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Abstract. Hard physical learning problems have been introduced as an alternative
option to implement cryptosystems based on hard learning problems. Their high-level
idea is to use inexact computing to generate erroneous computations directly, rather
than to first compute correctly and add errors afterwards. Previous works focused on
the applicability of this idea to the Learning Parity with Noise (LPN) problem as a
first step, and formalized it as Learning Parity with Physical Noise (LPPN). In this
work, we generalize it to the Learning With Errors (LWE) problem, formalized as
Learning With Physical Errors (LWPE). We first show that the direct application of
the design ideas used for LPPN prototypes leads to a new source of (mathematical)
data dependencies in the error distributions that can reduce the security of the
underlying problem. We then show that design tweaks can be used to avoid this
issue, making LWPE samples natively robust against such data dependencies. We
additionally put forward that these ideas open a quite wide design space that could
make hard physical learning problems relevant in various applications. And we
conclude by presenting a first prototype FPGA design confirming our claims.
Keywords: Learning With Errors · Physical Assumptions · FPGA Implementations

1 Introduction
The Learning With Errors (LWE) problem is an important computational assumption
which is the basis of many modern cryptographic constructions [Reg09]. It has in particular
been used to design several Fully Homomorphic Encryption (FHE) schemes [BV11, BGV12,
GSW13] and is the core of many Post-Quantum (PQ) algorithms such as Frodo [ABD+21a],
New Hope [AAB+20], CRYSTALS-Kyber [ABD+21b] or CRYSTALS-Dilithium [DLL+21].
In a standard implementation of LWE-based cryptographic primitives, one typically
generates errors following a given distribution explicitly, which are then added to some
correct computations. Yet, it has been shown that the cost of generating the random
errors with a TRNG or with cryptographically strong PRNG can become a performance
bottleneck, especially if side-channel attacks are a concern [SPOG19, BGR+21].

In parallel, a line of works initiated by Kamel et al. has shown that leveraging inexact
computing in order to directly compute erroneous computations following the appropriate
distribution can lead to conceptual advantages for the implementation of primitives based
on the Learning Parity with Noise (LPN) problem [KSD+20]. The LPN problem is a special
case of the LWE problem where computations are performed in GF(2). Its physical variant
has been formalized as the Learning Parity with Physical Noise (LPPN) problem. It has
been exhibited that it is possible to control the error distribution of LPPN prototypes with
a sufficient accuracy [KBS+18] and that the resulting (key-homomorphic) implementations
have interesting features for side-channel security via masking [KBBS20].
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More recently, Bellizia et al. investigated the (lack of) gap between the (mathematical)
LPN problem and the (physical) LPPN problem [BHK+21]. They first showed that LPPN
implementations can suffer from output data dependencies, where the probability of the
errors depends on the correct computations (while they are independent in LPN). They next
showed that these dependencies can be reduced thanks to implementation tweaks, despite
not being able to make them negligible. As a result, they finally gave a reduction from
the standard LPN problem to a (new) LPN-OD problem with such output dependencies,
allowing one to quantity the limited security loss that such dependencies imply.

In terms of applicability, the main open question raised by these different previous
works is whether generalized hard physical learning problems could be instantiated for use
in actual applications. Our contributions in this respect are threefold.

First, we define such a generalization, next coined Learning With Physical Errors
(LWPE), and discuss the new implementation challenges it raises. In particular, we show
that directly applying the techniques used in the LPPN context leads to a new type of
(mathematical) dependencies in the error distributions (hence the bad news part of our
title). In short, these dependencies are due to the fact that the errors introduced affect
bits rather than field elements. Yet, we also show that it is possible to get rid of them by
inserting the errors early in the inner product computations of a LWPE prototype.

Second, we discuss the LWPE design space and the extent to which LWPE could
be used for different lattice structures, multiplication algorithms, modulus, and error
distributions. We conclude that hard physical learning problems formalized by LWPE
have a broad applicability while also being more challenging in certain specific contexts.

Eventually, we describe a first FPGA prototype of LWPE instance. It allows us to
confirm that it is possible to perform erroneous computations that follow practically-
relevant distributions (e.g., for PQ cryptography). It also leads us to observe that the
design tweak used to mitigate mathematical error dependencies has for positive effect to
mitigate physical error dependencies as well (hence the good news part of our title).1

Cautionary note. Leveraging the LWPE assumption is only possible for PQ schemes that
do not require deterministic errors in their decryption which, for example, is not the
case of Key Encapsulation Mechanisms (KEMs) based on the Fujisaki-Okamoto (FO)
transform [FO99]. Yet, it is applicable in any context where LWE is used without such an
additional requirement (e.g., IND-CPA public key encryption or signature schemes that
do not need to be de-randomized). Besides, given that the FO transform is the root of
important weaknesses against side-channel attacks [UXT+22] while LWPE actually gains
interest when side-channel attacks are a concern, our results give further incentives for
designing new PQ cryptographic schemes that do not rely on such transforms.

Related work. In a recent independent work, Kundi et al. leverage a different flavor of
approximate computing to implement a Ring-LWE Co-Processor [KKB+22]. Their approx-
imate computations are based on the truncation of the multiplicative operands. Hence,
errors are still explicitly generated which cancels the advantages of LWPE for masking.

2 Background
In this section, we provide the necessary background on the hard learning problems needed
in this work, discuss some constructions taking advantage of these problems and introduce
statistical tests that we will need for our experimental investigations.

1 While the focus of this paper is on output data dependencies, it has been shown in the literature that
input data dependencies can also be observed. As discussed in [KSD+20], Section 7.1 and [KBS+18],
Section 4.1, input dependencies are computationally harder to exploit. This is in contrast with output
dependencies that more directly affect the LPPN or LWPE security, which explains our focus. Yet, better
analyzing and formalizing security against input data dependencies is an interesting open problem.
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2.1 The LWE problem
The standard “algebraically unstructured” LWE problem is specified as follows [Reg09]:

Definition 1 (LWE problem). Let n, q ∈ N, let 〈., .〉 denote the inner product and χ be a
distribution over Zq. For a secret s ∈ Znq , the LWE distribution Ls,χ is defined as:

Ls,χ =: {(a, 〈a, s〉+ e) : a
$←− Znq ; e $←− χ}.

Let Os,χ denote an oracle outputting independent samples according to the distribution
Ls,χ. The LWEn,χ (search) problem is said to be (c, t,m, θ)-hard to solve if for any
algorithm A,

Pr[s $←− Znq : AOs,χ(1n) = s] ≤ θ,

and A runs in time < t, with memory < m and makes at most c queries to Os,χ.

It is worth noting that the LPN problem is a special case of the LWE problem where
the modulus q is equal to two 2 and therefore χ is a Bernouilli distribution.

2.2 The MLWE problem
The Module LWE problem generalizes both the LWE and Ring LWE [LPR12] problems.

Definition 2 (MLWE problem [BGV12, LS12]). Let Rq = Zq[x]/f(x) be the ring of
integer polynomials modulo both f(x) and q, where f(x) = xd+ 1 ∈ Z[x], the dimension of
the ring d is a power of 2 and q ∈ N. Let χ be a distribution over Rq.For a secret s ∈ Rnq ,
where n is called the rank of the module the MLWE distribution Ms,χ is defined as:

Ms,χ =:
{(

a,

n∑
i=1

ai · si + e

)
: a

$←− Rnq ; e $←− χ

}
,

where · denotes the multiplication in Rq. Let Os,χ denotes an oracle outputting independent
samples according to the distribution Ms,χ. The MLWEd,n,χ problem is said to be
(c, t,m, θ)-hard to solve if for any algorithm A,

Pr[s← U(Rnq ) : AOs,χ(1nd) = s] ≤ θ,

and A runs in time < t, with memory < m and makes at most c queries to Os,χ.

Note that LWE is the particular case of MLWE where d = 1 and the ring version of
LWE (coined RLWE) is the particular case of MLWE where n = 1.

2.3 The LWPE problem
Kamel et al. introduced LPPN as a variant of the LPN problem where a physical function
directly computes incorrect inner products. Analogously, we introduce the LWPE problem.
It requires the definition of physical function adapted from [AMS+11] recalled next.

Definition 3 (Physical function). A physical function PFpd,α is a probabilistic procedure
based on a physical device pd, which can be stimulated with an input x ∈ Zniq , making pd
respond with a (probabilistic) output y ∈ Znoq , with α a set of parameters.

In the LWPE case, pd will be an implementation of an inexact inner product computa-
tions modulo q (implying ni = n represented in dlog2(q)e bits and no = 1 represented in
dlog2(q)e bits) and α is the set of parameters determining its error distribution.
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Definition 4 (Physical inner product). Let s ∈ Znq be a uniform random secret stored
in a keyed device pds. A physical function PFpds,α is called a χ-Physical Inner Product
(χ-PIP) if, on uniform public input a ∈ Znq , it outputs 〈a, s〉 with an additional error
following a distribution χ such that:

∀i ∈ Zq, P̂r[PFpds,α(a)− 〈a, s〉 = i] = Pr [X = i] where X $←− χ.

The LWPE problem can then be specified as follows:

Definition 5 (LWPE problem). Let PFpds,α be a χ-PIP. The LWPE n,χ
pds,α

problem is said
to be (c, t,m, θ)-hard to solve if for any algorithm A running in time < t, memory < m
and making at most c uniformly random queries to a χ-PIP, it holds that:

Pr[s $←− Znq : APFpds,α(1n) = s] ≤ θ.

2.4 Noise distributions
The noise distribution χ of the LWE/MLWE error/secret are sampled either from a discrete
Gaussian distribution DGDσ or from a centered binomial distribution CBDη.

Discrete Gaussian distribution. The discrete Gaussian distributionDGDσ parametrized
by the Gaussian parameter σ ∈ R+ is defined by assigning a weight proportional to exp(−x2

2σ2 )
to all integers x. Note that it can be challenging to implement a discrete Gaussian sampler
efficiently and protected against timing attacks [BCNS15, ADPS16].

Centered binomial distribution The binomial distribution with parameters n and
p is the discrete probability distribution of the number of successes in a sequence of n
independent experiments with individual success of probability p. Its probability mass
function is defined as

(
n
x

)
px(1 − p)n−x with mean = np and variance = np(1 − p). The

centered binomial distribution is obtained by subtracting the mean from this distribution.
We next focus on a sub-family that has the particularity to give symmetric distributions.
For η a non negative integer we denote CBDη the centered binomial distribution with
parameters p = 1/2 and n = 2η. CBDη has mean 0 and variance equal to η/2, and its
samples can be computed as Ση−1

i=0 ai − bi where ai, bi ∈ {0, 1} are uniform independent
bits. Therefore, sampling from the centered binomial distribution is easy and does not
require high-precision computations or large tables like Gaussian sampling does.

2.5 Related constructions
We now provide a few illustrative use cases of LWE/MLWE/RLWE problems exploited in
recent post-quantum cryptographic primitives submitted to NIST competition.

Frodo. The Frodo scheme [ABD+21a] is tightly related to the hardness of a corresponding
LWE problem. Its security depends on the lattice dimension n. Frodo-n with n equal to
640, 976, and 1344 targets Level 1, 3 and 5 as specified in the NIST requirements. The
main operations are simple matrix-vector products. The modulus q is always a power of
two. This ensures that modular arithmetic operations do not require modulo reduction
schemes such as Montgomery or Barrett. Instead, the reduction modulo q is computed by
low-cost bit-masking or even at no cost if the data type of the target platform supports the
number of bits required by the modulus. For level 1 security q = 215 and for level 3 and 5
security q = 216. Frodo requires to sample errors from an approximated discrete Gaussian
distribution DGDσ via lookup tables, where σ is the standard deviation (equal to 2.8,
2.3 and 1.4 for Level 1, Level 3 and Level 5). Frodo relies on the standard “algebraically
unstructured” LWE problem and is therefore simple to implement. However, this simplicity
comes at the cost of reduced efficiency (i.e., a high running time and large bandwidth).
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NewHope. The NewHope cryptosystem [AAB+20] is based on the hardness of the RLWE
problem, both in the Random Oracle Model (ROM) and the Quantum Random Oracle
Model (QROM). Its security depends on the polynomial ring dimension d which has to be
a power of two to maintain the security properties of RLWE and to support the efficient
implementation of Number Theoretic Transform (NTT) algorithms. For bit security levels
of 101 and 233, d is set to 512 and 1024, respectively. The modulus q is fixed to 12, 289 as
it is the smallest prime for which it holds that q ≡ 1 mod 2d (so that the NTT can be
performed efficiently). The noise in NewHope is sampled from a CBDη with parameter
η = 8, avoiding the aforementioned challenge to implement a discrete Gaussian sampler
efficiently and protecting against timing attacks. In contrast to Frodo, NewHope can be
very efficient, both in terms of speed and in terms of key and ciphertext sizes. This is
because it relies on a highly structured ideal lattice. However, exploiting this algebraic
structure requires implementing fast polynomial multiplication algorithms, which also
results in more complicated implementations than those of Frodo.

CRYSTALS-Kyber. The security of CRYSTALS-Kyber [ABD+21b] is based on the
hardness of solving the MLWE problem. In all Kyber variants, the polynomial ring
dimension is fixed to d = 256 and the security depends on the lattice dimension n. Kyber-
(d × n) with n equal to 2, 3 and 4 targets Level 1, 3 and 5. The modulus q = 3, 329 is
a prime satisfying q ≡ 1 mod d .2 Similarly to the NewHope cryptosystem, the Kyber
scheme uses the centered binomial distribution CBDη as the noise distribution, with
parameter η varying between 1 and 2 depending on the target security level. Since Kyber
relies on the MLWE problem, it has a reduced structure compared to (RLWE-based)
NewHope. However, it maintains similar performances (in the specific case of the MLWE
parameters used in Kyber). Also, it offers better scalability because its security can be
adapted by increasing the module size while keeping the ring dimension constant. As for
NewHope, the need to implement fast polynomial multiplication algorithms to exploit the
algebraic structure results in more complicated implementations than those of Frodo.

CRYSTALS-Dilithium. CRYSTALS-Dilithium [DKL+18] is a PQ signature scheme
based on the Fiat-Shamir with aborts approach [Lyu09]. As CRYSTALS-Kyber [ABD+21b],
its security relies on the hardness of solving the MLWE problem. The signature scheme’s im-
plementation consists of symmetric primitives (SHAKE) and operations over a polynomial,
of which the dimension is given by the modulus q = 223 − 213 + 1 and the degree n = 256.
CRYSTALS-Dilithium is a 3rd-round NIST candidate. Its strengths are the small size of
its signatures and public keys, and its simplicity of implementation. CRYSTAL-Dilithium
uses a uniform noise in its instances of the MLWE problem in order to avoid the difficult
implementation of Gaussian sampling, which leads to side-channel attacks if performed
incorrectly [BHLY16, EFGT17, PBY17]. However, using a physical rounded-Gaussian
sampler based on LWPE could be considered as an interesting variant.

2.6 Statistical tests
In this paper, we will need statistical tests to detect potential data dependencies in the
LWPE samples distributions due to physical imperfections. In general, such tests use
probability theory to reject (or not) a hypothesis, commonly called as the null hypothesis,
thanks to a set of samples. Therefore, statistical tests can produce two types of errors:

• Type I errors (or false positives, or alpha risk). These errors capture the risk of
rejecting the null hypothesis when it is true. Most statistical tests (and the ones we
will use) quantify the likelihood of such errors and name it p-value.

2 The use of NTT algorithms requires that q ≡ 1 mod 2d. However, to reduce the bandwidth (by
decreasing the modulus), version 2.0 of Kyber preprocesses the polynomial before applying the NTT so
that a polynomial with degree d is divided into two low-dimensional polynomials of degree d/2.
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• Type II errors (or false negatives, or beta risk). These errors capture the risk of not
rejecting the null hypothesis when it is false. They cannot be quantified in general.
However, the bigger the set of samples used, the lower this error becomes.

Concretely, we used the Kruskal-Wallis test (or one-way ANOVA on ranks), which is
a nonparametric test used for testing if independent samples originate from the same
distribution [KW52]. It works under the null hypothesis that the empirical distributions
are identical, which should be the case if there are no data-dependent errors.

3 Introducing LWPE with a design example
We now introduce the main design ideas needed to instantiate practically-relevant LWPE
instances. For this purpose, and for the sake of simplicity, we will first focus on a small LWE
modulus (q = 28) and a small lattice dimension n = 128. Based on these parameters, we
will describe how to implement an LWPE processor whose errors’ distributions approximate
a centered binomial distribution (CBDη) with parameter η ∈ {2, 3}. We investigate two
approaches for this purpose, and provide rationale about the resulting error distribution
and its security. In Design A, we directly extend the LPPN prototype in [KBS+18] and
sample the two Least Significant Bits (LSBs) of the LWPE processor’s output incorrectly,
so that the combined errors approximately follow a CBD3. Yet, we show that such an
approach is not successful as it leads to (mathematical) data dependencies in the error
distributions. Instead of sampling at the final stage just before outputting the result,
Design B then generates the errors by sampling the LSB of η bytes at a designated
internal stage. Interestingly, we will show that this approach cancels the previously
mentioned mathematical data dependencies. Both designs are implemented in a 65-nm
technology using a fully digital design approach. Pre-layout simulations are performed
using ULTRASIM within the CADENCE environment. We used 216 uniformly distributed
random 128-byte inputs a and a single uniformly distributed random 128-byte secret key
s. The supply voltage is fixed at nominal 1.2V and the clock frequency is 500MHz.

Note that, as will be detailed in Section 3.3, the shape of the noise distribution is not
a critical security requirement. So the selection of a CBD in our next designs is just used
as an illustrative example that can be found in PQ cryptographic schemes.

3.1 Design A
We first present the architecture of the LWPEA processor and demonstrate the feasibility
of generating samples following an approximated CBDη (η = 3) distribution.

3.1.1 LWPEA implementation

Our first approach to implement a χ-PIP is illustrated in Figure 1. The inner product
block takes 128-byte vectors of the secret s and the challenge a as inputs, and outputs a
single byte y. Two specific sampling clocks clkD0, clkD1 are generated by two variable
delay lines (VDL0 and VDL1) such that the error probability of the sampled output bits
provides a good approximation of the target error distribution.

The inner product block comprises 128 parallel 8-bit multipliers used to process the
byte vectors a and s. The sum of these products is implemented with a seven-stage tree of
multiple-size parallel adders. Two bits (b0 and b1) of the inner product block output byte y
are sampled by two flip-flops clocked thanks to delayed versions of the system clock, namely
clkD0 and clkD1. These flip-flops are responsible for sampling the designated output bits
during their glitchy period before they stabilize. The output of these two flip-flops along
with the remaining bits of the inner product output y (〈b7 : b2〉) are sampled with the
system clock clk to synchronize and produce the LWPEA output yout.
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Figure 1: Architecture of the LWPEA processor.

Figure 2: Block diagram of the Variable Delay Line (VDL).

To ensure that the generated errors follow a CBDη distribution, the error probability
on each bit needs to be bounded. As in LPPN prototypes, the key aspect to guarantee
such bounds is to design a variable delay line and a control circuitry per bit, such that
they can set the delay of the sampling clocks clkD0 and clkD1 to capture the non-stable
state of the designated bits. Concretely, this typically works in two phases: calibration
and generation [KBS+18]. Since the calibration we use is identical to the LPPN case, we
do not describe it nor implement it for simplicity. Instead, the control signals CNTL0
and CNTL1 (which are 3-bits each) are entered as inputs to the LWPEA module. Each
variable delay line consists of two parts: a fixed delay to compensate for the computation
of the inner product until the final adder stage, and a variable delay to sample incorrectly
the relevant output bit. Figure 2 demonstrates the block diagram of the VDL. The fixed
delay part uses multiple delay cells provided by the standard cell library of the foundry.
The implementation of the variable delay part is based on the current starved inverter
concept [MNS05]. It comprises a chain of inverters whose supply and drain currents
are digitally controlled by a power gate header and footer cells (also provided by the
standard cell library of the foundry). The number of stages in the variable delay block
is adjusted such that both the tuning range and the delay steps provide reliable control
over the required probabilities of error. Finally, an encoder is needed to convert the binary
CNTL〈2 : 0〉 signals into its corresponding thermometer encoded c〈7 : 0〉 signal to control
how much power gate cells are activated, and thus the delay.
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In order for the error distribution of the proposed LWPEA processor to approximate a
CBDη (with η = 3 in our example), we explored all the error probability combinations
on b0 and b1 of the LWPEA processor output, and computed the statistical distance
(∆ = Ση

j=−η |CBDη(j)− χ(j)|) between the CBD3 distribution and the one of the
LWPEA error, with χ taken over multiple samples by computing the error e = y − 〈a.s〉.
After mathematically searching all such possible combinations using a Python script, the
minimum statistical distance (0.128) was achieved by setting the error probability on b0
to 0.5 and on b1 to 0.37. Figure 3 shows the resulting error distribution of the LWPEA
processor compared to the required CBD3, highlighting a first limitation: the errors
generated with the best fitted parameters do not exactly follow a CBD3 distribution.3
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Figure 3: LWPEA: Error distribution approximating CBD3.

3.1.2 Mathematical output data-dependencies of the errors

As previously mentioned, exactly approximating a CBD is not a critical security requirement
for LWPE. By contrast, a more sensitive implementation challenge when instantiating hard
physical learning problems is to limit the data dependencies of their error distribution.
For example, it has already been put forward in [BHK+21] that the errors of an ε-PIP
generating LPPN samples can exhibit significant output data dependencies due to physical
imperfections. In this section, we highlight that the previous generalization of an LPPN
design towards an LWPE one leads to another source of strong (mathematical) output
data dependencies that neither LWE samples nor LPPN samples exhibit.

In summary, since the error is not added (in the sense that it is sampled from a distinct
CBDη distribution) as in a standard LWE sample t = 〈a.s〉+e, but generated by sampling
incorrectly the last two LSBs of the LWPEA output, this error does not propagate to
higher-order bits. In fact, the incorrect sampling of the LSBs corresponds to an XOR
operation between the output and a binary vector equivalent to 0, 1, 2, or 3 (since two bits
of noise are considered in our example). As a result, the error range is not equal across
different values of the correct LWPE output. This means that the error of an LWPE
processor will depend on the correct value of the last two LSBs of the output. We plot in
Figure 4 the error ranges as well as the output of both LWE and LWPEA samples for our
example where q = 16 and η = 3, where the mathematical dependencies are clear.

3 Another limitation of this approach is the difficulty to approximate a CBDη distribution with
η 6= 2l − 1. With η = 3, manipulating the last two LSBs of the LWPE output directly supports an error
range {−3, . . . ,+3}. However, if η = 2, the required support range of the error distribution is {−2, . . . ,+2}
and to achieve this we need to reduce the probability of occurrence of ±3 errors to a negligible level.
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Figure 4: Errors of (a) LWE and (b) LWPEA versus the correct value of the last two
LSBs of 〈a, s〉, and incorrect output of (c) LWE and (d) LWPEA versus the correct output
for an example where q = 16 and η = 3. The LWPE output values obtained in (d) are
superimposed on the ones of the LWE in (c) as red rectangles.

We note that the errors of the ε-PIP generating LPPN samples did not feature such
mathematical output dependencies in [BHK+21] (only physical output dependencies were
observed). The reason is twofold. First, these errors were generated by sampling a single
bit (i.e., the output). Second, these errors (almost) followed a Bernoulli distribution that
does not take into consideration whether the actual value of the error was +1 or −1.

We conclude that generalizing LPPN prototypes into LWPE ones to approximate
practically-relevant noise distributions (e.g., for PQ applications) using this approach
is not ideal. First, the error distribution of an LWPEA instance does not approximate
well the target (e.g., CBD3) distribution. More critically, the approximated distributions
exhibit mathematical dependencies that may affect the security of the assumption. We
next discuss an alternative approach to LWPE prototypes addressing these limitations.

3.2 Design B
To mitigate the previous mathematical error dependencies, we next propose to generate
the errors by sampling the LWPE processor incorrectly at an internal stage rather than at
its output. We first discuss the implementation details of the resulting LWPEB processor
followed by simulation results. Then, we explain why this approach allows canceling the
mathematical output data dependencies of the error distributions.

3.2.1 LWPEB implementation

Figure 5 illustrates the proposed architecture of the LWPEB processor. It is quite similar
to the LWPEA design where the inner product block takes 128-byte vectors of the secret s
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and the challenge a, multiplies them (using 128 parallel 8-bit multipliers), and then adds
them two by two in a seven stage adder tree to output a single byte y. However, there
are two main differences between the two approaches. The first one is that the flip-flops
responsible for the incorrect sampling are placed after an internal adder stage (Add3 in
this case) instead of at the output of the LWPEA processor. The second difference is that
the errors are generated from sampling the LSB of η bytes (η = 2 in the current example of
Figure 5) rather than multiple LSBs of a single byte (as in the LWPEA processor). Indeed
it is easier to ensure that the generated errors of the LWPEB processor follow a CBDη

distribution by sampling only the LSB of multiple bytes (b0 and not higher-order bits), in
which case the error probability needs to be equal to 0.5 for all the erroneous bits.

Figure 5: Architecture of the LWPEB processor.

Next, the output of the incorrect sampling flip-flops along with the remaining bits
of the concerned stage is sampled with the system clock clk to synchronize them before
being passed to the subsequent adder stages to produce the final LWPEB output yout. The
incorrect sampling flip-flops are clocked by delayed versions of the system clock. Similar to
the LWPEA processor, the current approach uses variable delay lines with control signals
to adjust the delay of the sampling clocks. Figure 6 shows the error distribution of the
LWPEB processor compared to the required CBD2 and CBD3 distributions. Clearly, the
current design of the LWPEB processor leads to a much tighter fit of the output error
distribution compared to that of the previously described LWPEA processor.4
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Figure 6: LWPEB: Error distribution approximating (a) CBD2 and (b) CBD3.

4 The statistical distances with CBD2 and CBD3 are 3.5× 10−3 and 5.1× 10−3, respectively.
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We note that sampling incorrectly at the output of other internal stages is possible. Yet,
opting for a later stage in the adder chain is in general a good approach since it limits the
risk of exploitable input data dependencies mentioned in Footnote 1. Besides, it reduces
the need to add registers (and therefore decreases the area and power consumption).

3.2.2 Mathematical output data-dependencies of the errors

Sampling incorrectly at an internal stage of the LWPEB processor causes the errors in the
sampled output of this specific stage to encounter the same mathematical data dependencies
as previously explained in section 3.1.1. However, since this is not the final output and the
remaining bytes of the same and subsequent stages are yet to be added, the mathematical
data dependencies are expected to be reduced thanks to diffusion and eventually canceled
out, which we illustrate with the next example. Let n = 128, q = 256 and η = 2. Let also
the error be generated by sampling incorrectly the output of the fourth adder (Add3) at
b0 of bytes B0 and B1. We show in Figure 7 three different scenarios (marked by distinct
colored rectangles) in case the correct output is equal to 125 as highlighted in yellow.

Figure 7: Illustration of the reduced output data dependencies in LWPEB, for an exemplary
case where η = 2 and the errors are introduced at the Add3 stage of the processor.

The error at bytes B0 and B1 of Add3 ∈ either to {−1, 0} or to {0, 1}, depending on
the value of their LSB being either 1 or 0, respectively. Therefore, if B2 = 0, the correct
values of B1 = 0 and the one of B0 = 125, then the error of the final output ∈ {−1, 0, 1}
(marked in blue). Certainly, multiple combinations of byte values at Add3 will lead to
the same output (125 in this example). We will consider two cases such that the error at
the final output indeed ∈ {−2, . . . , 2}. If B2 = 123, the correct values of B1 = 1 and the
one of B0 = 1, then the error of the final output ∈ {−2, 0, 1} (marked in green). Finally,
if B2 = 125, the correct values of B1 = 0 and the one of B0 = 0, then the error of the
final output ∈ {0, 1, 2} (marked in red). Hence, the error at the final output can take
values from the full error support of a CBD2 distribution (despite it does not for the
intermediate stages) and these scenarios may occur with other combinations of byte values.
Simply stated, the adder tree is such that in the final stage, an erroneous byte X is added
with an independent and uniformly distributed byte Y to produce the output. So even if
the error distribution is dependent on X, it is not dependent on the output X + Y . As a
result, without side-channel leakage on Y (or other physical defaults that we discuss in
Section 5.3), there are no exploitable data-dependencies in the LWPEB samples.

We complement this example with the results of Figure 8, where the outputs of the
LWPEB processor targeting a CBD2 are plotted versus the correct value of (〈a, s〉). As
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can be seen from the inset plots, the outputs extend across the full error support range of
the CBD2 for all correct values, indicating no mathematical output dependencies.

Figure 8: LWPEB: incorrect outputs versus correct outputs in case η = 2.

3.3 Security requirements
Despite a physical inner product may not produce an error that exactly follows a CBD
(or any other target distribution), the assumption that “the performance of the best-
known attacks against LWE-based encryption does not depend on the exact distribution
of noise, but rather on its standard deviation” is commonly admitted [ABD+21b]. More
precisely, the property that is required for LWE to be hard is that the error distribution is
B-bounded [BGV12]. It is assumed that a B-bounded error distribution provides security
in both the QROM [Reg09] and the ROM [Pei09] for rounded Gaussians. The use of other
B-bounded distributions, with sufficient standard deviation, does not seem to lead to better
attacks [BGV12, DT14]. In the LWPEB case, the CBDη distribution is approximated by
flipping η LSBs, which guarantees the resulting distribution is B-bounded [BGV12]. The
empirical standard deviation of the error distribution will be given with the prototype
hardware implementation of LWPE in Section 5 in order to assess its security level.

4 LWPE design Space
The previous section put forward the feasibility to design a χ-PIP where χ is a CBDη

distribution, in order to generate useful LWPE samples. In this section, we further
expand our design space and explore the possibility of applying inexact computing to
other scenarios. Figure 9 summarizes the dimensions of this design space (marked in
different color codes). Elements highlighted in green imply high-level compatibility with
the proposed concept of inexact computing. We mark in yellow the parts of the design
space that may be less efficiently implemented thanks to incorrect sampling. Finally,
elements emphasized in orange indicate stronger implementation challenges still to be
solved. We next discuss these different dimensions of the design space in more detail.

Lattice structures. LWE-based cryptosystems can rely on different variants: the standard
LWE, the ring-LWE or the module-LWE problem. The standard (also called plain) LWE
is a hard learning problem relying on algebraically unstructured lattices. Consequently,
the main operations are simple matrix-vector products in ring Zq. On the other hand,
algebraically structured lattices such as RLWE and MLWE use a polynomial ring Rq =
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Figure 9: LWPE design space.

Zq[x]/(xd + 1), where d is a power of 2, instead of Zq. In theory, inexact computing can
be used in both cases to generate erroneous samples. Yet, the efficient implementation
of RLWE or MLWE schemes may require to exploit more advanced algorithms for the
polynomial operations, especially the multiplication, as we discuss next.

Multiplication algorithms. Various algorithms can be used to perform the multiplication
operations of LWE-based schemes. In case the lattice-based cryptosystem relies on the
standard LWE problem, the main arithmetic operations are simple matrix-vector products.
This enables the use of simple Schoolbook multiplication which directly supports the
previously described use of inexact computing to generate errors.

On the other hand, for algebraically structured lattices, multiplications take place in
Rq. This generally necessitates the use of fast polynomial multiplication algorithms such as
the Number Theoretic Transform (NTT) if the cryptosystem parameters are NTT-friendly.
In this case, the polynomial coefficients are first converted to the NTT domain before
pointwise multiplications take place. The result is then converted out of the NTT domain
(i.e., we compute NTT−1(NTT(a) × NTT(s))). In cases where a polynomial matrix is
multiplied by a polynomial vector (e.g., in Kyber), further addition operations are done
before transforming the final result to polynomial domain (i.e., NTT−1(Σn−1

i=0 NTT(ai)×
NTT(s))).5 Consequently, error generation via incorrect sampling is possible at one of the
(multiple) stages of the multiplication. As previously, one can sample the final output after
the inverse NTT operation. However, this approach leads to errors featuring mathematical
output dependencies, because the incorrect sampling takes place at the LSB of the output
and will not propagate to higher-order bits, as previously discussed in Section 3.1. It is also
feasible to sample incorrectly at an intermediate stage, between two addition operations
(i.e., NTT(noisy(NTT−1(NTT(a0) × NTT(s)))) + Σn−1

i=1 NTT(ai) × NTT(s)). In that
case, the mathematical output dependencies are expected to be diffused thanks to the
subsequent addition operation(s), as previously explained in section 3.2.

Other popular multiplication algorithms include Karatsuba [KO63], Toom-Cook-k-
way [Too63]and the Kronecker substitution. Unlike the NTT, these multiplication al-
gorithms do not require any restrictions on the cryptosystem modulus: they apply to
any prime or power of two modulus. For the rest, the Kronecker substitution leads to
similar challenges as the NTT. They both use pointwise multiplication after evaluating

5 In Kyber, the result of the polynomial multiplication is kept in NTT domain to further compute the
public key and ciphertext. As a result, an extra NTT-1 operation is necessary to sample incorrectly in the
polynomial domain as well as an extra NTT to go back to NTT domain if necessary.
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the polynomial using predefined points. As a result, it does not directly support the use of
inexact computing to generate errors and requires the multiplication result to be converted
back to polynomial. Both the Karatsuba and Toom-Cook algorithms are based on a
divide-and-conquer strategy. The Karatsuba multiplication splits each of the multiplicand
polynomials into two degree-d/2 polynomials, whereas the Toom-Cook-k-way one splits
them into k equal parts. Further splitting is necessary to reduce the number of multipli-
cation steps. Both algorithms are compatible with our incorrect sampling techniques to
generate errors since the coefficients are multiplied without any transformation.

We note that it is possible to combine algorithms as in [AHH+19], where the authors
used Kronecker substitution (with improved techniques [Har09]) together with either
Karatsuba or Schoolbook multiplications for implementing Kyber. Another example
in [MKV20], where the authors carry out the polynomial multiplications of Saber [DKRV18]
(a public key encryption scheme, NIST Round 3 finalist, that relies on the hardness of
the module learning with rounding problem), by combining Toom-Cook and Karatsuba
with an evaluation step (similar to the Kronecker substitution) to perform pointwise
multiplication. In yet another work, Karatsuba is used with NTT in order to reduce the
number of multiplications needed [DMG21, XL21]. Whether generating errors with inexact
computing is supported or not by these approaches largely depends on the individual
algorithms of such combinations, which we leave as a scope for further investigations.

Modulus. Modular computations used in lattice-based cryptosystems either use a prime
or a power of two modulus. Prime moduli are usually chosen to satisfy either q ≡ 1mod d
(as in Kyber) or q ≡ 1 mod 2d (as in NewHope), where d is the ring dimension in both
cases. This is required to enable the fast NTT-based polynomial multiplication employed in
several post-quantum cryptosystems. Accordingly, modular operations necessitate the use
of reduction algorithms such as Barrett [Bar86], Montgomery [Mon85] or K-RED [LN16].
The Barrett algorithm optimizes the modular reduction by replacing the expensive divisions
(used in classical modular reduction) with multiplications and bit shifts. Concretely, to
compute (a×b)modq we need to evaluate (a×b)−((a×b×p)� l)×q, where p = b 2l

q c,� is
the right bit shift operation and l needs to be chosen to reduce the difference between 1

q and
p
2l . Such a reduction technique is compatible with the inexact computing concept without
any extra cost. The Montgomery reduction rather avoids expensive division operations by
transforming the input multiplicands to a “Montgomery form” (i.e., ā = (a× R) mod q
and b̄ = (b×R) mod q), which is basically the residue class of the multiplicands, using a
constant R > q that is coprime to q, and is always a power of two. Thus the only division
necessary is the division by R which is a simple bit shift. The Montgomery reduction is
then applied to evaluate the result of the modular multiplication which is in Montgomery
form (i.e., ā× b̄×R−1 mod q). In cryptosystems such as Kyber, several multiplications are
performed in a row, so the intermediate results can be left in Montgomery form while only
the final output is transformed out of it. Consequently, sampling incorrectly to generate
errors is not directly possible in Montgomery form. To solve this issue, we need to convert
the product (or a subsequent result of modular operations in the processor implementing
a χ-PIP) out of the Montgomery form (using the Montgomery reduction) before the
incorrect sampling step. This comes at a slight increase in the overall implementation cost.
Eventually, the K-RED algorithm is somewhat similar to Montgomery as it operates on
the residue class of the input. However, K-RED outputs a value that is congruent to a
multiple of the input. So again, the K-RED algorithm does not support error generation
via incorrect sampling unless the output is converted out of the K-RED representation.

We note that a power-of-two modulus facilitates the operations since reduction modulo
q can then be computed by low-cost bit masking, or even at no cost if the size of the target
platform matches the number of bits of the modulus (e.g., 16-bit or 32-bit). Such moduli
facilitate the use of inexact computing to generate errors as well.
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Error distribution. Natively, many LWE-based cryptosystems require the generation of
errors from the (discrete) Gaussian distribution [BLP+13]. However, various works have
shown that it is challenging to implement a discrete Gaussian sampler efficiently [BCNS15],
especially if the implementation has to be protected against timing attacks (see for
example [PBY17]). Therefore, PQ cryptosystems such as Frodo use a distribution that
is very close to it and at the same time easier to implement via pre-computed lookup
tables. We posit that a similar conclusion holds for implementations based on inexact
computing. Namely, we expect the generation of discrete Gaussian errors to be significantly
more challenging, especially due to the tail of the distribution. As a result, the centered
binomial distribution (CBD) is gaining popularity, thanks to its easy, efficient, and
secure implementation features [ADPS16]. It is used in both the Kyber and NewHope
cryptosystems. From a security viewpoint, this choice is backed up by the argument that
the performances of the best attacks against LWE-based encryption schemes do not depend
on the exact distribution of the error, but rather on its standard deviation [ABD+21b].

Other design parameters. The ring dimension and the polynomial degree are not influ-
encing the possibility to leverage inexact computing to generate erroneous samples.

5 FPGA prototype
The previous sections described how one could instantiate instances of LWPE based
on simulations, and discussed the wide applicability of this concept for the efficient
implementation of cryptosystems. In this section, we finally confirm the concrete feasibility
of this idea by describing an FPGA prototype of an LWPE instance. Our target device is a
Xilinx Artix-7 (28nm technology) mounted on a NewAE CW-305 board. We first describe
the general architecture of our design and then discuss cost and security considerations.

Note that the adversary we consider in this paper is a passive one. But as discussed
in [BHK+21], our implementation can be complemented with a fault detection scheme
to prevent manipulations of the supply voltage targeting the calibration of the processor.
More generally, previous work investigated the impact of other environmental (e.g., voltage)
changes on LPPN samples [KBS+18]. Since our LWPE prototype leverages similar
techniques to insert (bit-level) faults in inner product designs, we expect it to behave
similarly, which we leave as an interesting scope for further investigations.

5.1 Architecture of the LWPE prototype
Our FPGA prototype instantiates a 1024-bit inner product modulo 28 with the same
CBD-2 error distribution as discussed in Section 3.2. The choice of a power-of-two modulus
allows us to simplify the architecture and, as will be clear later, the analysis of the output
data dependencies. The prototype is composed of two main modules (see Figure 10): the
Physical Inner Product (PIP) module and the Variable Delay Line (VDL).

Physical Inner Product. The inner product block receives the 128-byte input secret s
and the 128-byte public input a. Each byte of the input secret si, with i ∈ [0, 127], is
multiplied by the corresponding public input byte ai, and the result is truncated to the
least significant 8 bits. The output of the multiplication layer is then fed to 7 successive
layers of 8-bit adders. The result at each intermediate adder layer is truncated to the
least significant 8 bits as well. Clearly, the architecture of the χ-PIP in this configuration
is byte-slice as any intermediate value is truncated at the least significant 8 bits, and
adder/multiplier units are all 8-bit wide. It has to be noted that each intermediate wire
has been declared with the DONT_TOUCH HDL constraint, in order to guarantee that
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Figure 10: LWPE FPGA prototype (dashed lines are only for configuration and testing).

all the signals of the inner product are kept during the synthesis and the place&route
steps of the design flow. This constraint is usually needed as we leverage the generation
of combinatorial glitches to achieve inexact sampling and generate errors. As shown in
Figure 11, the χ-PIP is organized as a two-stage pipeline. The first stage is composed
of the multiplication layer and the first 4 adder layers. The second one is composed of
the remaining adder layers. As also discussed in Section 3.2, the incorrect sampling is
performed on the LSB of byte B0 and B1 of the 5th adders layer. The final 8-bit output
corresponds to the output of the last adder in the logical cone of the second stage.
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Figure 11: Architecture of the prototype LWPE’s χ-PIP.

As the generation of physical errors in this design takes place in an intermediate stage
of the pipeline, we must ensure that no metastable signals are propagated to the second
part of the χ-PIP computation and Clock Domain Crossing (CDC) is safely done. For
a classical digital design, the clock replica generated by the VDL can be considered as
an additional clock domain, which should be correctly handled to avoid issues after the
inexact sampling. Therefore, flip-flops that are devoted to inexact sampling are doubled,
as shown in Figure 12. A first D-type flip-flop is fed by the delayed clock clk_del, which
has the role to capture a non-stable intermediate and to generate a physical error with
a certain probability (e.g., 0.5 in this specific case). A second D-type flip-flop, fed by
the system’s clock tree (clk_sk), resynchronizes the datum sampled by the first stage, in
order to make it compliant with the rest of the architecture. The two flip-flops have to be
instantiated with the Xilinx’s ASYNC_REG attribute, so that this double stage sequential
element is preserved from optimizations that would remove it from the implementation.
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Figure 12: Inexact sampling module (A) and its relative timing diagram (B).

Variable Delay Line. The Variable Delay Line (VDL) makes use of a fixed delay com-
ponent, provided by two LUT5 configured as buffers, and a programmable one, that is
provided by a 16 CARRY4 chain and a tree of F7/F8 and LUT-based multiplexers. A
CARRY4 unit is a specific logic unit that provides a very fast path for carrying propagation
in arithmetic circuits. These specific units offer a variety of outputs that are characterized
by a very fast propagation delay, making them suitable to implement fine-grain delay lines.
In particular, 16 CARRY4 chains provide 64 taps of ∼20ps each. The taps are selected
by a 5-bit control word (CNTL). This compact structure has been recently proposed by
Bellizia et al. in [BHK+21] for the design of an LPPN prototype. We currently used two
independent VDLs in the LWPE prototype, but further optimization may lead to different
choices. For example, the two incorrectly sampled bits may share the same VDL if the
two-timing paths provide a very similar propagation delay in all PVT corners.
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Figure 13: FPGA implementation of the Variable Delay Line (VDL) from [BHK+21].

5.2 FPGA Resources
We report a detailed summary of the resources needed to implement our LWPE prototype
on the Xilinx Artix-7 FPGA in Table 1. As for the LPPN prototype in [BHK+21], we
observe that the cost of the (unavoidable) inner product module is dominant and the
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cost of the VDDs is negligible. As in this previous work as well, we note that comparing
an LWPE prototype with a classical LWE implementation is not straightforward since it
would require comparing the cost of a dedicated RNG for which many solutions exist. Yet,
we believe the general conclusions of LPPN prototypes extent to LWPE. Namely, hard
physical problems can be implemented efficiently and reliably, and they gain interest when
side-channel attacks are a concern since their design can be directly masked thanks to the
homomorphic nature of the inner product computations, without the need to protect the
generation of errors against leakage, since these errors are never computed explicitly.

Table 1: FPGA resources of our LWPE prototype.

Module LUT Regs
LWPE 5557 2127
χ-PIP 5515 2127
VDL1 21 0
VDL2 21 0

A bit more precisely, the standard alternatives to implement LWE samples are to use a
TRNG or a PRNG. The conceptual advantages of LWPE over the TRNG solution is that
it avoids the simple side-channel attack where the adversary would probe the error. Its
quantitative advantages are more difficult to evaluate. For illustration, we report in Table 2
the results of the survey in [PMB+16] which compares the throughput, the area footprint,
and the feasibility/reliability of different FPGA-suitable TRNGs. Overall, we observe that
the low overheads needed to produce LWPE samples are in line with the ones of cheap /
low throughput TRNGs. The quantitative comparison with PRNGs is simpler, especially
if they have to be prevented against side-channel attacks, since it would typically require
the implementation of either a masked primitive or a leakage-resilient stream cipher, both
of them being significantly more expensive to implement [GMK17, YSPY10].

5.3 Empirical evaluation of the results
We first analyzed the standard deviation of the error samples collected from our FPGA
prototype. For this purpose, we used 409, 600 samples (4 sets of 102, 400 samples under 4
different keys). For each of those sets we estimated a standard deviation of 1.00 (i.e., very
close to the distribution of the CBD2 which is exactly equal to 1). This is sufficient to
guarantee the security against LWE attacks according to estimators like [APS15].

Next, and as a last contribution, we used our FPGA prototype to assess the output
data dependencies of the errors based on a (much) larger number of samples than allowed
by simulations. We ran the Kruskal-Wallis statistical test mentioned in Section 2.6 on the
sets of samples in order to assess their potential output dependencies.

Concretely, and for each of the 4 keys, we considered the 256 empirical distributions

Table 2: Summary of RNGs implementations on Xilinx Spartan-6 from [PMB+16].

RNG Type Area Special Macros Bit Rate Feasibiliy
(LUTs/Regs) [Mbps] & Repeatability

ERO 46/19 No 0.0042 Very Good
COSO 18/3 No 0.54 Very Poor
MURO 521/131 No 2.57 Good
PLL 34/12 Yes 0.44 Medium
TERO 39/12 No 0.625 Very Poor
STR 346/256 No 154 Poor
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obtained by sorting the samples according to the correct value of their inner product. The
Kruskal-Wallis test was then used with the null hypothesis that all those error distributions
were identical. The test did not reject this null hypothesis despite a large number of samples
available. As usual with such statistical tests, this does not prevent small dependencies
could be observed with even more samples. Yet, the important observation here is that
the solutions described in Section 3.2 to prevent mathematical output data dependencies
extents to physical output data dependencies. So we can anyway conclude that our LWPE
prototype generates samples with significantly lower output data dependencies than the
LPPN prototype in [BHK+21]. And as a result, as long as an adversary does not gain any
leakage on the intermediate computations of the LWPE prototype, we can assert with
confidence that the the LWPE samples are closer to LWE ones than LPPN samples are
compared to LPN samples.6 Combined with the observation that both LPPN and LWPE
prototypes have excellent features for side-channel resistance thanks to masking (meaning
that such leakage would be hard to exploit if these prototypes are masked), which will
further reduce data dependencies (see the discussion of Section 5 in [BHK+21]), we can
therefore conclude that the output error distributions of our LWPE prototype has good
features for integration in the implementation of actual cryptosystems.

We note that the limited physical data dependencies of the LWPEB samples has a
simple physical explanation. Looking back at Section 3.2.2, we know that mathematical
data dependencies vanish due to the addition of uniformly distributed and random value Y
with the erroneous intermediate computation X. So as long as X and Y are also physically
independent (i.e., as long as there are no couplings / crosstalk in the circuit such that
the errors of X would be influenced by the value of Y ), the same observation holds for
physical data dependencies. More precisely, these physical dependencies will occur over
intermediate values, but the resulting error will be independent of the correct value of the
inner product. Since we know from the leakage literature that such coupling effects are in
general hard to measure and exploit [CBG+17], it is natural that the coupling-induced
data-dependent errors are significantly more difficult to detect than the glitch-induced
data-dependent errors observed for the LPPN prototype of [BHK+21] — they may even
be impossible to detect without artificially amplifying them by design.

6 Conclusions and further research
Hard physical learning problems have been proposed as a provocative idea to circumvent
certain implementation challenges in recent cryptosystems based on hard learning problems.
First progresses in this direction were focused on the simpler LPN/LPPN case, and their
generalization to LWE/LWPE was therefore an important open question (since the LWE
assumption is much more versatile than the LPN one). In this paper, we showed that such
a generalization is possible, although instances of LWPE require to tweak some of the
design ideas used in LPPN prototypes. Namely, LWPE designs highly benefit from the
introduction of the errors in an intermediate computation stage rather than at its output,
in order to reduce the output data-dependencies of the errors’ distributions.

These results lead to interesting scopes for further investigations. First, one could
study whether the design tweaks we used for LWPE could be used in LPPN prototypes
as well. This may not be direct since the simplicity of the LPPN computations leaves
less room (i.e., critical path) to introduce errors in intermediate stages while keeping
a sufficient control of the error probability. But combining this idea with longer serial
parts than in [BHK+21] could lead to positive outcomes. Second, we showed that the
output data-dependencies of our LWPE prototype can be made small. But even if the

6 Strong leakage on intermediate computations could make it possible to exploit their data dependencies
before diffusion reduces them. Whether such attacks can be efficient is an interesting open problem.
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exploitation of such small dependencies is not a direct security threat, a formal reduction
from the standard LWE problem to a LWE-OD problem with output dependencies remains
of theoretical interest (and may be motivated by other LWPE designs). Eventually, the
understanding of the performances, reliability and side-channel security of hard physical
learning problems remains at an early stage. So on the one hand, further challenging
these ideas in concrete case studies, and possibly designing schemes that can better take
advantage of approximate computing, would be beneficial to better specify the contexts
in which they are useful. And on the other hand, investigating the robustness of LWPE
against environmental changes (e.g., power supply, clock frequency, temperature) and
formalizing security against input data dependencies are important long-term goals.
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