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A MODEL-BASED APPROACH TO DENSITY
ESTIMATION IN SUP-NORM

GUILLAUME MAILLARD

Abstract. Building on the `−estimators of Baraud [3], we define a
general method for finding a quasi-best approximant in sup-norm to a
target density p? belonging to a given model m, based on independent
samples drawn from distributions p?i which average to p? (which does
not necessarily belong to m). We also provide a general method for
selecting among a countable family of such models. Both of these esti-
mators satisfy oracle inequalities in the general setting. The quality of
the bounds depends on the volume of sets C on which |f | is close to its
maximum, where f = p− q for some p, q ∈ m (or p ∈ m and q ∈ m′, in
the case of model selection). In particular, using piecewise polynomials
on dyadic partitions of Rd, we recover optimal rates of convergence for
classes of functions with anisotropic smoothness, with optimal depen-
dence on semi-norms measuring the smoothness of p? in the coordinate
directions. Moreover, our method adapts to the anisotropic smoothness,
as long as it is smaller than 1 plus the degree of the polynomials.

1. Introduction

In regression, classification and density estimation, the model-based ap-
proach to estimation [14] consists in specifying a collection of models, to-
gether with a standard method for performing estimation within each model
and a penalty or model selection criterion for selecting among the models.
In density estimation, this approach can for-example be based on maximum
likelihood or least-squares for estimating within a model [14, Example 1]
and cross-validation for selecting among models.

This leads to a number of desirable practical and theoretical properties.
First, the approach is very flexible and general since usually, a wide va-
riety of different model collections are compatible with the basic method.
Moreover, the analysis of the risk of model-based estimators naturally subdi-
vides into an "approximation-theoretic" part dealing with the approximation
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properties of the model m, and a "statistical part" dealing with the difficulty
of estimating within m, which can be solved separately [18]. Appropriate
penalties can be derived from concentration inequalities for (weighted) em-
pirical processes [13, Chapter 1]. The resulting model selection estimators
optimize the tradeoff between the approximation error and the penalty [4,
Section 3]. This naturally leads to minimax-adaptive estimators, provided
the model collection is well chosen [4, Section 1.4].

In density estimation, the model-based approach has mainly been used
together with least-squares and maximum likelihood methods which target
the minimizer of the squared L2 and Küllback-Leibler distance to the under-
lying density. However, if we are interested instead in some other distance,
the least-squares or maximum likelihood estimates may be arbitrarily far
from optimal, as remarked by Devroye and Lugosi in the case of the L1

loss [9, Chapter 6]. One is then left with the task of devising a data-driven
method to minimize the given distance d over a model m. The difficulty
here is that empirical risk minimization cannot be used in general, for lack
of a suitable contrast function. This problem was first solved by Devroye
and Lugosi [9, Chapter 6] in the case of the L1 loss and by Baraud et al.
[1] in the case of the Hellinger distance. More recently, Baraud [3] devised
a general strategy called `−estimation, which applies to all Lp losses for
p ∈ [1,+∞) (among others), but not however to the L∞ distance in general.
He also did not address the problem of model selection.

In this article, we treat the case of the sup-norm loss, establishing a gen-
eral method for model-based density estimation in L∞. Our method results
from the application of a variant of Baraud’s `−estimation to a certain
parametrized family of semi-norms approximating the essential supremum.
The estimation error of this method depends mainly on the measure of sets
on which elements of the model m remain close to their extremal value. In
addition, we develop an entirely data-driven method for model selection,
using penalties derived from concentration inequalities.

As an application, we consider the class of piecewise polynomial functions
on dyadic partitions of Rd and show that the resulting model-based estimator
is minimax-adaptive over classes of functions with anisotropic smoothness.
Our result improves on what was previously known in the literature for
non model-based estimators: not only does our estimator converge at the
optimal rate (a property already established by Lepski [11] for his adaptive
kernel method), it also depends optimally on the underlying density, up to a
constant depending only on the dimension and the degree of the polynomials.

This article is structured as follows. First, the setting is introduced and
main notation defined in section 2 . The model-based estimator is defined in
section 3 and a general oracle inequality is established. This general result
is applied to models of piecewise polynomials in section 3.1. A minimax
lower bound establishes the optimality of our estimator up to logarithmic
factors. Section 4.1 addresses the model selection problem in the general
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setting, resulting in an estimator which satisfies an oracle inequality. In
section 4.2, we consider the case of piecewise polynomials on regular dyadic
partition, where one must select among such partitions, and show that our
assumptions hold in that case.

In section 5, the resulting estimator is shown to be minimax-adaptive
on classes of functions with anisotropic smoothness. A matching minimax
lower bound is established, based on a result of Lepski [11] .

2. Setting and notation

Let (E, E , µ) be a measure space, with σ−finite measure µ. Let L∞(E,µ)
be the set of measurable functions f on (E, E , µ) such that

‖f‖∞,µ = sup {r ≥ 0 : µ ({x ∈ E : f(x) ≥ r}) > 0} < +∞

and let L∞(E,µ) denote the associated set of equivalent classes for the
relation of equality µ−almost everywhere. The topic of this article is density
estimation on L∞(E,µ) with respect to the norm ‖·‖∞,µ.

We assume that the observationsX1, . . . , Xn are independent but not nec-
essarily i.i.d, which allows to consider possible outliers. Let P ?1 , . . . , P ?n de-
note their marginals. We assume that the marginals have densities p?1, . . . , p?n
belonging to L∞(E,µ) - otherwise, estimation in L∞ norm is impossible.

Throughout this article, P? =
⊗n
i=1 P

?
i denotes the distribution of the ob-

servation X = (X1, . . . , Xn), and p? = (p?1, . . . , p?n) denotes the correspond-
ing n−uplet of probability densities. Moreover, P ? denotes the mixture
distribution, P ? = 1

n

∑n
i=1 P

?
i , and p? denotes the corresponding probability

density.
In case the data is not truly i.i.d, the estimators considered in this article

estimate p?: in particular, they are robust to small departures from the i.i.d
assumption (in the L∞ sense).

2.1. Notations. Bold capitals P will be used to denote either the product
measure P =

⊗n
i=1 Pi or the n-uplet (P1, . . . , Pn), depending on the context.

The notation E[g(X)] is to be interpreted under the assumption that X ∼
P?, while ES [f(X)] denotes the expectation of f(X) when X ∼ S. The
same conventions apply to Var

(
g(X)

)
and VarS

(
f(X)

)
. The same letter

will always be used to denote a measurable function q and the corresponding
(signed) measureQ = qdµ: lowercase letters refer to functions and uppercase
letters, to measures.

In addition, we shall use the following standard notation. For x ∈ R,
x− = max{0,−x}; for x ∈ Rd, B(x, r) denotes the closed Euclidean ball
centered at x with radius r > 0. For a positive integer d, L∞(Rd) means
L∞(E,µ) when E = Rd, E is the Borel σ-algebra and µ = λ is the Lebesgue
measure on Rd.
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2.2. Models and losses. Denote byM a collection of models m, each of
which is a subset of P = L∞(E,µ) ∩ L1(E,µ). For reasons of technical
convenience, we do not impose that the models m consist of densities.

In the following, we will always assume that M, the model collection,
as well as the models m ∈ M, are at most countable in order to avoid
measurability issues. Let M denote the union of all the models: M =
∪m∈Mm. In particular, M is countable. Since most of the models used by
statisticians are separable, this assumption is not restrictive in practice: one
can always replace an uncountable, separable model m by a dense countable
subset m, without changing the approximation error.

Given the observation X and a model m, we want to design an estimator
p̂m = p̂m(X) of p? with values in m which is as close as possible to p? in
norm ‖·‖∞,µ. Since p̂m ∈ m by definition, ‖p? − p̂m‖∞,µ is lower bounded
by

inf
q∈m
‖q − p?‖∞,µ = d∞,µ(p?,m),

the approximation error of the model m in L∞(E,µ). The best that can
be expected of p̂m is that ‖p? − p̂m‖∞,µ be close to d∞,µ(p?,m). This term
cancels when p? ∈ m, where

(1) m = {p ∈P | inf
q∈m
‖p− q‖∞,µ = 0},

which generalizes the case of p? = (p, . . . , p) for some p ∈ m (the "true
model" case).

3. Estimator on a single model

To achieve model-based estimation in the norm ‖·‖∞,µ, we adapt the
general method of `−estimation introduced by Baraud [3]. For a given
norm ‖·‖ and p, q ∈ m ⊂ B (where B is a function space), this method relies
on finding suitable measurable functions gp,q such that

•
∫

(p− q)gp,qdµ = ‖p− q‖
• For all f ∈ B,

∫
fgp,qdµ ≤ ‖f‖

• 1
n

∑n
i=1 gp,q(Xi) is close to its expectation (over p, q ∈ m).

In the case of the norm ‖·‖∞,µ and the space B = L∞(E,µ), the first
two requirements cannot be simultaneously satisfied in general, so we shall
instead seek a suitable approximation of ‖p− q‖∞,µ by

∫
(p − q)gp,qdµ, for

some gp,q such that
∫
|gp,q|dµ ≤ 1. To that end, fix a VC class of measurable

sets C, with VC-dimension V . For any f ∈ L1(E,µ) and any h > 0, let

|f |h = sup
C∈C

1
µ(C) + h

∣∣∣∣∫
C
fdµ

∣∣∣∣ .
This semi-norm is a norm whenever the sets of C have finite measure and
generate the Borel sigma-algebra: this will be the case with all the examples
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which we will consider. Fix some ε ∈ (0, 1) and for any (p, q) ∈P2 and any
h > 0, choose some set Ch(p, q) such that

(2)

∣∣∣∫Ch(p,q)(p− q)dµ
∣∣∣

µ(Ch(p, q)) + h
≥ (1− ε)|p− q|h.

Let then εh(p, q) ∈ {−1, 1} be the sign of
∫
Ch(p,q)(p− q)dµ and define

t(h)
p,q = εh(p, q)

P (Ch(p, q))− 1lCh(p,q)
µ (Ch(p, q)) + h

,

as well as the associated T-test

T (h)(X, p, q) = 1
n

n∑
i=1

t(h)
p,q (Xi).

Note that this construction can be carried out uniformly over all p, q ∈ P .
Let now

T (h)
m (X, p) = sup

q∈m
T (h)(X, p, q).

An `−estimator associated with the class C, the model m, the parameter
h > 0 and the tolerances ε, δ is, by definition, a random element p̂(h)

m such
that

T (h)
m

Ä
X, p̂(h)

m

ä
≤ inf

p∈m

¶
T (h)
m (X, p)

©
+ δ.

Since m is countable and δ > 0, such random elements exist. Note that T (h)
m

and p̂
(h)
m only depend on Ch(p, q) for p, q belonging to the model m. The

notation p̂(h)
m ignores the dependence on ε, δ which may be arbitrarily small.

For p̂(h)
m to be a valid estimator in L∞ norm, it is necessary that | · |h

provide an adequate approximation to ‖·‖∞,µ on the model. Clearly, | · |h
does not uniformly approximate ‖·‖∞,µ on P, so this property is model-
dependent: this motivates the following definition.

Definition 1. For any model m ⊂P and any h > 0, let

κm(h) = inf
p,q∈m

|p− q|h
‖p− q‖∞,µ

.

This defines a function κm : (0,+∞) → [0, 1] which can be seen to have
the following properties.

Lemma 1. For any model m ⊂ P ,

• κm is non-increasing
• If κm(h0) > 0 for some h0 > 0, then κm(h) > 0 for all h > 0.
• κm is continuous, more precisely

|κm(h1)− κm(h2)| ≤
∣∣∣∣1− h1 ∧ h2

h1 ∨ h2

∣∣∣∣κm(h1 ∧ h2).
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Proof. The first property is obvious from the definition, the second is a
consequence of the third. To prove the last inequality, note that

|κm(h1)− κm(h2)| ≤ sup
p,q∈m

®
1

‖p− q‖∞,µ

∣∣|p− q|h1 − |p− q|h2

∣∣´ .
Moreover, for any f ∈ L∞,

∣∣|f |h1 − |f |h2

∣∣ ≤ sup
C∈C

ß∣∣∣∣∫
C
f

∣∣∣∣ ∣∣∣∣ 1
µ(C) + h1

− 1
µ(C) + h2

∣∣∣∣™
≤ sup

C∈C

ß |h1 − h2| |
∫
C f |

(µ(C) + h1)(µ(C) + h2)

™
≤ |f |h1∧h2

|h1 − h2|
h1 ∨ h2

.

Together with the previous equation, this yields the result. �

Moreover, if C generates the Borel σ−algebra and m is a subset of a finite
dimensional vector space, then by equivalence of norms, κm(h) > 0 for all
h > 0.

To bound the stochastic error of the `−estimator, we introduce the fol-
lowing empirical process:

Definition 2. For any h > 0, let

Z(h) = 1
n

sup
C∈C

®
1

µ(C) + h

∣∣∣∣∣ n∑
i=1

1lC(Xi)− P ∗i (C)
∣∣∣∣∣
´
.

Note that this definition does not depend on the model m. The risk of
the `−estimator p̂(h)

m may be related to the constant κm(h) and the process
Z(h) as follows.

Proposition 1. For any model m ⊂P and any h > 0,

(1−ε)κm(h)×
∥∥∥p? − p̂(h)

m

∥∥∥
∞,µ
≤ [2 + (1− ε)κm(h)] inf

p∈m
‖p? − p‖∞,µ+2Z(h)+δ.

Proof. Let p? = 1
n

∑n
i=1 p

?
i and P ? = 1

n

∑n
i=1 P

?
i . For any p, q ∈P, let

∆h(p, q) = E
î
T (h)(X, p, q)

ó
= εh(p, q)(P − P ?)(Ch(p, q))

µ(Ch(p, q)) + h
.

On the one hand,

(3) ∆h(p, q) ≤ |p− p?|h ≤ ‖p− p?‖∞,µ .
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On the other hand,

∆h(p, q) = εh(p, q)(P −Q)(Ch(p, q))
µ(Ch(p, q)) + h

+ εh(p, q)(Q− P ?)(Ch(p, q))
µ(Ch(p, q)) + h

≥ (1− ε)|p− q|h − ‖q − p?‖∞,µ
≥ κm(h)(1− ε) ‖p− q‖∞,µ − ‖q − p

?‖∞,µ
≥ κm(h)(1− ε)

Ä
‖p− p?‖∞,µ − ‖p

? − q‖∞,µ
ä
− ‖q − p?‖∞,µ ,

from which it follows that

(4) ∆h(p, q) ≥ κm(h)(1−ε) ‖p− p?‖∞,µ− (1 + κm(h)(1− ε)) ‖q − p?‖∞,µ .

Moreover, by definition,

T (h)(X, p, q) = εh(p, q)
µ(Ch(p, q)) + h

ñ
P (Ch(p, q))− 1

n

n∑
i=1

1lCh(p,q)(Xi)
ô
,

which implies that for any p, q ∈P,

(5)
∣∣∣T (h)(X, p, q)−∆h(p, q)

∣∣∣ ≤ Z(h).

Let now p ∈ m. On the one hand, by definition of T (h)
m (X, ·),

T (h)
m

Ä
X, p̂(h)

m

ä
≥ T (h)

Ä
X, p̂(h)

m , p
ä

= ∆h(p̂(h)
m , p) + T (h)

Ä
X, p̂(h)

m , p
ä
−∆h(p̂(h)

m , p)

≥ ∆h(p̂(h)
m , p)− Z(h) by equation (5)

≥ κm(h)(1− ε)
∥∥∥p̂(h)
m − p?

∥∥∥
∞,µ
− (1 + κm(h)(1− ε)) ‖p− p?‖∞,µ − Z(h)

(6)

by equation (4). On the other hand, for all q ∈ m, by equations (3) and (5),

T (h)(X, p, q) = ∆h(p, q) + T (h)(X, p, q)−∆h(p, q)
≤ ‖p− p?‖∞,µ + Z(h),

hence T (h)
m (X, p) ≤ ‖p− p?‖∞,µ +Z(h). Finally, by equation (6) and defini-

tion of p̂(h)
m ,

δ + ‖p− p?‖∞,µ + Z(h) ≥ δ + T (h)
m (X, p)

≥ T (h)
m

Ä
X, p̂(h)

m

ä
≥ κm(h)(1− ε)

∥∥∥p̂(h)
m − p?

∥∥∥
∞,µ
− (1 + κm(h)(1− ε)) ‖p− p?‖∞,µ − Z(h),

which yields

κm(h)(1− ε)
∥∥∥p̂(h)
m − p?

∥∥∥
∞,µ
≤ (2 + κm(h)(1− ε)) ‖p− p?‖∞,µ + 2Z(h) + δ.

As this is valid for any p ∈ m, the proposition is proved. �
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To handle the stochastic process Z(h), we state and prove a uniform
Bernstein inequality. First, define the following family of events.

Definition 3. Let P ? = 1
n

∑n
i=1 P

?
i and

(7) Γ = log(dlog2 ne) + log
(

2
V ∧n∑
j=0

Ç
n

j

å)
.

For any x > 0, let Ωx denote the event on which

(8) 1
n

∣∣∣∣∣ n∑
i=1

1lC(Xi)− P ?i (C)
∣∣∣∣∣ ≤ max

Ç
29
»
P ?(C)

…
Γ + x

n
, 20Γ + x

n

å
,

for all C ∈ C.

This class of events will govern the statistical behaviour of all procedures
analyzed in this article. First, we prove the following proposition.

Proposition 2. The event Ωx has probability P(Ωx) ≥ 1− 2e−x.

A result similar to proposition 2 was estalished by Baraud [2, Theorem 3]
using similar methods. However, his result is stated for suprema of empirical
processes over VC-classes and in particular, the variance term in the upper
bound is the supremum of the variance of the empirical process over the
class. What is novel about proposition 2, to the best of our knowledge, is
that it provides a pointwise bound of the empirical process at each C ∈ C in
terms of the variance of the process at C, for independent and not necessarily
iid random variables.

Together with proposition 1, proposition 2 yields the following oracle
inequality for the estimator p̂(h)

m .

Theorem 1. Let p? = 1
n

∑n
i=1 p

?
i and

Γ = log(dlog2 ne) + log
(

2
V ∧n∑
j=0

Ç
n

j

å)
.

With probability greater than 1− 2e−x, for all countable models m ⊂P and
all h > 0,

(1− ε)κm(h)×
∥∥∥p̂(h)
m − p?

∥∥∥
∞,µ
≤ [2 + (1− ε)κm(h)] inf

p∈m
‖p− p?‖∞,µ + δ

+ max
(

58

 
|p?|h(Γ + x)

hn
, 40Γ + x

hn

)
.

(9)
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Proof. On Ωx,

Z(h) ≤ max
Ç

29
…

Γ + x

n
sup
C∈C

√
P ∗(C)

µ(C) + h
,
20(Γ + x)

n
sup
C∈C

1
µ(C) + h

å
≤ max

Ç
29
…

Γ + x

n
sup
C∈C

√
P ∗(C)

µ(C) + h
,
20(Γ + x)

hn

å
.

For any C ∈ C, by definition of |p?|h,√
P ?(C)

µ(C) + h
≤
√
|p?|h(µ(C) + h)
µ(C) + h

≤
 

|p?|h
µ(C) + h

≤

 
|p?|h
h

.

Hence, on Ωx,

Z(h) ≤ max
(

29

 
|p?|h(Γ + x)

hn
, 20Γ + x

hn

)
.

By proposition 1, equation (9) of the theorem holds on Ωx. The conclusion
follows from proposition 2. �

The quality of the bound provided by Theorem 1 depends on the constant
κm(h). If hm is such that κm(hm) ≥ 1

2 (say), then Theorem 1 yields a "true"

oracle inequality, with remainder term of order
√
|p?|hmΓ
nhm

≤
√
‖p?‖∞,µΓ
nhm

.
Clearly, this value of hm depends strongly on the class C and the model
m. Later, we will show that m, C can be chosen such that equation (9)
yields the minimax convergence rate over classes of smooth functions. More
generally, one can ask when a constant hm even exists. A sufficient condition
for this is to have κm(h)→ 1 as h→ 0.

Existence of hm provides an oracle inequality with a fixed constant (5, say)
in front of the approximation error and a remainder term of order O

Ä
1√
n

ä
as n → +∞ for a fixed model m. This is the expected rate of convergence
for finite-dimensional models.

We now show that, on Rd with Lebesgue measure µ, there are universal
classes of sets C such that κm(h)→ 1 holds for all finite-dimensional m over
which ‖·‖∞,µ is a norm.

Proposition 3. Assume that C contains a sub-collection C0 satisfying the
following conditions:

• For all δ > 0,
⋃
C∈C0,δ

C = Rd, where

C0,δ = {C ∈ C0 : diam(C) ≤ δ}

• inf
¶

µ(C)
diam(C)d : C ∈ C0

©
> 0,

where diam(C) denotes the diameter of C. Then for any f ∈ P , limh→0 |f |h =
‖f‖∞,µ. As a consequence, if m is a subset of a finite-dimensional vector
space, limh→0 κm(h) = 1.
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Proof. Fix some ε > 0. Assume without loss of generality that the set
Aε = {x ∈ Rd : f(x) > (1− ε) ‖f‖∞,µ}

has positive Lebesgue measure. Hence, by the Lebesgue differentiation The-
orem, it contains a Lebesgue point x.

For each k ∈ N, let Ck ∈ C0, 1
k
such that x ∈ Ck. In particular, Ck ⊂

B(0, diam(Ck)). The assumptions of proposition 3 imply that (Ck)k≥1 shrinks
to x nicely in the sense of [16, section 7.9]. Hence, by [16, Theorem 7.10],

lim
k→+∞

1
µ(Ck)

∫
Ck

fdµ = f(x) ≥ (1− ε) ‖f‖∞,µ .

Let k ≥ 1 be such that 1
µ(Ck)

∫
Ck
|f |dµ ≥ (1− 2ε) ‖f‖∞,µ. Then

lim
h→0
|f |h ≥ lim

h→0

1
µ(Ck) + h

∫
Ck

f ≥ (1− 2ε) ‖f‖∞,µ .

Since this is true for any ε > 0, limh→0 |f |h = ‖f‖∞,µ.
Let now m ⊂ H, where H ⊂ P is a finite dimensional vector space.

Let K be the unit sphere of H in norm ‖·‖∞,µ. The family of continuous
functions

gh :
®

K → R
f 7→ |f |h

is monotone with respect to the parameter h and converges pointwise at 0
to the constant function 1. Since K is compact, the convergence is uniform
by Dini’s theorem. In particular,

1 = lim
h→0

inf
x∈K

gh(x) ≤ lim
h→0

κm(h) ≤ 1.

�

Classes of sets C which satisfy the assumptions of proposition 3 while hav-
ing finite VC dimension include simplices, "box sets" (products of intervals),
dyadic cubes, euclidean balls, ellipsoids, and many more.

3.1. Piecewise polynomials. To obtain more quantitative results about
the constant κm(h), it is necessary to look at specific classes of models.
Here, we restrict attention to classes of piecewise polynomial functions on
partitions of Rd, because these classes are simple to define and have optimal
approximation properties. However, we are confident that similar results
could be proved for other classical function spaces, such as wavelet spaces
or trigonometric polynomials. In the rest of this section, we shall assume
that µ is the Lebesgue measure on Rd.

First, it is necessary to introduce some definitions and notations. A (mul-
tivariate) polynomial function on Rd is a function of the form:

f : x 7→
∑
a∈A

c(a)
d∏
i=1

x
a(i)
i ,
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where A is a finite set of functions a : {1, . . . , d} → N and c : A → R is a
function. Its degree (in the usual sense) is defined to be

deg(f) = max
a∈A

d∑
i=1

a(i).

It satisfies the usual relations, deg(fg) = deg(f) + deg(g) and deg(f +
g) ≤ max(deg(f), deg(g)). We define also the directional degree in direction
i ∈ {1, . . . , d} to be

degi(f) = max
a∈A

a(i),

which satisfies the same relations. Let P∞,d be the space of all multivariate
polynomial functions on Rd. We define the following two families of spaces
of polynomials with bounded degrees: first, given r ∈ N, let

Pr,d = {f ∈ P∞,d : deg(f) ≤ r}.

Secondly, for all vectors r ∈ Nd, let

Pdirr,d = {f ∈ P∞,d : ∀i ∈ {1, . . . , d},degi(f) ≤ ri}.

The two families of spaces are related by the following inclusions:

Pdirr,d ⊂ P‖r‖1,d
⊂ Pdir‖r‖11,d,

where 1 is the "all-one" vector, 1 = (1, . . . , 1).
We can now define models of piecewise polynomial functions.

Definition 4. Given a finite or countable and measurable partition I of Rd
and r ∈ N, let m(r, I) denote the set of functions of the form

f =
∑
I∈I

fI1lI ,

where for each I ∈ I, fI ∈ Pr,d is a polynomial with rational coefficients
and the set {I ∈ I : fI 6= 0} is finite. Let m̄(r, I) = m(r, I), the closure of
m(r, I) in L∞

(
Rd
)
.

Given r ∈ Nd, let mdir(r, I), m̄dir(r, d) be defined similarly, with Pdirr,d
instead of Pr,d.

Let the model m = m(r, I) for some partition I. If I is finite, then m
is finite dimensional and the previous proposition applies. In general, to
establish an explicit lower bound on κm(h), we require the partition I to
satisfy the following three conditions.

Assumption 1.

• C contains translated and scaled copies of the interior I̊ of any I ∈ I,
i.e ¶

x+ λI̊ : I ∈ I, x ∈ Rd, λ > 0
©
⊂ C.
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• There is a lower bound on the volume of the elements of I:
h0 := min

I∈I
µ(I) > 0.

• The elements of I are bounded convex sets.

Under assumption 1, for any f = p−q ∈ m, an appropriate set Ch,m(f) ∈
C can be constructed as follows. Since the collection (f1lI)I∈I has finite sup-
port, the supremum supI∈I ‖f1lI‖∞,µ is reached at some I∗(f). Let I̊∗(f)
denote the topological interior of I∗(f). f coincides on I∗(f) with a polyno-
mial f∗, which reaches its maximum on I∗(f) at some x∗(f).

Let finally
(10) Ch,m(f) = (1− θm(h))x∗(f) + θm(h)I̊∗(f),
where θm(h) ∈ (0, 1) is a function given by equation (11) below.

By assumption 1, Ch,m(f) ∈ C and by convexity of I∗(f), Ch,m(f) ⊂ I̊∗(f).
The following lower bound holds.

Proposition 4. For all u > 0, let

γr,d(u) = max
Å 1

2(d+ 1)

ï
u−1

(2r2)d ∧ 1
ò
,
[
1− (2r2)

d
d+1u

1
d+1
]2

+

ã
.

Assume that hypothesis 1 holds. Let then

(11) θm(h) =


d
d+1

1
2r2 if γr,d

Ä
h
h0

ä
= 1

2(d+1)

î
h0

(2r2)dh ∧ 1
óÄ

h
2r2h0

ä 1
d+1 otherwise .

For all f ∈ m = m(r, I),∣∣∣∫Ch,m(f) fdµ
∣∣∣

µ (Ch,m(f)) + h
≥ γr,d

Å
h

h0

ã
‖f‖∞,µ .

In particular, since m is a Q−vector space, κm(h) ≥ γr,d
Ä
h
h0

ä
.

Proof. The proof is carried out in appendix A.2. �

In particular, κm(h) converges to 1 as h
h0
→ 0, and the rate of convergence

depends only on the dimension d (and not on the partition I).
Thus, the estimation error behaves essentially like 1√

h0
, when h is well

chosen. For concreteness, consider the case of the collection C of cartesian
products of d intervals, with I ⊂ C a partition of Rd. Then Theorem 1 and
Proposition 6 yield the following Corollary.

Corollary 1. Let m = m(r, I), I ⊂ C satisfying 1, C the collection of
cartesian products of d intervals. Let

(12) hm =

Ä
1− 1√

2

äd+1

(2r2)d h0.
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Let p̂(hm)
m be the `−estimator based on the sets Chm,m(p − q) (p, q ∈ m)

defined above. Then

E
[∥∥∥p̂(hm)

m − p?
∥∥∥
∞,µ

]
≤ 5 min

p∈m
{‖p− p?‖∞,µ}+ 274(2d+ 1)(3r)2d log(en)

h0n
+ 2δ

+ 215
√

2d+ 1 min
(

(3r)d
»
‖p?‖∞,µ

 
log(en)
h0n

, (3r)2d
√

log(en)
h0
√
n

)
.

Proof. The proof can be found in appendix A.3. �

The remainder term in the oracle inequality above is equivalent to

cr,d
»
‖p?‖∞,µ

 
log(n)
h0n

for some constant cr,d (depending on r, d only), in the asymptotic regime
where h0 → 0 and h0n → +∞. We show below that this is optimal for
sufficiently "regular" partitions. Though we do not believe that the constant
cr,d is optimal, exponential behaviour of the type rcd is expected since

dim (Pr,d) =
Ç
r + d

d

å
≥
Å
r + d

d

ãd
.

To assess the optimality of the remainder term
»
‖p?‖∞,µ

√
log(n)
h0n

of Corol-
lary 1 and more generally of Theorem 1, we prove a minimax lower bound
on the class

mL(0, I) =
{∑
I∈I

cI1lI : c ∈ [0, L]I ,
∑
I∈I

cIµ(I) = 1
}

of pdfs which are piecewise constant on the blocks of the partition I and
uniformly bounded by L > 0.

Note that the set mL(0, I) may be empty (if I does not contain blocks of
finite measure), or a singleton (if I has exactly one block of finite measure).
If I has a finite number of blocks of finite measure, then mL(0, I) will also
be empty if L is too small. In such cases, estimation on mL(0, I) is trivial.

In general, the following minimax lower bound holds.

Theorem 2. Let (X ,B, µ) be a σ−finite measure space and I a countable,
measurable partition of X into blocks of positive measure. Let

X0 =
⋃
{I ∈ I : µ(I) < +∞}.

For any h > 0, let
M(h) = |{I ∈ I : µ(I) ≤ h}| .

For any L > 0 and n ≥ 1, define ψn(I, L) > 0 by

(13) ψn(I, L)2 = sup
h>0

ß
L

hn
log
Å

1 + min
(
M(h),

õ 1
Lh

û)ã™
.
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Then, for any θ ∈
(1

2 , 1
)
and any L ≥ 1

θµ(X0) ,

inf
p̂

sup
p?∈mL(0,I)

E
î
‖p̂− p?‖∞,µ

ó
≥ 1

40 min
(

(1− θ)L,
»
θ(1− θ)ψn(I, L)

)
,

where the infimum runs over all estimators p̂ of p?, based on an iid sample
of size n drawn from p?.

Proof. The proof is based on standard multiple testing arguments. It can
be found in appendix A.4. �

Though the class mL(0, I) is a simple one, and the proof of Theorem 2
uses standard "multiple testing" arguments, Theorem 2 is, to the best of our
knowledge, the first minimax lower bound for classes of piecewise constant
functions in density estimation in sup-norm.

The lower bound involves the parameters L, h, n and θ, as well as the
function M which depends on the partition I.

The parameter θ reflects the fact that if L is too small, then the model is
empty, and if L = 1

µ(X0) , then the model contains precisely one element (the
uniform distribution on X0). As soon as L is greater than this minimum
value by constant factor 1

θ , the lower bound is of order

min(L,ψn(I, L)).

The minimum with L reflects the fact that we can always use any fixed
p0 ∈ mL(0, I) as an estimator, which has risk bounded by L. As soon as n
is large enough, such that this trivial estimator is sub-optimal, the minimax
risk becomes proportional to ψn(I, L).

This term, ψn(I, L), is somewhat complicated. For the purpose of this
discussion, fix a partition I and let

h0 = inf
I∈I

µ(I).

If L < 1
h0
, then for any h ∈

(
h0,

1
L

]
, M(h) ≥ 1 and 1

Lh ≥ 1, which implies
that ψn(I, L) ≥

»
L log 2
hn . On the other hand, if L ≥ 1

h0
, then since the

models (mt(0, I))t>0 are nested, the minimax risk on mL(0, I) is greater
than the minimax risk on m 1

h
(0, I) for any h > h0.

This yields the following corollary.

Corollary 2. Let I be a countable partition of X into blocks of finite, pos-
itive measure. For any L ≥ 2

µ(X ) ,

inf
p̂

sup
p∈mL(0,I)

E
î
‖p̂− p‖∞,µ

ó
≥ 1

80 min
Ç
L,

 
L log 2
h0n

,

√
log 2

h0
√
n

å
,

where h0 = infI∈I µ(I).
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Comparing corollary 2 to the minimax upper bound resulting from Corol-
lary 1, we see that Corollary 1 is optimal, possibly up to logn factors and the
remainder term 1

h0n
, which is negligible relative to the minimax lower bound

whenever
»

L
h0n
� L, i.e whenever a non-trivial estimator is required.

If we assume additionally that

M(2h0) = |{I ∈ I : h0 ≤ µ(I) ≤ 2h0}| ≥ nα

and that h0 ≤ 1
2Lnα for some fixed α ∈ (0, 1), then by equation (13),

ψn(I, L) ≥
 

L

2h0n

»
log(1 + bnαc) ≥

 
αL logn

2h0n
,

in which case the upper bound of Corollary 1 is optimal up to a constant
depending only on α.

Moreover, if In are regular partitions of Rd into blocks of volume hn,
where lim supn→+∞{nαhn} < +∞, then

lim inf
n→+∞

®
ψn(In, L)×

 
hnn

L logn

´
≥
√
α,

which proves the asymptotic optimality of Corollary 1 in this non-parametric
setting.

4. Model selection and adaptivity

4.1. General approach. Let M be a collection of models and let M =
∪m∈Mm. In principle, the tests t(h)

p,q for a fixed h could be used to select an
element of M. However, in order for this approach to work, it is necessary
that infm∈M κm(h) ≥ κ∗ > 0: in particular, if the models are nested, the
value of h chosen corresponds to that required for estimation on the largest
model.

It would be desirable to instead use different values of h depending on the
models to which p, q belong, so as to obtain an estimator which performs as
well as the best single-model estimator in the collection (p̂hmm )m∈M.

To achieve this goal of model selection, some means of estimating the
statistical error Z(h) is needed. Theorem 1 provides an upper bound on
Z(h) which is almost fully explicit: it only depends on P? through |p?|h.
We now show how this quantity can be estimated.

Definition 5. For any h > 0, let

|p̂|h = sup
C∈C

ß∑n
i=1 1lC(Xi)

n(µ(C) + h)

™
.

The following proposition shows that |p̂|h is an adequate estimator of
|p?|h.
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Proposition 5. On Ωx, for all θ ∈ (0, 2),

|p?|h ≤
1

1− θ
2
|p̂|h + 292

θ(2− θ)
Γ + x

hn

|p̂|h ≤
Å

1 + θ

2

ã
|p?|h + 292

2θ
Γ + x

hn
,

where Γ and Ωx are given by Definition 3.

Proof. On Ωx, by definition 3, for any C ∈ C,∑n
i=1 1lC(Xi)

n(µ(C) + h) = 1
µ(C) + h

ñ
P ?(C) + 1

n

n∑
i=1

1lC(Xi)− P ?i (C)
ô

≥ 1
µ(C) + h

ñ
P ?(C)−max

Ç
29
»
P ?(C)

…
Γ + x

n
, 20Γ + x

n

åô
≥ 1
µ(C) + h

min
ÅÅ

1− θ

2

ã
P ?(C)− 292

2θ
Γ + x

n
, P ?(C)− 20Γ + x

n

ã
≥
Å

1− θ

2

ã
P ?(C)
µ(C) + h

− 292

2θ
Γ + x

hn

Taking a supremum on both sides with respect to C ∈ C yields

|p̂|h ≥
Å

1− θ

2

ã
|p?|h −

292

2θ
Γ + x

hn
,

which yields the first equation. Similarly,∑n
i=1 1lC(Xi)

n(µ(C) + h) = 1
µ(C) + h

ñ
P ?(C) + 1

n

n∑
i=1

1lC(Xi)− P ?i (C)
ô

≤ 1
µ(C) + h

ñ
P ?(C) + max

Ç
29
»
P ?(C)

…
Γ + x

n
, 20Γ + x

n

åô
≤ 1
µ(C) + h

max
ÅÅ

1 + θ

2

ã
P ?(C) + 292

2θ
Γ + x

n
, P ?(C) + 20Γ + x

n

ã
≤
Å

1 + θ

2

ã
P ?(C)
µ(C) + h

+ 292

2θ
Γ + x

hn
,

which yields the second equation. �

Based on Theorem 1 and the above proposition with θ = 1
2 , let us define

the following universal penalty. Let log− denote the negative part of the log
function, and let a > 0 be some parameter. Let then

(14) pena(h) = 29
…

4
3

 
|p̂|h(Γ + a log−(h))

hn
+
…

4
3292 Γ + a log−(h)

hn
,

where Γ is defined by equation (7).
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Assume that for any model m ∈ M, there is an associated parameter
hm > 0, chosen such that p̂(hm)

m satisfies an oracle inequality on model m
with fixed constant independent of m, i.e such that κm(hm) ≥ κ0 > 0 for
some constant κ∗.

In order to perform model selection, we need to control the behaviour
of the tests T (h)(X, p, q) when p, q belong to two different models. It may
be that comparing two models is much harder (i.e, requires a much smaller
value of h) than optimizing performance within a single model. For example,
while it is feasible to optimize among piecewise constant functions on a given
partition I, selecting among partitions I is impossible in general since the
set (1l[a,b]) of indicator functions of intervals is non-separable in L∞.

To avoid such cases, we make the following assumption.

Assumption 2. There exists a constant

κ∗ = inf
m,m′∈M

{κm∪m′(hm ∧ hm′)} > 0.

Qualitatively speaking, assumption 2 states that comparing p, q belonging
to m,m′ is not significantly harder than comparing p1, q1 belonging to the
same model (m or m′). For example, this is always the case when models
are nested.

Remark. IfM is totally ordered with respect to inclusion, then

κ∗ = inf
m∈M

{κm(hm)} ≥ κ0 > 0.

Proof. Let m,m′ ∈ M and assume without loss of generality that m′ ⊂ m.
Since κm is a non-increasing function,

κm∪m′(hm ∧ hm′) = κm(hm ∧ hm′) ≥ κm(hm).

This proves that κ∗ ≥ infm∈M{κm(hm)}. On the other hand, takingm = m′

in assumption 2 yields κ∗ ≤ κm(hm). �

Assuming now that M, (hm)m∈M satisfy hypothesis 2, we construct a
model selection procedure as follows. For any p ∈M, let

hp = sup {hm : m ∈M, p ∈ m} .

For any p ∈M, let then

TM(X, p) = sup
q∈M

¶
T (hp∧hq)(X, p, q)− pena(hq)

©
+ pena(hp).

A model selection `−estimator is defined to be any random element p̂M
such that

TM(X, p̂M) ≤ inf
p∈M
{TM(X, p)}+ δ.

The model selection `−estimator satisfies the following oracle inequality.
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Theorem 3. For all y ≥ e, on an event (Ωa log y) with probability greater
than 1− 2

ya ,

(1− ε)κ∗ ‖p̂M − p?‖∞,µ ≤ inf
m∈M

ß
(2 + (1− ε)κ∗) inf

p∈m
{‖p− p?‖∞,µ}+ 4 pena(hm)

™
+ 29y

…
2a
3en + 292 4√

3
ay

en
+ δ.

(15)

Proof. The proof is postponed to appendix B.1. �

An interesting aspect of Theorem 3 is that the penalty only depends on
hm and on the fixed parameter a, but not on the number of models. In
particular, the theorem also applies to countably infinite collectionsM.

4.2. Piecewise polynomials on regular dyadic partitions. The key
question concerning applications of Theorem 3 is for which collections of
models assumption 2 holds. We have already seen that assumption 2 holds
for nested model collections, however the assumption that models are nested
is restrictive: it excludes classes of irregular partitions that one would like to
use in order to adapt to potentially inhomogeneous or anisotropic smooth-
ness of the target density.

Perhaps unexpectedly, assumption 2 turns out to be significantly weaker
than nestedness. If hm is chosen according to lemma 4 (for a value h < h0

r2 ),
then assumption 2 holds over the class m(r, I), where r ∈ N and I belongs
to the set of regular dyadic partitions, i.e, partitions

I(j) =
{

d∏
i=1

[ki2−ji , (ki + 1)2−ji) : k = (k1, . . . , kd) ∈ Zd
}
,

for some j ∈ Zd. For completeness, we prove in appendix B.2 that the
I(j) are indeed partitions of Rd, with the property that I(j′) refines I(j)
whenever j′ ≥ j.

Denote then
Id =

¶
I(j) : j ∈ Zd

©
and

(16) Mr = {mdir(r, I) : I ∈ Id}.

For any m = mdir(r, I) ∈Mr, let

(17) hm = minI∈I{µ(I)}
(2 ‖r‖21)d4d+1

= 2−(j1+...+jd)

(2 ‖r‖21)d4d+1
.
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Consider the class Crec of d−dimensional open rectangles with sides parallel
to the axes, i.e

Crec = {
d∏
i=1

(ai, bi) : ai, bi ∈ R, ai < bi}.

This class generates the Borel sigma-algebra, hence for any h > 0, | · |h is
a norm on L1 ∩ L∞.

The following Theorem shows that the model collectionMr satisfies as-
sumption 2 for a constant κ∗ depending only on r and d.

Theorem 4. For all m,m′ ∈Mr and hm, hm′ defined by equation (17),

κm∪m′(hm ∧ hm′) ≥

4

Ñ
1 + 4

Ã
d∏
i=1

(ri + 1)

é−1

.

Proof. The proof can be found in appendix B.3. �

In light of Theorem 3, Theorem 4 implies that it is possible to perform
model selection on the model collection Mr, in the sense that the model-
selection estimator p̂Mr defined in section 4.1 performs as well as the best
estimator in the collection {p̂(hm)

m : m ∈ Mr}, up to a constant depending
only on d, r.

5. Rates under anisotropic smoothness

The oracle inequality satisfied by the `−estimator (Theorem 1), together
with the lower bound on κm for polynomial models (proposition 4) allow to
recover minimax optimal rates on anisotropic Lipschitz spaces. Moreover,
the model selection results in the previous section (Theorems 3 and 4) imply
that this can be done in an adaptive manner, as we now show.

Let β ∈ Rd be a multi-index, and let Cβ denote the space of functions
f which admit partial derivatives ∂kif

∂x
ki
i

at all orders ki ≤ bβic, and are such
that the semi-norms

|f |i,βi := sup
x∈Rd

sup
t∈R

1
tβi−bβic

∣∣∣∣∣∣∂
bβicf

∂x
bβic
j

(x+ tei)−
∂bβicf

∂x
bβic
i

(x)

∣∣∣∣∣∣
are finite for all i ∈ {1, . . . , d}, where ei denotes the standard basis of Rd.
Note that this only requires regularity along the coordinate directions, and
in particular the cross-derivatives may fail to exist.

It is known that the minimax-optimal convergence rate on the class Cβ

is
Ä

logn
n

ä β
2β+d , where β is the harmonic mean of the βi. This follows from

results of Lepski [11].
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Let C = Crec be the class of products of d open intervals, and let p̂ be the
model-selection `−estimator defined in section 4.1, over the model collection
Mr defined in section 4.2 equation (16), with the values hm specified by
equation (17).

To prove that p̂ attains the optimal rate when p? ∈ Cβ, an approximation
result is needed in order to bound the term infp∈mdir(r,I(j)) ‖p− p?‖∞,µ. Such
results have long been established in the approximation theory literature
when β ∈ Nd, along with bounds on the approximation error expressed in
terms of finite difference operators - the article [7] is particularly relevant.
However, these results usually involve a non-explicit constant. Rather than
adapt them to our setting, it is just as convenient to give a direct proof,
which also provides an explicit constant.

Proposition 6. Let f ∈ Cβ(Rd) ∩ L1(Rd). Let r ≥ bβc be a vector of
integers, let h = (hj)1≤j≤d be non-negative real numbers and let Ih denote
the rectangular partition{

d∏
j=1

[kjhj , (kj + 1)hj) : k ∈ Zd
}
.

There exists fd ∈ mdir(r, Ih) such that

‖f − fd‖∞,µ ≤ 2bd(r) max
1≤j≤d

{
h
βj
j

bβjc!
|f |j,βj

}
,

where

(18) bd(r) = 1 + min
σ∈Sd

{
d∑
j=1

j∏
i=1

ï 2
π

log(1 + rσ(i)) + 1
ò}

.

Proof. The proof can be found in appendix C.1. �

Optimizing the bias-variance tradeoff between approximation error (given
by proposition 6) and estimation error (given by pena(hm) defined in equa-
tion (14)) yields the following Theorem.

Theorem 5. Let β ∈ Rd+ be such that bβjc ≤ rj for all j. Let

β = 1
d

d∑
j=1

1
βj
.

Let p? = 1
n

∑n
i=1 p

?
i . Assuming that p? ∈ Cβ

(
Rd
)
, let

Lβ(p?) =
d∏
j=1
|p?|

β
dβj

j,βj
.
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For any n ∈ N such that Lβ(p?)
d
β ≤ n

logn ,

E
î
‖p̂− p?‖∞,µ

ó
≤ C ‖p?‖

β
2β+d
∞,µ Lβ(p?)

d
2β+d

Å logn
n

ã β
2β+d

when ‖p?‖∞,µ ≥ Lβ(p?)
d

β+d
Ä

logn
n

ä β
β+d , and

E
î
‖p̂− p?‖∞,µ

ó
≤ CLβ(p?)

d
β+d

Å logn
n

ã β
β+d

else, where C is a constant which depends only on r, d.

Proof. The proof is carried out in appendix C.2. �

Assume to simplify the discussion that p? = (p?, . . . , p?)) and that p? ∈
Cβ(Rd). Then, Theorem 5 yields the correct [11, Theorem 2] minimax

convergence rate,
Ä

logn
n

ä β
2β+d , with respect to the sample size n. Moreover,

the dependence of the upper bound on p? is explicit, through the term

‖p?‖
θβ

2β+d
∞,µ Lβ(p?)

d
2β+d . Note that the assumption p? ∈ Cβ(Rd), together with

the fact that p? is a density, imply a bound on ‖p?‖∞,µ by a function of β, d
and the semi-norms |p?|j,βj .

Consider now the class of functions

CβL,b =
¶
p ∈ Cβ(Rd) : ‖p‖∞,µ ≤ b,∀j ∈ {1, . . . , d}, |p|j,βj ≤ Lj

©
,

as well as the class PβL,b of probability density functions which belong to
CβL,b. These function classes are non-decreasing as a function of b, moreover
by the previous remark there is a function

bmin(L,β) = sup
¶
‖p‖∞,µ : p ∈ PβL,+∞

©
such that b 7→ PβL,b is strictly increasing for b < bmin(L,β) and constant for
all b ≥ bmin(L,β).

Theorem 5 implies in particular the following minimax upper bound on
the classes PβL,b:

Corollary 3. Let β ∈ Rd+ and 1
β = 1

d

∑d
j=1

1
βj
. Let L ∈ Rd+ and

L =
d∏
j=1

L

β
dβj

j .

For all b ≤ bmin(L,β) and all large enough n,

inf
p̃

sup
p?∈Pβ

L,b

E
î
‖p̂− p?‖∞,µ

ó
≤ Cb

β
2β+dL

d
2β+d

Å logn
n

ã β
2β+d

,
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where the infimum runs over all estimators computed from an n−sample
drawn from p?, and C is a constand depending only on β, d.

In addition to the rate
Ä

logn
n

ä β
2β+d , the optimality of which is known, a

natural further question concerns the way in which the minimax risk depends
on the parameters b,L. To the best of our knowledge, this question has not
yet been answered in the literature.

In fact, a careful reading of the proof of [11, Theorem 2] allows to strengthen
Lepski’s result into an asymptotic lower bound matching the upper bound of
Corollary 3, proving the `-estimator’s optimality up to a constant depending
only on β, d.

Theorem 6. Let β ∈ Rd+ and 1
β = 1

d

∑d
j=1

1
βj
.

Let pb denote the isotropic, centered Gaussian pdf with norm ‖pb‖∞,µ = b.
For all L ∈ Rd+ and all b > 0 such that pb ∈ CβL

2 ,+∞
and all large enough n,

inf
p̃

sup
p?∈Pβ

L,b

E
î
‖p̃− p?‖∞,µ

ó
≥ Cb

β
2β+d

(
d∏
j=1

L

β
βj

j

) 1
2β+d Å logn

n

ã β
2β+d

,

where the infimum runs over all estimators computed from an n−sample
drawn from p?, and C is a constand depending only on β, d.

Proof. The proof is based on that of Lepski [11, Theorem 2]. It can be found
in appendix C.3. �

Thus, the `−estimator p̂ adapts not only to the smoothness β but also
to the size of the semi-norms

(
|p?|j,βj

)
1≤j≤d and of the norm ‖p?‖∞,µ. This

property has not, to the best of our knowledge, been established for any es-
timator for density estimation in sup-norm, though such a result was known
in the setting of white noise regression on [0, 1)d under a Hölder regularity
assumption [5].

Appendix A. Estimation on a single model: proofs

A.1. Proof of proposition 2. Let u =
»

Γ+x
n , Cu = {C ∈ C : P ?(C) ≥

u2}. For any measurable t, let

R̂n(t) = 1
n

n∑
i=1

εit(Xi),
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where ε1, . . . , εn are iid Rademacher random variables independent from the
sample. Let

Z1(C) = sup
C∈Cu

1
n
√
P ?(C)

∣∣∣∣∣ n∑
i=1

1lC(Xi)− P ?i (C)
∣∣∣∣∣

Z̄1(C) = sup
C∈Cu

|R̂n(C)|√
P ?(C)

Z2(C) = 1
n

sup
C∈C\Cu

∣∣∣∣∣ n∑
i=1

1lC(Xi)− P ?i (C)
∣∣∣∣∣ .

First consider Z2(C). For any C ∈ C\Cu, P ?(C) ≤ u2 by definition. Hence,
by [2, Theorem 3],

E[Z2(C)] ≤ 2u
…

2Γ
n

+ 8Γ
n
≤ 2
n

[»
2Γ(Γ + x) + 4Γ

]
.

By Bousquet’s inequality 7, with probability greater than 1 − e−x, for all
θ > 0,

Z2(C) ≤ 1 + 2θ
n

[
2
»

2Γ(Γ + x) + 8Γ
]

+ 2u
…

2x
n

+
Å

2 + 4
θ

ã
x

n
,

= 1
n

ï
(1 + 2θ)

(
8Γ + 2

»
2Γ(Γ + x)

)
+ 2
»

2x(Γ + x) + x

Å
2 + 4

θ

ãò
≤ 1
n

ï
(1 + 2θ) (11Γ + x) + Γ + 3x+ x

Å
2 + 4

θ

ãò
= 1
n

ï
Γ (11(1 + 2θ) + 1) + x

Å
6 + 2θ + 4

θ

ãò
.

Solving the quadratic equation 11(1+2θ)+1 = 6+2θ+ 4
θ yields θ =

√
89−3
20 ≈

0.3217 and

(19) Z2(C) ≤ 20Γ + x

n
.

Consider now Z1(C). For any j ∈ N, let
Cu,j = {C ∈ C : 2ju2 ≤ P ?(C) ≤ 2j+1u2}.

Note that Cu,j is empty for any j ≥ d−2 log2 ue, in particular for any j ≥
dlog2 ne. Let also

ξu,j(X) = {A ⊂ {1, . . . , n} : ∃C ∈ Cu,j , A = {i : Xi ∈ C}} .
Conditioning on the sample, we have that

Eε
[
Z̄1(C)

]
= Eε

ñ
max

j=0,...,dlog2 ne−1
sup
C∈Cu,j

1
n
√
P ?(C)

∣∣∣∣∣ n∑
i=1

εi1lC(Xi)
∣∣∣∣∣
ô

≤ Eε

[
max

σ∈{−1,1}
max

j=0,...,dlog2 ne−1
max

A∈ξu,j(X)

σ

n2j/2u
∑
i∈A

εi

]
.
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By Sauer’s lemma, |ξu,j(X)| ≤
∑V ∧n
k=0

(n
k

)
, hence

(20) log
(

2
dlog2 ne∑
j=1

|ξu,j−1(X)|
)
≤ log (dlog2 ne) + log

(
2
V ∧n∑
k=0

Ç
n

k

å)
≤ Γ.

Let

Ŝ = sup
C∈Cu

®
1

n2P ?(C)

n∑
i=1

1lC(Xi)
´
.

For any j and A ∈ ξu,j(X), by definition, there is some C ∈ Cu,j such that
A = {i : 1lC(Xi) = 1}. By Hoeffding’s inequality [6, Section 2.6], the random
variables σ

n2j/2u

∑
i∈A εi are sub-Gaussian with variance factor

|A|
2ju2n2 ≤

2
n2P ?(C)

n∑
i=1

1lC(Xi)

≤ 2Ŝ.

It follows by [6, Section 2.5] and equation (20) that

(21) Eε
[
Z̄1(C)

]
≤
√

4ΓŜ,

hence E
[
Z̄1(C)

]
≤ 2
»

ΓE[Ŝ]. On the other hand, since P ?(C) ≥ u2 for any
C ∈ Cu,

Ŝ = sup
C∈Cu

®
1

n2P ?(C)

n∑
i=1

1lC(Xi)− P ?i (C)
´

+ 1
n

≤ 1
nu

sup
C∈Cu

®
1

n
√
P ?(C)

∣∣∣∣∣ n∑
i=1

1lC(Xi)− P ?i (C)
∣∣∣∣∣
´

+ 1
n
.

It follows by the symmetrization inequality that

E
î
Ŝ
ó
≤ 2
nu

E
[
Z̄1(C)

]
+ 1
n
.

Thus, by equation (21),

E
[
Z̄1(C)

]
≤ 2
 

Γ
Å 2
nu

E
[
Z̄1(C)

]
+ 1
n

ã
.

Together with symmetrization, solving this quadratic inequality yields

E [Z1(C)] ≤ 2E
[
Z̄1(C)

]
≤ 16Γ

nu
+ 4
…

Γ
n
≤ 16Γ√

(Γ + x)n
+ 4
…

Γ
n
.

By construction, for any C ∈ Cu, 1lC(Xi)
n
√
P ?(C)

∈
(
0, 1

nu

)
for all i, moreover

n∑
i=1

Var
Ç

1lC(Xi)
n
√
P ?(C)

å
≤
∑n
i=1 P

?
i (C)

n2P ?(C) = 1
n
.
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Hence, by Bousquet’s inequality 7, for any θ > 0, with probability greater
than 1− e−x,

Z1(C) ≤ (1 + 2θ)
Ç

16Γ√
(Γ + x)n

+ 4
…

Γ
n

å
+ 2
…

2x
n

+
Å

2 + 4
θ

ã
x√

(Γ + x)n

= 1√
(Γ + x)n

ï
(1 + 2θ)

(
16Γ + 4

»
Γ(Γ + x)

)
+ 2
»

2x(Γ + x) +
Å

2 + 4
θ

ã
x

ò
≤ 1√

(Γ + x)n

ï
(1 + 2θ) (20Γ + 2x) + 3x+ Γ +

Å
2 + 4

θ

ã
x

ò
=

(20(1 + 2θ) + 1) Γ +
(
7 + 4θ + 4

θ

)
x√

(Γ + x)n

Solving the quadratic equation 20(1 + 2θ) + 1 = 7 + 4θ + 4
θ yields θ =

√
193−7
36 ≈ 0.19146 and 20(1 + 2θ) + 1 ≤ 29. Hence, with probability greater

than 1− e−x,

(22) Z1(C) ≤ 29
…

Γ + x

n
.

To conclude, consider the event Ex on which equations (19) and (22) both
hold. By the union bound, P(Ex) ≥ 1− 2e−x. On Ex, for any C ∈ C,

• If C ∈ Cu, then

1
n

∣∣∣∣∣ n∑
i=1

1lC(Xi)− Pi(C)
∣∣∣∣∣ ≤»P ?(C)Z1(C) ≤ 29

»
P ?(C)

…
Γ + x

n
.

• If C /∈ Cu, then

1
n

∣∣∣∣∣ n∑
i=1

1lC(Xi)− Pi(C)
∣∣∣∣∣ ≤ Z2(C) ≤ 20Γ + x

n
.

Thus, in all cases, on Ex,

1
n

∣∣∣∣∣ n∑
i=1

1lC(Xi)− Pi(C)
∣∣∣∣∣ ≤ max

Ç
29
»
P ?(C)

…
Γ + x

n
, 20Γ + x

n

å
.

A.2. Proof of Proposition 4. Fix f ∈ m and h > 0. To simplify no-
tations, let θ = θm(h), I∗ = I∗(f), x∗ = x∗(f) and C = Ch,m(f) =
(1− θ)x∗ + θI̊∗.

By assumption, C ∈ C, moreover by convexity of I∗, C ⊂ I̊∗ and µ(I∗/I̊∗) =
0, hence

µ(C) = θdµ(I∗) ≥ θdh0.

Let x ∈ C. By definition, this means that there exists y ∈ I̊∗ such that
x = θy + (1− θ)x∗ or in other words, y = x∗ + x−x∗

θ ∈ I̊∗. f coincides on I∗
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with a polynomial f∗ with total degree deg(f∗) ≤ r. For any u ∈ (0; 1], let

g(u) = f∗

Å
x∗ + u(x− x∗)

θ

ã
For any u ∈ (0; 1), (1− u)x∗ + uy = x∗ + u(x−x∗)

θ ∈ I̊∗, hence

|g(u)| =
∣∣∣∣f Åx∗ + u(x− x∗)

θ

ã∣∣∣∣ ≤ ‖f‖∞,µ .
Assume without loss of generality that ‖f‖∞,µ = f∗(x∗) ≥ 0. Hence, by

Markov’s inequality [8, Theorem 1.4],
f∗(x)− f∗(x∗) = g(θ)− g(0)

≤ θ sup
u∈[0,1]

|g′(u)|

≤ 2r2θ sup
u∈[0,1]

|g(u)|

≤ 2r2θ ‖f‖∞,µ .
By definition of x∗, this yields

f(x) = f∗(x) ≥ (1− 2r2θ) ‖f‖∞,µ
for all x ∈ C. Thus,

|
∫
C fdµ|

µ (C) + h
≥
µ(C)

(
1− 2r2θ

)
µ(C) + h

‖f‖∞,µ

≥
θdh0

(
1− 2r2θ

)
θdh0 + h

‖f‖∞,µ .

First, consider the case θ = d
d+1

1
2r2 , where

θdh0
(
1− 2r2θ

)
θdh0 + h

= 1
d+ 1

θdh0
θdh0 + h

.

If h ≥ h0
2dr2d , then

θdh0 =
Å

d

d+ 1

ãd h0
2dr2d ≤ h,

which implies that
θdh0

(
1− 2r2θ

)
θdh0 + h

≥ 1
d+ 1

θdh0
2h

≥ 1
d+ 1

1
2d+1r2d

h0
h

≥ γr,d
Å
h

h0

ã
.

If h ≤ h1 = h0
2dr2d , then

|
∫
C fdµ|

µ(C) + h
≥ |

∫
C fdµ|

µ(C) + h1
≥ γr,d

Å
h1
h0

ã
= 1

2(d+ 1) ≥ γr,d
Å
h

h0

ã
.
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Assume now that we are in the second case: θ =
Ä

h
2r2h0

ä 1
d+1 . Then

θdh0
(
1− 2r2θ

)
θdh0 + h

=
(

1− (2r2)
d
d+1

Å
h

h0

ã 1
d+1
)Ö

1− h

h+
Ä

h
2r2h0

ä d
d+1 h0

è
≥

(
1− (2r2)

d
d+1

Å
h

h0

ã 1
d+1
)Ö

1− 1

1 +
( 1

2r2

) d
d+1
Ä
h0
h

ä 1
d+1

è
≥

(
1− (2r2)

d
d+1

Å
h

h0

ã 1
d+1
)2

≥ γr,d
Å
h

h0

ã
.

A.3. Proof of Corollary 1. By proposition 6, the sets Chm,m satisfy equa-
tion (2) with

1− ε =
γr,d
Ä
hm
h0

ä
κm(hm) = 1

2κm(hm) .

By Theorem 1, with probability greater than 1− e−x,∥∥∥p̂(hm)
m − p?

∥∥∥
∞,µ
≤ 5 min

p∈m
{‖p− p?‖∞,µ}+2 max

(
58
 
|p?|hm(Γ1 + x)

hmn
, 40Γ1 + x

hmn

)
+2δ,

where Γ1 = Γ + log 2. It follows that

E
[∥∥∥p̂(hm)

m − p?
∥∥∥
∞,µ

]
≤ 5 min

p∈m
{‖p− p?‖∞,µ}+116

 
|p?|hm(Γ1 + 1)

hmn
+80Γ1 + 1

hmn
+2δ.

The collection C has VC-dimension at most 2d, as can be easily proved by
considering a subset of 2d points with extremal coordinates. Hence, for all
n ≥ 2d,

Γ1 + 1 ≤ 1 + log 2 + log (dlog2 ne) + log
(

2
2d∑
j=0

Ç
n

j

å)
≤ 1 + 2 log 2 + log (dlog2 ne) + 2d log

(en
2d

)
≤ (2d+ 1) log(en).

Remark also that |p?|hm ≤ min
Ä
‖p?‖∞,µ ,

1
hm

ä
, which yields

E
[∥∥∥p̂(hm)

m − p?
∥∥∥
∞,µ

]
≤ 5 min

p∈m
{‖p− p?‖∞,µ}+ 116

√
2d+ 1 min

Ç»
‖p?‖∞,µ

 
log en
hmn

,

√
log en
hm
√
n

å
+ 80(2d+ 1) log en

hmn
+ 2δ.
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Using the definition of hm (equation (12)) together with the inequalities…
2

1− 1√
2
≤ 3, 116√

1− 1√
2

≤ 215 and 80
1− 1√

2
≤ 274 yields the result.

A.4. Proof of Theorem 2. Any probability density p ∈ mL(0, I) is nec-
essarily supported on X0. We can therefore assume that X = X0, or equiv-
alently that all blocks of I have finite measure.

Fix some h ∈
(
0, 1

L

]
. Let

Ih = {I ∈ I : µ(I) ≤ h}.

Let also

M = M(h) ∧
õ 1
Lh

û
.

If M = 0, the result is trivial. Assume now that M ≥ 1, which implies that
h ≤ 1

L .
Let I0 ⊂ Ih, a subset with cardinality M ≥ 1, which exists since M(h) ≥

M . Let J0 = ∪I0. By the assumptions on L, h,∑
I′ /∈I0

µ(I ′) = µ(X )− µ(J0)

≥ 1
θL
− µ(J0)

≥ 1
θL
−Mh

≥ 1
θL
− 1
L
> 0.

Let I1 ⊂ I\I0 and J = ∪I1 such that

0 < 1
θL
− µ(J0) ≤ µ(J) < +∞.

Let x ∈
(
0, 1

θ − 1
)
to be specificed later, and define finally, for any I ∈ I0

pI = (1 + x)θL1lI + θL1lJ0\I + 1− θLµ(J0)− θLxµ(I)
µ(J) 1lJ(23)

p0 = θL1lJ0 + 1− θLµ(J0)
µ(J) 1lJ .(24)

Since |I0| = M ≤ 1
Lh and I0 ⊂ Ih,

1− θLµ(J0)− θLxµ(I) ≥ 1− (1 + x)θLµ(J0) ≥ 1− LMh ≥ 0.
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This proves that the (pI)I∈I0 are probability densities, and p0 a positive
probability density. Moreover,

(1 + x)θL ≤ L
1− θLµ(J0)

µ(J) ≤ 1− θLµ(J0)
1
θL − µ(J0)

≤ θL,
which implies that p0 and the pI belong to mL(0, I).

The minimum distance between pI and p0 in sup-norm is
(25) min

I∈I0
‖pI − p0‖∞,µ ≥ xθL.

The likelihood ratio between pI and p0 is
pI
p0

= (1 + x)1lI + 1lJ0\I +
Å

1− xθLµ(I)
1− θLµ(J0)

ã
1lJ .

Hence, the chi-squared divergence is

χ2(PI , P0) = (1 + x)2θLµ(I) + θL[µ(J0)− µ(I)] +
Å

1− xθLµ(I)
1− θLµ(J0)

ã2
[1− θLµ(J0)]− 1

= (1 + 2x+ x2)θLµ(I) + θL[µ(J0)− µ(I)]− 1

+
Å

1− 2xθLµ(I)
1− θLµ(J0) + (xθLµ(I))2

(1− θLµ(J0))2

ã
[1− θLµ(J0)]

= x2θLµ(I)
Å

1 + θLµ(I)
1− θLµ(J0)

ã
.

Since I0 ⊂ Ih and |I0| = M ,
θLµ(I)

1− θLµ(J0) ≤
θLh

1− θLMh
.

Since by assumption, Lh ≤ 1 and M ≤ 1
Lh ,

θLµ(I)
1− θLµ(J0) ≤

θLh

1− θLMh
≤ θ

1− θ .

It follows that, for any I ∈ I0,

χ2(PI , P0) ≤ x2θLµ(I)
1− θ .

The KL-divergence between the distributions of two iid samples of size n,
drawn respectively from PI and P0, is

(26) KL
(
P⊗nI , P⊗n0

)
= nKL (PI , P0) ≤ nχ2(PI , P0) ≤ nx2θLh

1− θ .

Consider first the case M = 1. Let I be the single element of I0, α > 0 and

x = min
(

1
θ
− 1,

 
α(1− θ)
θLhn

)
.
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Then, by equation (26), KL
(
P⊗nI , P⊗n0

)
≤ α, moreover by equations (23),

(24),

‖pI − p0‖∞,µ ≥ xθL ≥ min
(

(1− θ)L,

 
αθ(1− θ)L

hn

)
:= sα.

By [17, Theorem 2.2] and the following equation (2.9), for any density esti-
mator p̂ based on an n−sample,

max
P∈{P0,PI}

P⊗n
(
‖p̂− p‖∞,µ ≥

sα
2

)
≥ min

Ç
e−α

4 ,
1−

√
α
2

2

å
.

Choosing α = 1
2 , this yields

inf
p̂

sup
p∈mL(0,I)

E
î
‖p̂− p‖∞,µ

ó
≥ 0.075×min

(
(1− θ)L, 0.7

 
θ(1− θ)L

hn

)

≥ 0.075×min
(

(1− θ)L,

 
θ(1− θ)L

hn

»
log(M + 1)

)
.

Consider now the case M ≥ 2. Let α ∈
(
0, 1

8
)
and

x = min
(

1
θ
− 1,

 
α(1− θ) logM

θLhn

)
.

By equation (26), for any I ∈ I0, KL
(
P⊗nI , P⊗n0

)
≤ α logM . Moreover, for

any distinct I, I ′ ∈ I0, by equation (23),

‖pI − pI′‖∞,µ ≥ xθL ≥ min
(

(1− θ)L,

 
αθ(1− θ)L

hn

√
logM

)
:= tα.

Hence, by [17, Theorem 2.5], for all density estimators p̂ based on an
n−sample from P ,

sup
p∈mL(0,I)

P⊗n
Å
‖p̂− p‖∞,µ ≥

tα
2

ã
≥

√
M

1 +
√
M

Ç
1− 2α−

 
2α

logM

å
.

Let α = 37
800 . Since M ≥ 2, it follows that

sup
p∈mL(0,I)

P⊗n
Å
‖p̂− p‖∞,µ ≥

tα
2

ã
≥

√
2

1 +
√

2

Ç
1− 2α−

 
2α

log 2

å
≥ 0.317,

which implies that

sup
p∈mL(0,I)

E
î
‖p̂− p‖∞,µ

ó
≥ 0.158×min

(
(1− θ)L, 0.21

 
θ(1− θ)L

hn

√
logM

)

≥ 0.158×min
(

(1− θ)L, 0.166

 
θ(1− θ)L

hn

»
log(M + 1)

)
.
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This concludes the proof.

Appendix B. Model selection and adaptivity: Proofs

B.1. Proof of Theorem 3. Begin with the following proposition:

Proposition 7. On Ωx, for any p, q ∈P and any h > 0,

|T (h)(X, p, q)−∆h(p, q)| ≤ Z(h) ≤ pena(h)+29
…

4a
3ng1

(x
a

)
+292

…
4
3
a

n
g2

(x
a

)
,

where

g1(t) = sup
u≥0

¶
u
Ä√

t−
»

log+ u
ä©

g2(t) = sup
u≥0

{
u
(
t− log+ u

)}
.

Proof. The first inequality is true by definition of Z(h). On Ωx, by Theorem
1 and proposition 5 with θ = 1

2 ,

Z(h) ≤ max
(

29

 
|p?|h(Γ + x)

hn
, 20Γ + x

hn

)

≤ max

Ñ
29
…

Γ + x

hn

 √|p̂|h»
1− θ

2

+ 29√
θ(2− θ)

…
Γ + x

hn

 , 20Γ + x

hn

é
≤ max

(
29
…

4
3

 
|p̂|h(Γ + x)

hn
+
…

4
3292 Γ + x

hn
, 20Γ + x

hn

)

≤ 29
…

4
3

 
|p̂|h(Γ + x)

hn
+
…

4
3292 Γ + x

hn
.

By equation (14) defining pen, it follows that on Ωx,

Z(h)− pena(h) ≤ 29
…

4
3

 
|p̂|h
hn

Ä√
Γ + x−

»
Γ + a log− h

ä
+
…

4
3

292

hn
(x− a log− h)

≤ 29
…

4
3

 
|p̂|h
hn

Ä√
x−
»
a log− h

ä
+
…

4
3

292

hn
(x− a log− h).

Note that for any h > 0,

|p̂|h = sup
C∈C

∑n
i=1 1lC(Xi)

n(µ(C) + h) ≤
1
h
.
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It follows that

Z(h)− pena(h) ≤ 29
…

4a
3n

1
h

Ç…
x

a
−
 

log+

Å1
h

ãå
+
…

4
3292 a

n

1
h

Å
x

a
− log+

Å1
h

ãã
≤ 29

…
4a
3ng1

(x
a

)
+
…

4
3292 a

n
g2

(x
a

)
.

�

Now, let us control the expected value of the test T (hp∧hq)(X, p, q).

Lemma 2. Under assumption 2,
(1−ε)κ∗ ‖p− p?‖∞,µ−[(1−ε)κ∗+1] ‖q − p?‖∞,µ ≤ ∆hp∧hq(p, q) ≤ ‖p− p?‖∞,µ .

Proof. Fix p, q ∈M and let h = hp ∧ hq. Clearly,

∆h(p, q) = εh(p, q)(P − P ?)(Ch(p, q))
µ(Ch(p, q)) + h

≤ |p? − p|h ≤ ‖p− p?‖∞,µ .

Fix δ′ > 0. Let now m,m′ ∈ M be such that p ∈ m, q ∈ m′ and hm ≥
(1− δ′)hp, hm′ ≥ (1− δ′)hq. By lemma 1 and assumption 2,

κm∪m′(hp ∧ hq) ≥ κm∪m′(hm ∧ h′m)−
∣∣∣∣1− hm ∧ hm′

hp ∧ hq

∣∣∣∣ ≥ κ∗ − δ′.
It follows that

∆h(p, q) = εh(p, q)(P − P ?)(Ch(p, q))
µ(Ch(p, q)) + h

= εh(p, q)(P −Q)(Ch(p, q))
µ(Ch(p, q)) + h

+ εh(p, q)(Q− P ?)(Ch(p, q))
µ(Ch(p, q)) + h

≥ (1− ε)|p− q|h − ‖p? − q‖∞,µ
≥ (1− ε)κm∪m′(h) ‖p− q‖∞,µ − ‖q − p

?‖∞,µ
≥ (1− ε)(κ∗ − δ)(‖p− p?‖∞,µ − ‖q − p

?‖∞,µ)− ‖q − p?‖∞,µ
≥ (1− ε)(κ∗ − δ′) ‖p− p?‖∞,µ −

[
1 + (1− ε)(κ∗ − δ′)

]
‖q − p?‖∞,µ .

Since δ′ > 0 is arbitrary, this proves the result. �

We can now carry out the proof of the Theorem. First, note that since
h 7→ |p̂|h is a non-increasing function of h, pena (equation (14)) is also a
non-increasing function of h for any a > 0. Hence, for any p, q ∈M,

(27) pena(hp ∧ hq) = max (pena(hp), pena(hq)) .

Let p ∈M. By definition of T, pen and lemma 2, for any p, q ∈M,
T (hp∧hq)(X, p, q)− pena(hq) + pena(hp)

= ∆hp∧hq(p, q) + T (hp∧hq)(X, p, q)−∆hp∧hq(p, q)− pena(hq) + pena(hp)
≥ κ∗(1− ε) ‖p− p?‖∞,µ − (1 + κ∗(1− ε)) ‖q − p?‖∞,µ − Z(hp ∧ hq)− pena(hq) + pena(hp).
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To simplify notation, let κ = (1− ε)κ∗ and

(28) R(a, x) = 29
…

4a
3ng1

(x
a

)
+ 292

…
4
3
a

n
g2

(x
a

)
.

By proposition 7 and equation (27), on Ωx, for all p, q ∈M,

T (hp∧hq)(X, p, q)− pena(hq) + pena(hp) +R(a, x)
≥ κ ‖p− p?‖∞,µ − (1 + κ) ‖q − p?‖∞,µ − Z(hp ∧ hq)− pena(hq) + pena(hp) +R(a, x)
≥ κ ‖p− p?‖∞,µ − (1 + κ) ‖q − p?‖∞,µ − pena(hp ∧ hq)− pena(hq) + pena(hp)
≥ κ ‖p− p?‖∞,µ − (1 + κ) ‖q − p?‖∞,µ − 2 pena(hq)

in light of equation (27). In particular, taking p = p̂M and q = p yields
(29)
TM(X, p̂M) ≥ κ ‖p̂M − p?‖∞,µ− (1 +κ) ‖p− p?‖∞,µ− 2 pena(hp)−R(a, x).

On the other hand, by lemma 2 for any q ∈M,

T (hp∧hq)(X, p, q)− pena(hq) + pena(hp)

= ∆hp∧hq(p, q) + T (hp∧hq)(X, p, q)−∆hp∧hq(p, q)− pena(hq) + pena(hp)
≤ ‖p− p?‖∞,µ + Z(hp ∧ hq)− pena(hq) + pena(hp).

It follows by proposition 7 and equation (27) that on Ωx, for all q ∈M,

T (hp∧hq)(X, p, q)− pena(hq) + pena(hp)
≤ ‖p− p?‖∞,µ + pena(hp ∧ hq)− pena(hq) + pena(hp) +R(a, x)
= ‖p− p?‖∞,µ + max(pena(hp),pena(hq))− pena(hq) + pena(hp) +R(a, x)
≤ ‖p− p?‖∞,µ + 2 pena(hp) +R(a, x).

Hence, by definition of TM, on Ωx,

(30) TM(X, p) ≤ ‖p− p?‖∞,µ + 2 pena(hp) +R(a, x).

Thus, by equations (29), (30) and definition of p̂M,

‖p− p?‖∞,µ + 2 pena(hp) +R(a, x) + δ

≥ TM(X, p) + δ

≥ TM(X, p̂M)
≥ κ ‖p̂M − p?‖∞,µ − (1 + κ) ‖p− p?‖∞,µ − 2 pena(hp)−R(a, x).

This yields

κ ‖p̂M − p?‖∞,µ ≤ (2 + κ) ‖p− p?‖∞,µ + 4 pena(hp) + 2R(a, x) + δ.
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on Ωx. Since p was arbitrary, it follows that on Ωx

κ ‖p̂M − p?‖∞,µ ≤ inf
p∈M

¶
(2 + κ) ‖p− p?‖∞,µ + 4 pena(hp)

©
+ 2R(a, x) + δ

= inf
p∈M

ß
(2 + κ) ‖p− p?‖∞,µ + 4 inf

m∈M:p∈m
{pena(hm)}

™
+ 2R(a, x) + δ

= inf
(p,m)∈M×M:p∈m

¶
(2 + κ) ‖p− p?‖∞,µ + 4 pena(hm)

©
+ 2R(a, x) + δ

= inf
m∈M

ß
(2 + κ) inf

p∈m
{‖p− p?‖∞,µ}+ 4 pena(hm)

™
+ 2R(a, x) + δ.

Setting x = a log y , the event Ωx occurs with probability greater than 1− 2
ya

by proposition 2. Moreover, by equation (28),

(31) R(a, a log y) = 29
…

4a
3ng1(log y) + 292

…
4
3
a

n
g2(log y).

It remains to bound g1(t), g2(t), where t = log y ≥ 0. First,

g1(t) = sup
u≥0

¶
u
Ä√

t−
»

log+ u
ä©

= sup
1≤u≤et

¶
u
Ä√

t−
»

log+ u
ä©

= sup
θ∈[0,1]

¶
e(1−θ)t√t

(
1−
√

1− θ
)©

≤ et

2
√
t

sup
θ∈[0,1]

{θte−θt}

= et−1

2
√
t
1lt≥1 +

√
t

2 1lt<1

≤ e−1y

2
√

log y
1llog y≥1 +

√
log y
2 1llog y<1.

Using the inequality ve−v ≤ e−1 with v = 2 log y yields
√

log y ≤ y√
2e , hence

g1(log y) ≤ y

2
√

2e
.

Similarly,
g2(t) = sup

u≥0

{
u
(
t− log+ u

)}
= sup

1≤u≤et

{
u
(
t− log+ u

)}
= sup

θ∈[0,1]

¶
θte(1−θ)t

©
= et sup

θ∈[0,1]

¶
θte−θt

©
≤ ye−1.
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Substituting these bounds into equation (31) yields the final result.

B.2. Properties of dyadic partitions.

Lemma 3. If I, J are two dyadic intervals, then one of the following alter-
natives hold:

• I ⊂ J
• J ⊂ I
• I ∩ J = ∅.

Proof. Assume that I, J intersect at x. Without loss of generality, as-
sume that x ≥ 0 and that I is the longer of the two intervals. Then
I = [k12−j1 , (k1 + 1)2−j1+1) and J = [k22−j2 , (k2 + 1)2−j2+1) where j1 ≤ j2.
Since x ∈ I ∩ J ,

k1 ≤ 2j1x < k1 + 1
k2 ≤ 2j2x < k2 + 1,

which proves that ki = b2jixc. Let

x =
+∞∑
i=−∞

εi2−i,

where ε ∈ {0, 1}Z has finite support. Then for any j ∈ Z,

2−jb2jxc = 2−j
⌊

+∞∑
i=−∞

εi2j−i
⌋

= 2−j
j∑

i=−∞
εi2j−i

=
j∑

i=−∞
εi2−i.

In particular,

0 ≤ 2−j2
⌊
2j2x

⌋
− 2−j1b2j1xc ≤

j2∑
i=j1+1

εi2−i ≤ 2−j1 − 2−j2 ,

which proves that J ⊂ I. �

The following lemma is easily deduced from the previous one.

Lemma 4. For any j ∈ Zd, I(j) partitions Rd. Moreover, if j ≤ j′, then
I(j′) refines I(j).

Proof. Let x ∈ Rd. For any i ∈ {1, . . . , d}, xi belongs to some dyadic interval
Ii with length 2−ji . Then x ∈

∏d
i=1 Ii ∈ I(j). Moreover, if I, J ∈ I(j)

intersect at x, then for any i ∈ {1, . . . , d}, xi ∈ Ii ∩ Ji, which implies by the
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previous lemma that Ii ⊂ Ji or Ji ⊂ Ii. Since |Ii| = |Ji| = 2−ji , Ii = Ji.
Hence I = J , which proves that I(j) is a partition.

Let now I ′ ∈ J (j′) and let x ∈ I ′. Let I ∈ I(j) contain x. For any
i ∈ {1, . . . , d}, xi ∈ Ii ∩ I ′i, hence by the previous lemma and since 2−j′i =
|I ′i| ≤ 2−ji = |Ii|, I ′i ⊂ Ii. Hence, I ′ ⊂ I, which proves that I(j′) refines
I(j). �

B.3. Proof of Theorem 4. The class

Crec,0 = {C ∩ [0, 1)d : C ∈ Crec}

generates the Borel sigma-algebra on [0, 1)d, hence the semi-norms | · |h
defined with C = Crec,0 are norms on L∞([0, 1)d).

Let Hd denote the completion of L∞([0, 1)d) with respect to a norm | · |h
with C = Crec,0. Since the norms | · |h are equivalent, this space does not
depend on the choice of h.

For any τ > 0, d ∈ N and r ∈ Rd, fix a linear projectionR(τ)
d,r : (Hd, | · |τ )→Ä

Pdirr,d , | · |τ
ä
with operator norm less than

cd(r) :=
»

dim(Pdirr,d ) =

Ã
d∏
i=1

(ri + 1).

The existence of such a projection is guaranteed by [8, Theorem 7.6]
For any x ∈ Rd and any S ⊂ {1, . . . , d}, let xS = (xi)i∈S . Given a function

f : X → R where X ⊂ Rd, define the function fS : Rd−|S| × R|S| → R by
fS(x, y) = f(z), where

zi =
®

yi if i ∈ S
xi if i /∈ S.

Given S ⊂ {1, . . . , d}, we can then define the operator R(τ)
S equal to R(τ)

|S|,rS
"applied to the variables (xi)i∈S", i.e the operator defined by

R
(τ)
S : L∞([0, 1)d)→ L∞([0, 1)d)

R
(τ)
S f(x) = R

(τ)
|S|,rS (y 7→ fS(xSc , y)) (xS) a.e.

Lemma 5. Define the function

κr,d(h) = inf
f∈Pdirr,d

∣∣∣f1l[0,1)d
∣∣∣
h∥∥∥f1l[0,1)d

∥∥∥
∞,µ

.

Let J ⊂ [0, 1)d,

J =
d∏
i=1

Ji ∈ Crec,
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S ⊂ {1, . . . , d} and vS =
∏
i∈S µ(Ji). For any τ ≥ vS , h ≥ µ(J) and any

f ∈ L∞
(
[0, 1]d

)
,

1
h

∣∣∣∣∫
J
R

(τ)
S f

∣∣∣∣ ≤ c|S|(rS)
κrS ,|S|(τ) |f |h.

Proof. Let JS =
∏
i∈S Ji, JSc =

∏
i/∈S Ji and hSc = h

vS
. Note that µ(JS) =

vS and µ(JSc) ≤ hSc . Since R(τ)
|S|,rS is a bounded linear operator, by Fubini’s

theorem,
1
h

∫
J
R

(τ)
S f = 1

vS

1
hSc

∫
JS

∫
JSc

R
(τ)
|S|,rS [y 7→ fS(xSc , y)] (xS)dxScdxS

= 1
vS

∫
JS

R
(τ)
|S|,rS

ï
y 7→ 1

hSc

∫
JSc

fS(xSc , y)dxSc
ò

(xS)dxS .

Let
fS : y 7→ 1

hSc

∫
JSc

fS(xSc , y)dxSc .

Since R(τ)
|S|,rSfS ∈ P

dir
rS ,|S|,

1
vS

∣∣∣∣∫
JS

R
(τ)
|S|,rSfS

∣∣∣∣ ≤ ∥∥∥R(τ)
|S|,rSfS

∥∥∥
∞,µ

≤

∣∣∣R(τ)
|S|,rSfS

∣∣∣
τ

κrS ,|S|(τ)

≤
c|S|(rS)
κrS ,|S|(τ)

∣∣fS∣∣τ
≤

c|S|(rS)
κrS ,|S|(τ)

∣∣fS∣∣vS .
Thus,

1
h

∣∣∣∣∫
J
R

(vS)
S f

∣∣∣∣ ≤ ∣∣∣R(vS)
|S|,rSfS

∣∣∣
vS
≤

c|S|(rS)
κrS ,|S|(τ) |fS |vS .

Moreover, for any rectangle IS ⊂ RS ,
1

µ(IS) + vS

∣∣∣∣∫
IS

fS(xS)dxS
∣∣∣∣ = 1

(µ(IS) + vS)hSc

∣∣∣∣∫
IS

∫
JSc

fS(xSc , xS)dxScdxS
∣∣∣∣

≤ 1
µ(K) + h

∣∣∣∣∫
K
f

∣∣∣∣ ,
where K ∈ C is the unique rectangle such that KS = IS and KSc = JSc . It
follows that |fS |vS ≤ |f |h, which yields the result. �

For any K =
∏d
i=1[ai, bi), let

lK : [0, 1)d → K

u 7→ (ai + ui(bi − ai))1≤i≤d.
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Define the corresponding composition operator,

AK : L∞(K)→ L∞([0, 1)d)
f 7→ f ◦ lK .

Finally, for any j, j′ ∈ Zd, let j ∧ j′ = (min(ji, j′i))i, S = {i : ji ≤ j′i} and

R
(θ)
j,j′ : L∞(Rd)→ L∞(Rd)

f 7→
∑

K∈I(j∧j′)

î
A−1
K Rθ

|S|
S AK

ó
(f |K)1lK .

For any θ ∈ (0, 1), define the collection of sets

Cj,j′(θ) =
¶

(1− λ)x+ λI̊ : I ∈ I(j) ∪ I(j′), x ∈ I, 0 < λ ≤ θ
©

and the corresponding semi-norm

Nj,j′(θ, h, f) = sup
C∈Cj,j′ (θ)

ß 1
µ(C) + h

∣∣∣∣∫
C
f

∣∣∣∣™ .
The operator R(θ)

j,j′ satisfies the following properties.

Proposition 8. Let j, j′ ∈ Zd and let θ > 0.

• For any p ∈ mdir(r, I(j)), R(θ)
j,j′(p) = p.

• For any q ∈ mdir(r, I(j′)), R(θ)
j,j′(q) ∈ mdir(r, I(j ∧ j′))

• For any f ∈ L∞(Rd),

Nj,j′
Ä
θ, h,R

(θ)
j,j′f
ä
≤

c|S|(rS)
κrS ,|S|(θ|S|)

|f |h.

Proof. • Let K ∈ I(j ∧ j′). Let x ∈ K and let I ∈ I(j) contain x.
For any i ∈ S, xi ∈ Ii ∩Ki, hence by lemma 3, Ii ⊂ Ki or Ki ⊂ Ii.
Moreover, for i ∈ S, ji = min(ji, j′i), so |Ki| = |Ii|, which implies
that Ii = Ki.

Hence, {z ∈ K : zSc = xSc} ⊂ I, thus pS(xSc , ·) coincides on
KS with a polynomial from PdirrS ,d. Since lK acts coordinatewise, the
same is true of AK(p|K), with K replaced by [0, 1)d. Since Rθ|S||S|,rS is
a projection, it follows thatî

A−1
K Rθ

|S|
S AK

ó
(p|K) =

[
A−1
K AK

]
(p|K) = p|K .

This proves the first point.
• Let K ∈ I(j ∧ j′). Let x ∈ K and let I ′ ∈ I(j′) contain x. For any
i /∈ S, xi ∈ I ′i∩Ki, hence by lemma 3, I ′i ⊂ Ki or Ki ⊂ I ′i. Moreover,
for i ∈ Sc, j′i = min(ji, j′i), so |Ki| = |I ′i|, which implies that I ′i = Ki.

Hence, {z ∈ K : zS = xS} ⊂ I ′, thus qS(·, xS) coincides on KSc

with a polynomial from PdirrSc ,d. Since lK acts coordinatewise, the
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same is true of AK(q|K) = q|K ◦ lK , with K replaced by [0, 1)d.
Hence, q̃ = [AK(q|K)]S can be written in the form

q̃(uSc , uS) =
∑
α∈A

cα(uS)uαSc ,

where A = {α ∈ Nd−|S| : α ≤ rSc}. Hence, by definition of R(τ)
S , for

any τ > 0,î
R

(τ)
S AK

ó
(q|K)(u) = Rτ|S|,rS

[
y 7→

∑
α∈A

cα(y)uαSc

]
(uS)

=
∑
α∈A

R
(τ)
|S|,rS [cα](uS)uαSc ,

which proves that
î
R

(τ)
S AK

ó
(q|K) coincides on [0, 1)d with an ele-

ment of Pdirr,d . It follows by definition of R(θ)
j,j′ and linearity of lK that

R
(θ)
j,j′q belongs to mdir(r, I(j ∧ j′)).

• Let C ∈ Cj,j′(θ), C = (1 − λ)x + λI̊ for some I ∈ I(j) ∪ I(j′), some
x ∈ I and some λ ∈ (0, θ]. By convexity of I, C ⊂ I̊. By lemma 4,
there exists one K ∈ I(j ∧ j′) such that C ⊂ I ⊂ K. It follows that

1
µ(C) + h

∫
C
R

(θ)
j,j′f = 1

µ(C) + h

∫
C
A−1
K R

(θ|S|)
S AKf

= 1
µ(C) + h

∫
C

[
R

(θ|S|)
S AKf

]
(l−1
K (x))dx

= 1
det(l−1

K )(µ(C) + h)

∫
l−1
K (C)

R
(θ|S|)
S AKf

= 1
µ(J) + h

µ(K)

∫
J
R

(θ|S|)
S AKf,

where J = l−1
K (C) = (1 − λ)x + λl−1

K (I̊). For all i ∈ {1, . . . , d},
|Ji| ≤ λ ≤ θ, which implies by lemma 3 that

1
µ(J) + h

µ(K)

∣∣∣∣∫
J
R

(θ|S|)
S AKf

∣∣∣∣ ≤ c|S|(rS)
κrS ,|S|(θ|S|)

|AKf | h
µ(K)

.

Now, for any B ⊂ [0, 1)d,
1

µ(B) + h
µ(K)

∣∣∣∣∫
B
AKf

∣∣∣∣ = 1
µ(B) + h

µ(K)

∣∣∣∣∫
B
f(lK(y))dy

∣∣∣∣
= 1
µ(B) + h

µ(K)

1
det(lK)

∣∣∣∣∫
lK(B)

f(x)dx
∣∣∣∣

= 1
µ(lK(B)) + h

∣∣∣∣∫
lK(B)

f(x)dx
∣∣∣∣

≤ |f |h.
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This finally yields

1
µ(C) + h

∣∣∣∣∫
C
R

(θ)
j,j′f

∣∣∣∣ ≤ c|S|(rS)
κrS ,|S|(θ|S|)

|f |h,

which proves the result, since C ∈ Cj,j′(θ) was arbitrary.
�

We can now complete the proof of Theorem 4. Let p, q ∈ m ∪m′, where
m = mdir(r, I(j)) and m′ = mdir(r, I(j′)). First, if p, q ∈ m or p, q ∈ m′,
then by proposition 4 and equation (17) defining hm,

|p− q|hm∧hm′ ≥ min (κm(hm ∧ hm′), κm′ (hm ∧ hm′)) ‖p− q‖∞,µ
≥ min (κm(hm), κm′ (hm′)) ‖p− q‖∞,µ

≥ 9
16 .

Let now p ∈ m = mdir(r, I(j)), q ∈ m′ = mdir(r, I(j′)) and S = {i ∈
{1, . . . , d} : ji ≤ j′i}. If S = ∅, then I(j) refines I(j′) by lemma 4, hence we
are in the case described above.

Assume therefore that k = |S| ≥ 1. Let r = ‖r‖1, θ = 1
8r2 and h =

hm ∧ hm′ . By proposition 4,

κrS ,k(θ
k) ≥ γ‖rS‖1,k

(θk)

≥

1− (2 ‖rS‖21)
k
k+1

Ç
1

8 ‖r‖21

å k
k+1

2

≥
Ç

1− 1
4

k
k+1

å2

≥ 1
4 ,

since k ≥ 1. Remark also that θ = θm(hm) = θm′(hm′), hence Chm,m(f) ∈
Cj,j′(θ) for all f ∈ m, and similarly for m′. It follows from proposition 4 that

Nj,j′ (θ, hm ∧ hm′ , f) ≥
[

1− r
2d
d+1

Å 1
r2d4d+1

ã 1
d+1
]2

‖f‖∞,µ ≥
1
2 ‖f‖∞,µ ,

for any f ∈ m ∪m′ ⊂ m(r, I(j)) ∪m(r, I(j′)).
Now, by point 2 of proposition 8 above,

R
(θ)
j,j′q ∈ mdir(r, I(j ∧ j′)) ⊂ mdir(r, I(j)) = m,
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in particular p−R(θ)
j,j′q ∈ m. Hence, by proposition 8,

1
2

∥∥∥p−R(θ)
j,j′q

∥∥∥
∞,µ
≤ Nj,j′(θ, h, p−R

(θ)
j,j′q)

= Nj,j′
Ä
θ, h,R

(θ)
j,j′(p− q)

ä
≤

c|S|(rS)
κrS ,|S|(θ|S|)

|p− q|h

≤ 4cd(r)|p− q|h.

For the same reasons, q −R(θ)
j,j′q ∈ m′, hence by the triangle inequality,

1
2

∥∥∥q −R(θ)
j,j′q

∥∥∥
∞,µ
≤ Nj,j′(θ, h, q −R

(θ)
j,j′q)

≤ Nj,j′(θ, h,R
(θ)
j,j′q − p) +Nj,j′(θ, h, p− q)

≤ [1 + 4cd(r)] |p− q|h.
It follows that

|p− q|h ≥
1

2(1 + 4cd(r)) max
(∥∥∥p−R(θ)

j,j′q
∥∥∥
∞,µ

,
∥∥∥q −R(θ)

j,j′q
∥∥∥
∞,µ

)
≥ 1

4(1 + 4cd(r))

[∥∥∥p−R(θ)
j,j′q

∥∥∥
∞,µ

+
∥∥∥q −R(θ)

j,j′q
∥∥∥
∞,µ

]
≥
‖p− q‖∞,µ

4(1 + 4cd(r)) ,

which proves the theorem.

Appendix C. Rates under anisotropic smoothness: Proofs

C.1. Proof of Proposition 6. We begin by a simple lemma.

Lemma 6. Any f ∈ Cβ(Rd) is uniformly continuous, moreover

∀x, y, |f(y)− f(x)| ≤
d∑
i=1
|f |i,βi∧1|yi − xi|βi∧1.

Proof. Let x, y ∈ Rd. Let z1 = x and for any i ∈ {2, . . . , d + 1}, zi =
(x1, . . . , xi−1, yi, . . . , yd). By the triangle inequality,

|f(y)− f(x)| ≤
d∑
i=1
|f(zi+1)− f(zi)|.

Let ei denote the i−th basis vector. By assumption, the function gi defined
on [0, 1] by

gi : t 7→ f (z + t(yi − xi)ei)
belongs to Cβi(R), hence

|f(zi+1)− f(zi)| = gi(1)− gi(0) ≤ |gi|Cβi∧1 = |f |i,βi∧1|yi − xi|βi∧1.
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This proves the lemma. �

For any δ > 0, let

Ih,δ(f) = {I ∈ Ih : ‖f1lI‖∞,µ ≥ δ}.

Then Ih,δ(f) is finite. Indeed, let (δi)1≤i≤d be such that
d∑
i=1
|f |i,βi∧1δ

βi∧1
i ≤ δ

2 .

For all I =
∏d
i=1 Ii ∈ Ih,δ(f), let xI ∈ I be such that f(xI) ≥ δ and define

Ji(I) =
® (

xIi , (sup Ii) ∧ (xIi + δi)
)
if (sup Ii)− xIi ≥ hi

2(
inf Ii ∨ (xIi − δi), xIi

)
else.

Let J(I) =
∏d
i=1 Ji(I). Then, by the above lemma, f(y) ≥ δ

2 for any
y ∈ J(I), hence∫

I
|f(y)|dy ≥

∫
J(I)
|f(y)|dy ≥ δ

2µ(J(I)) ≥ δ

2

d∏
i=1

Å
δi ∧

hi
2

ã
.

It follows that

‖f‖L1 ≥
∑

I∈Ih,δ(f)

∫
I
|f(y)|dy ≥ |Ih,δ(f)|

[
δ

2

d∏
i=1

Å
δi ∧

hi
2

ã]
,

which implies the finiteness of Ih,δ(f).
It follows that for any sequence (gI)I∈Ih,δ(f) of elements of Pdirr,d ,∑

I∈Ih,δ(f)
gI1lI ∈ mdir(r, Ih).

Moreover, since f is continuous,∥∥∥∥∥∥f −
∑

I∈Ih,δ(f)
gI1lI

∥∥∥∥∥∥
∞,µ

≤ δ ∨ max
I∈Ih,δ(f)

sup
x∈I
|(f − gI)(x)|.

Therefore, and since δ may be chosen arbitrarily small, it suffices to study
uniform polynomial approximation of f on I for a given I ∈ Ih, say

∏d
j=1[0, hj ].

Up to permuting β, r and the arguments of f , we can also assume that the
identity permutation achieves the minimum in equation (18) .

Let Pr(I) denote the space of univariate polynomial functions with degree
at most r on the interval I. For h > 0, let Sh denote the scaling and
translation operator:

Shg : x 7→ g

Å
h

2 + h

2x
ã
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which maps C([0, h]) isometrically to C([−1, 1]). For each r ∈ N, polynomial
interpolation at the Chebyshev nodes yields a continuous linear projection
Qr : C([−1, 1])→ Pr([−1, 1]) with operator norm

‖Qr‖∞,µ ≤
2
π

log(r + 1) + 1 := a1(r)

(for a reference, see [15, Theorem 1.2]).
For any j ∈ {1, . . . , d}, let rj = (r1, . . . , rj) and aj(rj) =

∏j
i=1 a1(ri), with

the convention a0(r0) = 1. Define recursively functions (fj)0≤j≤d by f0 = f
and

fj(x1, . . . , xd) = S−1
hj
QrjShj [t 7→ fj−1(x1, . . . , xj−1, t, xj+1, . . . , xd)] (xj).

It follows by induction that fj is polynomial as a function of (xi)1≤i≤j , with
directional degree degi(fj) ≤ ri. In particular, fd ∈ Pdirr,d .

Since Sh is an isometry and
∥∥∥Qrj∥∥∥ ≤ a1(rj), ‖fj‖∞,µ ≤ a1(rj) ‖fj−1‖∞,µ,

hence ‖fj‖∞,µ ≤ aj(rj) ‖f‖∞,µ.
Moreover, by linearity and continuity of S−1

h QrjSh, for all i > j ≥ 1,

∂bβicxi fj(x) = S−1
hj
QrjShj

î
t 7→ ∂bβicxi fj−1(x1, . . . , xi−1, t, xi, . . . , xd)

ó
(xj).

It follows that

|fj |i,βi ≤
∥∥∥S−1

hj
QrjShj

∥∥∥ |fj−1|i,βi ≤ a1(rj)|fj−1|i,βi .

By induction, this proves that ‖fj‖i,βi ≤ aj(rj) ‖f‖i,βi . Fix now j ∈ {1, . . . , d}
and x ∈

∏d
i=1[0, hi]. For any Pj ∈ Prj ([0, hj ]), S−1

hj
QrjShjPj = Pj , hence by

the Lebesgue lemma,

|fj(x)− fj−1(x)| ≤ sup
t∈[0,hj ]

|(fj − fj−1)(x1, . . . , xj−1, t, xj+1, . . . , xd)|

≤ [1 +
∥∥∥S−1

hj
QrjShj

∥∥∥] sup
t∈[0,hj ]

|fj−1(x1, . . . , xj−1, t, xj+1, . . . , xd)− Pj(t)| .

Choosing Pj to be the Taylor expansion of fj−1 at (x1, . . . , xj−1, 0, xj+1, . . . , xd)
along the coordinate xj yields

|fj(x)− fj−1(x)| ≤ [1 + a1(rj)]
h
βj
j

bβjc!
|fj−1|j,βj

≤ [1 + a1(rj)]
aj−1(rj−1)hβjj
bβjc!

|f |j,βj

≤ (aj(rj) + aj−1(rj−1))
h
βj
j

bβjc!
|f |j,βj .
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It follows by the triangle inequality that

‖f − fd‖∞,µ ≤
d∑
j=1
‖fj − fj−1‖∞,µ

≤ 2
(

d∑
j=0

aj(rj)
)

max
1≤j≤d

{
h
βj
j

bβjc!
|f |j,βj

}
,

which proves the result.

C.2. Proof of Theorem 5. Let C be a constant depending on r, d only,
the value of which may change from line to line. Let c denote a numerical
constant, which can also change from line to line.

By theorem 4, assumption 2 holds for some κ∗ depending on r, d only.
Hence, we can apply Theorem 3 with a = 3. Let

wn,d = Lβ(p?)
d

2β+d

Å logn
n

ã β
2β+d

≤ 1.

Let θ ∈ [0, 1], to be chosen later, such that ‖p?‖
θ(β+d)
2β+d
∞,µ ≥ wn,d.

For any i ∈ {1, . . . , d}, let

zi =
ï
wn,d ‖p?‖

θβ
2β+d
∞,µ

ò 1
βi
Å |p?|i,βi
bβic!

ã−1
βi
.

Let j ∈ Zd be such that 2−ji ≤ zi < 2−ji+1, for any i ∈ {1, . . . , d}. Let
m = mdir(r, I(j)) ∈Mr. By Theorem 3, for all y > 0, on Ω3 log y

(32) ‖p̂− p?‖∞,µ ≤ C inf
p∈m
‖p? − p‖∞,µ + 4 pen3(hm) + cy√

n
.

By equation (14) and proposition 5 with θ = 2
3 ,

pen3(hm) = 29
…

4
3

 
|p̂|h(Γ + 3 log−(hm))

hmn
+
…

4
3292 Γ + 3 log−(hm)

hmn

≤ 294
3

 
|p?|h(Γ + 3 log−(hm))

hmn
+ 292

hmn

»
(Γ + 3 log y)(Γ + 3 log− hm)

+
…

4
3292 Γ + 3 log−(hm)

hmn
.(33)
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By equation (17) and definition of j,

hm =
∏d
i=1 2−ji

(2 ‖r‖21)d4d+1

≥ 2−d
∏d
i=1 zi

(2 ‖r‖21)d4d+1

≥ 1
C

ï
wn,d ‖p?‖

θβ
2β+d
∞,µ

ò∑d

i=1
1
βi

d∏
i=1

Å |p?|i,βi
bβic!

ã−1
βi

= 1
C

ï
wn,d ‖p?‖

θβ
2β+d
∞,µ

ò d
β

Lβ(p?)
−d
β

≥ 1
C
w
d
β

n,dLβ(p?)
−d
β ‖p?‖

θd
2β+d
∞,µ .

Moreover, by the assumption on θ,

hm ≥
1
C
w
d
β

n,dw
− 2β+d

β

n,d

logn
n
‖p?‖

θd
2β+d
∞,µ

≥ 1
C
w−2
n,d

logn
n

w
d

β+d
n,d

≥ logn
Cn

since wn,d ≤ 1.
In particular, log−(hm) ≤ logC + logn. Moreover, the VC-dimension of

C is 2d, so Γ ≤ C logn. Since

logn
nhm

≤ C ‖p?‖
−θd

2β+d
∞,µ

Lβ(p?)
d
β logn
n

w
− d
β

n,d = C ‖p?‖
−θd

2β+d
∞,µ w

2β+d
β
− d
β

n,d ,

it follows by equation (33) that

(34) pen3(hm) ≤ C ‖p?‖
1
2

Ä
1− θd

2β+d

ä
∞,µ wn,d + C ‖p?‖

−θd
2β+d
∞,µ w2

n,d

ñ
1 +
 

log y
logn

ô
.

Moreover, by proposition 6 and definition of zi,

inf
p∈m
‖p− p?‖∞,µ ≤ C max

1≤i≤d

®
2−βiji
bβic!

|p?|i,βi

´
≤ C max

1≤i≤d

®
zβii
bβic!

|p?|i,βi

´
≤ C ‖p?‖

θβ
2β+d
∞,µ wn,d.

Consider first the case ‖p?‖∞,µ ≥ w
2β+d
β+d
n,d . Set then θ = 1, which yields

‖p?‖
−θd

2β+d
∞,µ w2

n,d = ‖p?‖
β

2β+d
∞,µ ‖p?‖

−(β+d)
2β+d
∞,µ w2

n,d ≤ ‖p?‖
β

2β+d
∞,µ w−1

n,dw
2
n,d ≤ ‖p?‖

β
2β+d
∞,µ wn,d.
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It follows from equations (32), (34) that, on Ω3 log y,

‖p̂− p?‖∞,µ ≤ C ‖p
?‖

β
2β+d
∞,µ wn,d

ñ
1 +
 

log y
logn

ô
+ cy√

n
.

Let y = 2
1
3 e

x
3 . With probability greater than 1− e−x,

‖p̂− p?‖∞,µ ≤ C ‖p
?‖

β
2β+d
∞,µ wn,d

ñ
1 +
 
x+ log 4
3 logn

ô
+ 2

1
3
ce

x
3
√
n
.

Since this holds for any x > 0, it follows by [12, Lemma 21] that

E
î
‖p̂− p?‖∞,µ

ó
≤ C ‖p?‖

β
2β+d
∞,µ wn,d + c√

n
,

which proves the result.

Consider now the case ‖p?‖∞,µ < w
2β+d
β+d
n,d . Let θ ∈ [0, 1) solve the equation

‖p?‖
θ(β+d)
2β+d
∞,µ = wn,d, which implies that

‖p?‖
θβ

2β+d
∞,µ wn,d ≤ w

β
β+d
n,d wn,d ≤ w

2β+d
β+d
n,d

‖p?‖
−θd

2β+d
∞,µ w2

n,d ≤ w
−d
β+d
n,d w

2
n,d ≤ w

2β+d
β+d
n,d .

Moreover, since
1
2

Å
1− θd

2β + d

ã
≥ 1

2

Å
1− d

2β + d

ã
≥ β

2β + d
≥ θβ

2β + d

and ‖p?‖∞,µ < 1,

‖p?‖
1
2

Ä
1− θd

2β+d

ä
∞,µ wn,d ≤ ‖p?‖

θβ
2β+d
∞,µ wn,d ≤ w

2β+d
β+d
n,d .

It follows from equations (32), (34) that, on Ω3 log y,

‖p̂− p?‖∞,µ ≤ Cw
2β+d
β+d
n,d

ñ
1 +
 

log y
logn

ô
+ cy√

n
.

Let y = 2
1
3 e

x
3 . With probability greater than 1− e−x,

‖p̂− p?‖∞,µ ≤ Cw
2β+d
β+d
n,d

ñ
1 +
 
x+ log 4
3 logn

ô
+ 2

1
3
ce

x
3
√
n
.

Since this holds for any x > 0, it follows by [12, Lemma 21] that

E
î
‖p̂− p?‖∞,µ

ó
≤ Cw

2β+d
β+d
n,d + c√

n
,

which proves the result.
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C.3. Proof of Theorem 6. Denote by C a constant depending only on
β, d, the value of which may change from line to line.

The proof follows that of Lepski ([11, Theorem 2]) in the case m = d,
pi = +∞ for i ∈ {1, . . . , d}, σ = 1√

2π

(2
b

) 1
d , until equation (4.24). Thus,

let f0 = p b
2
, (f (j))j∈Jn belonging to CβL,+∞ be constructed as in [11], with

m = d, I∗ = {1, . . . , d}. In particular,∥∥∥f (j) − f0
∥∥∥
∞,µ

= c?1An = |g(0)|dAn

for all j ∈ Jn, where An is a sequence converging to 0 . Moreover,

En := E(n)
f0

 1
Jn

∑
j∈Jn

∫
Rd

dP(n)
f (j)

dP(n)
f0

(X(n))− 1

2

= 1
|Jn|

∑
j∈Jn

®
1 +

∫
Rd

ñ
G2
j (y)
f0(y)

ô
dy

´n
− 1
|Jn|

.

The Gj are supported in Yn =
∏d
i=1[0,

√
δi,n], where the δl,n converge to 0,

so that

lim
n→+∞

inf
y∈Yn

f0(y) = f0(0) = pb/2(0) = b

2 .

Hence, for all large enough n, by definition of the Gj ,

En ≤
1
|Jn|

(
1 + 4

b
A2
n

d∏
l=1

δl,n

)n
.

Let then An, δl,n satisfy the following equations for all large enough n:

∀k ∈ {1, . . . , d}, Anδ−βkk,n = 1
‖g‖d−1
∞,µ

Lk(35)

4
b
nA2

n

d∏
l=1

δl,n ≤
1
4 log

(
d∏
l=1

δ−1
l,n

)
.(36)

Note that by construction, 1
4 log

Ä∏d
l=1 δ

−1
l,n

ä
≤ log(|Jn|), so that En ≤ 1.

Hence, by [10, Proposition 6] and the following [10, Corollary 2],

lim inf
n→+∞

inf
p̃

sup
p∈Pβ

L,b

|g(0)|dA−1
n EX∼P⊗n

î
‖p̃(X)− p‖∞,µ

ó
≥ 1

2

Å
1− 1√

5

ã
.



48 GUILLAUME MAILLARD

Thus, the minimax convergence rate is at least An. It remains to solve
equations (35), (36). To that end, let

L̄ =
d∏

k=1
L

β
dβk
k

An = (λb)
β

2β+d L̄
d

2β+d

Å logn
n

ã β
2β+d

for some λ > 0 to be chosen later. Let C = 1
‖g‖d−1
∞,µ

Solving (35) yields

δk,n =
Å
C
An
Lk

ã 1
βk

for all k, which implies that
d∏
l=1

δl,n = C
d
βA

d
β
n

d∏
l=1

Å 1
Ll

ã 1
βl

=
Å
C

L̄
An

ã d
β

1
4 log

(
d∏
l=1

δ−1
l,n

)
∼n→+∞

−d
4β logAn

∼n→+∞
1
4

d

2β + d
logn.

Moreover,

4
b
nA2

n

d∏
l=1

δl,n = 4
b
nA

2+ d
β

n C
d
β L̄

−d
β

= C
d
β

4
b
nA

2β+d
β

n L̄
−d
β

= 4λC
d
β .

Thus, taking λ < C
−d
β

16
d

2β+d ensures that (36) holds for all n large enough.

Appendix D. Proofs

Lemma 7. Let X1, . . . , Xn be independent random variables. Let F be a
countable class of bounded measurable functions and

Z = sup
f∈F

∣∣∣∣∣ n∑
i=1

f(Xi)− E[f(Xi)]
∣∣∣∣∣ .

Then with probability greater than 1− e−x, for any θ > 0,

Z ≤ (1 + 2θ)EZ + 2σ
√

2xn+
Å

2 + 4
θ

ã
cx,
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where

σ2 = sup
f∈F

®
1
n

n∑
i=1

Var(f(Xi))
´

c = sup
f∈F
{‖f‖∞}.

Proof. Let

Z̃ = Z

c
= sup

f̃∈ 1
c
F

∣∣∣∣∣ n∑
i=1

f̃(Xi)− E[f̃(Xi)]
∣∣∣∣∣ .

Let also σ̃ = σ
c ,

Σ̃2 = sup
f̃∈ 1

c
F

n∑
i=1

(
f̃(Xi)− E[f̃(Xi)]

)2
.

By [6, Theorem 12.2] with t = 2x+ 2
»

(nσ̃2 + Σ̃2)x,

P
(
Z̃ − EZ̃ ≥ 2x+ 2

»
(nσ̃2 + Σ̃2)x

)
≤ e−x.

Moreover, by [6, Theorem 11.8], Σ̃2 ≤ 8EZ̃+2σ̃2, so with probability greater
than 1− e−x, for any θ > 0,

Z̃ ≤ EZ̃ + 2
»
x(8EZ̃ + 2nσ̃2) + 2x

≤ EZ̃ + 2
√

8xEZ̃ + 2σ̃
√

2xn+ 2x

≤ (1 + 2θ)EZ̃ + 4x
θ

+ 2σ̃
√

2xn+ 2x.

In other words,
1
c
Z ≤ 1 + 2θ

c
EZ + 2σ

c

√
2xn+

Å
2 + 4

θ

ã
x,

which proves the result. �
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