Evolutionary Algorithm-based Adversarial Attacks Against
Image Classification Convolutional Neural Networks

Raluca loana Chitic

University of Luxembourg, Department of Computer Science
Date of defence

Jury
Prof. Dr. Pascal Bouvry - University of Luxembourg
Prof. Dr. Louis Goubin - University of Versailles - Paris Saclay
Prof. Dr. Franck Leprévost (supervisor) - University of Luxembourg
Prof. Dr. Emeritus Jean-Charles Pomerol - Sorbonne University, President
d’Agoranov
Prof. Dr. Ulrich Sorger (president) - University of Luxembourg

Acknowledgements

T am grateful to my supervisor for the very nice professional relationship we have created, for being
actively involved throughout all stages of my doctoral studies, both guiding me academically and
giving practical support in all aspects of the PhD. I also have deep appreciation for my colleague
Nicolas Bernard, whose vast science knowledge always led to interesting conversations, and whom
I could always count on to receive valuable feedback. In addition, I thank my colleague Ali Topal,
with whom I have had numerous insightful discussions and enjoyed a very pleasant collaboration.
I would also like to thank my other co-authors Nathan Deridder and Elmir Avdusinovic, whose
quality work led to some of the results presented in this thesis. Additionally, I appreciate the
continuous useful feedback I have received from my CET members Ulrich Sorger and Pascal
Bouvry, as well as the positive atmosphere they created at all evaluations. Moreover, I thank my
jury members Louis Goubin and Jean-Charles Pomerol for expressing an interest in this work
and accepting to be part of the PhD evaluation. Last but not least, I would like to express my
gratitude to Speedy Graphito and to Bernard Utudjian for the provision of two artistic images
used in the feasibility study of Chapter [§] Subsection [5.4] and for their interest in this work.

Abstract

The remarkable performance that Convolutional Neural Networks (CNNs) achieved in automatic
image classification has led to their adoption in safety-critical scenarios such as autonomous cars,
traffic control, manufacturing, medical devices and avionics. It is thus essential that CNNs can
be trusted. However, a line of research has developed into the field of adversarial attacks, whose
purpose is to expose CNNs’ vulnerabilities. An adversarial attack consists of taking an original
image A that is classified by a CNN C as belonging to a category ¢, and modifying it to create a
new, adversarial image D, that is humanly indistinguishable from A, and classified in a different
category, potentially chosen in advance.

This thesis introduces a practical black-box adversarial attack based on an evolutionary algo-
rithm (EA). We show that our attack is highly efficient for various attack scenarios performed
on multiple CNNs trained on different datasets. Moreover, the attack is made robust to a large
series of image filters. For a better understanding of the EA attack, we also analyze it from dif-
ferent perspectives such as noise frequency, transferability, behaviour at local regions and texture
change, all while comparing it with the BIM white-box attack.

To summarize, this work shows that our EA-based attack is flexible, efficient and robust.

Contents

|2 Background|
2.1 __Convolutional Neural Networks
2.2 Adversarial attacks on CNNg|
2.3 Evolutionary algorithms| L
B __Attack Method|
3.1 Common features between EAT™ and EAR™|
3.2 Image similarity]
3.3 The fitness function of EAY™ | L
3.4 The fitness function of EAY|
3.5 Motivation for EA;’s design: Adapted_EA” versus "classic KA”|.
4__Attack Performancel
4.1 Target and flat scenarios: attack against VGGI16 trained on CifarlOl
4.1.1 Dataset, Neural Network Architecture and Parameters of the two EAg| . .
4.1.2 Running EA'™®": Examples, Results and Discussion|.
4.1.3 Running EA"™: Examples, Results and Discussion|
4.1.4 Summary of the outcomes| L.
A2 Target scenario: attack against 10 CNNs trained on ImageNet|.
[A72.T Choice of the EA’s population S12€] . . . « . « v v v v v v e e e
4.2.2 One EA versus 10 CNNs: Methodologyl
4.2.3 One FEA versus 10 CNNs: Results|.
4.2.4 Summary of the outcomes|
[Attack on High Resolution Images: Method and Performance]

[5.2 The target scenario lifted to H| L.
5.3 Attack strategy for the target scenario on HR images|.

5.3.1 onstruction of adversarial imagesin H|

5.3.2 Indicators: the loss function £ and Lo-distances|

p.3.3 Static tests with non-adversarial images natively m H|
b.4 Feasibility study|
4T Selection of pand N o ...
5.4.2 EA™S°SC parameters|
9.4.3 Running the strategy to get adversarial images with the EA|.
p.4.4 Visual quality|.

10
11

13
13
15
16
16
17

21
21
21
23
26
31
32
32
34
37
41

5.6 Summary of the outcomes| oL o 58
[6 Robustness of Attack Against Filters| 59

[6. 1 Tntroduction
6.2 REAPEEC parametersl 61

6.3 The adversarial images obtained by EAF*®-YCS100 00 62
[6.3.1 With one ancestor per category| 0oL 62
[6.3.2 With 50 distinct ancestors per Category | v v v v v v v v v o 63

|6.4 Robustness of EAtLa;rgEt’V(’("l(j against ﬁltersl 65
6.4.1 Selection of filters] 65
6.4.2 VGG16's classification of filtered images|o 66
6.4.3 Indicators addressing the robustness of filtered adversarials| 66
6.4.4 Robustness analysis of the adversarial D, +(A,) against filters| 67

6.5 T'he filter-enhanced F-fitness functionl 69
6.5.1 Running EA?;%?:’VGG'IG with one ancestor per categoryl 69
6.5.2 Running EA?:ngf;’VGG'w with 50 ancestors per categoryl 70
6.5.3 Robustness of D7 (A,) against VGG160F}, for all ﬁltersl 71

6.6 Summary of the outcomes| L L 72

[7__Comparative Analysis of the EA and BIM Adversarial Attacks| 74
1__Introductionl. e e e e e 74

7.2 Adversarial images created by BIM and by EA®&°HCl o0 76
[7.2.1 Selected CNNs, ancestor and target categories| 76
7.2.2 Designof BIM| 76
7.2.3 _ Creation of 0.999-strong adversarial images by EA"8C and by BIM| . . 77

[7:3~ Tocal effect of the adversarial noise on the target CNN|. 7
[7.3.1 Is each individual patch adversarial?| 78
[7.3.2 Is the global random aggregation of local adversarial effect sufficient to fool |

[the CNNST . . . o o e 79
[7.3.3 Summary of the outcomes| L. 80

7.4 Adversarial noise visualization and frequency analysis| 80
[[41 Adversarial noise visualizationl v v v v i i 80
[7.4.2 Assessment of the frequencies present in the adversarial noise| 81
[7.4.3 Band-stop filtering shuffled and unshuffled images: which frequencies make |

| an image adversarial?l L L 82
7.4.4 ummary of the outcomes| Lo 84

.5 ansferability and texture bias| 84
[7.5.1 Transferability of adversarial images between the 10 CNNg| 84

[7.5.2 How does CNNs’ texture bias influence transferability?|. 84

[7.5.3 How does texture change relate to adversarial impact on the CNNs?| . . . 85

|Z.5.4 Summary of the outcomes| L Lo 87

[7.6 Transferability of the adversarial noise at smaller Image regions| 87
[7.6.1 Generic versus specific direction of the adversarial noise] 88
[7.6.2 Eftects of shuffling on adversarial images’ transterability| 89
[7.6.3 Summary of the outcomes|o 91

7.7 Penultimate layer activations with adversarial images|. 91
7.7.1 elevance of analyzing the activation of ¢;- and of ¢,-related units| 92

.2 ow are the s’ classification layers affected by adversarial images?| . 92

Page 2 of

[7.7.3 Summary of the outcomes| oL 95

7.8 Summary of the outcomes| Lo o 95
|8 Conclusion and Perspectives| 97
99
9.1 Target and flat scenarios: Attack against VGG16 trained on CifarlOf 100
9.1.1 Target scenario| L e 100
9.1.2 Flat scenariol 101

9.2 Target scenario: attack against 10 CNNs trained on ImageNet|. 105
9.2.1 Ancestor 1mages|o Lo 106
9.2.2 Adversarial images| 109
[0-3"Attack on High Resolution Images: Method and Performance] 114
O3T Al . 114
9.32 Bl. . . e 116
9.3.3 Cl. . . e 119

9.4 Robustness of Attack Against Filters| 0oL 122
QAT WIthout AILEISl . « « .« v o v v v v et e e 123
9.42 With filtersl 130

9.5 Comparative Analysis of the EA and BIM Adversarial Attacks| 133
9.5.1 Ancestor and adversarial images| 133
19.5.2 Local effect of adversarial noise on target CNNg| 136
[9.5.3 Adversarial noise visualization and frequency analysis| 137
|9.5.4 !gansferabilitz and texture bias|. Lo L oL 141
9.5.5 ects of shuffling on the transferability of the adversarial images| 142
9.5.6 Layer activations| 143

Page 3 of

Chapter 1

Introduction

Trained Convolutional Neural Networks (CNNs) are one of the dominant tools for automatic
object recognition [58]. Their success has led to their use in safety-critical scenarios, such as au-
tonomous cars [20], traffic control, manufacturing, medical devices and avionics [50]. However,
with such success comes high responsibility. It is therefore essential to rely on very robust CNNs.
Recent research into CNN robustness has proven that these algorithms are actually vulnerable
to slight perturbations in the input. This line of research has developed into the broad field of
adversarial attacks (see [9] for a survey on this subject).

The ingredients of an adversarial attack are a given CNN C, which is trained to classify images,
and an ancestor image A that is classified by C as belonging to a category c,. With these in-
gredients at hand, an adversarial attack consists in perturbing A to create an adversarial image
D(A). The creation of a successful attack imposes two main requirements, namely that C classi-
fies D(A) as a category cq4 that differs from c¢,, and that D(A) is humanly indistinguishable from
A. Although the latter requirement is not systematically met (see [55] 32] [46]), we respect this
requirement in the present thesis.

A multitude of attacks have been implemented in prior work, with vastly differing strategies,
assumptions and goals. One way of differentiating between attacks is based on the criterion of
the adversary’s knowledge. According to this, attacks can be sorted into white-box, gray-box,
or black-box attacks [9].

The majority of existing attacks are white-box methods (such as [26], [36], [42]), meaning that
they require complete information about the attacked CNN, such as its architecture and pa-
rameters. Although obtaining this information can be achieved in a research environment, it is
unlikely in a real-life scenario, where the attacker only has access to the model’s output.

Gray-box attacks are named as such due to the fact that they are a combination of white-box
and black-box attack methods. More specifically, gray-box attacks begin by using other already
established white-box attacks to create several adversarial images and by gathering the generated
adversarial images into a dataset. Then, in the black-box part of the attack, the attacker no
longer needs any information about the CNN; since the generation of further adversarial images is
done by simply selecting points from the distribution of the above-created dataset. As the points
are selected from a distribution of adversarial images, it is expected that the chosen points also
represent images that are adversarial. Even if gray-box attacks are not knowledge-demanding

at all stages, it is impossible to perform this type of attack without having all CNN information
available. Said otherwise, the requirements of gray-box attacks are of a similar nature as those
of white-box attacks.

In contrast, black-box attacks only require access to the CNN’s output, which is an assumption
that is closer to what one can expect in real life. Depending on the employed method, there
are at least three possible approaches of circumnavigating the lack of knowledge available to the
attacker.

One approach consists in using a second, surrogate CNN. Although the surrogate model’s pa-
rameters and architecture cannot be the same as those of the CNN targeted by the attack, they
perform the same task of image classification. The method begins by inputting several images
to the targeted CNN and extracting their respective predicted output. All the images and their
respective predictions are gathered into a dataset that reflects the targeted model’s behaviour.
The next step is to create the new, surrogate CNN and train it with the dataset obtained above.
The purpose of this new CNN is to be a replica of the targeted CNN. Since the parameters of
the newly designed CNN are known, it can be attacked through white-box methods. Finally,
the adversarial examples generated for the replica model can be sent to the targeted CNN. This
method counts on the transferability of adversarial examples, meaning that an adversarial image
created for one CNN can also fool a different CNN [9]. Needless to mention, this method is not
straight-forward, as it requires gathering a training dataset and training a different CNN.

Another black-box approach is illustrated by the Zeroth Order Optimization (ZOO) [I0]. This
type of attacks ultimately use white-box methods to create adversarial images. However, to use
a white-box method, one must have access to the CNN parameters in order to calculate by how
much the original image has to be perturbed to reach a certain loss in the CNN’s predictions. In
other words, one needs to calculate the gradient of the model with respect to the input. Since
the ZOO method cannot access the CNN parameters, it attempts to approximate the gradients.
It does this by making slight modifications in the input and by noting the change produced in
the predicted c, probability. Once the gradient is approximated, the attack creates adversarial
images by using other already established white-box methods. Therefore, this attack still needs
to obtain the model’s gradient with respect to the input in order to function.

Finally, there is a sub-group of black-box attacks which do not have, nor attempt to approximate
the model’s gradients. This sub-group includes attacks such as the One-Pixel attack [55], Few-
Pixel attack [46] and the Scratch attack [32]. However, although they have minimal requirements
in terms of knowledge of the CNN parameters, they all have one major drawback. The malicious
images they produce have very visible perturbations.

Another criterion for the differentiation of adversarial attacks (be they white-box, gray-box, or
black-box) is their goal. Depending on whether the attacker interferes in the training phase or
in the inference phase of a CNN, the attack is called a poisoning attack or an evasion attack,
respectively [9]. Since in real-life scenarios attackers only have access to the already trained
model, evasion attacks are more practical. Based on the attacker’s goal, an additional separation
factor refers to the category towards which the attacker attempts to send the image. In case of
untargeted attacks, the only imposed condition is that D no longer belongs to c,, according to C.
Meanwhile, targeted attacks involve choosing a particular target class ¢; # ¢, and determining
C to classify D precisely in ¢;. Since targeted attacks are much more restrictive with respect to
the adversarial image’s classification, they are more challenging than untargeted attacks.

Page 5 of

This study first proposes an alternative to the above works in the form of an evolutionary algo-
rithm (EA)-based adversarial attack which falls under the category of black-box, evasion attacks.
Our attack not only satisfies all requirements for a successful attack, but has minimal information
requirements and is able to complete the more challenging task of producing targeted adversarial
images. Moreover, the EA-based attack is highly practical, since it can be applied on any image
to fool any CNN, and requires neither training other models, nor extracting the gradient of the
attacked CNN with respect to the input.

This thesis, which is a continuation of the research program expressed in [6] and [5], is essentially
made of 4 published papers ([I1} 13} 12] 15]) and 3 submitted papers (|57, 38, [14]). The goal of
this work is firstly to create the attack and measure its performance in typical circumstances.
Secondly, the aspect of the algorithm’s robustness is covered, by evaluating the degree to which
the attack remains successful when the targeted CNN is protected by image filters. Additionally,
in a move towards more challenging images, the thesis explores methods of applying the attack
to create high-resolution adversarial images. Lastly, the goal of this thesis is also to understand
the underlying manner in which the EA-based attack manages to fool models, in an attempt to
shed some light on CNNs’ vulnerabilities.

The thesis is organized as follows. After Chapter [2] gives a brief introduction to the concepts of
CNNs, adversarial attacks and EAs, the details of the proposed method are given in Chapter
which is largely based on our papers [I1, [13]. Apart from presenting and motivating the main
attack method, Chapter [3| details the algorithm variants that are created and used in this thesis.

The performance of the EA-based attack is then measured in Chapter [d] Firstly, both the tar-
geted and the flat versions of the EA-based attack are tested on the VGG16 [24] CNN trained on
Cifar10 [34]. This part is based on the results exposed in [1I], [13], which is an extension of our
paper [II]. Then, the EA-based attack is evaluated against 10 different CNNs trained on Ima-
geNet [I8]. This part is extracted from our submitted paper [57]. Out of 1000 tests performed
with 10 CNNs and 100 ancestor images, the targeted, good enough version of our attack (see
Section for explanations on good enough attacks) was successful in 96.8% of cases, requiring
an average of 2712 generations and 16 minutes of computing time.

The following Chapter [5| (which is linked to our submitted paper [38]) evaluates the difficulty of
transitioning from the attack performed on low-resolution images to the more complex situation
of attacking high-resolution images. It identifies two possible methods of attacking large-sized
images and evaluates both of them experimentally by using 10 different CNNs trained on Ima-
geNet. One of the methods, in particular, identifies the best degradation function to transform
high-resolution images into low-resolution images and the best interpolation function to perform
the inverse process. These functions are then used as part of the EA-based attack on high-
resolution images, which is proved to have a success rate of 90%.

Then, Chapter |§| (which is linked to our papers [12] [15]) explores whether image filters placed in
front of the CNN input would protect the CNN from the EA-based attack. After one particular
combination of filters (the median [23] and the unsharp mask [4] filters) is found to have this
protective ability, the EA-based attack is modified in order to produce adversarial images that
circumvent this defence. The modified attack is then proven to achieve robustness under this
circumstance, without suffering a negative change in its success rate.

Page 6 of

The following Chapter [7] (which is linked to our submitted paper [14]) analyzes the EA-based at-
tack from various perspectives, such as noise frequency, image texture change, adversarial image
transferability, CNN penultimate layer activations and behaviour at lower image regions. The
above-mentioned perspectives are also adopted in the simultaneous analysis of a well-known, op-
posite white-box attack named Basic Iterative Method (BIM). The comparison is done in order
to better understand the type of adversarial noise introduced by the two attacks, as well as which
CNN vulnerabilities the attacks exploit.

Chapter [§ summarizes the achievements of this thesis and offers a series of directions for future
research.

This work is completed by an Appendix containing tables and figures referred to throughout the
different chapters.

Finally, before delving into the chapters described above, let us mention that, implementation-
wise, all algorithms and experiments presented in this thesis use Python 3.8 [60] with the NumPy
1.17 [45], TensorFlow 2.4 [1], Keras 2.2 [16], and Scikit 0.24 [61] libraries. Computations are
performed on nodes with Nvidia Tesla V100 GPGPUs of the IRIS HPC Cluster at the University
of Luxembourg.

Page 7 of

Chapter 2

Background

2.1 Convolutional Neural Networks

Brief history.

Although the field of computer vision has received significantly increasing attention only recently,
computer scientist have been attempting to extract meaning from visual data for approximately
60 years. In 1959, neurophysiologists David Hubel and Torsten Wiesel designed an experiment
that led to the groundbreaking discovery that visual processing always begins with neurons in
the primary visual cortex reacting to simple image structures, such as edges. In parallel, the first
digital image scanner was invented by Russel Kirsch in that same year. The next important in-
sight was offered by neuroscientist David Marr in 1982, when he stated that vision is hierarchical.
He created a representational framework where algorithms that detect low-level, simple image
features such as edges and corners are used as first steps towards a high-level understanding of
visual data [I7].

These findings led Kunihiko Fukushima to create the first deep neural network, called Neocog-
nitron. Through filters that would slide across an image 2D array, it would perform calculations
in order to extract features from the image, which would then be fed as input to the next layer.
Once Yann LeCun added the backpropagation learning algorithm to the Neocognitron, he cre-
ated the groundbreaking LeNet-5, which was the first modern convolutional neural network. The
next important moment was in 2001, when Paul Viola and Michael Jones created the first face
detection framework, which, although it was not based on deep learning, would learn which sim-
ple features could help localize faces [I7].

While until 2009 the field of computer vision was still limited by the scarcity of datasets, in
2009 the Cifarl0 [34] dataset was introduced, with 60000 images belonging to 10 classes, and in
2010 the ImageNet [I8] dataset was introduced, containing more than 1 million images and 1000
object categories. They immediately became benchmarks for the task of object recognition from
images. Using ImageNet, a team from the University of Toronto created and trained the AlexNet
CNN, which showed remarkable results and represented a breakthrough moment. Since then,
multiple variants of CNNs with ever increasing accuracies have been created, and they remain
the dominant method for object recognition [17].

Output [0][0] = (9%0) + (4*2) + (1*4) 4
(1%1) + (1*0) + (1*1) + (2*0) + (1*1)

=0+8+1+4+1+0+1+0+1
t =16

Input image Filter Output array

Figure 2.1: Convolution operation. The 2D filter in this example is slid along the 2D input image
and the dot product between the filter and an image section of the same size is calculated at
each step. The output value of each dot product is written in the corresponding location in the
output activation map [20].

How do they work?

CNNs are typically used with image inputs and have the following 3 main types of layers: con-
volutional, pooling, and fully-connected (FC) [20]. Most of the computation occurs in the con-
volutional layers, which are the main components of CNNs. The constituents of a convolutional
layer are the input data, a filter, and a feature map. These constituents of a convolutional layer
are displayed in Figure If we assume that the input is a color image, the input has three
dimensions, which correspond to height, width, and depth, where the depth consists of the three
RGB channels [20].

The filter is a 3D array which can vary in size, and whose constituent numbers are the weights
that represent a particular image feature. The filter is slid along the input image to perform
a dot product (convolution operation) between the filter and an image section of the same size
as the filter, with the goal of checking whether the feature represented by the filter is present
in the respective image section. After the convolution with one section of the image is done,
the filter is shifted along the image by a given stride, to repeat the process in a new image
section. This operation is repeated until the entire image has been covered. The series of dot
products with a single filter leads to a 2D output array called activation map or feature map [20].

The size of the activation map is not necessarily the same as the input size, since each output
value in the activation map is obtained from the convolution of the filter with an input image
area that can be larger than one single pixel. The input image area covered by one filter is called
receptive field. Another worthwhile observation is that the weights are constant as the filter is
moved across the image [20].

Page 9 of

During the training phase, the weights are adapted. However, there are three hyperparameters
which are constant and need to be chosen prior to the training. The first is the number of filters,
which determines the depth of the activation map. The stride is the number of pixels by which
the filter is moved across the input image. Finally, padding is used when the filters do not fit
the input image. It enlarges the input image by adding borders of zeros [20].

Each convolutional layer is followed by an activation function, which is typically the Rectified
Linear Unit (ReLU) transformation. The activation function is applied to the feature map in
order to introduce nonlinearity to the model. Multiple such convolutional layers can be stacked
one after the other to capture increasingly higher receptive fields and create a feature hierarchy
within the CNN [20].

Pooling layers typically follow convolutional layers and they perform dimensionality reduction
by decreasing the number of parameters. In a similar way to convolutional layers, pooling layers
also pass a filter across their input. However, as opposed to the weights of convolutional layers,
pooling layers have no parameters, but they are rather aggregation functions applied to the val-
ues within the receptive field. The most common types of pooling are max (which extract the
maximum value from a given input section) and average (which extract the average of all values
from a given input section). While the pooling operation removes some useful information, it
helps to reduce complexity and increase efficiency [20].

The fully-connected (FC) layer connects each node of its layer with all nodes from the previous
layer. This is in contrast with convolutional layers, where the value of a particular number in
the output only stems from a portion of the input (the receptive field). While convolutional
and pooling layers are used to extract features from the input image, FC layers are used for
classification based on the extracted features. Also, in object recognition, while non-final FC
layers use the ReLLU activation function, the last FC layer of a CNN is typically followed by the
softmax activation function. This function converts the output of the last FC layer to a vector
of numbers between 0 and 1, whose sum equals 1. In this vector, each number represents the
probability of the image belonging to a particular object category [20].

2.2 Adversarial attacks on CNNs

Due to their high performance in the task of object recognition, CNNs have begun to be applied
in real-life scenarios. Some of these scenarios are even safety-critical, such as recognizing road
signs in autonomous vehicles. In such contexts, it is essential that the CNN is robust. However,
recent works have proven just the opposite, through the creation of various adversarial attacks
that are capable of fooling CNNs [64].

Adversarial examples are inputs that have intentionally been modified by the attacker in order
to lead the machine learning model to make mistakes. While there are multiple types of attacks
with differing characteristics, in the case of fooling object recognition CNNs they all begin by
choosing an original image A, that both humans and the CNN C to be fooled classify as ¢,. In
other words, the probability attributed to ¢, is the maximum of C’s output vector 0534:

a = arg maxj ;< (oi) (2.1)

where M is the total number of categories present in the dataset that C was trained on. Adver-
sarial attacks can be categorized based on the following criteria: the adversary’s goal and the

Page 10 of

adversary’s knowledge [64].

The adversary’s goal can lead either to a poisoning attack or to an evasion attack. Poisoning
attacks imply that the attacker introduces several fake inputs in the CNN’s training dataset,
which affects the model’s accuracy. This scenario is common when the training database is
freely available, such as with web-based repositories. In the case of evasion attacks, the classifier
is already trained and usually well-performing. The attacker crafts malicious inputs only for the
inference phase of the CNN, which will misclassify the given inputs. The attacker’s goal can also
separate between untargeted and targeted attacks. In the former case, the aim is to perturb A
into an adversarial image D¥, which is classified by C as a class ¢, different than ¢, (c, # ca),
with no particular preference [64]:

Cy = arg Maxy ;< (o%,;) (2.2)

In the case of targeted attacks, the attacker chooses a target class ¢; # ¢, and perturbs A into
an adversarial image Dgt, which is classified by C as ¢;:

— c
t = arg max; < <y (OD;;J) (2.3)

Equation [2:3] would be sufficient to create a valid targeted attack, and so we define the images
which satisfy this condition as good enough adversarial images. However, for a stronger attack, an
additional condition can be imposed on the adversarial image’s classification. We define 7-strong
adversarial tmages as those that satisfy the following requirement, where 7 is a fixed constant
threshold value €]0, 1] that imposes a minimum confidence in the classification:

o%",; o= (2.4)

The adversary’s knowledge separates between white-box attacks, black-box and gray-box at-
tacks. In white-box attacks the attacker has access to the model’s parameters, architecture,
gradients, etc., and can use this information to carefully craft adversarial examples. In con-
trast, black-box attacks can only feed inputs to the model and query its outputs, without having
access to its internal configuration. Gray-box attacks initially use the CNN’s architecture and
parameters to generate adversarial examples, which are then used to train a generative model to
produce similar adversarial images. Once the generative model is trained, the attack no longer
requires information about the CNN [64].

Finally, for all adversarial attacks, irrespective of their nature, there is one common requirement,
namely that the adversarial image D be visually indistinguishable from the original A.

2.3 Evolutionary algorithms

Evolutionary algorithms are search-based optimization techniques that take inspiration from
natural selection. The process of natural selection implies the selection of the fittest individuals
from a population. The offspring produced by these individuals inherit some of their parents’
traits, but they are completely new individuals, different from both parents. They thus have the
chance of having a higher fitness than their parents, and the repetition of this process represents
the evolution.

In algorithm terms, the general principle in optimization is that an input to a process is modi-
fied, such that its output is better than the original input. Although the definition of ”better”

Page 11 of

varies with the problem at hand, the same mathematical concept is used, namely maximizing
or minimizing one or more objective functions. This class of algorithms was developed by John
Holland and his colleagues at University of Michigan. There are five phases in an evolutionary
algorithm, namely: initial population, fitness function, selection, crossover, and mutation [59].

Evolutionary algorithms begin with a population, namely a pool of possible solutions to the
given problem, where each individual is characterized by a set of parameters referred to as genes.
The fitness function captures the goal of the entire evolution. It evaluates how fit the indi-
viduals are by assigning them fitness scores. This fitness score impacts the probability that an
individual will be selected for reproduction. The selection phase compares the fitness of the indi-
viduals and selects the population members with the highest fitness. The individuals with higher
fitness are prioritized for reproduction, such that they pass their genes to the next generation [43].

The crossover phase starts by selecting pairs of parents to reproduce. Next, a crossover point
is selected at random somewhere along the genes. To produce offspring, the algorithm selects
the parents’ genes until the crossover point is reached, and exchanges the two series between
themselves. Once the offspring is created, some of them might have randomly selected genes be
mutated. The role of mutations is to diversify the population and prevent premature conver-
gence. The algorithm ends once the termination condition has been reached. This termination
condition checks whether the population has converged, meaning that there is very little im-
provement from one generation to another, thus the algorithm has found a good set of solutions
to the problem [43].

By making use of the notions introduced here, the following chapter gives details about the
precise implementation of our EA-based adversarial attack on CNNs.

Page 12 of

Chapter 3

Attack Method

This chapter is mostly extracted from [I3], with the exception of Subsection which is ex-
tracted from [15]. The chapter offers a detailed explanation of the EA-based adversarial attack’s
functioning. Our algorithm is an EA that aims to deceive both CNNs and human beings. Clearly,
the design of the EA depends on the scenario governing this dual deception. The two scenarios
addressed here start the same way. One is initially given an image, the “ancestor” A, labelled
by the CNN as belonging to c4.

The first scenario is the ”target” scenario. A target category c; # c 4 is chosen. The task of the
EA is to evolve A to a new image D (a “descendant”) that the CNN classifies into ¢;, but in
such a way that the evolved adversarial image D remains very similar to the ancestor A. With
perturbations kept as least visible as possible, a human being should still consider D as obviously
belonging to category c4.

In the second "flat” scenario, the task of the EA is to evolve A into a descendant D, that the
CNN is unable to classify with certainty to any specific category, in the sense that the CNN
ranges D to all categories with the same plausibility modulo a tiny and controlled margin. The
same constraint of similarity between D and A as in the first scenario remains: a human being
should still consider D as belonging to c 4.

EA[["8" refers to the evolutionary algorithm of the first scenario, and EAf® t6 the evolutionary
algorithm of the second scenario, where d referres to the similarity measures detailed in Section
The EAY™" algorithm or variants of it are used in all chapters, while EA™ is used in
Chapter [4 Section [£.1] In all chapters and sections we run our EA-based attack to generate 7-
strong adversarial images. However, in Chapter [4] Section [£.2] we also run our EA-based attack
to generate untargeted and good enough adversarial images.

3.1 Common features between EAY"®" and EAT™

While the fitness functions of EAT"** and EA* differ, and hence so does the evaluation step,
the population initialization and the evolution steps are similar between the two attack variants.

Population initialization. A population size being fixed, the initial population is set to a
number of copies of the ancestor A equal to the chosen population size.

13

The Evaluation step consists in running the fitness function on all population individuals
to measure how well each of them is approaching the goal of the evolution. Even if the fitness
functions of EAL®" and of EAf differ, they are similar conceptually, and the evolution aims
at maximising their values. In both cases, as shown in Sections 3.3 and [3.4] the fitness function
is the sum of two components. One component of the equation defining the fitness function deals
with deceiving machines (which differs according to the "target” or ”flat” scenario), the other
with deceiving humans. This latter aspect is addressed in Section [3.2

Evolution encompasses multiple steps:

e Segregation. After evaluation, the scores are used to segregate the population into three
classes:

— the elite consists of the top ten individuals, which pass unchanged to the next gener-
ation

— the 7didn’t make it” consists of the lower scored half of the population, which is
discarded. It is replaced by the same number of mutated individuals from the elite
and middle class

— the middle class contains the remaining individuals

e Mutations. Two types of mutation are considered, namely small and large scale ones:

— For pixel mutations, a power law is used to randomly select the number of pixels
to be mutated. By following a power law, this number is often small, encouraging
exploitation. However, the occurrence of larger values also takes place, encouraging
exploration and offering ergodicity properties. Once this number is selected, the pixels
are randomly chosen and modified by a random #+4. In order to maintain a high
similarity between the images, the mutations added throughout generations can be
clipped and not be allowed to exceed a certain range [x - €, x + €] imposed by the e
constant, where z is the original pixel value.

— For circle intensifying mutations, the intensifying factor is chosen with a normal law
centred on 1 with a standard deviation decreasing from 0.6 to 0.1 as the generation
number increases. The radius and location of the circle are chosen uniformly random.

Individuals in the elite are not mutated. The members replacing the “didn’t make it” group
are all mutated, while half of the middle class members are mutated.

e Cross-overs occur after the mutation step. Two children are created simply by swapping
a randomly selected rectangular area between two parents. The number of parents and
the individuals are selected randomly. After the cross-over, the parents are discarded and
replaced by the children. This step is applied to all but the elite class.

The Termination conditions signal the end of the algorithm’s run, if any of them is met. For
this purpose, we introduce two parameters. Since this EA-based attack is targeted, the 7 €]0, 1]
parameter is a threshold that refers to the target class’s probability of the best-fit individual. The
termination condition checks whether the target class probability o[c;] exceeds the 7 threshold

Page 14 of

(o[et] = 7). The second possible termination condition is the exceedance of a given maximum
number of generations G.

As in [5], an equivalence is made between the population of the EA and a batch of the CNN so
that the CNN can process the EA population in parallel, as a single batch, using a GPGPU.

3.2 Image similarity

The difference between two images (of the same size) 7 and ¢’ can be evaluated in many ways.
But only some of them give a hint at the similarity between two images, as a human being would
perceive it. We explore here two of them, namely d = L, and d = SSIM, that assess proximity
in a different way. The former belongs to the family of L norms acting on vector spaces. In
the present context, the Lj norms address performed modifications pixel for pixel. Based on
a series of experiments, we found that there is no convincing advantage to use larger k’s than
k = 2. On the other hand, it is useful to consider an alternative measure, like SSIM, that assesses
modifications performed on more structural components of a picture, rather than the pixel for
pixel approach.

e The Lo-distance, which calculates the difference between the initial and modified pixel

values: ,

; (3.1)

Ly (i,i') = Z ’iﬂpﬂ —i'[pj]

where p; is the pixel of the image in j*" position, and 0 < 1[p;] < 255 is the corresponding
pixel value of the image 1.

A minimisation of the Ls-norm in the fitness function would lead to a minimisation of the
overall value change in the images’ pixels.

e The structural similarity (SSIM [62]) method attempts to quantify the perceived change
in the structural information of the image, rather than simply the perceived change. The
Structural Similarity Index compares pairs of sliding windows (sub-samples of the images)
W, and W, of size N x N:

(2Mxﬂy + Cl)(QUwy + 62)
(12 +p2 +c1)(02 + 02 +ca)

SSIMy (W,, W,) = (3.2)

The quantities p, and p, are the mean pixel intensities of W, and W, o2 and 05 the
variance of intensities of W, and Wy, and o, their covariance. The purpose of ¢; and ¢
is to ensure that the denominator remains far enough from 0 when both z2 and p2 and/or

both 02 and o, are small.

The Ny window pairs to consider equals the number of pixels (times the number of colour
channels if appropriate) of the picture cropped by a frame that prevents the windows from
“getting out” of the picture. With pictures of size h X w X ¢ and windows of size N x N,

B IR G o) S

Page 15 of

The SSIM value for two images i and 4’ is the mean average of the values obtained for the
Nyw window pairs (i, }):

Nw
1
SSIM(i,i') = fp > SSIMyy (ix, i) - (3.4)
W=

Unlike the Lo-norm, the SSIM value ranges from —1 to 1, where 1 indicates perfect simi-
larity.

Whether for d = Ly or d = SSIM, the EA might consider preferable to slightly modify many
pixels, as opposed to changing fewer pixels but in a more apparent way. This contrasts with
the approach of Su et al. [55], where only one pixel is modified, possibly being assigned a very
different colour that can make it stand out.

3.3 The fitness function of EA"&"

The fitness function performing the evaluation in the ”target” scenario combines the two following
factors. On the one hand, the evolution is directed towards a larger classification of the images as
belonging to ¢;. On the other hand, similarity between the evolved and ancestor images is highly
encouraged. Our fitness function therefore depends on the type of similarity measure that is used.

If using the Lo-norm, it can be written as
ity 5 (ind, g;) = ALY (9:) 0imaled] — B (g:) La(ind, A), (3.5)

where ind designates a given individual (an image), g; the i*" generation, and 0;,4[c;] designates
the value assigned by the CNN to ind in the target category ¢;. The quantities Az, (g;), Br,(g:) >
0 are coefficients to weight the members and balance them. They vary with the generations dealt
with by the EA, since we chose to assign different priorities to the different generations. The
first generations were thus assigned the task of evolving the image to the target category, while
the later generations focused on increasing the similarity to the ancestor, while remaining in c¢;.

In the case of structural similarity, a higher value translates into a higher fitness of the individual.
Therefore, mutatis mutandis, the difference in the fitness function becomes a sum:

fitSess (ind, g;) = AGEE5,(9:) 0inalce] + Besss(9:)SSIM (ind, A), (3.6)

3.4 The fitness function of EAT

In the "flat” scenario, the fitness function also combines two factors. On the one hand, the
evolution is directed towards a "flat” classification of the image in all categories ¢y, - - ,cp. The
measure Dg,t of the ”flatness” of a classification is defined by the equation (3.7), where flat is a

vector of £ values, all set to flat[k] = 7.

Dias(ind) = 3 (((0imalk] — flat[k]) 10810 (0inalk]))2 > 0. (3.7)

L
k=1

Page 16 of

A larger value of Dy, (ind) means that ind is further away from the desired ”flatness”. Similarity
between the evolved and ancestor images is highly encouraged. For d = Lo, our fitness function
is given by:

fitFt(ind, gi) = — A2 (9:) Daar (ind) — BE2(g:) La(ind, A), (3.8)
and for d = SSIM by:

fit%d(ind, g;) = — A%, () Daag (ind) + BE, 3, (g:)SSIM (ind, A). (3.9)

3.5 Motivation for EA;’s design: Adapted_EA” versus ”clas-
sic. EA”

In this section, we show, from a ”pure” evolutionary algorithm point of view, that EAffrgCt’C
(reffered to here as "adapted_EA”) presents a series of important and substantial differences
compared to the approach classically ([21]) adopted for EAs performing similar tasks, and we
prove that these differences lead to a comparative advantage in terms of performance. At first,
we examine these differences from a conceptual point of view, meaning independently from any
specific task. For simplicity, we refer to our version as ”adapted _EA” and to its classical version
as "classic. EA”. We then compare the performances of these algorithms for the task consisting
in fooling VGG16 [7] trained on CIFAR-10 at image recognition for the target scenario. In other
words, these algorithms are given the task to evolve an ancestor image A into an adversarial
image D. We specify the parameters of the EAs, and run the algorithms for four different an-
cestor/target combinations.

Conceptual differences between ”adapted_EA” and ”classic_ EA”

To illustrate the differences between our version (”adapted EA”) and the classic version (”clas-
sic EA”, as described in [2I]) of an EA, let us provide their respective algorithmic pseudo-codes.
We assume that both have a fixed population size, that remains constant generation for gen-
eration. For both, we set the initial population as made of identical copies of the considered
ancestor. Based on our experiments, we took a population size of 160 as the best trade-off in
terms of speed and accuracy.

Algorithm 1 ”"Classic. EA” algorithm pseudo code

1: BEGIN
INITIALISE population;
EVALUATE each candidate;
REPEAT UNTIL (Termination condition is satisfied) DO

2
3
4
5: 1 SELECT top 10-20% (16 to 32 individuals) as parents;
6: 2 RECOMBINE pairs of parents resulting in offsprings;
7
8
9

3 MUTATE the offsprings;
4 EVALUATE new candidates;
5 SELECT individuals for the next generations;

10: END

Page 17 of

Algorithm 2 ”Adapted_EA” algorithm pseudo code
1: BEGIN

2 INITIALISE population;

3 EVALUATE each candidate;

4 REPEAT UNTIL (Termination condition is satisfied) DO
5 SELECT

6: split into 3 groups;

7 Elite: top 10;

8 ”didn’t make it”: last 80;

9: Middle-class: 70;

10: RECOMBINE

11: elites + middle-class resulting in offsprings;
12: replace "didn’t make it” with offsprings;
13: MUTATE

14: middle-class and offsprings;

15: EVALUATE each candidate;

16: END

17: END

The main difference between ”classic. EA” (as described in Algorithm 1)) and our version (as de-
scribed in Algorithm is the process of selection, recombination and mutation. In ”classic_EA”,
the best 10-20% of the population are selected as elites (hence between 16 and 32 individuals),
and new offsprings are generated with these elites by recombination and mutation. Then the
last 10-20% (idem) of the population are eliminated, and only these 10-20% are updated at each
generation. However, in our version, the number of elites is set to the first 10 individuals, then
the algorithm starts to modify the whole rest (150 individuals) of the population by eliminating,
mutating, and recombining with elites just after the first generation.

The task on which we shall evaluate the performances of both approaches is the construction
of adversarial images for CNNs. Although our algorithm EA'"°" € is efficient for a series of
CN Ns, we make our point here for the instantiation EAtarget VGG-16 of this algorithm (Algorithm
and of its classical EA version (Algorithm [I]), for C = VGG16 trained on CIFAR-10 (see
Subsectlon“for a description of VGG16 trained on Cifar10), and for metric d = Ly. Starting
from a common ancestor image A of size 32 x 32 x 3 labelled by VGG16 as belonging to ¢,
and from a target category c; # c,, the specific parameters and choices of the algorithms are as
follows: B(gp,ind) = 1075, A(gy,ind) = 10710810 oindlee] 7 = (.95 and a maximum number of
generations of 7000. Pixel values are modified in a range +3 in both EA versions used here. The
algorithms use the same parameters and techniques for mutation and crossover operations.

If the EAs terminate successfully, one names D, ;(.A) the adversarial image resulting of EAffget’VGG‘w
(Algorithm [2) run on A, and Dg4s51¢(A) as the result of the classic (Algorithm (1) version of the

EA also run on A. The algorithms terminate after 7000 generations at the latest, whether or

not they succeeded in creating such an adversarial image.

Experimental comparison of ”"adapted_EA” with ”classic_.EA”

We compare experimentally the efficiency of both versions of the EA for four ancestor/target
pairs of categories Animal/Animal, Object/Object, Animal/Object, and Object/Animal.

Page 18 of

Concretely, the Animal ancestor categories are bird and dog, with the image A3 as ancestor for
the bird category c3, and Ag as ancestor for the dog category cg. Similarly, the Object ancestor
categories are plane and ship, with the images A; as ancestor for the plane category ¢y, and the
image Ag as ancestor for the ship category cg.

With these ancestors, we performed 10 independent runs (meaning with 10 distinct, randomly
chosen seed values) of the algorithms for each of the following combinations: the bird/cat pair
(Animal/Animal), the plane/truck pair (Object/Object), the dog/car pair (Animal/Object) and
the ship/horse pair (Object/Animal).

Performance comparison. In all cases, the 10 independent runs of each algorithm succeeded
in (far) less than 7000 generations. Table[3.I]gives the minimum number of generations (mingen),
the maximum number of generations (mazgen), and the mean generations (meange,) obtained
over the 10 independent runs of each algorithm. The convergence graph, plotted in Figure [3:1}
pictures the convergence speed of both algorithms for all cases. The horizontal axis of these
graphs is the number of generations, and the vertical axis is the average log probabilities of
target category obtained for these 10 independent runs.

Table 3.1: Comparison of classic EA and adapted_EA in generating adversarial images for the
target scenario for 4 different Ancestor/Target combinations (A, is the ancestor image in ¢,
used in the experiments) to fool VGG16 trained on CIFAR-10. The results are over the 10
independent runs of each algorithm.

Ancestor /Target | Algorithms MiNgen MAT gen Meangen
. classic_EA 1726 2433 2172.9
bird (As)/cat adapted_EA 1353 2177 1629.2
classic. EA 1311 1810 1547.5

plane (Ay)/truck | ted BA 1050 1439 1194.8
dog (Aq)/car classic_.EA 1132 1334 1199.3
& e adapted_EA 811 1050 907.0

. classic_EA 1972 3412 2582.1
ship (Ag)/horse | ted BA 1543 3171 2377.8

Results and Discussion. As can be seen in Table ”adapted_EA” outperforms ” classic . EA”
in all cases. The former requires less generations than the latter to obtain adversarial images
with 0.95 confidence. Figure[3.I]confirms that "adapted_-EA” converges faster than ”classic_ZEA”.
The graphs indicate that apparently both algorithms exhaust most of their generations to find
correct regions and/or pixels to modify. Once done, their learning curves accelerate drastically,
still with "adapted_EA” leading the race against ”classic_EA”.

Although both algorithms start the search with the same 160 identical images, their respective
performances differ substantially, as a consequence of their distinct updating process of the pop-
ulation. Indeed, "adapted_EA” starts these updates for the whole population, except for the
elite individuals passed unchanged to the next generation, and does so right after the 1st gener-
ation. However, ”classic. EA” only updates 20% of its population in each generation. Changing
only 32 individuals, as opposed to changing 150 individuals, makes it much slower for the classic
version compared to its adapted competitor. These results not only legitimize the choices made
in our earlier work ([5, [6] [TT], 13} 12]). In addition, they provide some evidence, that for similar

Page 19 of

Ancestor/Target: Bird/Cat

0 --- adapted_EA
classic_EA

Log Probability
| | |
© o S

|
=
=)

|
-
~
\,

0 250 500 750

1000 1250 1500 1750 2000
Generation

(a)

Ancestor/Target: Dog/Car

04 --- adapted_EA
classic_EA

Log Probability

Figure 3.1:

0 200 400 600 800

1000 1200 1400

Generation

(c)

Log Probability

Log Probability

|
©

|
©

|
-
=)

I
-
s

I
-
N

Ancestor/Target: Plane/Truck

1 —--- adapted_EA

classic_EA

T T T T T
0 200 400 600 800
Generation

(b)

T
1000

T T
1200 1400

Ancestor/Target: Ship/Horse

—=-~- adapted_EA

classic_EA

0 250 500 750
Generation

(d)

1000 1250 1500

1750 2000

Convergence characteristics of classicc EA and adapted_EA for different ances-

tor/target pairs. These experiments are performed with ancestors Az (in the bird category),
Ag (dog), Ay (plane) and Ag (ship).

exploration problems with a starting point made of the same individuals (hence not only for
the construction of images adversarial for a CNN), the generic selection and mutation process
adopted in "adapted_EA” (algorithm [2)) shortens the learning period of the algorithm and en-
hances up the convergence speed.

We complete this comparative analysis by assessing the potential difference of behavior between
the adversarial images created by each version of the EA. To this purpose, we computed the
Kullback-Leibler divergence [35] between the probability densities derived from the normalized
histograms of the pixel modifications induced by each of them. In all cases, the values (averaged
over the ten independent runs) of the Kullback-Leibler divergences are negligible (they vary
between 2.24¢ — 04 and 5.17e¢ — 03), indicating that the noise created by one version of the EA
significantly differs from the noise created by the other. Hence, while both versions of the EA do
create adversarial images, the introduced modifications by each of them differ strongly, although
both these modifications introduced by each EA on the one hand, as well as their differences on

the other hand, are not perceptible by a human.

Page 20 of

Chapter 4

Attack Performance

In this chapter, we present the experiments that were performed to measure the algorithm’s per-
formance for three different scenarios. We first show that the attack is efficient in the targeted
and flat (Section scenarios for VGG16 trained with the Cifar10 [34] dataset. We then show
that the attack is efficient for the targeted scenario (Section on 10 different CNNS trained
with the ImageNet [I8] dataset.

4.1 Target and flat scenarios: attack against VGG16 trained
on Cifarl0

A large part of this section is extracted from [I3], which is an extension of [II]. The section
presents the experiments and results obtained with EA["&** and EA on the Cifar10 dataset.

4.1.1 Dataset, Neural Network Architecture and Parameters of the
two EAs

VGG16 trained on Cifar-10

The feasibility study regarding the two scenarios is tested against one concrete example: Cifar-10
and VGG16. The dataset Cifar-10 [34] contains 50,000 training images and 10,000 test images
of size 32x32x3. Cifar-10 sorts £ = 10 categories (see Table into two groups: 6 categories
(cs3, ¢4, C5,¢6, c7 and cg) form the group of animals, and 4 categories (c1, ¢, cg and ¢19) the group
of objects.

VGG16 [52] is a convolutional neural network (CNN) that passes input images through 16 layers
to produce a classification output. As shown in Figure the model consists of 5 groups of
convolution layers and 1 group of fully-connected layers. Each convolution filter has a kernel size
of 3 x 3 and a stride of 1. Meanwhile, pooling is applied on regions of size 2 x 2, with no overlap.

21

Table 4.1: Cifar-10.- For 1 < i < 10, the 2°9 row specifies the category ¢; of Cifar-10. The 3™
row specifies the numbering of the image belonging to ¢;, taken from the test set of Cifar-10, and
used as ancestor in our experiments. These images are pictured on the diagonal in Figures

or on the first row of Figure [9.3]in Appendix

i 1 2 3 4 5 6 7 8 9 10
C; airplane | automobile | bird | cat | deer | dog | frog | horse | ship | truck
NO 281 82 67 | 91 | 455 | 16 29 17 1 76

- LT BT I B~ I O R I - B T | N[m - N om -
5 alal B[& &[E][a|b|o & ||| L |oalal || g s a
o 2| >| =5 =| =| 5 = | 2| = = =| || £
5 1518|5583 3 22|33 38|55 32/ |228 5
_ o| o| o =] 9| 0| O

ool & oo & o|lo| o & vo|lo|lu|&||o|lu|o|a o

Figure 4.1: Architecture of VGG16. There are 5 convolution groups and 1 fully-connected group
of Dense layers, in which every neuron is connected to every neuron of the next layer. Each
convolution group ends with a pooling layer.

Since VGG16 was initially designed for the ImageNet dataset [I8], a series of adjustments were
necessary for its use with the Cifar-10 dataset [24]. The CNN used here was therefore an adapted
VGG16 architecture obtained through the steps described in [40]. Specifically, VGG16’s input
size was adjusted to 32 x 32 x 3, Batch Normalization layers were added before every nonlinearity
and the first two fully-connected layers were reduced in size from 4096 to 100. Moreover, dropout
was added to all 6 groups of the network with the following rates: 0.3 for the first 3 convolu-
tion groups, 0.4 for the fourth group, 0.5 for the fifth group and 0.5 for the fully-connected layers.

We made use of this adjusted VGG16 pre-trained on Cifar-10 with a validation accuracy of
93.56% [24]. The same pre-trained model was used throughout the evolutionary algorithms
EAE and EAS™.

EA Parameters

Both EAs run with § = 3, no maximum limit G on the number of generations and a population
of size 160, the ancestor images being chosen from the Cifar-10 [34] test set. For any source
category out of the 10 categories of Cifar-10, a random image was selected from the 1000 test
images belonging to that category. This image was then set as the ancestor for both EAs. The
specific ancestor images used in our experiments are referred to in Table [£1]s last row, and
pictured in the first row of Figure in Appendix

In the flat scenario, A12*(g;) and B1(g;) take constant values, independent of g;. In the target
scenario, the values of A"®(g;) and of B}**'(g;) vary, depending on the generation, although

they do so in a different way.

Target scenario: the target category was selected from all labels, excluding the source category.
This led to 90 (source, target) couples of categories altogether (10 source categories and 9 different

Page 22 of

Figure 4.2: Target scenario with the dog— horse combination.— Comparison of the original (on
the left) with 3 evolved pictures created by EAtLa;rget (3 next from the left), and 3 created by
EAZES, (3 last) at different stages, classified by VGG16 as the target category “horse” with
probabilities 6.08 x 10~6, 0.5, 0.90, and 0.95.

target categories for each source category), and therefore to 90 adversarial images. For any g;,
we set By (g;) = 107 19810(dindA) for = [y or d = SSIM (in this latter case, one assumes
that SSIM (ind, A) > 0, meaning that ind and A are close enough). The value of A" (g,,)
depends on 0;,4[ct] (note that log;q 0inalct] < 0).

o If 0jp4]ci] < 1073, then A8 (g,) = 103710810 Cinale],
o If 1073 < 04n4]c] < 1072, then AL (g,) = 102710810 Oinaled],
o And if 1072 < 0j4]cy], then A8 (g,) = 101710810 Oinaled,

The goal for the target class probability was set to 0.95, meaning the algorithm would stop when
the fittest evolved image reached this value.

Flat scenario: we considered this scenario for each of the 10 source categories, leading to 10
adversarial images. For any g;, we set A1 (g;) = A% (g;) = 1, and B*(g;) = 1075,
B, (g;) = 1073, This led to the values of both fit§2'(ind, g;) and fitdd,, (ind, g;) being
negative. We let the evolutions run until both flatness and image similarity were achieved, with
no compromise on either side. Following a trial and error process, the goal for the individuals’
fitness was set to —0.001, meaning the algorithm would stop when the fittest evolved image
reached this value.

4.1.2 Running EA™®*": Examples, Results and Discussion

To illustrate, Figure[.2]shows an original image in the dog category and evolved images classified
by VGG16 as the target horse category with probabilities 0.5, 0.9, and 0.95. They were created
by EA5 in 26,32, 34 generations with d = L, and 21,24, 25 generations with d = SSTM.

Figure shows the graph of the source dog and target horse class probabilities obtained along
the evolution referred to in Figure[£:2] The paths of the two probabilities appear to be the inverse
of each other, with their sum remaining almost constant at a value of about 1.0 throughout the
evolution process. This suggests that the increase of the target class probability and the decrease
of the source class probability take place at the same pace.

Page 23 of

._.
(=]
!

T e e 10° {

=]

-]
-
o

(=]
o

1077 4

class probability
[=]
=

107% §

class probability

[=]
[

107 4§

1072 4

o
o

0 5 10 15 20 5 E 0 5 10 15 20 5 0
generation generation

o
=
|
e
<

=
o

o
o

107

107

=3
=

class probability
class probability

10-*

=
[N

—5
00 10

0 5 10 15 20 0 5 I 2

generation generation
Figure 4.3: Target scenario with the dog—horse combination of Figure — Linear (left) and
logarithmic (right) scale plots of an evolution of source (dashed line) and target (solid line) class
probabilities using the Ly norm (top) or using SSIM (bottom), with respect to the generation
number. Both plots display in addition the sum (dash-dotted line) of the source and target
probabilities: The sum remains about constant at a value of 1.0 throughout the evolution process,

suggesting that the increase of the target class probability and the decrease of the source class
probability take place at the same pace.

Figure shows examples of the four possible (source, target) combinations created by EAEf“rget7
where source and target are animals or objects, with d = Lo and d = SSIM. The number of
generations required to evolve these images is presented in Table [£.2]

Table 4.2: Number of generations required by EA"®" to evolve the four animals and objects
combinations of images of Figure [1.4 with d = Ly and d = SSTM.

Generations

Source — Target Ly | SSIM
bird — dog 45 47
deer — ship 45 48
airplane — automobile || 18 46
truck — frog 31 31

Page 24 of

HESAN

Figure 4.4: Target scenario with (source, target) combinations, where source and target are ani-
mals or objects.— Comparison of ancestor (1% image) and descendant images obtained by EA!"&*"
for d = Ly (2" image) and d = SSIM (3" image). At the top, animal—animal and ani-
mal— object combinations: From left to right, VGG16 outputs the following class probabilities:
0.999 bird, 0.954 dog, 0.953 dog; 0.999 deer, 0.951 ship, 0.954 ship. Below, the object— object
and object—animal combinations: From left to right, 0.998 airplane, 0.951 automobile, 0.952
automobile; 0.999 truck, 0.952 frog, 0.958 frog.

Results

Depending on the chosen source and target categories, reaching the probability of 0.95 required
between 5 and 124 generations, for the 90 altogether evolutions, as specified in Appendix (in
Figure with Lo, and Figure with SSIM). The average computation time per generation is
0.03+0.01s for Lo and 0.1540.02s for SSIM. Organizing the 10 categories of the Cifar-10 dataset
into the group of animal categories and the group of object categories, the animal— animal and
object— object evolutions took fewer generations than the animal— object and object— animal
ones. The required number of generations varied significantly not only with the category of an
ancestor, but also with the particular image extracted from a given category. Table presents
the mean number of generations for the 4 combination types for the 90 evolutions of Figure

and of Figure in Appendix

Table 4.3: Mean value and standard deviation for the number of generations required by EA'["#"
in the 4 different combination types for d = Ly (2" row) and d = SSIM (3'9 row) for the
altogether 90 possible evolutions, as specified in Figure [0.1] and Figure [9.2] in Appendix

Mean number of generations needed (with standard deviation)
d animal — animal | animal — object | object — animal | object — object

Lo 36.42 £+ 16.23 42.47 £+ 22.93 46.58 £ 23.28 45.04 £ 19.51
SSIM 41.25 £ 21.07 37.77 £ 22.31 44.42 £ 19.50 49.92 £ 20.99

When one compares the adversarial images created by EA}"®" and by EA¢43S;, neither appears

in general to be clearly better than the other (see Figures and |4.4 - 4] for example, as well as
Figures and in Appendix for the human eye. Both EAs were able to produce mis-
classification with high confidence, while keeping the adversarial image very close to the original.
In some image areas, the similarity to the original is higher with Lo, while in other image areas
it is higher with SSTM. One should note, however, that the final aspect of the evolved image

Page 25 of

does not only depend on the used similarity measure. The randomness inherent to the evolution
process may indeed contribute to the observed differences.

To summarize, the algorithm EA"®*" (for d = Ly and d = SSIM) achieved the objective set
in the target scenario. Adversarial descendant images were constructed, which VGG16 labeled
in the target category with a probability exceeding 0.95, while simultaneously remaining highly
similar to their ancestors for the human eye. However, they are not entirely indistinguishable,
the modified image being usually noisier than the unchanged one. Subsection [f.1.2] addresses
this issue specifically.

Visualising the performed modifications: SSIM vs Ly

In order to visualise the modifications that were performed, the difference between the descendant
and ancestor images was computed. An example is given in Figure where this difference is
displayed, both spatially as an image and as a plot of the difference between original and evolved
pixels for the descendant.

Experiments show that the difference consists of noise distributed almost evenly across the image,
with no particular area of focus. This noise is naturally not random, but fine-tuned by our EA
(it has already been proven than random noise is not sufficient to deceive a CNN; since they are
only vulnerable to targeted noise [22]). The majority of pixels were modified by an absolute value
lower than 10. Histograms of the pixel modification values were computed for both the Ly-norm
and SSIM (see Figure for one example. Note however that the figures were averaged on six
runs to reduce the possible impact of random fluctuations) for all 90 source-target combinations
(Note that the Kullback-Leibler values given in Table are performed only on one and not on
six runs. Nevertheless, they remain small enough to indicate that the patterns are similar). The
most prominent value is 0 in both histograms, corresponding to unchanged pixels.

Normalising the two histograms into probability densities, the Kullback-Leibler divergence [35]
K L between them indicates the proximity of the pattern of the two sampled distributions. Since
KL(pa||lpy) > 0 is not a symmetric function of the probability distributions p, and pp, one needs
to compute two values. It turns out that in the case of Figure [1.6] the Kullback-Leibler diver-
gence values between the probability distribution associated with the Ly and SSIM histograms is
0.015, while the vice-versa value is 0.016, hence providing evidence that the patterns are indeed
very similar.

However, the SSIM results are more symmetrical than the Lo-norm ones (see Figure for
an example of this phenomenon). Although a human being is unlikely to perceive a difference
between the descendant images obtained either with Lo or with SSIM, the histograms (see
again Figure for an example) indicate that EAtLa;get tends to leave more pixels unchanged

target
than EA o7,

4.1.3 Running EAdﬂat: Examples, Results and Discussion

Figure shows an ancestor image in the dog category (category cg of Table , and descen-
dant evolved images reached by EAgat after 238 generations with Lo, and after 233 generations
with SSIM. The label values in the categories ¢y, - - - , c19 outputted by VGG16 for these evolved
images are given in row cg of Table [£:4] for Ly and of Table [L.5] for SSIM. These label values
are 0.100 with extremal variations of +0.007 and —0.017 with Lo, and 40.023 and —0.015 for

Page 26 of

wn

perturbation

=

0
© 0 40 0
0
0 a0 @
10
10
20 X 0
15 10 0
- 10
2 -10
0 0
0 -20
5
_ -10
-10 10 -30
0 0 20 ' S0 1000 1500 2000 2500 3000
0 5 10 15 20 25 20

pixel

0
1
20 « a0
3
0
0 30
10 20 1
_
20 x 10 1
10 10 10 0
0 -10
0 0
-20
_ -10
10 10
-30
-0 20 -20 500 1000 1500 2000 2500 3000
0 5 W 15 2 2 30

pixel

w

]
perturbation

K]

i

]
=]

Figure 4.5: Target scenario.— Difference between ancestor and descendant images obtained by
EA["® (d = Ly in the top row, d = SSIM in the bottom row) for the truck— frog combination
of Figure[4.4] The image on the left gives an idea of the spatial distribution of the changes, each
pixel being a combination of three channels, the range of each being given by the scales in the
middle. The plot on the right ignores the 2D structure of an image to show more clearly by how
much each of the 1024 pixels is changed on the three different channels. Despite the goal oriented
nature of the evolution, these changes look like noise, almost evenly distributed across the image.
Lo and SSIM exhibit slightly different patterns, with noise peaking at different pixels. For this
particular combination of ancestor and descendant images, an increase in the contribution of the
blue channel is observed when replacing Lo with SSIM.

SSIM. Note that these extremal values occur for both d’s for the same categories ¢4 and cs.
The image pixel modifications necessary to reach these label values are visualised in Figure
for both Lo and SSIM. The probability densities of Lo and SSIM are highly similar, leading to
Kullback-Leibler divergences of 0.004.

Figure shows the evolution of the class probabilities outputted by VGG—16 during the flat-
tening of the dog ancestor image with Ly and SSIM. One sees that the label value of a first
category, namely the category c4, takes off (around 20 generations) while the label value of
cq = cg decreases, so that the sum of both label values is around 1, while the label values of
the other categories remain insignificant. Note that in this process, the label value of c4 exceeds
largely that of ¢g. Then the label value of a second category, namely cg, takes off (around 80
generations), while the label values of ¢ and ¢4 decrease (with a similar phenomenon as before,
namely the label value of the newcomer cg exceeds the label values of ¢g and of ¢y).

Page 27 of

Table 4.4: Flat scenario: Label values predicted by VGG—16 for the 10 different flattened images,
using Lo. For any row 1 < ¢ < 10 one considers the adversarial descendant image created by
EAHLZt and pictured on the " position on the 2! row of Figure For 1 < j < 10, the
value given on the j*' column is the label value for the category c¢; output by VGG16 for this
adversarial image. The column Dg,s gives the value of the function Dy, for the descendant flat
image obtained by EA%?. The columns A1 and A~ indicate the maximal deviation exceeding
0.100 from above or from below in the row.

¢ C2 cs 4 cs C6 cr cs Cy 10 Diiag AT AT

c; | 0.102 [0.115 | 0.102 | 0.083 | 0.111 | 0.113 | 0.092 | 0.092 | 0.096 | 0.093 || 1 x 10=3 | 0.015 | 0.017
cy | 0.102 | 0.111 | 0.097 | 0.101 | 0.104 | 0.094 | 0.095 | 0.106 | 0.103 | 0.087 || 4 x 10=* | 0.011 | 0.013
c3 | 0.098 [0.101 | 0.104 | 0.100 | 0.102 | 0.098 | 0.098 | 0.097 | 0.101 | 0.101 [[4 x 10~° | 0.004 | 0.003
cs | 0.088 [0.113 | 0.101 | 0.094 | 0.107 | 0.096 | 0.102 | 0.107 | 0.104 | 0.086 || 7 x 10=% | 0.013 | 0.017
cs | 0.100 | 0.099 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.101 | 0.100 | 0.100 || 1 x 10=° | 0.001 | 0.001
cg | 0.102 | 0.096 | 0.106 | 0.107 | 0.083 | 0.098 | 0.099 | 0.107 | 0.098 | 0.104 || 5 x 10~ | 0.007 | 0.017
c7 | 0.100 | 0.100 | 0.101 | 0.098 | 0.099 | 0.100 | 0.100 | 0.099 | 0.101 | 0.100 || 8 x 10=% | 0.001 | 0.002
cs | 0.097 | 0.112 | 0.094 | 0.106 | 0.098 | 0.095 | 0.103 | 0.100 | 0.095 | 0.100 || 2 x 10=* | 0.012 | 0.006
co | 0.105 | 0.092 | 0.101 | 0.086 | 0.103 | 0.104 | 0.103 | 0.102 | 0.103 | 0.100 || 3 x 10=* | 0.005 | 0.014
c1o | 0.101 | 0.099 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 || 2 x 10=° | 0.001 | 0.001

Table 4.5: Flat scenario: Label values predicted by VGG—16 for the 10 different flattened images,

using SSIM. For any row 1 <4 < 10 one considers the adversarial descendant image created by

EAft . and pictured on the it" position on the 3" row of Figure For 1 < j < 10, the

value given on the ;™ column is the label value for the category ¢; output by VGGI16 for this

adversarial image. The column Dg,s gives the value of the function Dy, for the descendant flat

image obtained by FA3%,, . The columns A+ and A~ indicate the maximal deviation exceeding

0.100 from above or from below in the row.

1 C2 C3 C4 Cs Co cr Cs C9 10 Diat AT A~

c1 | 0.106 | 0.114 | 0.105 | 0.082 | 0.105 | 0.113 | 0.090 | 0.091 | 0.101 [0.093 || 1 x 10=3 | 0.014 | 0.018
co | 0.091 | 0.118 | 0.100 | 0.101 | 0.108 | 0.096 | 0.095 | 0.105 | 0.105 | 0.081 || 9 x 10~* | 0.018 | 0.019
c3 | 0.088 | 0.111 | 0.113 | 0.102 | 0.108 | 0.088 [0.092 | 0.088 | 0.113 [0.097 || 1 x 10=3 | 0.013 | 0.012
cs | 0.090 [0.119 | 0.099 | 0.095 | 0.110 | 0.093 | 0.103 | 0.105 | 0.104 | 0.083 || 1 x 10=3 | 0.019 | 0.017
cs | 0.102 | 0.095 | 0.092 | 0.114 | 0.114 | 0.093 | 0.084 | 0.092 | 0.106 | 0.109 || 1 x 10=3 | 0.014 | 0.016
cg | 0.100 | 0.100 | 0.108 | 0.123 | 0.085 | 0.090 | 0.092 | 0.105 | 0.094 | 0.103 || 1 x 10=3 | 0.023 | 0.015
cr | 0.094 | 0.097 | 0.096 | 0.078 | 0.099 | 0.116 | 0.102 | 0.105 | 0.106 | 0.108 || 1 x 10=3 | 0.016 | 0.022
cs | 0.087 [0.125 | 0.095 | 0.092 | 0.101 | 0.099 | 0.111 | 0.102 | 0.096 | 0.092 || 1 x 10=3 | 0.025 | 0.014
co | 0.102 | 0.086 | 0.108 | 0.078 | 0.102 | 0.107 | 0.100 | 0.106 | 0.109 | 0.104 || 1 x 10=3 | 0.009 | 0.022
c1o | 0.114 | 0.092 | 0.084 | 0.091 | 0.090 | 0.102 | 0.113 | 0.108 | 0.099 | 0.108 || 1 x 103 | 0.014 | 0.016

Page 28 of

L SSIM

500 500
400 400
“n n
g % 300
& 3007 &
B s
E 200 E 200
H H
E £
100 100 {
0- 04
=30 =20 =10] 10 20 0 =30 =20 =10 0 10 20 0
pixel intensity change pixel intensity change

Figure 4.6: Target scenario for the dog—horse evolution.— Changes in pixel intensity of the
dog ancestor shown in Figure with the Lo-norm (left) and SSIM (right). To reduce the
possible impact of random fluctuations on the results, the figures are averaged on six runs. In
both cases, the predominant value is 0, corresponding to a lack of pixel modification. Although
both histograms are somewhat bell-shaped, SSIM’s is more symmetrical. The Kullback-Leibler
divergence computed between the Lo-norm and SSIM probability densities is 0.015; Reversing
this order leads to 0.016.

0 5 0 5 10 15 20 25 30

Figure 4.7: Flat scenario with the dog original image.— Comparison of the original (on the left)
with 2 evolved pictures created by E’Ale‘;t and EAﬂS%tI v~ The number of generations required by
the two evolutions was 238 and 233.

Results

Depending on the chosen source category, reaching almost flatness required between 142 and
552 generations for the 10 altogether evolutions, as specified in Appendix (Table. The
average time required per generation was 0.04 £+ 0.01s with Ly and 0.17 4+ 0.02s with SSIM. For
the flattening process, the horse category took the fewest number of generations, and the deer
category the largest number of generations, at least with the ancestor pictures taken in these
categories.

When one compares the adversarial images created with EA%* and those created with EARY, /-,

neither appears better than the other (see Figurefor an example of the flattening of an ances-
tor in the dog category, and Figure in Appendix for examples for all categories) for the

Page 29 of

L SSIM

300 00
50 250 4
2 200 % 200
-] *
8 =
=
2 150 B 150
2 E
E E
g 100 2 100
50 50
0 0

=30 -20 -10 0 10 0 EY =" -20 -10 0 10 20 0
pixel intensity change pixel intensity change

Figure 4.8: Flat scenario for the dog original image.— Changes in pixel intensity of the dog ances-
tor shown in Figure [4.7], with the Lo-norm (left) and SSIM (right). To reduce the possible impact
of random fluctuations on the results, the figures are averaged on six runs. The Kullback-Leibler
divergence computed between the Lo-norm and SSIM probability densities is 0.004; Reversing
this order also leads to 0.004.

10 10

08 08
£ 2
3 06 05
e F-1
& 4
8 04 g 04
= <

02 02

001 - : : ; - : 00

0 50 100 150 200 0 50 100 150 200
generation generation

Figure 4.9: Flat scenario with the dog original image of Figure @— Linear scale plots of an
evolution of the 10 class probabilities using the Lo norm (left) or using SSIM (right), with
respect to the generation number.

human eye. Both EAs produced adversarial images remaining very close to the ancestor image.

Tables and display the label values of VGG16 for the 10 flattened images of Figure (9.3
created by EAgl""t7 with d = Ly and SSIM. The amplitudes A* and A~ with respect to the goal
value % = % should be interpreted with caution. On the one hand, although these amplitudes
are very small in some cases (reaching £0.001), they can achieve far larger values (+0.015 and
—0.017 for Lo; 40.025 and —0.022 for SSIM). On the other hand, when one takes into account
the starting points ~ 107% in most cases, of the label values of the categories distinct from the
ancestor category, it is fair to consider that reaching label values so close to 0.1 modulo AT and

A~ indeed makes our point. We nevertheless come back to this aspect in the conclusion part.

Page 30 of

Visualizing the performed modifications

Like for the target scenario, we studied the way noise is distributed. Histograms of the pictures’
modification values exhibit a bell shape, for both the Ly norm and SSIM (see Figure for one
example, again with numbers averaged on six runs to reduce the potential impact of random
fluctuations). The Kullback-Leibler divergence values computed provide again evidence that
the patterns are indeed very similar. Note that the Kullback-Leibler values given in Table
are performed for all 10 possibilities of the flat scenario, but only on one and not on six runs.
Therefore the values are larger than they would be on an average of six runs. Nevertheless, they
remain small enough to lead to the same conclusion, namely that the patterns are similar.

Although the evolutions of the class probabilities corresponding to the 10 flattened images have
different patterns, it is a general rule that during the initial generations only a few classes
dominate, interchanging their order. More precisely, similar to what happens in Figure [£.9] for
the flat scenario with the dog ancestor pictured in Figure where the successive label values
7taking off” are first those of animal categories, the first label values taking off are those of
the categories which, excluding the ancestor class, rank highest in the classification of their
corresponding ancestor image, thus having a higher starting point in both the Lo and SSIM
evolutions. They typically belong to the same animal or object category as the ancestor class.

4.1.4 Summary of the outcomes

Pursuing the research program announced in [6], this work substantially complements [I1] by
demonstrating the validity of an approach using evolutionary algorithms to produce adversar-
ial samples that deceive neural networks performing image recognition, and that are likely to
deceive humans as well. Our two evolutionary algorithms, EAT™®" and EAR that differ by
their fitness functions, successfully fool, for two target and flat scenarios, the VGG16 [52] CNN,
trained on the Cifar-10 [34] dataset to label images in 10 categories. The similarity between the
adversarial images and the original ones, aiming at ensuring that humans would still classify the
modified image as belonging to the original category, is measured by two distances d, namely
d = Ly and d = SSIM. These distances differ conceptually, since they assess different quality
features of pairs of images. An outcome of our experiments (thanks to the computation of the
Kullback-Leibler divergence values, the number of generations required, etc.) is that none seems
qualitatively better than the other. Furthermore, experiments performed with L, tend to be 4
to 5 times faster than SSIM. Therefore, as a consequence, the choice of Ly rather than SSIM
seems a reasonable trade-off. The study shows that taking advantage of SSIM requires at least
to introduce mutations that would not impact the values of Lo and those of SSIM the same way.

Page 31 of

4.2 Target scenario: attack against 10 CNNs trained on
ImageNet

A large part of this section is extracted from [57]. This section first presents the tests that were
performed to find the best population size for the EA attack. Then, the section continues by
presenting the experiments and results obtained with EA}"*" on the ImageNet dataset [I8].

4.2.1 Choice of the EA’s population size

The purpose of this subsection is to describe a series of tests performed on our EA with different
population sizes. The outcome leads to the selection of a convenient population size for the

challenges addressed in Subsections and [£:2:3]

Population size according to the size of the images

We perform in this Subsection a series of tests on EA'#4C with different population sizes. The

main reason for these tests is that the population size of the EA impacts its efficiency, in a way
that strongly depends on the size of the addressed images.

Indeed, in [T} 15], we constructed an EA (a variant of EA'*"#°4C) that successfully fooled VGG16
trained on the Cifar-10 dataset. Starting with ancestor images of size 32 x 32 x 3, we found that
N = 160 was the best population size trade-off regarding the effective construction of adversarial
images on the one hand, and the computation time and number of generations required to do so
on the other hand.

The situation differs here, since we attack CNNs trained on the ImageNet dataset. The ancestor
images are now of size 224 x 224 x 3 (usually; sometimes they are even larger before being pro-
cessed to fit the CNNs constraints). Said otherwise, starting with ancestor images of ImageNet
size, EA'#C has to deal with a search space that is a 49-fold larger than the search space
for images of Cifar-10 size. Therefore, finding the balance between achieving the goal of the
construction of convenient adversarial images, and the time and number of generations required
to do so, implies to adjust the population size of the EA accordingly.

Tests.— To find the optimal population size N for the threshold value 7 = 0.75, mutation
magnitude 6 = 1, A = 1, B = 0 and the maximum number of generations G = 10,000 (these
choices are consistent with the experiments performed in Subsection , we run EAtareetC
with N = 40, 80,120, and 160 for C =VGG16 trained on the ImageNet dataset, for a series of
combinations (cg, ct).

More precisely, we pick at random 5 pairs (cq, , ¢,) (1 < k < 5) of ancestor and target categories,
and an ancestor image A, in ¢,, (see Table . To increase the robustness of the results, we
perform 10 independent runs for each population size with random seeds, and assess the average,
over these 10 runs for each population size N, of significant indicators: average time (avgTime) in
seconds, average number of generations (avgGens), average time/generation, average Lo-distance
between the ancestor image and the adversarial images.

Results and interpretation.— Table [I.7] summarizes the results of these tests. Note that all

runs successfully created 0.75-strong adversarial images in less than 6000 generations. There-
fore, setting the maximal number of generations to 10,000 turns out to be a conservative and

Page 32 of

k 1 2 3 4 5

(Cay,»ak) (hippo, 344) (red wine, 966) (frying pan, 567) (armadillo, 363) (ruler, 769)

A,
Cay,-label value 0.6900 0.5948 0.9999 1.000 0.96960
(cty»tr) (gibbon, 368) (banjo, 420) (printer, 742) (saluki, 176) (junco,13)

Table 4.6: For 1 < k <5, the ancestor image A,, , taken from the ImageNet test set, classified
by VGGI16 in the category c,, , with its corresponding c,,-label value. The last row indicates
the chosen target category c;, .

altogether appropriate and reasonable choice for the experiments performed in this paper (see

Section |4.2.3]).

N | avgTime | avgGens | time/gen | Ly-distance

40 840 2957 0.283 3220

80 1747 2551 0.686 3091
120 2434 2355 1.039 3029
160 3095 2256 1.382 2983

Table 4.7: Performance comparison of EA'*#4C for ¢ = VGG16 trained on ImageNet in creating
0.75-strong adversarial images for the target scenario (cq, , ¢y,) performed on A,, , with different
population sizes. The results are the average of the 5 pairs of Table over 10 independent runs
for each population size.

Table [£.8] illustrates the quality of the adversarial images obtained by our algorithm. The first
image (from the left) is the ancestor image A,,, the others are 0.75-strong adversarial images
created by our EA with a population size N = 40, 80,120 and 160. For N = 40, 80, and 120, the
worst adversarial image (from a Lo perspective) of the 10 independent runs is pictured, and, for
N = 160, the best (still from a Lo-distance perspective) adversarial image is represented. The
outcome is clear: a human is unlikely to notice any difference between any of these adversarial
images and the ancestor image.

Since there is no humanly visual difference between adversarial images obtained with a popu-
lation size N = 40,80,120 or N = 160, and since, moreover, the measures of the Ls-distances
between the ancestor image and the adversarial images obtained with a population size of N = 40
versus a population size N = 160 remain very close (differing by only 8%), what really matters
is the speed in creating the adversarial images.

Page 33 of

Adversarial images

Ancestor image

N =40 N =80 N =120 N =160

Table 4.8: 0.75-strong adversarial images created by EA'®4C for ¢ = VGG16 trainet on Ima-
geNet, with different population sizes of N = 40,80, 120, and 160.

The algorithm with N = 40 completes a generation in 0.283 seconds on average , almost five
times (exactly 4.88) faster than with N = 160, and terminates within 840 seconds in average,
hence more than 3.68 times faster than with N = 160. This speed gain (per generation, and
altogether) significantly compensates the 31% increase of the number of generations required
with N = 40 as compared with N = 160.

Conclusion.— A population size N = 40 provides an appropriate choice for EA®#4C against
C = VGGI16 trained on ImageNet. We more generally extrapolate this choice of N = 40 for
EAtareet.C against any CNN trained on ImageNet. In particular, we use therefore N = 40 in the
remainder of this paper.

4.2.2 One EA versus 10 CNNs: Methodology

The generic methodology used by our EA-based attack against a series of trained CNNs is de-
scribed in this Section. This provides the theoretical ground for the experiments performed in
Section which concretely evaluate the efficiency of EA'4C at generating within 10, 000
generations adversarial images against the 10 CNNs trained on ImageNet (0.75-strong adversar-
ial images or good enough adversarial images for the target scenario, or adversarial images for
the untargeted scenario).

Specifically, Subsection [£:2.2] lists the 10 CNNs trained on ImageNet that we intend to challenge
with our EA, and gives the rationals that led us to their choice. Subsection explains how
we obtained the (ancestor, target) category pairs, and the ancestor images. Subsection
describes how we intend to run EA'®#°C on a significant number of cases for each specific CNN
C, and defines the indicators that assess the effectiveness and quality of this EA-based attack,
mainly for the target scenario, but also for the untargeted scenario.

Network Domain

We challenge EA'8°C against the following 10 CNNs trained on ImageNet: C; = DenseNet121
[29], C; = DenseNet169 [29], C3 = DenseNet201 [29], C4 = MobileNet [28], Cs = NASNetMobile
[66], C¢ = ResNet50 [27], C; = ResNet101 [27], Cs = ResNet152 [27], Co = VGG16 [52] and C19 =
VGG19 [52].

Page 34 of

Cr Name of the CNN Parameters Top-1 Top-5

Accuracy Accuracy
Cq DenseNet121 8M 0.750 0.923
Co DenseNet169 14M 0.762 0.932
Cs DenseNet201 20M 0.773 0.936
Cy MobileNet 4M 0.704 0.895
Cs NASNetMobile 4M 0.744 0.919
Cs ResNet50 26M 0.749 0.921
Cr ResNet101 45M 0.764 0.928
Cs ResNet152 60M 0.766 0.931
Cy VGG16 138M 0.713 0.901
Cio VGG19 144M 0.713 0.900

Table 4.9: The 10 CNNs trained on ImageNet, their number of parameters (in millions) and
their Top-1 and Top-5 accuracy.

These 10 CNNs were chosen for the following reason. First, due to implementation considera-
tions, we considered only CNNs that have an ImageNet pre-trained version already available in
Keras [I6]. Out of them, 15 handle images of size 224 x 224 natively, while 11 handle images of
larger sizes, varying from 240 x 240 to 600 x 600.

From this list, we considered only CNNs whose implementation is stable. These considerations
led us to disregard the EfficientNetB family altogether in the present study, since these CNNs
are only available in the nightly build tensorflow of Keras. Lastly, being able to compare the
behavior of the CNNs once exposed to EA'8°C led us to restrict this study to CNNs handling
images of size 224 x 224. This comparison criteria leaves a group of 14 CNNs (all CNNs handling
images of size 224 x 224 except EfficientNetB0; note furthermore that the other members of the
EfficientNetB family handle images of larger size).

These 14 CNNs are made of a group of 10 CNNs with different characteristics, and of a group
of 4 remaining CNNs that are variants of those 10. The study is therefore limited here to the
group of the 10 stable CNNs, that on the one hand handle images of equal sizes (224 x 224), and
that on the other hand illustrate the maximal diversity in terms of characteristics and features,
as illustrated in Table In particular, the 3'¢ column gives the number of parameters of each
CNN (in millions).

The performance of the CNNs is presented in terms of Top-1 and Top-5 accuracies (in the last
two columns) for the target scenario. Recall that the CNN’s classification satisfies the Top-1
(respectively Top-5) accuracy if the target label category exactly matches the model’s prediction
(respectively is one of the five best model’s predictions). Based on Top-1 and Top-5 accuracy,
DenseNet201 (Cs) has the best performance, while VGG16 (Cy), VGG19 (C10), and MobileNet
(C4) have the worst.

Image Domain

We take at random 10 pairs (c,,,cq,) of distinct categories among the 1000 categories of Im-
ageNet. For 1 < ¢ < 10, the first component c,, is the ancestor category, and the second
component ¢; is the target category. Then, for each ancestor category, we take at random 10

Page 35 of

distinct images A}], e ,A}ZO from the ImageNet validation set for the specific category c,,. This
process leads to 100 ancestor images AP altogether, namely 10 for each of the 10 ancestor cate-
gories.

Table specifies the ancestor categories and the target categories obtained that way. Figure
in Appendix shows the 100 selected ancestor images, and Table in Appendix
gives their ¢, -label values for the 10 CNNs. The CNNs classify the ancestor images in the
correct c,, category in almost 97% cases (966 out of 1000 possibilities; the remaining 34 cases
are classified in a different category since the c, -label value given by the corresponding CNN is
not dominant among all categories).

q 1 2 3 4 5 6 7 8 9 10

Ca, abacus acorn baseball | broom | brown bear | canoe | hippopotamus | llama | maraca | mountain bike
aq 398 988 429 462 294 472 344 355 641 671

¢y, | bannister | rhinoceros beetle ladle dingo pirate Saluki trifle agama | conch strainer

tq 421 306 618 273 724 176 927 42 112 828

Table 4.10: For 1 < ¢ < 10, the 2°? row gives the ancestor category Cq, and its index number a,
among the categories of ImageNet (Mutatis mutandis for the target categories, 3" row).

Experiments and Indicators

For a threshold value 7 and a bound G of the number of generations to be specified in the con-
crete experiments performed in Section we run EA*8°%C for each C = C}, (for 1 < k < 10)
on each ancestor A? (for 1 < ¢ <10, 1 < p < 10). We therefore perform 100 attacks per CNN,
aiming at creating, within G generations, 7-strong adversarial images Dy (Ab) = EAtarset.Cr (AP)
for the target scenario (ca,,ct,) with the ancestor image AP from the ancestor category c,,. We
consider that running each of these altogether 1000 attacks (100 attacks per CNN x 10 CNNs)
with one seed value is enough to make the point regarding the efficiency of our attack.

Various metrics are used to assess the effectiveness and quality of our targeted (but also untar-
geted) attack against each CNN. We clearly want to limit potential biases, for instance due to
the specific choice of an ancestor-target pair, of a specific ancestor image, of a specific seed value
in running the EA, etc. To reduce such potential issues, we focus on the mean behavior of the
attack. Therefore, these metrics are (for most of them) averaged on the 100 attacks performed
per CNN. In other words, these metrics aggregate for each CNN the outcomes of the attacks on
the 10 ancestors per ancestor category X the 10 pairs of (ancestor, target) categories.

This leads us to define three success rates SRE, SRS and SR;™™® for a CNN C, the two former
dealing with the targeted attack and the latter with the untargeted attack.

The 7-Success Rate SR} is the percentage of runs of EA*™8°C that successfully created at least
one 7-strong adversarial image within G generations. The good enough Success Rate SRZ® is
the percentage of runs of EAreetC that successfully created at least one good enough adversar-
ial image within G generations, while the EA was aiming at constructing 7-strong adversarial
images. Finally, the untargeted Success Rate SR3™™® is the percentage of runs of EA'&etC
that successfully created at least one adversarial image for the untargeted attack within G gen-
erations, while the EA was aiming at constructing 7-strong adversarial images. In this latter
case however, one considers only runs performed on ancestor images that are classified in the

Page 36 of

ancestor category by the CNN (it indeed happens that a CNN does not classify some images in
the correct category despite being chosen from the validation set, see Table [9.5)).

One collects some relevant information regarding the production of good enough adversarial im-
ages or of adversarial images for the untargeted attack on the way toward the creation of T-strong
adversarial images. Note that the fitness function used by the EA was not designed to focus
on the untargeted attack. Therefore the outcome for the untargeted attack can be seen as a
by-product of the targeted attack. The inequality SRE < SRE < SR;™™® generally holds (the
first one does hold systematically, and the second one usually holds).

With notations consistent with Subsection [4.2.1] we measure for each CNN, the average number
of generations (avgGens&'!) and the average time (avgTime2", in seconds) required by all attacks
(successful or not). We then define similar quantities, but restricted to targeted attacks that
either successfully create at least one 7-strong adversarial image within G generations (leading
to avgGensg, avgTime(), or successfully create at least one good enough adversarial image within
G generations (leading to avgGens?®, avgTimel"). Mutatis mutandis, we also consider the con-

sistently defined quantities avgGenss™*" and avgTimegs""*"? for successful untargeted attacks.

For each CNN, we also report average Lo distances, that assess the visual quality of the adver-
sarial images obtained by successful attacks. For the target scenario, on the one hand, avg} Lo is
the average of the Lo distances between the ancestor image and the 7-strong adversarial images
created by the EA. On the other hand, avg?®L, is the average of the L distances between the
ancestor image and the good enough adversarial images created by the EA. For the untargeted
scenario, one defines in a similar way avgy'*"ILs as the average of the Ly distance between
the ancestor image, and first adversarial image that is no longer classified as belonging to the
ancestor category.

This series of indicators contribute to the assessment of the convergence characteristics of EAtLa;get’C
for each of the 10 CNNs considered.

4.2.3 One EA versus 10 CNNs: Results

The methodology described in Section is applied with parameter values 7 = 0.75 and
G = 10, 000.

Subsection [4.2.3| summarizes the outcomes of these experiments and gives their interpretation.

The notations used in this Subsection are consistent with those used in Subsection espe-
cially regarding the indicators, given of course for 7 = 0.75,§ =1, A=1, B =0, and G = 10,000
(or for increasing values of the maximal number of generations up to 10,000, see Table [9.6] in

Appendix [9.2.2)).

Experimental results

Table gives the respective performance of our EA for each CNN, for the chosen parameters
7 =0.75 and G = 10,000. The indicators are averaged over the 100 attacks per CNN, and the
Table is sorted according to growing values of the average number of generations angens8'75

required by EAt8etC

Page 37 of

CNNs

avgGensg!

0.75

untarg

0.75

Juntarg

untarg L
2

avgGensp avgGensy® avgGensg avgTimep avgTimel® avgTimeg avgd Ly, avgl’Lo avgp

Cy MobileNet 2201 2122 1662 1503 562 440 398 2461 2225 2079
Cr ResNet101 3428 3154 2586 2550 1285 842 659 3002 2716 2377
Csy DenseNet 169 3786 3172 2434 2329 1198 919 879 2601 2295 2179
Cs DenseNet201 4232 3293 2736 2410 1348 1119 984 2962 2580 2433
Cs ResNet152 4054 3466 2985 2385 1246 1073 930 3128 2882 2607
Cy DenseNet121 3999 3477 2459 2081 1192 841 712 2801 2450 2214
Ce ResNet50 3794 3535 2839 2050 1452 1166 979 3233 2891 2577
Cy VGG16 3954 3893 2999 2006 1254 965 644 3892 3429 2715
Cs NASNetMobile 5148 3935 3231 2495 1426 1170 902 3214 2882 2485
Cio VGG19 4244 4126 3188 2019 1370 1060 675 4024 3548 2699

Average 3884 3417 2712 2183 1233 960 776 3132 2790 2436

Table 4.11: Performance comparison of EA'°C against each CNN, for 7 = 0.75 and G =
10,000. Results are averaged over the 100 attacks, and given in terms of number of generations,
time, and Lo-distance between the ancestor and the adversarial images.

CNNs SR SRE SR™®

Co VGG16 99 100 100
Cy MobileNet 99 99 99
C1o VGG19 98 100 100
Cs ResNet50 96 99 99
Cs ResNet152 96 99 99
C1 DenseNet121 92 95 95
Cr ResNet101 91 98 98
Ca DenseNet169 91 96 97
Cs DenseNet201 86 96 96
Cs NASNetMobile 80 86 87

Average 92.8 96.8 97.0

Table 4.12: Success rates of EA*4C for each CNN, for 7 = 0.75 and G = 10, 000.

Table gives the success rates of our attack against each CNN, and is sorted according to
decreasing values of SR% 7. Table [9.6 in Appendix details the progression of the success
rates of EA'84C 45 the maximal number G of generations increases from 1,000 up to 10, 000.

Finally, Figure shows the convergence characteristics of EA*®8°C for each CNN. In a sense,
each curve shows how fast EA'®4C i improving the target category label value towards 0.75
throughout running generations. The running generation number is given on the horizontal axis,
and the vertical axis gives the average of ¢;-label values over 100 attacks for this generation.
Each of the 10 curves is the result of the average runs of EA'®4C gver 100 attacks performed
against C = Cy, for 1 < k < 10.

Let us explain on the example of MobileNet = C4 how Figure should be understood while
taking into account the values of angensg” of Table that includes all attacks (including
those that stopped at 10,000 generations without creating any 0.75-strong adversarial image).

For MobileNet, angensgil = 2201 while the convergence characteristics of EA*8°4C4 gives an
average target probability of 0.2604 after 2201 generations. Indeed, out of the 100 attacks, 66
successively created a 0.75-strong adversarial image in < 2201 generations, 33 needed more than
2201 generations to do so, and 1 terminated without success. In particular, the c;-label value of
these 34 latter cases remained small for the 2201%" generation. This explains why altogether one

Page 38 of

obtains an average cs-label value of 0.2604 at generation 2201.

.-%- DenseNetl21 PR >y
@ DenseNet169 WL
0.7 1 —— DenseNet201 *®
-m- NASNetMobile _‘,_2_ B
—@- MobileNet **—«*‘" e T *
-4 PResNet50 ./.,r"' R
% ResNet101 -
0.6 4 -
—8— ResNet152 - L
VGG16 o e o 0®
@ VGG19 °
05 1
oy
5
o 0.4 -
B e ®
= e
© -
2
©
0.3 4
0.2 4
0.1
0.0 +

2000 4000 6000 8000
Number of Generations

Figure 4.10: Convergence characteristics of EA'*#4C for each CNN. Each of the 10 curves is the
result of the average runs of EA'84C over 100 attacks performed against C = Cj, for 1 < k < 10.

Interpretation

Let us analyse the success rates of EA'®C the speed at which it creates adversarial images,
and assess the visual quality of adversarial images.

Success rate of EA8°4C __ With average success rates > 92.8, all CNNs considered and
whatever the success rate SRY7, SR or SR;™® considered, experiments (see Table |4.12)
clearly prove that EA'°C is highly efficient against all 10 challenged CNNs, at least when
G = 10, 000.

Table (Appendix completes the study, by showing that EA'%4C ig already very ef-
ficient for lower values of the maximum number G of generations taken for the termination
condition. For instance, the algorithm achieves average success rates (all CNNs considered,
whatever the success rate) > 76% already for G = 5000.

Page 39 of

Obviously, these success rates of EA*84C vary with C. Our algorithm EA'#4C with G =
10,000 (see Table proves particularly efficient against VGG16 and MobileNet, with suc-
cess rates > 99%, and less efficient against NASNetMobile and DenseNet201, with success rates
> 80% still. The situation is slightly different if one restricts G to G = 5,000. In this case (Table
Appendix, MobileNet remains the most vulnerable (97%), but is followed by ResNet50
(82%) this time, while the most resistant CNNs is still NASNetMobile (58%), but followed by
VGG19 (71%) this time, where the percentages given in bracket are those of SRY ™ (the others
are higher).

Note that the number of parameters of a CNN does not alone explain its resistance against our
attack, since the two extremes MobileNet and NASNetMobile have both 4M parameters (Table
7 and since a CNN with a large number of parameters, VGG16, is more exposed to our attack
than another with significantly less parameters, namely DenseNet201. However, CNNs with a
lower Top-1 and Top-5 accuracy appear in general easier to fool than those with larger such ac-
curacies (although NASNetMobile seems different in this regard). Our experiments indicate an
apparent correlation between Top-1 and Top-5 accuracy on the one hand, and relative resistance
to our attack on the other hand. We do not state any strict causality from one phenomenon to
the other though.

Speed at creating adversarial images.— Table (completed by Table in Appendix
shows that these success rates are achieved between 2122 generations in average for the
fastest CNN to fool, and 4126 generations for the most resistant CNN, and overall in 3417 gen-
erations in average for a CNN of the list. Moreover, the additional effort, measured in terms
of additional generations required to move from good enough to 0.75-strong adversarial images,
is 25,72%, and it is of 24,50% to move from adversarial for the untargeted scenario to good
enough for a CNN in general. Said otherwise, on the way to a successful creation of 0.75-strong
adversarial images for a given CNN, the first 56% of the total amount of generations are used
to create an adversarial image for the untargeted scenario, about 74% are used to create a good
enough adversarial image, and the remaining 26% are used to achieve the goal set.

In terms of computational time on the machine used, roughly 13 minutes are necessary in av-
erage to create an adversarial image for the untargeted scenario, 16 minutes for a good enough
adversarial image, and 20 minutes for a 0.75-strong enough adversarial image.

As shown by Figure the learning curve of EA'&4C differs substantially from one CNN to
another. The fastest learning curve (on the short to mid term) is achieved for MobileNet (C4), and
the slowest (on the mid- to long term) is achieved for NasNetMobile (C5). Although the learning
curves start very modestly for VGG16 and VGG19 (Cy, C19) since the EA’s learning curves for
these two are the slowest (hence even slower than for Cs) until to circa the 3000*"-generation,
their slopes sharply improve, and outperform the others from the ~ 7000*"-generation on.

Visual quality of the adversarial images.— In terms of the Ly-distance between adversarial
and ancestor images, if one takes as reference point the value 2436 obtained as the average Lo
distance between such images for the untargeted scenario (Table , the average divergence
from this value for a good enough adversarial image is +14%, and is +28% for a 0.75-strong
adversarial image.

Beyond these numerical measures, we actually claim that the perturbations added by EAtargEt’C,
to create adversarial images for any of the tested CNNs, are unnoticeable for a human eye (at

Page 40 of

least according to the paper authors). For instance, Figure compares an ancestor image and
the obtained adversarial images (modulo resizing) for the most difficult CNNs, namely VGG19
and NasNetMobile (C9,Cs), and the easiest CNNs, namely MobileNet and ResNet101 (Cy, C7), as
assessed by the values of zawg(}enso'75 in Table More precisely, the image on the left of Fig-
ure is AL0, the ancestor image in the llama category c3s5 pictured in Figure in Appendix
Performing EA8eC on this ancestor image for the (llama, agama) ancestor-target pair
for each of these CNNs with 7 = 0.75 and G = 10, 000 leads to the 3 groups of adversarial images
pictured on Figure The 1% group is composed of the first obtained 0.75-strong adversarial
images, mutatis mutandis the 2"4 group with good enough adversarial images, and the 3'¢ group
with adversarial images for the untargeted scenario. These experiments provide evidence that a
human eye is unlikely to notice any difference between these images, a fortiori between any of
the obtained adversarial images and the ancestor one.

4.2.4 Summary of the outcomes

Here, we proved that the EA'™24C evolutionary algorithm is highly efficient as a generic black-
box attack against a series of CNNs, trained on ImageNet to perform image classification. We
selected 10 such CNNs, that are well-known, stable, and with diverse architectures, and chal-
lenged these CNNs both for the untargeted scenario and the target scenario. In particular, for
each CNN C in the list, starting from an ancestor image, EA*2°4C aimed at creating 0.75-strong
adversarial images, that C classifies in a predefined target category with probability > 0.75 on
the one hand, and that are indistinguishable from the ancestor for a human on the other hand.
100 attacks per CNN were performed (for 100 original images sorted by groups of 10 images into
10 different ancestor categories, and for 10 associated target categories), leading to 1000 attacks
altogether. A set of meaningful indicators was designed to assess the success rate and the speed
of the attack, as well as the visual quality of the adversarial images.

EAeetC achieved a success rate of 92.8% at creating such 0.75-strong adversarial images, and
required 3417 generations in average. As a by-product, EAtareetC also successfully created in
96.8% of all cases good enough adversarial images within 2712 generations, and in 97% of all cases
adversarial images for the untargeted scenario within 2183 generations. On the way towards the
creation of a 0.75-strong adversarial image, about 56% of the total amount of generations ex-
plored the search space before creating an adversarial image for the untargeted scenario, and
74% led to the creation of a good enough adversarial image.

In terms of the difficulty of the assigned task, our algorithm compares favorably to other EA-
based blackbox attacks against ImageNet classifiers. For instance [55, [32] B] either focus solely
on untargeted attacks, or on targeted attacks but with no target label value threshold. The task
set to EA'™&°tC fylfilled successfully, was therefore strictly harder in this regard, since we set
a minimal label value for the target category, which moreover could be parametrized at will.
Actually our approach allows even more flexibility.

For instance, we can even design a targeted attack, where the main termination condition is to
create an adversarial image whose label value, given by the CNN in the target category, not
only dominates the others (as is currently the case with our definition of good enough adversarial
images), but does so with a gap with the second-best label value defined at will. Aiming at
0.75-strong adversarial images ensures that this gap exceeds 0.5, and hence that the classifica-
tion by the CNN is beyond any doubt. The variant sketched above would allow such certainty

Page 41 of

VGG-19 - llama: 0.966
NASNetMobile — llama: 0.949

Original Image MobileNet — llama: 0.988

ResNet-101 — llama: 0.917

NASNetMobile MobileNet ResNet-101

Adversarial Images

0.75-strong

agama: 0.75 Ee agama: 0.75

good enough

untargated

“+% Arabian damel: 0.49 #%* * frilled_lizard: 0.21 3 * Arabian camel; 0.38 ‘" Arabian camel; 0.35

Figure 4.11: Visual comparison of ancestor and adversarial images obtained by EAtareet:C for
the C = VGG19, NASNetMobile, MobileNet, and ResNet101 (C = Cy9,Cs,Cy, C7), for the (llama,
agama) ancestor-target pair and the ancestor image AL’ taken from Figurein Appendix

without necessarily waiting for the creation of a 0.75-strong adversarial image. We performed
some experiments in this direction, which we plan to further expand.

Additionally, the difficulty of the task assigned to the EA was substantially raised since we
required that the perturbations added by EA'8°C to create an adversarial image remained
unnoticeable to humans. This is a major advantage against the adversarial images created for
instance in [51} 32, [55], where a human immediately sees the introduced differences. Our EA-
based attack went therefore further, since a human eye is not able to notice any difference between
the ancestor and the adversarial images it constructs.

Page 42 of

Chapter 5

Attack on High Resolution
Images: Method and Performance

This chapter is extracted from [38].

5.1 Introduction

So far, the EA-based attack addressed images of moderate size, referred to here by the R domain,
ranging from 32 x 32 (typically for CNNs trained on CIFAR-10) up to 224 x 224 (typically for
CNNs trained on ImageNet), or resized to these values that the CNNs handle natively. The
construction of adversarial images by adding some carefully designed adversarial noise to the
potentially resized original image is illustrated in Figure [5.1

Original
image

Resized
original
image

Adversarial Adversarial
i image

CNN CNN

Input size: label value
224 x 224

224x224 224x 224

Algorithm

Figure 5.1: Generating an adversarial image of size 224 x 224.

In particular, the adversarial noise created by all these attacks is in the R domain handled
natively by the CNNs, so that the obtained adversarial images are as large as the CNN’s input
size. Said otherwise, attacks in the ”traditional” context create an adversarial noise of size equal
to the size of the CNN input, independently on the size of the original image. This means that
the size of the search space of these attacks does not depend on the size of the original image,
but coincides with the size of the CNN input (note en passant that the smaller the input size of

43

the CNN, the easier the creation of adversarial noise).

However, if the adversarial image should preserve almost all the details of an original image of
large size, what we call here an image in the H domain, in particular of a high resolution (HR)
image, the adversarial noise should have the same size as the original image, and consequently
the adversarial image should as well have the same size as the original one. A key point is that
the adversity character of a modified image is measured only when it is exposed to the CNN,
hence when it is resized to fit into the R domain. The adversarial character of an image should
show up when the CNN proceeds to the classification of its resized version, as illustrated in the
process given in Figure[5.2]

Original Adversa Adversarial
image i image

Resized
adversarial
image forthe CNN

CNN
— | Input size: p— CNN
224x224 label value

224x224

1824x2364 1824x2364 1824x2364

Algorithm

Figure 5.2: Generating adversarial images in the # domain.

Creating adversarial images of large size leads to three challenges in terms of speed, adversity
and visual quality challenges. Firstly, the complexity of the problem increases drastically with
the size of the images, as the search space for the adversarial noise grows quadratically. For
instance, the noise search space provided by the original image represented in Figure is 86
times larger than it is in the 224 x 224 domain. Secondly, the noise introduced in the H domain
should be assessed as adversarial in the R domain: it should ”survive” the resizing process to
fit the CNN. In the example of Figure 5.2} it would essentially mean that it survives a 86-fold
squeezing process. Thirdly, the noise introduced in the H domain should be imperceptible to
a human eye looking at the images at their native size, and not merely once they are reduced
to fit the R domain. For the example in Figure [5.2] it means that a human should not notice
any difference between the first and the second images of size 1824 x 2364 when looked at full size.

Already the first challenge is a very serious one. Indeed, should it even succeed, getting directly
such a HR adversarial image can take a very long time, even on a performing HPC. This is
probably the reason for which, to the best of our knowledge, so far, no attack — black-box
or not — has attempted to address large size images, in particular high-resolution images, by
creating convenient adversarial noise in the H domain, so that the modified image, resized to
the size handled natively by the CNN, becomes adversarial. Applying existing methods does not
work, at least in reasonable time. Although efficient in the R domain, their extension to the H
domain is not.

This work is a first step towards the creation of adversarial noise of size of the original image,
whatever this size may be. Our contribution is essentially threefold.

Firstly, we describe an indirect attack strategy that leads to the construction of HR images in the

‘H domain that are adversarial for the target scenario performed on a trained CNN (Subsection
5.3). The conceptual design of the strategy is flexible enough to lift to the H domain attacks

Page 44 of

considered as efficient in the R domain. Furthermore, it lists indicators relevant to the problem,
and it describes appropriate tests to assess the behavior and the efficiency of potential resizing
functions.

Secondly, we perform a feasibility study of this strategy with 10 explicit HR images and on
10 CNNs trained on ImageNet. We lift our EA-based attack to the H domain. We prove
experimentally that our strategy is highly efficient in terms of speed and of adversity, and is
reasonably efficient in terms of visual quality (Subsection . Concretely, we show that our
method succeeds in 900 out of 1000 trials, that the most appropriate resizing function is the
Lanczos function, and that the successful attempts require in average between 48" and 119.2 to
create 0.55-strong high resolution adversarial images (and between 35.7" and 98.8' to create good
enough high resolution adversarial images).

Thirdly, this study is completed by an attempt to apply the EA-based attack directly in the H
domain (Subsection . After 48 hours of computation time, our algorithm is unable to create
0.55-strong high resolution adversarial images for any of the 10 CNNs. Although the learning
curve of the algorithm improves, and although it creates images with a c;-label value increased
by a factor in the range [1.71,5.5] according to the CNN, the attack is not fast enough. These
outcomes, that experimentally substantiate the seriousness of already the first challenge, are an
additional argument in favour of alternative strategies like ours, in order to efficiently construct
adversarial images in the H domain.

Two subsections and an appendix complete this article. Subsection fixes some notations
about the ”lifted” version in the context of high resolution images, while Subsection [5.6| provides
our findings. The Appendix contains additional evidence of our findings.

5.2 The target scenario lifted to H

In the experiments of Subsection [5.4] we shall consider a CNN C that handles images of size
224 x 224, and that is trained on ImageNet. We denote the vector outputted by C as

V = {(ci,v;), where v; €]0,1] for 1 <4 < 1000}.

To express the target scenario in the context of high resolution (HR) images, let H denote the
set of images of various sizes h X w, and R denote the set of images of size natively adapted to C,
for instance 224 x 224 for the specific CNN considered in Subsection The only assumption
on the size of an image € H is to be larger than the CNNs input size. One assumes given a fixed
degradation function

p: H——>TR, (5.1)

that transforms any image Z of H into an image p(Z) of R. The well-defined composition of
maps

H—LSR
2
con ic (5.2)
)%

allows C to classify, in particular, the reduced image A, = p(A") € R in some class c,, with 7,
being the ¢,-label value outputted by C for A,, so that C(A,) = (¢qa, Ta)-

Page 45 of

In this context, an adversarial HR image for the (c,, c;) target scenario performed on AM € H is
an image DI (ALT) € H satisfying the two following conditions. On the one hand, a human should
not be able to notice any visual difference between the original A% and the adversarial D (ALY)
HR images. On the other hand, C should classify the reduced adversarial image D;(AM) =
p(DP(AB)) in the category c¢; for a sufficiently convincing ci-label value. The target scenario
(Ca, ct) performed on the HR image A" can be visualized by the following scheme.

A e oo > Dy (AM) e H
i b
A €R Dy(AM) e R (5.3)
C\L $C
(CasTa) €V (ct,m) €V

The image D (A € H is then a good enough adversarial image or a T-strong adversarial image

if its reduced version Dy (AM) = p(DE(AL)) is.

5.3 Attack strategy for the target scenario on HR images

We present here a strategy that attempts to circumvent the three challenges about speed, ad-
versity and visual quality cited in the Introduction.

In a nutshell, the first step consists in getting an image in R that is adversarial against the image
A, € R reduced from AM € H. Although getting such adversarial images in the R domain is
crucial for obvious reasons, the strategy does not depend on how they are obtained. It applies to
all possible attacks that work efficiently in the R domain. This feature contributes substantially
to its flexibility. In a second step, one lifts this low-resolution adversarial image up to a high
resolution image, called here the HR tentative adversarial image. In the last step, one checks
whether this HR tentative adversarial image fulfills the criterias stated in the last paragraph of
Subsection [5.2] namely becomes adversarial once reduced. A HR tentative adversarial image
that does so is a HR good enough adversarial image or a 7-strong adversarial image, depending
on the outcome of C for its reduced version in the R domain.

5.3.1 Construction of adversarial images in H

The starting point is a large size image A" € #, and its reduced image A, = p(A") € R,
classified by C as belonging to a category c,.

For Step 1, one assumes given an image YSt,;t (AP) € R, that is adversarial for the (¢, c;) target
scenario performed on A, = p(AY) for a ¢;-label value exceeding a threshold 7. As already
stated, it does not matter how such an adversarial image is obtained.

To perform Step 2, one needs a fixed enlarging function
A: R—>H (5.4)

that transforms any image of R into an image in H. Anticipating on Step 3, it is worthwhile
noting that, although the reduction function p and the enlarging function A have opposite pur-
poses, these functions are not necessarily inverse one from the other. In other words, p o A and

Page 46 of

Ao p may differ from the identity maps idg and idy respectively (usually they do differ).

One applies the enlarging function A to the low-resolution adversarial 75t,%t (Al) € R to obtain
the HR tentative adversarial image D%, (AL) = A(Dy 7, (ALY)) € .

For Step 3, the application of the reduction function p on this HD tentative adversarial image
creates an image Dy r, (ALT) = p(D}%, (AL)) in the R domain. One runs C on Dy ., (ALT) to get
its classification, in the hope to obtain a classification in ¢;.

The attack succeeds if C classifies this image in ¢;, potentially for a c¢;-label value exceeding the
threshold value 7 fixed in advance, and if a human is unable to notice any difference between

the images AL" and D}, (AL) in the H domain.

Scheme [5.5] essentially summarizes the different steps encountered so far:

AT EH e > Dt (A e H
P N o
_ (5.5)
A, €R ----- > Dis (AT eR Di . (AM) € R
C CJ/ J/C
(CarTa) (e, Tt) (e, ™)

5.3.2 Indicators: the loss function £ and L,-distances

Although both D, 7 (A™) and D, ,,(A") stem from A", and belong to the same set R of low
resolution images, these images nevertheless differ in general, since po\ # idg actually. This fact
has two consequences that affect the design of our attack, and clarifies the adjustment described

below.

On the one hand, it justifies the necessity of the verification process performed in Step 3 on the
HR tentative adversarial image, namely to check whether its reduction indeed belongs to ¢;. On
the other hand, should it be the case, it implies as well that 7, and 7; differ. It is then natural
to define the real-valued loss function L for a given A" € H as

LIAY) =7 — 7 (5.6)

Our attack is effective if one can set accurately the value of 7; to match the inequality 7z > 7 for
the threshold value 7, or to make sure that D; ,, (A%) is a good enough adversarial image in the
R domain, while controlling the distance variations between A" and the adversarial D% (ADY).
For this, one needs to assess the statistical behavior of the loss function £ on the one hand, and
of the Lo distance of a series of images on the other hand.

Indeed, while the loss function, that measures differences of values coming from images in the
R domain, assesses the objective of getting an image in the A domain that fools the CNN,
other indicators assess the objective of the visual proximity between images for a human eye.
Therefore, one computes the Ly distance of 4 pairs of images. The value of La(ALT, DPE. (ALT)),
actually the most important one, is between images that live in the A domain. The values of

Page 47 of

Lo(Aa, De.z, (A™)), Ly(Ag, Dy, (AM)) and Ly(Dy 7, (AM), Dy ,, (AT)) are for images that all live
in the R domain.

The values of these quantities, and therefore the performances and adequacy of the resized
adversarials to the addressed problem, clearly depend on the reducing and enlarging functions p
and A selected in the scheme.

5.3.3 Static tests with non-adversarial images natively in H

To find out which functions p and A are the most appropriate, we designed a series of tests
with promising candidates. These static tests, called that way since they are performed with
non-adversarial images, are convenient to evaluate the candidates. Scheme[5.7]shows the path of
the test performed with an image A% € H as starting point, knowing that the test is performed
with different ancestor images in #H, and the results are averaged among all trials.

At ey H
N, TN
A eR R (5.7)
C\L iC
(CayTa) EV (ca?,Ta) €V

First A" is reduced to an image A, € R, thanks to the reduction function p. One obtains the
classification (c,,7,) = C o p(AlT). Then one resizes A, first up with A then down with p. One
gets the classification of the resulting image C o p o AM(A,) = (¢q?,74), Where 7, is the ¢,-label
value, whether the resized image is classified to ¢, or not. Note that the resized non-adversarial
image obtained that way is likely to be classified in c,. Still, the design of the test can not make
this assumption a priori.

One evaluates the value of the loss function £(AY) = 7, — 7,, and of the distance function

Ly (A, X o p(AL)).

This later value with images in H gives a hint at a lower bound on the expected L, distance be-
tween A" and the adversarial image in the 7 domain our strategy is aiming at. By construction,
it is indeed unlikely that an adversarial in the 7 domain could be closer to A" than) o p(ALY)
will be. Therefore the L, distance of a HR adversarial to A is likely to be > Ly (A, Mo p(ALY)),
what makes this latter evaluation relevant.

5.4 Feasibility study

The feasibility study is performed with the 10 CNNs trained on ImageNet shown in Table
and with the 10 HR images A}, --- | A% shown in Table Out of them, 8 are taken from the
Internet (under Creative Commons Licenses), and 2 are images from the French artist Speedy
Graphito (pictured in [54], the corresponding files were graciously provided by the artist).

Table gives the size of each original HR image, the category ¢, and the c,-label value out-

putted by VGG16 for AM. Tt also provides the target category c;, chosen at random among
the categories # ¢, of ImageNet, that is used for the target scenario (cq,c;) to perform on each

Page 48 of

Abr. Table (in Appendix [9.3.1)) completes Table by providing, for each CNN, the corre-
sponding c,-categories and label values (all for the Lanczos interpolation method, as explained

in Subsection [5.4.1J).

One interest of adding the two specific artistic images is that, while a human may have difficulties
in classifying them in any category, the CNNs do it, although with relatively small label values

(see Table [5.1] for VGG16 and Table 9.7 in Appendix in general).

Table 5.1: For 1 < a < 10, the image A" classified by VGG16 in the category ¢, (interpolation

= "lanczos”).
a 1 2 3 4 5 6 7 8 9 10
Caq Cheetah Eskimo Dog Koala Lamp Shade Toucan Screen Comic Book SportsCar Binder Coffee Mug
w X h 910 x 604 960 X 640 910 x 607 2462 x 2913 910 x 607 641 x 600 1280 x 800 1280 x 800 1954 x 2011 1740 x 1710
" v, P8 Y 2
Y, 1 ¢ o
,v\o} 7
Abr ’ T A | e
0.95 0.34 0.99 0.53 0.45 0.70 0.48 0.28 0.08
ct poncho goblet Weimaraner weevil wombat swing altar beagle triceratops hamper

We tun the stafic fests to select the p and A tuncfions out of 4 candidates (Subsection '_k|b.4.l|).
Then we briefly describe the evolutionary algorithm EA'4C that we shall use as a black-box
attack against each of the 10 CNNs (Subsection . We apply the strategy with the evo-
lutionary algorithm and get the HR adversarial images that fool CNNs for the target scenario
with the threshold value set to 7 = 0.55 (Subsection. Finally, we discuss the visual quality
of the obtained HR adversarial images, especially from a human point of view (Subsection.

For 1 < a < 10, the HR ancestor image ALY, its resized version A o p(AY) € H obtained
by the static tests (Subsection [5.3.3), and one sample of an adversarial image D?frt (Ary € H
per (cq,c:) combination of the target scenario performed on VGG16, can be retrieved from

https://github.com/aliotopal /HRad-versImgs/blob/main/original-advers.md.

5.4.1 Selection of p and \

To select the functions p and A, we evaluate four interpolation methods that convert an im-
age from one scale to another. The Nearest Neighbor [49], the Bilinear method [2], the Bicubic
method [33] and the Lanczos method [19][47] are non-adaptive methods among the most common
interpolation algorithms, with the additional advantage of being available in python librairies.

The static tests designed in Subsection are performed on the 10 HR images of Table
with the 10 CNNs of Table [£.9] for all 16 possible p and A combinations coming from this se-
lection. Figure summarizes the results in two heatmaps (see Figure in Appendix
for individual heatmaps per CNN). They represent the average values (for all CNNs) of the loss
function £¢(AM) = 7, — 7, (Figure a)), and of La(AL X\ o p(AlT) (Figure b), the two
images being in H).

Figure a) shows that the best performing loss value, namely 0.039 (which is quite close to

the optimal 0 value), is achieved when the images are scaled down with the Bicubic method and
up with the Lanczos method (observe that the Nearest Neighbor method is the default upsizing

Page 49 of

https://github.com/aliotopal/HRadversImgs/blob/main/original-advers.md

P\ ':':i::let:r Bicubic | Bilinear | Lanczos p \A N':_ ei;'f:r Bicubic | Bilinear | Lanczos
oo o] 5 39025

Bicubic [0.051 | 0.046 | 0.059 | 0.039 Bicubic 37542 | 39099 | 36958
Bilinear | 0.063 | 0.059 0.056 Bilinear 39210 38560
Lanczos | 0.068 | 0.063 0.058 Lanczos 37113 | 38583 | 36564

(a) (b)

Figure 5.3: The overall average values of the loss functions £(A") = 7, — 7, in Table (a), and
of Ly(A, o p(AlT) in Table (b).

and downsizing method in Keras).

However, Figure b) shows that this combination for (p, A) gives the second best Ly distance
while (p, \) = (Lanczos, Lanczos) gives the best. Additionally, Figure a) shows that the
loss achieved by the (Lanczos, Lanczos) combination is the 4" best performing combination and
remains very moderate.

Since human visual quality of the adversarials in the H domain should prevail, especially at a
very tolerable cost in terms of the Loss function, we select (p, A\) = (Lanczos, Lanczos). This
choice is used in all further experiments.

5.4.2 EA'eC parameters

The maximum pixel modification on individuals is limited to a fixed range given by € = 16
throughout the search process to maintain the proximity of the evolved images with the ancestor
image. The step size per selected pixel is set to d = 1, the population size is set to 40 and the
maximum number of generations is set to G = 35000. Additionally, we set A =1 and B = 0.

5.4.3 Running the strategy to get adversarial images with the EA

With the rescaling functions (p, A) = (Lanczos, Lanczos), we deploy the strategy detailed in
Subsection with the evolutionary algorithm EA'**#°*¢ for the 10 CNNs and the 10 ancestor
images A"". The goal is to create 0.55-strong HR adversarial images as well as good enough HR
adversarial images for the target scenario (cq, ¢;) specified in Table (see also Table .

Since different seed values for the EA may lead to different results, we increased the robustness

of the outcomes by performing 10 independent runs with random seeds for each (c,, ¢;) pair and
ancestor A%, leading to altogether 100 trials per CNN, hence to 1000 trials altogether.

Page 50 of

Table 5.2: Average performance over the successful runs of EA®®#C for each C trained on
ImageNet in creating 0.55-strong and good enough HR adversarial images for the target scenario
(Ca,ct) performed on AP

0.55

CNNs avgGensl® avgé’, avgGend>® AddEg;z‘Z avgTime, avgTimel® avgTimeg

Cq DenseNet121 4561 0.150 7765 70.2 0.532 40.5 68.9
Co DenseNet169 8112 0.241 11221 38.3 0.608 82.2 113.7
C3 DenseNet201 5288 0.166 8077 52.7 0.609 53.7 82.0
C4 MobileNet 4201 0.191 5640 34.9 0.510 35.7 48.0
Cs NASNetMobile 10765 0.224 12981 20.6 0.550 98.8 119.2
Cs ResNet50 4336 0.142 5891 35.9 0.575 41.6 56.5
C; ResNetl01 6261 0.151 8656 38.3 0.578 60.4 83.5
Cs ResNetl152 6268 0.143 8477 35.2 0.649 67.8 91.8
Cy VGGI6 4069 0.112 6250 53.6 0.567 38.5 59.1
Cio VGGI19 5683 0.109 8180 43.9 0.570 54.0 7.7

Overall Avg. 5954 0.163 8314 39.6 0.575 57.3 80.7

90% of the runs terminated successfully in less than 35,000 generations. The detailed success
rate for each CNN is shown in Table (Appendix [9.3.1]).

For each CNN, Table 5.2 gives the average of four indicators, computed over the successful runs
for the specific CNN considered. avgGens25® is the average number of generations required to

obtain the 0.55-strong adversarial images ’D?fn (AIM) € H, avgGensl® is the average number of

generations required to obtain good enough adversarial HR images DZ 7;’tge(Ahr) while being on
the way to 0.55-strong adversarial images, and avgg’en is their average c;-label values. The last

indicator AddEg;‘zg shows the additional effort to move up from a good enough HR. adversarial
image, to a 0.55-strong HR adversarial image, measured as a percentage assessing the proportion

of additional generations required.

The three last columns of Table contain the average computational time per generation
(avgTime,, in second), the average total computational time required to create a good enough
adversarial image (avgTimel", in minutes) and the average total computational time required to
create a 0.55-strong adversarial image (avgTimed®, in minutes).

Out of the 900 successful trials from 1000 attempts, Table [5.2] shows that, on average, good
enough HR adversarial images are created by our algorithm in 5954 generations, and 0.55-strong
HR adversarial images in 8314 generations (of course with large variations, depending on the
CNN considered). Measured by the number of additional generations required, the effort neces-
sary to move up from a good enough HR adversarial image, that has a c¢;-label value of 0.163 in
average, to a 0.55-strong HR adversarial image is 39.6%.

In terms of the average computational time (on the hardware specified at the beginning of this
article), roughly 57 minutes were necessary to create a good enough adversarial image, and 80
minutes for a 0.55-strong adversarial image, again with large variations from one CNN to another.

For each ancestor image A" for which the algorithm succeeds at least once, one computes the
convergence characteristics of the algorithm EA'*#%C for 7, and for 7; on the way to the HR

0.55-strong adversarial image D?fn (Abr).

Page 51 of

Probability

0 500 1000 1500 2000 2500 3000 0 2000 4000 6000 8000 10000 12000
Number of Generations Number of Generations

(a) A7 (b) AT

Figure 5.4: Convergence characteristics for 7; and 7; for AL (a) and A (b) of EA™EC for
C = VGGI6.

Table 5.3: Average of the minimum and maximum values of £(AY) = 7, — 7.

CNNs Avg. Loss¢ (min) Avg. Lossc (max)
C1 DenseNet121 -2.09E-04 2.87E-01
C> DenseNet169 -3.96E-05 3.58E-01
Cs DenseNet201 -1.28E-05 3.25E-01
Cs MobileNet -4.50E-06 3.32E-01
Cs NASNetMobile -2.89E-06 3.48E-01
Ce ResNet50 -2.45E-05 2.18E-01
Cr ResNet101 -2.31E-05 2.13E-01
Cs ResNet152 -1.53E-05 1.96E-01
Co VGG16 -7.05E-04 3.94E-02
Cio VGGI19 -1.30E-03 4.00E-02

Overall Avg. -2.34E-04 2.32E-01

An example, representative of the overall behavior (see Appendix Figures and [9.10)),
is given for VGG16 in Figure for A, and for A, where the graphs are capped on the

0.55

horizontal axis at their respective avgGensg’> values.
Table completes the information provided by the convergence graphs. It gives the average,

over the successful among the 10 independent runs per ancestor image, of the minimum and
maximum values of the loss function £(AY) = 7 — 7.

A thorough study of the loss function as the algorithm proceeds, generation for generation, to-
wards the construction of the HR 0.55-strong adversarial image 'D{‘fn (ABT) | shows the following
outcome, at least for the successful runs performed in this study (see Appendix Figure
for one detailed example). During the first generations, the values of the loss function are alter-
natively positive and negative, and remain very small, typically of order 10~%. Then, at some
point, namely from some generation on (that differs from one HR ancestor image to another,
and from one CNN to another as well), the loss function becomes > 0, and remains so until
the algorithm terminates. Moreover, although some slight fluctuations occur, the asymptotic

behavior of the loss function is to almost strictly grow from there on.

Page 52 of

Table 5.4: The three distances L}, L3, and L3 of images in the R domain, and the distance L3
in the H domain.

CNNs L L3 L3 L
C1 DenseNet121 2357 2266 4096 28112
Co DenseNet169 2122 2204 1529 33355
Cs DenseNet201 2392 2468 1593 35439
Cy MobileNet 2182 2255 1463 33437
Cs NASNetMobile 2610 2562 1641 28501
Cs ResNet50 2631 2485 1426 28040
Cr ResNet101 2724 2620 1626 34568
Cs ResNet152 2771 2649 1665 34683
Cy VGG16 3211 2951 1485 35424
Cio VGGI19 3227 3009 1490 35428

Overall Avg. 2623 2547 1801 32699

A consequence of the convergence graphs given in Figures and and of the numerical
values given in Table is that setting a threshold c;-label value 7; = 7 + Avg.Loss;(max)
seems a reasonable choice, at least if one aims at getting 0.55-strong HR adversarial images by
our method. A safer choice would be to add a value exceeding slightly the absolute maximum
value of the loss function among all such values for all 10 ancestor images. For VGG16 for
instance, it would mean to set the threshold c;-label value to 74 = 7 4+ 0.065 since the largest
Lmaz value is 0.064 for that CNN. However, for some CNNs, these values vary largely from one
ancestor image to another, so that, in a first approach, we would recommend to add the average
loss function instead.

5.4.4 Visual quality

We first assess numerically the quality of the obtained HR adversarial images as compared to
the HR ancestors. Table gives the three Lo differences of images in the R domain, namely
L% = LQ(AG, Dt,ﬁ (Aa)), L% = LQ(AG, Dt,ﬂ (Aa)), and L% = LQ(Dtj-t (Aa)7 Dt"rt (Aa)), and the L2
difference (in the 7 domain) L3 = La(AL, DPE, (ALT)).

The most saying outcome of Table [5.4] is that the average value of the Lo distance between
the HR ancestor and adversarial images remains comparable, actually even smaller, than the
corresponding value (namely for Lanczos-Lanczos) measured for non-adversarial images in the
heatmap in Figure (b) In other words, at least in average, our attack does not arm the
numerical performance of the resizing functions. It even enhances it, what is probably due to
some statistical artefact.

Still, the ”true” visual quality for a human eye is assessed by looking at some representative
examples either from some distance, or by zooming on some areas.

For instance, let us consider the HR ancestor image A% represented in Figure and a zoom
of that picture on some restricted area (taken at random). Figure shows the non-adversarial
resized image A o p(AY) with (), p) = (Lanczos, Lanczos). Finally, Figure shows the HR
0.55-strong adversarial image created by EA'8°C for ¢ = VGG16. To further illustrate the
phenomenon, we proceed similarly (still for VGG16) with another ancestor HR image, namely
A in Figures |5.6al [5.6b] and |5.6c}

Page 53 of

At some distance, both the non-adversarial resized original image and the HR adversarial seem
to have a good visual quality as compared to the HR ancestor. However, the zoomed areas show
that details from the HR ancestor images become blurry for a human eye, not only in the HR
adversarial images (as seen from Figures and but in the non-adversarial resized images
as well (as seen from Figures and . Moreover, a human eye is not able to distinguish
the blurriness that occurs in the non-adversarial resized image from the one that shows up in
the HR adversarial: the loss of details looks the same in both cases.

This experiment, representative of the general behavior over the CNNs, shows that the observed
blurry effect is not due to an inefficiency of our strategy, nor of the algorithm EA'&etC at
least to a large extent, but is due to the lack of high-quality interpolation methods. Indeed,
these experiments show that scaling up to the H domain images belonging to the R domain,
adversarial or not, results in a loss of high-frequency features on the up-scaled images. Moreover,
the very fact that the loss of details looks the same for a resized non-adversarial image as for the
adversarial image created by our algorithm in the H domain speaks in favor of our attack, since
it makes our attack harder to detect.

5.5 Direct attack in the H domain

In this last part, we show that a direct attack in the H domain, that would aim at making effec-
tive the top arrow of scheme without applying our indirect strategy, is a non-trivial problem
in practice.

Concretely, for each C = Cy --- ,C19, we challenge EA'8°C to perform a direct attack in the
‘H domain for the most promising (ancestor, target) pair and the corresponding ancestor image
AP in order to create directly a 0.55-strong HR adversarial image. In all cases, the process
stops when either a direct attack turns out to be successful, or if the computing time exceeds 48
hours. The most promising pair, and the corresponding ancestor, is defined as the combination
for which the indirect attack with the algorithm EA'™8°C ig the fastest in terms of the number
of generations required to succeed.

Computation shows that the (toucan, wombat) pair, with the corresponding ancestor image AL,
is the most promising for C4,Co,C19, and that the (comic book, altar) pair, with the correspond-
ing ancestor image A%, is the most promising for the 7 remaining CNNs.

Clearly, EAtareet.C goes beyond the previous experiments since it now processes a search space
of size 910 x 607 in the case of AL and of 1280 x 800 in the case of AJ, instead of 224 x 224 for
the indirect attack.

Figure illustrates the convergence characteristics of EA'#%C when working directly in the
‘H domain, at least for the combinations and ancestor images considered (see Figure in
Appendix for all 10 CNNs). Figure a) shows the outcome for C = VGG16 when one
proceeds with the ancestor image AL, and Figure b) shows the outcome for C = ResNet152
when one proceeds with the ancestor image AY. The horizontal axis of the graph is the number
of generations, capped at what one gets after 48 hours, and the vertical axis is the c¢;-label value
for the fittest individual.

Page 54 of

(c) D (AF)

Figure 5.5: Visual comparison in the H domain of AY (a) with its non-adversarial resized
version (b) and its adversarial obtained by EA'*"&°%C for ¢ = VGG16.

Page 55 of

L--l

:HSJ KORR\

a) Afj

(

\.u---

.EQJ KRR

Aop(ALp)

b)

(

aiines

,a./.d

7 (AL)

(c) D

with its non-adversarial resized

Visual comparison in the H domain of AL (a)

Figure 5.6:

= VGGI6.

version (b) and its adversarial obtained by EA'™ &€ for C

Page 56 of

les Convergence graph 1e-s. Convergence graph

Log Probability
&
Log Probability

0 10000 20000 30000 40000 0 5000 10000 15000 20000 25000
Generation Generation

(a) VGG16 - AZT (b) ResNet152 - A%
Figure 5.7: Convergence characteristics of EA*'#°%C aiming at generating within 48 hours a
high-resolution adversarial image by directly evolving (a) A% for the (toucan, wombat) pair and
C = VGG16, and (b) AY for the (comic book, altar) and C = ResNet152.

Although the search space increased by around ”only” 11 times for AL and 20 times for A4,
the EA was nevertheless unable to create high-resolution adversarial images within 48 hours, as
shown in Table 0.9, Appendix [9:3.3] The EA stopped at ~ 50,000 generations for the 3 CNNs
considered in the former case, at ~ 28,000 generations for the 7 CNNs considered in the later
case, with the fittest individual obtained still classified by the corresponding CNN as belonging
to the ancestor category (toucan or comic book).

More precisely, the c,-label value of the fittest individual takes values in the range ~ [0.084, 0.748],
the actual values depending on the CNN considered. Its target category label value remains very
small, culminating at 7.0E — 04 in the best case, achieved by Ci, one of the 7 CNNs considered
for the (comic book, altar) pair.

Although the learning curve of the EA improves (see Figure and Figure in Appendix
, the ¢;-label value of the fittest individual increases by a factor in the range [1.71,5.5]
depending on the considered CNN (see Table Appendix m), and the critical regions to
modify are narrowed down as the EA works, the EA is not fast enough to create images that
converge to the target category in reasonable time. Although difficult to assess precisely, our
experiments indicate that attacking directly in the H domain may take weeks or maybe months
to succeed. It may also come out that even reaching the threshold c;-label value of 0.55 may be
out of reach in some cases by such a direct attack.

The reasons for this slowness are twofold. On the one hand, a search space of between 11 to 20
times larger than the size 224 x 224, for which EA'%¢C has proven to be efficent, makes it dicf-
ficult for the EA to narrow down quickly the regions on which to focus. On the second hand, the
average time per generation, that was = 0.575 seconds in the R domain, is now ~ 5.74 seconds
in the H domain. Out of the operations purely linked to the EA, Table and (Appendix
show that the most consuming one is the mutation process, and that this operation of
the algorithm consumes 3x more time in the A domain than it used to take in the R domain.
Although with a lesser timing effect, the crossover operation of the algorithm also consumes 3x
more time in the H domain than in the R domain. This again is due to the size of the images
given to the EA.

Page 57 of

Therefore, creating high-resolution adversarial images from A" directly in the H# domain requires
new methods. The results of this subsection also sustain, in a way, the indirect strategy adopted
in the remaining of this paper to address high-resolution images.

5.6 Summary of the outcomes

Trained CNNs performing image recognition convert input images to some fixed and moderate
size, say 224 x 224 for CNNs trained on ImageNet typically. This process transforms the input
image into a low resolution image that the CNN is able to analyze. So far, attacks, aiming at
creating adversarial images fooling these CNNs, create some adversarial noise of size equal to
the input size of the CNN.

The method presented in this work is the first effective attempt to make the search space for the
adversarial noise depend on the size of the original image, and not on the CNN’s input size. In
particular, it is effective for high resolution images in terms of speed, adversity and visual quality.

More specifically, the designed indirect strategy lifts any existing attack, efficient in the low
resolution domain, to an attack that applies in the high resolution domain. We performed an
experimental study for 10 CNNs trained on ImageNet, by lifting our EA-based attack EA&et:C
with the aim to create high resolution images adversarial for the target scenario, that these CNNs
classify in the target category with confidence > 0.55. Our algorithm succeeded in 900 cases out
of 1000 attempts to create 0.55-strong high resolution adversarial images.

To sustain this indirect strategy, we also showed that attacking directly in the high resolution
domain is not feasible in practice. After 48 computation hours, no high resolution adversarial
image was obtained by the direct attack for any of the 10 CNNs, even for the most promising
pairs of target and ancestor categories and corresponding ancestor. A contrario, for the 900 suc-
cessful attempts, our indirect attack succeeded to create 0.55-strong adversarial images within,
in average, 48’ for the easiest CNN to fool, and 119’ for the hardest CNN to fool.

Page 58 of

Chapter 6

Robustness of Attack Against
Filters

This chapter is mostly extracted from [I5].

6.1 Introduction

1
i dog
(d) ()

Figure 6.1: The images in the first row represents the original images and in the second row the
adversarial images and their respective class labels that are created by (a) One-Pixel attack [55],
(b) Few-Pixels attack [46], (c¢) Fooling Transfer Net (FTN) [63], (d) Scratch that! [32], and (e)
our EA-based attack [13] 1] .

The purpose of this paper, that very substantially enhances most aspects of [12], is to address
three issues: (1) Intrinsic performance of this EA-based attack, (2) Filter resistance of the ad-
versarial images created by the EA, (3) Creation of natively filter resistant adversarial images.
Before being more specific, let us point out that all experiments in this article are performed
with the distance d = Lo for the CNN C = VGGI16 [24] [52] trained on the Cifar-10 [34] dataset
to classify images according to 10 categories, and address mainly the target scenario, but also,
to a lesser extent though, the untargeted scenario (see Section.

59

We address issue (2) by a thorough and extended efficiency study of our EA-based attack. In
a first series of experiments with one ancestor per category of Cifar-10, we perform 10 indepen-
dent runs per ancestor per target category, leading to altogether 900 attacks. The algorithm
EAtLa;gCt’VGG'16 obtains a success rate of 100% (all ancestor-target categories are achieved for at
least one of the 10 runs performed on each ancestor), requiring between 290 and 2793 genera-
tions in average, depending on the (c,,c;) target scenario. To better assess the importance of
the choice of the ancestor in a given category c,, and the impact of the seed value used for a
specific run, we extend these experiments. In a second series of experiments, we pick randomly
50 distinct ancestors for each of the 10 categories of Cifar-10, and run altogether 4500 attacks for
the target scenario. In this case, our algorithm achieves a success rate of 98%, requiring between
461 and 1717 generations in average. Moreover, both series of experiments show that a run of
EAtLa;gEt’VGG'16 has more than 96% (actually 96,56% for the former, and 98,06% for the latter
series) to terminate successfully, and to create images that fool humans and VGG16 trained on
Cifar-10, despite our demanding requirements for a successful termination.

The issues (3) and (4) (addressed respectively in Sections and deserve to be put in the
following broader perspective. Let A be an image classified by a CNN C in some category c,,
and D be an adversarial image, say for the target scenario, that C classifies in a distinct category
¢t (at this stage, the type of attack that leads to D does not matter). One now considers a
function F, that acts on such images, to create images F(A) and F(D) of the size handled by
the CNN (what coincides with the same common size of A and D in the present case). How does
the CNN classify these new images? Does F(D) remain adversarial, or does the composition
C o F (that consists in putting F ahead of C) protect C against the attack? If this latter case
holds, can one adapt the attack to create images that fool not only C, but also the F-enhanced
CNN C o F? If yes, would such images, adversarial for C o F, be adversarial as well for C o G
for G # F, hence have the capability to fool the same CNN C but enhanced by other functions G?

Among the different meaningful functions F one could think of in this context, we undertake the
study for filters. Indeed, daily used in image processing, filters substantially impact the visual
appearance of images for a human eye on the one hand, and potentially affect the classifica-
tion process of a trained CNN on the other hand. It is therefore tempting to check whether
adding filters may prevent CNNs from misclassification, or may reduce this risk to some extent,
when facing an adversarial image. Additionally, one may also want to evaluate the quality of ad-
versarial images by their capacity to mimic the ancestor’s image behavior when exposed to filters.

For reasons given in Section in which is discussed the issue (3), we proceed to the selection of
5 filters, namely the Inverse filter (F}), the Gaussian blur filter (F3), the Median filter (F3), the
Unsharp mask filter (Fy), and the combination Fj of the two last ones. We filter by each of them
the ancestor A, and the adversarial images D, ;(A,) created by the algorithm EAtLa;th’VGG‘16
in Section VGG16 is then challenged with these filtered images. The values of a series of
specifically designed indicators lead to two conclusions. On the one hand, the Inverse, and the
Unsharp mask filters are significantly inefficient against our EA, since for instance 95% of the
adversarial images filtered by Fj remain adversarial for the target scenario, and 95% remain
adversarial for the untargeted scenario (in a relaxed sense to be made precise in this Section).
A contrario, the other filters, especially the combination Fj, render our EA-based attack less
effective, for both the target and the untargeted scenario.

This leads us to address the final issue (4). For a filter F', we conceive a filter-enhanced F-
fitness function (see Section , and the corresponding algorithm EAtLa;g;t’VGG'm, obtained

Page 60 of

from E)Atazrget VGG-16 by updating the fitness function accordingly. For reasons given in Section

| we select F' = F5, and allocate to EAfrgI?t VGG16 the task to create adversarial i images that
are moreover natively immune against the filter I 5. In other words, these adversarial images fool
simultaneously C and C o Fy for C = VGGI16 for the target scenario (still with the demanding
target label value > 0.95), while remaining so close to the ancestor that no human eye would
notice any difference. We perform similar experiments as for the issue (2). A first series of 900
attacks (one ancestor per ancestor category, 10 independent runs for each (cq(A4), ¢:) scenario)
shows that EA'f;rg;; VGGG 4 chieves a success rate of 96,66% (3 combinations were not achieved),
and that the probability that it terminates successfully for a given run is 95, 77%, requiring in
average between 798 and 2746 generations for the successful (¢, (A,), ¢;) considered. In a second
series of 4500 attacks performed with 50 different ancestors per category, EAf:gI?; VGG ohowed
a success rate of 88%, with between 1250 and 2404 generations in average.

We complete the study (4) by exploring whether an adversarial image, constructed by AtLangIff; VGG-16
to fool both C and Co F5, would also be adversarial against Co F}, for the other filters Fy, Fy, F3, Fy
for C = VGG16. Our study shows that it is so for F3 and Fy with (depending on the target or
untargeted scenario) between 83% and 89% of the images remaining adversarial against these
filters. 56% of theses images are also adversarial for Fy for the untargeted scenario, while this
percentage drops to 23% for F,. Therefore, the EAf;%??VGG_lG attack, designed to be robust
against C and Co Fy for C =VGG16, is also robust to some significant extent against all individual
filters for the untargeted scenario.

Section summarizes the conclusions of this case study, and provides a series of research
directions.

6.2 EA'¥C parameters

Although applicable to any CNN trained at image classification on some dataset, we instantiate
our approach on the concrete case of VGG16 [52] trained on Cifar-10 [34]. Table presents
the chosen ancestors, their respective categories and their reference numbers in the test set of

Cifar-10.
Table 6.1: For 1 < a < 10, the image A, (and its reference number n° in the test set of Cifar-10)

classified by VGG16 in the category c,, with its corresponding c,-label values. These images are
used as ancestor in most of our experiments.

a 1 2 3 4 5 6 7 8 9 10

Cq plane car bird cat deer dog frog horse ship truck

n° 281

91 455 16 29 17 1 76
: "I LrT
TIIE) =

0.6900 0.9999 0.9999 0.9998 0.9999 0.9996 0.9999 0.9998 0.9996 0.9984

For all tests run here, we used 7 = 0.95 (termination with success), G = 7000 (termination),
§ = 3, a population size of 160, B(g,,ind) = 107°, A(g,,ind) = 10719810 %nalet] and d = L.

Page 61 of

6.3 The adversarial images obtained by EAtLTPget’VGG'16

For an ancestor A, in a category c¢,, and the target scenario for the category c¢;, one defines
Dai(Ag) = EAtLa;rgEt’VGG_w(Aa7 ¢t), provided the algorithm terminates successfully. One writes
more simply D, ¢, or even Dy, if there is no ambiguity about the choice of the ancestor A, chosen
in category ¢, (mutatis mutandis in Sections and.

6.3.1 With one ancestor per category

We pick from Table the ancestor image A, in the category ¢,, and perform 10 independent
runs (with random seed values) of EAtLa;g'St’VGG'16 for all 9 possible target categories ¢; # cq.

An example of the quality of the obtained adversarial images is highlighted by the comparison
between the dog ancestor Ag of Table[6.1] and its corresponding 9 evolved adversarial images D,
with ¢ # 6 (obtained after the first of the 10 independent runs of the EA) pictured in Figure[6.2]
More generally, Figure (Appendix contains the adversarial images obtained by the
first successful run out of the ten independent runs of EAtL‘"‘;gEt’VGG‘16 for each of the ancestor
images of Table and Table (Appendix give their respective label values.

This example already illustrates that, by slightly changing many pixels instead of heavily chang-
ing a few pixels, our approach enhances the indistinguishability between the adversarial image
and the ancestor image. In particular, our method differs substantially from [32 [46] [55], where
a small fraction of pixels is changed, but at the cost of being noticeable for a human without

difficulty (see Figure .

ol ol e

plane car bird cat deer dog frog horse ship truck

Figure 6.2: From the left, comparison of the ancestor Ag in the 6 position with the adversarial
images D; in the t*! position (¢ # 6). VGG16 classifies Ag in the dog category with probability
0.9996386, and classifies D; in the target category c; with probability > 0.95.

For the ancestor image A, (from Table in the category ¢, specified in its a*® row, the "
column of Figure gives the average number of generations required by EA&ehVEG-16 ¢,
terminate, computed over 10 independent runs. In 4 ancestor/target combinations, this number
is followed by a symbol (*z) or (*z,fy). These symbols indicate that the algorithm did not
achieve the 7 = 0.95 threshold value within 7000 generations for x of the 10 runs, and there-
fore terminated without success for the corresponding seed values. The c;-label values of the
corresponding best descendant images remained stuck at a local optimum < 0.95, whose quality
is also indicated by the symbol. In the case of the symbol (xz), this local optimum was quite
close to 0.95 (not less than 0.9370 actually; we call quasi-adversarial the corresponding images
produced by EAtLa;gCt’VGG'w). In the case of the symbol (xz,1y), the complementary number y
specifies the number of runs among the x unsuccessful runs for which the local optimum stayed
very low (between circa 1074 to 107°).

Page 62 of

plane car bird cat deer dog frog horse ship truck Row Average

plane (A4) 64 275 [2188 702 = 613 337 | 798 147 1108 692
car (A,) | 1095 451 1246 768 | 1545 543 676 422 725 830
bird (.A3) | 1080 665 1823 925 559 [2719 872 1092 1850
cat (A,) | 494 341 250 263 217 113 411 526 555 352
deer (As) [12700 343 460 29 | 84 712 2793
dog (Ag) | 879 882 460 129 | 938 397 280 971 545 609
frog (A;) | 690 520 295 488 | 717 536 834 927 685 632
horse (Ag) = 454 21 300 204 223 303 | 371 309 228 290
ship(Ay) 318 182 1291 432 [2599 | 1502 823 | 2065 484 1077
truck (Ayp) 145 663 383 | 1411 437 | 84 | 919 271 292 598
Column
Average | 872 1085 449 | 931 841 | 1415 544 | 974 1238 1373

Figure 6.3: EAEHQYgCt’VGG'16’s performance on all possible ancestor/target combinations with one
ancestor per category. The rows give the ancestor category ¢, (and the specific ancestor A, in
¢q), the columns indicate the target class ¢;, and the cell values indicate the average number of
generations required by EAtLE;rgCt’VGG‘16 to terminate, computed on 10 independent runs.

For each 1 < a < 10, the "Row Average” value, displayed in the rightmost column of the a'"
row, indicates the average number of generations required to perform our attack on the ancestor
A, in the category ¢, for all ¢; # ¢, (Mutatis mutandis the ” Column Average” value displayed
in the bottom row of the ¢ column).

Our EA shows a success rate of 100 % since all possible target categories were achieved with
at least one of the ten runs for the considered ancestors. Still, some attacks are easier than
others. The ancestor image for which EAtLarget’VGG'16 needs the least amount of effort in general
is the horse ancestor image Ag, and bird (c3) is the easiest target category whatever the ancestor
category (with the considered ancestor images at least). At the other end of the scale are the
deer ancestor image A5 and the bird ancestor image Az for which EA{8°%VEG16 1oqyires the
largest amount of effort in general, while dog (cg), truck (c19) and ship (cg) are the hardest
target categories. These correspond precisely to the categories (and the ancestors) for which
some runs of EAta}rget VGEG16 ¢ o minated without having created an appropriate adversarial im-
age within 7000 generatlons Indeed, out of the altogether 900 attacks (10 runs for each of the
90 ancestor/target combinations) performed by EAtLa;rget VGG-16 Flgure shows that only 31
did not succeed. It is worthwhile noting the homogeneity and the non-diversity of the quality of
the rare unsuccessful cases. For such unsuccessful (¢4, ¢;) combination, either the local optimum
is close to the 7 = 0.95 value for all failed cases (this occurs for the 9 unsuccessful runs of the
(bird (A4),dog) combination), or it is very far of this threshold value for all failed cases (this
occurs for the 22 unsuccessful runs with the deer (As) ancestor for the car, the ship and the
truck targets).

Therefore, as a consequence of this study with one ancestor A, per category c,, our experiments
show that the probability that EA'}fge‘“’VGG'16 terminates successfully for a given run is 96, 56%,
and that its termination requires between 290 and 2793 generations in average.

6.3.2 With 50 distinct ancestors per category

To further evaluate our attack’s efficiency beyond the case of one single ancestor A, per category
Cq as described in subsection and to assess the importance of a specific ancestor chosen in a

Page 63 of

given category, we considered 50 distinct images taken randomly (from the Cifar-10 testing set)
in each of the 10 categories ¢,. Unlike the 10 independent runs per ancestor of subsection [6.3.1]
we considered that running EAtLa:get’VGG'16 with one single run per ancestor was enough to make

our point. Therefore, we performed altogether 50 x 10 x 9 = 4500 attacks with EAtLa;get’VGG_lﬁ.
Figure that summarizes the outcome of this experiment, is to be interpreted in a similar
way as Figure [6.3] with the difference that the averages are computed over the 50 ancestors per
category c¢,. Note also that the (xz) and (*z,Iy) symbols added to some cell values for a given
(Ca,ct) scenario have a different interpretation in Figure compared to Figure since they
apply globally to different ancestors here, as opposed to applying to different runs performed on
the same ancestor in Figure [6.3]

plane car bird cat deer dog frog horse ship truck Row Average

plane 1201(*2, $2) 284 606 415 859(*1) 752(*1,#1) 858 304 1042 (*3, #3) 702

bird 416 1029 (*1, ¥1) 376 390 537 397 679 575 844(*1, 41) 583

cat 653(*1) 703 358 381 152 234 321 834 519 462

deer 762(*2, #2) - 208 290 274 382 269 855 (*1, #1) 1139 (*4, #4) 626

dog = 772(*1, #1) 799 319 203 492 344 392 609 686 513

frog 527 646 306 302 321 463 588 532 466 461

horse (134302 02)| TR | 851 692 310 325 [1085 (%1, #1) fe7o (%4 a) PETCRD] 1156

ship 454 708 890 1044 (*2,¥2) 684 (*1, 1) 1) 734 _ 639 858

truck 576 495(*1, $1) 813 912(*1, #1) 1059 (*1, ¥1) 1077 (*2, #1) 994 908 395 803

Column

Average 812 990 641 783 645 787 713 862 752 896

Figure 6.4: EAngCt’VGG'w’s performance on all possible ancestor/target combinations with 50
distinct ancestors per category. The rows give the ancestor category c,, the columns indicate the
target class ¢;. The cell values give the average number of generations required by EAtLa:gEt’VGG_w
to terminate, and computed on one run performed on each of the 50 ancestors in the category

Ca-

Performance differs again from one category to another. The ancestor categories for which

EAtLa;rget’VGG'16 needs the least amount of effort in general are the frog, the cat and the dog

categories. In addition, EAtLa;ge“VGG‘16 achieves the target categories bird and deer fairly fast,
whatever the ancestor categories. Conversely, the ancestor categories car and horse are those
for which EAtLa;gEt’VGG'16 requires the largest amount of effort in general, while the car and the

truck are the hardest target categories.

In this context, the comparison of these results with those of Figure [6.3] shows the relevance
for EAtLarget’VGG'w’s performance of the specific ancestor image chosen in a given category cg.
Indeed, while for instance the specific ancestor Ag in the horse category was optimal in a sense
(achieving all possible target categories in 290 generations in average), this property did not
extend to the horse category as a whole as just seen. A contrario, while for instance the com-
bination (deer, truck) with the ancestor As in the deer category was (with 6939 generations in
average) the toughest to achieve among all trials of subsection m it proves reasonably easy
to achieve in general (with 1139 generations in average) with the 50 ancestors chosen for our
experiment.

Page 64 of

Finally, out of the altogether 4500 trials performed by EAtLb‘z’rget’VGG_lﬁ7 only 87 did not ter-
minate successfully. Therefore, this experiment provides a heuristic evidence that one run of
EAtLa;get’VGG'w has a probability of 98,06% to terminate successfully. To better assess the
strength of the failed cases, we run again the 87 unsuccessful cases 10 times with different seed
values: out of them 28 succeeded in less than 10 runs, while 59 did not. This result, together with
the fact that our algorithm required between 461 and 1717 generations in average in this case,
and compared to the outcome of the similar experiments performed in the previous Subsection
with other ancestors, sustains further the impact of the specific ancestor A, taken in a
given category c¢,, and of the seed value used to run the EA. It also shows that the success rate
of our attack, namely the capacity for EAtLargEt’VGG'16 to terminate successfully for at least one
of ten runs out of a small number of trials, is > 98, 68%.

6.4 Robustness of EAtLa;‘get’VG'G"16 against filters

For the reasons given in the introduction to this paper (Section [6.1]), the study undertaken in
this Section essentially amounts to checking whether adding filters may prevent VGG16 from

misclassification, or may reduce this risk to some extent, when facing an adversarial image created
target,VGG-16
by EA} .
2

6.4.1 Selection of filters

Although a large list of filters exists, we focus on the following four that have a significant impact
on images [39, chapters 7 and 8.

The inverse filter Fy replaces all colors by their complementary colors. This operation is per-
formed pixel for pixel by subtracting the RGB value (255,255, 255) of white by the RGB value
of that pixel.

The Gaussian blur filter Fy uses a Gaussian distribution to calculate the Kernel, G(z,y) =
22442
5257€ 207 , where x is the distance from the origin on the z-axis, y is the distance from the

origin on the y-axis and o is the standard deviation of the Gaussian distribution. By design, the
process gives more priority to the pixels in the center, and blurs around it with a lesser impact
as one moves away from the center.

The median filter F3 is used to reduce noice and artefacts in a picture. Though under some
conditions it can reduce noise while preserving the edges, this does not really occur for small
images like those considered here. In general, one selects a pixel, and one computes the median
of all the surrounding pixels.

The unsharp mask filter F4 enhances the sharpness and contrast of images. The unsharp masked
image is obtained by blurring a copy of the image using a Gaussian blur, which is then weighted

and subtracted from the original image.

Any such filter F', or any combination of filters F;,, F;,,--- , F;, operating successively (in that
order) on an image Z, creates a filtered image F'(Z) or F;, o--- 0 F;, o F; (I).

We make use of these four filters Fi, Fy, F3, Fy either individually, or as the combination Fy5 =
F50Fy. The reason for the choice of the latter Fjo Fy is that F} is used to amplify and highlight

Page 65 of

detail, while F3 is used to remove noise from an image without removing detail. Therefore, a
combination of these filters could remove the noise created by the EA while maintaining a high
level of detail. Moreover, since the computations are performed on images of size 32 x 32, we
shall take a filter-size f = 1 for F} and f = 3 for the others.

6.4.2 VGG16’s classification of filtered images

For 1 < a < 10, the 10 images composed of the ancestor A, on the one hand, and its correspond-
ing 9 adversarial images D, ;(.A,) obtained by EAtLMgEt’VGG‘16 on the other hand, and pictured in
Figure (Appendix are exposed to the 5 filters Fy, Fy, F3, Fy and F5 = F30 Fy. Figure
shows the outcome for the dog ancestor image Ag, and the adversarial images D; (¢ # 6).

o
A A A A W A
rararare
Vel ol |
aravanana

Figure 6.5: Comparison of the impact of filters on the ancestor Ag and on the adversarial images
D;. The k" row represents F(D;) in t*™® position (with D = Ag), where F = F}, for 1 < k < 5.

For each F' = Fy, 1 < k <5, we then challenge VGG16 with these altogether 100 filtered images
F(A,) and F(D,+(A,)).

The complete classification and the corresponding label values outputted by VGG16 for F(A,)
and F (D, (Ag)) for the 5 considered filters and for all (cq,¢;) combinations are given in Tables
to (Appendix . In these tables, an image is classified as belonging to a category
¢, if ¢ has the largest label value outputted by VGG16 among all categories.

6.4.3 Indicators addressing the robustness of filtered adversarials

Filters differ substantially in their individual capacity to sustain the adversarial component of
the filtered F(D, (A,)). Additionally, it may also happen that VGG16 classifies F(A,) in a
category different from the ancestor category c,. Since we consider in this Section (and the next
one) that the classification of an image in a given category ¢ means that the label value given
by VGG16 for c is the largest among all possible categories, we relax accordingly the formula-
tion of the target scenario: in this context, one does not necessarily require a target label value
exceeding the threshold value 0.95, but only asks that it is the largest one. The formulation of

Page 66 of

the untargeted scenario in the filtered context, made precise below in this Subsection, requires
to pay attention to the potential difference between the categories ¢, and cp(4,)-

The following indicators assess the above stated issues quantitatively for each filter Fj, with
the ancestors and adversarial images considered. These indicators take integer values, and we
specify their theoretical bounds (which clearly depend on the number 10 of ancestors, and on
the number 9 of target categories considered in this study).

For each 1 < a < 10, one first defines pg(A,) as the number of target categories ¢; such that
VGG16 classifies Fj, (D, +(A,)) (including potentially D, 4(Aq) = Aq) back to the ancestor cat-

egory ¢,. One computes Xy = Z}j’:l pr(Aq) € [0,100].

One sets 0, (A,) = 1 if pp(Ag) = 10, namely if the filtered ancestor and all filtered adversar-
ial images are classified back to the ancestor category. Otherwise d;(A,) = 0. One computes

A =02 0k(Aq) € [0,10].

One sets ux(Ay) = 0 if VGG16 classifies Fj(A,) back to cq, and pg(A,) = 1 if it does not. One
defines My = 3222 i (A,) € [0,10].

Of interest for the target scenario is (A,), the number of ¢ # a for which Fj (D, (A,)) is clas-

sified as belonging to ¢; (namely those that ”really succeed”), and its sum T; = 2,110:1 Tr(Aq) €
[0,90].

Finally, one considers Tr(a) to assess the untargeted scenario: Ty(a) counts the number of
t # a for which Fj(D,:(Aq)) is classified as belonging to ¢ # cp,(4,)- One computes its sum

Te = Yaey Tr(Aa) € 10,90].

Observe en passant that the inequality 7 < Tr may theoretically not hold (as opposed to what
happens in the absence of any filter, where the corresponding inequality necessarily holds). The
reason is that one considers ¢; # ¢, for the left-hand side of the inequality, and ¢ # cp, (4, for
the right-hand side. Since the quantities ¢, and cg,(4,) may differ, the set whose number of

elements is T may not be included in the set whose number of elements is T

6.4.4 Robustness analysis of the adversarial D,;(A,) against filters
Let us now proceed to the analysis of Table that provides these quantities resulting from,

and summarizing Tables to (Appendix [9.4.1)).

Looking at Xj shows that, although all filters F},--- , F5 bring some filtered images back to
Cq, the Unsharp mask (Fy) and the Inverse (F}) filters are the less efficient in this regard. A
contrario, the three other filters bring back a majority of filtered images back to ¢,. Noticeably
the Median median (F3) filter and foremost the combination (F5) of the Unsharp and Median
filters are highly effective since more than 80% of all filtered images are classified back to c,.
The three filters F' = F5, F3 and F5 are also those that bring all filtered images back to ¢, for 5
(in the case of Fy), 6 (in the case of F3) and 7 (in the case of Fj) ancestors, including a fortiori
the filtered ancestor.

Consistently, the consideration of 7; and of T; shows that EAtL‘r’;rgEt’VGG'16 resists highly effi-

Page 67 of

Table 6.2: Indicator values assessing the robustness of adversarial images D, ;(A,) against
filters. For each ancestor A,, computation of (pr(Aa),0k(Aa), ur(As)) in the 15 row, and of
(76(As), T (Ag)) in the 274 row. The last two rows give the sums 2(110:1 of these quantities.

k
D 1 2 3 4 5

A, (10,1,0) | (0,0,1) (2,0,0) (0,0,1) (7,0,0)
(0,0) (2,7) (1,8) (9,8) (1,3)

A, (1,0,0) (3,0,0) (9,0,0) (3,000 | (10,1,0)
(1,9) (2,7) (0,1) (7,7) (0,0)

As (7,000 | (10,1,0) | (10,1,0) | (1,0,0) | (10,1,0)
(1,3) (0,0) (0,0) (9,9) (0,0)

A, (3,000 | (10,1,0) | (10,1,0) | (1,0,0) | (10,1,0)
(1,7) (0,0) (0,0) (8,9) (0,0)

As (1,0,1) | (10,1,0) | (10,1,0) | (1,0,0) | (10,1,0)
(3,7) (0,0) (0,0) (9,9) (0,0)

Ag (0,0,1) (0,0,1) (1,0,1) (1,0,0) (4,0,0)
(3,5) (1,0) (L,1) (9,9) (1,6)

Az (5,000 | (10,1,0) | (10,1,0) | (2,0,0) | (10,1,0)
(1,5) (0,0) (0,0) (8,8) (0,0)

Asg 0,0,1) | (10,1,0) | (10,1,0) | (1,0,0) | (10,1,0)
(3,7) (0,0) (0,0) (9,9) (0,0)

A, (6,0,0) (1,0,1) (8,0,0) (1,0,0) (8,0,0)
(2,4) (2,2) (1,2) (9,9) (1,2)

Ao (0,0,1) 0,0,1) | (10,1,0) | (1,0,0) | (10,1,0)
(L,1) (1,0) (0,0) (9,9) (0,0)

(Sm A, M) 1 (33,1, 4) | (54,5, 4) | (80,6, 1) | (12,0, 1) | (89, 7, 0)
(Te, Te) (16, 48) | (8, 16) (3,12) | (86,86) | (3,11)

ciently against the Unsharp mask filter Fy, since 95 % (86 out of 90) filtered images remain
adversarial for the target scenario (with target label values no less than 0.5505, see Table ,
and altogether 95 % (86 out of 90) filtered images are adversarial for the untargeted scenario. Our
EA remains also significantly efficient against the Inverse filter Fy, since 17 % (16/90) filtered
images remain adversarial for the target scenario (with target label values > 0.4415, see Table
[9.13)), and altogether 53 % (48/90) are adversarial for the untargeted scenario.

On the other hand, the Gaussian blur (F%), the Median (F3), and the Median and Unsharp
combined (Fy) filters are effective to a far larger extent against EAﬁrget’VGG"lG, with F3 and
F5 being particularly efficient at removing the adversarial property of the descendant images.
Indeed, only 3 filtered adversarial images (hence 3 % of all filtered) remain adversarial for the
target scenario for each of these two filters (with target label values > 0.4978 for F5, and > 0.8131
for Fy, see Tables and . For the untargeted scenario finally, the proportion of filtered
images that are adversarial drops to 13 % (12/90) for F5, and to 12 % (11/90) for Fs.

This study proves that the Inverse (F;) and the Unsharp mask (Fj) filters are significantly to

largely inefficient against our EA, but that the Gaussian (F»), and foremost the Median (F3)
and the Combination (F5 = F3 o Fy) of the Unsharp mask and the Median filters render our

Page 68 of

EA-based attack significantly less effective, for both the targeted scenario and for the untargeted
scenario, at least with the ancestor images considered.

6.5 The filter-enhanced F-fitness function

Results of the previous section lead to the conception of a new fitness function, that natively
forces the EA to create adversarial images that remain adversarial in a targeted sense once
filtered. For a filter F, the filtered-enhanced F-fitness function is obtained as the following
variant of the fitness function defined in Equation :

fity, (ind, g,) = A(gp, ind) (0ialc] + op(inaylce]) — B(gp, ind)La(ind, A), (6.1)
where the component 0p(;nq)[c:] measures the probability that the individual filtered with F' is
classified as the target category. One obtains EA'ffFCt’VGG'w from EAtL"Z‘rgCt’VGG"16 by updating

accordingly the fitness function. The termination and termination with success criteria are the
same as in Section (.21

Since F5 = F30Fy is not only highly efficient against EAtLa;get’VGG'lﬁ, but is the filter that reverts
the largest proportion (89 %) of images D, (A,) back to ¢,, we limit this study to this case.

6.5.1 Running EAE?%?’VGG'IG with one ancestor per category

For 1 < a < 10, one performs 10 independent runs of EAtLa;%?; VGG-16 1) the ancestor A, in the

category ¢, given by Table ﬂ If EA?;%?“VGG'M terminates successfully, one writes Dii(Aa)

for the first adversarial image obtained by AtLa;g;: VGG-16 1) Jess than 7000 generations. By

construction, this image and its Fj filtered version are classified by VGG16 as belonging to the
target category c¢; with probability > 0.95, while remaining so close to A, for a human eye that
no one would notice any difference.

Figure pictures the adversarial images Dg: % (Ag) obtained that way for the dog ancestor Ag
(all first runs succeeded for the dog ancestor).

i A i i i i i

plane deer dog frog horse ship truck

Figure 6.6: From left to right, comparison of the ancestor Ag in the 6" position with the
adversarial images Dg °(Ag) in the t*® position (¢ # 6).

For the ancestor image A, (taken from Table in the category ¢, specified in its a*™® row,
the ' row of Figure |6.7| gives the average number of generations required by E Atarge'E VEG6

terminate, computed over 10 independent runs. With a terminology adapted from the one used
in Flgurem 3| this number is followed by a symbol (xz, {y, tz) in 5 of the 90 cells. The occurrence
of this symbol means that the algorithm did not terminate successfully for x out of the 10 runs
(obviously, the average value = 7000 if z = 10). Not succeeding means that the ¢;-label value

Page 69 of

of the most performing descendant images D or of the filtered image F5(D) is stuck at some
local optimum < 0.95. The symbols Iy and fz measure the quality of these local optimum.
1y (respectively 1z) counts the number of runs among the = unsuccessful ones for which the lo-
cal optimum for the descendant D (respectively F5(D)) stayed very low (between 10~3 and 10~°).

plane car bird cat deer dog frog horse ship truck Row Average
plane (4;) 169 435 12455 866 512 1330 174 1562 1611
car (A,) | 1600 562 | 1704 1170 1911 832 1640 655 1010 1231
bird (A3) | 1320 1508 1197 2201 1111 1808 2746
cat (A4) | 1468 1320 459 559 359 266 839 1016 1466 861
deer(As) 72931 723 810 431 1098 1217 2266 2924 1910
dog (Ae) | 1582 1275 723 189 2171 775 573 1440 1365 1121
frog (A7) | 1761 1574 576 1074 1262 1037 1863 1775 1695 1401
horse (Ag) 768 503 475 450 435 814 753 391 1287
ship(Ag) 475 262 1333 740 2333 1226 1186 3279 811 1293
truck (A) 225 1011 638 1224 706 1391 1051 436 503 798
Column 347 1990 658 | 1128 1870 1137 1289 1624 1771 1448

Average

Figure 6.7: EAthrgFest’VGG'm’s performance on all possible ancestor /target combinations. The rows

give the ancestor categories ¢, (and the specific ancestor A, in ¢,), the columns indicate the target
EAtarget,VGG—lG

class ¢;, and the cell values give the average number of generations required by Lo Fs

to terminate, computed on 10 independent runs.

Out of the 900 performed runs, 38 did not terminate successfully, and 3 out of the 90 possible
ancestor/target scenarios were not achieved, namely the pairs (plane(A;), deer), (bird(As), car),
(horse(Ag), ship). Therefore, the experiments show a success rate of EAZT%;:NGGJG of 96, 66%,
and a probability that the algorithm terminates successfully for a given run of 95, 77%.

Comparing Figureto Figurewhen all 10 runs terminate successfully for both EAtLa;rgEt"VGG‘16

and EAfﬁﬁ;’VGG"lG for a (ancestor(A,), target) pair (83 cases altogether), the latter algorithm

requires usually more generations than the former in average (with 3 notable exceptions, namely
the (ship(Ayg), deer), the (ship(Ag), dog) and the (truck(Aig), cat) pairs for which it needs 10%,
18% and 13% less generations). The fact that, for the 80 remaining pairs, EAtLa;g;;’VGG'w re-
quires between 1.12 and 3.87 (depending on the pair considered) times more generations than
EAtLe;rget,VGG—IG

teria to fulfill.

to terminate successfully is not surprising since there are 3 and no longer 2 cri-

For all 87 combinations (ancestor(A,),target) for which EAtLaf;St’VGG'm terminated success-
fully in at least one of the 10 independent runs, Figure (Appendix displays the first
adversarial image Df, %(A,) obtained by EAng;;’VGG‘w (with DX5(A,) = A, repeated on the
diagonal for the sake of consistency and compa’rison)7 and Table (Appendix gives the
corresponding label values.

6.5.2 Running EAtLa;Ig;,?t’VGG'IG with 50 ancestors per category

For the sake of completeness, we performed the same experiments as in Subsection with

the same 500 ancestor images (50 ancestor images per ancestor category), but this time with

EAtLa;)g;;’VGG'w instead of EAtLazrget’VGG'w. Figure m shows the outcome. Out of 4500 attacks,

target, VGG-16 . .
543 were unsuccessful, hence the success rate of EA Laz rg;is’ is 88%, and requires between

Page 70 of

1250 and 2404 generations in average.

plane car bird cat deer dog frog horse ship truck Row Average
plane 1038 1914 1920 2190 3546 | 2408
(*17, $1, 116)| (*4, 10, 14) | (*8, 40, 18) |(*12, 10, t12)|(*15, 0, t15)| (*6, %0, 16) |(*15, 40, 115)| (*8, 1, 18)
o 1552 2168 1964 1786 1898 1187 2814 1066 1807
(*1,#1,10) | (*2,#2,10) | (*3,41,12) | (*2,40,12) | (*2, %2, 10) (*2, #1, 1)
biral 1505 3280 2112 1821 1491 1514 2144 Y 3254 2152
(*2,10,12) | (*11, $2, 18) (*10, %0, 110)| (*8, 40, 18) | (*s, 1, t4) | (*7,10,17) | (*7,0,17)
| 1906 3132 894 855 1842 1745 2820 3876 2092
(*1, 10, 11) [(*15, 42, t12)| (*3, %0, 13) (*¥12, %0, +12)| (*4, %0, 14) [(*10, 10, 110)| (*7, %0, 17) |(*13, 0, T13)[(*21, $0, 121)]
doer| 1367 3630 535 870 723 1362 1189 1485 2524 1526
(*1,10,11) | (*2, 10, 12) (*s,10,15) | (*4, 10, 14)
dog| 180 2011 1027 603 1856 2120 1781 3028 1954
(*s, %0, 15) (*4,10,14) | (*2,10,12) | (*8,10,18) (*11, 30, 11) | (*7, %0, 17) |(*10, 0, T10) | (*14, $0, 14|
frog] 1481 3712 613 734 895 904 1961 1775 2583 1629
(*16, 18, 18) (*2, 10, 12) (*3,11,12) | (*4, 10, 14)
horse| 1419 2687 779 1215 956 997 1866 1783 2959 1629
(*2,10,12) | (*3,40,13) | (*2,40,12) | (*7,%0,17)
ohip| 1218 2724 1222 1494 1710 2056 1999
(*2,10,12) | (*9,%0,19) | (*1,0,11) | (*2,%0,12) [(*13, %0, 113)| (*2,41, 1) |(*12, 40, 112)| (*4, %2, 12) (*11, %0, t11)
o 1355 1180 978 1199 1584 1337 1302 1157 1157 1250
(*2,10,12) | (*4, 10, t4) (*2,41,11) | (*3,10,13) | (*1,#1,10) | (*2,40,12) | (*1,40,11) | (*1,%0, 1)
Column

Average | 1491 s 90 1368 1815 1360 1806 1782 2077 | 2814 |

Figure 6.8: 500 attacked images with 50 samples per ancestor class. Rows correspond to source
classes, columns correspond to target classes, and cell values correspond to the average number

of generations needed by EAtLazrngf;’VGG'w to terminate.

Comparing Figure with Figure and Figur with Figure shows that E AtL?gFe;ﬂ,VGG-m

. . t t, ~16 Lo .
usually requires more generations than EA La;ge to construct adversarial images, what is

to expect since EAthrgFe:’VGG'IG must satisfy not two, but three conditions.

o

6.5.3 Robustness of D}%(A,) against VGG160F; for all filters
Using again the images of Figure[0.14] (Appendix[9.4.2)) obtained as described in Subsection [6.5.1]

the ancestor A, and the corresponding adversarial images Di 3(Ag) are then tested against all
five filters of subsection Figure [6.9] shows the outcome of this process for the dog ancestor

Ag and the adversarial images ’Dg 5 (Ag).

Page 71 of

v i,

L =
L -
L -

o 8 B8, 0, B8,
A A AL A A A A A A
A A A A A A A A A
ol A Ao A A A A N

uaaaaéﬂﬂﬂu

Figure 6.9: Impact of filters on the ancestor Ag and adversarial images ’D . The k*" ro
represents F(Dg";(Ag)) in t*" position (with D% 5(As) = Ag), where F' = Fk for 1 <k <5.

These filtered images are given to VGG16 for classification (see Appendix “ Table m 8| for
Fs, and Table“ 9.19|for Fy, Fy, F3 and Fy, with D%, (A,) = A, to ease the notations).

Mutatis mutandis, one obtains Table in a similar way as Table Note that the upper
bounds of the indicators are impacted by the fact that 3 combinations (cq(As),c;) were not
achieved. Indeed, one has 0 < ka5 (A,) <9fora=1,3,8,and 0 < ka5 (As) < 10 otherwise. One
writes 55 5(A,) = 1 if the filtered ancestor and all filtered adversarial images are classified back
to the ancestor category whenever possible. Consistently, one has 0 < 7,7 (A,), 7* (A,) < 8 for
a=1,3,8 and 0 < 7’75‘5 (Aa), ?,55 (A,) <9 otherwise. As a consequence, one has 0 < 255 < 97,
0< A M <10, and 0 < 7,75, 7,75 < 87.

Table clearly shows that the produced images are not only adversarial for F5, but also for
F; and Fy to a large extent for the target scenario (88% and 84% respectively), and for the
untargeted scenario (89% and 88% respectively) as well. Additionally, 56% of these images are
efficient against Fy for the untargeted scenario, while this percentage drops to 23% with Fj.

This study shows that the EAtargEt VEG-16 gttack, designed to be robust against Fj, is also robust
to some significant extent agalnst all individual filters considered for the untargeted scenario,
the Gaussian filter (Fy) being the most efficient at removing the adversarial character of the
constructed images.

6.6 Summary of the outcomes

This work successfully addresses the four issues raised in the chapter’s introduction. First, an ex-
tensive experimental study further showed the intrinsic efficiency of our algorithm EAtLa:get’VGG'16
at constructing adversarial images for the target scenario performed against VGG16 with images
from Cifar-10. We then challenged the adversarial images obtained against a series of filters, and

Page 72 of

Table 6.3: Indicator values assessing the robustness of adversarial images Di";(Aa) against
filters. For each ancestor A,, computation of (pr®(Aa), 05" (Aa), ui? (Ag)) in the 15¢ row, and of

Fr

(77 (Aa), 7% (Aa)) in the 274 row. The last two rows give the sums 3, of these quantities for

all possible a.

k
» 1 2 3 4 5

A (9,1,0) [(0,0,1) [(1,0,0) | (0,0,1) [(1,0,0)
(0,0) (2,6) (8,8) (8,7) (8,8)

AQ (17070) (2a070) (13070) (430;0) (17030)
(1,9) (4.8) (9,9) (6,6) (9,9)

As (6,0,0) | (9,1,0) | (6,0,0) | (1,0,0) | (1,0,0)
(2,3) (0,0) (3.3) (8.8) (8,8)

Ay (5,0,0) | (9,0,0) | (1,0,0) | (1,0,0) | (1,0,0)
(2,5) (1,1) (8,9) (5,9) (9,9)

As (0,0,1) | (10,1,0) | (1,0,0) | (1,0,0) | (1,0,0)
(3.8) (0,0) (8.9) (9.9) (9.9)

Ag (0,0,1) | (0,0,1) | (0,0,1) | (1,0,0) | (1,0,0)
(3,6) (1,0) (7,6) (9,9) (9,9)

Az (6,0,0) | (8,0,0) | (1,0,0) | (5,0,0) | (1,0,0)
(2,4) (2,2) (9.9) (5,5) (9.9)

As (0,0,1) | (6,0,0) | (1,0,0) | (1,0,0) | (1,0,0)
(1,8) (2,3) (8,8) (7.8) (8,8)

Ag (6,0,0) | (1,0,1) | (2,0,0) | (3,0,0) | (1,0,0)
(14) (2,2) (8,8) (7,7) (9,9)

Aio (0,0,1) | (0,0,1) | (1,0,0) | (1,0,0) | (1,0,0)
(1,2) (2,1) (9,9) (9,9) (9,9)

(=F5 A M)] (33,1,4) | (45,2,4) | (15,0,1) | (18,0,1) | (10,0,0)

(755, T,F) (16,49) | (16,23) | (77,78) | (73,77) | (87,87)

finally designed a variant EA

target,VGG-16
Lo, F

7 of the EA, designed specifically to fool VGG16 and
VGG16 composed with a filter F', and demonstrated the efficiency of the produced adversarial
images not only against the specific filter chosen, but also against other filters as well.

Page 73 of

Chapter 7

Comparative Analysis of the EA
and BIM Adversarial Attacks

The work presented in this chapter is extracted from [14].

7.1 Introduction

This chapter focuses on understanding the underlying manner in which the EA-based attack de-
ceives the CNNs. A thorough analysis is performed through various perspectives and experiments
with the adversarial images and their noise. Additionally, the entire study is simultaneously per-
formed on another successful, but opposing attack, which allows for their comparison.

This study aims at gaining an insight into the functioning of adversarial attacks by analyzing
the adversarial images on the one hand, and the reactions of CNNs when exposed to adversarial
images on the other hand. These analyses and comparisons are performed from different perspec-
tives: behaviour while looking at smaller regions, noise frequency, transferability and changes in
image texture, penultimate layers. The reasons for considering these perspectives are as follows.
The first question we attempt to answer is whether adversarial attacks exploit the CNNs’ bias
towards texture [25]. This issue is related to the frequency of the noise, in the sense that changes
of image texture are reflected by the input of high frequency noise [53]. This issue is also related
to what happens at smaller image regions, since texture modifications should also be noticed at
these levels. The transferability issue measures how far the adversarial noise is specific to the
attacked CNN, or to the training data. Finally, studying the behaviour of the penultimate layers
of the addressed CNNs provides a close look at the direction of the adversarial noise with respect
to each object category.

This insight is addressed via a thorough experimental study. We selected 10 CNNs that are very
diverse in terms of architecture, number of layers, etc. These CNNs are trained on the ImageNet
dataset to sort images of size 224 x 224 into 1000 categories. We then intentionally chose two
attacks that are on opposing edges of the attacks’ classification. More precisely, here we consider
the gradient-based BIM [36] and the score-based EAtareetC 67, B 11, 13], both having high
success rates against CNNs trained on ImageNet [3T), 57].

We run these two algorithms to fool the 10 CNNs, with the additional very demanding require-
ment that, in order for an image to be considered adversarial, its c;-label value should exceed

74

0.999. Starting with 10 random pairs of ancestor and target categories (cq,ct), and 10 random
ancestor images in each c,, hence 100 ancestor images altogether, out of the 1000 performed runs
per attack, the two attacks succeeded for 84 common ancestors, leading to 2 distinct groups (one
for each attack) of 437 adversarial images coming from these 84 convenient ancestors. The 2x437
adversarial images and the 10 CNNs are then analyzed and compared from the above-mentioned
perspectives. Each of these perspectives is addressed in a dedicated subsection, that contains
the specific obtained outcomes.

The study is organized as follows.

Section explains the criteria leading to the selection of the 10 CNNs, of the ancestor and
target categories, as well as the choice of the ancestor images in each category. We recall the
design of our algorithm EA'#°%C and of BIM, and explain how we obtained the 0.999-strong
adversarial images used in our experiments.

In Section we analyze whether the adversarial noise introduced by the EA and by BIM has
an adversarial impact at regions of smaller size. We also explore whether this local noise alone
is sufficient to mislead the CNN, either individually or globally but in a shuffled way.

In Section [7.4] we provide a visualization of the noise that the EA and BIM add to an ancestor
image to produce an adversarial image. In particular, we identify the frequencies of the noise
introduced by the EA and BIM, and, among them, those that are key to the adversarial nature
of the images created by each of the two attacks.

Section [7.5] explores the potential transferability of the adversarial images from one CNN to
another. The issue is to clarify whether adversarial images are specific to their targeted CNN,
or whether they contain rather general features that are perceivable by others. Since ImageNet-
trained CNNs are biased towards texture [25], we examine whether texture is changed by the EA
and by BIM, and whether CNNs with differing amounts of texture bias agree on which image
modifications have the largest adversarial impact.

The transferability issue is pursued in Section We explore whether the adversarial noise at
regions of smaller sizes is less CNN-specific, hence more transferable, than at full scale. This
issue is addressed in two ways. First, we check whether and how a modification of the adversarial
noise intensity affects the ¢, and the c;-label values predicted by a CNN when fed with a differ-
ent CNN’s adversarial image, and the influence of shuffling in this process. Secondly, we keep
the adversarial noise as it is (meaning without changing its intensity), and we check whether
adversarial images are more likely to transfer when they are shuffled.

Finally, we delve inside the CNNs in Section [7.7] We study the changes that adversarial images
produce in the activation of the CNNs penultimate layers.

The concluding Section [7.8] wraps up our results. This study is completed by Appendix [9.5
which displays the ancestors, the convenient ancestors, and some 0.999-strong adversarial images
obtained by the EA and by BIM. The Appendix also contains a series of tables and graphs
supporting our findings.

Page 75 of

7.2 Adversarial images created by BIM and by EAtaetC

This section first lists both the 10 CNNs and the (ancestor, target) category pairs on which
the targeted attacks are performed (Subsection . Since this paper’s focus is on performing
experiments with the adversarial images, rather than evaluating the attacks’ functioning or
performances, we only give a brief overview of the two algorithms used here, namely EA8et:C
and BIM (Subsection . Lastly, we specify the parameters used by EA®*°*C and BIM to
construct the adversarial images used in the remainder of this paper (Subsection .

7.2.1 Selected CNNs, ancestor and target categories

We challenge a significant series of well-known CNNs, that cover a large part of the existing deep
learning approaches to object recognition. For practical reasons and for comparison purposes,
we require the availability of their pre-trained versions in the PyTorch [48] library, and that they
handle images of similar size. These criteria led us to select the following 10 CNNs, trained on
ImageNet, and handling images of size 224 x 224: C; = DenseNet121 [29], C; = DenseNet169
[29], C3 = DenseNet201 [29], C4 = MobileNet [28], C; = MNASNet [56], C¢ = ResNet50 [27],
C7 = ResNet101 [27], Cs = ResNet152 [27], Co = VGG16 [52], C190 = VGG19 [52] (Two additional
CNNs BagNet17 [8] and ResNet50-SIN [25] are considered in Section for reasons explained
thereof).

Among the 1000 categories of ImageNet, we randomly pick ten ancestor aq, - - - , a9 and ten target
categories t1,--- ,t19. These are given in Table For each (ancestor, target) pair (c,,,ct,)

(with 1 < ¢ < 10), we randomly select 10 ancestor images A? (with 1 < p < 10), resized to
224 x 224 using bilinear interpolation if necessary. These 100 ancestor images, pictured in Figure
in Appendix @ are labeled by the 10 CNNs as a, in 97% cases, with negligible c; -label
values (approximately between 9e — 11 and 2e — 3). Two different algorithms are used to perform
targeted attacks on all 10 CNNs, all 10 (cq,,cr,) (1 < ¢ < 10) pairs and all 10 AP (1 < p < 10).

Table 7.1: For 1 < ¢ < 10, the 2"? row gives the ancestor category Ca, and its index number a,
among the categories of ImageNet (Mutatis mutandis for the target categories, 3" row).

q 1 2 3 4 5 6 7 8 9 10

Ca, abacus acorn baseball | broom | brown bear | canoe | hippopotamus | llama | maraca | mountain bike
ay 398 988 429 462 294 472 344 355 641 671

ct, | bannister | rhinoceros beetle ladle dingo pirate Saluki trifle agama | conch strainer

tq 421 306 618 273 724 176 927 42 112 828

7.2.2 Design of BIM

Given a trained CNN C, this section summarizes the key features of BIM [36]. The algorithm’s
purpose is to evolve an ancestor image A into a T-strong adversarial image (for some convenient
value of 7) that deceives C at image classification.

As opposed to the EA; BIM is a white-box attack, since it requires the knowledge of the CNN’s
parameters and architecture. The algorithm does not stop when a particular ¢;-label value has
been reached, but rather once a given number N of steps has been performed. More concretely,
BIM can be seen as an iterative extension of the FGSM [26] attack. It creates a sequence of
images (X¢9?), where the initial value is set to the ancestor A, namely X¢% = A, and the next
images are defined step-wise by the induction formula:

Page 76 of

ngﬁ = Clipg{ng” — asign(AA(Jc(ng”, ce)))}s (7.1)

where Je is the CNN’s loss function, A 4 is the gradient acting on that loss function, « is a
constant that determines the perturbation magnitude at each step, and Clip. is the function
that maintains the obtained image within [A — €, A + €], where € is a constant that defines the
overall perturbation magnitude. Once the number N of steps is specified, BIM’s output is the
image X ¢®. This image is then given to C in order to get its c;-label value, and its classification.

A major difference between BIM and the EA is that with BIM, the ¢;-label values are measured
a posteriori, while with the EA the 7-threshold is fixed a priori.

7.2.3 Creation of 0.999-strong adversarial images by EA'%&tC and by
BIM

For both algorithms, we set § = 2/255 and ¢ = 8/255. Specifically for the EA-based attack,
we set A = 1, B = 0, and a population size of 40. For C = Cj, we write atk = EA'&C op
BIM, and use thk(/lg) to denote a 0.999-strong adversarial image obtained by the correspond-
ing algorithm for the target scenario performed on the (ancestor, target) category pair (cq,,ct,)
against Cj, with ancestor image Af. The 7 threshold value was set to 0.999 mainly due to BIM’s
behaviour, as explained below.

With a number N of steps equal to 5, all BIM runs led to images satisfying equation . Out
of the 1000 images obtained that way, 549 turned out to be 0.999-strong adversarial. It is pre-
cisely because so many BIM adversarials had such a high ¢;-label value that we set 7 = 0.999 for
EA'8°tCr a9 well, in order to obtain adversarial images that are comparable to those created by
BIM. We also fixed the second stopping condition for EAtarsetCr namely the maximal number
of generations, to G = 103,000. This very large value was necessary in order to allow the EA to
create T-strong adversarial images for a 7 as high as 0.999. The EA successfully created 0.999-
strong adversarial images in 716 cases. Note that our point is not to compare the performance
of the algorithms, but to study the adversarial images they obtain.

In order to reduce any potential bias when comparing the adversarial images, we only considered
the combinations of ancestor images A} and CNNs for which both the EA and BIM successfully
created 0.999-strong adversarial images for the corresponding (c,,, ¢z,) pairs. This notion defines
”convenient ancestors” and ”convenient combinations”.

In Appendix Figure lists the 84 convenient ancestors. Table shows that there are
437 convenient combinations (Note that all 10 CNNs belong to at least one such combination).
Figures and provide examples of the obtained adversarial images for some convenient
ancestors.

All experiments of the subsequent sections are therefore performed on the 84 convenient ancestors
and on the 2 x 437 corresponding adversarial images.

7.3 Local effect of the adversarial noise on the target CNIN

Here we analyze whether the adversarial noise introduced by the EA and by BIM also has an
adversarial effect at regions of smaller size, and whether this local effect alone would be sufficient

Page 77 of

to mislead the CNNG, either individually (subsection|7.3.1)) or globally but in a ”patchwork” way
(subsection [7.3.2)).

7.3.1 1Is each individual patch adversarial?

To examine the adversarial effect of local image areas, we replace non-overlapping 16 x 16, 32 x 32,
56 x 56, and 112 x 112 patches of the ancestors with patches taken from the same location in their
adversarial versions (this process is performed for BIM and for the EA separately), one patch at
a time, starting from the top-left corner. Said otherwise, each step leads to a new hybrid image
I, that coincides with the ancestor image A everywhere except for one patch, taken at the same
emplacement from the adversarial D#*(A). At each step the hybrid image I is sent to Cg, to
extract the ¢, and ¢;-label values, 05" [a] and 05*[t]. Figure [7.1]shows an example of the plots of
these successive ¢, and ci-label values, step-by-step, for the ancestor image A2, the CNN Cg, and
the adversarial images obtained by the EA and by BIM. The behaviour illustrated in this example
is representative of what happens for all ancestors and CNNs (see Figure[9.19in Appendix[9.5.2)).

ResNet50 brown_bear patch size 16 ResNet50 brown_bear patch size 32
ancestor class target class ancestor class target class

-0.00025

— EA -2 — cEA
~0.0003 { A \ A

A
c BIM Hr f 94 € BIM
—~0.0004 \/I‘ \
100 | 28
l 1
|

-0.00030

-0.00035

-0.0005
-0.00040

-0.0006
-0.00045

10.0
. -0.0007 -102
-0.00050
106 L j” { / -0.0008 -104
000055 - \ 1 A
— qea \}U\‘ TG i -ao00s — e | sl VNN
A e y
-0.00060 CaBIM | _yog] TP T \
[] i 20 B

s BIM
-0.0010

logL0(probability)
logL0iprobability)

150 200 [] 150 200 []] 2 E] 0 50

100 50
replaced patch replaced patch replaced patch

100
replaced patch

ResNet50 brown_bear patch size 56 ResNet50 brown_bear patch size 112
ancestor class target class ancestor class target class

— EA 000 — GEA
—0.0004
e BIM c BIM
~0.0006 50 -0.02
—0.0008

-4
-
-0.04 -
00010 95
-1
-0.0012 \
-8
-

~0.0014 -100
-0.08
-0.0016
oo — GEA | s o1 — GEA 10
€ BIM ; BIM

00 25 50
repl

log10(probabiity)
log10{probability)
L

1
75 00 125 150 00 25 50 75 100 15 150 00 o5 10 15 20 25 30 00 05 10 15 20 25 30
aced patch replaced patch

1 replaced patch replaced patch

Figure 7.1: Single patch replacement for A% and C = Cg. The 4 pairs of graphs correspond to
patches of size 16 x 16, 32 x 32, 56 x 56 and 112 x 112, respectively. Each pair represents the
step-wise plot of log(0$[a]) (left graph) and of log(o$[t]) (right graph) for the EA (blue curve)
and BIM (orange curve). The red horizontal line recalls the c,-label value (left graph) or the
ci-label value (right graph) of A2 with no replaced patch.

For all values of s and with both attacks, almost all patches individually increase the c;-label
value and decrease the c,-label value. The fact that the peaks often coincide between the EA
and BIM proves that modifying the ancestor in some image areas, rather than others, can make
a large difference. However, BIM’s effect is usually larger than the EA’s. Also note that no
single patch is sufficient to fool the CNNs, in the sense that it would create a hybrid image with
a dominating c;-label value.

Page 78 of

7.3.2 Is the global random aggregation of local adversarial effect suffi-
cient to fool the CNNs?

Firstly, replacing all patches simultaneously and at the correct location is by definition enough
for a targeted misclassification, since its completion leads to the adversarial image. Secondly,
most of the patches taken individually have a local adversarial impact, but none is enough indi-
vidually to achieve a targeted attack.

The issue addressed here is whether the global aggregation of the local adversarial effect is strong
enough, independently on the location of the patches, to create the global adversarial effect we
are aiming at.

We proceed as follows. Given an Image I, and an integer s so that patches of size s X s create a
partition of I, sh(I,s) is a shuffled image deduced from I by randomly swapping all its patches.
With these notations, sh(Dg*(AP),s) (with atk = BIM or EA) is sent to the C; CNN. One
obtains the ¢, and the ¢;-label values, as well as the dominant category (that may differ from
Cas¢t). The values of s used in our tests are 16, 32,56, 112, leading to partitions of the 224 x 224
images into 196, 49, 16 and 4 patches respectively.

Table gives the outcome of these tests. For each value s, each cell is composed of a triplet of
numbers. The left one corresponds to the tests with the ancestor images, the middle one to the
tests with images obtained by the EA, and the right one to the tests with images obtained by
BIM. Each number is the percentage of images sh(A, s) or of images sh(Dgtk(Af;), s), taken for
all ancestor images A?, all (ancestor, target) category pairs, and all Cy, - - - , Cy9, that are classified
in category ¢, where c is the ancestor category c,, the target category c;, or any other class. To
allow comparisons, the randomly-selected swapping order of the patches is only performed once
per value of s. For each s, this uniquely defined sequence is applied in the same way to create
the sh(A2, s), sh(DFA(AP), s), and sh(DPTM(AP), s) shuffled images.

s | Number of patches c=c¢q c ¢ {ca,ct} c=c¢

16 196 04,0.1,01 | 99.6,99.9,99.9 | 0.0, 0.0, 0.0
32 49 18.0,9.2,5.3 | 82.0,90.8,94.4 | 0.0, 0.0, 0.3
56 16 67.6,39.3, 15.8 | 32.4, 60.3, 70.1 | 0.0, 0.4, 14.1
112 1 884, 62.3, 22.3 | 11.6, 33.2, 35.9 | 0.0, 4.5, 41.8

Table 7.2: Percentages of shuffled images sh(AP,s) (1% percentage), sh(DF*(AP),s) (2" per-
centage), and sh(DF'™M (AP),s) (3" percentage) for which the predicted class is c.

Contrary to what happens with s = 32,56 and 112, the proportion of shuffled ancestors sh(A{;, s)
classified as ¢, is negligible for s = 16. Therefore, s = 16 seems to lead to patches that are too
small for a 224 x 224 image to allow a meaningful comparison between the ancestor and the
adversarials, and is consequently disregarded in the remainder of this subsection. At all other
values of s, the classification of the shuffled adversarial image as a class different from ¢, (¢; or
other) is more common with BIM than with EA. With s = 112, it is noticeable that as many
as 41.8% of BIM shuffled adversarials still produce targeted misclassifications. Enlarging s from
56 to 112 dramatically increases the proportion of shuffled adversarials classified as ¢; with BIM
(with a modest such increase with the EA), and as ¢, with the EA (with a modest such increase
with BIM). Moreover, the shuffled EA adversarials behave similarly to the shuffled ancestors,
whose ¢, probability increases considerably as the size of the patches gets larger and the original

Page 79 of

¢, object becomes clearer (despite its shuffled aspect).

7.3.3 Summary of the outcomes

Both the EA and BIM attacks have an adversarial local effect, even at patch sizes as small as
16 x 16, but they generally require the image to be at full scale in order to be adversarial in the
targeted sense. Still, a difference between the attacks is that, as the patch size increases (without
reaching full scale, and while being subject to a shuffling process) and the ¢, shape consequently
becomes more obvious (even despite the shuffling), the EA’s noise has a lower adversarial effect,
while BIM’s ¢;-meaningful noise actually accumulates and has a higher global adversarial effect.

7.4 Adversarial noise visualization and frequency analysis

This section first attempts to provide a visualization of the noise that the EA and BIM add
to an ancestor image to produce an adversarial image (Subsection . We then look more
thoroughly at the frequencies of the noise introduced by the EA and BIM (Subsection .
Finally, we look for the frequencies that are key to the adversarial nature of an image created by
the EA'&°C and by BIM (Subsection .

7.4.1 Adversarial noise visualization

The visualization of the noise that EA'%Cr and BIM add to AP to create the 0.999-strong
adversarial images DE4 (AP) and DM (AP) is performed in two steps. Firstly, the difference
D,‘;tk (Ag) — AP, between each adversarial image and its ancestor, is computed for each of the
RGB channels. Secondly, one displays the histogram of the adversarial noise. This leads to a
measurement of the magnitude of each pixel modification. An example, typical of the general
behaviour whatever the channel, is illustrated in Figure showing the noise (the fact that
the displayed dominating colors of the noise representation on Figure [7.2] are green, yellow and
purple stems from the ’viridis’ setting in Python’s matplotlib library, which could be changed at
will. Still, a scale gives the amplitude of the noise per pixel in the range [—¢, €¢] = [—0.03,0.03],
and hence justifies the position of the observed colors) and histogram of the perturbations added
to the red channel of A2 to fool Cg with the EA and with BIM.

EA attack, ResNet50 brown_bear R BIM attack, ResNet50 brown_bear R

16000
40000
14000

12000
30000

20000
10000

-003 -002 -001 000 001 002 003

10000
000
000
2000
2000

0l
-003 002 001 000 001 002 003

Figure 7.2: Display of the noise and histogram of the perturbations added by the EA (left pair)
and by BIM (right pair) to the red channel of A2 to fool Cs.

Recall that both attacks perform pixel perturbations with a maximum perturbation magnitude
of € = 0.03 (see subsection [7.2.3). However, while with BIM the smaller magnitudes dominate
the histogram, the adversarial noise is closer to a uniform distribution with the EA. Another
difference is that, whereas with BIM all pixels are modified, a considerable amount of pixels

Page 80 of

(9.3% on average) are not modified at all with the EA. Overall, there is a larger variety of noise
magnitudes with the EA than with BIM, which can also be noticed visually in the image display
of the noise.

7.4.2 Assessment of the frequencies present in the adversarial noise

The adversarial perturbations Dyi**(AP) — AP having been assessed (subsection [7.4.1)) for each

RGB channel, we proceed to the analysis of the frequencies present in the adversarial noise
per channel. Concretely, the Discrete Fourier Transform (DFT) is used to obtain the 2D-
magnitude spectra of the adversarial perturbations. One computes two quantities, magn (diff)
= |DFT (D™ (AP)— AP)|, and diff (magn) = [DFT (D% (AP))|—| DFT(AP)]. Figuredisplays
a typical example of the general outcome regarding the adversarial noise in the red channel added
by the EA or by BIM. For each image, the low frequencies are represented in the centre, the high
frequencies in the corners, and the vertical bar (on the right) maps the frequency magnitudes to
the colours shown in the image.

EA attack, ResNet50 brown_bear R diff(magn) BIM attack, ResNet50 brown_bear R diff(magn)

5] 100 = s
©
=

100

25

150 25

s 0

0

1] % w0 B0 a0 ° % w0 10 20 1) % 10 10 20

Figure 7.3: For atk = FEA (left pair) and atk = BIM (right pair), representation of
|DFT (D" (A2)— A2)| (magn (diff), 15 image) and | DFT (D (A2))|—|DFT(A3$)| (diff (magn),
27 image) for the red channel.

E[)A attack, ResNet50 brown_bear autocorr EE)M attack, ResNet50 brown_bear autocorr

0.0 4
=
s
50
15.0
s
125
100
100
125
15
150
50
s
200 28
00
0 = W0 10 200 0 = W0 10 200

Figure 7.4: For atk = EA (left) and atk = BIM (right), autocorrelation of Dgt*(A%) — A2 for
the red channel.

A clear difference between the EA and BIM is visible from the magn (diff) visualizations. With
the EA, the high magnitudes do not appear to be concentrated in any part of the spectrum (with
the exception of occasional high magnitudes in the centre), indicating the white noise nature of
the added perturbations. Supporting evidence for this white noise nature for the EA comes from
the 2D autocorrelation of the noise. Figure [7:4] shows that the 2D autocorrelation for both at-
tacks have a peak at lag 0, which is to be expected. It turns out that this is the only peak when
one considers the EA, which is no longer the case when one considers BIM. Unfortunately, this
is hard to see on Figure since the central peak takes very high values, hence the other peaks
fade away in comparison. With BIM, the magn (diff) visualizations display considerably higher
magnitudes for the low frequencies, indicating that BIM primarily makes use of low-frequency

Page 81 of

noise to create adversarial images.

In the case of diff (magn), both the EA and BIM exhibit larger magnitudes for the high frequen-
cies than for the low frequencies. This can be interpreted as a larger effect of the adversarial
noise on the high frequencies than on the low frequencies. Natural images from ImageNet have
significantly more low-frequency than high-frequency information [65]. Therefore, even a quasi-
uniform noise (such as the EA’s) has a proportionally larger effect on the components that are
numerically less present than on the more numerous ones.

7.4.3 Band-stop filtering shuffled and unshuffled images: which fre-
quencies make an image adversarial?

So far, the results of this study divulge the quantity of all frequency components present in the
adversarial perturbations, but their relevance to the attack effectiveness is still unknown. To
address this issue, we band-stop filter the adversarial images Dgtk(Ag) to eliminate various fre-
quency ranges, and we check the effect produced on the CNN predictions. In order to evaluate
the proportion of low vs. high frequencies of the noise introduced by the two attacks, the process
is repeated with the shuffled adversarials sh(Dg*(AP), s) for s = 32,56 and 112.

We first obtain the DFT of all shuffled or unshuffled ancestor and adversarial images, followed
by filtering with band-stop filters of 10 different frequency ranges Fps rc, where the range centre
rc goes from 15 to 115 units per pixel, with steps of 10, and the bandwidth bw is fixed to 30
units per pixel. For example, the last band-stop filter Fys: 115 removes frequencies in the range
of (115 — 15,115+ 15) units per pixel. The band-stopped images are passed through the Inverse
DFT (IDFT) and sent to the CNN, which results in 10 pairs of (¢, ¢¢)-label values for each
image, be it an ancestor or an adversarial. Figure presents some results that are typical of
the general behaviour (also see Appendix Figures and for the EA and Figures

and for BIM).

For both the EA and BIM, the ¢; probability tends to increase as rc becomes larger. This means
that lower frequencies have a larger impact on the adversarial classification than higher frequen-
cies. As shown on the left column of each pair of graphs, it is the low frequencies that matter for
the correct classification of the ancestor, as well. Although with both attacks the ¢; probability
tends to increase at higher values of rc¢, with BIM it is dominant at considerably smaller values
of re, whereas the EA adversarials are usually still classified as ¢,. Hence, the EA adversarials
require almost the full spectrum of the perturbations to fool the CNNs, while the lower part
of the spectrum is sufficient for the BIM adversarials. This result matches those of magn (diff)
in Figure where the EA and BIM were found to introduce white and predominantly low-
frequency noise, respectively.

As for the shuffled images, it is clear that their low-frequency features are affected by the shuffling
process and, as a result, the ¢; probability cannot increase to the extent it does in the unshuffled
images. With BIM and s = 112, at high rcs the band-stop graphs show a slower increase of the
¢¢ probability than when the images are not shuffled. This means that a large part of the BIM
adversarial image’s low-frequency noise is meaningful only for the unshuffled image. When this
low-frequency noise changes location through the shuffling process, one needs to gather noise
across a broader bandwidth in order to significantly increase the c¢; probability of the shuffled
adversarial.

Page 82 of

EA band-stop s=32

. EA band-stop no shuffle . s ¢
0 ——— — ancestor 0 —— ancestor
N r adversarial -1 adversarial
- / > >
2 z = =
2 |/ - 3 2
b = o -3 a
S -6 o 2 g
a a ; -4 ;
o =)
3 -8 3 3 -5 3
_10] — ancestor — ancestor
adversarial - adversarial
15 35 55 75 05 115 15 35 55 75 ©5 115 15 3 5 75 95 115 15 35 5 75 95 115
Radius Radius Radius Radius
EA band-stop s=56 EA band-stop s=112
Ca Ct a Ct
0 —— ancestor 0 —— ancestor
adversarial 2 adversarial
-2

—— ancestor

—— ancestor
adversarial

adversarial

15 35 55 75 95 115 15 35 55 75 95 115 15 35 55 75 95 115
Radius Radius Radius

|
-
=)

Log probability
| i 1
oo o £
Log probability
Log probability
»‘—' »‘—' | 1
5 B8 @ o
Log probability

15 35 55 75 95 1i5
Radius
BIM band-stop s=32

BIM band-stop no shuffle ¢

Ca
0 0 —— ancestor
1 adversarial
-2 > >
= Z g =
T - 3 =} a
g 3 g g
a a —— ancestor o -3]
o -6 o adversarial 2 2
o a ; _4 ;
o _ o o 3
g-® g 35 3
—— ancestor — ancestor
-10 adversarial 6 adversarial
15 35 55 75 95 115 15 35 55 75 95 115 15 35 55 75 95 115 15 35 55 75 95 115
Radius Radius Radius Radius
BIM band-stop s=56 c BIM band-stop s=112
t
0 —— ancestor 0 —— ancestor
adversarial 2 adversarial

|
~

Log probability
] i 1
=] o £
Log probability
Log probability
»‘—' »‘—- | |
N 5 @ o
Log probability

—— ancestor —— ancestor
adversarial adversarial
-10
15 3 5 75 95 115 15 35 55 75 95 115 15 3 5 75 95 115 15 35 55 75 95 115

Radius Radius Radius Radius

Figure 7.5: For atk = EA (1°* and 2" row) and atk = BIM (3" and 4'" row), the following
images are fed to Cs: A2 and Dgt*(A2) (15 pair), sh(A2,32) and sh(Dg*(A2),32) (2" pair),
sh(A%,56) and sh(Dg*(A2),56) (3™ pair), sh(A2,112) and sh(Dg*(A2),112) (3'4 pair). In
each pair of graphs, the left graph displays the c,-label values given by Cg as the images are
band-stop filtered with bandwidths centred on different rc¢ values, and the right graph displays
the c;-label values, mutatis mutandis.

Page 83 of

Even if the BIM adversarials require a larger bandwidth in order to be adversarial when shuffled,
they still reach this goal. By contrast, the shuffled EA adversarials have band-stop graphs that
closely resemble the shuffled ancestors’ graph. Only BIM’s remaining low and middle frequencies
are meaningful enough to ¢; and still manage to increase the c¢; probability.

7.4.4 Summary of the outcomes

The histogram of the adversarial noise introduced by BIM follows a bell shape (hence smaller
magnitudes dominate) while it is closer to a uniform distribution with the EA (hence with a
larger variety of noise magnitudes in this case). In addition, BIM modifies all pixels, while the
EA leaves many (circa 14000 out of 224 x 224 x 3, hence 9.3% on average) unchanged.

In terms of the frequency of the adversarial noise, the EA introduces white noise (meaning that
all possible frequencies occur with equal magnitude), while BIM introduces predominantly low-
frequency noise. Although for both attacks the lower frequencies have the highest adversarial
impact, the low and middle frequencies are considerably more effective with BIM than with EA.

7.5 'Transferability and texture bias

This section checks whether adversarial images are specific to their targeted CNN or whether
they contain rather general features that are perceivable by other CNNs (Subsection. Since
ImageNet-trained CNNs are biased towards texture [25], it is natural to ask whether adversarial
attacks take advantage of this property. More precisely, we examine whether texture is changed
by the EA and by BIM, and whether this could be the common ”feature” perceived by all CNNs
(Subsection . Thanks to heatmaps, we evaluate whether CNNs with differing amounts of
texture bias agree on which image modifications have the largest adversarial impact and whether
texture bias plays any role in transferability (Subsection [7.5.3).

7.5.1 Transferability of adversarial images between the 10 CNNs

For each attack atk € {EA, BIM}, we check the transferability of the adversarial images as
follows. Starting from an ancestor image A, we input the D,‘;tk (Afl’) image, which is adversarial
against Cg, to a different C; (hence i # k). We then extract the probability of the dominating

category, the ¢; probability and the ¢, probability given by C; for that image.

Then, we check whether the predicted class is precisely ¢; (targeted transferability), or if it is
any other class different from both ¢, and ¢;. Out of all possible CNN pairs, our experiments
showed that none of the adversarial images created by the EA for one CNN are classified by
another as ¢;, while this phenomenon occurs for 5.4% of the adversarial images created by BIM.
As for classification in a category c # c,, ¢;, the percentages are 5.5% and 3.2% for the EA and
BIM, respectively.

7.5.2 How does CNNs’ texture bias influence transferability?

Knowing that CNNs trained on ImageNet are biased towards texture, we assume that a high
probability for a particular class given by such a CNN expresses the fact that the input image
contains more of that class’s texture. Our goal is to check whether this occurs for adversarial
images as well.

Page 84 of

Table 7.3: Images, adversarial for the CNNs of the rows, are fed to the CNNs of the columns
to get their ¢, and ¢; label values. Each cell of the Table gives a pair of numbers, the left one
corresponding to atk = F A, and the right one to atk = BIM. Each number is the average
difference in the ¢, (Table a) and ¢; (Table b) label values between the adversarial D% (AP) and
the ancestor A}.

T T, T3 T 15 T3
Ty -0.03, -0.05 | 0.01, 0.02 T 5.6e-5, 2.0e-5 | 1.0e-5, 4.1e-5
T5 | -0.15, -0.22 1.9e-3,-0.01 Ty | 2.9e-4, 1.1e-3 5.0e-5, 1.2e-4
T3 | -0.15, -0.15 | -0.05, -0.13 T3 | 2.4e-4,6.8¢-5 | 5.3e-5, 5.Te-4
(a) ca (b) e

We restrict our study to adversarial images obtained by the EA and by BIM for the following
three CNNs, that have a similar architecture, and that have been proven [30] to gradually have
less texture bias and less reliance on their texture-encoding neurons : Ty = BagNet17 [8], To =
ResNet50 and T3 = ResNet50-SIN [25]. The experiments amount to checking the transferability
of the adversarial images between these three CNNs. The fact that the statement about the
graduation is fully proven only for these three justifies that we limit our study to them, since no
such hierarchy is known for other CNNs in general.

Even in this case of three CNNs with a similar architecture, experiments show that targeted
transferability between the three CNNs is 0%, whichever the attack. As a consequence, checking
whether ¢; becomes dominant for another CNN is pointless. We rather calculate the difference
produced in a CNN’s predictions of the ¢; and ¢, probabilities between the ancestor and another
CNN'’s adversarial image. The average results over all images are presented in Table [7.3]

When transferring from 75 = ResNet50 to 77 = BagNet17, experiments show that the c,-label
value decreases, while the c;-label value increases, with the former being larger in magnitude
than the latter. If the assumption formulated in the first paragraph holds, this phenomenon
implies that the attacks change image texture. Still, the similarly low transferability from 77 =
BagNet17 to T> = ResNet50 proves that texture change is not sufficient to generate adversarial
images. The texture change observed in T5 = ResNet50 adversarials might simply be a side-effect
of the perturbations created by the EA and BIM.

Nevertheless, Table (a) reveals that texture bias seems to play a role in transferability. It
shows that the more texture-biased the CNN you are transferring the adversarial images to, the
larger the decrease of its c,-label values. Indeed, this ¢, decrease is larger when transferring
from T3 = ResNet50-SIN to 75 = ResNet50 and from 75 = ResNet50 to 73 = BagNet17 than

vice-versa.

7.5.3 How does texture change relate to adversarial impact on the

CNNs?
In this subsection, BagNet17 is used to visualize, thanks to heatmaps, whether texture change
correlates to the adversarial impact of the obtained images for the 10 CNNs Cy,--- ,C1g.

Although we have seen that both attacks affect BagNet17’s ¢, probability on average, here we
attempt to find the image areas in which these changes are most prominent, and to compare the
locations in the C adversarials that have the largest impact on BagNet17 and on C.

Page 85 of

To do so, we proceed in a similar way as in Subsection with the difference that we allow
overlaps. We replace all overlapping 17 x 17 patches of the ancestor A} with patches from the
same location in D‘k‘t’“(,él’q’)7 one single patch at a time, and we extract and store the ¢, and ¢,
probabilities given by Cj of the obtained hybrid image I at each such step. Contrary to the
situation in Subsection note that there are as many patches as pixels in the present case.
Simultaneously, these patches are also fed to BagNetl7 (leading to 50176 predictions for each
adversarial image) to also extract the ¢, and ¢;-label values of these patches. The stored ¢, and
¢; label values (and combinations of them) can be displayed in a square box of size 224 x 224
(hence of size equal to the size of the handled images), resulting in a heatmap.

More precisely, given an ancestor image A%, all hybrid adversarial images obtained as above via
the EA lead to 5 heatmaps, and all those obtained by BIM lead to 5 heatmaps as well. For
both attacks, the first four heatmaps are obtained thanks to BagNet17, and the fifth is obtained
thanks to Cj, for comparison purposes. Each heatmap assesses the 10% largest variations in the
following sense.

We have a first sequence (cq(P(D(A))))p of cq-label values coming from the evaluation by Bag-
Net17 of the patches of the adversarial images, and a second similar sequence (c,(P(A)))p
of c4-label values coming from the patches of the ancestor images. Both sequences are nat-
urally indexed by the successive same patch locations P. We then consider the sequence,
also indexed by the patches, made of the differences c,(P(D(A))) — ca(P(A)). The selec-
tion of the locations of the smallest 10% out of this sequence of differences leads to the first
heatmap. One proceeds similarly for the second heatmap, by selecting the location of the
largest 10% among the values of ¢;,(P(D(A))) — ¢, (P(.A)) (with obvious notations). The process
is similar for the third and fourth heatmaps, where one considers the location of the largest
10% of the values of ¢, (P(D(A))) — c:(P(D(A))) for the third heatmap, and of the values of
ct(P(D(A))) — ca(P(D(A))) for the fourth heatmap.

Finally, the fifth heatmap is obtained by considering the largest 10% among the values c;(Ip(p(.a)))—
¢t(A), where the two members of the difference are the ¢;-label values given by the CNN Cj, for

a full image, the right one for the ancestor image, and the left one for the hybrid image obtained
as explained above.

Figure shows the outcome of this process for Cs= ResNet50 and ancestor A, (see Figure
in Appendix for other examples). Figure (a) shows the adversarial images DF4(A3,)
(top) and DFIM(AS,) (bottom). Figure (b) to (e) are the four heatmaps obtained thanks to
BagNet17 (in the order stated above), and Figure (f) is the heatmap obtained thanks to Cg
(the top row corresponds to the EA, and the bottom row to BIM). The 10% largest variations
are represented by the yellow points in each heatmap.

With both attacks, actually stronger with BIM than with the EA, modifying the images in and
around the object locations is the most effective at increasing Cy’s c¢; probability, as shown in

Figure ().

For both attacks, the locations of ¢, texture decrease coincide with the locations of most ad-
versarial impact for Cy (Figure (b) and (f)), while the ¢; texture increase is slightly more
disorganised, being distributed across more image areas (Figure (c)). Still, even though the
¢q texture decreases, it remains dominant in the areas where the ¢, shape is also present (Figure

Page 86 of

Figure 7.6: Heatmaps obtained with the ancestor A = A$, and the adversarial image D(A) =
Dtk (AS,) pictured in (a), where atk = EA in the 1% row and atk = BIM in the 2"¢ row.

(d)), without being replaced by the ¢; texture, which only dominates in other, less ¢, object-
related areas (Figure (e)). The ¢, texture and shape coupling encourages the classification
of the image into ¢,, which may explain why the adversarial images are not transferable.

7.5.4 Summary of the outcomes

Both attacks’ adversarial images are generally not transferable in the targeted sense. Although
some ¢, texture is distorted by the attacks, the ¢; texture is not significantly increased (while the
opposite is true for the targeted CNNs’ ¢, and ¢; probabilities) and this increase is nevertheless
not correlated with an adversarial impact on the CNNs. However, we find that EA’s and BIM’s
adversarial images transfer more to CNNs which have higher texture bias.

7.6 Transferability of the adversarial noise at smaller im-
age regions

On the one hand, the very low transferability rate observed in Section [7.5] shows that most ob-
tained adversarial images are specific to the CNNs they fool. On the other hand, the size of
the covered region increases linearly with successive CNN layers [41]. Moreover, the similarity
between the features captured by different CNNs is higher in earlier layers than in later layers
[37,[44]. Roughly said, the earlier layers tend to capture information of a general nature, common
to all CNNs, while the features captured by the later layers diverge from one CNN to another.

The question addressed in this section goes in the direction of a potential stratification of the
adversarial noise’s impact according to the successive layers of the CNNs. Put differently, this
amounts to clarifying whether it is possible to sieve the adversarial noise, so that one would
identify the part of the noise (if any) that has an adversarial impact for all CNNs up to some
layers, and the part of the noise whose adversarial impact becomes CNN-specific from some layer
on. This is a difficult challenge since the adversarial noise is modified all the way along until a
convenient adversarial image is created. In particular, the ”initial” noise, created at some early
point of the process and potentially adversarial for the first layers of different CNN; is likely to
be modified as well during this process, and to lose its initial ”quasi-universal” adversarial char-
acteristic, potentially to the benefit of a new adversarial noise. Note en passant that a careful

Page 87 of

study in this direction may contribute to "reverse engineer” a CNN, namely to reconstruct its
architecture (up to a point). This direction is only indicated here, and is not explored in full
details at this stage.

More modestly, and more specifically, in this Section we ask whether the adversarial noise for
regions of smaller sizes is less CNN-specific, hence more transferable, than at full scale, namely
224 x 224 in the present case, where we know that, in general, it is not transferable.

This issue is addressed in two ways. First, we check whether and how a modification of the
adversarial noise intensity affects the ¢, and the c¢s-label values of an image, adversarial for a
given CNN, when exposed to a different CNN, and the influence of shuffling in this process
(Subsection . Secondly, we keep the adversarial noise as it is, and we check whether
adversarial images are more likely to transfer when they are shuffled (Subsection .

7.6.1 Generic versus specific direction of the adversarial noise

One is given a convenient ancestor image Af, a CNN Cj, and the adversarial images DEA(AE)
and DP'M (AP) obtained by both attacks.

We perform a first series of experiments, that consists in changing the adversarial noise magnitude
of these adversarial images by a factor f in the 0% — 300% range, and in submitting the corre-
sponding modified f-boosted adversarial images to different C;’s to check whether they fool them.

Figure (a) shows what happens for the particular case of A2, k = 6, and the C;’s equal to
C1,Cs, and Cy (the f-boosted adversarial image is sent back to Cg as well), representative of the
general behaviour. In particular, it shows that the direction of the created noise for the EA
adversarials is highly specific to the targeted CNN since the images cannot be made transferable
by any change in magnitude. A contrario, the noise of BIM’s adversarials has a more general di-

rection, since amplifying its magnitude eventually leads to untargeted misclassifications by other
CNN .

A second series of experiments is performed in a similar way as above, with the difference that this
time, it is on the shuffled adversarial images sh(DEA(.Ag), s) and sh(DF™M(AP), s) for s = 32,
56 or 112.

Figures (b), (c), (d) show the typical outcome of this experiment. It reveals another differ-
ence between the adversarial noise obtained by the two attacks, namely that when s is enlarged
from 32 to 56 and to 112, BIM images have a higher adversarial effect on other CNNs, whereas
EA images only have a higher adversarial effect when s is increased from 32 to 56. As the size
of the shuffled boxes increases to s = 112 and reveals the ancestor object more clearly, the EA
adversarials actually have a lower fooling effect on other CNNs.

Moreover, in contrast to Figure [7.7] (a) where the considered region is at sull scale, i.e. coincides
with the full image size, Figures|7.7|(b), (c¢), and (d) show that the noise direction is more general
at the local level, and that an amplification of the noise magnitude is able to lead the adversarial
images outside of other CNNs’ ¢, bounds, even with the EA.

To make sure that the observed effects were not simply due to shuffling, but were also due to
the adversarial noise, we repeated the experiment of Figure [7.7] with random normal noise. As

Page 88 of

Log probability

Evolution of o[c,] and o[c;] with increasing noise magnitude

ResNet50 EA

ResNet50 BIM

VGG16 EA

VGG16 BIM

— €

— max

DenseNet121 EA

DenseNet121 BIM

0

50 100 150 200 250 SOOf 0 50

(a) no shuffle

100 150 200 250 300

Evolution of o[c,] and o[c;] with increasing noise magnitude

ResNet50 EA

ResNet50 BIM

Log probability

Evolution of o[c;] and o[c;] with increasing noise magnitude

ResNet50 EA

ResNet50 BIM

VGG16 EA

VGG16 BIM

— <

— max

DenseNetl21 EA

DenseNet121 BIM

0

50 100 150 200 250 30()f

(b) s =32

0 50 100 150 200 250 300

Evolution of o[c;] and o[c;] with increasing noise magnitude

ResNet50 EA

ResNet50 BIM

~ 3 —
-5
10
g y
= VGG16 EA VGG16 BIM — G = VGG16 EA VGG16 BIM — <
a o a ¢
© < © c
a — max Q = — max
o o
2 S 10
SR a
E‘ DenseNet121 EA DenseNet121 BIM g‘ DenseNet121 EA DenseNet121 BIM
a0 a0
-5 =5
-10
-10
0 50 100 150 200 250 300 £ 0 50 100 150 200 250 300 0 50 100 150 200 250 300 f 0 50 100 150 200 250 300

(c) s =56 (d) s =112

Figure 7.7: Evolution of log(o[a]), log(o[t]), and log(maz(o)) for Dg*(A%) (a), and for
sh(Datk(A2),s) for s = 32 (b), s = 56 (c) and s = 112 (d) when fed to Cs, Cg and C; (1%,
274 and 3"¢ row of each set of graphs, respectively), when the noise is impacted by a factor

£ € [0%, 300%).

expected, it turned out that, with random noise, the c,-label value always remained dominant
and the ¢;-label value barely increased as f varied from 0% to 300% (see Figure[0.25]in Appendix
9.5.5). The close to zero impact of random noise on unshuffled images was already known [22].
These experiments confirm that this also holds for shuffled images. Therefore, the observed
effects were indeed due to the adversarial noise’s transferability at local level. Nevertheless,
although the adversarial noise is general enough to affect other CNNs’ ¢,-label values, its effect
on c;-label values is never as strong as for the targeted CNN.

7.6.2 Effects of shuffling on adversarial images’ transferability

Here, we do not change the intensity of the noise. In other words, f = 100%. The point is no
longer to visualize the graph of the evolution of the c¢;-label values of shuffled adversarials, but
to focus on their actual values for the "real” noise (at f = 100%). The issue is to check if the
adversarial images are more likely to transfer when they are shuffled.

We proceed as follows. We input the unshuffled ancestor A7 and the unshuffled adversarial
Dtk (AP) to all C;’s for i # k (hence all CNNs but the targeted one). We extract the ¢, and ;-
label values for each i, namely ¢ (A?), ci (D™ (AP)), ci(AP) and ¢} (Dt (AP)). We compute the
difference of the c,-label values between the two images for each i, and, similarly, the difference
of the c¢;-label values, to get

Page 89 of

AL (AD) = ¢l (DEF(AD) — i (AD), APT(AB) = ci(DE™ (AD)) — ¢(AD).
For s = 32,56 and 112, this process is repeated with the shuffled ancestor sh(AL,s) and the
shuffled adversarial sh(D{*(AP),s), and we get the differences:

A (sh(Al, 5)) = co(sh(DE™ (AD), 5)) — co(sh(AD,),

and
AP (sh(DF(AP), 5)) = ci(sh(Dg™ (AD), 5)) — ci(sh(AD), 5).

These A¥? assess the impact of the adversarial noise both when unshuffled and when shuffled.

Regarding the c¢,-label values, both differences are < 0 (the ¢,-label value of the ancestor domi-
nates the c,-label value of the adversarial, shuffled or not). We take the absolute value of both
quantities (k and 7 are fixed). Finally, we compute the percentage over all k, all i # k, of all
convenient ancestors AP for which

AL (sh(AL,)| > |AG" (AD)).

Regarding the ¢;-label values, both differences are > 0 (this is obvious for the unshuffled images,
but it also turns out to be the case for the shuffled one). In this case, there is therefore no need
to take the absolute values. We compute the percentage over all k, all ¢ # k, of all convenient
ancestors AP for which

AP (sh(AD, 5)) > AP (AD).

Table[7.4] presents the outcome of these computations for each value of s, and for the adversarials
obtained by both attacks.

Note that we do not simply present the c¢;-label values of shuffled adversarial images, because
then the measured impact could have two sources: either the adversarial noise or the fact that
the ¢, shape is distorted by shuffling, leaving room for the c;-label value to increase. Since our
goal is to only measure the former source, we compare the c;-label values of shuffled adversarials
with that of shuffled ancestors.

Table 7.4: For the c,-label value (2" row) and the ¢;-label value (3"¢ row), percentage of cases
where the adversarial noise has a stronger impact when shuffled than unshuffled. In each cell,
the 1t percentage corresponds to atk = EA, and the 2"¢ to atk = BIM.

s=232 s =56 s =112
\A’;’i(.AZN 52.02, 45.41 | 66.94, 64.29 | 57.58, 54.67
Af’z(AZq’) 52.69, 49.79 | 65.09, 58.37 | 48.24, 43.11

[AL (sh(A8,s))]
AP (sh(AD, 5)

>
>

Whenever the percentage is larger than 50%, the adversarial images have on average a stronger
adversarial effect (for the untargeted scenario if one considers A¥? and for the target scenario

if one considers Af*) when shuffled than when they are not. The adversarial effect is then per-
ceived more by other CNNs for regions of the corresponding same size than at full scale.

Page 90 of

For all values of s, the 1°¢ percentage is larger than the 2"% one. This means that distorting
the shape of the ancestor object (done by shuffling) helps the EA more than BIM towards fool-
ing other CNNs than the targeted Cy. This occurs although computation shows that shuffled
BIM adversarials are typically classified with a larger ¢;-label value than shuffled EA adversarials.

The percentages achieved with s = 56 are not only the largest as compared to those with s = 32
or 112, but they also exceed 50% by far. Said otherwise, a region size of 56 x 56 achieves some
optimum here. An interpretation could be that a region of that size is small enough to distort
the ¢, - related information more, while also being large enough to enable the adversarial pixel
perturbations to join forces and create adversarial features with a larger impact on different
CNNs than the targeted one.

7.6.3 Summary of the outcomes

The direction of the created adversarial noise for the EA adversarials is very specific to the
targeted CNN. No change of magnitude in the adversarial noise make them more transferable.
The situation differs to some extent with the noise of BIM’s adversarials. This latter noise has
a more general direction, since its amplification leads to untargeted misclassifications by other
CNNs. When images are shuffled, and the noise is intensified, BIM’s adversarials have a higher
adversarial effect on other CNNs as s grows. This is also the case with the EA’s adversarials as
s grows from 32 to 56, but not anymore when s grows from 56 to 112.

A second outcome is that the EA and BIM adversarial images get closer to being transferable in
a targeted sense when shuffled with s = 56 than when unshuffled (at their full scale), and that
s = 56 is optimal in this regard as compared to s = 32 or 112. In the untargeted sense, this
happens at regions of sizes 56 x 56, and 112 x 112 (for both attacks the corresponding percentages
exceed 50%).

7.7 Penultimate layer activations with adversarial images

In this section, we intend to closely examine (in Subsection the changes that adversarial
images produce in the activation of the CNNs’ penultimate layers (for reasons explained in Sub-
section. In the work that led to this paper, we performed a similar study on the activation
changes of the CNNs’ convolutional layers. However, to the difference of what happens with
the penultimate layers, the results obtained with adversarial noise were identical to those ob-
tained with random noise. Hence, visualizing the intermediate layer activations requires a more
in-depth method than the one employed here, and we restrict the current paper to the study of
the penultimate classification layers.

It is important to notice that we do not pay attention here to the black-box or white-box nature
of the attack. We use the adversarial images independently on how they are obtained. Indeed, we
assume full access to the architectures of the CNNs. This full access to the CNNs’ architectures
goes without saying when one considers BIM, since it is a prerequisite for this attack. But it is
worthwhile explicitly stating for the EA, since the EA attack excludes any a priori knowledge
of the CNNs’ architectures.

Still, the study of the way layers are activated by the adversarial images may reveal differences

of behavior according to the methods used to construct them. It is not excluded that patterns
of layer activations differ according to the white-box or black-box nature of the attack that

Page 91 of

created the adversarial images sent to the CNNs. Should it be the case, this difference of
patterns according to the nature of the attack may lead to attack detection measures or even to
protection measures. The study of this issue is not undertaken in this paper.

7.7.1 Relevance of analyzing the activation of ¢;- and of ¢,-related units

The features extracted by the convolutional CNN layers pass through the next group of layers of
the CNN, namely the classification layers. We focus here on the penultimate classification layer,
i.e. the layer just before the last one that gives the output classification vector.

When a CNN C is exposed to an adversarial image D(A), the perturbation of the features prop-
agates and modifies the activation of the classification layers, which in turn leads to an output
vector 0%(A) (drastically different from the output vector 0534 for the ancestor) in which the prob-
ability corresponding to the target class ¢; is dominant. To achieve this result, it is certain that
previous classification layers are modified in a meaningful manner, with higher activations of the
units that are relevant to c¢;.

However, it is not obvious how the changes in these classification layers take place. Since the
penultimate layer has a direct connection with the final layer and the impact of changes in ac-
tivation are thus traceable, we delve here into the activations of the CNNs’ penultimate layers
to answer two questions essentially: Do all ¢;-relevant units have increased activation? Do c,-
related units have decreased activations?

The connection between the penultimate and final layers is made through a weight vector W,
which, for each class in the output vector, provides the weights by which to multiply the penul-
timate layer’s activation values. Whenever a weight that connects one penultimate layer unit
with one class is positive, that particular unit of the penultimate layer is indicative of that class’
presence in the image, and vice-versa for negative weights. We can thus know which penultimate
layer units are c,- or ¢;-related.

7.7.2 How are the CNNs’ classification layers affected by adversarial
images?

For each CNN Cy, we do the following. The aforementioned weights are extracted and, for both
cq and ¢, they are separated into positive and negative weights. Then, we compute the dif-
ference of activation values in the penultimate layer between each adversarial D¢t* (AP) and its
ancestor 7. Since our intention is to measure the proportion of units, relevant to a class, that
are increased or decreased by the adversarial noise, we compute the average percentage of both
positively- and negatively-related units — Table for ¢, and Table for ¢; (see Tables
and in Appendix for an individual outcome) — whose activation increased, stagnated or
decreased. For ¢, and c¢;, Table presents the average change in penultimate layer activation
for both the positively- and negatively-related units.

Note en passant that Cg and Cig have a different behavior than the other CNNs as far as the
values of WyosA¢ and WyeyAg are concerned. The EA and BIM change the activations of Cq
and C1¢ much less frequently than with the other CNNs. Indeed, between 50.28% and 74.85% of
the activations of these two CNNs are left unchanged, and this is valid for ¢, and for ¢; and for
both attacks. Observe that the group of units that contribute to the values taken by WyosAg
and by WieqAp for ¢, coincides with the group of units that contribute to the values taken by

Page 92 of

For Ca WposApos WposAO WposAneg WnegApos WnegAO WnegAneg

C; | DenseNet121 | (51.28,48.83) | (0.02,0.04) | (48.70,51.13) | (65.36,65.19) | (0.13,0.00) | (34.51,34.72)
Co | DenseNet169 | (49.03,49.26) (0.03,0.03) (50.95,50.72) | (62.42,61.13) (0.11,0.05) (37.47,38.82)
Cs | DenseNet201 | (49.48,48.66) (0.07,0.03) (50.45,51.31) | (61.04,60.45) (0.06,0.06) (38.90,39.49)
Ci | MobileNet | (43.73,46.59) | (0.46,0.31) | (55.81,53.10) | (62.64,65.80) | (1.24,0.71) | (36.12,33.48)
Cs MNASNet (47.64,49.93) (4.81,3.43) (47.55,46.64) | (58.34,61.04) (8.77,6.17) (32.89,32.79)
Cs ResNet50 (45.80,45.61) (0.02,0.00) (54.17,54.39) | (65.86,66.11) (0.02,0.00) (34.13,33.89)
Cr ResNet101 (48.26,46.05) (0.01,0.00) (51.73,53.95) | (67.63,67.75) (0.05,0.02) (32.32,32.23)
Cs | ResNetl52 | (46.84,45.56) | (0.00,0.00) | (53.16,54.44) | (67.18,66.92) | (0.01,0.00) | (32.81,33.08)
Cy VGG16 (23.67,19.64) | (50.63,52.98) | (25.71,27.39) | (22.08,19.15) | (72.50,74.85) (5.43,6.01)
Cio | VGGI9 | (23.85,20.38) | (50.28,51.30) | (25.87,28.33) | (21.44,20.46) | (73.02,73.23) | (5.54,6.31)

Table 7.5: For c,, average percentage of both positively-related (Wpes, columns 2-4) and

negatively-related (W4, columns 5-7) units whose activation increased (A,,s), stagnated (Ag)

or decreased (A,.4). Each cell contains the results for EA (left) and BIM (right).

For ¢, WposApos WposAO WposAneg WnegApos WnegAO WnegAneg

C1 | DenseNet121 | (70.06,67.06) (0.04,0.04) (29.90,32.90) | (50.00,50.30) (0.12,0.10) (49.89,49.60)
Co | DenseNet169 | (64.88,64.26) (0.03,0.03) (35.09,35.72) | (49.32,48.95) (0.11,0.05) (50.58,51.01)
Cs | DenseNet201 | (64.72,63.61) | (0.08,0.06) | (35.21,36.32) | (48.80,48.52) | (0.05,0.03) | (51.15,51.45)
Ci | MobileNet | (69.74,71.62) | (0.52,0.31) | (29.74,28.07) | (38.13,42.25) | (1.24,0.74) | (60.63,57.01)
C; | MNASNet | (64.51,66.94) | (5.60,3.50) | (29.89,20.56) | (42.75,45.32) | (8.13,6.23) | (49.12,48.44)
Cs ResNet50 (75.16,73.24) (0.01,0.00) (24.82,26.76) | (46.29,47.73) (0.03,0.00) (53.69,52.27)
Cr | ResNetl01 | (77.68,74.77) | (0.01,0.00) | (22.31,25.23) | (48.16,48.78) | (0.05,0.02) | (51.79,51.20)
Cs ResNet152 (75.37,73.43) (0.00,0.00) (24.63,26.57) | (48.21,48.39) (0.01,0.00) (51.78,51.61)
Co VGG16 | (35.62,31.40) | (52.69,55.55) | (11.70,13.04) | (12.51,9.81) | (70.75,72.61) | (16.74,17.58)
C1o VGG19 (35.35,32.82) | (53.13,53.65) | (11.52,13.53) | (12.13,10.51) | (70.80,71.31) | (17.06,18.17)

Table 7.6: For c;, average percentage of both positively-related (Wpos, columns 2-4) and
negatively-related (W4, columns 5-7) units whose activation increased (A,,), stagnated (Ag)
or decreased (A,.y). Each cell contains the results for EA (left) and BIM (right).

Page 93 of

Wpos Wneg
C; | DenseNet121 | (-0.02%0.07, -0.05-0.09) | (0.17+0.05, 0.21=£0.06)
C, | DenseNet169 | (0.0140.06, -0.01+0.06) | (0.13+0.03, 0.14-£0.06)
Cs | DenseNet201 | (0.00+0.05, 0.0040.06) | (0.09£0.04, 0.12-£0.04)
Ci | MobileNet | (-0.09+0.10, -0.050.16) | (0.18-0.06, 0.26-0.10)
C; | MNASNet | (-0.01£0.07, 0.02+0.09) | (0.12£0.04, 0.18£0.09)
Cs | ResNets0 | (-0.02%0.07, -0.05+0.09) | (0.17+0.05, 0.20-0.08)
C: | ResNetl0l | (0.00+0.07, -0.04:£0.15) | (0.21+0.05, 0.2540.10)
Cs | ResNetl52 | (-0.02%0.07, -0.06+£0.07) | (0.21+0.04, 0.22-£0.04)
Co VGGI16 (-0.14+0.15, -0.16+0.20) | (0.20+0.05, 0.23%0.10)
Cio | VGGI9 (-0.09£0.08, -0.1740.12) | (0.2120.06, 0.20+0.07)
(a) ca
Wpos Wneg
C; | DenseNet121 | (0.270.08, 0.30+0.10) | (-0.06+0.06, -0.07+0.08)
C, | DenseNet169 | (0.18£0.05, 0.20+0.09) | (-0.02+0.05, -0.0320.05)
Cs | DenseNet201 | (0.15£0.05, 0.17+0.05) | (-0.02+0.03, -0.03+0.04)
Ci | MobileNet | (0.27+0.06, 0.38+0.14) | (-0.16+0.08, -0.1520.11)
Cs | MNASNet | (0.19+0.05, 0.28+0.12) | (-0.06+0.06, -0.0620.07)
Cs | ResNet50 | (0.30£0.11, 0.32+0.14) | (-0.04=0.04, -0.0520.06)
C: | ResNet101 | (0.35+0.08, 0.39+0.17) | (-0.03%0.05, -0.04= 0.07)
Cs | ResNet152 | (0.33£0.05, 0.35+0.09) | (-0.03+0.04, -0.0520.04)
Co VGG16 (0.2940.14, 0.35£0.28) | (-0.140.06, -0.17+0.07)
Cio | VGGI19 (0.33£0.10, 0.29£0.18) | (-0.13£0.05, -0.17+0.04)

(b) ¢

Table 7.7: For ¢, (a) and ¢; (b), average and standard deviation of the activation change in the
positively-related (W, column 2) and negatively-related (W,eq, column 3) units. Each cell
contains the results for EA (left) and BIM (right).

Page 94 of

WhposAo and by WyeqAg for c;.

Overall, Tables and [7.6] show that neither the EA, nor BIM increase the activation of all
positively c;-related penultimate layer units; the percentages where such an increase happens is
similar between the two attacks, and varies between 31.40% and 77.68% throughout the different
CNNs. Still, in all cases, more positively c¢;-related units are increased, rather than decreased in
activation. Meanwhile, for ¢, this preference for increasing, rather than decreasing the activa-
tion is present for the negatively c,-related units.

These observations are consistent with the results of Table [7.7] which show that the average
activation changes are large and positive for (Wyeq,cqa) and (Wyes,c¢) for both attacks. Addi-
tionally, the averages and standard deviations corresponding to (Wes, ¢;) are higher than those
corresponding to (Wyey, ¢q), with both attacks. However, both the averages and the standard
deviations are larger with BIM than with the EA.

In order to verify how the penultimate layer activations of a CNN are changed by adversarial
images that are designed for other CNNs, we perform the experiments that led to Tables
and with the change that all CNNs are fed the adversarial images of C; (DenseNet121). The
results (see Tables and in Appendix[9.5.6)) are that, with both attacks, the percentages
of positive and negative activation changes are approximately equal. Therefore, the pixel per-
turbations are not necessarily meaningful towards decreasing the c,-label value or increasing the
cs-label value of other CNNs.

Therefore, it appears that the attacks do not significantly impact the existing positively c,-
related features. They rather create some features that relate negatively to ¢, and some that
increase the confidence for ¢;. Also, although both attacks usually (except against C; and Ca,
where the proportion is only around one third) increase the activation of around two thirds of
the positively ci-related and negatively c,-related units, BIM does so with a larger magnitude
than the EA. The latter change is in particular the most striking difference between the attacks.
It could explain why the band-stop graphs in Figure [7.5] show a much larger decrease of the
cq-label value with BIM than with the EA, and why BIM adversarial images are more likely to
transfer than those coming from the EA.

7.7.3 Summary of the outcomes

In terms of the penultimate layer, the most prominent changes of both attacks are the increase in
activation value of the units which are positively related to ¢; and of those which are negatively
related to ¢,. However, BIM performs the latter activation changes with a larger magnitude
than the EA.

7.8 Summary of the outcomes

Through the lens of frequency, transferability, texture change, smaller image regions and penul-
timate layer activations, this work investigates the properties that make an image adversarial
against a CNN. To this purpose, we consider 10 ImageNet-trained CNNs, and the adversarial
images created by a white-box, gradient-based attack and by a black-box, evolutionary algorithm-
based attack, to fool them.

Page 95 of

This study, performed on 84 convenient ancestor images belonging to appropriate ancestor cate-
gories ¢,s, and two groups of 437 adversarial images (one group per attack) belonging to appro-
priate target categories ¢;s, gives an insight into the internal functioning of the considered attacks.

The main outcomes are that the aggregation of features at smaller regions is generally not suf-
ficient for a targeted misclassification. We also find that image texture change is likely to be a
side-effect of the attacks, rather than play a crucial role, even though EA and BIM adversarials
are more likely to transfer to more texture-biased CNNs. While the low-frequency noise has the
highest adversarial effect for both attacks, in contrast to the EA’s white noise, BIM’s mostly
low-frequency noise impacts the local ¢, features considerably more than the EA does. This
effect intensifies at larger regions.

Although in the penultimate CNN layers neither the EA, nor BIM affect the features that are
positively related to ¢,, BIM’s gradient-based nature allows it to find noise directions that are
more general across different CNNs, introducing more features that are negatively related to c,,
and that are perceivable by other CNNs as well. However, with both attacks, the ¢;-related
adversarial noise that targets the final CNN layers is specific to the targeted CNN when the
adversarial images are at full scale. On the other hand, its adversarial impact on other CNNs
increases when the considered region is reduced from full scale to 56 x 56.

Page 96 of

Chapter 8

Conclusion and Perspectives

The broad topic of this thesis falls under adversarial attacks in the context of image classifica-
tion by Convolutional Neural Networks (CNNs). Specifically, this work introduces a black-box
attack based on an evolutionary algorithm (EA) that is designed to evolve an original image into
an adversarial one against CNNs. The introduced algorithm is generic, since it can be applied
on any original image to fool any CNN in any scenario tested here, such as untargeted, flat,
good enough targeted, or T-strong targeted. Moreover, its black-box nature makes the EA-based
attack highly practical, since the attacker only requires access to the input and the vector of
probabilities outputted by the CNN.

After describing the attack method, this thesis proves the algorithm’s high success rate at at-
tacking VGG16 trained on the Cifarl0 dataset [34] in both the targeted and flat scenarios, as
well as at attacking 10 different CNNs trained on the ImageNet [I8] dataset. Moreover, this
work proposes and experimentally evaluates two different ways to apply the EA-based attack on
high-resolution images, which have much greater sizes than the images typically contained in the
Cifar10 and ImageNet datasets.

To assure that the EA-based attack could not be defended against by image filters placed in front
of the CNNs, we thoroughly evaluate the algorithm’s robustness in the specific context of VGG16
trained on Cifar10. After discovering a set of filters which could reduce the attack’s success rate,
we return to the construction of the EA method and improve it such that it becomes robust to
all tested filters.

Lastly, part of the goal of this thesis is to understand the inner functioning of the EA-based attack
and to find the reasons for its high success rate at fooling CNNs. In an effort towards this goal,
we perform several experiments with the attacked CNNs, as well as with the adversarial images
and their contained noise. In studying them, we adopt perspectives such as image frequency,
image transferability, behaviour at lower image regions, penultimate CNN layer activations, and
image texture change. In order to place the findings into a broader context, we simultaneously
perform all above-mentioned experiments on an attack with a similarly high success rate, but
which differs greatly from the EA-based attack, since its white-box, gradient-based nature re-
quires access to all parameters of the CNN to be fooled.

Although this thesis is extensive, it is not comprehensive, as it can surely be expanded in multiple
ways. Starting from one of the findings of this thesis, one option is to investigate the efficiency

97

of an attack detection algorithm based on image shuffling. Additionally, the attack on high-
resolution images can be improved in efficiency, by using attention maps to find the specific image
areas where the CNNs place more importance and then reduce the search space of the EA-based
attack to these particular regions. Another possible direction towards a higher explainability
of the EA-based attack is the small-dimension visualization of the attacked CNNs’ decision
boundaries. Yet another option would be to apply the EA-based attack on Spiking Neural
Networks, to evaluate the degree to which they could be robust alternatives to CNNs.

Page 98 of

Chapter 9

Appendix

99

9.1 Target and flat scenarios: Attack against VGG16 trained
on Cifarl0

9.1.1 Target scenario

Table 9.1: Target scenario.— For i # j, the element at the intersection of the i*" row and j*"
column is (103KL(pL2(ci — ¢j)|lpssim(ci = ¢;)), 103K L(pssin(ci — ¢;)||pL,(c; — cj))),
where K L(pr,(c; — ¢;)|[pssia(ci — ¢;)) is the Kullback-Leibler divergence computed between
the Ly and the SSTM probability densities of the normalisation of the histograms representing

the changes in pixel intensities through the ¢; — ¢; evolution of the ancestor A; on i'" diagonal
position in Figure (and Figure[9.2). Mutatis mutandis K L(pssra(ci — ¢;)||pL,(ci — ¢;)).

Cc1 C2 c3 Cq Cs Ce cr c8 C9 €10

cq (54,68) (25,38) (77,58) (74,70) (63,80) (67,75) (51,40) (57,75) (41,33)
[(82,84) (66,69) (81,56) (62,71) (109,93) (62,58) (56,110) (80,123) (74,63)
c3 (104,92) (68,60) (66,73) (76,55) (56,64) (47,22) (80,81) (116,67) (39,56)
[(5,60) (67,74) (77,75) (54,78) (66,58) (77,68) (53,29) (44,74) (63,75)
cs (36,80) (126,87) (73,74) (62,101) (95,93) (59,57) (92,69) (59,42) (82,76)
ce (116,79) (63,104) (49,39) (80,80) (66,77) (60,43) (68,93) (145,135) (69,63)
cr (89,96) (53,72) (66,70) (49,63) (63,61) (77,87) (57,51) (90,67) (55,71)
cg (84,98) (155,157) (43,75) (62,51) (74,50) (40,46) (74,52) (41,49) (93,92)
[(57,77) (48,53) (48,39) (57,76) (69,54) (78,53) (183,192) (57,75) (156,121)
c10 (68,70) (81,77) (75,98) (53,68) (81,60) (79,75) (96,103) (90,81) (56,60)

Table 9.2: Target scenario.— The pair of integers at the intersection of the i*" row and j*" column
(for ¢ # j) represents the number of generations necessary to create the adversarial image with
in the evolution ¢; — ¢;, as specified in Figure with Lo (left-hand side of the pair) and in
Figure with SSIM (right-hand side of the pair).

C1 c2 c3 Cq Cs C6 cr [(&) C10

1 (52,55) (5,5) (24,23) | (83,79) | (45,44) | (41,44) | (29,31) | (51,53) | (12,13)
c2 | (59,46) (37,40) | (27,29) | (53,61) | (39,38) | (66,65) | (38,39) | (49,46) | (29,30)
cs | (56,48) | (60,59) (47,49) | (58,56) | (52,47) | (84,87) | (34,31) | (77,82) | (38,37)
ca | (36,41) | (42,47) (34,32) (26,24) | (26,25) | (24,21) | (11,11) | (31,34) | (36,36)
cs | (105,98) | (91,105) | (118,124) | (30,31) (39,34) | (24,24) | (50,48) | (55,55) | (62,61)
ce | (54,58) | (39,42) (45,41) | (35,36) | (11,11) (56,53) | (31,36) | (26,23) | (41,41)
cr | (52,54) | (56,53) (47,43) | (30,26) | (40,38) | (51,54) (44,42) | (59,53) | (65,62)
cs | (34,33) | (21,20) (21,20) | (27,26) | (18,18) | (22,19) | (26,26) (29,30) | (26,26)
co | (27,28) | (33,37) (16,17) | (72,62) | (39,36) | (96,91) | (82,60) | (43,52) (69,95)
cio | (14,16) | (54,50) (32,31) | (67,62) | (30,34) | (55,54) | (57,45) | (27,24) | (24,26)

Page 100 of

9.1.2 Flat scenario

Table 9.3: Flat scenario.— For 1 < ¢ < 10, the element in ith position in the ond oy
is (103KL(]7L2 (ci)llpssine(ci)), 10° K L(pgsia(ci)||pL, (Ci))), where KL(pr,(c;)|[pssia(ci)) is
the Kullback-Leibler divergence computed between the Lo and the SSTM probability densities
of the normalisation of the histograms representing the changes in pixel intensities through the
¢; — flat evolution of the ancestor A; on " position on the first row in Figure Mutatis
mutandis K L(pssra(c:)||pr,(ci)).

C1 Cc2 c3 Cq C5 Ce cr c8 €9 10
[(112,110) (56,51) (77, 60) (43, 53) (86,121) (67,67) (58, 62) (29, 37) (57,93) (42, 46)]

Table 9.4: Flat scenario.— The pair of integers on the 2" row represents the number of generations
necessary to create the adversarial image in the evolution ¢; — ¢;, as specified in Figure With
Lo (left-hand side) and SSIM (right-hand side).

[c1) c3 cq cs ce cr cs co c10 |
[(298,152) (245,247) (288,276) _ (178,183) (552,421) (238,233) (212,212) (142,142) (434,380) (274,280) |

Page 101 of

;:FF Eﬂﬂﬂﬂﬂ@ﬂg
e
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

222

Figure 9.1: Target scenario, case Ls.— Pictures on the diagonal are the ancestors A; belonging
to the category c4, = ¢;, for 1 <4 < 10. On each row 1 < ¢ < 10, the picture on the 4 column,
with j # 4, is the descendant picture D;;, obtained by applying EAf;get to A;, that VGG16
classifies as belonging to c;.

Page 102 of

dﬂdﬂﬂﬂﬂﬂﬂﬂ

Figure 9.2: Target scenario, case SSITM .— Pictures on the diagonal are the ancestors A; belonging
to the category c4, = ¢;, for 1 <4 < 10. On each row 1 < ¢ < 10, the picture on the 4t column,
with j # ¢, is the descendant picture D;;, obtained by applying EASaéﬁz to A;, that VGG16
classifies as belonging to c;.

Page 103 of

Figure 9.3: Flat scenario.— Pictures on the 15 row are the ancestors A; belonging to the category
ca; = ¢, for 1 <4 < 10 (they are the same as those on the diagonals of Figures and .
For 1 < i < 10, the picture in i*" position on the 2°¢ row is the adversarial descendant picture
obtained by applying EA%%t to A;, and that VGG16 is unable to classify with certainty. Mutatis
mutandis 3" row with EAL, .

Page 104 of

9.2 Target scenario: attack against 10 CNNs trained on
ImageNet

Page 105 of

9.2.1 Ancestor images

abacus

baseball

maraca

mountain bike

Figure 9.4: The 100 ancestor images AP used in the experiments. A% pictured in the pt column

and ¢'" row (1 < ¢,p < 10) is randomly chosen from the ImageNet validation set of the ancestor
category c,, specified on the left of the q*™® row.

CNNs P abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike
1 1.000 0.981 0.997 0.999 0.953 0.992 0.999 0.997 0.607 0.942
2 1.000 0.997 0.989 1.000 0.994 0.909 0.998 0.987 0.883 0.987
3 0.998 0.845 1.000 1.000 0.996 0.836 0.987 0.997 1.000 0.891
4 0.996 0.997 1.000 1.000 0.997 0.620 0.239 0.984 0.648 0.619
C1 5 1.000 0.999 1.000 0.998 0.955 0.811 1.000 1.000 0.145 0.986
DenseNet121 6 1.000 1.000 0.957 0.998 1.000 0.990 0.997 0.916 0.692 0.999
7 0.998 0.999 0.999 0.973 0.977 0.525 0.985 0.974 0.756 0.940
8 1.000 0.999 0.993 0.993 0.995 0.913 1.000 1.000 0.999 0.962
9 1.000 0.998 0.981 1.000 0.997 0.820 0.999 1.000 0.999 0.992
10 1.000 0.996 1.000 0.999 0.995 0.923 0.999 0.886 0.572 0.870
1 0.998 0.978 1.000 0.999 0.997 0.997 0.997 0.999 0.952 0.873

Page 106 of

Table 9.5 continued from previous page

CNNs D abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike
2 1.000 0.999 0.998 0.992 0.782 0.764 0.998 0.999 0.995 0.861
3 1.000 0.998 0.999 1.000 0.999 0.880 1.000 0.994 1.000 0.977
4 0.990 0.996 1.000 1.000 1.000 0.549 0.553 0.981 0.900 0.973
Co 5 1.000 1.000 1.000 0.994 1.000 0.915 1.000 0.994 0.530 0.997
DenseNet169 6 1.000 1.000 0.998 1.000 1.000 0.997 0.995 0.975 0.091 0.991
7 1.000 1.000 1.000 1.000 0.998 0.827 0.996 1.000 0.857 0.945
8 1.000 1.000 0.998 0.998 0.999 0.951 0.999 1.000 1.000 0.975
9 1.000 1.000 0.943 1.000 0.999 0.905 1.000 1.000 0.993 0.964
10 1.000 1.000 0.999 1.000 0.997 0.952 0.999 0.998 0.258 0.478
1 1.000 0.975 0.998 1.000 0.992 0.990 0.998 0.996 0.323 0.986
2 1.000 1.000 0.984 1.000 0.884 0.957 0.996 0.996 0.993 0.997
3 0.987 0.950 0.998 1.000 0.998 0.669 0.999 0.994 1.000 0.886
4 0.886 0.994 1.000 1.000 0.998 0.822 0.870 1.000 0.878 0.947
C3 5 1.000 1.000 0.999 0.983 0.980 0.586 1.000 0.998 0.141 0.980
DenseNet201 6 1.000 1.000 0.995 1.000 1.000 0.994 0.999 0.724 0.693 0.996
7 1.000 1.000 1.000 1.000 0.993 0.865 0.997 0.970 0.876 0.917
8 1.000 1.000 0.993 1.000 0.874 0.978 0.990 0.999 0.997 0.993
9 1.000 0.999 0.877 1.000 0.984 0.995 1.000 0.999 0.987 0.988
10 0.996 1.000 0.998 0.999 0.978 0.984 0.987 0.963 0.253 0.983
1 0.999 0.994 1.000 0.995 0.999 0.999 0.998 0.954 0.329 0.938
2 0.994 0.936 0.993 0.998 0.972 0.620 0.991 0.914 0.946 0.631
3 1.000 0.979 1.000 1.000 1.000 0.825 1.000 0.999 1.000 0.947
4 1.000 0.999 1.000 0.998 0.999 0.826 0.758 1.000 0.762 0.966
Ca 5 1.000 0.984 1.000 0.955 0.997 0.944 1.000 0.944 0.906 0.978
MobileNet 6 1.000 1.000 1.000 0.992 1.000 0.961 0.992 0.589 0.645 0.862
7 0.999 0.998 1.000 0.989 0.996 0.812 0.264 1.000 0.999 0.729
8 1.000 1.000 1.000 0.632 0.997 0.952 0.997 1.000 0.809 0.998
9 1.000 0.991 0.915 0.997 0.997 0.989 1.000 1.000 0.525 0.988
10 1.000 1.000 1.000 1.000 0.982 0.930 1.000 0.988 0.618 0.706
1 0.932 0.945 0.885 0.948 0.902 0.925 0.914 0.945 0.288 0.869
2 0.947 0.946 0.905 0.892 0.961 0.932 0.829 0.951 0.957 0.902
3 0.903 0.884 0.858 0.978 0.948 0.059 0.926 0.754 0.911 0.923
4 0.844 0.929 0.895 0.961 0.910 0.358 0.656 0.928 0.994 0.667
NACSSth 5 0.943 0.930 0.886 0.914 0.936 0.586 0.921 0.976 0.091 0.972
Mobile 6 0.973 0.945 0.949 0.972 0.925 0.792 0.846 0.936 0.040 0.854
7 0.983 0.897 0.842 0.944 0.906 0.869 0.893 0.941 0.803 0.781
8 0.962 0.950 0.870 0.908 0.887 0.864 0.824 0.965 0.930 0.904
9 0.975 0.904 0.691 0.949 0.925 0.783 0.925 0.949 0.965 0.957
10 0.925 0.957 0.851 0.955 0.809 0.860 0.941 0.929 0.397 0.028
1 0.937 0.795 0.998 0.841 1.000 0.998 0.999 0.999 0.801 0.986
2 0.411 1.000 1.000 1.000 0.999 0.991 1.000 0.998 0.850 0.995
3 1.000 0.901 1.000 1.000 1.000 0.778 1.000 1.000 1.000 0.993
4 1.000 0.993 1.000 1.000 0.999 0.897 0.881 0.999 0.646 0.929
Ce 5 1.000 1.000 1.000 0.969 0.996 0.945 1.000 0.381 0.001 0.995
ResNet50 6 0.999 1.000 1.000 0.999 0.999 0.995 1.000 0.771 0.211 0.941
7 1.000 1.000 1.000 0.988 0.996 0.743 1.000 1.000 0.993 0.892
8 1.000 0.998 0.998 0.999 0.997 0.993 0.962 1.000 0.999 0.987
9 1.000 1.000 0.695 1.000 0.999 0.971 1.000 1.000 0.998 0.999
10 1.000 0.999 1.000 0.999 0.959 0.994 0.970 0.723 0.003 0.965
1 0.998 0.982 0.999 0.995 0.985 0.999 1.000 1.000 0.984 0.969
2 1.000 1.000 0.973 1.000 0.998 0.986 1.000 0.988 0.975 0.997
3 1.000 0.929 1.000 1.000 1.000 0.882 1.000 1.000 1.000 0.895
4 0.778 0.999 1.000 1.000 0.993 0.467 0.680 0.999 0.951 0.970
5 1.000 1.000 1.000 0.991 0.945 0.835 1.000 0.940 0.001 0.990
6 1.000 1.000 0.994 0.998 0.999 0.996 1.000 0.722 0.002 0.998
7 1.000 1.000 1.000 1.000 0.981 0.961 1.000 1.000 0.753 0.756
8 1.000 1.000 1.000 0.996 0.910 0.994 0.976 1.000 0.995 0.990

Page 107 of

Cr

ResNet101
Table 9.5 continued from previous page
CNNs D abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike
9 1.000 1.000 0.979 1.000 0.997 0.848 1.000 1.000 0.959 0.980
10 1.000 0.993 1.000 1.000 0.927 0.975 0.996 0.917 0.003 0.984
1 0.994 0.998 1.000 0.996 0.997 0.987 0.999 0.999 0.954 0.991
2 0.713 1.000 0.997 1.000 0.996 0.983 1.000 1.000 0.956 0.998
3 1.000 0.665 1.000 1.000 1.000 0.205 0.999 1.000 1.000 0.969
4 0.998 0.997 1.000 1.000 1.000 0.347 0.872 0.972 0.960 0.960
Cg 5 1.000 1.000 1.000 1.000 0.999 0.841 1.000 0.927 0.067 0.993
ResNet152 6 1.000 1.000 1.000 0.994 1.000 0.997 0.999 0.805 0.436 0.986
7 1.000 1.000 1.000 1.000 0.967 0.442 0.995 1.000 0.973 0.860
8 1.000 1.000 1.000 1.000 0.951 0.965 0.999 1.000 1.000 0.991
9 1.000 1.000 0.857 1.000 0.978 0.979 0.992 1.000 0.949 0.999
10 1.000 1.000 1.000 1.000 0.861 0.871 1.000 0.872 0.161 0.961
1 1.000 0.392 1.000 0.272 0.991 0.990 0.999 0.940 0.112 0.862
2 0.952 0.997 1.000 0.918 0.472 0.918 1.000 0.968 0.683 0.979
3 0.998 0.688 1.000 1.000 1.000 0.896 1.000 1.000 1.000 0.952
4 0.996 0.999 1.000 0.993 0.998 0.764 0.214 0.999 0.259 0.740
Co 5 1.000 0.999 1.000 0.913 0.997 0.678 1.000 0.918 0.090 0.936
VGG16 6 1.000 1.000 0.674 0.972 0.999 0.883 1.000 0.828 0.027 0.952
7 0.999 0.998 0.999 0.999 0.995 0.595 0.935 1.000 0.018 0.640
8 0.987 0.995 1.000 0.844 0.999 0.952 0.999 1.000 0.979 0.973
9 1.000 0.999 0.896 0.992 0.915 0.382 1.000 1.000 0.918 0.895
10 1.000 1.000 1.000 0.998 0.964 0.981 1.000 0.998 0.745 0.614
1 1.000 0.959 1.000 0.491 0.981 0.547 1.000 0.977 0.507 0.909
2 0.990 0.998 0.999 0.957 0.991 0.812 1.000 0.983 0.514 0.903
3 1.000 0.767 1.000 0.996 1.000 0.946 1.000 1.000 1.000 0.912
4 0.995 0.980 1.000 0.994 0.996 0.663 0.241 0.995 0.079 0.270
Cio 5 1.000 0.999 1.000 0.617 0.997 0.267 1.000 0.134 0.008 0.934
VGG19 6 1.000 1.000 0.998 0.975 0.999 0.779 0.999 0.932 0.064 0.957
7 1.000 0.999 1.000 0.999 0.999 0.586 0.995 1.000 0.221 0.422
8 1.000 1.000 1.000 0.956 0.997 0.846 0.997 1.000 0.994 0.930
9 1.000 1.000 0.575 0.991 0.988 0.441 1.000 1.000 0.660 0.752
10 1.000 1.000 1.000 1.000 0.993 0.859 0.999 0.966 0.731 0.862

Table 9.5: For 1 < p < 10, the ancestor category ¢, -label values given by the 10 CNNs of the
image A? pictured in Figure A label value in red indicates that the category c,, is not the
dominant one.

Page 108 of

9.2.2 Adversarial images

Page 109 of

)

5 5 3 5 £ =2 3 & 5 -

o Z Z Z g S 5 5 5 = s

p 8 2 Z2 & =z 2z =z O 3

173} j= =] =] < 0 n n n @)

o)))) = < [O [} @] =

2] |/ F = = & & = 7

X @ S & 4 I 5 5§ 5 <& 3 S Average

SRYTS 5 10 4 2 1 2 2 3.1
1000 SRY 10 9 7 23 12 4 7 4 2 8.5
SR™™e | 27 19 18 34 26 31 21 23 23 27 25.0
SRY™ 19 27 19 57 15 26 26 19 15 12 23.5
2000 SRY 45 48 34 71 28 39 35 37 27 29 39.3
SRE™™& | 53 51 41 76 46 56 49 48 64 62 54.7
SRY™ 47 53 40 85 33 50 43 46 35 31 46.3
3000 SR¥ 0 75 69 89 47 68 62 59 57 51 64.7
SRy™™e | 74 76 73 89 55 8 70 T2 84 78 75.2
SRY™ 66 71 64 90 46 73 61 61 58 50 64.0
4000 SRE 83 8 8 97 61 8 80 83 77 72 80.4
SRg™™e | 84 8 8 97 72 90 8 86 89 88 85.7
SR T4 7T T4 97T 58 82 75 79 75 71 76.2
5000 SR 87 90 84 97 73 92 88 91 91 88 88.1
SRE™™& | 88 90 8 97 77 93 89 93 93 96 90.1
SR 82 8 8 98 66 89 8 87 86 82 83.4
6000 SR 92 91 89 98 76 94 92 92 95 94 91.3
SRE™™& | 92 91 91 98 8 96 93 94 97 97 92.8
SRA™ 84 8 84 98 72 93 8 90 93 89 87.5
7000 SR 93 92 92 98 81 96 92 95 98 97 93.4
SRE™™& | 93 92 93 98 8 97 93 96 99 97 94.0
SRY™ 88 88 8 98 73 94 89 92 97 94 89.8
8000 SR¥ 95 95 93 99 81 97 92 97 99 99 94.7
SRE™™® | 95 95 94 99 8 98 93 97 99 99 95.4
SR 90 90 8 98 78 95 91 94 98 97 91.7
9000 SRE 95 96 95 99 8 98 96 98 100 100 96.2
SR™™& | 95 97 95 99 8 98 96 98 100 100 96.5
SR 92 91 8 99 80 96 91 96 99 98 92.8
10000 | SRY 95 96 96 99 8 99 98 99 100 100 96.8
SR | 95 o7 96 99 87 99 98 obase 4 of L4 97.0

Table 9.6: Success rates of EA*8°*C for increasing values of X while 7 = 0.75 for the experiments

designed in subsection and performed in subsection

abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike

*

C
DenseNet-121

C;
DenseNet-169 |

Cs;
DenseNet-201

|

Figure 9.5: Samples of 0.75-strong adversarial images generated by EAYCr for 1 <k < 10.

Page 111 of

abacus acorn baseball broom brown bear canoe hippopotamus llama maraca mountain bike

C
DenseNet-121

C, 3
DenseNet-169

C;
DenseNet-201

ResNet-50 |#

C
ResNet-101 #2%

Figure 9.6: Samples of good enough adversarial images generated by EA'Cr for 1 < k < 10.

Page 112 of

maraca mountain bike

C
DenseNet-121

C;
DenseNet-169 |

C;
DenseNet-201

ResNet-101

Cy
ResNet-152

=

Figure 9.7: Samples of untargeted adversarial images generated by EA8e4Cr for 1 < k < 10.

Page 113 of

9.3 Attack on High Resolution Images: Method and Per-
formance

9.3.1 A

Table 9.7: For 1 < a < 10, the image A" classified by each CNN in the category ¢, (interpolation
= "lanczos”).

Ahr

o
&

o ik
w X h 910 x 604 960 x 640 910 x 607 2462 x 2913 910 x 607 641 x 600 1280 x 800 1280 x 800 1954 x 2011 1740 x 1710

e cheetah Eskimo_dog koala lampshade white_stork screen fountain sports_car book_jacket buckle
0.872 0.691 0.987 0.512 0.484 0.659 0.223 0.840 0.237 0.249

s cheetah Eskimo_dog koala lampshade Granny_Smith screen comic_book sports_car rubber_eraser book_jacket
0.986 0.822 0.997 0.673 0.213 0.818 0.322 0.587 0.327 0.168

s cheetah Eskimo_dog koala table_lamp toucan screen comic_book sports_car handkerchief book_jacket
0.976 0.737 0.997 0.614 0.194 0.724 0.453 0.808 0.194 0.237

Ca cheetah Eskimo_dog koala table_lamp flamingo screen totem_pole sports_car tray book_jacket
0.816 0.516 0.999 0.884 0.497 0.706 0.161 0.740 0.297 0.439

cs cheetah Eskimo_dog koala table_lamp spoonbill screen fountain sports_car book_jacket manhole_cover
0.923 0.613 0.902 0.488 0.209 0.804 0.951 0.711 0.372 0.116

e cheetah Eskimo_dog koala lampshade macaw screen gasmask sports_car pillow coffee_mug
0.972 0.704 0.994 0.507 0.433 0.697 0.280 0.813 0.163 0.175

s cheetah Eskimo_dog koala lampshade white_stork screen fountain sports_car book_jacket buckle
0.948 0.629 0.555 0.686 0.224 0.904 0.204 0.470 0.378 0.378

Cs cheetah Eskimo_dog koala table_lamp toucan screen fountain sports_car envelope matchstick
0.899 0.760 0.979 0.641 0.163 0.699 0.702 0.546 0.243 0.569

o cheetah Eskimo-dog koala lampshade toucan screen comic_-book sports_car binder coffee_mug
0.953 0.343 0.997 0.536 0.455 0.706 0.492 0.480 0.283 0.084

Cio cheetah Eskimo_dog koala table_lamp lorikeet screen comic_book sports_car lighter prayer_rug
0.867 0.412 0.964 0.588 0.145 0.665 0.553 0.649 0.229 0.158

ct poncho goblet weimaraner weevil wombat swing altar beagle triceratops hamper

Page 114 of

p N\ ;::;::r Bicubic | Bilinear| Lanczos P \2 ::i::':s:, Bicubic |Bilinear| Lanczos PN\ ::;:,::, Bicubic | Bilinear| Lanczos
Nearest Nearest Nearest
Neighbor 0.118) 0.115 Neighbor Neighbor
Bicubic | 0.064 | 0.061 [0.073| 0.057 Bicubic 0.053 (0.055| 0.061 Bicubic | 0.005 |-0.001 (0.011(-0.009
Bilinear | 0.024 | 0.015 (0.011| 0.023 silinear [0.058 | 0.048 (0.058| 0.050 silinear | 0.024 | 0.022 . 0.015

_ tanczos | 0.050 | 0.041 (0.043| 0.049 Lanczos | 0.009 | 0.002 (0.007| -0.003

(a) C1 (b) Co (c) Cs

Nearest Nearest Nearest
PN\ | neighbor | Bicubic |Bilinear| Lanczos P\ | eighbor | Bicubic [Bilinear| Lanczos P\ | Neighbor | Bicubic [Biinear| - Lanczos
Nearest Nearest Nearest
Neighbor Neighbor Neighbor
Bicubic | 0.047 | 0.064 |0.061| 0.057 Bicubic | 0.024 | 0.005 (0.034| -0.013 Bicubic [0.056 | 0.046 [0.055| 0.048

siinear | 0.052 | 0.053 |0.071| 0.055 _ siinear | 0.037 | 0.033 |0.042| 0.035
- 0.017 oo 0.034 oo _

(d) Cs (e) Cs (f) Cs

o\ ;:::‘::r Bicubic [Bilinear| Lanczos AN ::i::;'r Bicubic |Bilinear| Lanczos 2\ :;:Lt:r Bicubic |Bilinear| Lanczos
e | 0-058 | 0.071 [0.081| 0.058 ——— N | 0.058

Bicubic | 0.057 | 0.038 [0.059| 0.024 sicubic | 0.057 | 0.047 |0.057| 0.043 Bicubic | 0.051

Bilinear 0.082 0.076 Bilinear | 0.067 | 0.060 0.058 Bilinear | 0.056

Lanczos 0.082 tanczos | 0.061 | 0.050 (0.067| 0.053 Lanczos | 0.048 | 0.057

(g) Cx (h) Cs (i) Co

o\ ':':i:::::r Bicubic |Bilinear| Lanczos
Nearest
e | 0.020 | 0.024 |0.048| 0.030

Bicubic | 0.078 | 0.082 0.070

Bilinear

(4) Cio

Figure 9.8: The heat-maps of the loss function £¢(AY) = 7, — 7, for each CNN.

Page 115 of

93.2 B

Table 9.8: Success rates (SR) of EA'™&°C for each CNN over 10 independent runs, for 7 = 0.55
and X = 35, 000.

Al
ct poncho goblet weimaraner weevil wombat swing altar SR (%)
Cy 0 10 10 10 10 10 10 79
Co 10 10 10 10 10 10 10 9 10 10 99
Cs3 0 10 10 10 10 10 10 10 6 10 86
Cyq 10 10 10 10 10 10 10 10 5 10 95
Cs 2 2 10 7 10 10 10 2 0 10 63
Cg 10 10 10 10 10 10 10 10 0 10 90
Cr 10 10 10 10 10 10 10 10 2 10 92
Cg 9 10 10 10 10 10 10 10 8 10 97
Co 10 10 10 10 10 10 10 10 10 10 100
Cio 10 10 10 10 10 10 10 10 9 10 29

Avg. 8.9 9.2 10 9.7 10 10 10 9 7.1 10 90

Page 116 of

Convergence graph

—1 — 1
os{ T 051 T
0.4 0.4
z 2z
- 2o
H 3
H g
o 0
0.1 0.1
0.0 0.0
T % mw s wm mo S om0 19300 15000 70300 23300 0000 35500
Number of Generations Number of Generations
(a) C1 — min(Lmaz): Az (b) C1 — maz(Lmas):As
Convergence graph Convergence graph
u— —_
os{ T os{ T
0t 0
503 03
F 5
0 02
o1 o1
0.0 0.0
T %o mw oo ww mo S om0 130 D600 7030 23300 0000 35900
Number of Generations Number of Generations
(c) Co — min(Lmaz): Az (d) C2 — maz(Lmaz):Ar
Convergence graph
—1 —_—t
os{ T o051 T
0t 0
2z 2z
£ s
F 2
g £
0.2 0.2
01 0.1
00 00
o 2000 4000 6000 8000 10000 0 5000 10000 15000 20000 25000 30000
Number of Generations Number of Generations
(e) Cs — min(Lmaz):As (f) C3 — maz(Lmaz):Ag
Convergence graph
— 1
05 os{ T
0.4 0.4
2z 2z
£o3 Zos3
2 &
H 2
0 0
0.1 0.1
0.0 0.0 o
T e T R T T e e T
Number of Generations Number of Generations
(g) C4 — min(Lmaz): A2 (h) C4 — maz(Lmax):Ag
Convergence graph Convergence graph
— 1 —_F
os{ T os{ T
0t 0
503 03
F]
0.2 0.2
o1 o1
0.0 0.0

0 2000 4000 6000 8000 10000 12000
Number of Generations

(i) Cs — min(Lmaz):As

250 500 750 1000 1250 1500 1750 2000
Number of Generations

(4) Cs — max(Lmaz): A7 Page 117 of

Figure 9.9: Convergence characteristics of the EA based on 7z and 7; for each CNN. Only the
pairs with the smallest and largest £,,q, values are shown in the figures. (Group 1)

Convergence graph

Convergence graph

—1
os{ T 05
04 0.4
z z
£os Zo3
2 2
I3 g
o 0
0.1 0.1
0.0 0.0
T aw wm s s i e T R S
Number of Generations Number of Generations
(a) C6 — min(Lmaz): A2 (b) C6 — maz(Lmax):As
Convergence graph
—_ —_
054 T 05 —_—T
04 0.4
2z 2z
203 Z0s
3 :
& &
0.2 0.2
o1 "
0o 0.0
T aw wm wo s e P e o R SRS
Number of Generations Number of Generations
(¢c) Cr — min(Lmaz): Az (d) Cr — maz(Lmaz):Ar
Convergence graph
—_% Edh 4
os{ T o051 T
0t 0
2z 2z /
£ s
F 2
g £
0.2 0.2
0.1 01
00 00
0 2000 4000 6000 8000 10000 0 5000 10000 15000 20000 25000 30000
Number of Generations Number of Generations
(e) Cs — min(Lmaz): Az (f) Cs — maz(Lmaz):Aro
Convergence graph Convergence graph
—Tt
os{ T 05
04 0.4
z 2z
Fos Zos
I3 g
g £
So2 So2
0.1 01
0.0 0.0
S w2 om o s s 7o S w70 o a0 om0 om0 700
Generation ‘Generation
(g) Co — min(Lmaz):As (h) Co — maz(Lmaz):Aa
Convergence graph
—_F —_F
054 T os4 T
0t 0
2z 2z
Z o3 o3
: :
& &
0.2 0.2
o1 o1
0.0 0.0

0 2000 4000 6000 8000 10000 12000 14000
Number of Generations

(l) C]_o — min(ﬁmaa)):A(i

5000 10000 15000 20000 25000 30000
Number of Generations

(4) C10 — maz(Limaz): Ao Page 118 of

Figure 9.10: Convergence characteristics of the EA based on 73 and 7; for each CNN. Only the
pairs with the smallest and largest L4, values are shown in the figures. (Group 2)

0.5

o
=
1

1800 2000 2200 2400 2600 2800

Probability

,

e

[
I

a 014 \

0.0 A

T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000
Number of Generations
2200 2205 2210 2215

Figure 9.11: The average convergence characteristics of EA"8°C for ¢ = VGG16 aiming at
generating a high-resolution adversarial image by directly evolving A%. The horizontal axis of
the graph is the number of generations, and the vertical axis is the target probability 4, 7+ and
the loss £ = 7y — 7. The zoomed-in section of the graph shows when the 7; becomes bigger than

the 74 (= 2209t generation). As the loss £ curve shows, the distance between 7; and 7; increases
over the generations.

933 C

Page 119 of

Table 9.9: Direct attack results of EA®™&C for the easiest (cq, ¢;) pairs after 48 hours of
execution of the algorithm. In the last column ¢;_ratio = ¢;_end/c;_start

(ca, ct) (toucan, wombat) (comic_book, altar)
of gen. cq-start cq-end ct-start ci-end # of gen. cq-start cq-end ct-start ci-end ci-ratio

C1 DenseNet121 25695 0.223 0.227 3.0E-04 7.0E-04 2.4
Co DenseNet169 28155 0.322 0.294 1.4E-04 3.0E-04 2.1
Cs DenseNet201 24983 0.453 0.467 1.4E-04 2.9E-04 2.1
Cyq MobileNet 49082 0.497 0.394 7.7TTE-06 4.31E-05 5.5
Cs NASNetMobile 25098 0.951 0.748 8.3E-05 4.1E-04 5.0
Ce ResNet50 25448 0.280 0.270 2.9E-04 6.9E-04 2.3
Cr ResNet101 26178 0.204 0.084 9.1E-05 1.9E-04 2.1
Cs ResNet152 25328 0.702 0.575 2.0E-05 5.2E-05 2.6
Co VGG16 46721 0.455 0.405 1.08E-05 1.90E-05 1.8
Cio VGG19 47668 0.145 0.132 5.32E-05 9.11E-05 1.7

Table 9.10: Direct attack results of EA*™%C for all (c,, ¢;) pairs after 100 generations (hence

. . : target,C :

less than 48 hours). The results show the time spent by the main operations of EA**"®°"" in one

generation.
Input Image Aq Ao As Ay Asg Ag Az Asg Ag Ao
Image Size (n) 910x604 960x640 910x607 2462x2913 910x607 641x600 1280x800 1280x800 1954x2011 1740x1710 %
time per gen 3.528 3.790 3.427 45.570 3.469 2.499 6.239 6.248 24.815 18.871
resize 0.384 0.401 0.371 3.829 0.373 0.294 0.635 0.636 2.209 1.729 9.2
prediction 0.155 0.150 0.149 0.156 0.150 0.149 0.150 0.150 0.155 0.153 1.3

Avg. of all CNNs
mutation 2.063 2.215 1.995 29.922 2.026 1.410 3.768 3.778 16.050 12.118 63.6
crossover 0.161 0.179 0.161 2.067 0.161 0.112 0.297 0.297 1.133 0.861 4.6
time per gen/n 6.42E-06 6.17E-06 6.21E-06 6.35E-06 6.28E-06 6.50E-06 6.09E-06 6.10E-06 6.31E-06 6.34E-06
: target,C : :
Table 9.11: Indirect attack results of EA*®°" for all (c,, ¢;) pairs after 100 generations. The
. . . target,C : :

results show the time spent by the main operations of EA**®°"* in one generation.
Input Image Aq Ao As Ay As Ag Ar Ag Ag Ao
Image Size (n) 910x604 960x640 910x607 2462x2913 910x607 641x600 1280x800 1280x800 1954x2011 1740x1710 %
time per gen 0.512 0.516 0.518 0.673 0.517 0.512 0.526 0.530 0.596 0.572
resize 0.020 0.022 0.020 0.174 0.020 0.016 0.032 0.032 0.101 0.079 9.4
prediction 0.154 0.155 0.155 0.155 0.156 0.154 0.155 0.155 0.154 0.154 28.3

Avg. of all CNNs
mutation 0.143 0.142 0.145 0.146 0.145 0.147 0.142 0.145 0.144 0.143 26.4
crossover 0.009 0.010 0.009 0.010 0.009 0.009 0.009 0.009 0.010 0.010 1.7
time per gen/n 9.31E-07 8.39E-07 9.38E-07 9.39E-08 9.36E-07 1.33E-06 5.14E-07 5.17E-07 1.52E-07 1.92E-07
Page 120 of (147}

Convergence graph

Convergence graph

000070 000030
000065 000028
000060 000026
2 000055 2 0.00024
$ 000050 $ 000022
3 0o004s ¥ 000020
000040 000018
000035 000016
000030 000014
G 5000 10000 13000 20000 25000) 5000 10000 1000 20000 25000
Generation Generation
(a) Cy — AbT (b) Cy — AL
Convergence graph Jeos Convergence graph
000028
40
000026
35
000024
B z30
§ 000022 H
3 825
3 0.00020 =
? =20
000018
15
000016
10
000014
3 500 10000 15000 20000 25000] 10000 20000 30000 40000 50000
Generation Generation
(c) C3 — A (d) Cq — Ab*
Convergence graph Convergence graph
000070
000040
000065
000035
000060
5 000030 5 000055
§ 000025 3 000050
? 2 0.000a5
¥ 000020 ¥
000040
000015
000035
000010
000030
G S0 10000 13000 20000 2000 G 5000 10000 13600 20000 25000
Generation Generation
(e) C5 — AL (f) Co — AB*
Convergence graph Je-s Convergence graph
50
000018
45
000016
H Z 40
2 000014 £3s
0.00012 30
25
000010
20
3 500 10000 15000 20000 25000] 500 10000 15000 20000 25000
Generation Generation
(g) Cr — A¥ (h) Cs — Ab*
leos Convergence graph less Convergence graph

Log Probability
Log Probability

10000 20000 30000 40000 10000 20000 30000 40000 50000
Generation Generation

(i) Co — AP" (j) C10 — A2

Figure 9.12: Convergence characteristics of EA*C aiming at generating within 48 hours

a high-resolution adversarial image by directly evolving AY for the (toucan, wombat) pair
and C = MobileNet (d), VGG16 (i), VGG19 (j), and AY for the (comic book, altar)

C = DenseNet121 (a), DenseNet169 (b), DenseNet201 (c), NasNetMobile (ef%@s%ﬁ@
ResNet101 (g), ResNet152 (h).

9.4 Robustness of Attack Against Filters

Page 122 of

9.4.1 Without filters

Ili|- .
i T .

R SRR
>

R

b
b

F

Rz RS
R MERE
R MR

J. !.

]
]
I
|
]
]
]
]
!
d
!
]
|
]
]
]

N
N

Figure 9.13: For 1 < a < 10, the image on the diagonal of the a” row is the ancestor A,
(recovered from Table classified by VGG16 as belonging to the category c¢,, and the picture
in the ' column, with ¢ # a, is the adversarial picture D, ;(A,) = EAtLa;get’VGG'm(Aa,ct)
classified by VGG16 as belonging to ¢, obtained after the first of the 10 independent runs.

Page 123 of

Table 9.12: For C = VGG16, each of the cell in (a,t)*-position contains a pair (maximum label
value, corresponding class) given by C for D, (Ag) (with Dy o(Ag) = Aq).

plane car bird cat deer dog frog horse ship truck
C1 C2 c3 C4 Cs Ce cr 8 Co C10
plane(A;) 0.6900 | 0.9506 | 0.9501 | 0.9500 | 0.9501 | 0.9500 | 0.9502 | 0.9501 | 0.9537 | 0.9531
plane | car bird cat deer dog frog horse | ship truck
car(Ay) 0.9519 | 0.9999 | 0.9546 | 0.9515 | 0.9534 | 0.9509 | 0.9508 | 0.9606 | 0.9509 | 0.9502
plane | car bird cat deer dog frog horse | ship truck
bird(As) 0.9502 | 0.9505 0:9999 0.9501 | 0.9511 | 0.9509 | 0.9517 | 0.9523 0.9506 0.9510
plane | car bird cat deer dog frog horse | ship truck
cat(As) 0.9514 | 0.9507 | 0.9512 | 0.9998 | 0.9510 | 0.9519 | 0.9543 | 0.9503 | 0.9514 | 0.9552
plane | car bird cat deer dog frog horse | ship truck
deer(As) 0.9524 | 0.9501 | 0.9507 | 0.9514 | 0.9999 | 0.9545 | 0.9520 | 0.9501 | 0.9560 | 0.9510
plane | car bird cat deer dog frog horse | ship truck
dog(As) 0.9516 | 0.9502 | 0.9529 | 0.9518 | 0.9501 | 0.9996 | 0.9502 | 0.9512 | 0.9508 | 0.9518
plane | car bird cat deer dog frog horse | ship truck
frog(As) 0.9519 | 0.9528 | 0.9501 | 0.9530 | 0.9521 | 0.9527 | 0.9999 | 0.9529 | 0.9521 | 0.9515
plane | car bird cat deer dog frog horse | ship truck
horse(As) 0.9502 | 0.9523 | 0.9503 | 0.9568 | 0.9521 | 0.9510 | 0.9521 | 0.9998 | 0.9587 | 0.9514
plane | car bird cat deer dog frog horse | ship truck
ship(As) 0.9504 | 0.9543 | 0.9581 | 0.9506 | 0.9500 | 0.9516 | 0.9517 | 0.9505 | 0.9996 | 0.9504
plane | car bird cat deer dog frog horse | ship truck
truck(Aro) 0.9525 | 0.9532 | 0.9518 | 0.9517 | 0.9557 | 0.9511 | 0.9516 | 0.9507 | 0.9517 | 0.9984
plane | car bird cat deer dog frog horse | ship truck

Page 124 of

Table 9.13: For C = VGG16, the cell in (a,t)""-position gives (top part) the c,-label value and
the ¢s-label value, and (bottom part) the maximum label value and corresponding class of C o F}
for Dy 1(Aq) (With Dy o(Ag) = Ag).

plane car bird cat deer dog frog horse ship truck

c1 () c3 cq cs Ce cr csg Co €10

plane (A;) 0.9923 0.9870 0.9830 0.8888 0.5932 0.9845 0.9857 0.9436 0.9007 0.9806
0.9923 1.56e-03 | 5.16e-04 | 4.17e-04 1.71e-04 | 9.59e-04 | 1.92e-03 | 8.26e-05 | 9.18e-02 2.52e-05

0.9923 0.9870 0.9830 0.8888 0.5932 0.9845 0.9857 0.9436 0.9007 0.9806

plane plane plane plane plane plane plane plane plane plane
car (A2) 2.77e-04 0.7608 1.71e-04 | 5.46e-05 1.09e-04 | 7.36e-04 | 6.81e-04 1.63e-04 | 2.60e-05 | 3.29e-03
0.1501 0.7608 1.44e-04 1.82e-03 | 4.02e-05 | 2.29e-04 1.00e-04 1.08e-05 0.9993 8.08e-03

0.8491 0.7608 0.9958 0.9962 0.9965 0.9837 0.9969 0.9864 0.9993 0.9877

ship car ship ship ship ship ship ship ship ship

bird (As) 0.2966 0.7862 0.9996 0.2070 0.8838 0.9665 0.8639 0.4902 0.4071 0.5798
5.15e-02 0.1254 0.9996 8.18e-04 1.38e-04 | 2.49e-04 0.1120 5.17e-04 0.5643 1.63e-03

0.4964 0.7862 0.9996 0.6009 0.8838 0.9665 0.8639 0.4902 0.5643 0.5798

ship bird bird ship bird bird bird bird ship bird
cat (Aq) 0.1906 4.82e-02 | 4.13e-02 0.9176 0.6035 0.1058 0.5140 0.1909 1.27e-02 2.49e-02
0.1682 2.36e-02 | 2.79e-04 0.9176 5.37e-03 1.72e-03 | 4.64e-02 | 6.87e-02 0.9800 1.78e-02

0.5977 0.8971 0.9162 0.9176 0.6035 0.8079 0.5140 0.4871 0.9800 0.9054

ship ship ship cat cat ship cat frog ship ship
deer (As) 3.90e-05 | 7.41e-03 | 9.00e-02 | 5.71e-04 0.3245 0.7423 2.16e-03 0.1149 7.83e-03 | 8.0le-04
0.9985 4.49e-02 | 2.39e-03 0.9982 0.3245 1.23e-02 | 3.97e-02 7.53e-04 0.4939 3.41e-02

0.9985 0.8634 0.8982 0.9982 0.5838 0.7423 0.6883 0.7741 0.4939 0.9616

plane plane cat cat plane deer cat cat ship cat
dog (Ag) 3.08e-04 | 9.21e-03 | 5.23e-03 1.69e-03 1.32e-03 0.0014 7.82e-02 1.03e-02 | 4.41e-03 | 5.18e-03
8.74e-04 1.28e-03 1.18e-04 0.9977 1.80e-04 0.0014 0.4415 3.46e-05 1.19e-02 0.5093

0.9925 0.6375 0.9727 0.9977 0.9380 0.9983 0.4415 0.9794 0.8320 0.5093

truck cat cat cat truck cat frog cat truck truck

frog (A7) 0.5602 0.9198 9.37e-02 0.4898 0.2230 0.2092 0.9140 0.2013 9.97e-04 0.4658
0.4272 5.41e-03 | 4.93e-04 0.4423 1.90e-03 | 5.25e-02 0.9140 1.20e-03 0.9941 1.37e-02

0.5602 0.9198 0.7740 0.4898 0.7097 0.3961 0.9140 0.4221 0.9941 0.4658

frog frog plane frog cat cat frog cat ship frog
horse (Ag) 3.06e-05 | 3.20e-04 1.83e-04 1.89e-04 1.46e-04 | 5.03e-05 1.09e-05 0.0004 2.27e-05 1.27e-04
0.9316 2.43e-03 | 2.29e-02 | 9.12e-03 | 4.38e-04 0.8593 7.05e-03 0.0004 0.9470 6.98e-03

0.9316 0.4645 0.5039 0.3962 0.6209 0.8593 0.8860 0.7479 0.9470 0.8123

plane plane dog plane plane dog plane dog ship plane

ship (Ag) 0.9136 0.9445 0.1834 0.9034 7.89e-03 1.71e-03 0.9801 3.43e-02 0.9865 0.9242
7.62e-02 | 4.45e-04 1.30e-03 | 8.70e-02 0.6532 0.9306 1.79e-03 1.04e-02 0.9865 3.55e-04

0.9136 0.9445 0.7320 0.9034 0.6532 0.9306 0.9801 0.9311 0.9865 0.9242

ship ship plane ship deer dog ship cat ship ship

truck (A1) 2.35e-05 2.68e-04 3.16e-05 1.43e-04 6.35e-05 4.79e-05 6.68e-04 3.60e-04 1.38e-04 0.0001
0.9994 4.12e-05 | 4.41e-04 | 5.57e-05 1.43e-04 | 4.18e-05 | 4.62e-05 1.65e-03 1.30e-02 0.0001

0.9994 0.9971 0.9970 0.9941 0.9946 0.9941 0.8366 0.9947 0.9865 0.9973

plane plane plane plane plane plane ship plane plane plane

Page 125 of

Table 9.14: For C = VGG16, the cell in (a,t)""-position gives (top part) the c,-label value and
the ¢s-label value, and (bottom part) the maximum label value and corresponding class of C o F
for Dy 1(Aq) (With Dy o(Ag) = Ag).

plane car bird cat deer dog frog horse ship truck
c1 () c3 cq cs Ce cr csg Co €10
plane (A;) 0.2591 0.2052 0.1978 0.1256 0.2017 0.1885 0.1907 0.1415 9.10e-02 0.2188
0.2591 0.5786 0.1627 4.95e-03 5.82e-04 1.89e-02 3.08e-02 1.51e-04 0.7307 3.94e-05
0.4463 0.5786 0.3455 0.5941 0.6175 0.4134 0.4057 0.7010 0.7307 0.5850
car car ship ship ship ship car ship ship ship
car (A2) 5.29e-03 0.9988 9.92e-02 5.78e-03 0.4091 0.1245 5.40e-02 1.37e-02 3.80e-02 0.9989
3.23e-04 0.9988 0.7795 4.33e-02 7.96e-04 | 9.59e-04 0.5196 6.14e-05 3.73e-02 1.76e-04
0.8311 0.9988 0.7795 0.7865 0.4091 0.7438 0.5196 0.9224 0.8378 0.9989
bird car bird bird car bird frog bird bird car

bird (As) 0.9996 0.9998 0.9998 0.9997 0.9997 0.9997 0.9998 0.9996 0.9997 0.9998
1.98e-04 5.04e-06 0.9998 1.13e-04 5.52e-06 | 4.45e-05 1.72e-05 2.11e-05 3.80e-05 5.91e-06

0.9996 0.9998 0.9998 0.9997 0.9997 0.9997 0.9998 0.9996 0.9997 0.9998

bird bird bird bird bird bird bird bird bird bird
cat (Aq) 0.9876 0.9959 0.9743 0.9992 0.9955 0.9691 0.9983 0.9723 0.9968 0.9917
4.65e-06 7.52e-07 8.52e-04 0.9992 5.96e-04 3.02e-02 2.37e-04 4.62e-05 8.10e-06 9.37e-07
0.9876 0.9959 0.9743 0.9992 0.9955 0.9691 0.9983 0.9723 0.9968 0.9917

cat cat cat cat cat cat cat cat cat cat

deer (As) 0.9997 0.9985 0.9989 0.9988 0.9998 0.9983 0.9996 0.9992 0.9985 0.9997
8.28e-06 1.35e-06 | 9.30e-04 7.09e-04 0.9998 1.49e-03 1.73e-05 1.43e-04 | 5.85e-06 1.02e-06

0.9997 0.9985 0.9989 0.9988 0.9998 0.9983 0.9996 0.9992 0.9985 0.9997

deer deer deer deer deer deer deer deer deer deer

dog (Ag) 2.17e-04 | 3.40e-03 2.52e-03 1.48e-04 3.64e-03 3.14e-04 3.71le-04 | 8.51e-04 1.95e-04 2.33e-04
1.34e-05 2.26e-06 5.67e-05 0.9998 1.88e-05 3.14e-04 8.29e-06 1.63e-05 2.77e-06 2.94e-06

0.9997 0.9965 0.9973 0.9998 0.9962 0.9996 0.9995 0.9990 0.9997 0.9997

cat cat cat cat cat cat cat cat cat cat
frog (Az) 0.9994 0.9997 0.9995 0.9977 0.9980 0.9941 0.9998 0.9982 0.9995 0.9996
1.90e-05 | 8.46e-06 | 2.25e-04 1.21e-03 | 8.21e-05 | 4.55e-03 0.9998 4.94e-05 | 6.97e-05 7.29e-06
0.9994 0.9997 0.9995 0.9977 0.9980 0.9941 0.9998 0.9982 0.9995 0.9996
frog frog frog frog frog frog frog frog frog frog
horse (Ag) 0.7487 0.9692 0.8900 0.9062 0.9967 0.9568 0.9164 0.9997 0.9792 0.9758

4.02e-04 7.37e-05 9.74e-02 8.47e-02 1.94e-03 3.46e-03 7.37e-04 0.9997 4.28e-04 2.19e-05

0.7487 0.9692 0.8900 0.9062 0.9967 0.9568 0.9164 0.9997 0.9792 0.9758

horse horse horse horse horse horse horse horse horse horse
ship (Ag) 1.73e-03 | 4.33e-02 | 5.67e-02 1.85e-02 0.8242 0.1091 8.23e-02 7.87e-03 0.3924 1.55e-03
0.9894 0.7334 1.25e-03 | 3.34e-04 | 2.25e-05 | 8.34e-04 1.54e-04 | 7.16e-05 0.3924 4.34e-03
0.9894 0.7334 0.8965 0.6402 0.8242 0.8392 0.4956 0.8441 0.4525 0.9214
plane car plane plane ship plane plane plane plane plane

truck (A1) 1.61e-03 6.03e-04 1.57e-03 1.05e-04 7.27e-04 4.96e-03 9.52e-03 3.86e-03 1.02e-03 5.62e-03
0.9955 2.88e-04 2.79e-03 1.88e-04 3.04e-02 4.73e-04 2.58e-04 0.1820 9.07e-05 5.62e-03

0.9955 0.9873 0.9920 0.9931 0.9670 0.9184 0.9876 0.8099 0.9974 0.9919

plane plane plane plane plane plane plane plane plane plane

Page 126 of

Table 9.15: For C = VGG16, the cell in (a,t)™"-position gives (top part) the c,-label value and
the ¢;-label value, and (bottom part) the maximum label value and corresponding class of C o F3
for Dy 1(Aq) (With Dy o(Ag) = Ag).

plane car bird cat deer dog frog horse ship truck
c1 () c3 cq cs Ce cr csg Co €10
plane (A;) 0.7298 0.6388 0.3414 0.1388 0.3576 0.2870 0.3931 0.2510 0.1163 0.3362
0.7298 6.08e-02 0.1755 8.80e-04 3.35e-04 | 3.20e-02 1.14e-02 2.19e-04 0.8616 2.08e-05
0.7298 0.6388 0.4205 0.8034 0.5857 0.5863 0.5051 0.6781 0.8616 0.6479
plane plane ship ship ship ship ship ship ship ship
car (A2) 0.3643 0.9997 0.9734 0.9666 0.9858 0.8656 0.9075 0.9986 0.9607 0.9997
1.23e-03 0.9997 1.79e-02 1.44e-03 7.33e-05 5.59e-04 5.22e-02 8.15e-06 1.97e-03 5.86e-05
0.5191 0.9997 0.9734 0.9666 0.9858 0.8656 0.9075 0.9986 0.9607 0.9997
bird car car car car car car car car car

bird (As) 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998
7.36e-05 3.88e-06 0.9999 5.44e-05 | 4.91e-06 2.73e-05 1.26e-05 1.22e-05 2.02e-05 4.76e-06

0.9998 0.9998 0.9999 0.9998 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998

bird bird bird bird bird bird bird bird bird bird
cat (Aq) 0.9971 0.9977 0.9873 0.9994 0.9980 0.9969 0.9986 0.9916 0.9975 0.9963
2.73e-06 1.95e-06 9.16e-03 0.9994 1.09e-04 2.56e-03 2.80e-04 1.33e-04 1.16e-05 1.81e-06
0.9971 0.9977 0.9873 0.9994 0.9980 0.9969 0.9986 0.9916 0.9975 0.9963

cat cat cat cat cat cat cat cat cat cat

deer (As) 0.9994 0.9995 0.9998 0.9996 0.9998 0.9991 0.9999 0.9995 0.9986 0.9997
1.02e-05 7.05e-07 1.73e-05 7.95e-05 0.9998 8.14e-04 1.17e-05 2.09e-04 | 4.97e-06 1.04e-06

0.9994 0.9995 0.9998 0.9996 0.9998 0.9991 0.9999 0.9995 0.9986 0.9997
deer deer deer deer deer deer deer deer deer deer
dog (Ag) 0.2027 0.8235 0.4543 1.37e-02 0.1518 0.2668 1.11e-02 0.1644 5.96e-02 | 3.49e-02
1.70e-05 | 3.99e-06 1.20e-03 0.9861 2.06e-05 0.2668 2.52e¢-05 | 4.93e-05 | 4.62e-06 | 4.38e-06
0.7969 0.8235 0.5443 0.9861 0.8479 0.7329 0.9886 0.8352 0.9401 0.9649
cat dog cat cat cat cat cat cat cat cat
frog (Az) 0.9997 0.9998 0.9998 0.9993 0.9997 0.9994 0.9998 0.9994 0.9997 0.9997
1.74e-05 1.30e-05 | 4.40e-05 | 4.63e-04 1.08e-05 | 2.41e-04 0.9998 1.72e-05 | 5.84e-05 | 6.97e-06
0.9997 0.9998 0.9998 0.9993 0.9997 0.9994 0.9998 0.9994 0.9997 0.9997
frog frog frog frog frog frog frog frog frog frog
horse (Ag) 0.9965 0.9985 0.9958 0.9988 0.9997 0.9992 0.9891 0.9998 0.9974 0.9994

6.08e-05 1.93e-05 | 3.63e-03 1.24e-04 1.37e-04 | 5.16e-05 2.94e-05 0.9998 2.45e-05 8.11e-06

0.9965 0.9985 0.9958 0.9988 0.9997 0.9992 0.9891 0.9998 0.9974 0.9994

horse horse horse horse horse horse horse horse horse horse

ship (Ag) 0.5341 0.4759 0.8869 0.7291 0.9987 0.7917 0.4933 0.6350 0.9942 0.2402
0.3343 0.4978 8.15e-04 | 3.15e-04 3.33e-06 2.92e-04 1.03e-04 | 5.64e-05 0.9942 1.07e-02

0.5341 0.4978 0.8869 0.7291 0.9987 0.7917 0.4933 0.6350 0.9942 0.6106

ship car ship ship ship ship ship ship ship car

truck (A1) 0.9685 0.9701 0.5662 0.6816 0.7751 0.7993 0.8764 0.8361 0.6649 0.9924

2.94e-02 2.13e-02 | 4.58e-03 7.19e-04 0.1100 1.29e-04 2.88e-04 | 8.23e-04 7.35e-03 0.9924

0.9685 0.9701 0.5662 0.6816 0.7751 0.7993 0.8764 0.8361 0.6649 0.9924

truck truck truck truck truck truck truck truck truck truck

Page 127 of

Table 9.16: For C = VGG16, the cell in (a,t)™"-position gives (top part) the c,-label value and
the ¢;-label value, and (bottom part) the maximum label value and corresponding class of C o Fy
for Dy 1(Aq) (With Dy o(Ag) = Ag).

plane car bird cat deer dog frog horse ship truck
c1 Cc2 c3 cq cs Ce cr csg Co €10
0.4425 1.10e-02 1.62e-02 5.08e-03 6.28e-03 1.16e-02 1.27e-02 2.14e-03 4.610e-02 4.84e-03
plane(A1) 0.4425 0.9871 0.9689 0.9843 0.9813 0.9566 0.9610 0.9815 0.9146 0.9792
0.5497 0.9871 0.9689 0.9843 0.9813 0.9566 0.9610 0.9815 0.9146 0.9792
car car bird cat deer dog frog horse ship truck
9.97e-03 | 0.9999 0.8717 0.1439 0.3505 9.05e-02 | 0.2418 6.16e-02 | 0.7124 3.99¢-02
car(Az) 0.9879 0.9999 0.1196 0.8162 0.6083 0.8912 0.7558 0.9287 0.2840 0.9597
0.9879 0.9999 0.8717 0.8162 0.6083 0.8912 0.7558 0.9287 0.7124 0.9597
plane car car cat deer dog frog horse car truck
1.63e-03 1.75e-03 | 0.9999 5.26e-03 | 8.46e-03 1.27e-02 | 4.31e-03 | 8.68e-03 1.49e-03 3.86e-03
bird(As) 0.9710 0.9903 0.9999 0.9268 0.9705 0.9505 0.9952 0.9505 0.9916 0.9606
0.9710 0.9903 0.9999 0.9268 0.9705 0.9505 0.9952 0.9505 0.9916 0.9606
plane car bird cat deer dog frog horse ship truck
8.86e-03 | 4.34e-04 | 3.31e-02 | 0.9998 6.74e-03 | 4.28e-02 | 2.03e-03 7.95e-02 | 3.50e-03 5.92e-04
cat(As) 0.8439 0.9948 0.7611 0.9998 0.9860 7.94e-02 | 0.9979 0.6060 0.9079 0.9833
0.8439 0.9948 0.7611 0.9998 0.9860 0.8764 0.9979 0.6060 0.9079 0.9833
plane car bird cat deer frog frog horse ship truck
1.65e-04 | 9.22e-05 | 3.67e-02 | 2.14e-03 | 0.9999 2.27e-02 | 3.95e-04 1.00e-02 1.27e-03 1.16e-03
deer(As) 0.9932 0.9970 0.9630 0.9902 0.9999 0.9771 0.9987 0.9852 0.9957 0.9951
0.9932 0.9970 0.9630 0.9902 0.9999 0.9771 0.9987 0.9852 0.9957 0.9951
plane car bird cat deer dog frog horse ship truck
3.01e-03 | 6.08e-05 | 3.49e-03 | 7.11e-02 | 8.47e-04 | 0.9998 6.87e-04 | 2.71e-03 | 4.09e-04 2.47e-05
dog(As) 0.9524 0.9985 0.9830 0.9286 0.9943 0.9998 0.9960 0.9960 0.9974 0.9994
0.9524 0.9985 0.9830 0.9286 0.9943 0.9998 0.9960 0.9960 0.9974 0.9994
plane car bird cat deer dog frog horse ship truck
7.74e-02 1.94e-02 | 9.23e-02 | 0.2083 0.1896 0.4448 0.9999 0.5326 8.68e-02 4.41e-02
frog(.Az) 0.9017 0.9796 0.9075 0.7900 0.8091 0.5505 0.9999 0.4461 0.9092 0.9519
0.9017 0.9796 0.9075 0.7900 0.8091 0.5505 0.9999 0.5326 0.9092 0.9519
plane car bird cat deer dog frog frog ship truck
5.42e-03 | 5.40e-03 | 5.30e-03 1.65e-02 | 8.67e-03 1.40e-02 1.94e-04 | 0.9998 1.63e-02 6.68e-03
horse(Asg) 0.9515 0.9768 0.8715 0.8458 0.9852 0.9342 0.9958 0.9998 0.9648 0.9316
0.9515 0.9768 0.8715 0.8458 0.9852 0.9342 0.9958 0.9998 0.9648 0.9316
plane car bird cat deer dog frog horse ship truck
0.2174 0.1769 3.05e-02 | 2.13e-02 | 6.81e-03 | 0.2438 5.26e-03 | 3.09e-02 | 0.9997 6.52e-02
ship(Ag) 0.6631 0.8214 0.9155 0.9712 0.8909 0.6297 0.9929 0.9414 0.9997 0.9095
0.6631 0.8214 0.9155 0.9712 0.8909 0.6297 0.9929 0.9414 0.9997 0.9095
plane car bird cat deer dog frog horse ship truck
0.1588 1.10e-02 2.70e-02 4.66e-03 0.2818 1.23e-02 6.82e-03 0.1163 6.94e-02 0.9993
truck(Aqo) 0.8403 0.9869 0.9666 0.9878 0.6789 0.9517 0.9914 0.7095 0.9270 0.9993
0.8403 0.9869 0.9666 0.9878 0.6789 0.9517 0.9914 0.7095 0.9270 0.9993
plane car bird cat deer dog frog horse ship truck

Page 128 of

Table 9.17: For C = VGG16 and F5 = F3o0 Fy, the cell in (a,t)""-position gives (top part) the cq-
label value and the ¢;-label value, and (bottom part) the maximum label value and corresponding
class of C o Fy for D, ¢(Ag) (with D, o(As) = Aa).

plane car bird cat deer dog frog horse ship truck
c1 Cc2 c3 cq cs Ce cr csg C9 €10
0.8817 0.8366 0.5261 0.2653 0.5060 0.5797 0.5169 0.3472 0.1666 0.6224
plane(A1) 0.8817 4.33e-02 0.1688 9.90e-04 | 4.08e-04 | 3.43e-02 1.12e-02 3.96e-04 | 0.8131 3.38e-05
0.8817 0.8366 0.5261 0.6487 0.5060 0.5797 0.5169 0.5715 0.8131 0.6224
plane plane plane ship plane plane plane ship ship plane
0.9637 0.9998 0.9907 0.9971 0.9980 0.9907 0.9935 0.9994 0.9961 0.9997
car(Asz) 2.85e-04 0.9998 7.17e-03 3.92e-04 2.70e-05 1.01e-04 | 3.75e-03 7.29e-06 3.66e-04 | 6.04e-05
0.9637 0.9998 0.9907 0.9971 0.9980 0.9907 0.9935 0.9994 0.9961 0.9997
car car car car car car car car car car
0.9998 0.9998 0.9999 0.9997 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998
bird(As) 8.86e-05 3.74e-06 | 0.9999 6.25e-05 | 6.93e-06 3.01e-05 1.42e-05 1.25e-05 2.32e-05 4.46e-06
0.9998 0.9998 0.9999 0.9997 0.9998 0.9998 0.9999 0.9998 0.9998 0.9998
bird bird bird bird bird bird bird bird bird bird
0.9990 0.9984 0.9853 0.9997 0.9987 0.9982 0.9990 0.9833 0.9983 0.9978
cat(Ag) 3.46e-06 2.06e-06 1.13e-02 0.9997 7.19e-05 9.95e-04 2.55e-04 | 2.29e-04 1.57e-05 2.76e-06
0.9990 0.9984 0.9853 0.9997 0.9987 0.9982 0.9990 0.9833 0.9983 0.9978
cat cat cat cat cat cat cat cat cat cat
0.9982 0.9959 0.9996 0.9995 0.9992 0.9974 0.9999 0.9988 0.9958 0.9995
deer(As) 1.71e-05 1.77e-06 1.43e-05 5.01e-05 0.9992 2.49e-03 1.28e-05 6.28e-04 7.19¢-06 1.58e-06
0.9982 0.9959 0.9996 0.9995 0.9992 0.9974 0.9999 0.9988 0.9958 0.9995
deer deer deer deer deer deer deer deer deer deer
0.3989 0.9915 0.8812 0.1154 0.1433 0.9148 7.58e-02 0.6196 0.4921 0.1617
dog(As) 2.67e-05 1.96e-06 2.37e-03 0.8843 2.35e-05 0.9148 5.47e-05 7.70e-05 6.71e-06 1.04e-05
0.6006 0.9915 0.8812 0.8843 0.8563 0.9148 0.9238 0.6196 0.5074 0.8379
cat dog dog cat cat dog cat dog cat cat
0.9998 0.9998 0.9998 0.9997 0.9998 0.9996 0.9999 0.9997 0.9998 0.9997
frog(Az) 2.03e-05 3.11e-05 6.01e-05 1.86e-04 1.38e-05 1.14e-04 | 0.9999 1.07e-05 | 4.63e-05 1.33e-05
0.9998 0.9998 0.9998 0.9997 0.9998 0.9996 0.9999 0.9997 0.9998 0.9997
frog frog frog frog frog frog frog frog frog frog
0.9924 0.9953 0.9900 0.9989 0.9998 0.9991 0.9945 0.9998 0.9963 0.9995
horse(Asg) 8.50e-05 | 4.29e-05 9.55e-03 8.48e-05 7.39e-05 | 4.19e-05 2.76e-05 0.9998 2.31e-05 1.99e-05
0.9924 0.9953 0.9900 0.9989 0.9998 0.9991 0.9945 0.9998 0.9963 0.9995
horse horse horse horse horse horse horse horse horse horse
0.7220 0.1382 0.5000 0.7736 0.9983 0.6808 0.4648 0.6148 0.9945 0.4792
ship(Ag) 4.71e-02 0.8536 6.50e-04 3.24e-04 | 3.35e-06 3.04e-04 | 8.79e-05 3.85e-05 | 0.9945 9.87e-03
0.7220 0.8536 0.5000 0.7736 0.9983 0.6808 0.4955 0.6148 0.9945 0.4792
ship car ship ship ship ship car ship ship ship
0.9894 0.9847 0.5815 0.9414 0.9378 0.9084 0.9752 0.9194 0.9244 0.9987
truck(Aqo) 9.42e-03 1.34e-02 2.45e-03 3.01e-04 2.02e-02 1.71e-04 1.62e-04 | 5.57e-04 7.97e-03 | 0.9987
0.9894 0.9847 0.5815 0.9414 0.9378 0.9084 0.9752 0.9194 0.9244 0.9987
truck truck truck truck truck truck truck truck truck truck

Page 129 of

9.4.2 With filters

Bt
b OB
PR TR

{. !.
II. !.

%. _
Ay Bl

-
B
R MR TR

b

M

>

]
)
]
)
]
}
_l
" !.
]
i
]
)
]
i
]
)

LS.
N
LS
LS
R
LS
LS
LS

Figure 9.14: For 1 < a < 10, the image on the diagonal at the (a,a)™ position is the ancestor
A, (recovered from Table classified by VGG16 as belonging to the category ¢,. The picture
in the (a,t)!" position, with ¢ # a, is the adversarial picture Dﬁ(Aa) = EAZr§;;’VGG'16(Aa, ct)
obtained after the first successful run of the algorithm. Both images Di % (A,) and Fy (Df 3 (Aq))
are classified by VGG16 as belonging to ¢; with a ¢;-label value > 0.95. The 3 fully empty
pictures correspond to the (ancestor(A,),target) combinations for which the algorithm did not
terminate successfully for any of the 10 runs.

Page 130 of

onry ‘24866°0 | dIgs ‘0866°0 | ©S10Y ‘6866°0 | 801 ‘L666°0 | SOP ‘€666°0 | I99P ‘F666°0 | 182 ‘G666°0 | P19 ‘Z866°0 | 181 ‘6660 | ouerd ‘8666°0 (01p)spny
onIy ‘p866°0 | dIgs ‘60G6°0 | 9S10Y ‘gFS6°0 | 801 ‘9gG6°0 | Sop ‘6056°0 | 199P ‘60G6°0 | Y82 ‘G1G6°0 | PIq ‘GES6°0 | Ted ‘¢0g6°0 | ouerd ‘L0G6°0

N1y ‘g066°0 | dIgs ‘G¥66°0 | 9SI0Y ‘8666°0 | 801 ‘GL66°0 | BOP ‘G666°0 | I09P ‘€866°0 | 182 ‘06660 | PIY ‘66660 | I8 ‘1666°0 | ouerd ‘9666 0 (6p) s
onry ‘6166°0 | dIys ‘9666°0 | 98107 ‘6£56°0 | 801 ‘0TS6°0 | BOP ‘€2S6°0 | I99P ‘0G6°0 | 182 ‘LTG6°0 | PIq ‘91S6°0 | 182 ‘6086°0 | ouerd ‘1€66°0 .
LI 1866°0 9sI107 ‘8666°0 | 80T ‘66660 | SOP ‘8666°0 | 199P ‘46660 | Y82 ‘S666°0 | PII ‘L666°0 | 182 ‘L666°0 | duerd ‘8666°0 (3p)osioq
NI} ‘9TG6°0 08107 ‘8666°0 | B0If ‘00S6°0 | SOP ‘085670 | I09P ‘TFG6°0 | 482 ‘65960 | PIq ‘8gS6°0 | 180 ‘T¥¢6°0 | ouerd ‘€0G6°0

Iy ‘p666°0 | dIgs ‘24666°0 | 9S10Y ‘6666°0 | 801 ‘6666°0 | SOP ‘6666°0 | 199D ‘6666°0 | Y82 ‘8666°0 | PIq ‘G666°0 | 181 ‘96660 | ouerd ‘96660 (4)801
1y ‘6£66°0 | digs ‘0166°0 | 9SI0Y ‘0gS6°0 | S01 ‘6666°0 | SOP ‘FGC6°0 | I99P ‘GGG6°0 | B0 ‘G0S6°0 | PIq ‘GFS6°0 | 182 '9056°0 | ouerd ‘60560

onry ‘g666°0 | drgs ‘0866°0 | ©SI10Y ‘G666°0 | 801 ‘6866°0 | BOP ‘SFT6°0 | 199D ‘6866°0 | 182 ‘€666°0 | PIq ‘966670 | 182 ‘L6660 | °uerd ‘6866 0 (9)80p
onay ‘2166°0 | diygs ‘82G6°0 | 9S10Y ‘Ge66°0 | 801 ‘F0S6°0 | SOP ‘9666°0 | 109P ‘LTG6°0 | Y82 ‘96G6°0 | P ‘€gS6°0 | 1ed ‘F1g6°0 | ouerd ‘L086°0

nry 2666°0 | digs ‘6666°0 | 9SI0Y ‘F666°0 | S0 ‘66660 | SOP ‘1666°0 | I99P ‘Z666°0 | 182 ‘8666°0 | PIq ‘6866°0 | T8 ‘75660 | ouerd ‘1866 0 (%) 200p
onry ‘g0s6°0 | drygs ‘L166°0 | ©S10Y ‘T056°0 | 801 ‘6756°0 | SOP ‘8¢S6°0 | I99P ‘6666°0 | 182 ‘90660 | PIq ‘605670 | 182 ‘91¢6°0 | ouerd ‘6086°0

N1y ‘2666°0 | diys ‘L966°0 | 9SI0Y ‘66660 | S0 ‘€866°0 | SOP ‘L666°0 | 199P ‘9666°0 | 182 ‘L666°0 | PIq ‘9666°0 | 182 2666°0 | ouerd ‘966 0 (") yeo
NIy ‘2666°0 | digs ‘9pg6°0 | 9SI0Y ‘L€G6°0 | So1 ‘9pG6°0 | SOP ‘GTS6°0 | 199D ‘FES6°0 | 180 ‘8666°0 | PIIq FTS6°0 | 180 ‘1556°0 | ouerd ‘1¥S6°0

onry ‘96L6°0 | dIYs ‘6066°0 | 9S10Y ‘8846°0 | SOIf ‘8L66°0 | BOP ‘€€66°0 | T99P ‘G666°0 | 180 ‘Q¥86°0 | PIIq ‘66660 ouerd ‘z666°0 (5p)paiq
on1y ‘g0g6°0 | dIYs ‘0096°0 | 98107 ‘1gG6°0 | So1y ‘20660 | SOP ‘g0S6°0 | T99P ‘FIS6°0 | 480 ‘L0S6°0 | P ‘66660 ouerd ‘60G6°0]
on1y ‘2666°0 | digs ‘8666°0 | 0SI0Y ‘8666°0 | S0 ‘F666°0 | SOP 286670 | 199D ‘8666°0 | 382 ‘¥866°0 | PIY ‘866670 | I8 ‘86660 | ouerd ‘8666 0 (@) e
onry ‘2066°0 | digs ‘F196°0 | 08107 ‘6056°0 | 801 ‘00S6°0 | BOP ‘€IS6°0 | I99P ‘G0G6°0 | 182 ‘65860 | PIq ‘9256°0 | 182 ‘66660 | ouerd ‘€ec6 0

n1y ‘g86°0 | diys ‘g986°0 | 9SI0Y ‘L€L6°0 | S01 ‘FI86°0 | SOP ‘0¥86°0 ¥ed ‘2046°0 | P19 ‘8g86°0 | T8> ‘€056°0 | 2uerd ‘A188°0 (Tp)ourerd
NIy ‘g066°0 | dIYs ‘056°0 | 0S10Y ‘0T66°0 | S0I ‘0TS6°0 | BOP ‘€0S6°0 180 ‘20G6°0 | PIIq ‘€T166°0 | 10 ‘128670 | uerd ‘006970

0TH 69 89 Lo 9 5] i6) € %) To
Yonay diys 98107 8oxg Sop Ioop 180 pIq Ied oued

‘(£&ydure are s[eo ¢) oqeordde Iessusym (P = Aew\.vm%@ qm) (?y) m%@ 10] (o330q) 94 o 9 Aq pue (doy)) Aq weAld (sse[o
Surpuodsei10o ‘onfea [oqel wnwrxew) ared € surejuod worsod-. (2 v) ut [[20 9y} Jo spred om3 U3 JO Yovd ‘9THDA =) 104 :8T°6 OIBL

Page 131 of [147

Table 9.19:

For C = VGG16, each of the 4 parts of the cell in (a,t)"-position contains a pair (maximum label value,
corresponding class) given, respectively from the top to the bottom, by C o Fy, C o Fy, C o F3, and C o Fy for DfSt (Ay) (with

DF%,(Aa) = A,) whenever applicable.
plane car bird cat deer dog frog horse ship
C1 C2 Cc3 Cq Cs Ce Ccr (&) C9
0.9923, plane 0.9590, plane 0.9734, plane 0.5456, plane 0.6592, plane 0.9511, plane 0.9203, plane 0.8721, plane
plane(As) 0.4463, car 0.8199, car 0.3563, ship 0.5816, ship 0.5081, ship 0.3520, car 0.5766, ship 0.7817, ship
0.7298, plane 0.8210, car 0.9223, bird 0.6407, cat 0.8733, dog 0.9058, frog 0.4090, horse 0.9859, ship
0.5497, car 0.9942, car 0.9812, bird 0.9814, cat 0.9681, dog 0.9612, frog 0.9661, horse 0.9092, ship
0.9709, ship 0.7608, car 0.9204, ship 0.9925, ship 0.9990, ship 0.5563, ship 0.9989, ship 0.9984, ship 0.9996, ship
car(As) 0.6160, bird 0.9988, car 0.9729, bird 0.8053, cat 0.8379, bird 0.8068, bird 0.5687, frog 0.8987, bird 0.5995, ship
0.9994, plane 0.9997, car 0.9996, bird 0.9940, cat 0.9989, deer 0.9163, dog 0.9972, frog 0.9986, horse 0.9993, ship
0.9788, plane 0.9999, car 0.9510, car 0.9553, cat 0.8565, car 0.4930, car 0.8633, frog 0.7029, horse 0.5694, ship
0.7736, bird 0.9996, bird 0.4883, cat 0.8968, bird 0.7456, ship 0.8491, bird 0.9912, bird 0.8356, ship
bird(As) 0.9993, bird 0.9998, bird 0.9989, bird 0.9997, bird 0.9994, bird 0.9998, bird 0.9993, bird 0.9996, bird
0.9634, plane 0.9999, bird 0.6508, bird 0.7539, deer 0.6483, dog 0.9180, bird 0.9183, bird 0.9361, bird
0.9256, plane 0.9999, bird 0.9623, cat 0.9641, deer 0.9335, dog 0.9925, frog 0.9805, horse 0.9838, ship
0.3250, plane 0.6128, cat 0.5194, ship 0.9176, cat 0.9581, frog 0.4988, cat 0.6131, cat 0.5113, cat 0.5035, ship
cat(As) 0.9388, cat 0.9380, cat 0.9709, cat 0.9992, cat 0.9672, cat 0.6787, dog 0.9895, cat 0.6719, cat 0.9904, cat
0.4563, bird 0.9514, car 0.9990, bird 0.9994, cat 0.9952, deer 0.9995, dog 0.9780, frog 0.9997, horse 0.8182, ship
0.5571, frog 0.9710, car 0.7841, frog 0.9998, cat 0.6331, deer 0.9296, frog 0.9959, frog 0.6838, frog 0.8859, ship
0.9630, plane 0.6593, car 0.9989, cat 0.9990, cat 0.5838, plane 0.4605, cat 0.9763, cat 0.7703, cat 0.4648, cat
deer(As) 0.9974, deer 0.8741, deer 0.9817, deer 0.9823, deer 0.9998, deer 0.9953, deer 0.9991, deer 0.9978, deer 0.9979, deer
0.9309, plane 0.7593, bird 0.9804, bird 0.9994, cat 0.9998, deer 0.7601, dog 0.9991, frog 0.9783, horse 0.9995, ship
0.9857, plane 0.9851, car 0.9812, bird 0.9775, cat 0.9999, deer 0.9623, dog 0.9993, frog 0.9761, horse 0.9898, ship
0.7988, truck 0.8132, frog 0.9632, cat 0.9979, cat 0.9329, frog 0.9983, cat 0.9000, frog 0.8948, cat 0.9982, truck
dog(As) 0.9994, cat 0.9994, cat 0.9984, cat 0.9997, cat 0.9884, cat 0.9996, cat 0.9963, cat 0.9984, cat 0.9989, cat
0.9467, plane 0.8896, car 0.9971, bird 0.9991, cat 0.8806, deer 0.7329, cat 0.7521, frog 0.9926, horse 0.6905, cat
0.6362, plane 0.6567, car 0.9670, bird 0.9376, cat 0.9768, deer 0.9998, dog 0.9923, frog 0.9558, horse 0.9460, ship
0.9304, plane 0.8875, frog 0.6184, frog 0.8088, frog 0.7472, cat 0.7688, cat 0.9140, frog 0.5688, frog 0.8974, ship
frog(Ar) 0.9991, frog 0.9995, frog 0.9906, frog 0.6322, frog 0.9745, deer 0.6311, frog 0.9998, frog 0.5651, horse 0.9976, frog
0.9971, plane 0.9981, car 0.9851, bird 0.9997, cat 0.9998, deer 0.9996, dog 0.9998, frog 0.9999, horse 0.9982, ship
0.8194, plane 0.9574, car 0.9367, bird 0.6233, frog 0.6790, frog 0.8118, frog 0.9999, frog 0.6397, frog 0.6303, ship
0.7407, plane 0.7159, plane 0.6002, plane 0.8016, plane 0.7816, bird 0.3995, bird 0.4876, plane 0.7479, dog
horse(Ag) 0.9532, horse 0.9753, horse 0.8861, bird 0.6032, cat 0.9827, horse 0.8946, horse 0.6117, cat 0.9997, horse
0.9977, plane 0.9911, car 0.9990, bird 0.9982, cat 0.9989, deer 0.9997, dog 0.9998, frog 0.9998, horse
0.8848, plane 0.9716, car 0.9888, bird 0.9538, cat 0.9506, deer 0.7921, bird 0.9910, frog 0.9998, horse
0.8772, ship 0.9944, ship 0.6944, cat 0.8931, ship 0.7483, car 0.5348, dog 0.9940, ship 0.3876, cat 0.9865, ship
ship(Ag) 0.9977, plane 0.7723, car 0.9636, plane 0.9109, plane 0.6752, ship 0.9598, plane 0.8060, plane 0.9857, plane 0.4525, plane
0.9995, plane 0.9924, car 0.9997, bird 0.9631, cat 0.8506, deer 0.9901, dog 0.5932, ship 0.9996, horse 0.9942, ship
0.4929, plane 0.7072, car 0.4667, ship 0.9631, cat 0.6244, deer 0.2485, ship 0.9813, frog 0.5592, horse 0.9997, ship
0.9994, plane 0.5934, plane 0.9977, plane 0.6818, ship 0.9290, plane 0.7131, plane 0.9674, ship 0.9840, plane 0.9654, plane
fruck(Aro) 0.9946, plane 0.9903, plane 0.9899, plane 0.9610, plane 0.9766, plane 0.9682, plane 0.9586, plane 0.5843, horse 0.9970, plane
0.9964, plane 0.9976, car 0.9765, bird 0.9985, cat 0.9984, deer 0.9984, dog 0.9997, frog 0.9972, horse 0.9776, ship
0.8131, plane 0.9432, car 0.9767, bird 0.8556, cat 0.9121, deer 0.9743, dog 0.9925, frog 0.5812, horse 0.9181, ship

Page 132 of

9.5 Comparative Analysis of the EA and BIM Adversarial
Attacks

9.5.1 Ancestor and adversarial images

abacus

acorn |

baseball

canoe

hippopotamus |4

maraca

mountain bike

Figure 9.15: The 100 ancestor images AP used in the experiments. AP pictured in the g'™" row
and p'* column (1 < p,q < 10) is randomly chosen from the ImageNet validation set of the
ancestor category c,, specified on the left of the q*™" row.

Page 133 of

abacus

baseball

broom

brown bear

canoe

maraca

mountain bike'

Figure 9.16: The 84 convenient ancestor images A7 used in the experiments, for which both the
EA and BIM created 0.999-strong adversarial images DF“(A?) and DETM (AP).

Figure 9.17: Adversarial images D¢*(A2) stemming from the A2 ancestor, obtained with the
EA (top) and BIM (bottom). From left to right, the attacked CNNs are C; - - - C1p.

Page 134 of

(Ca1) Ctl) (Ca27 Ct2) (Cae,v Ctz) (Ca47 ct4) (CGE)) ct5) (Cae) ct6) (ca77 Ct7) (Ca87 Cts) (Cagv Ctg
) 73,3 10,7,7 10,3,3 10,3,3 6,0,0 10,88 10,7,7 10,5,5 10,5,5
Cs 7,3,3 10,8,8 8,0,0 9,4,3 6,0,0 10,4,4 9,2,2 9,5,5 9,6,5
Cs 421 9,7.6 732 79,7 3,0,0 75,4 9,33 8,43 88,7
Cs 41,1 775 6,1,0 8,6,5 21,1 9,22 8.5,3 85,3 785
Cs 41,1 775 52,1 8,7.6 1,0,0 6,3.3 71,1 754 8,10,8
Co 553 78,5 41,0 55,2 21,1 87,7 78,6 7.6,4 7,06
Cy 442 774 44,1 8,108 40,0 78,6 88,7 8,10,8 88,6
Cs 443 8.9.7 6,42 553 1,0,0 74,4 9.8.8 775 774
Co 6,5,4 8,10,8 72,1 8,10,8 6,1,1 8,10,8 8,10,8 8,9,7 8,9.8
Cro 754 87,7 82,1 88,7 71,1 8,108 8.9.7 8,10.8 95,5
Total | 52, 33, 25 | 81, 77, 62 | 65, 22, 11 | 76, 67, 52 | 38, 4, 4 | 80, 61, 54 | 83, 61, 52 | 80, 66, 52 | 81, 75, .

Table 9.20: For 1 < k,q < 10, the cell at the intersection of the row C; and column (caq, ctq)
is composed of a triplet «, 3,7, where « is the number of ancestors in c,, for which EAtareet.Ce
created 0.999-strong adversarial images, (is the number of ancestors in c,, for which BIMj
created 0.999-strong adversarial images, and 7 is the number of common ancestors for which
both algorithms terminated successfully.

Figure 9.18: Adversarial images D¢*(A$;) stemming from the Af, ancestor, obtained with the
EA (top) and BIM (bottom). From left to right, the attacked CNNs are C; - - - C1p.

Page 135 of

9.5.2 Local effect of adversarial noise on target CINNs

Figure 9.19: From the 15° row to the 10" row, single patch replacement for (A2%,C;), (A}, Co),
(A§7C3)7 (Azlpc4)7 (-’42765)7 (»Agac6)7 (A;7C7)7 ("4%708)7 (Ag,Cg), (A%gaclﬂ) From left to right7
the 4 pairs of graphs correspond to patches of size 16 x 16, 32 x 32, 56 x 56 and 112 x 112,

respectively. Each pair represents the step-wise plot of log(0$[a]) (left graph) and of log(o§[t])
(right graph) for the EA (blue curve) and BIM (orange curve). The red horizontal line recalls

the c4-label value (left graph) or the ¢;-label value (right graph) of A with no replaced patch.

Page 136 of

9.5.3 Adversarial noise visualization and frequency analysis

€A band-stop no shuffle €A band-stop s=32 EA band-stop 5=56 €A band-stop s=112
@ @ @ a cw a P
- ancestor -2 B —— ancestor - - ancestor & T —— ancestor
adversaral 7 adversaral i adversaral / adversaral
22| 2 - 7 > 5 > 27/ >
£ L £ A £ / £ £ £ £ / £
27 8/ 2 / AN 2= 2 37/ 2
| HE g N TN\ 7 2 5, 3
& g g |/ g/ S £af & A & g
\ - \
27 2 \ 9 o .’ E / 2 Y\ o4 o N\
3 g \ g gy 3, EINEEAN g 3 \
8| — ot N ; — ncestor { — et / NP 51— acestr
aaversarial S -5 adversarial i 5 adversarial / VRN adversarial N
-
B B 55 75 95 i 53 55 75 95 i B B s 75 95 15 B H s 5 95 15 5 B 55 75 95 i 53 55 75 95 i BB s 75 95 15 B H s 5 95 15
Radius Radivs Radius Radivs Radivs Radivs Radius Radivs
€A band-stop no shuffle £A band:stop s=32 EA band:stop s=56 £A band-stop s=112
IS « P a @ @ P a
o - ancestor -3 A ancestor o e — ancestor ancestor
4/ Toveraral e NA veranal N / overoral veranal
/
2| |/ 2| Enlly z Z- / 2| Z
I, I EE iR 3= / 2 2
2./ AN H ER 2./ 214 H
&/ £ N\ £ £ 8T/ g\ &
55|/ 2 \ . YN s\ / 2l VA f s
5|7 2 g N \% g \
3 g g 3 \ / 3, 3 TN\ = / EIN
1 ancestor \. . T mestor \ — ocestor S - — cestor N AN A
7{ — caversarial ~ adversarial N 71 saversarial acversarial A S
-
s s B o s B B % B oo BB % B o BB B B % I BB s B s s B B % B oo BB oS B o BB B B B I
Radius Radivs Radius Radivs Racius Radivs Radius Radius
€A band-stop no shuffle £A band.stop s=32 £A band:stop s=56 £A band:stop s=112
< « P @ a @ P @
o B o o=
e — -
Sl /
/ | \ : r/ 2 f \
22/ 2| i \ z2f | 2| z |7 2|
. 3|\ 2 \ N B i
5. RN I H H H z
g gl \ s | \/ g 8l [H
s, SR = — S B \ . g
3 I go |/ g g g g
— ancestor / 7 ancestor — 10| ancestor \
X \/ A
s aaversarial _— N ¥ S aaversarial AN . adversarial N —
Bom s B s s B B s B oo i BB % B oS o B B B B % I Bos s B s s B B s B oo i BB % B oS o BB B s % oI
Radius Radivs Radius Radivs Racius Radivs Radius Radivs
_ EAbang-stop no shufle . Eabandstops=32 . eabandstops=ss . EAbandstops=112
- o - o ~
o / ; —
p P
p\/ o /
2 2|) / B 22| | 2| g7/ 2
8- 2 gl 2 < LRl 2 gLl e
D I £ HI N 2L/ H H HA
g 2/ g g - g g g g/ N\
B B \ 5 5 e B e > \
g g . 8- g g g/ g g ~
™ s / N
B . ; g N
Bm s BB B B % B e i BB % BB B B B B B W BB % BB s BB % BB B B B B B
Radius Radivs Radius Radius Radivs Radius Radivs
_ EAbang-stop no shule EAbandstops=32 . EAbandstops=56 . EAbandstops=112
20 ~ o o —
25 / a1 o s
2 HE 205 /, 3 3 2 24 2
H 7N H H 22/ H g ./ H
g g ge0 & a g & g NP
B o\ 545 S # g1/ 2 5 EEEN
g g 8/ / g R g g
K| ki EEY) HIN/ s AN ~—
B 55 I AN/ o __ 10 _
5 s % B % b BB % BB b FE e 5 s % BB b BB % B B b BB % B % B B % BB m
Radius Radivs Radius Radius Radius Radivs Radius Radius

Figure 9.20: From the 15' row to the 5" row, band-stop graphs of the ¢, and ¢; probabilities for
(A2,Cy), (AS,Ca), (A3,C3), (AL, Ca), (A2, Cs5). In each row, from left to right, the following images
are fed to Cp: DFA(AP), sh(DEA(AL),32), sh(DFA(AP),56), and sh(DF*(AP),112), which are
the unshuffled and shuffled versions of the adversarial image, and AP, sh(A?,32), sh(A?,56),
and sh(AP,112), which are the unshuffled and shuffled versions of the ancestor.

Page 137 of

EA band-stop no shuffle
= P

EA band-stop s=32

EA band-stop s=56

EA band-stop s=112

@ a @ a @ a
o — — ancestor - - —— ancestor o [— ° —
> 2| =4 N > > > > >
2|/ 2 B / 2 z- 2 2 2
b £ £ / £ £ £ £ £
E H g5/ 3 =N 3 H 5./ 3
RN 2 3 2 Y 2 2] { 2
2]] / 2 7 g]] 2
£ £ gl | g g £ £ g
/ ad 3
g g g |/ g g g g g
g g &0 g g, g g g
— — e — castr — cstr
-8 aoversarial soversarial -8 aoversarial - adversarial .
N B . B - . 9l B . N . .
Bow B omos o B B B koo BB B osoms B B B B %o Bow B ow s B B B koo BB s B osom B B B B % o
Radivs Radivs Radics Radics Radivs Radivs Radics Radics
. EAbandstop noshufe . EAbandsopse . eabandsopsese . eAbandswpse12
Ll /77 —— ancestor 21| — ancestor — ancestar — — ancestor of = —— ancestor
- R ol R v . . 4 =y R v
£ £ 2. z z z 2./ z
i 1 3 3 3 1 g 3
. HRN & H A fs g £ AR
= o ol / s\ ~— > H \ B > ™
R g 3N/ 3\ R g \ Z B \
. \. — \ — ancestor ~_
10 aoversarial - o 10 adversarial N 12 adversarial —
Bom B B s o B B s oo o Bom B B s o B B s oo BB % B oG ous B B B B 6 o
Radivs Radivs Radivs Radios Radics Radics
. EAbandstop no shufe . EAbangswpsese EAbandstops=112
o T — ancestor . —~ — ancestor —
/ - adversarial - /v — adversarial versarial
22| | 2z 2a| 2z z z
g £ ERa £ £
3./ 2 2./ 2 2 -
5ol |- o / o H H !
3= g E g g 8~
— ancestor -5 |/ —— ancestor 6| — ancestor T \/
-8 adversarial adversarial . adversarial
B o» B B o s BB % B oG o B B B n B o Bon B B s o B B 5 oo o R RO
Radics Radil Radice Radivs Radics Radics
_ EAband.stop no shuffle . eAbandsops=3z . EAbandstopssse . EAbandstops-112
s | = e 0 N — e = e > — e - — e
N vl N vl 51 e vl a =2 s
»710 ~/ > poss > > > < >
H H 3 3 / H 52 3
525 & & & / & 573 &
e B H H H H H o
i 8 g g g o 8 P
! —me R /
4.0 — -5 .
BB B ks B B B H oo BB % B ow i % ks ab B B » B e i I I e
Radics Radivs Radids Radics Radivs Radids Radics
. EAband.stop no shuffe . eAbandstops=3z . EAbandstopssse . EAbmnastops-112
B e — - - o — o
— = — — — —
1/ jronel 20 \\ Yz foverl a jronel 4 foverl
z 2|, 2 | ~/ z z- 2 22 z
i H g f 5 5= H ENE H
2. £ i/ £ 2. £ £ E
£ £ g g/ £ AP - £
50 s \
30 H H 3/ H 27\ H B
g 2 g s g \x g, K g g g
0] e Vo o = \ s = \ e =
| s " -60{ " saversaria N\ 7| T varsarial NG o aversaria .
O e wra r a BB % s @ m B B 5 BB T B s s om o BB % 6B BB % 5w @ B B 5 BB o
Radics Radivs Radids Radics Radi Radivs Radics Radics

Figure 9.21: From the 1% row to the 5" row, band-stop graphs of the ¢, and ¢; probabilities
for (A8, Cs), (AL, Cr), (A§,Cs), (AD,Co), (AL3,Cip). In each row, from left to right, the following
images are fed to Cy: DFA(AP), sh(DFA(AP),32), sh(DE4(AP),56), and sh(DF*(AF),112),
which are the unshuffled and shuffled versions of the adversarial image, and AP, sh(A},32),
sh(AP,56), and sh(AP,112), which are the unshuffled and shuffled versions of the ancestor.

Page 138 of

BIM band-stop no shuffle
= P

BIM band-stop s=32

BIM band-stop s=56

BIM band-stop s=112

. 2 S =
z 2| 2 z z 2| z z
3 3|/ 3 F /\/\ 3 3 3 F
H 57\ oo Ea e H H H 3
g g : 3 2 g g g
5 g H \ & & f N 53 & i &
o o \ o5 2 | o o o4 o ,«f\
3 S \ S 3 / 3 / S S 3
~8| — ancestor —— ancestor — ancestor
- /
aaversarial S -6 adversarial | adversarial \/» —
5 3% s 75 o5 i 5 3 ss 75 o5 i B B s 7 15 3% s5 75 65 15 5 3% s 75 o5 i 75 95 1is 15 3% s5 75 @5 15
R Fadin R R e Racivg R
8 band-stop no shuffe ambangsiops T o bandstop s-112
o ~ -3 — ancestor —— ancestor
/ o ONIN ovesars v
2 > 2t / > > 2| 2 >
27| z y 2 2 z z 2
1 / 3 3 i 1 3 3 i
8 g 2 2\ 2 / g g 3
H H H £\ H / H H 4
S B B N 2,/ H B B
3 S S 3 Fosfy / S S 3.
8] — ancestor — ancestor — V. ancestr ancast ANALS
R o R R R R R
M band-stop no shufte smbmdstops=sz i ban: ombandstops-112
e — S
E —_—— - - -
27/ 2 ERI E z / 2 z B
z | H) A 3 3 / H H N
£ H 8 | H [R H H H
H B sl I B B :
g g g 1/ g R g K g
— ancestor v/ — ancestor
R P Racis R R R
i bandsstop no shatte _mbangsiops=n2 i ban: s bandstop s-112
o 20 ~ — S —
Zo 2| 20 / 2 z 2| z-? Iy
H HI s ~ H H H H Hs
2 2 2 N 2 2 F £ 2 \
g B/ g g g g g g
o5 o \ 245 o o o o6 o AN
ey s N~ S0 35 k] s s 35 -
61 — ancestor — ancestor \ —— ancestor —— ancestor N
- adversarial aversarial __— -5 adversarial adversarial .
Radide Radins Radis [Radide [
_ B band-stop nostutte . mbanasiops=n2 . Bbana- B bandstop s-122
o - -201 — ancestor — ancestor - T — ancestor
z / 2| z Z z 2| z Z
3 3 3 3 A 3 R 3
£ BTN T e 2 2 2|/ H H 2
i §lTN T e g g P ly g £ . £
o 8 o \ o o // o/ o o o
g g \ g LI / g g g g
Y - — N A/ R
adversarial T~ 55 / \/ \/ adversarial -10
Radids Radits Radis Radits Radids Radis

Figure 9.22: From the 15 row to the 5" row, band-stop graphs of the

cq and ¢; probabilities for

(A2,Cy), (AS,Ca), (A3,C3), (AL,Cq), (A2,C5). In each row, from left to right, the following im-
ages are fed to Cy: DFTM(AP), sh(DPT™M (AP),32), sh(D™M (AP),56), and sh(Dg'M (AP),112),
which are the unshuffled and shuffled versions of the adversarial image, and AP, sh(A},32),
sh(AP,56), and sh(AP,112), which are the unshuffled and shuffled versions of the ancestor.

Page 139 of

BIM band-stop no shuffle
= P

o =
2 2|
8 afl 2
2 2
S H
3 3

-8 adversarial

5B 55 75 95 i 53
Racivs
. &M band-stop no shufe

o
> 2 2
2 H
e g
3 3

1o adversarial

adversaral

BIM band-stop s=32

«
= “
FANN ,/ adversarial
> / >
5/ H =N
£/ H 7
S |3
g |/ H
3./ g
BB s 75 95 15 B B s 5 95 s
Racius Racils
BIM band-stop s=32
1] — ancetor — e
o vl

Log probability

Log probability

Log probability

BIM band-stop s=56

asversaral

FE I Tt
Radius

BIM band-

adversaral

Log probability

— ancestor

Log probability

adversaral

adversaral

Log probability

b

Log probability

o

ovrsa
2
HL
— ancestor
aversaral -
BB s 75 95 15 B H s 5 95 15
Radivs Radius
BIM band-stop s=112
IS a
ovrsa
I
g \.
—— ancestor \

8IM band-stop =112 _

adversarial -

BB s B o oas b B Bk s ok osous b B % s 6w BB s A6 s e i Bk s koo ous b B % s 6 s
Radius Radius Radius Radius Radius Radius Radius
., BIM band-stop no shufle BM band-stops=32 BIM band- BMband-stop s=112
— ances o — ancestor —
acversarial A i aoverarial aversarial
& £| & \/\ & £| 3 &
o6 El o \ 3 o o E
g g g/ \ g g g §=<_~
o — mnceseor ! — ancestor =8| — ancestor T \/\\
8| " Saversart Y adversara | aversarl
Bom s ko s b B Bk s ohosous b B % s o6 o BB s A oe b o s Bk s okosous b B % s o6
Radius Radius Radius Radius Radius Radius
BIMband-stops=32 BIM band- BiM band-stop s=112
a0 — — ancesor - ~— — ancestor
N AV v vt S 4 P v
z z z-35 2z z z /- 2z
52 H 3 3 v H 5= 7 3
g 2 5 a0 z 3 3 / H
g g g g g g g
£ 8| g g g 8./ A
— ancestor 50 — ancestr / — ancestr /
adversaral acversarit ||/ acverarat ||/
= =
BB s A oe o b B O I R] BB % A% b O I R R]
Radius Radius Radius Radius Radius Radius
. BIM band-stop no shufle . BMbanastops=32 . B band- . BMbandstops=112
o — — . - e — o
— ancestar _ - — ancestor — — ancestar — ancestor
z 2|, z = z z z 22/ z
3 2 3 3 3 2 E 3
g H fs 2 R H e 2
5 = 350 o/ 5 B e >
g g g g g g 8 g
g g s g g g g g
30| — easr =4 - = - M=
- adversarial o 60 adversarial adversarial e N adversarial S

PR)
Radius

EREN
Radius

B % % s % 1

Radius

RS
s

RS
Radius

B % % k% 1 B B % A 6 s
Radius

Radius

Figure 9.23: From the 15 row to the 5" row, band-stop graphs of the ¢, and ¢; probabilities for
(AS,Cs), (AL, Cq), (AS,Cs), (AD,Co), (AL, C1p). In each row, from left to right, the following im-
ages are fed to C: DPTM (AP), sh(DPIM (AP), 32), sh(DF™ (AP),56), and sh(Dg'M (AP),112),
which are the unshuffled and shuffled versions of the adversarial image, and AP, sh(A7,32),
sh(AP,56), and sh(AP,112), which are the unshuffled and shuffled versions of the ancestor.

Page 140 of [147]

9.5.4 Transferability and texture bias

Figure 9.24: Heatmaps obtained with the ancestor A2 and the adversarial images Dg*(A2) (a)
and with the ancestor A} and the adversarial images D3**(A}) (b). In each pair of rows, atk =
EA in the first row and atk = BIM in the second.

Page 141 of

9.5.5 Effects of shuffling on the transferability of the adversarial images

Evolution of o[c,] and o[c;] with increasing noise magnitude

ResNet50 EA ResNet50 BIM

>
£ VGG16 EA VGG16 BIM &
g o .
] 3
a -5 — max
Q
o =10
8‘ o DenseNet121 EA DenseNet121 BIM
-
-5
-10
050 100 150 200 250 300 c 0 50 100 150 200 250 300
(a) no shuffle
Evolution of o[c,] and o[c] with increasing noise magnitude
ResNet50 EA ResNet50 BIM
0
-5
-10
VGG16 EA VGG16 BIM &
0 Cr
— max

DenseNet121 EA DenseNet121 BIM

Log probability

0 50 100 150 200 250 SOOf 0 50 100 150 200 250 300

Evolution of o[c,] and o[c;] with increasing noise magnitude

ResNet50 EA ResNet50 BIM

>
= VGG16 EA VGG16 BIM c
3 o .
] ¢
a2 — max
o
2
Q
g‘ o DenseNet121 EA DenseNet121 BIM
-
-5
-10
050 100 150 200 250 300 ;0 50 100 150 200 250 300
(b) s =32
Evolution of o[cs] and o[c:] with increasing noise magnitude
ResNet50 EA ResNet50 BIM
0
-5
-10
VGG16 EA VGG16 BIM e
¢ Ce
— max

DenseNetl21 EA DenseNet121 BIM

Log probability

|
v o

|
o
=)

0 50 100 150 200 250 300f 0 50 100 150 200 250 300

(d) s =112

Figure 9.25: Evolution of ¢, and ¢; for A2 (a), sh(A%,32) (b), sh(A2,56) (c) and sh(A2,112)
(d) when fed to Cg, Co and C; (1%, 2"¢ and 3"¢ row of each set of graphs, respectively). In each
set of graphs, the unshuffled or shuffled ancestor is perturbed with random normal noise created

using the minimum and maximum noise magnitude of DF4(A2) and D¢

BIM(A3). Along the x

axis, the noise is attenuated or amplified by a factor f (noise x f).

Page 142 of

9.5.6 Layer activations

For Cq WposApos WpasAO WposAneg WnegApos WnegAO WnegAneg

Co | DenseNet169 | (48.59,48.24) (0.22,0.09) (51.19,51.67) | (53.70,53.52) (0.47,0.26) (45.82,46.22)
Cs | DenseNet201 | (50.97,49.21) (0.25,0.16) (48.79,50.63) | (54.32,54.86) (0.61,0.24) (45.07,44.90)
Cy MobileNet (45.43,45.08) (1.36,0.91) (53.21,54.02) | (47.53,52.09) (4.22,3.23) (48.24,44.68)
Cs MNASNet (42.80,43.82) | (11.93,10.19) | (45.27,45.99) | (40.21,43.33) | (19.96,17.97) | (39.83,38.70)
Cs ResNet50 (44.81,41.87) (0.12,0.08) (55.07,58.05) | (52.35,53.65) (0.24,0.11) (47.41,46.24)
Cr ResNet101 (48.00,47.81) (0.06,0.02) (51.94,52.16) | (53.37,56.61) (0.38,0.23) (46.26,43.16)
Cs ResNet152 (48.00,45.75) (0.08,0.08) (51.92,54.17) | (51.71,54.14) (0.33,0.26) (47.95,45.60)
Co VGG16 (14.19,15.07) | (65.24,63.32) | (20.56,21.62) (5.55,7.34) (89.73,87.81) (4.72,4.86)
C1o VGG19 (13.04,13.03) | (65.92,64.43) | (21.04,22.54) (4.63,5.94) (91.32,89.81) (4.05,4.25)

Table 9.21: For ¢,, average percentage of both positively-related (Wps, columns 2-4) and

negatively-related (W4, columns 5-7) units whose activation increased (A,,), stagnated (Ag)

or decreased (Ayeqy). In each row, the respective CNN is only fed with C;’s adversarial images

Dy**(AP). Each cell contains the results for EA and BIM.

For ¢, WposApos WposAO WposAneg WnegApos WnegAO WnegAneg

Co | DenseNet169 | (53.72,54.18) (0.32,0.17) (45.96,45.65) | (49.59,48.76) (0.41,0.20) (50.00,51.04)
Cs | DenseNet201 | (55.22,54.95) (0.44,0.20) (44.34,44.85) | (51.00,50.17) (0.44,0.22) (48.56,49.61)
Cy MobileNet (48.80,51.84) (2.85,2.09) (48.34,46.07) | (44.28,45.60) (2.87,2.16) (52.85,52.24)
Cs MNASNet (43.38,45.68) | (15.02,13.30) | (41.60,41.01) | (39.79,41.72) | (17.19,15.14) | (43.02,43.14)
Cs ResNet50 (51.49,52.34) (0.17,0.07) (48.34,47.59) | (48.07,46.79) (0.20,0.12) (51.73,53.09)
Cy ResNet101 (54.85,56.81) (0.29,0.14) (44.86,43.04) | (48.71,50.76) (0.22,0.14) (51.07,49.10)
Cs ResNet152 (52.01,53.81) (0.22,0.16) (47.77,46.03) | (48.94,48.79) (0.25,0.20) (50.82,51.01)
Co VGG16 (10.74,12.41) | (78.09,75.98) | (11.18,11.61) (8.37,9.50) (79.49,77.73) | (12.14,12.77)
C1o VGG19 (8.58,9.78) (79.76,78.03) | (11.66,12.19) (8.13,8.52) (80.41,79.06) | (11.46,12.42)

Table 9.22: For ¢;, average percentage of both positively-related (Wp,s, columns 2-4) and
negatively-related (Wp,4, columns 5-7) units whose activation increased (A,,), stagnated (Ag)
or decreased (A,cqy). In each row, the respective CNN is only fed with C;’s adversarial images
Dytk (AP). Each cell contains the results for EA and BIM.

Page 143 of

Bibliography

(10]

(11]

(12]

Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),

https://www.tensorflow.org/, software available from tensorflow.org

Agrafiotis, D.: Chapter 9 - video error concealment. In: Theodoridis, S., Chellappa, R. (eds.) Academic
Press Library in signal Processing, Academic Press Library in Signal Processing, vol. 5, pp. 295-321. Elsevier
(2014). https://doi.org/https://doi.org/10.1016/B978-0-12-420149-1.00009-0, https://www.sciencedirect.com/science/article/

pii/B9780124201491000090

Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-efficient black-box adversarial attack via

random search. In: European Conference on Computer Vision. pp. 484-501. Springer (2020)

Archana, J.N., Aishwarya, P.: A review on the image sharpening algorithms using unsharp masking. IJESC 6 (2016), https:

//www.researchgate.net/publication/305985620_A_Review_on_the_Image_Sharpening_Algorithms_Using_Unsharp_Masking

Bernard, N., Leprévost, F.: Evolutionary algorithms for convolutional neural network visualisation. In: High Performance
Computing — 5th Latin American Conference, 2018 (Bucaramanga, Colombia, Sep 23-28, 2018). Communications in Computer

and Information Science, vol. 979, pp. 18-32. Springer, Heidelberg (2018)

Bernard, N., Leprévost, F.: How evolutionary algorithms and information hiding deceive machines and humans for image
recognition: A research program. In: Proceedings of the OLA’2019 International Conference on Optimization and Learning

(Bangkok, Thailand, Jan 29-31, 2019). pp. 12-15. Springer, Heidelberg (2019)

Blier, L.: A brief report of the heuritech deep learning meetup#5 (2016), https://heuritech.wordpress.com/2016/02/29/

a-brief-report-of-the-heuritech-deep-learning-meetup-5/

Brendel, W., Bethge, M.: Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet. CoRR
abs/1904.00760 (2019), http://arxiv.org/abs/1904.00760

Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: Adversarial Attacks and Defences: A Survey.
CoRR abs/1810.00069 (2018), http://arxiv.org/abs/1810.00069

Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: ZOO. In: Proceedings of the 10th ACM Workshop on Artificial

Intelligence and Security. ACM (nov 2017), https://doi.org/10.1145%2F3128572.3140448

Chitic, R., Bernard, N., Leprévost, F.: A proof of concept to deceive humans and machines at image classification with
evolutionary algorithms. In: Intelligent Information and Database Systems, 12th Asian Conference, ACIIDS 2020 (Phuket,
Thailand, March 23-26, 2020). pp. 467-480. Springer, Heidelberg (2020)

Chitic, R., Deridder, N., Bernard, N., Leprévost, F.: Robustness of adversarial images against filters. In: Communications in
Computer and Information Science, International Conference on Optimization and Learning (OLA) 2021. vol. 1443. Springer

(2021)

144

https://www.tensorflow.org/
https://www.sciencedirect.com/science/article/pii/B9780124201491000090
https://www.sciencedirect.com/science/article/pii/B9780124201491000090
https://www.researchgate.net/publication/305985620_A_Review_on_the_Image_Sharpening_Algorithms_Using_Unsharp_Masking
https://www.researchgate.net/publication/305985620_A_Review_on_the_Image_Sharpening_Algorithms_Using_Unsharp_Masking
https://heuritech.wordpress.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
https://heuritech.wordpress.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/
http://arxiv.org/abs/1904.00760
http://arxiv.org/abs/1810.00069
https://doi.org/10.1145%2F3128572.3140448

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

Chitic, R., Leprévost, F., Bernard, N.: Evolutionary algorithms deceive humans and machines at image classification: an

extended proof of concept on two scenarios. Journal of Information and Telecommunication pp. 1-23 (2020)

Chitic, R., Leprévost, F., Topal, A.O.: Empirical Perturbation Analysis of Two Adversarial Attacks: Black-box versus White-
box. Submitted (2022)

Chitic, R., Topal, A.O., Leprévost, F.: Evolutionary Algorithm-based images, humanly indistinguishable and adversarial
against Convolutional Neural Networks: efficiency and filter robustness. IEEE Access 9 (2021), https://ieeexplore.ieee.org/

document /9627925
Chollet, F.: Keras. GitHub code repository (2015-2018), https://github.com/fchollet/keras

Demush, R.: A brief history of computer vision (and convolutional neural networks) (2019), https://hackernoon.com/

a-brief-history-of-computer-vision-and-convolutional-neural-networks-8fe8aacc79f3
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: The imagenet image database (2009), http://image-net.org

Duchon, C.E.: Lanczos filtering in one and two dimensions. Journal of Applied Meteorology and Climatology 18(8), 1016-1022
(1979)

Education, I.C.: Convolutional neural networks (2020), https://www.ibm.com/cloud/learn/convolutional-neural-networks

Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer (2003), https://www.springer.com/gp/book/

9783642072857

Fawzi, A., Moosavi-Dezfooli, S., Frossard, P.: Robustness of classifiers: from adversarial to random noise. In: Lee, D.D.,
Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016 (Barcelona, Spain, Dec 5-10, 2016). pp. 1624-1632 (2016),

http://papers.nips.cc/paper/6331-robustness-of-classifiers-from-adversarial-to-random-noise

Frieden, B.R.: A new restoring algorithm for the preferential enhancement of edge gradients. Journal of the Optical Society

of America 66 (1976),10.1117/12.954697
Geifman, Y.: cifar-vgg (2018), https://github.com/geifmany/cifar-vgg

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F., Brendel, W.: ImageNet-trained CNNs are biased towards
texture; increasing shape bias improves accuracy and robustness. CoRR abs/1811.12231 (2018), http://arxiv.org/abs/1811.

12231

Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and Harnessing Adversarial Examples. CoRR abs/1810.00069 (2015),

http://arxiv.org/abs/1412.6572

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. pp. 770-778 (2016)

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. pp. 4700-4708 (2017)

Islam, M.A., Kowal, M., Esser, P., Jia, S., Ommer, B., Derpanis, K.G., Bruce, N.D.B.: Shape or texture: Understanding

discriminative features in cnns. CoRR abs/2101.11604 (2021), https://arxiv.org/abs/2101.11604

Jason Jung, N.A., Hassan, G.M.: Analysing Adversarial Examples for Deep Learning . SciTePress (2021), https://www.

scitepress.org/Papers/2021/103137/103137. pdf

Page 145 of

https://ieeexplore.ieee.org/document/9627925
https://ieeexplore.ieee.org/document/9627925
https://github.com/fchollet/keras
https://hackernoon.com/a-brief-history-of-computer-vision-and-convolutional-neural-networks-8fe8aacc79f3
https://hackernoon.com/a-brief-history-of-computer-vision-and-convolutional-neural-networks-8fe8aacc79f3
http://image-net.org
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://www.springer.com/gp/book/9783642072857
https://www.springer.com/gp/book/9783642072857
http://papers.nips.cc/paper/6331-robustness-of-classifiers-from-adversarial-to-random-noise
10.1117/12.954697
https://github.com/geifmany/cifar-vgg
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/2101.11604
https://www.scitepress.org/Papers/2021/103137/103137.pdf
https://www.scitepress.org/Papers/2021/103137/103137.pdf

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

(50]

Jere, M., Hitaj, B., Ciocarlie, G.F., Koushanfar, F.: Scratch that! an evolution-based adversarial attack against neural

networks. CoRR abs/1912.02316 (2019), http://arxiv.org/abs/1912.02316

Keys, R.: Cubic convolution interpolation for digital image processing. IEEE transactions on acoustics, speech, and signal

processing 29(6), 1153-1160 (1981)
Krizhevsky, A., Nair, V., Hinton, G.: The CIFAR datasets (2009), https://www.cs.toronto.edu/~kriz/cifar.html
Kullback, S., Leibler, R.: On information and sufficiency. The Annals of Mathematical Statistics 22, 79-86 (1951)

Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. CoRR abs/1607.02533 (2016), http:

//arxiv.org/abs/1607.02533

Lenc, K., Vedaldi, A.: Understanding image representations by measuring their equivariance and equivalence. CoRR

abs/1411.5908 (2014), http://arxiv.org/abs/1411.5908

Leprévost, F., Topal, A.O., Avdusinovic, E., Raluca, C.: A Strategy creating High Resolution Adversarial Images against
Convolutional Neural Networks, and a Feasibility Study on 10 CNNs. Submitted (2022)

Lim, J.S.: Two-Dimensional Signal and Image Processing. Prentice Hall (1989)

Liu, S., Deng, W.: Very deep convolutional neural network based image classification using small training sample size. IAPR

(2015)

Luo, W., Li, Y., Urtasun, R., Zemel, R.S.: Understanding the Effective Receptive Field in Deep Convolutional Neural

Networks. CoRR abs/1701.04128 (2017), http://arxiv.org/abs/1701.04128

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks.
CoRR abs/1706.06083 (2019), http://arxiv.org/abs/1706.06083

Mallawaarachchi, V.: Introduction to genetic algorithms — including example code (2017), https://towardsdatascience.com/
introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#: ~:text=A%20genetic}20algorithm)20is%20a, offspring

200£7%20the%20next%20generation.

Morcosa, A.S., Raghu, M., Bengio, S.: Insights on representational similarity in neural networks with canonical correlation.

CoRR abs/1806.05759 (2018), https://arxiv.org/abs/1806.05759
Oliphant, T.E.: A guide to NumPy. Trelgol Publishing USA (2006)

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial
settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P). pp. 372-387. IEEE (2016), https://

ieeexplore.ieee.org/document/7467366

Parsania, P.S., Virparia, P.V.: A comparative analysis of image interpolation algorithms. International Journal of Advanced

Research in Computer and Communication Engineering 5(1), 29-34 (2016)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.:

Pytorch: An imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)

Patel, V., Mistree, K.: A review on different image interpolation techniques for image enhancement. International Journal of

Emerging Technology and Advanced Engineering 3(12), 129-133 (2013)

Pereira, A., Thomas, C.: Challenges of machine learning applied to safety-critical cyber-physical systems. MDPI Machine
Learning and Knowledge Extraction (2020), https://www.mdpi.com/2504-4990/2/4/31

Page 146 of

http://arxiv.org/abs/1912.02316
https://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1411.5908
http://arxiv.org/abs/1701.04128
http://arxiv.org/abs/1706.06083
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%20of%20the%20next%20generation.
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%20of%20the%20next%20generation.
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%20of%20the%20next%20generation.
https://arxiv.org/abs/1806.05759
https://ieeexplore.ieee.org/document/7467366
https://ieeexplore.ieee.org/document/7467366
https://www.mdpi.com/2504-4990/2/4/31

(51]

(52]

(53]

(54]

(55]

(57]

(58]

(59]

(60]

(61]

(62]

(63]

(64]

(65]

Petra Vidnerova, R.N.: Vulnerability of classifiers to evolutionary generated adversarial examples. Neural Networks 127,

168-181 (2020), https://www.sciencedirect.com/science/article/abs/pii/S0893608020301350

Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and

saliency maps. CoRR abs/1312.6034 (2013), http://arxiv.org/abs/1312.6034
Sinha, S., Garg, A., Larochelle, H.: Curriculum By Texture. CoRR abs/2003.01367 (2020), https://arxiv.org/abs/2003.01367
SpeedyGraphito: Mes 400 Coups. Panoramart (2020)

Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Transactions on Evolutionary

Computation 23(5), 828-841 (2019), https://ieeexplore.ieee.org/document/8601309

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: Mnasnet: Platform-aware neural architecture
search for mobile. In: Proceedings of the IEEECVF Conference on Computer Vision and Pattern Recognition. pp. 2820-2828
(2019)

Topal, A.O., Chitic, R., Leprévost, F.: One evolutionary algorithm deceives humans and ten convolutional neural networks

trained on ImageNet at image recognition. Submitted (2022)

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers &

distillation through attention. CoRR abs/2012.12877 (2021), https://arxiv.org/abs/2012.12877

Tutorialspoint: Genetic algorithms - introduction, https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_

introduction.htm
Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. CreateSpace, Scotts Valley, CA (2009)

van der Walt, S., Schéonberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T., the
scikit-image contributors: scikit-image: image processing in Python. PeerJ 2, e453 (2014). https://doi.org/10.7717 /peerj.453,

https://doi.org/10.7717/peerj.453

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity.

IEEE Transactions on Image Processing 13(4), 600-612. (2004)

Wau, J.: Generating adversarial examples in the harsh conditions. CoRR abs/1908.11332 (2020), https://arxiv.org/abs/1908.

11332

Xu, H., Ma, Y., Liu, H., Deb, D., Liu, H., Tang, J., Jain, A.K.: Adversarial attacks and defenses in images, graphs and text:
A review. CoRR abs/1909.08072 (2019), http://arxiv.org/abs/1909.08072

Yin, D., Lopes, R.G., Shlens, J., Cubuk, E.D., Gilmer, J.: A Fourier Perspective on Model Robustness in Computer Vision.
CoRR abs/1906.08988 (2019), http://arxiv.org/abs/1906.08988

Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition. pp. 8697-8710 (2018)

Page 147 of

https://www.sciencedirect.com/science/article/abs/pii/S0893608020301350
http://arxiv.org/abs/1312.6034
https://arxiv.org/abs/2003.01367
https://ieeexplore.ieee.org/document/8601309
https://arxiv.org/abs/2012.12877
https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduction.htm
https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_introduction.htm
https://doi.org/10.7717/peerj.453
https://arxiv.org/abs/1908.11332
https://arxiv.org/abs/1908.11332
http://arxiv.org/abs/1909.08072
http://arxiv.org/abs/1906.08988

	Introduction
	Background
	Convolutional Neural Networks
	Adversarial attacks on CNNs
	Evolutionary algorithms

	Attack Method
	Common features between EAdtarget and EAdflat
	Image similarity
	The fitness function of EAdtarget
	The fitness function of EAdflat
	Motivation for EAd's design: Adapted_EA" versus "classic_EA"

	Attack Performance
	Target and flat scenarios: attack against VGG16 trained on Cifar10
	Dataset, Neural Network Architecture and Parameters of the two EAs
	Running EAdtarget: Examples, Results and Discussion
	Running EAdflat: Examples, Results and Discussion
	Summary of the outcomes

	Target scenario: attack against 10 CNNs trained on ImageNet
	Choice of the EA's population size
	One EA versus 10 CNNs: Methodology
	One EA versus 10 CNNs: Results
	Summary of the outcomes

	Attack on High Resolution Images: Method and Performance
	Introduction
	The target scenario lifted to H
	Attack strategy for the target scenario on HR images
	Construction of adversarial images in H
	Indicators: the loss function L and L2-distances
	Static tests with non-adversarial images natively in H

	Feasibility study
	Selection of and
	EAtarget, C parameters
	Running the strategy to get adversarial images with the EA
	Visual quality

	Direct attack in the H domain
	Summary of the outcomes

	Robustness of Attack Against Filters
	Introduction
	EAtarget, C parameters
	The adversarial images obtained by EAL2target, VGG-16
	With one ancestor per category
	With 50 distinct ancestors per category

	Robustness of EAL2target, VGG-16 against filters
	Selection of filters
	VGG16's classification of filtered images
	Indicators addressing the robustness of filtered adversarials
	Robustness analysis of the adversarial Da,t(Aa) against filters

	The filter-enhanced F-fitness function
	Running EAL2, F5target, VGG-16 with one ancestor per category
	Running EAL2, F5target, VGG-16 with 50 ancestors per category
	Robustness of Da,tF5(Aa) against VGG16Fk for all filters

	Summary of the outcomes

	Comparative Analysis of the EA and BIM Adversarial Attacks
	Introduction
	Adversarial images created by BIM and by EAtarget, C
	Selected CNNs, ancestor and target categories
	Design of BIM
	Creation of 0.999-strong adversarial images by EAtarget, C and by BIM

	Local effect of the adversarial noise on the target CNN
	Is each individual patch adversarial?
	Is the global random aggregation of local adversarial effect sufficient to fool the CNNs?
	Summary of the outcomes

	Adversarial noise visualization and frequency analysis
	Adversarial noise visualization
	Assessment of the frequencies present in the adversarial noise
	Band-stop filtering shuffled and unshuffled images: which frequencies make an image adversarial?
	Summary of the outcomes

	Transferability and texture bias
	Transferability of adversarial images between the 10 CNNs
	How does CNNs' texture bias influence transferability?
	How does texture change relate to adversarial impact on the CNNs?
	Summary of the outcomes

	Transferability of the adversarial noise at smaller image regions
	Generic versus specific direction of the adversarial noise
	Effects of shuffling on adversarial images' transferability
	Summary of the outcomes

	Penultimate layer activations with adversarial images
	Relevance of analyzing the activation of ct- and of ca-related units
	How are the CNNs' classification layers affected by adversarial images?
	Summary of the outcomes

	Summary of the outcomes

	Conclusion and Perspectives
	Appendix
	Target and flat scenarios: Attack against VGG16 trained on Cifar10
	Target scenario
	Flat scenario

	Target scenario: attack against 10 CNNs trained on ImageNet
	Ancestor images
	Adversarial images

	Attack on High Resolution Images: Method and Performance
	A
	B
	C

	Robustness of Attack Against Filters
	Without filters
	With filters

	Comparative Analysis of the EA and BIM Adversarial Attacks
	Ancestor and adversarial images
	Local effect of adversarial noise on target CNNs
	Adversarial noise visualization and frequency analysis
	Transferability and texture bias
	Effects of shuffling on the transferability of the adversarial images
	Layer activations

