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ABSTRACT
Active systems, which are driven out of equilibrium by local non-conservative forces, exhibit unique behaviors and structures with potential
utility for the design of novel materials. An important and difficult challenge along the path toward this goal is to precisely predict how the
structure of active systems is modified as their driving forces push them out of equilibrium. Here, we use tools from liquid-state theories
to approach this challenge for a classic minimal active matter model. First, we construct a nonequilibrium mean-field framework that can
predict the structure of systems of weakly interacting particles. Second, motivated by equilibrium solvation theories, we modify this theory to
extend it with surprisingly high accuracy to systems of strongly interacting particles, distinguishing it from most existing similarly tractable
approaches. Our results provide insight into spatial organization in strongly interacting out-of-equilibrium systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0096710

INTRODUCTION

Active matter is a class of nonequilibrium systems in which
every component consumes energy to produce an autonomous
motion.1–3 Examples of active systems span many length- and
time-scales, from bacterial swarms4 and assemblies of self-propelled
colloids5 to animal groups6 and human crowds.7 The energy fluxes
stemming from individual self-propulsion lead to complex collec-
tive behaviors without any equilibrium equivalent, such as collective
directed motion8 and phase separation despite purely repulsive
interactions.5 The possibility of exploiting such behaviors to design
materials with innovative functions has motivated much research,9
with the goal of reliably predicting and controlling the features
of active systems. Minimal models have been proposed to capture
active dynamics of particles with aligning interactions and of self-
propelled isotropic particles, which yield collective motion10 and
motility-induced phase separation,11 respectively. Based on these
models, the challenge is to establish a nonequilibrium framework,
by analogy with equilibrium statistical thermodynamics, which con-
nects microscopic details and emergent physics. Progress has been
made in this direction by characterizing protocol-based observables,
such as pressure,12,13 surface tension,14,15 and chemical potential.16

Despite recent advancements, understanding how to quantitatively
control the dynamics and structure of many-body active systems
by appropriately tuning external parameters remains largely an
open challenge.17 A large part of the theoretical approaches used to
predict the structure of active fluids generally rely on either equilib-
rium mappings18–21 or weak-interaction approximations,22,23 thus
limiting their applicability.

In this work, we use tools from liquid-state theories to take on
this challenge. We construct a novel mean-field theory whose appli-
cability and ease of implementation surpasses existing approaches
and which quantitatively predicts the static two-point density cor-
relations in a minimal isotropic active matter system both near and
far from equilibrium. Our results illustrate how the structure of a
nonequilibrium many-body system can be controlled by tuning the
driving forces. In later work, we develop expressions connecting
these two-point density correlations to energy dissipation for the
same active matter system and in more complex anisotropic sys-
tems and demonstrate how artificial intelligence can potentially be
harnessed to tune the structure of such systems.

This paper is organized as follows. First, we describe the model
of an active liquid that we analyze for the majority of the manuscript,
which is an assembly of self-propelled particles. Second, we outline
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calculations that accurately solve for the structure of our active liquid
both near and far from equilibrium when particles are weakly inter-
acting. Third, motivated by equilibrium solvation theories—these
have shown how the equilibrium structure of liquids can be resolved
by separately considering the rapidly varying and slowing compo-
nents of the interaction24—and by measurements from simulation
of the relaxation of strongly interacting particles at equilibrium
in response to perturbations, we develop a novel non-equilibrium
mean-field theory for strongly interacting particles (20), effectively
using the direct correlation function of the system at equilibrium
to account for higher-order interactions. This is the main result of
this paper. Unlike many other reasonably accurate representations
of active dynamics,18,19,21,25 our final results do not rely on any equi-
librium approximation, thus allowing all nonequilibrium features to
be retained.

RESULTS
Details of model active matter system

We consider a popular model of active matter consisting
of N interacting self-propelled particles, often referred to as active
Ornstein–Uhlenbeck particles (AOUPs),26–28 with two-dimensional
overdamped dynamics,

ṙi = −
1
γ
∇i∑

j≠i
U(ri − rj) +

fi

γ
+ ξi, (1)

where U is the pair-wise potential and γ is a friction coefficient. The
terms {ξi, fi} embody, respectively, the thermal noise and the self-
propulsion velocity. They have Gaussian statistics with zero mean
and uncorrelated variances, given by

⟨ξiα(t)ξjβ(0)⟩ =
2T
γ

δijδαβδ(t),

⟨ fiα(t) fjβ(0)⟩ =
γTA

τ
δijδαβe−∣t∣/τ ,

(2)

where τ is the persistence time, T is thermal temperature, and α
and β denote different spatial dimensions. For a vanishingly small
persistence (τ → 0), the system reduces to a set of passive Brown-
ian particles at temperature T + TA. At sufficiently high persistence
and τ, the system undergoes phase separation even with a purely
repulsive interparticle potential U.28 All details pertaining to the
simulations, run in two dimensions for all of what follows, can be
found in the section titled Materials and Methods.

Density field for a weakly interacting tracer particle

We start by considering the effective dynamics of an active
tracer embedded in a bath consisting of the other particles. To ana-
lytically derive the statistics of the tracer displacement, our strategy,
inspired by recent works,29,30 is to rely on a mean-field approach
by first considering that interactions between the tracer and the
bath are weak. This leads us to scale the interaction strength by a
dimensionless factor ε, which can be regarded as a small parameter

for perturbative expansion. The equation of motion of the tracer
position r0(t) then reads

ṙ0 = f0 − ε∫ ∇0U(r0 − r′)ρ(r′, t)dr′ + ξ0, (3)

where the bath is described in terms of the density field
ρ(r, t) = ∑N

i=1δ(r − ri(t)) (with N being the number of bath parti-
cles). Note that we set γ = 1 here and in all subsequent equations.
The dynamics of the density field ρ(r, t) can be obtained following
the procedure in Ref. 31,

∂ρ(r, t)
∂t

= T∇2ρ(r, t) + ∇ ⋅ [
√

2ρTΛ(r, t) − P(r, t)]

+ ∇ ⋅ (ρ∇[∫ U(r − r′)ρ(r′, t)dr′ + εU(r − r0)]), (4)

where P denotes the polarization field P(r, t) = ∑ifi(t)δ(r − ri(t)).
The term Λ is a Gaussian white noise with zero mean and unit vari-
ance (⟨Λα(r, t)Λβ(r′, t′)⟩ = δαβδ(r − r′)δ(t − t′)). In principle, the
dynamics (3) and (4) can be solved recursively to obtain the statistics
of the density field ρ(r, t) and of the tracer position r0. Some of us
already took this approach in Refs. 22 and 23 using a perturbation in
the weak interaction limit. In what follows, we extend this approach
to characterize the system beyond the regime of weak interactions.

Mean-field theory for nonequilibrium
structure of weakly interacting particles

The structure of the system is determined by the two-point
correlation of density h, defined by ρ0h(r) = (1/N)∑i≠j⟨δ(r − ri
+ rj)⟩ − ρ0, where ρ0 denotes the overall average density. In the
homogeneous state, where density correlations are evaluated by
measuring the average number of particles away from any repre-
sentative tracer, the Fourier transform h(k) = ∫ eik⋅rh(r)dr can be
written in terms of δρ = ρ − ρ0 as

h(k) =
1
ρ0
⟨eik⋅r0(t)δρ(k, t)⟩. (5)

Our nonequilibrium mean-field theory to solve for h(k) is built as
follows. We first linearize the dynamics (3) and (4) and obtain a solu-
tion for δρ in the Fourier domain. We next construct an expansion
in the coupling parameter ε to compute h(k) up to first order in ε.
As mentioned previously, this form is valid only in the regime of
weak interactions. In the next section, we go beyond this regime by
drawing inspiration from equilibrium solvation theories.32

We begin with Eq. (4) and do not consider the polarization
term further. Our choice is justified in the low-activity limit and,
beyond that, supported by the results in Ref. 23. In that work, the for-
mulas for efficiency and mobility were obtained by setting two-point
polarization correlators to zero [see Eqs. (8) and (9) in Appendix A],
and their results agree with data from simulations very closely even
in systems with strong driving forces.

By ignoring polarization and by linearizing the dynamics of
the density field ρ around the overall density ρ0, we arrive at a
closed-form equation of motion for δρ = ρ − ρ0. This linear approx-
imation holds when interparticle potentials are weak such that any
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local density fluctuation is small compared to ρ0. The solution for
δρ(k, t) = ∫ [ρ(r, t) − ρ0]e

−ik⋅rdr follows readily as

δρ(k, t) = ∫
t

−∞
dse−k2G(k)(t−s)

× (−k2ρ0εU(k)e−ik⋅r0(s) + ik ⋅
√

2ρ0TΛ(k, s)), (6)

where G(k) = T + ρ0U(k) and Λ is a zero-mean Gaussian white
noise with correlations,

⟨Λα(k, s)Λβ(k
′, s′)⟩ = (2π)dδαβδ(s − s′)δ(k + k′), (7)

where d is the spatial dimension. Substituting (6) into (5) yields

ρ0h(k) = ⟨eik⋅r0(0)
∫

0

−∞
dsek2G(k)s

× [−ρ0k2εU(k)e−ik⋅r0(s) + ik ⋅
√

2ρ0TΛ(k, s)]⟩. (8)

Next, we solve for the tracer position r0 to yield an expression
that depends instead on driving forces f0, thermal noise ξ0, and
interparticle potential U(k). From the tracer dynamics (3), we
deduce

r0(0) = ∫
0

−∞
[f0(x) + ξ0(x)]dx

+ ε∫
dk′

(2π)d ik′U(k′)∫
0

−∞
ds′ δρ(k′, s′)eik⋅r0(s′). (9)

From this, after expanding with respect to the parameter ε, we derive

eik⋅r0(0) = eik⋅∫ 0
−∞
[f0(x)+ξ0(x)]dx

[1 − ε∫
dk′

(2π)d k ⋅ k′U(k′)

× ∫

0

−∞
ds′δρ(k′, s′)eik′ ⋅∫ s′

−∞
[f0(x)+ξ0(x)]dx

+O(ε2
)]. (10)

Substituting in the expression for δρ given in Eq. (6), we obtain

eik⋅r0(0) = eik⋅∫ 0
−∞
[f0(x)+ξ0(x)]dx

[1 − ε∫
dk′

(2π)d (k ⋅ k
′
)U(k′)

× ∫

0

−∞
ds′eik′ ⋅∫ s′

−∞
[f0(x)+ξ0(x)]dx

× ∫

s′

−∞
ds′′e−k′2G(k′)(s′−s′′)ik′

×
√

2Tρ0Λ(k′, s′′) +O(ε2
)]. (11)

Finally, substituting (11) into (8) and expanding only to first order
in ε, we derive

ρ0h(k) = ⟨−eik⋅∫ 0
−∞
[f0(x)+ξ0(x)]dx

[∫

0

−∞
dsek2G(k)sρ0k2εU(k)

× e−ik⋅∫ s
−∞
[f0(x)+ξ0(x)]dx

]⟩

+ ⟨eik⋅∫ 0
−∞
[f0(x)+ξ0(x)]dx

[1 − ε∫
dk′

(2π)d (k ⋅ k
′
)U(k′)

× ∫

0

−∞
ds′eik′ ⋅∫ s′

−∞
[f0(x)+ξ0(x)]dx

× ∫

s′

−∞
ds′′e−k′2G(k′)(s′−s′′)ik′ ⋅

√
2Tρ0Λ(k′, s′′)]

× [∫

0

−∞
dsek2G(k)sik ⋅

√
2ρ0TΛ(k, s)]⟩. (12)

We begin simplifying this expression by noting that ⟨Λ(k, s)⟩ is zero,
and making use of the fact that Λ, ξ0, and f0 are independent, we
eliminate the term that is order 0 in ε,

ρ0h(k) = −k2ερ0U(k)∫
0

−∞
dsek2G(k)s

× ⟨eik⋅∫ 0
−∞
[f0(x)+ξ0(x)]dx−ik⋅∫ s

−∞
[f0(x)+ξ0(x)]dx

⟩

− 2ρ0T ∫
dk′

(2π)d (k ⋅ k
′
)

2εU(k′)∫
0

−∞
ds′e−k′2G(k′)s′

× ⟨eik⋅∫ 0
−∞
[f0(x)+ξ0(x)]dx+ik′ ⋅∫ s′

−∞
[f0(x)+ξ0(x)]dx

⟩

× ∫

0

−∞
ds∫

s′

−∞
ds′′ek2G(k)s+k′2G(k′)s′′

× ⟨Λα(k, s)Λα(k′, s′′)⟩. (13)

We further simplify this by observing that according to Wick’s
theorem, we can write the following equation for the white noise:

⟨eik⋅∫ 0
s ξ0(x)dx

⟩ = ek2Ts. (14)

To treat the equivalent terms for the active forces, we start from the
time correlations (2) and derive the following:

⟨∫

0

s
f0α(0) f0α(x)dx⟩ = TA(1 − es/τ

), (15)

⟨∫

0

s
∫

0

s
f0α(x) f0α(x′)dxdx′⟩

=
TA

τ
(∫

0

s
∫

0

x
e−(x

′−x)/τdx′dx

+ ∫

0

s
∫

x

s
e−(x−x′)/τdx′dx)

= −2[TAs + TAτ(1 − es/τ
)] ≡ −2R(s). (16)

Again according to Wick’s theorem, we can now write the following
equation for the driving forces:

⟨eik⋅∫ 0
s f0(x)dx

⟩ = ek2R(s). (17)

In turn, this means that we can make the following simplification:

⟨eik⋅∫ 0
−∞
[f0(x)+ξ0(x)]dx−ik⋅∫ s

−∞
[f0(x)+ξ0(x)]dx

⟩ = ek2(Ts+R(s)). (18)

After collapsing noise correlation functions and using Eqs. (7), (14)
and (17) in this way to simplify (13), we obtain that the form of the
pair correlation function is

h(k) = −k2εU(k)
G(k) + T

G(k) ∫
0

−∞
dsek2((G(k)+T)s+R(s)). (19)
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We set ε to 1 to obtain an expression valid for systems with weak
interparticle potentials and high densities.

Mean-field theory for nonequilibrium
structure of strongly interacting particles

As mentioned previously, we go beyond the regime of weak
interactions by drawing inspiration from equilibrium solvation the-
ories.32 In this context, the density around a tracer particle inter-
acting strongly with its neighbors is captured by considering the
convolution between the density correlation and equilibrium direct
correlation functions. The equilibrium direct correlation function
can be readily obtained from the pair correlation function through
the Ornstein–Zernike relation, and in the weak interaction limit,
the direct correlation function is well approximated by the nega-
tive of the interparticle potential, ceq(r) ≃ −U(r)/T.33 Hence, linear
response in the weak interaction regime enforces that this convo-
lution captures the same information as convoluting the density
correlation function and interaction potential. Furthermore, as has
been demonstrated in the context of theories of the hydrophobic
effect, the effect of any weaker perturbations can be handled by a
mean field approach24 by perturbing around the equilibrium direct
correlation function. In our context, intuition from these theories
suggests the substitution of U(k) with −Tceq(k), where ceq(k) is

the Fourier transform of the equilibrium direct correlation function,
in (19) to effectively account for higher-order effects due to strong
interactions between particles.

To further motivate applying this approach to our mean-field
theory, we investigate the response of a fluid at equilibrium to a
time-varying perturbation. Specifically, we simulate a system of par-
ticles interacting via the short-ranged repulsive harmonic potential
U(r) = {A (1 − r)2, r < 1; 0, r ≥ 1}, with A = 64T. We measure the
relaxation of density ρ(r − r̃, t), where r̃ is the position at which a
particle is removed from the system at t = 0. We compare this with
the predictions obtained both from the linearized dynamics for the
density in (4) and from this same equation but with U(k) replaced
by −Tceq(k). The results are shown in Fig. 1(a) for the two-point
correlation h(k).

We find that the evolution equation [Eq. (4) at TA = 0] with
U(k) substituted by −Tceq(k) yields an accurate prediction for the
decay of h(k) in the region of k-space around the primary peak
of heq(k). In contrast, predictions obtained without using this sub-
stitution are very poor in this region, highlighting that systems of
strongly interacting particles violate the assumptions underlying
linearization of density dynamics. Unsurprisingly, predictions with
both methods are poor in the small-k region corresponding to the
structure of the system on large length scales. This result numer-
ically shows that the density responses in a strongly interacting

FIG. 1. Mean-field theory for the nonequilibrium structure for a system of strongly interacting AOUPs (see the inset for potential). (a) Relaxation of density correlations
h(k) from the initial conditions after removing a particle from the system (relaxation time is taken as 0.02/γ). Except at small values of the wavenumber k = ∣k∣, we
find good agreement between measured h(k) (dashed black line with circles) and h(k) predicted from ceq(k) (dashed blue line with diamonds), while predictions using
U(k) (dashed red line with triangles) are very poor. Parameters: ρ0 = 1.0, A = 64, τ = 1.0, TA = 0, T = 1, γ = 1. (b) Prediction for the nonequilibrium direct correlation
function c(k), as defined in (21). The predicted curves for c (dashed red lines with squares) are compared with simulation results (dashed blue lines with circles) both near
equilibrium (TA = 2, lower pair of dashed lines) and far from equilibrium (TA = 40, higher pair of dashed lines). The reference ceq (solid black line), which is used as an
input for the mean-field prediction, is measured numerically. The good agreement between predictions and simulations demonstrates that our mean-field theory captures
well the deviation from equilibrium structure. In particular, it reproduces quantitatively the effective attraction at large wavelengths/small wavenumbers arising due to active
forces. Parameters: ρ0 = 1.0, A = 16, τ = 0.4, T = 1, γ = 1. Note that while the ceq(r)-based prediction for the relaxation of passive particles to a steady state over short
time scales in (a) is poor in the small-k regime, this does not mean that the ceq(r)-based theory is poor at predicting the structure of steady states of active particles in the
same small-k regime in (b). Simulation results for h(k), c(k) are computed from measured g(r) as described in the section titled Materials and Methods.
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fluid are more appropriately captured by the direct correlation
function.

Combined with the aforementioned intuition from equilib-
rium solvation theories, this motivates us to substitute U(k) with
−Tceq(k) in (4) and in the subsequent non-equilibrium mean field
theory as a heuristic approach to correct for higher-order interac-
tions. Overall, our theory then leads to the following expression for
the density correlations:

h(k) = k2 Ĝ(k) + T
Ĝ(k)

Tceq(k)∫
0

−∞
dsek2[(Ĝ(k)+T)s+R(s)], (20)

where Ĝ(k) = T(1 − ρ0ceq(k)) and R(s) is the same as in (16).
At equilibrium (TA = 0), (20) is equivalent to the famous

Ornstein–Zernike relation.33 Away from equilibrium (TA ≠ 0), our
prediction (20) can be used to deduce the structure of the system,
given by h(k), based solely on measurements of the equilibrium
structure [i.e., from ceq(k)]. We reiterate that the perturbation the-
ory leading to (20) ignores the effect of the polarization term in (4),
which was found in Ref. 23 to be negligible in a large range of sys-
tems and regimes. We surmise that these contributions are small
under the set of assumptions, approximations, and regimes that we
employ in the present paper as well. Our numerical results support
this hypothesis.

To compare our mean-field prediction with numerical results,
we introduce the nonequilibrium direct correlation function, denoted
by c and defined as

c(k) =
h(k)

1 + ρ0h(k)
. (21)

This definition can be regarded as a straightforward extension of the
Ornstein–Zernike relation for equilibrium liquids, but note that c
can no longer be related to any free-energy a priori. In Fig. 1(b), we
plot the predicted c, as deduced from Eqs. (19)–(21), along with mea-
surements obtained from simulations. We again emphasize that the
only input for our prediction is the equilibrium direct correlation
function ceq(k).

We simulate particles interacting via the short-ranged har-
monic potential, given by U(r) = {A (1 − r)2, r < 1; 0, r ≥ 1} with
A = 16T, at multiple values of TA [Fig. 1(b)]. Our theory accurately
predicts the nonequilibrium direct correlation function, particularly
in the regime of long wavelengths/small wavenumbers, although
there are noticeable discrepancies at higher wavenumbers where the
prediction for c deviates insufficiently from ceq. To a first approxi-
mation, the difference c − ceq can be effectively interpreted as a weak
perturbation with respect to the original potential U. In other words,
c − ceq illustrates how adding active forces to the dynamics affects the
microscopic interactions. In the results in Fig. 1(b), this corresponds
to adding an attractive potential, leading to enhanced clustering of

FIG. 2. Mean-field theory for the nonequilibrium structure for additional systems of strongly interacting AOUPs. (a) Prediction from mean-field theory for the nonequilibrium
direct correlation function c(k), as defined in (21), for AOUPs interacting via harmonic potential with A = 16. Details are the same as in Fig. 1(b), but with only results for
TA = 40 shown and with an additional estimate for c(k)made using the original mean-field theory (19) instead of the version modified by the c(k) substitution (20) (dashed
green line with triangles). The agreement between this new prediction with measurements from simulations is quite poor, as expected for strongly interacting particles to
which the original mean-field assumption of a tracer weakly interacting with the bath does not apply and in which nothing is done to effectively account for higher-order
interactions. (b) Prediction from both versions of the mean-field theory for the nonequilibrium direct correlation function c(k), as defined in (21), for AOUPs interacting via
harmonic potential with A = 0.5. All details, except potential amplitude, are the same as in the first panel. As the AOUPs are interacting much less strongly and the system
is closer to the mean-field regime, the prediction from (19) is much more accurate, although, in fact, still less accurate than that obtained via (20) at all values of k. This
latter prediction is, in turn, slightly less accurate than the corresponding prediction in the first panel.
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particles (and eventually phase separation for particles with suffi-
ciently large driving forces and very strongly repulsive interactions).
In Fig. 2, we compare the predictions from the original theory for
weakly interacting particles (19) (green line, triangles) with predic-
tions from our updated theory (20). As shown in the first panel,
there is a dramatic improvement in the accuracy of predictions for
strongly interacting particles. Note that the non-equilibrium forcing,
as parameterized by TA = 40, is quite strong and that our theory is
nonetheless able to accurately capture the structure in this regime.

DISCUSSION

Our results demonstrate that activity-induced changes to the
steady-state structure of AOUP systems can be accurately predicted
in a wide span of regimes simply from the pair correlations of the
system in the absence of activity. However, it is well-known that
active forces affect the emerging structure,17 reliably predicting the
nonequilibrium structure of active systems has remained largely an
outstanding problem.18–21 In this work, we propose a mean-field the-
ory that quantitatively predicts the two-point density correlations,
illustrating the utility of the direct correlation function in effectively
accounting for higher-order interactions.

It would be interesting to explore whether such theories can
be extended to other types of active liquids, such as liquids with
aligning interactions among the particles10 or with driving forces
that sustain a permanent spinning of particles with isotropic inter-
action potentials.35,36 Since our approach relies mostly on tools of
liquid-state theory,31–33 which are agnostic to the details of the
driving forces, we anticipate that it might be possible to systemat-
ically improve our predictions. Thus, we believe that our approach
can serve as a basis for developing perturbation theories in generic
nonequilibrium liquids.37 This would open the door to anticipating
how density correlations are modified by any type of driving forces,
as a first step toward externally controlling the emerging structure
with a specific drive.38–40

MATERIALS AND METHODS
Numerical simulations

Simulations are run in a two-dimensional box 40σ × 40σ with
periodic boundary conditions, where σ = 1 is the particle diameter.
The time step for the simulations is δt = 10−4. The density is set
to 1.00.

The equations of motion are integrated using a custom molec-
ular dynamics code based on finite time difference. The systems are
equilibrated or allowed to reach a steady state over 500 units of simu-
lation time, corresponding to at least 500τ for all simulations, where
τ is the persistence time of the active noise, and data are collected
every 100 units from the end of equilibration for a duration of 1000
time steps.

Calculation of ceq(k) for theoretical predictions is done by
numerically Fourier transforming the portion of the equilibrium
heq(r) = geq(r) − 1 with r ∈ [0, 16] to obtain heq(k) and then com-
puting ceq(k) using the Ornstein–Zernike relation [shown in (21)
extended to non-equilibrium systems]. Equilibrium and non-
equilibrium g(r) is obtained by generating histograms of distances
between each pair of particles with resolution dr = 0.01σ, averaged

over 15 independent trials with 11 snapshots per trial and limited to
r ∈ [0, 20]. Fourier transformation to obtain h(k) is done by multi-
plying h(r) by 2πrJ0(k ⋅ r) and integrating over r ∈ [0, 16], repeated
for k ∈ [2π/16, 16π] incremented by 2π/16.

Perturbation simulations to obtain data in Fig. 1(a) at t ≠ 0
are equilibrated for 99.8 units of simulation time and then mea-
sured every 0.02 units of time for an additional 0.2 units, as this was
found to include all of the measurable relaxation behavior. For each
“snapshot” separated by 0.02 units of time, g(r − r̃) is obtained by
generating histograms of the distance of each particle from r̃ with
resolution dr = 0.01σ, averaged across 10 consecutive time steps for
each snapshot and over at least 500 independent trials.

Code

Codes for molecular dynamics can be found at https://github.
com/ltociu/structure_dissipation_active_matter.
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