nearest

Neighbor
Bicubic Bilinear Lanczos

(j) C10

Figure 9.8: The heat-maps of the loss function LC(Ahr
a) = τ̃a − τa for each CNN.

Page 115 of 147

9.3.2 B

Table 9.8: Success rates (SR) of EAtarget,C for each CNN over 10 independent runs, for τ = 0.55
and X = 35, 000.

a 1 2 3 4 5 6 7 8 9 10

Ahr
a

ct poncho goblet weimaraner weevil wombat swing altar beagle triceratops hamper SR(%)

C1 0 10 10 10 10 10 10 9 0 10 79

C2 10 10 10 10 10 10 10 9 10 10 99

C3 0 10 10 10 10 10 10 10 6 10 86

C4 10 10 10 10 10 10 10 10 5 10 95

C5 2 2 10 7 10 10 10 2 0 10 63

C6 10 10 10 10 10 10 10 10 0 10 90

C7 10 10 10 10 10 10 10 10 2 10 92

C8 9 10 10 10 10 10 10 10 8 10 97

C9 10 10 10 10 10 10 10 10 10 10 100

C10 10 10 10 10 10 10 10 10 9 10 99

Avg. 8.9 9.2 10 9.7 10 10 10 9 7.1 10 90

Page 116 of 147

(a) C1 −min(Lmax):A7 (b) C1 −max(Lmax):A8

(c) C2 −min(Lmax):A7 (d) C2 −max(Lmax):A1

(e) C3 −min(Lmax):A6 (f) C3 −max(Lmax):A9

(g) C4 −min(Lmax):A2 (h) C4 −max(Lmax):A9

(i) C5 −min(Lmax):A6 (j) C5 −max(Lmax):A7

Figure 9.9: Convergence characteristics of the EA based on τt and τ̃t for each CNN. Only the
pairs with the smallest and largest Lmax values are shown in the figures. (Group 1)

Page 117 of 147

(a) C6 −min(Lmax):A2 (b) C6 −max(Lmax):A3

(c) C7 −min(Lmax):A2 (d) C7 −max(Lmax):A1

(e) C8 −min(Lmax):A2 (f) C8 −max(Lmax):A10

(g) C9 −min(Lmax):A6 (h) C9 −max(Lmax):A4

(i) C10 −min(Lmax):A6 (j) C10 −max(Lmax):A9

Figure 9.10: Convergence characteristics of the EA based on τt and τ̃t for each CNN. Only the
pairs with the smallest and largest Lmax values are shown in the figures. (Group 2)

Page 118 of 147

Figure 9.11: The average convergence characteristics of EAtarget,C for C = VGG16 aiming at
generating a high-resolution adversarial image by directly evolving Ahr

10 . The horizontal axis of
the graph is the number of generations, and the vertical axis is the target probability τt, τ̃t and
the loss L = τ̃t− τt. The zoomed-in section of the graph shows when the τ̃t becomes bigger than
the τt (≈ 2209thgeneration). As the loss L curve shows, the distance between τ̃t and τt increases
over the generations.

9.3.3 C

Page 119 of 147

Table 9.9: Direct attack results of EAtarget,C for the easiest (ca, ct) pairs after 48 hours of
execution of the algorithm. In the last column ct ratio = ct end/ct start

(ca, ct) (toucan, wombat) (comic book, altar)

of gen. ca start ca end ct start ct end # of gen. ca start ca end ct start ct end ct ratio

C1 DenseNet121 25695 0.223 0.227 3.0E-04 7.0E-04 2.4

C2 DenseNet169 28155 0.322 0.294 1.4E-04 3.0E-04 2.1

C3 DenseNet201 24983 0.453 0.467 1.4E-04 2.9E-04 2.1

C4 MobileNet 49082 0.497 0.394 7.77E-06 4.31E-05 5.5

C5 NASNetMobile 25098 0.951 0.748 8.3E-05 4.1E-04 5.0

C6 ResNet50 25448 0.280 0.270 2.9E-04 6.9E-04 2.3

C7 ResNet101 26178 0.204 0.084 9.1E-05 1.9E-04 2.1

C8 ResNet152 25328 0.702 0.575 2.0E-05 5.2E-05 2.6

C9 VGG16 46721 0.455 0.405 1.08E-05 1.90E-05 1.8

C10 VGG19 47668 0.145 0.132 5.32E-05 9.11E-05 1.7

Table 9.10: Direct attack results of EAtarget,C for all (ca, ct) pairs after 100 generations (hence
less than 48 hours). The results show the time spent by the main operations of EAtarget,C in one
generation.

Input Image A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Image Size (n) 910x604 960x640 910x607 2462x2913 910x607 641x600 1280x800 1280x800 1954x2011 1740x1710 %

Avg. of all CNNs

time per gen 3.528 3.790 3.427 45.570 3.469 2.499 6.239 6.248 24.815 18.871

resize 0.384 0.401 0.371 3.829 0.373 0.294 0.635 0.636 2.209 1.729 9.2

prediction 0.155 0.150 0.149 0.156 0.150 0.149 0.150 0.150 0.155 0.153 1.3

mutation 2.063 2.215 1.995 29.922 2.026 1.410 3.768 3.778 16.050 12.118 63.6

crossover 0.161 0.179 0.161 2.067 0.161 0.112 0.297 0.297 1.133 0.861 4.6

time per gen/n 6.42E-06 6.17E-06 6.21E-06 6.35E-06 6.28E-06 6.50E-06 6.09E-06 6.10E-06 6.31E-06 6.34E-06

Table 9.11: Indirect attack results of EAtarget,C for all (ca, ct) pairs after 100 generations. The
results show the time spent by the main operations of EAtarget,C in one generation.

Input Image A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Image Size (n) 910x604 960x640 910x607 2462x2913 910x607 641x600 1280x800 1280x800 1954x2011 1740x1710 %

Avg. of all CNNs

time per gen 0.512 0.516 0.518 0.673 0.517 0.512 0.526 0.530 0.596 0.572

resize 0.020 0.022 0.020 0.174 0.020 0.016 0.032 0.032 0.101 0.079 9.4

prediction 0.154 0.155 0.155 0.155 0.156 0.154 0.155 0.155 0.154 0.154 28.3

mutation 0.143 0.142 0.145 0.146 0.145 0.147 0.142 0.145 0.144 0.143 26.4

crossover 0.009 0.010 0.009 0.010 0.009 0.009 0.009 0.009 0.010 0.010 1.7

time per gen/n 9.31E-07 8.39E-07 9.38E-07 9.39E-08 9.36E-07 1.33E-06 5.14E-07 5.17E-07 1.52E-07 1.92E-07

Page 120 of 147

(a) C1 −Ahr
7 (b) C2 −Ahr

7

(c) C3 −Ahr
7 (d) C4 −Ahr

7

(e) C5 −Ahr
5 (f) C6 −Ahr

7

(g) C7 −Ahr
7 (h) C8 −Ahr

7

(i) C9 −Ahr
5 (j) C10 −Ahr

5

Figure 9.12: Convergence characteristics of EAtarget,C aiming at generating within 48 hours
a high-resolution adversarial image by directly evolving Ahr

5 for the (toucan, wombat) pair
and C = MobileNet (d), VGG16 (i), VGG19 (j), and Ahr

7 for the (comic book, altar) and
C = DenseNet121 (a), DenseNet169 (b), DenseNet201 (c), NasNetMobile (e), ResNet50 (f),
ResNet101 (g), ResNet152 (h).

Page 121 of 147

9.4 Robustness of Attack Against Filters

Page 122 of 147

9.4.1 Without filters

Figure 9.13: For 1 ≤ a ≤ 10, the image on the diagonal of the ath row is the ancestor Aa

(recovered from Table 6.1) classified by VGG16 as belonging to the category ca, and the picture

in the tth column, with t ̸= a, is the adversarial picture Da,t(Aa) = EAtarget,VGG-16
L2

(Aa, ct)
classified by VGG16 as belonging to ct, obtained after the first of the 10 independent runs.

Page 123 of 147

Table 9.12: For C = VGG16, each of the cell in (a, t)th-position contains a pair (maximum label
value, corresponding class) given by C for Da,t(Aa) (with Da,a(Aa) = Aa).

plane
c1

car
c2

bird
c3

cat
c4

deer
c5

dog
c6

frog
c7

horse
c8

ship
c9

truck
c10

plane(A1)
0.6900
plane

0.9506
car

0.9501
bird

0.9500
cat

0.9501
deer

0.9500
dog

0.9502
frog

0.9501
horse

0.9537
ship

0.9531
truck

car(A2)
0.9519
plane

0.9999
car

0.9546
bird

0.9515
cat

0.9534
deer

0.9509
dog

0.9508
frog

0.9606
horse

0.9509
ship

0.9502
truck

bird(A3)
0.9502
plane

0.9505
car

0.9999
bird

0.9501
cat

0.9511
deer

0.9509
dog

0.9517
frog

0.9523
horse

0.9506
ship

0.9510
truck

cat(A4)
0.9514
plane

0.9507
car

0.9512
bird

0.9998
cat

0.9510
deer

0.9519
dog

0.9543
frog

0.9503
horse

0.9514
ship

0.9552
truck

deer(A5)
0.9524
plane

0.9501
car

0.9507
bird

0.9514
cat

0.9999
deer

0.9545
dog

0.9520
frog

0.9501
horse

0.9560
ship

0.9510
truck

dog(A6)
0.9516
plane

0.9502
car

0.9529
bird

0.9518
cat

0.9501
deer

0.9996
dog

0.9502
frog

0.9512
horse

0.9508
ship

0.9518
truck

frog(A7)
0.9519
plane

0.9528
car

0.9501
bird

0.9530
cat

0.9521
deer

0.9527
dog

0.9999
frog

0.9529
horse

0.9521
ship

0.9515
truck

horse(A8)
0.9502
plane

0.9523
car

0.9503
bird

0.9568
cat

0.9521
deer

0.9510
dog

0.9521
frog

0.9998
horse

0.9587
ship

0.9514
truck

ship(A9)
0.9504
plane

0.9543
car

0.9581
bird

0.9506
cat

0.9500
deer

0.9516
dog

0.9517
frog

0.9505
horse

0.9996
ship

0.9504
truck

truck(A10)
0.9525
plane

0.9532
car

0.9518
bird

0.9517
cat

0.9557
deer

0.9511
dog

0.9516
frog

0.9507
horse

0.9517
ship

0.9984
truck

Page 124 of 147

Table 9.13: For C = VGG16, the cell in (a, t)th-position gives (top part) the ca-label value and
the ct-label value, and (bottom part) the maximum label value and corresponding class of C ◦F1

for Da,t(Aa) (with Da,a(Aa) = Aa).

plane car bird cat deer dog frog horse ship truck

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

plane (A1) 0.9923 0.9870 0.9830 0.8888 0.5932 0.9845 0.9857 0.9436 0.9007 0.9806

0.9923 1.56e-03 5.16e-04 4.17e-04 1.71e-04 9.59e-04 1.92e-03 8.26e-05 9.18e-02 2.52e-05

0.9923 0.9870 0.9830 0.8888 0.5932 0.9845 0.9857 0.9436 0.9007 0.9806

plane plane plane plane plane plane plane plane plane plane

car (A2) 2.77e-04 0.7608 1.71e-04 5.46e-05 1.09e-04 7.36e-04 6.81e-04 1.63e-04 2.60e-05 3.29e-03

0.1501 0.7608 1.44e-04 1.82e-03 4.02e-05 2.29e-04 1.00e-04 1.08e-05 0.9993 8.08e-03

0.8491 0.7608 0.9958 0.9962 0.9965 0.9837 0.9969 0.9864 0.9993 0.9877

ship car ship ship ship ship ship ship ship ship

bird (A3) 0.2966 0.7862 0.9996 0.2070 0.8838 0.9665 0.8639 0.4902 0.4071 0.5798

5.15e-02 0.1254 0.9996 8.18e-04 1.38e-04 2.49e-04 0.1120 5.17e-04 0.5643 1.63e-03

0.4964 0.7862 0.9996 0.6009 0.8838 0.9665 0.8639 0.4902 0.5643 0.5798

ship bird bird ship bird bird bird bird ship bird

cat (A4) 0.1906 4.82e-02 4.13e-02 0.9176 0.6035 0.1058 0.5140 0.1909 1.27e-02 2.49e-02

0.1682 2.36e-02 2.79e-04 0.9176 5.37e-03 1.72e-03 4.64e-02 6.87e-02 0.9800 1.78e-02

0.5977 0.8971 0.9162 0.9176 0.6035 0.8079 0.5140 0.4871 0.9800 0.9054

ship ship ship cat cat ship cat frog ship ship

deer (A5) 3.90e-05 7.41e-03 9.00e-02 5.71e-04 0.3245 0.7423 2.16e-03 0.1149 7.83e-03 8.01e-04

0.9985 4.49e-02 2.39e-03 0.9982 0.3245 1.23e-02 3.97e-02 7.53e-04 0.4939 3.41e-02

0.9985 0.8634 0.8982 0.9982 0.5838 0.7423 0.6883 0.7741 0.4939 0.9616

plane plane cat cat plane deer cat cat ship cat

dog (A6) 3.08e-04 9.21e-03 5.23e-03 1.69e-03 1.32e-03 0.0014 7.82e-02 1.03e-02 4.41e-03 5.18e-03

8.74e-04 1.28e-03 1.18e-04 0.9977 1.80e-04 0.0014 0.4415 3.46e-05 1.19e-02 0.5093

0.9925 0.6375 0.9727 0.9977 0.9380 0.9983 0.4415 0.9794 0.8320 0.5093

truck cat cat cat truck cat frog cat truck truck

frog (A7) 0.5602 0.9198 9.37e-02 0.4898 0.2230 0.2092 0.9140 0.2013 9.97e-04 0.4658

0.4272 5.41e-03 4.93e-04 0.4423 1.90e-03 5.25e-02 0.9140 1.20e-03 0.9941 1.37e-02

0.5602 0.9198 0.7740 0.4898 0.7097 0.3961 0.9140 0.4221 0.9941 0.4658

frog frog plane frog cat cat frog cat ship frog

horse (A8) 3.06e-05 3.20e-04 1.83e-04 1.89e-04 1.46e-04 5.03e-05 1.09e-05 0.0004 2.27e-05 1.27e-04

0.9316 2.43e-03 2.29e-02 9.12e-03 4.38e-04 0.8593 7.05e-03 0.0004 0.9470 6.98e-03

0.9316 0.4645 0.5039 0.3962 0.6209 0.8593 0.8860 0.7479 0.9470 0.8123

plane plane dog plane plane dog plane dog ship plane

ship (A9) 0.9136 0.9445 0.1834 0.9034 7.89e-03 1.71e-03 0.9801 3.43e-02 0.9865 0.9242

7.62e-02 4.45e-04 1.30e-03 8.70e-02 0.6532 0.9306 1.79e-03 1.04e-02 0.9865 3.55e-04

0.9136 0.9445 0.7320 0.9034 0.6532 0.9306 0.9801 0.9311 0.9865 0.9242

ship ship plane ship deer dog ship cat ship ship

truck (A10) 2.35e-05 2.68e-04 3.16e-05 1.43e-04 6.35e-05 4.79e-05 6.68e-04 3.60e-04 1.38e-04 0.0001

0.9994 4.12e-05 4.41e-04 5.57e-05 1.43e-04 4.18e-05 4.62e-05 1.65e-03 1.30e-02 0.0001

0.9994 0.9971 0.9970 0.9941 0.9946 0.9941 0.8366 0.9947 0.9865 0.9973

plane plane plane plane plane plane ship plane plane plane

Page 125 of 147

Table 9.14: For C = VGG16, the cell in (a, t)th-position gives (top part) the ca-label value and
the ct-label value, and (bottom part) the maximum label value and corresponding class of C ◦F2

for Da,t(Aa) (with Da,a(Aa) = Aa).

plane car bird cat deer dog frog horse ship truck

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

plane (A1) 0.2591 0.2052 0.1978 0.1256 0.2017 0.1885 0.1907 0.1415 9.10e-02 0.2188

0.2591 0.5786 0.1627 4.95e-03 5.82e-04 1.89e-02 3.08e-02 1.51e-04 0.7307 3.94e-05

0.4463 0.5786 0.3455 0.5941 0.6175 0.4134 0.4057 0.7010 0.7307 0.5850

car car ship ship ship ship car ship ship ship

car (A2) 5.29e-03 0.9988 9.92e-02 5.78e-03 0.4091 0.1245 5.40e-02 1.37e-02 3.80e-02 0.9989

3.23e-04 0.9988 0.7795 4.33e-02 7.96e-04 9.59e-04 0.5196 6.14e-05 3.73e-02 1.76e-04

0.8311 0.9988 0.7795 0.7865 0.4091 0.7438 0.5196 0.9224 0.8378 0.9989

bird car bird bird car bird frog bird bird car

bird (A3) 0.9996 0.9998 0.9998 0.9997 0.9997 0.9997 0.9998 0.9996 0.9997 0.9998

1.98e-04 5.04e-06 0.9998 1.13e-04 5.52e-06 4.45e-05 1.72e-05 2.11e-05 3.80e-05 5.91e-06

0.9996 0.9998 0.9998 0.9997 0.9997 0.9997 0.9998 0.9996 0.9997 0.9998

bird bird bird bird bird bird bird bird bird bird

cat (A4) 0.9876 0.9959 0.9743 0.9992 0.9955 0.9691 0.9983 0.9723 0.9968 0.9917

4.65e-06 7.52e-07 8.52e-04 0.9992 5.96e-04 3.02e-02 2.37e-04 4.62e-05 8.10e-06 9.37e-07

0.9876 0.9959 0.9743 0.9992 0.9955 0.9691 0.9983 0.9723 0.9968 0.9917

cat cat cat cat cat cat cat cat cat cat

deer (A5) 0.9997 0.9985 0.9989 0.9988 0.9998 0.9983 0.9996 0.9992 0.9985 0.9997

8.28e-06 1.35e-06 9.30e-04 7.09e-04 0.9998 1.49e-03 1.73e-05 1.43e-04 5.85e-06 1.02e-06

0.9997 0.9985 0.9989 0.9988 0.9998 0.9983 0.9996 0.9992 0.9985 0.9997

deer deer deer deer deer deer deer deer deer deer

dog (A6) 2.17e-04 3.40e-03 2.52e-03 1.48e-04 3.64e-03 3.14e-04 3.71e-04 8.51e-04 1.95e-04 2.33e-04

1.34e-05 2.26e-06 5.67e-05 0.9998 1.88e-05 3.14e-04 8.29e-06 1.63e-05 2.77e-06 2.94e-06

0.9997 0.9965 0.9973 0.9998 0.9962 0.9996 0.9995 0.9990 0.9997 0.9997

cat cat cat cat cat cat cat cat cat cat

frog (A7) 0.9994 0.9997 0.9995 0.9977 0.9980 0.9941 0.9998 0.9982 0.9995 0.9996

1.90e-05 8.46e-06 2.25e-04 1.21e-03 8.21e-05 4.55e-03 0.9998 4.94e-05 6.97e-05 7.29e-06

0.9994 0.9997 0.9995 0.9977 0.9980 0.9941 0.9998 0.9982 0.9995 0.9996

frog frog frog frog frog frog frog frog frog frog

horse (A8) 0.7487 0.9692 0.8900 0.9062 0.9967 0.9568 0.9164 0.9997 0.9792 0.9758

4.02e-04 7.37e-05 9.74e-02 8.47e-02 1.94e-03 3.46e-03 7.37e-04 0.9997 4.28e-04 2.19e-05

0.7487 0.9692 0.8900 0.9062 0.9967 0.9568 0.9164 0.9997 0.9792 0.9758

horse horse horse horse horse horse horse horse horse horse

ship (A9) 1.73e-03 4.33e-02 5.67e-02 1.85e-02 0.8242 0.1091 8.23e-02 7.87e-03 0.3924 1.55e-03

0.9894 0.7334 1.25e-03 3.34e-04 2.25e-05 8.34e-04 1.54e-04 7.16e-05 0.3924 4.34e-03

0.9894 0.7334 0.8965 0.6402 0.8242 0.8392 0.4956 0.8441 0.4525 0.9214

plane car plane plane ship plane plane plane plane plane

truck (A10) 1.61e-03 6.03e-04 1.57e-03 1.05e-04 7.27e-04 4.96e-03 9.52e-03 3.86e-03 1.02e-03 5.62e-03

0.9955 2.88e-04 2.79e-03 1.88e-04 3.04e-02 4.73e-04 2.58e-04 0.1820 9.07e-05 5.62e-03

0.9955 0.9873 0.9920 0.9931 0.9670 0.9184 0.9876 0.8099 0.9974 0.9919

plane plane plane plane plane plane plane plane plane plane

Page 126 of 147

Table 9.15: For C = VGG16, the cell in (a, t)th-position gives (top part) the ca-label value and
the ct-label value, and (bottom part) the maximum label value and corresponding class of C ◦F3

for Da,t(Aa) (with Da,a(Aa) = Aa).

plane car bird cat deer dog frog horse ship truck

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

plane (A1) 0.7298 0.6388 0.3414 0.1388 0.3576 0.2870 0.3931 0.2510 0.1163 0.3362

0.7298 6.08e-02 0.1755 8.80e-04 3.35e-04 3.20e-02 1.14e-02 2.19e-04 0.8616 2.08e-05

0.7298 0.6388 0.4205 0.8034 0.5857 0.5863 0.5051 0.6781 0.8616 0.6479

plane plane ship ship ship ship ship ship ship ship

car (A2) 0.3643 0.9997 0.9734 0.9666 0.9858 0.8656 0.9075 0.9986 0.9607 0.9997

1.23e-03 0.9997 1.79e-02 1.44e-03 7.33e-05 5.59e-04 5.22e-02 8.15e-06 1.97e-03 5.86e-05

0.5191 0.9997 0.9734 0.9666 0.9858 0.8656 0.9075 0.9986 0.9607 0.9997

bird car car car car car car car car car

bird (A3) 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998

7.36e-05 3.88e-06 0.9999 5.44e-05 4.91e-06 2.73e-05 1.26e-05 1.22e-05 2.02e-05 4.76e-06

0.9998 0.9998 0.9999 0.9998 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998

bird bird bird bird bird bird bird bird bird bird

cat (A4) 0.9971 0.9977 0.9873 0.9994 0.9980 0.9969 0.9986 0.9916 0.9975 0.9963

2.73e-06 1.95e-06 9.16e-03 0.9994 1.09e-04 2.56e-03 2.80e-04 1.33e-04 1.16e-05 1.81e-06

0.9971 0.9977 0.9873 0.9994 0.9980 0.9969 0.9986 0.9916 0.9975 0.9963

cat cat cat cat cat cat cat cat cat cat

deer (A5) 0.9994 0.9995 0.9998 0.9996 0.9998 0.9991 0.9999 0.9995 0.9986 0.9997

1.02e-05 7.05e-07 1.73e-05 7.95e-05 0.9998 8.14e-04 1.17e-05 2.09e-04 4.97e-06 1.04e-06

0.9994 0.9995 0.9998 0.9996 0.9998 0.9991 0.9999 0.9995 0.9986 0.9997

deer deer deer deer deer deer deer deer deer deer

dog (A6) 0.2027 0.8235 0.4543 1.37e-02 0.1518 0.2668 1.11e-02 0.1644 5.96e-02 3.49e-02

1.70e-05 3.99e-06 1.20e-03 0.9861 2.06e-05 0.2668 2.52e-05 4.93e-05 4.62e-06 4.38e-06

0.7969 0.8235 0.5443 0.9861 0.8479 0.7329 0.9886 0.8352 0.9401 0.9649

cat dog cat cat cat cat cat cat cat cat

frog (A7) 0.9997 0.9998 0.9998 0.9993 0.9997 0.9994 0.9998 0.9994 0.9997 0.9997

1.74e-05 1.30e-05 4.40e-05 4.63e-04 1.08e-05 2.41e-04 0.9998 1.72e-05 5.84e-05 6.97e-06

0.9997 0.9998 0.9998 0.9993 0.9997 0.9994 0.9998 0.9994 0.9997 0.9997

frog frog frog frog frog frog frog frog frog frog

horse (A8) 0.9965 0.9985 0.9958 0.9988 0.9997 0.9992 0.9891 0.9998 0.9974 0.9994

6.08e-05 1.93e-05 3.63e-03 1.24e-04 1.37e-04 5.16e-05 2.94e-05 0.9998 2.45e-05 8.11e-06

0.9965 0.9985 0.9958 0.9988 0.9997 0.9992 0.9891 0.9998 0.9974 0.9994

horse horse horse horse horse horse horse horse horse horse

ship (A9) 0.5341 0.4759 0.8869 0.7291 0.9987 0.7917 0.4933 0.6350 0.9942 0.2402

0.3343 0.4978 8.15e-04 3.15e-04 3.33e-06 2.92e-04 1.03e-04 5.64e-05 0.9942 1.07e-02

0.5341 0.4978 0.8869 0.7291 0.9987 0.7917 0.4933 0.6350 0.9942 0.6106

ship car ship ship ship ship ship ship ship car

truck (A10) 0.9685 0.9701 0.5662 0.6816 0.7751 0.7993 0.8764 0.8361 0.6649 0.9924

2.94e-02 2.13e-02 4.58e-03 7.19e-04 0.1100 1.29e-04 2.88e-04 8.23e-04 7.35e-03 0.9924

0.9685 0.9701 0.5662 0.6816 0.7751 0.7993 0.8764 0.8361 0.6649 0.9924

truck truck truck truck truck truck truck truck truck truck

Page 127 of 147

Table 9.16: For C = VGG16, the cell in (a, t)th-position gives (top part) the ca-label value and
the ct-label value, and (bottom part) the maximum label value and corresponding class of C ◦F4

for Da,t(Aa) (with Da,a(Aa) = Aa).

plane

c1

car

c2

bird

c3

cat

c4

deer

c5

dog

c6

frog

c7

horse

c8

ship

c9

truck

c10

plane(A1)

0.4425

0.4425

1.10e-02

0.9871

1.62e-02

0.9689

5.08e-03

0.9843

6.28e-03

0.9813

1.16e-02

0.9566

1.27e-02

0.9610

2.14e-03

0.9815

4.610e-02

0.9146

4.84e-03

0.9792

0.5497

car

0.9871

car

0.9689

bird

0.9843

cat

0.9813

deer

0.9566

dog

0.9610

frog

0.9815

horse

0.9146

ship

0.9792

truck

car(A2)

9.97e-03

0.9879

0.9999

0.9999

0.8717

0.1196

0.1439

0.8162

0.3505

0.6083

9.05e-02

0.8912

0.2418

0.7558

6.16e-02

0.9287

0.7124

0.2840

3.99e-02

0.9597

0.9879

plane

0.9999

car

0.8717

car

0.8162

cat

0.6083

deer

0.8912

dog

0.7558

frog

0.9287

horse

0.7124

car

0.9597

truck

bird(A3)

1.63e-03

0.9710

1.75e-03

0.9903

0.9999

0.9999

5.26e-03

0.9268

8.46e-03

0.9705

1.27e-02

0.9505

4.31e-03

0.9952

8.68e-03

0.9505

1.49e-03

0.9916

3.86e-03

0.9606

0.9710

plane

0.9903

car

0.9999

bird

0.9268

cat

0.9705

deer

0.9505

dog

0.9952

frog

0.9505

horse

0.9916

ship

0.9606

truck

cat(A4)

8.86e-03

0.8439

4.34e-04

0.9948

3.31e-02

0.7611

0.9998

0.9998

6.74e-03

0.9860

4.28e-02

7.94e-02

2.03e-03

0.9979

7.95e-02

0.6060

3.50e-03

0.9079

5.92e-04

0.9833

0.8439

plane

0.9948

car

0.7611

bird

0.9998

cat

0.9860

deer

0.8764

frog

0.9979

frog

0.6060

horse

0.9079

ship

0.9833

truck

deer(A5)

1.65e-04

0.9932

9.22e-05

0.9970

3.67e-02

0.9630

2.14e-03

0.9902

0.9999

0.9999

2.27e-02

0.9771

3.95e-04

0.9987

1.00e-02

0.9852

1.27e-03

0.9957

1.16e-03

0.9951

0.9932

plane

0.9970

car

0.9630

bird

0.9902

cat

0.9999

deer

0.9771

dog

0.9987

frog

0.9852

horse

0.9957

ship

0.9951

truck

dog(A6)

3.01e-03

0.9524

6.08e-05

0.9985

3.49e-03

0.9830

7.11e-02

0.9286

8.47e-04

0.9943

0.9998

0.9998

6.87e-04

0.9960

2.71e-03

0.9960

4.09e-04

0.9974

2.47e-05

0.9994

0.9524

plane

0.9985

car

0.9830

bird

0.9286

cat

0.9943

deer

0.9998

dog

0.9960

frog

0.9960

horse

0.9974

ship

0.9994

truck

frog(A7)

7.74e-02

0.9017

1.94e-02

0.9796

9.23e-02

0.9075

0.2083

0.7900

0.1896

0.8091

0.4448

0.5505

0.9999

0.9999

0.5326

0.4461

8.68e-02

0.9092

4.41e-02

0.9519

0.9017

plane

0.9796

car

0.9075

bird

0.7900

cat

0.8091

deer

0.5505

dog

0.9999

frog

0.5326

frog

0.9092

ship

0.9519

truck

horse(A8)

5.42e-03

0.9515

5.40e-03

0.9768

5.30e-03

0.8715

1.65e-02

0.8458

8.67e-03

0.9852

1.40e-02

0.9342

1.94e-04

0.9958

0.9998

0.9998

1.63e-02

0.9648

6.68e-03

0.9316

0.9515

plane

0.9768

car

0.8715

bird

0.8458

cat

0.9852

deer

0.9342

dog

0.9958

frog

0.9998

horse

0.9648

ship

0.9316

truck

ship(A9)

0.2174

0.6631

0.1769

0.8214

3.05e-02

0.9155

2.13e-02

0.9712

6.81e-03

0.8909

0.2438

0.6297

5.26e-03

0.9929

3.09e-02

0.9414

0.9997

0.9997

6.52e-02

0.9095

0.6631

plane

0.8214

car

0.9155

bird

0.9712

cat

0.8909

deer

0.6297

dog

0.9929

frog

0.9414

horse

0.9997

ship

0.9095

truck

truck(A10)

0.1588

0.8403

1.10e-02

0.9869

2.70e-02

0.9666

4.66e-03

0.9878

0.2818

0.6789

1.23e-02

0.9517

6.82e-03

0.9914

0.1163

0.7095

6.94e-02

0.9270

0.9993

0.9993

0.8403

plane

0.9869

car

0.9666

bird

0.9878

cat

0.6789

deer

0.9517

dog

0.9914

frog

0.7095

horse

0.9270

ship

0.9993

truck

Page 128 of 147

Table 9.17: For C = VGG16 and F5 = F3 ◦F4, the cell in (a, t)th-position gives (top part) the ca-
label value and the ct-label value, and (bottom part) the maximum label value and corresponding
class of C ◦ F5 for Da,t(Aa) (with Da,a(Aa) = Aa).

plane

c1

car

c2

bird

c3

cat

c4

deer

c5

dog

c6

frog

c7

horse

c8

ship

c9

truck

c10

plane(A1)

0.8817

0.8817

0.8366

4.33e-02

0.5261

0.1688

0.2653

9.90e-04

0.5060

4.08e-04

0.5797

3.43e-02

0.5169

1.12e-02

0.3472

3.96e-04

0.1666

0.8131

0.6224

3.38e-05

0.8817

plane

0.8366

plane

0.5261

plane

0.6487

ship

0.5060

plane

0.5797

plane

0.5169

plane

0.5715

ship

0.8131

ship

0.6224

plane

car(A2)

0.9637

2.85e-04

0.9998

0.9998

0.9907

7.17e-03

0.9971

3.92e-04

0.9980

2.70e-05

0.9907

1.01e-04

0.9935

3.75e-03

0.9994

7.29e-06

0.9961

3.66e-04

0.9997

6.04e-05

0.9637

car

0.9998

car

0.9907

car

0.9971

car

0.9980

car

0.9907

car

0.9935

car

0.9994

car

0.9961

car

0.9997

car

bird(A3)

0.9998

8.86e-05

0.9998

3.74e-06

0.9999

0.9999

0.9997

6.25e-05

0.9998

6.93e-06

0.9998

3.01e-05

0.9999

1.42e-05

0.9998

1.25e-05

0.9998

2.32e-05

0.9998

4.46e-06

0.9998

bird

0.9998

bird

0.9999

bird

0.9997

bird

0.9998

bird

0.9998

bird

0.9999

bird

0.9998

bird

0.9998

bird

0.9998

bird

cat(A4)

0.9990

3.46e-06

0.9984

2.06e-06

0.9853

1.13e-02

0.9997

0.9997

0.9987

7.19e-05

0.9982

9.95e-04

0.9990

2.55e-04

0.9833

2.29e-04

0.9983

1.57e-05

0.9978

2.76e-06

0.9990

cat

0.9984

cat

0.9853

cat

0.9997

cat

0.9987

cat

0.9982

cat

0.9990

cat

0.9833

cat

0.9983

cat

0.9978

cat

deer(A5)

0.9982

1.71e-05

0.9959

1.77e-06

0.9996

1.43e-05

0.9995

5.01e-05

0.9992

0.9992

0.9974

2.49e-03

0.9999

1.28e-05

0.9988

6.28e-04

0.9958

7.19e-06

0.9995

1.58e-06

0.9982

deer

0.9959

deer

0.9996

deer

0.9995

deer

0.9992

deer

0.9974

deer

0.9999

deer

0.9988

deer

0.9958

deer

0.9995

deer

dog(A6)

0.3989

2.67e-05

0.9915

1.96e-06

0.8812

2.37e-03

0.1154

0.8843

0.1433

2.35e-05

0.9148

0.9148

7.58e-02

5.47e-05

0.6196

7.70e-05

0.4921

6.71e-06

0.1617

1.04e-05

0.6006

cat

0.9915

dog

0.8812

dog

0.8843

cat

0.8563

cat

0.9148

dog

0.9238

cat

0.6196

dog

0.5074

cat

0.8379

cat

frog(A7)

0.9998

2.03e-05

0.9998

3.11e-05

0.9998

6.01e-05

0.9997

1.86e-04

0.9998

1.38e-05

0.9996

1.14e-04

0.9999

0.9999

0.9997

1.07e-05

0.9998

4.63e-05

0.9997

1.33e-05

0.9998

frog

0.9998

frog

0.9998

frog

0.9997

frog

0.9998

frog

0.9996

frog

0.9999

frog

0.9997

frog

0.9998

frog

0.9997

frog

horse(A8)

0.9924

8.50e-05

0.9953

4.29e-05

0.9900

9.55e-03

0.9989

8.48e-05

0.9998

7.39e-05

0.9991

4.19e-05

0.9945

2.76e-05

0.9998

0.9998

0.9963

2.31e-05

0.9995

1.99e-05

0.9924

horse

0.9953

horse

0.9900

horse

0.9989

horse

0.9998

horse

0.9991

horse

0.9945

horse

0.9998

horse

0.9963

horse

0.9995

horse

ship(A9)

0.7220

4.71e-02

0.1382

0.8536

0.5000

6.50e-04

0.7736

3.24e-04

0.9983

3.35e-06

0.6808

3.04e-04

0.4648

8.79e-05

0.6148

3.85e-05

0.9945

0.9945

0.4792

9.87e-03

0.7220

ship

0.8536

car

0.5000

ship

0.7736

ship

0.9983

ship

0.6808

ship

0.4955

car

0.6148

ship

0.9945

ship

0.4792

ship

truck(A10)

0.9894

9.42e-03

0.9847

1.34e-02

0.5815

2.45e-03

0.9414

3.01e-04

0.9378

2.02e-02

0.9084

1.71e-04

0.9752

1.62e-04

0.9194

5.57e-04

0.9244

7.97e-03

0.9987

0.9987

0.9894

truck

0.9847

truck

0.5815

truck

0.9414

truck

0.9378

truck

0.9084

truck

0.9752

truck

0.9194

truck

0.9244

truck

0.9987

truck

Page 129 of 147

9.4.2 With filters

Figure 9.14: For 1 ≤ a ≤ 10, the image on the diagonal at the (a, a)th position is the ancestor
Aa (recovered from Table 6.1) classified by VGG16 as belonging to the category ca. The picture

in the (a, t)th position, with t ̸= a, is the adversarial picture DF5
a,t(Aa) = EAtarget,VGG-16

L2,F5
(Aa, ct)

obtained after the first successful run of the algorithm. Both images DF5
a,t(Aa) and F5(DF5

a,t(Aa))
are classified by VGG16 as belonging to ct with a ct-label value ≥ 0.95. The 3 fully empty
pictures correspond to the (ancestor(Aa), target) combinations for which the algorithm did not
terminate successfully for any of the 10 runs.

Page 130 of 147

T
ab

le
9.
18
:

F
or

C
=

V
G
G
16
,
ea
ch

of
th
e
tw

o
p
a
rt
s
o
f
th
e
ce
ll
in

(a
,t
)t

h
-p
o
si
ti
o
n
co
n
ta
in
s
a
p
a
ir

(m
a
x
im

u
m

la
b
el

va
lu
e,

co
rr
es
p
o
n
d
in
g

cl
as
s)

gi
v
en

b
y
C
(t
op

)
an

d
b
y
C
◦
F
5
(b
o
tt
o
m
)
fo
r
D

F
5

a
,t
(A

a
)
(w

it
h
D

F
5

a
,a
(A

a
)
=

A
a
)
w
h
en
ev
er

a
p
p
li
ca
b
le

(3
ce
ll
s
a
re

em
p
ty
).

p
la
n
e

c 1

ca
r

c 2

b
ir
d

c 3

ca
t

c 4

d
ee
r

c 5

d
o
g

c 6

fr
o
g

c 7

h
o
rs
e

c 8

sh
ip c 9

tr
u
ck

c 1
0

p
la
n
e(
A

1
)

0.
69
00
,
p
la
n
e

0.
98
71
,
ca
r

0
.9
5
1
3
,
b
ir
d

0
.9
5
0
3
,
ca
t

0
.9
5
0
3
,
d
o
g

0
.9
5
1
0
,
fr
o
g

0
.9
5
1
0
,
h
o
rs
e

0
.9
5
0
3
,
sh
ip

0
.9
5
0
2
,
tr
u
ck

0.
88
17
,
p
la
n
e

0.
95
03
,
ca
r

0
.9
8
2
8
,
b
ir
d

0
.9
7
0
2
,
ca
t

0
.9
8
4
0
,
d
o
g

0
.9
8
1
4
,
fr
o
g

0
.9
7
3
7
,
h
o
rs
e

0
.9
8
6
3
,
sh
ip

0
.9
8
2
4
,
tr
u
ck

ca
r(
A

2
)

0.
95
33
,
p
la
n
e

0.
99
99
,
ca
r

0
.9
5
2
6
,
b
ir
d

0
.9
5
2
9
,
ca
t

0
.9
5
0
5
,
d
ee
r

0
.9
5
1
3
,
d
o
g

0
.9
5
0
0
,
fr
o
g

0
.9
5
0
5
,
h
o
rs
e

0
.9
6
1
4
,
sh
ip

0
.9
5
0
7
,
tr
u
ck

0.
99
98
,
p
la
n
e

0.
99
98
,
ca
r

0
.9
9
9
8
,
b
ir
d

0
.9
9
8
4
,
ca
t

0
.9
9
9
8
,
d
ee
r

0
.9
9
8
7
,
d
o
g

0
.9
9
9
4
,
fr
o
g

0
.9
9
9
8
,
h
o
rs
e

0
.9
9
9
8
,
sh
ip

0
.9
9
9
7
,
tr
u
ck

b
ir
d
(A

3
)

0.
95
09
,
p
la
n
e

0
.9
9
9
9
,
b
ir
d

0
.9
5
0
7
,
ca
t

0
.9
5
1
4
,
d
ee
r

0
.9
5
0
2
,
d
o
g

0
.9
5
0
7
,
fr
o
g

0
.9
5
2
1
,
h
o
rs
e

0
.9
5
0
0
,
sh
ip

0
.9
5
0
3
,
tr
u
ck

0.
99
92
,
p
la
n
e

0
.9
9
9
9
,
b
ir
d

0
.9
8
4
8
,
ca
t

0
.9
9
9
5
,
d
ee
r

0
.9
9
3
3
,
d
o
g

0
.9
9
7
8
,
fr
o
g

0
.9
7
8
8
,
h
o
rs
e

0
.9
9
0
9
,
sh
ip

0
.9
7
9
6
,
tr
u
ck

ca
t(
A

4
)

0.
95
47
,
p
la
n
e

0.
95
21
,
ca
r

0
.9
5
1
4
,
b
ir
d

0
.9
9
9
8
,
ca
t

0
.9
5
3
4
,
d
ee
r

0
.9
5
1
5
,
d
o
g

0
.9
5
4
6
,
fr
o
g

0
.9
5
3
7
,
h
o
rs
e

0
.9
5
4
6
,
sh
ip

0
.9
5
5
2
,
tr
u
ck

0.
99
64
,
p
la
n
e

0.
99
97
,
ca
r

0
.9
9
9
6
,
b
ir
d

0
.9
9
9
7
,
ca
t

0
.9
9
9
6
,
d
ee
r

0
.9
9
9
7
,
d
o
g

0
.9
9
8
3
,
fr
o
g

0
.9
9
9
9
,
h
o
rs
e

0
.9
9
6
7
,
sh
ip

0
.9
9
9
2
,
tr
u
ck

d
ee
r(
A

5
)

0.
95
09
,
p
la
n
e

0.
95
16
,
ca
r

0
.9
5
0
9
,
b
ir
d

0
.9
5
0
6
,
ca
t

0
.9
9
9
9
,
d
ee
r

0
.9
5
2
8
,
d
o
g

0
.9
5
4
9
,
fr
o
g

0
.9
5
0
1
,
h
o
rs
e

0
.9
5
1
7
,
sh
ip

0
.9
5
0
3
,
tr
u
ck

0.
99
87
,
p
la
n
e

09
92
2,

ca
r

0
.9
9
8
9
,
b
ir
d

0
.9
9
9
8
,
ca
t

0
.9
9
9
2
,
d
ee
r

0
.9
9
9
1
,
d
o
g

0
.9
9
9
9
,
fr
o
g

0
.9
9
9
4
,
h
o
rs
e

0
.9
9
9
9
,
sh
ip

0
.9
9
9
7
,
tr
u
ck

d
og
(A

6
)

0.
95
07
,
p
la
n
e

0.
95
14
,
ca
r

0
.9
5
2
3
,
b
ir
d

0
.9
5
5
6
,
ca
t

0
.9
5
1
7
,
d
ee
r

0
.9
9
9
6
,
d
o
g

0
.9
5
0
4
,
fr
o
g

0
.9
5
3
5
,
h
o
rs
e

0
.9
5
2
8
,
sh
ip

0
.9
5
1
7
,
tr
u
ck

0.
99
89
,
p
la
n
e

0.
99
97
,
ca
r

0
.9
9
9
6
,
b
ir
d

0
.9
9
9
3
,
ca
t

0
.9
9
8
9
,
d
ee
r

0
.9
1
4
8
,
d
o
g

0
.9
9
8
9
,
fr
o
g

0
.9
9
9
5
,
h
o
rs
e

0
.9
9
8
0
,
sh
ip

0
.9
9
9
3
,
tr
u
ck

fr
og
(A

7
)

0.
95
09
,
p
la
n
e

0.
95
06
,
ca
r

0
.9
5
4
5
,
b
ir
d

0
.9
5
0
2
,
ca
t

0
.9
5
5
5
,
d
ee
r

0
.9
5
5
4
,
d
o
g

0
.9
9
9
9
,
fr
o
g

0
.9
5
2
0
,
h
o
rs
e

0
.9
5
1
0
,
sh
ip

0
.9
5
3
9
,
tr
u
ck

0.
99
96
,
p
la
n
e

0.
99
96
,
ca
r

0
.9
9
9
5
,
b
ir
d

0
.9
9
9
8
,
ca
t

0
.9
9
9
9
,
d
ee
r

0
.9
9
9
9
,
d
o
g

0
.9
9
9
9
,
fr
o
g

0
.9
9
9
9
,
h
o
rs
e

0
.9
9
9
7
,
sh
ip

0
.9
9
9
4
,
tr
u
ck

h
or
se
(A

8
)

0.
95
03
,
p
la
n
e

0.
95
41
,
ca
r

0
.9
5
2
8
,
b
ir
d

0
.9
6
5
9
,
ca
t

0
.9
5
4
1
,
d
ee
r

0
.9
5
8
0
,
d
o
g

0
.9
5
0
0
,
fr
o
g

0
.9
9
9
8
,
h
o
rs
e

0
.9
5
1
6
,
tr
u
ck

0.
99
98
,
p
la
n
e

0.
99
97
,
ca
r

0
.9
9
9
7
,
b
ir
d

0
.9
9
9
5
,
ca
t

0
.9
9
9
7
,
d
ee
r

0
.9
9
9
8
,
d
o
g

0
.9
9
9
9
,
fr
o
g

0
.9
9
9
8
,
h
o
rs
e

0
.9
9
8
7
,
tr
u
ck

sh
ip
(A

9
)

0.
95
31
,
p
la
n
e

0.
95
09
,
ca
r

0
.9
5
1
6
,
b
ir
d

0
.9
5
1
7
,
ca
t

0
.9
5
0
8
,
d
ee
r

0
.9
5
2
3
,
d
o
g

0
.9
5
1
0
,
fr
o
g

0
.9
5
3
9
,
h
o
rs
e

0
.9
9
9
6
,
sh
ip

0
.9
5
1
5
,
tr
u
ck

0.
99
96
,
p
la
n
e

0.
99
91
,
ca
r

0
.9
9
9
9
,
b
ir
d

0
.9
9
9
0
,
ca
t

0
.9
9
8
3
,
d
ee
r

0
.9
9
9
5
,
d
o
g

0
.9
9
7
2
,
fr
o
g

0
.9
9
9
8
,
h
o
rs
e

0
.9
9
4
5
,
sh
ip

0
.9
9
0
2
,
tr
u
ck

tr
u
ck
(A

1
0
)

0.
95
07
,
p
la
n
e

0.
95
03
,
ca
r

0
.9
5
3
5
,
b
ir
d

0
.9
5
1
5
,
ca
t

0
.9
5
0
9
,
d
ee
r

0
.9
5
0
9
,
d
o
g

0
.9
5
2
6
,
fr
o
g

0
.9
5
4
2
,
h
o
rs
e

0
.9
5
0
3
,
sh
ip

0
.9
9
8
4
,
tr
u
ck

0.
99
58
,
p
la
n
e

0.
99
93
,
ca
r

0
.9
9
8
2
,
b
ir
d

0
.9
9
9
2
,
ca
t

0
.9
9
9
4
,
d
ee
r

0
.9
9
9
3
,
d
o
g

0
.9
9
9
7
,
fr
o
g

0
.9
9
8
9
,
h
o
rs
e

0
.9
9
8
0
,
sh
ip

0
.9
9
8
7
,
tr
u
ck

Page 131 of 147

Table 9.19: For C = VGG16, each of the 4 parts of the cell in (a, t)th-position contains a pair (maximum label value,
corresponding class) given, respectively from the top to the bottom, by C ◦ F1, C ◦ F2, C ◦ F3, and C ◦ F4 for DF5

a,t(Aa) (with

DF5
a,a(Aa) = Aa) whenever applicable.

plane

c1

car

c2

bird

c3

cat

c4

deer

c5

dog

c6

frog

c7

horse

c8

ship

c9

truck

c10

plane(A1)

0.9923, plane

0.4463, car

0.7298, plane

0.5497, car

0.9590, plane

0.8199, car

0.8210, car

0.9942, car

0.9734, plane

0.3563, ship

0.9223, bird

0.9812, bird

0.5456, plane

0.5816, ship

0.6407, cat

0.9814, cat

0.6592, plane

0.5081, ship

0.8733, dog

0.9681, dog

0.9511, plane

0.3520, car

0.9058, frog

0.9612, frog

0.9203, plane

0.5766, ship

0.4090, horse

0.9661, horse

0.8721, plane

0.7817, ship

0.9859, ship

0.9092, ship

0.9719, plane

0.4782, ship

0.4889, truck

0.9641, truck

car(A2)

0.9709, ship

0.6160, bird

0.9994, plane

0.9788, plane

0.7608, car

0.9988, car

0.9997, car

0.9999, car

0.9204, ship

0.9729, bird

0.9996, bird

0.9510, car

0.9925, ship

0.8053, cat

0.9940, cat

0.9553, cat

0.9990, ship

0.8379, bird

0.9989, deer

0.8565, car

0.5563, ship

0.8068, bird

0.9163, dog

0.4930, car

0.9989, ship

0.5687, frog

0.9972, frog

0.8633, frog

0.9984, ship

0.8987, bird

0.9986, horse

0.7029, horse

0.9996, ship

0.5995, ship

0.9993, ship

0.5694, ship

0.9979, ship

0.9989, car

0.9959, truck

0.9028, truck

bird(A3)

0.7736, bird

0.9993, bird

0.9634, plane

0.9256, plane

0.9996, bird

0.9998, bird

0.9999, bird

0.9999, bird

0.4883, cat

0.9989, bird

0.6508, bird

0.9623, cat

0.8968, bird

0.9997, bird

0.7539, deer

0.9641, deer

0.7456, ship

0.9994, bird

0.6483, dog

0.9335, dog

0.8491, bird

0.9998, bird

0.9180, bird

0.9925, frog

0.9912, bird

0.9993, bird

0.9183, bird

0.9805, horse

0.8356, ship

0.9996, bird

0.9361, bird

0.9838, ship

0.5635, bird

0.9996, bird

0.9746, bird

0.9559, truck

cat(A4)

0.3250, plane

0.9388, cat

0.4563, bird

0.5571, frog

0.6128, cat

0.9380, cat

0.9514, car

0.9710, car

0.5194, ship

0.9709, cat

0.9990, bird

0.7841, frog

0.9176, cat

0.9992, cat

0.9994, cat

0.9998, cat

0.9581, frog

0.9672, cat

0.9952, deer

0.6331, deer

0.4988, cat

0.6787, dog

0.9995, dog

0.9296, frog

0.6131, cat

0.9895, cat

0.9780, frog

0.9959, frog

0.5113, cat

0.6719, cat

0.9997, horse

0.6838, frog

0.5035, ship

0.9904, cat

0.8182, ship

0.8859, ship

0.9853, frog

0.9758, cat

0.6144, truck

0.9820, truck

deer(A5)

0.9630, plane

0.9974, deer

0.9309, plane

0.9857, plane

0.6593, car

0.8741, deer

0.7593, bird

0.9851, car

0.9989, cat

0.9817, deer

0.9804, bird

0.9812, bird

0.9990, cat

0.9823, deer

0.9994, cat

0.9775, cat

0.5838, plane

0.9998, deer

0.9998, deer

0.9999, deer

0.4605, cat

0.9953, deer

0.7601, dog

0.9623, dog

0.9763, cat

0.9991, deer

0.9991, frog

0.9993, frog

0.7703, cat

0.9978, deer

0.9783, horse

0.9761, horse

0.4648, cat

0.9979, deer

0.9995, ship

0.9898, ship

0.9589, cat

0.9979, deer

0.7796, truck

0.9685, truck

dog(A6)

0.7988, truck

0.9994, cat

0.9467, plane

0.6362, plane

0.8132, frog

0.9994, cat

0.8896, car

0.6567, car

0.9632, cat

0.9984, cat

0.9971, bird

0.9670, bird

0.9979, cat

0.9997, cat

0.9991, cat

0.9376, cat

0.9329, frog

0.9884, cat

0.8806, deer

0.9768, deer

0.9983, cat

0.9996, cat

0.7329, cat

0.9998, dog

0.9000, frog

0.9963, cat

0.7521, frog

0.9923, frog

0.8948, cat

0.9984, cat

0.9926, horse

0.9558, horse

0.9982, truck

0.9989, cat

0.6905, cat

0.9460, ship

0.8360, truck

0.9988, cat

0.5802, cat

0.9935, truck

frog(A7)

0.9304, plane

0.9991, frog

0.9971, plane

0.8194, plane

0.8875, frog

0.9995, frog

0.9981, car

0.9574, car

0.6184, frog

0.9906, frog

0.9851, bird

0.9367, bird

0.8088, frog

0.6322, frog

0.9997, cat

0.6233, frog

0.7472, cat

0.9745, deer

0.9998, deer

0.6790, frog

0.7688, cat

0.6311, frog

0.9996, dog

0.8118, frog

0.9140, frog

0.9998, frog

0.9998, frog

0.9999, frog

0.5688, frog

0.5651, horse

0.9999, horse

0.6397, frog

0.8974, ship

0.9976, frog

0.9982, ship

0.6303, ship

0.9379, frog

0.9995, frog

0.9966, truck

0.9511, truck

horse(A8)

0.7407, plane

0.9532, horse

0.9977, plane

0.8848, plane

0.7159, plane

0.9753, horse

0.9911, car

0.9716, car

0.6002, plane

0.8861, bird

0.9990, bird

0.9888, bird

0.8016, plane

0.6032, cat

0.9982, cat

0.9538, cat

0.7816, bird

0.9827, horse

0.9989, deer

0.9506, deer

0.3995, bird

0.8946, horse

0.9997, dog

0.7921, bird

0.4876, plane

0.6117, cat

0.9998, frog

0.9910, frog

0.7479, dog

0.9997, horse

0.9998, horse

0.9998, horse

0.5835, plane

0.9816, horse

0.9546, truck

0.9771, truck

ship(A9)

0.8772, ship

0.9977, plane

0.9995, plane

0.4929, plane

0.9944, ship

0.7723, car

0.9924, car

0.7072, car

0.6944, cat

0.9636, plane

0.9997, bird

0.4667, ship

0.8931, ship

0.9109, plane

0.9631, cat

0.9631, cat

0.7483, car

0.6752, ship

0.8506, deer

0.6244, deer

0.5348, dog

0.9598, plane

0.9901, dog

0.2485, ship

0.9940, ship

0.8060, plane

0.5932, ship

0.9813, frog

0.3876, cat

0.9857, plane

0.9996, horse

0.5592, horse

0.9865, ship

0.4525, plane

0.9942, ship

0.9997, ship

0.6581, ship

0.9309, plane

0.7653, truck

0.9664, truck

truck(A10)

0.9994, plane

0.9946, plane

0.9964, plane

0.8131, plane

0.5934, plane

0.9903, plane

0.9976, car

0.9432, car

0.9977, plane

0.9899, plane

0.9765, bird

0.9767, bird

0.6818, ship

0.9610, plane

0.9985, cat

0.8556, cat

0.9290, plane

0.9766, plane

0.9984, deer

0.9121, deer

0.7131, plane

0.9682, plane

0.9984, dog

0.9743, dog

0.9674, ship

0.9586, plane

0.9997, frog

0.9925, frog

0.9840, plane

0.5843, horse

0.9972, horse

0.5812, horse

0.9654, plane

0.9970, plane

0.9776, ship

0.9181, ship

0.9973, plane

0.9919, plane

0.9924, truck

0.9993, truck

Page 132 of 147

9.5 Comparative Analysis of the EA and BIM Adversarial
Attacks

9.5.1 Ancestor and adversarial images

abacus

acorn

baseball

broom

brown bear

canoe

hippopotamus

llama

maraca

mountain bike

Figure 9.15: The 100 ancestor images Ap
q used in the experiments. Ap

q pictured in the qth row

and pth column (1 ≤ p, q ≤ 10) is randomly chosen from the ImageNet validation set of the
ancestor category caq

specified on the left of the qth row.

Page 133 of 147

Figure 9.16: The 84 convenient ancestor images Ap
q used in the experiments, for which both the

EA and BIM created 0.999-strong adversarial images DEA
k (Ap

q) and DBIM
k (Ap

q).

Figure 9.17: Adversarial images Datk
k (A4

5) stemming from the A4
5 ancestor, obtained with the

EA (top) and BIM (bottom). From left to right, the attacked CNNs are C1 · · · C10.

Page 134 of 147

(ca1
, ct1) (ca2

, ct2) (ca3
, ct3) (ca4

, ct4) (ca5
, ct5) (ca6

, ct6) (ca7
, ct7) (ca8

, ct8) (ca9
, ct9) (ca10

, ct10) Total
C1 7,3,3 10,7,7 10,3,3 10,3,3 6,0,0 10,8,8 10,7,7 10,5,5 10,5,5 10,7,7 93,48,48
C2 7,3,3 10,8,8 8,0,0 9,4,3 6,0,0 10,4,4 9,2,2 9,5,5 9,6,5 9,9,8 86,41,38
C3 4,2,1 9,7,6 7,3,2 7,9,7 3,0,0 7,5,4 9,3,3 8,4,3 8,8,7 8,8,6 70,49,39
C4 4,1,1 7,7,5 6,1,0 8,6,5 2,1,1 9,2,2 8,5,3 8,5,3 7,8,5 8,8,6 67,44,31
C5 4,1,1 7,7,5 5,2,1 8,7,6 1,0,0 6,3,3 7,1,1 7,5,4 8,10,8 9,9,8 62,45,37
C6 5,5,3 7,8,5 4,1,0 5,5,2 2,1,1 8,7,7 7,8,6 7,6,4 7,9,6 5,8,4 57,58,38
C7 4,4,2 7,7,4 4,4,1 8,10,8 4,0,0 7,8,6 8,8,7 8,10,8 8,8,6 8,8,6 66,67,48
C8 4,4,3 8,9,7 6,4,2 5,5,3 1,0,0 7,4,4 9,8,8 7,7,5 7,7,4 7,6,5 61,54,41
C9 6,5,4 8,10,8 7,2,1 8,10,8 6,1,1 8,10,8 8,10,8 8,9,7 8,9,8 8,10,8 75,76,61
C10 7,5,4 8,7,7 8,2,1 8,8,7 7,1,1 8,10,8 8,9,7 8,10,8 9,5,5 8,10,8 79,67,56
Total 52, 33, 25 81, 77, 62 65, 22, 11 76, 67, 52 38, 4, 4 80, 61, 54 83, 61, 52 80, 66, 52 81, 75, 59 80, 83, 66 716, 549, 437

Table 9.20: For 1 ≤ k, q ≤ 10, the cell at the intersection of the row Ck and column (caq
, ctq)

is composed of a triplet α, β, γ, where α is the number of ancestors in caq for which EAtarget,Ck

created 0.999-strong adversarial images, β is the number of ancestors in caq
for which BIMk

created 0.999-strong adversarial images, and γ is the number of common ancestors for which
both algorithms terminated successfully.

Figure 9.18: Adversarial images Datk
k (A8

10) stemming from the A8
10 ancestor, obtained with the

EA (top) and BIM (bottom). From left to right, the attacked CNNs are C1 · · · C10.

Page 135 of 147

9.5.2 Local effect of adversarial noise on target CNNs

Figure 9.19: From the 1st row to the 10th row, single patch replacement for (A2
1, C1), (A1

2, C2),
(A3

3, C3), (A1
4, C4), (A5

5, C5), (A6
6, C6), (A7

7, C7), (A8
8, C8), (A9

9, C9), (A10
10, C10). From left to right,

the 4 pairs of graphs correspond to patches of size 16 × 16, 32 × 32, 56 × 56 and 112 × 112,
respectively. Each pair represents the step-wise plot of log(oCI [a]) (left graph) and of log(oCI [t])
(right graph) for the EA (blue curve) and BIM (orange curve). The red horizontal line recalls
the ca-label value (left graph) or the ct-label value (right graph) of A with no replaced patch.

Page 136 of 147

9.5.3 Adversarial noise visualization and frequency analysis

Figure 9.20: From the 1st row to the 5th row, band-stop graphs of the ca and ct probabilities for
(A2

1, C1), (A1
2, C2), (A3

3, C3), (A1
4, C4), (A5

5, C5). In each row, from left to right, the following images
are fed to Ck: DEA

k (Ap
q), sh(DEA

k (Ap
q), 32), sh(DEA

k (Ap
q), 56), and sh(DEA

k (Ap
q), 112), which are

the unshuffled and shuffled versions of the adversarial image, and Ap
q , sh(Ap

q , 32), sh(Ap
q , 56),

and sh(Ap
q , 112), which are the unshuffled and shuffled versions of the ancestor.

Page 137 of 147

Figure 9.21: From the 1st row to the 5th row, band-stop graphs of the ca and ct probabilities
for (A6

6, C6), (A7
7, C7), (A8

8, C8), (A9
9, C9), (A10

10, C10). In each row, from left to right, the following
images are fed to Ck: DEA

k (Ap
q), sh(DEA

k (Ap
q), 32), sh(DEA

k (Ap
q), 56), and sh(DEA

k (Ap
q), 112),

which are the unshuffled and shuffled versions of the adversarial image, and Ap
q , sh(Ap

q , 32),
sh(Ap

q , 56), and sh(Ap
q , 112), which are the unshuffled and shuffled versions of the ancestor.

Page 138 of 147

Figure 9.22: From the 1st row to the 5th row, band-stop graphs of the ca and ct probabilities for
(A2

1, C1), (A1
2, C2), (A3

3, C3), (A1
4, C4), (A5

5, C5). In each row, from left to right, the following im-
ages are fed to Ck: DBIM

k (Ap
q), sh(DBIM

k (Ap
q), 32), sh(DBIM

k (Ap
q), 56), and sh(DBIM

k (Ap
q), 112),

which are the unshuffled and shuffled versions of the adversarial image, and Ap
q , sh(Ap

q , 32),
sh(Ap

q , 56), and sh(Ap
q , 112), which are the unshuffled and shuffled versions of the ancestor.

Page 139 of 147

Figure 9.23: From the 1st row to the 5th row, band-stop graphs of the ca and ct probabilities for
(A6

6, C6), (A7
7, C7), (A8

8, C8), (A9
9, C9), (A10

10, C10). In each row, from left to right, the following im-
ages are fed to Ck: DBIM

k (Ap
q), sh(DBIM

k (Ap
q), 32), sh(DBIM

k (Ap
q), 56), and sh(DBIM

k (Ap
q), 112),

which are the unshuffled and shuffled versions of the adversarial image, and Ap
q , sh(Ap

q , 32),
sh(Ap

q , 56), and sh(Ap
q , 112), which are the unshuffled and shuffled versions of the ancestor.

Page 140 of 147

9.5.4 Transferability and texture bias

(a) A2
8

(b) A1
4

Figure 9.24: Heatmaps obtained with the ancestor A2
8 and the adversarial images Datk

6 (A2
8) (a)

and with the ancestor A1
4 and the adversarial images Datk

6 (A1
4) (b). In each pair of rows, atk =

EA in the first row and atk = BIM in the second.

Page 141 of 147

9.5.5 Effects of shuffling on the transferability of the adversarial images

(a) no shuffle (b) s = 32

(c) s = 56 (d) s = 112

Figure 9.25: Evolution of ca and ct for A4
5 (a), sh(A4

5, 32) (b), sh(A4
5, 56) (c) and sh(A4

5, 112)
(d) when fed to C6, C9 and C1 (1st, 2nd and 3rd row of each set of graphs, respectively). In each
set of graphs, the unshuffled or shuffled ancestor is perturbed with random normal noise created
using the minimum and maximum noise magnitude of DEA

6 (A4
5) and DBIM

6 (A4
5). Along the x

axis, the noise is attenuated or amplified by a factor f (noise× f).

Page 142 of 147

9.5.6 Layer activations

For ca Wpos∆pos Wpos∆0 Wpos∆neg Wneg∆pos Wneg∆0 Wneg∆neg

C2 DenseNet169 (48.59,48.24) (0.22,0.09) (51.19,51.67) (53.70,53.52) (0.47,0.26) (45.82,46.22)
C3 DenseNet201 (50.97,49.21) (0.25,0.16) (48.79,50.63) (54.32,54.86) (0.61,0.24) (45.07,44.90)
C4 MobileNet (45.43,45.08) (1.36,0.91) (53.21,54.02) (47.53,52.09) (4.22,3.23) (48.24,44.68)
C5 MNASNet (42.80,43.82) (11.93,10.19) (45.27,45.99) (40.21,43.33) (19.96,17.97) (39.83,38.70)
C6 ResNet50 (44.81,41.87) (0.12,0.08) (55.07,58.05) (52.35,53.65) (0.24,0.11) (47.41,46.24)
C7 ResNet101 (48.00,47.81) (0.06,0.02) (51.94,52.16) (53.37,56.61) (0.38,0.23) (46.26,43.16)
C8 ResNet152 (48.00,45.75) (0.08,0.08) (51.92,54.17) (51.71,54.14) (0.33,0.26) (47.95,45.60)
C9 VGG16 (14.19,15.07) (65.24,63.32) (20.56,21.62) (5.55,7.34) (89.73,87.81) (4.72,4.86)
C10 VGG19 (13.04,13.03) (65.92,64.43) (21.04,22.54) (4.63,5.94) (91.32,89.81) (4.05,4.25)

Table 9.21: For ca, average percentage of both positively-related (Wpos, columns 2-4) and
negatively-related (Wneg, columns 5-7) units whose activation increased (∆pos), stagnated (∆0)
or decreased (∆neg). In each row, the respective CNN is only fed with C1’s adversarial images
Datk

1 (Ap
q). Each cell contains the results for EA and BIM.

For ct Wpos∆pos Wpos∆0 Wpos∆neg Wneg∆pos Wneg∆0 Wneg∆neg

C2 DenseNet169 (53.72,54.18) (0.32,0.17) (45.96,45.65) (49.59,48.76) (0.41,0.20) (50.00,51.04)
C3 DenseNet201 (55.22,54.95) (0.44,0.20) (44.34,44.85) (51.00,50.17) (0.44,0.22) (48.56,49.61)
C4 MobileNet (48.80,51.84) (2.85,2.09) (48.34,46.07) (44.28,45.60) (2.87,2.16) (52.85,52.24)
C5 MNASNet (43.38,45.68) (15.02,13.30) (41.60,41.01) (39.79,41.72) (17.19,15.14) (43.02,43.14)
C6 ResNet50 (51.49,52.34) (0.17,0.07) (48.34,47.59) (48.07,46.79) (0.20,0.12) (51.73,53.09)
C7 ResNet101 (54.85,56.81) (0.29,0.14) (44.86,43.04) (48.71,50.76) (0.22,0.14) (51.07,49.10)
C8 ResNet152 (52.01,53.81) (0.22,0.16) (47.77,46.03) (48.94,48.79) (0.25,0.20) (50.82,51.01)
C9 VGG16 (10.74,12.41) (78.09,75.98) (11.18,11.61) (8.37,9.50) (79.49,77.73) (12.14,12.77)
C10 VGG19 (8.58,9.78) (79.76,78.03) (11.66,12.19) (8.13,8.52) (80.41,79.06) (11.46,12.42)

Table 9.22: For ct, average percentage of both positively-related (Wpos, columns 2-4) and
negatively-related (Wneg, columns 5-7) units whose activation increased (∆pos), stagnated (∆0)
or decreased (∆neg). In each row, the respective CNN is only fed with C1’s adversarial images
Datk

1 (Ap
q). Each cell contains the results for EA and BIM.

Page 143 of 147

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),

https://www.tensorflow.org/, software available from tensorflow.org

[2] Agrafiotis, D.: Chapter 9 - video error concealment. In: Theodoridis, S., Chellappa, R. (eds.) Academic

Press Library in signal Processing, Academic Press Library in Signal Processing, vol. 5, pp. 295–321. Elsevier

(2014). https://doi.org/https://doi.org/10.1016/B978-0-12-420149-1.00009-0, https://www.sciencedirect.com/science/article/

pii/B9780124201491000090

[3] Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-efficient black-box adversarial attack via

random search. In: European Conference on Computer Vision. pp. 484–501. Springer (2020)

[4] Archana, J.N., Aishwarya, P.: A review on the image sharpening algorithms using unsharp masking. IJESC 6 (2016), https:

//www.researchgate.net/publication/305985620_A_Review_on_the_Image_Sharpening_Algorithms_Using_Unsharp_Masking

[5] Bernard, N., Leprévost, F.: Evolutionary algorithms for convolutional neural network visualisation. In: High Performance

Computing – 5th Latin American Conference, 2018 (Bucaramanga, Colombia, Sep 23-28, 2018). Communications in Computer

and Information Science, vol. 979, pp. 18–32. Springer, Heidelberg (2018)

[6] Bernard, N., Leprévost, F.: How evolutionary algorithms and information hiding deceive machines and humans for image

recognition: A research program. In: Proceedings of the OLA’2019 International Conference on Optimization and Learning

(Bangkok, Thailand, Jan 29-31, 2019). pp. 12–15. Springer, Heidelberg (2019)

[7] Blier, L.: A brief report of the heuritech deep learning meetup#5 (2016), https://heuritech.wordpress.com/2016/02/29/

a-brief-report-of-the-heuritech-deep-learning-meetup-5/

[8] Brendel, W., Bethge, M.: Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet. CoRR

abs/1904.00760 (2019), http://arxiv.org/abs/1904.00760

[9] Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: Adversarial Attacks and Defences: A Survey.

CoRR abs/1810.00069 (2018), http://arxiv.org/abs/1810.00069

[10] Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: ZOO. In: Proceedings of the 10th ACM Workshop on Artificial

Intelligence and Security. ACM (nov 2017), https://doi.org/10.1145%2F3128572.3140448

[11] Chitic, R., Bernard, N., Leprévost, F.: A proof of concept to deceive humans and machines at image classification with

evolutionary algorithms. In: Intelligent Information and Database Systems, 12th Asian Conference, ACIIDS 2020 (Phuket,

Thailand, March 23-26, 2020). pp. 467–480. Springer, Heidelberg (2020)

[12] Chitic, R., Deridder, N., Bernard, N., Leprévost, F.: Robustness of adversarial images against filters. In: Communications in

Computer and Information Science, International Conference on Optimization and Learning (OLA) 2021. vol. 1443. Springer

(2021)

144

https://www.tensorflow.org/
https://www.sciencedirect.com/science/article/pii/B9780124201491000090
https://www.sciencedirect.com/science/article/pii/B9780124201491000090
https://www.researchgate.net/publication/305985620_A_Review_on_the_Image_Sharpening_Algorithms_Using_Unsharp_Masking
https://www.researchgate.net/publication/305985620_A_Review_on_the_Image_Sharpening_Algorithms_Using_Unsharp_Masking
https://heuritech.wordpress.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://heuritech.wordpress.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
http://arxiv.org/abs/1904.00760
http://arxiv.org/abs/1810.00069
https://doi.org/10.1145%2F3128572.3140448

[13] Chitic, R., Leprévost, F., Bernard, N.: Evolutionary algorithms deceive humans and machines at image classification: an

extended proof of concept on two scenarios. Journal of Information and Telecommunication pp. 1–23 (2020)

[14] Chitic, R., Leprévost, F., Topal, A.O.: Empirical Perturbation Analysis of Two Adversarial Attacks: Black-box versus White-

box. Submitted (2022)

[15] Chitic, R., Topal, A.O., Leprévost, F.: Evolutionary Algorithm-based images, humanly indistinguishable and adversarial

against Convolutional Neural Networks: efficiency and filter robustness. IEEE Access 9 (2021), https://ieeexplore.ieee.org/

document/9627925

[16] Chollet, F.: Keras. GitHub code repository (2015-2018), https://github.com/fchollet/keras

[17] Demush, R.: A brief history of computer vision (and convolutional neural networks) (2019), https://hackernoon.com/

a-brief-history-of-computer-vision-and-convolutional-neural-networks-8fe8aacc79f3

[18] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: The imagenet image database (2009), http://image-net.org

[19] Duchon, C.E.: Lanczos filtering in one and two dimensions. Journal of Applied Meteorology and Climatology 18(8), 1016–1022

(1979)

[20] Education, I.C.: Convolutional neural networks (2020), https://www.ibm.com/cloud/learn/convolutional-neural-networks

[21] Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer (2003), https://www.springer.com/gp/book/

9783642072857

[22] Fawzi, A., Moosavi-Dezfooli, S., Frossard, P.: Robustness of classifiers: from adversarial to random noise. In: Lee, D.D.,

Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29:

Annual Conference on Neural Information Processing Systems 2016 (Barcelona, Spain, Dec 5-10, 2016). pp. 1624–1632 (2016),

http://papers.nips.cc/paper/6331-robustness-of-classifiers-from-adversarial-to-random-noise

[23] Frieden, B.R.: A new restoring algorithm for the preferential enhancement of edge gradients. Journal of the Optical Society

of America 66 (1976), 10.1117/12.954697

[24] Geifman, Y.: cifar-vgg (2018), https://github.com/geifmany/cifar-vgg

[25] Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F., Brendel, W.: ImageNet-trained CNNs are biased towards

texture; increasing shape bias improves accuracy and robustness. CoRR abs/1811.12231 (2018), http://arxiv.org/abs/1811.

12231

[26] Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and Harnessing Adversarial Examples. CoRR abs/1810.00069 (2015),

http://arxiv.org/abs/1412.6572

[27] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. pp. 770–778 (2016)

[28] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

[29] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. pp. 4700–4708 (2017)

[30] Islam, M.A., Kowal, M., Esser, P., Jia, S., Ommer, B., Derpanis, K.G., Bruce, N.D.B.: Shape or texture: Understanding

discriminative features in cnns. CoRR abs/2101.11604 (2021), https://arxiv.org/abs/2101.11604

[31] Jason Jung, N.A., Hassan, G.M.: Analysing Adversarial Examples for Deep Learning . SciTePress (2021), https://www.

scitepress.org/Papers/2021/103137/103137.pdf

Page 145 of 147

https://ieeexplore.ieee.org/document/9627925
https://ieeexplore.ieee.org/document/9627925
https://github.com/fchollet/keras
https://hackernoon.com/a-brief-history-of-computer-vision-and-convolutional-neural-networks-8fe8aacc79f3
https://hackernoon.com/a-brief-history-of-computer-vision-and-convolutional-neural-networks-8fe8aacc79f3
http://image-net.org
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://www.springer.com/gp/book/9783642072857
https://www.springer.com/gp/book/9783642072857
http://papers.nips.cc/paper/6331-robustness-of-classifiers-from-adversarial-to-random-noise
10.1117/12.954697
https://github.com/geifmany/cifar-vgg
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/2101.11604
https://www.scitepress.org/Papers/2021/103137/103137.pdf
https://www.scitepress.org/Papers/2021/103137/103137.pdf

[32] Jere, M., Hitaj, B., Ciocarlie, G.F., Koushanfar, F.: Scratch that! an evolution-based adversarial attack against neural

networks. CoRR abs/1912.02316 (2019), http://arxiv.org/abs/1912.02316

[33] Keys, R.: Cubic convolution interpolation for digital image processing. IEEE transactions on acoustics, speech, and signal

processing 29(6), 1153–1160 (1981)

[34] Krizhevsky, A., Nair, V., Hinton, G.: The CIFAR datasets (2009), https://www.cs.toronto.edu/~kriz/cifar.html

[35] Kullback, S., Leibler, R.: On information and sufficiency. The Annals of Mathematical Statistics 22, 79–86 (1951)

[36] Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. CoRR abs/1607.02533 (2016), http:

//arxiv.org/abs/1607.02533

[37] Lenc, K., Vedaldi, A.: Understanding image representations by measuring their equivariance and equivalence. CoRR

abs/1411.5908 (2014), http://arxiv.org/abs/1411.5908

[38] Leprévost, F., Topal, A.O., Avdusinovic, E., Raluca, C.: A Strategy creating High Resolution Adversarial Images against

Convolutional Neural Networks, and a Feasibility Study on 10 CNNs. Submitted (2022)

[39] Lim, J.S.: Two-Dimensional Signal and Image Processing. Prentice Hall (1989)

[40] Liu, S., Deng, W.: Very deep convolutional neural network based image classification using small training sample size. IAPR

(2015)

[41] Luo, W., Li, Y., Urtasun, R., Zemel, R.S.: Understanding the Effective Receptive Field in Deep Convolutional Neural

Networks. CoRR abs/1701.04128 (2017), http://arxiv.org/abs/1701.04128

[42] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks.

CoRR abs/1706.06083 (2019), http://arxiv.org/abs/1706.06083

[43] Mallawaarachchi, V.: Introduction to genetic algorithms — including example code (2017), https://towardsdatascience.com/

introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%

20of%20the%20next%20generation.

[44] Morcosa, A.S., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation.

CoRR abs/1806.05759 (2018), https://arxiv.org/abs/1806.05759

[45] Oliphant, T.E.: A guide to NumPy. Trelgol Publishing USA (2006)

[46] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial

settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P). pp. 372–387. IEEE (2016), https://

ieeexplore.ieee.org/document/7467366

[47] Parsania, P.S., Virparia, P.V.: A comparative analysis of image interpolation algorithms. International Journal of Advanced

Research in Computer and Communication Engineering 5(1), 29–34 (2016)

[48] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.:

Pytorch: An imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)

[49] Patel, V., Mistree, K.: A review on different image interpolation techniques for image enhancement. International Journal of

Emerging Technology and Advanced Engineering 3(12), 129–133 (2013)

[50] Pereira, A., Thomas, C.: Challenges of machine learning applied to safety-critical cyber-physical systems. MDPI Machine

Learning and Knowledge Extraction (2020), https://www.mdpi.com/2504-4990/2/4/31

Page 146 of 147

http://arxiv.org/abs/1912.02316
https://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1411.5908
http://arxiv.org/abs/1701.04128
http://arxiv.org/abs/1706.06083
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%20of%20the%20next%20generation.
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%20of%20the%20next%20generation.
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%20of%20the%20next%20generation.
https://arxiv.org/abs/1806.05759
https://ieeexplore.ieee.org/document/7467366
https://ieeexplore.ieee.org/document/7467366
https://www.mdpi.com/2504-4990/2/4/31

[51] Petra Vidnerová, R.N.: Vulnerability of classifiers to evolutionary generated adversarial examples. Neural Networks 127,

168–181 (2020), https://www.sciencedirect.com/science/article/abs/pii/S0893608020301350

[52] Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and

saliency maps. CoRR abs/1312.6034 (2013), http://arxiv.org/abs/1312.6034

[53] Sinha, S., Garg, A., Larochelle, H.: Curriculum By Texture. CoRR abs/2003.01367 (2020), https://arxiv.org/abs/2003.01367

[54] SpeedyGraphito: Mes 400 Coups. Panoramart (2020)

[55] Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Transactions on Evolutionary

Computation 23(5), 828–841 (2019), https://ieeexplore.ieee.org/document/8601309

[56] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: Mnasnet: Platform-aware neural architecture

search for mobile. In: Proceedings of the IEEECVF Conference on Computer Vision and Pattern Recognition. pp. 2820–2828

(2019)

[57] Topal, A.O., Chitic, R., Leprévost, F.: One evolutionary algorithm deceives humans and ten convolutional neural networks

trained on ImageNet at image recognition. Submitted (2022)

[58] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers &

distillation through attention. CoRR abs/2012.12877 (2021), https://arxiv.org/abs/2012.12877

[59] Tutorialspoint: Genetic algorithms - introduction, https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_

introduction.htm

[60] Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. CreateSpace, Scotts Valley, CA (2009)

[61] van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T., the

scikit-image contributors: scikit-image: image processing in Python. PeerJ 2, e453 (2014). https://doi.org/10.7717/peerj.453,

https://doi.org/10.7717/peerj.453

[62] Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity.

IEEE Transactions on Image Processing 13(4), 600–612. (2004)

[63] Wu, J.: Generating adversarial examples in the harsh conditions. CoRR abs/1908.11332 (2020), https://arxiv.org/abs/1908.

11332

[64] Xu, H., Ma, Y., Liu, H., Deb, D., Liu, H., Tang, J., Jain, A.K.: Adversarial attacks and defenses in images, graphs and text:

A review. CoRR abs/1909.08072 (2019), http://arxiv.org/abs/1909.08072

[65] Yin, D., Lopes, R.G., Shlens, J., Cubuk, E.D., Gilmer, J.: A Fourier Perspective on Model Robustness in Computer Vision.

CoRR abs/1906.08988 (2019), http://arxiv.org/abs/1906.08988

[66] Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition. pp. 8697–8710 (2018)

Page 147 of 147

https://www.sciencedirect.com/science/article/abs/pii/S0893608020301350
http://arxiv.org/abs/1312.6034
https://arxiv.org/abs/2003.01367
https://ieeexplore.ieee.org/document/8601309
https://arxiv.org/abs/2012.12877
https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduction.htm
https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduction.htm
https://doi.org/10.7717/peerj.453
https://arxiv.org/abs/1908.11332
https://arxiv.org/abs/1908.11332
http://arxiv.org/abs/1909.08072
http://arxiv.org/abs/1906.08988

	Introduction
	Background
	Convolutional Neural Networks
	Adversarial attacks on CNNs
	Evolutionary algorithms

	Attack Method
	Common features between EAdtarget and EAdflat
	Image similarity
	The fitness function of EAdtarget
	The fitness function of EAdflat
	Motivation for EAd's design: Adapted_EA" versus "classic_EA"

	Attack Performance
	Target and flat scenarios: attack against VGG16 trained on Cifar10
	Dataset, Neural Network Architecture and Parameters of the two EAs
	Running EAdtarget: Examples, Results and Discussion
	Running EAdflat: Examples, Results and Discussion
	Summary of the outcomes

	Target scenario: attack against 10 CNNs trained on ImageNet
	Choice of the EA's population size
	One EA versus 10 CNNs: Methodology
	One EA versus 10 CNNs: Results
	Summary of the outcomes

	Attack on High Resolution Images: Method and Performance
	Introduction
	The target scenario lifted to H
	Attack strategy for the target scenario on HR images
	Construction of adversarial images in H
	Indicators: the loss function L and L2-distances
	Static tests with non-adversarial images natively in H

	Feasibility study
	Selection of and
	EAtarget, C parameters
	Running the strategy to get adversarial images with the EA
	Visual quality

	Direct attack in the H domain
	Summary of the outcomes

	Robustness of Attack Against Filters
	Introduction
	EAtarget, C parameters
	The adversarial images obtained by EAL2target, VGG-16
	With one ancestor per category
	With 50 distinct ancestors per category

	Robustness of EAL2target, VGG-16 against filters
	Selection of filters
	VGG16's classification of filtered images
	Indicators addressing the robustness of filtered adversarials
	Robustness analysis of the adversarial Da,t(Aa) against filters

	The filter-enhanced F-fitness function
	Running EAL2, F5target, VGG-16 with one ancestor per category
	Running EAL2, F5target, VGG-16 with 50 ancestors per category
	Robustness of Da,tF5(Aa) against VGG16Fk for all filters

	Summary of the outcomes

	Comparative Analysis of the EA and BIM Adversarial Attacks
	Introduction
	Adversarial images created by BIM and by EAtarget, C
	Selected CNNs, ancestor and target categories
	Design of BIM
	Creation of 0.999-strong adversarial images by EAtarget, C and by BIM

	Local effect of the adversarial noise on the target CNN
	Is each individual patch adversarial?
	Is the global random aggregation of local adversarial effect sufficient to fool the CNNs?
	Summary of the outcomes

	Adversarial noise visualization and frequency analysis
	Adversarial noise visualization
	Assessment of the frequencies present in the adversarial noise
	Band-stop filtering shuffled and unshuffled images: which frequencies make an image adversarial?
	Summary of the outcomes

	Transferability and texture bias
	Transferability of adversarial images between the 10 CNNs
	How does CNNs' texture bias influence transferability?
	How does texture change relate to adversarial impact on the CNNs?
	Summary of the outcomes

	Transferability of the adversarial noise at smaller image regions
	Generic versus specific direction of the adversarial noise
	Effects of shuffling on adversarial images' transferability
	Summary of the outcomes

	Penultimate layer activations with adversarial images
	Relevance of analyzing the activation of ct- and of ca-related units
	How are the CNNs' classification layers affected by adversarial images?
	Summary of the outcomes

	Summary of the outcomes

	Conclusion and Perspectives
	Appendix
	Target and flat scenarios: Attack against VGG16 trained on Cifar10
	Target scenario
	Flat scenario

	Target scenario: attack against 10 CNNs trained on ImageNet
	Ancestor images
	Adversarial images

	Attack on High Resolution Images: Method and Performance
	A
	B
	C

	Robustness of Attack Against Filters
	Without filters
	With filters

	Comparative Analysis of the EA and BIM Adversarial Attacks
	Ancestor and adversarial images
	Local effect of adversarial noise on target CNNs
	Adversarial noise visualization and frequency analysis
	Transferability and texture bias
	Effects of shuffling on the transferability of the adversarial images
	Layer activations

