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Abstract

Unmanned aerial vehicles (UAVs), more commonly named drones, are one of themost versa-
tile robotic platforms for their high mobility and low-cost design. Therefore, they have been
applied to numerous civil applications. These robots generally can complete autonomous or
semi-autonomous missions by undertaking complex calculations on their autopilot system
based on the sensors’ observations to control their attitude and speed and to plan and track a
trajectory for navigating in a possibly unknown environment without human intervention.
However, to enable higher degrees of autonomy, the perception system is paramount for ex-
tracting valuable knowledge that allows interaction with the external world.

Therefore, this thesis aims to solve the coreperception challenges of an autonomous surveil-
lance application carried out by an aerial robot in an outdoor urban environment. We address
a simplified use case of patrollingmission tomonitor a confined area around buildings that is
supposedly under access restriction. Hence, we identify themain research questions involved
in this application context. On the one hand, the drone has to locate itself in a controlled
navigation environment, keep track of its pose while flying, and understand the geometri-
cal structure of the 3D scene around it. On the other hand, the surveillance mission entails
detecting and localising people in the monitored area. Consequently, we develop numerous
methodologies to address these challenging questions. Furthermore, constraining theUAV’s
sensor array to a monocular RGB camera, we approach the raised problems with algorithms
in the computer vision field.

First, we train a neural network with an unsupervised learning paradigm to predict the
drone ego-motion and the geometrical scene structure. Hence, we introduce a novel algo-
rithm that integrates a model-free epipolar method to adjust online the rotational drift of
the trajectory estimated by the trained pose network. Second, we employ an efficient Convo-
lutional Neural Network (CNN) architecture to regress the UAV global metric pose directly
from a single colour image.

Moreover, we investigate how dynamic objects in the camera field of view affect the lo-
calisation performance of such an approach. Following, we discuss the implementation of
an object detection network and derive the equations to find the 3D position of the detected
people in a reconstructed environment. Next, we describe the theory behind structure-from-
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Thesis advisor: Professor Holger Voos Claudio Cimarelli

motion and use it to recreate a 3Dmodel of a dataset recorded with a drone at the University
of Luxembourg’s Belval campus.

Ultimately, we perform multiple experiments to validate and evaluate our proposed algo-
rithms with other state-of-the-art methodologies. Results show the superiority of our meth-
ods in different metrics. Also, in our analysis, we determine the limitations and highlight
the benefits of the adopted strategies compared to other approaches. Finally, the introduced
dataset provides an additional tool for benchmarking perception algorithms and future ap-
plication developments.
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Chapter 1. Introduction

The recent decade’s significant leap forward in robotics has enabled numerous civil ap-
plications [250] to adopt advanced technology, which has become widely available through
normal commercial channels. Among the technological platforms open to the general pub-
lic, aerial robots are the most versatile due to their high mobility and low-cost design. Feron
and Johnson [253, p.1011] attribute the term “aerial robot” toRobertMichelson. He used it
to describe intelligent flying machines capable of accomplishing complex missions with var-
ious degrees of autonomy. We use the more popular concept of Unmanned Aerial Vehicle
(UAV), which includes multiple types of drones that can be teleoperated by a human pilot
or execute a planned flight assisted by the onboard controller and sensor system. We gen-
erally distinguish UAVs that are “lighter-than-air”, such as blimps, from the more familiar
“heavier-than-air”, e.g., wing type and multi-rotors [171]. The multiple design options give
each kind of UAV unique qualities to fit various task requirements. For this reason, as con-
firmed by Liew et al.. [171], aerial robotics is an incredibly active field of research that has
grown steadily over the years, constantly sets new challenges, and opens new prospects for
application in diversified areas.

Surveillance is one of the scenarios which is appealing to automate the patrolling task car-
ried out by humans. The proper robotic platform can alleviate the repetitiveness and re-
duce the time for each patrol, primarily when the area under surveillance covers large out-
door spaces. Hence, for this use case, the high mobility and operation range of UAVs grants
human security personnel additional support from an elevated observation point. Further-
more, multi-rotor drones are particularly easy to manoeuvre and have the ability to hover,
which becomes particularly helpful in maintaining a fixed position above an observation tar-
get. An autopilot system [37], comprising an onboard processor and several sensors for ob-
serving the robot’s states, such as an Inertial Measurement Unit (IMU), a Global Position-
ing System (GPS) antenna, and a barometer or an altimeter, can exploit these flight capabil-
ities through autonomous control software algorithms [41]. Quoting Pachter and Chan-
dler [209], autonomous control implies that an “high degree of automation is applied in
a very unstructured environment” to solve complex optimisation problems. Adapting this
concept toUAVs autonomous navigation, the robot plans a trajectory in a possibly unknown
environment without human intervention and incurs uncertainties of different types, e.g.,
dynamics, measurement noise, and cooperative or non-cooperative multi-agent systems.

2



Chapter 1. Introduction

Furthermore, the National Institute of Standards and Technology (NIST) [122] defines
the levels of autonomy based on mission complexity, environment complexity, and human
operator independence. To the extreme autonomy spectrum, “all decisions are made on-
boardbasedon sensors observations adapting tooperational and environmental changes” [73].
The complexity of the surveillance patrolling missions lies in monitoring a specified area by
moving freely and detecting security breaches. The UAV needs to perceive the environment
to avoid obstacles (primarily static if flying above human height), localise itself, and assist or
even substitute the human guard in its duty.

Perception entails understanding the information in the signals gathered by the sensors
from the surrounding environment and extracting valuable knowledge that allows the inter-
action of an intelligent agent with the external world. With control and planning, percep-
tion is one of the core components of an autonomous system [276]. Taking inspiration from
Pendleton et al.. [212], Figure 1.1 describes a high-level abstraction of the software architec-
ture that places these three core elements at the centre while restricting the consideration of
hardware and external interactions at the limit. Among other notable representations of an
autonomous system, it is worth mentioning the Aerostack architecture [237], which shares
the essential concepts with the proposed diagram. However, it emphasises the hierarchical
structure of decision-making modules that compose, as a whole, the autonomous behaviour
of an intelligent agentwith amulti-layered architecture and aims to guide the software imple-
mentation. Instead, we intend to identify the principal research areas regarding autonomous
control, fundamental to realising an intelligent system, to direct our attention to a single
topic.

1.1 Perception for Aerial Surveillance
Thepresent thesis focuses on investigating solutions for theperceptual level of an autonomous
UAV that faces the challenges of a surveillancemission. Hence, the two sub-topics of percep-
tion, localisation, i.e., self-perception and environmental perception, represent the spheres of
competenceof the followingdiscussion. On theonehand, localisationdealswith ego-motion
tracking and global pose estimation with respect to a global coordinate system defined at the

3



Chapter 1. Introduction
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Figure 1.1: Autonomous SystemOverview
The figure shows an abstraction of the main components of an autonomous system software

architecture.

centre of a map [282, p.159]. When these problems relate to a 3D environment, the pose
describes the 6 degrees of freedom (DoF) coordinate transformation from the centre of the
map to the robot view. It contains a 3D position and a 3D orientation. On the other hand,
environmental perception encompasses a broad and diversified set of problems ranging from
depth estimation [200, 246] to object detection [321] and semantic segmentation [95] that
develop a comprehensive understanding of the surrounding elements. Together, localisation
and environmental perception are the premises for a situational awareness system that also in-
volves comprehending themeaning of objects, reasoning about cause and effect implications,
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Chapter 1. Introduction

and projecting the current states of the perceived elements into the future [13, 75].
Similarly to how humans use words to convey meanings and establish relations among

these to form complex concepts, robots also need a mechanism to map environmental el-
ements to conceptual entities. Thus, natural language processing (NLP) [116] cannot be
excluded from a complete situational awareness system as it is the foundation for reasoning.
NLP regards the translation between human and machine languages to establish an active
channel for communication with robots [6, 146]. Hence, the representation of Figure 1.1
assimilates it with the sphere of perception and among human-robot interface technologies.
However, we limit the comprehension capability of an autonomous agent to answering the
questions: “Where am I located?”, “What is the structure of the surrounding environment?”,
and “Which objects lie in my field of perception and where?”, for which NLP is not required.
Considering the use case of surveillance, which constitutes the application context of this

thesis, we decline these questions into a practical task definition. Hence, we define the aerial
surveillance task as detecting people in a restricted access zone around a building or, more
generally, in a confined urban area. While there may be an interest in adding people’s face
identification [319] and human behaviour recognition [218], our primary concern is en-
abling autonomous navigation in this confined area under surveillance and, subordinate to
this, detecting people. Autonomous navigation requires that all of the components of an au-
tonomous system, i.e., perception, planning, and control, are developed [188]. However, the
previous questions push our efforts towards perception, i.e., localisation and environmental
perception, which gives us the instruments to answer them. Primarily, localisation is funda-
mental as it allows the UAV to move around and contributes to discovering the position of
the people that are possibly detected. Secondly, a representation of the environment, e.g.,
a map, is needed in conjunction with localisation to plan the trajectory and place detected
humans inside or outside the restricted access area. Finally, once the previous aspects are ad-
dressed, human detection can be included among the environmental perception capabilities
to fulfil the surveillance requirements. Therefore, localisation and mapping are paramount
in this context and answer the central questions of perception as defined above.

5



Chapter 1. Introduction

1.2 Visual Localisation and Mapping
Simultaneous localization and mapping (SLAM) [71] owes its name to the ambition of esti-
mating the ego-motion and understanding the environment structure — to create a map
— at the same time [253, p.871]. The modern mathematical formulation of SLAM ap-
proaches this problem using a probabilistic framework and through the formalism of fac-
tor graphs [26]. Hence, we introduce these concepts partially following the description pro-
vided by Cadena et al.. [26]’s survey and integrate it with more detailed introductions to
factor graphs available in the literature [61, 105, 149, 178]. A graphical model describes a
factor graph (see Figure 1.2 for an example) whose visual components correspond to precise
mathematical elements of its formulation. Nodes of the graph encode the unknown state
variablesX to be estimated. The variables include a discrete set of poses {x1, . . . , xn} ⊆ X ,
which form the robot’s trajectory in correspondence with the selected “keyframes”, and the
locations of the “landmarks” {l1, . . . , lm} ⊂ X , 3D points that compose the representa-
tion of the map as perceived by the robot. Notably, state variables may not include land-
marks in all formulations, thus receding SLAM to the problem of estimating the robot tra-
jectory alone, called pose graph optimization (PGO) [59]. Edges represent themeasurements
Z = {zk : k = 1, . . . , p} between two nodes. Unlike the state variables, measurements zk
are known quantities and can be expressed as a function, named the observation model, of
a subset of the states Xk that are measured, i.e., zk = hk(Xk) + εk, where εk is random mea-
surement noise. Modelling the noise as corrupted by zero-mean Gaussian noise, we obtain
the following conditional density:

p(zk|Xk) ∝ exp
{
− 1
2
‖hk(Xk)− zk‖2Ωk

}
, (1.1)

where Ωk is the information matrix, the inverse of the covariance. To emphasiseX as the
variable to estimate, p(Z|X ) can be translated into the likelihood l(X ;Z) of the states X
given the measurements Z. The likelihood may be any function proportional to the condi-
tional density that acts as a parameter [61]. Consequently, likelihoods are not Gaussian in
the general case where hk(·) is non-linear.
Therefore, solving the SLAM problem means finding the Maximum a Posteriori (MAP)
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Chapter 1. Introduction

estimate of the unknown state variablesX that maximises the posterior density p(X|Z), also
called the belief overX given the measurements. Following from the Bayes theorem:

XMAP = argmax
X

p(X|Z) (1.2)

= argmax
X

p(Z|X )p(X )

p(Z)
(1.3)

= argmax
X

l(X ;Z)p(X ) , (1.4)

where p(X ) represents the prior knowledge aboutX . Notably, we exclude the normalisa-
tion factor p(Z) because it does not influence themaximisation solution. We define the prior
similarly to p(zk|Xk):

p(X0) ∝ exp
{
− 1
2
‖h0(X0)− z0‖2Ω0

}
, (1.5)

given an initial measurement function h0(·) and prior mean z0.
Dellaert et al.. [61] elevate the graph’s edges to a particular type of node, the factor. A

factor corresponding to a measurement zi is a function φi(Xi) of the adjacent variable nodes
Xi = N (φi), whereN denotes the adjacency relationship. From another perspective, factor
φi connects the subset of states Xi, where Xi ⊆ X and

⋃
i
Xi = X , among which exists a

measurement zi. Factors are more general than conditionals as they include both the likeli-
hood and prior functions and are not restricted to probability densities. Also, assuming in-
dependent measurements, they allow to explicitly represent a factorised formulation of the
problem in Equation 1.4 as the product of multiple factors:

XMAP = argmax
X

φ(X ) = argmax
X

∏
i

φi(Xi) , (1.6)

where φ(X ) ∝ p(X|Z) is the global function defined by a factor graph. Assuming that all
factors are in the same Gaussian form of the likelihood (see Equation 1.1) and the prior (see
Equation 1.5) and minimising the negative log of Equation 1.6, the MAP estimate is equal
to a non-linear least squares problem:

7



Chapter 1. Introduction

x1 x2 x3

x4

l1 l2

Figure 1.2: Factor Graph graphical model
An example of a factor graph with four pose variables {x1, x2, x3, x4} and two landmarks {l1, l2}.
Also, factors are displayed as black nodes. For instance, landmark l1 is observed from the robot’s

locations x1 and x2. Also, a loop-closure is established between the poses x2 and x4. Finally, “unary”
factors constrain the poses x1 and x3 in the global coordinate system frame of the map, which is

implicitly represented in every graph.

XMAP = argmin
X

−log

(∏
i

φi(Xi)

)
= argmin

X

∑
i

‖hi(Xi)− zi‖2Ωi . (1.7)

Modern solvers for the factor graphminimisation problem involve iterativemethods, such
as Gauss–Newton (GN) or Levenberg–Marquardt (LM), based on successive optimisations
of a linear approximation [104]. Currently, many libraries are available for solving the prob-
lemefficiently leveraging the sparse structure of the factor graph, amongwhichGTSAM[58],
g2o [150], Ceres [5], and SLAM++ [236] are the most noteworthy.

In a SLAM system, we distinguish two components: the back-end and the front-end. The
back-end task is to solve the MAP estimate given some measurements from pre-processed
sensor data provided by the front-end. Remarkably, the front-end performs data association
between the robot’s poses and landmarks to optimise their relative location. Additionally,
factors constrain pairs of pose variables using motion models and control inputs or various
forms of odometry.

Odometry is the incremental estimation of the robot’s pose changes through sensors. De-
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pending on the type of sensor, different techniques have to be applied to extract valuable in-
formation, such as landmarks’ locations or the robot’s ego-motion. Excludingwheel odome-
ters, because they are restricted to ground robots, aerial vehicles commonly rely on IMU-
based odometry, Light Detection and Ranging (LIDAR)-based odometry, or visual odom-
etry (VO) [244], which uses RGB or RGB-D cameras. Also, due to the flexibility of factor
graphs, fusing multiple sensor data is straightforward after taking time synchronisation into
account [285]. For example, the MAP estimation of fused IMU and camera measurements
results in a (loosely coupled [245]) visual inertial odometry (VIO) system [40].

Furthermore, when a robot revisits a location, corresponding pose nodes are connected,
reducing the error accumulated over the trajectory known as drift. Due to its visual appear-
ance in the graphical model, this factor is called a loop-closure and is easier to recognise us-
ing features extracted from visual data, such as bag-of-visual-words (BoVW) [86]. Notably,
the growing research topic of visual place recognition (VPR) [89, 186] defines the success-
ful recognition of a place by comparing images with an overlapping field of view, and image
retrieval (IR) is the most common declination of this problem [9, 42, 102, 302].
Finally, unary factors, i.e., measurements constraining a single state variable, can represent

the knowledge of the current robot’s global location, specified relative to the centre of the
map. The global localisation is usually possible thanks to a Global Navigation Satellite Sys-
tem (GNSS) such as the GPS [195] but is also achievable with the support of visual based lo-
calization (VBL) [216] techniques. Combining VO andVBLmethods provides the tools for
implementing a visual simultaneous localization and mapping (V-SLAM) front-end [268].

1.3 From Traditional to Deep SLAM
Early V-SLAM methods do not optimise the entire trajectory. Instead, they optimise poses
within a moving window covering a few nodes, named fixed-lag smoother [162] or just the
last pose. In this, we call filtering approaches those marginalising the previous trajectory in
a dense Gaussian prior, such as MonoSLAM [57] or FastSLAM [202]. On the other hand,
we refer to the full-smoothing method when the errors and uncertainties are “smoothed”
over the history of poses [60]. Strasdat et al.. [262] prove the superior smoothing accuracy,
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showing that it avoids the accumulation of linearisation errors caused by marginalisation.
Also, these methods have become increasingly more efficient following breakthrough devel-
opments in incremental solvers [245], such as iSAM2 [133], which exploit the topological
structure of the factor graph to handle thousands of variables. Therefore, they can track
more state variables than filtering, granting more robustness.

Furthermore, traditional V-SLAM approaches are categorised as direct or indirect based
on the type of features extracted from images and included in the optimised error function
in Equation 1.7. Direct methods such as DTAM [205], LSD–SLAM [77] or DSO [76] in-
clude the pixel intensity values or even the actual sensor measurements in a photometric er-
ror function. Then, they estimate the motion along with the camera model parameters by
minimising a non-linear energy function representing the visual similarity between iteratively
aligned images. Depending on the extent of the image portion included in the optimisa-
tion, we distinguish dense methods [205, 263] from sparse [76] passing by semi-dense meth-
ods [77, 78] that compromise the two options. Instead, indirect methods [57, 93, 142, 203],
also known as feature-based, leverage geometrical error functions derived from epipolar ge-
ometry theory [107]. The general approach is to generate intermediate feature represen-
tations of sparse keypoints detected in correspondence with corners or other salient image
points. The second step matches the extracted points and uses minimal sets of five [207]
to eight [180], depending on the inclusion of camera parameters in the optimisation prob-
lem, for estimating the 2D motion from the essential matrix decomposition [244]. If a 3D
map is available, which is the case after triangulating a few image frames, PnP [160] within
a robust random sample consensus (RANSAC) fitting scheme [27] obtains better relative
pose estimations than 2D motion models. Indirect methods rarely exploit the entire image
area for the dense map reconstructions as the feature extraction already implies an additional
overhead compared to the direct counterparts. However, techniques extracting dense opti-
cal flow (OF), a map of pixel displacements between consecutive images, can detect moving
objects, benefiting surveillance tasks [188, 193]. Finally, SVO [84] is one of the few exam-
ples of hybrid solutions to VO. Forster et al.. [84] compute an initial guess of the motion
using direct image alignment and then refine it by minimising the reprojection error of im-
plicitly detected features. In V-SLAM, optimising the non-linear reprojection error function
is often treated as a (local or global) bundle adjustment (BA) [286] problem, closely related
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to MAP formulation. However, BA does not consider other sensor models and cannot be
solved incrementally [26].

The advent of Deep Learning (DL) [101, 153] established the predominance of the Deep
Neural Network (DNN) [206] as a mathematical model for approximating any arbitrarily
complex function, i.e., following fromthe “universal approximation theorem” [119], through
learning and imposing these models as a unified solution to a vast number of problems in ar-
tificial intelligence (AI) [7]. Therefore, it is not surprising that SLAM is not an exception to
this trend. To date, differently from tasks such as image classification, deep SLAM has not
reached the maturity to stand independently from the traditional theory. For example, back-
end optimisation can still be a valuable component in a learned system as a post-processing
step to further reduce errors or fuse other sensor data.

A prolific line of research focuses on translating traditional SLAM into its Deep Learning
version. Many straightforwardly accomplish this transformation by replacing the indirect ap-
proach’s feature extraction andmatching steps with neural networks while keeping the other
components unchanged [23, 134, 159, 163, 274, 275]. For example, DF-SLAM[134] substi-
tutes hand-crafted features such as ORB [235] or SIFT [185] by describing patches around
FAST [234] corners. Hence, they train the TFeat network [12] using a triplet loss to gener-
ate normalised 128-dimensional vectors that identify each input patch distinctly and enable
traditional motion tracking and loop closure with BoVW. Similarly, Tang et al.. [274] ex-
tend their previous work, Geometric Correspondence Network (GCN) [275], to create an
alternative to theORB feature for the popular ORB-SLAM2 [204] that could runmore effi-
ciently on a graphics processing unit (GPU). Instead,DXSLAM[163] extracts both local and
global features with a typical network architecture HF-NET [239]. This network provides
a Superpoint decoder [66] and a NetVLAD layer [9], which are used for relative and global
pose estimation. Rather thanmaintaining apre-trainedSuperpointmodel,DeTone et al.. [65]
propose to self-supervise the retraining of the feature extraction network using the output of
the same VO. In addition, they add the knowledge of keypoint stability based on the point
tracks, the length, and the reprojection error. Notably, the advantages of learned features,
which have becomemore tangible with the progress in the field [72, 198, 208, 228, 309, 310],
are the increased robustness to viewpoint changes and adaptation to different lighting con-
ditions caused by variable weather or day-to-night shift. Notwithstanding, themotion track-
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ing failure cases limit the improvements achievable by solelymodifying the feature extraction
component. Especially with monocular cameras, unstructured visual scenarios, e.g., homo-
geneous textures and perceptual aliasing, and degenerate motion situations, e.g., pure rota-
tional motion, require complex engineered solutions to recover tracking.

Furthermore, the direct approach has inspired significant advancements toward a com-
plete deep SLAM. CNN-SLAM [277] improves the accuracy of LSD-SLAM by employing
a Convolutional Neural Network (CNN) [70, 148, 155] to provide depths and pixel-wise
uncertainty for the keyframes, e.g., the images used to create nodes in the PGO that show
significant changes in motion. Besides, the authors demonstrate the outstanding advan-
tages of CNN-predicted depths when handling VO with monocular cameras. In particular,
the CNN can produce a globally consistent scale, thus reducing the drift. Also, the neural
network approach enables continuous pose tracking even in pure rotational motion, which
does not allow observing points’ distances with the traditional triangulation approach. Re-
cently, Loo et al.. [181] applied an analogous strategy to initialise the depth filter of SVO,
resulting in better handling of challenging illumination conditions. DTAM is another ex-
ample of DL adaptions for estimating camera motion and dense depth reconstruction. De-
MoN [289] uses an encoder-decoder architecture to simultaneously predict the 6 DoF ego-
motion, depth maps, optical flow, and normals between two views. DeepTAM [322] sep-
arates the tracking from the depth reconstruction with two dedicated networks. The first
network estimates slight pose variations that iteratively align the current frame to a reference
keyframe. Instead, themapping network finds the depth of the keyframe using a cost volume
composed by accumulating information frommultiple images and refines the output by fo-
cusing on the initially predicted shapes with a narrow band. DeepV2D [278] approaches
the sub-problems of SLAMwith two trainable modules and alternates between motion and
depth regression. Unlike DeepTAM, it uses an intermediate 2D feature representation to
create the cost volume fromN images, which are then composed using 3D convolution and
pooling operations. CodeSLAM [19] learns via a variational auto-encoder [140] a compact
representation of the depth, inspiring future works in pursuing continuously optimisable
depth encodings. BA-Net [273] further brings the concept of codes and generates the dense
geometrical structure from a linear interpolation of learned basis depth maps. The authors
optimise the camera motion and the interpolation weights by minimising the photometric
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difference of CNN’s features in a BA-layer. Notably, they formulate a differentiable LM al-
gorithm to back-propagate the gradients concerning the network features. DeepFactors [53]
start fromCodeSLAM’s idea of depth codeoptimisationwhile developing a complete SLAM
with loop-closure and global BA. However, this method directly predicts a plausible code
with an image encoder network to initialise the MAP problem using a more realistic depth
estimation. Finally, DROID-SLAM [280] improves the performance and the generalisation
capabilities with a novel “Differentiable Recurrent Optimisation-Inspired Design”. The au-
thors compose parts of the RAFT [279] OF architecture with a ConvGRU [12] to produce
a revised pixel correspondence field and achieve impressive results. Hence, a Dense Bundle
Adjustment Layer (DBA) minimises using GN the Mahalanobis distance of the geometric
error between frames connected in a co-visibility graph and obtains a per-pixel precise depth
and pose prediction. Themain limitations of thesemethods are the high computational cost
and memory demand that mandates modern and expensive GPU equipment.

Continual learning (CL) is getting increasing attention as the paradigm for adapting ama-
chine learning model to new stimuli from the real world by including new knowledge while
dealingwithpotential catastrophic forgetting [161]. ConcerningdeepV-SLAM,Vödisch et al.. [294]
propose specific performance metrics to measure the adaptation quality (AQ) related to the
generalisation of novel out-of-distribution data and the retention quality (RQ), indicating
the level of catastrophic loss the system suffers. However, they intend to address a problem
broader than what they define as lifelong SLAM. Notably, while lifelong SLAM considers
only the adaption to new data from a single dynamic environment, they extend the task to
learning multiple scenes with different settings. Instead, Sucar et al.. [265] consider CL the
reduced problem of continuously acquiring knowledge on a single scene while retaining old
information. Hence, theyuse a replay-based approach that stores past keyframes in a buffer to
avoid memory loss of previously visited regions. Also, their method, named iMAP, pioneers
the application of neural radiance fields (NeRF) [199] to V-SLAM. In practice, they train
a simple neural network composed solely of fully-connected layers, called the Multi-Layer
Perceptron (MLP), which maps a pixel ray originating from the camera to colour and den-
sity value, hence implicitly representing the scene’s appearance and geometry in the network
weights. Zhu et al.. [327] propose NICE-SLAM, a dense V-SLAM based on a hierarchi-
cal neural implicit scene representation that enables it to scale up to larger indoor environ-
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ments by modelling them with three feature grids of varying space granularity, e.g., coarse,
mid and fine levels. Hence, a MLP from a pre-trained ConvONet [213] decodes the space
features, and another network learns the colour information similarly to iMAP. Therefore,
they integrate a differentiable rendering process inspired by NeRF to predict the geometry
and appearance of the scene from a given camera point of view andminimise the loss between
the ground truth observations and the predictions. Nevertheless, neural implicit representa-
tionmethods have not demonstrated the capability of reconstructing outdoor environments
larger than a few rooms in an indoor scenario. Nonetheless, the NeRF rendering is a GPU
intensive process and requires other techniques to speed up the computations, such as sam-
pling a subset of the image pixels. Also, the training involves ground truth depth maps from
an RGB-D camera and excludes the possibility of exploiting datasets consisting of a single
camera image stream.

1.4 Deep Learning for Object Detection
The object detection problem relates to the robot perception question posed in section 1.1:
“Which objects lie in my field of perception and where?”. Under the scope and context of this
thesis, this problem has a subordinate role compared to localisation andmapping. Neverthe-
less, these two aspects are necessary for enabling autonomous navigation and understanding
the position of people (or intruders) in the environment. The object detection problem con-
cerns establishing what types of objects are visible inside the camera field-of-view (FoV) and
detecting their projection onto the 2D image plane as bounding boxes. The bounding box is
defined by the coordinates of the rectangle’ corner that contains all pixels belonging to a de-
tected object as tightly as possible to its actual boundary shape. Therefore, object detection
entails two complement sub-problems. The first is classifying image windows into a pre-
established set of object categories (among which a null detection class is usually present).
The second is the regression of two bounding box’s corners x and y coordinates, determining
their position on the image plane.

Following, we proceed to summarise themilestones in the object detection literature. Still,
we refer to more extensive reviews of the state-of-the-art (SotA) [175, 330] for a more in-
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depth discussion. Moreover, Cazzato et al.. [33] provide an overview of object detection
focusing on the UAV application.
As in localisation and mapping research history, initial object detection algorithms re-

lied on hand-crafted features. For example, the Viola and Jones (VJ) face detection algo-
rithm [293] obtained real-time performance by combining Haar features with the integral
image technique tomaximise the reuse of computations. Whereas the features enabled train-
ingAdaboost [85] to classify imagewindows into face’s positive or negative detection, the VJ
algorithm straightforwardly approaches the bounding box localisationwith a slidingwindow
of various scales and a detection cascade to reduce the computational overhead. Amongother
hand-crafted features, Dalal andTriggs [55] propose theHistogramofGradients (HOG) fea-
ture descriptor to obtain invariance properties against translation, scale, illumination, and
other transformations, thereby improving the robustness of the proposed detector. Before
the streamof engineered approaches slowed their progress, theDeformablePartsModel (DPM)
algorithm [80] and its numerous extensions [81, 82, 98] reached the peak of innovation. In
more detail, DPM proposes dividing the problem by detecting parts of the complete object
represented with a spring-based graph model. Then, it formulates a graph-matching prob-
lem that minimises the cost of part detection, still based on HOG features, and the cost of
spring deformation.

The advancements ofDLbroughtnewperspectives to thefield. Remarkably, after 2012 [148],
the CNNmodels entirely replaced old approaches for feature extraction. At the same time,
researchers improved the sliding windows technique by proposing various “region proposal”
algorithms that speed up the detection process and achieve a higher recall rate. Among the
mostpopularmethods, theR-CNNmethod fromGirshick et al.. [97]uses selective search [287,
291] to apply a CNN on a limited number of boxes (around 2000) and, from each selected
box, extract features that a linear Support VectorMachines (SVM) could classify into an ob-
ject category. Fast R-CNN [96] removes external classifiers and regressors and shares the
CNN computations on common regions from selective search. To this end, it introduces a
region of interest (RoI) pooling layer to direct the CNN feature map portion under the pro-
posedbox’s scaled region to a fully connected layer for later object classification andbounding
box regression. Faster R-CNN [227] further increases the speed of the region proposal step
with a Region Proposal Network (RPN) optimisable with the CNN backbone and com-
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pletes the transposition from classical object detection to a total DL approach. Finally, we
mention Feature PyramidNetwork (FPN) [172] since it has introduced a fundamental com-
ponent replicated and improved by later methods. In detail, FPN provides an additional
parallel structure to process feature maps at various scales. It consists of a feature pyramid of
a top-down network laterally connected with the CNNbackbone, which consents to obtain
multi-resolution predictions at each pyramid level.

The methods above fall in the approach type called in the DL community “two-stage de-
tection” because there is a clear distinction between a phase of region proposals filtering and
a phase of actual object classification and bounding box position refinement. On the other
side, “one-stage detectors” aim to simultaneously resolve the class prediction and bounding
box regression with a unified architecture. The most renowned networks of this kind are
You-Only-Look-Once (YOLO) and Single Shot Detector (SSD). YOLO [224] divides the
image into a grid and for each cell predicts the probability of containing an object, its class,
and the bounding box offsets with respect to an anchor box, i.e., a box with a predefined
aspect ratio, which shows the highest Intersection over Union (IoU) with the ground truth
labels among a default set of anchors. Newer YOLOversions were introduced by the original
authors [225, 226] or by other researchers inspired by their work [20, 179, 211] to extend the
base design. SSD [177] is conceptually similar to YOLO but, as primary differences, substi-
tutes the last fully connected layers with convolutions and performs multi-scale predictions
using feature maps at different layers of the CNN. The main characteristic of one-stage is
their impressive speed obtained by removing the burden of a RPN. In contrast, two-stage
methods usually achieve higher detection accuracy. However, newer research publications
narrowed this gap [187] andmade one-stage networksmore appealing, especially for robotics
applications requiring lower latency times.

1.5 Objective, Scope, and Contributions
The objective of this thesis, as delineated in section 1.1, is to provide solutions for the percep-
tion of an autonomous aerial surveillance system. The definition of the problem allows some
assumptions directed toward specific research directions. First, since the deployment envi-
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ronment consists of a confined area that we can survey beforehand, it is possible to exploit of-
fline mapping techniques and use this knowledge for visual localisation in a second moment
during the online operations. This offline procedure is the principal difference compared
to SLAM approaches that require optimising a global map online without any clue of the
scene scale or other a priori knowledge. Furthermore, we relax the requirements of contin-
uous adaptation to dynamically changing scenarios as preached by the CL SLAM paradigm
by maintaining constant environmental settings.

(a) DJI Mini 2 [83] (b) Ryze Tello [255] (c) Parrot Anafi 4K [141]

Figure 1.3: Example of commercial drones

The second assumption regards the sensory system. The intent is to rely entirely on a
monocular RGB camera mounted on a UAV. This restriction is motivated by various fac-
tors dictated by commercial trends or research questions. Primarily, the recent regulations
in Europe by the EuropeanUnion Aviation Safety Agency (EASA) restrict the type of drone
allowed to fly in urban areas based on weight categorisation. Hence, due to its weight, the
presence of LIDAR is excluded from UAVs, which is the lowest category that allows flying
in outdoor places with few precautions. Also, the high cost of LIDAR makes this type of
sensor unsuitable for commercial drones designed for large customer audiences.

On the other hand, finding solutions that scale to more accessible hardware is of great
interest when dealing with concrete problems, as recently demonstrated by Tesla’s decision
to transit from a Radio Detection and Ranging (RADAR) assisted autonomous navigation
to pure vision driving autopilot [281]. For this reason, the type of drones depicted in Fig-
ure 1.3 represents the platform for which we are more inclined to develop a surveillance sys-
tem. Considering the limited onboard computing capabilities of these UAVs, an external
server is needed to run the algorithms for localisation and object detection. The new com-
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munication technologies thatmaturedduring the last years suggest that soonhighbandwidth
and low latency wi-fi channels will be available to offload the computations to edge servers
entirely [110].

Furthermore, the approach sought to the robot perception does not exploit IMU data
because of partial information disclosed by the commercial drone software development kit
(SDK) or the possible absence of hardware synchronisation that would lower the complexity
of multi-modal sensor fusion. Hence, this limitation engages the investigation for methods
that rely purely on vision, similar to those reviewed in section 1.3. Finally, we distinguish pro-
prioceptive sensors, like an IMU or a camera, from exteroceptive ones, like the GPS. While
the firsts measure the robot’s internal state from a self-centred perspective, the GPS gives the
global position in the Earth-centred geographic coordinate system (GCS) using the signals
of a satellite constellation. Since surveillance is susceptible to security threats, self-centred
sensors guarantee higher protection against interference with the localisation algorithm. In-
stead, the GPS is sensible to jamming or spoofing attacks, [56] or the signal might become
degraded or unavailable in certain areas [11]. Therefore, camera localisation provides a valid
alternative in such cases.

Recalling the openperceptionquestions related to our application context of aerial surveil-
lance, in this thesis, we aim to find the answers to the research questions listed below.

• What deep learning approach is a valid alternative to more traditional approaches for
solving ego-motion and depth estimation problems using only monocular images?
How can we combine traditional motion estimation methods with deep learning to
improve neural network predictions?

• How to design an efficient CNN model for predicting the UAV global pose, taking
to our advantage the assumption of deploying the autonomous system in a controlled
environment?

• How do dynamic objects, such as the presence of people in the camera FoV, influence
the localisation predictions of deep learning models?

• How deep learning CNN is used to detect the people in colour images? Which infor-
mation do we need to obtain the 3D position of the detected people in the environ-
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ment?

• How to reconstruct the 3D scene formodelling an outdoor urban environmentwhere
the surveillance has to take place? How to create the data needed for training the DL
models for localisation?

Therefore, this thesis develops multiple methodologies for solving these challenges, dis-
cussed in the chapters ahead and summarised next, bringing several contributions to the
SotA. With these contributions, we seek to answer the previous research questions point-
by-point.

• To address the first point, we present RAUM-VO, an algorithm to improve the pose
estimates of unsupervised pose networks formonocular odometry. To this end, we in-
troduce an additional loss to supervise the motion training. Moreover, we perform a
rotation adjustment step combining the output of a traditional epipolar method with
the predictions of the trained pose network. Finally, we compare our method with
SotA approaches, either traditional or learned, on the widely adopted KITTI bench-
mark for odometry estimation.

• Then, by reviewing the literature of VBL, we identify, among the direct pose esti-
mations paradigms, the end-to-end learning approach as the more efficient and well-
suited to our objective. Specifically, we consider the assumption of a controlled and
restricted environment as those forwhich the surveillance application is intended. Fur-
thermore, we argue that a neural network trained for pose regression may well gener-
alise to novel camera frames. Therefore, we introduce a neural network model com-
posed of an efficient CNN for feature extraction and a MLP for the regression of the
pose vector. Moreover, we compare multiple design options for the MLP regressor
to discover improvements in the predictions. Finally, we compare our method with
the close SotA approach on two datasets and evaluate the run-time performance on a
GPU compute board for robotics applications.

• Subsequently, we investigate the impact of dynamic objects on the training of global
pose regressors. To this end, we perform a statistical analysis based on the results of the
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ablation experiment. In detail, we use a CNN for object segmentation to pre-process
the dataset by masking the objects. We use such data to compare the localisation per-
formances with the standard training approach. Furthermore, we adopt techniques to
visualise the contribution of each image pixel to the pose error in the form of saliency
maps. With these tools, we can better understand the properties of the CNNmodels
applied to the task of global localisation.

• Moving forward, we discuss the implementation of a DL approach for detecting ob-
jects appearing on colour images. Hence, we train an efficient SotAnetwork leveraging
distributed deployment techniques to minimise the optimisation times and fully ex-
ploit server cluster hardware. Moreover, we address the imbalance class issue caused
by our particular use case of binary object classification. Whereas most datasets con-
tain labels for multiple object types, we consider only the subset of people andmodify
the hyperparameters accordingly to maximise the detection accuracy. Lastly, we de-
rive simple equations from projecting an object’s 2D bounding box base central point
to an estimated ground plane. We use this result to obtain the detected people’s 3D
position in a reconstructed environment.

• Finally, we study the incremental structure from motion (SfM) pipeline and a SotA
implementation used to create the 3D model of the environment necessary for the
people 3D localisation algorithm. Additionally, we align the reconstructed scene with
approximate GPS coordinates of the registered camera frames to obtain a correct met-
ric scale. Hence, we use SfM as an alternative to creating ground truth poses for learn-
ing the global and relative localisation tasks. Then, we reconstruct two outdoor ur-
ban environments to experiment with the proposed localisation and object detection
algorithms. Remarkably, we introduce a novel scenario with images captured on the
University ofLuxembourg’s Belval campususing only a lightweight commercial drone
carrying a monocular camera. Finally, we show extensive results to prove the validity
of the developed methodologies.
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1.6 Thesis Structure
• In chapter 2, we describe the theoretical framework of DL, with details about the
mathematics behind its optimisation and the CNN model principal characteristics
and architectures used throughout the thesis.

• In chapter 3, we discuss the problemof visual odometry estimation using amonocular
camera. Then, we propose a novel loss for guiding the training of an unsupervised
neural network and an approach that integrates a traditional motion estimation with
the network-predicted poses.

• In chapter 4, we address the problem of global metric localisation using an efficient
CNNfor feature extraction, andwe compare differentMLPdesigns to regress the pose
vector. Finally, we analyse the impact of dynamic objects in the FoV of the camera on
the network-predicted poses.

• In chapter 5, we tackle the intrusion detection problem in an outdoor urban area.
First, we illustrate the computations involved in object detection that guide our im-
plementation of an SotA network. Subsequently, we develop a method for localising
a person in a 3D space relying on the object detection network and a fixed ground
plane. Ultimately, while describing the theory behind 3D scene reconstruction, we
list the steps to create a 3D model for two outdoor environments used for the experi-
ments.

• In chapter 6, we conclude this thesis and discuss possible future extensions of this
work.
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Chapter 2. Deep Learning Background

AI is the field that studies theories and techniques to develop software applications for
programmable computers that can reproduce human behaviours and automate many chal-
lenging tasks. Machine learning (ML) is an AI subset of algorithms that aim to learn and
improve from experience, which consists of a large number of data samples without an exact
algorithm for the solution but with the sole guidance of the current learning performance
metric. Mitchell [201] gives the following definition of a machine learning algorithm:

“A computer program is said to learn from experience E for some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E.”

The experience refers to the dataset available to learn a task and is assumed that the data-
generating process produces independent and identically distributed (i.i.d.) samples. The
dataset’s data points are divided into training and test set. Differently from the training set,
the test contains only unseen data points. However, following the i.i.d. assumption, both are
described by the same underlying probability distribution.

The task can take various forms but is generally identified (also within the scope of this
dissertation) with finding a relationship between input data and the desired output. This
relationship can be approximated by a function hθ : X 7→ Y in the spaceHθ of the hypothesis
parametrisedby themodel parameters θ. After training, hθ canbeused topredict newoutputs
for new inputs in the test set. When the result consists of a discrete set of categories, the task is
called classification; otherwise, if the objective is topredict oneormorenumbers, i.e., a vector,
the task is called regression. An incomplete list of other known tasks comprehends machine
translation, anomaly detection, synthesis and sampling, denoising, fillingmissing values, etc.
In practice, a ML algorithm is a program that finds patterns in the data by optimising the
model’s parameter towards minimising prediction errors.
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The performance is measured quantitatively by a “loss function” that expresses the er-
ror of an ML algorithm specific to the training task at hand. The error calculated on the
training set is called the training error, whereas the test error refers to the prediction error
measured on the test set. The first is howmuch the model fits the data points in the training
set. The second indicates the performance of the model on novel unobserved inputs. The
challenge of ML is to maintain the test error as low as the training, and this ability, called
generalisation, is what distinguishes ML from optimisation algorithms [101].
Finally, we distinguish two main learning paradigms based on the type of information

available in the dataset to guide the training process.

• Supervised learning supposes the availability of label or target data associated with the
input data x. Therefore, the ML algorithm is given a supervision signal y, just like
a teacher, that directs the learning towards the correct mapping between input and
output. It is also straightforward to compute a measure of the model performance
using somemetric function of the distance between the ground truth labels y and the
model prediction ŷ.

• Unsupervised Learning aims to find underlying patterns in the data without explicit
labelling. The ML algorithm should discover hidden properties of the input to form
a compact abstract representation of the data that preserve the valuable information
for solving the task. The loss function has to be designed to instruct the model to
produce the required output without knowing the correct target. Therefore, it can
be necessary to have more complex loss functions that replace the missing knowledge
with a mathematical formulation of the task.

Among the ML algorithms, DL approaches AI problems with a powerful mathematical
model called DNN.
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2.1 Neural Networks Mathematics

Figure 2.1: Abstraction of a neuron
An abstract representation of a biological neuron [68]. The Dendrite receives signals from
other neurons. The Soma processes the information and computes a new signal. The axon
transmits the signal through the Synapse that forms the point of connection with other

neurons.

Neural networks have originated in the research on the human brain’s functionality. Mc-
Culloch and Pitts [197] worked on the first mathematical models to simulate the biological
activity of the neuron artificially (see Figure 2.1). Inspired by their work, Rosenblatt pro-
posed “The Perceptron” [233] that showed the ability to learn from data by correcting the
weights associated with the input connections. In Figure 2.2, a representation of an artifi-
cial neuron is presented. The neuron computes a weighted sum of all the inputs with an
additional bias term that behaves as a threshold or prior and sets a minimum value when the
input signal is zero. Then, a non-linear activation function g transforms the weighted sum
and produces the final output of the neuron.
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Figure 2.2: A model of an artificial neuron

Generated by editing code from [264].

The calculation performed by the neuron can be interpreted as a linear space transforma-
tion and a subsequent non-linear projection. The first operation is expressed by a multipli-
cation between the weights’ vector and the inputs’ vector plus the bias term; the second by
the application of an activation function as follows:

z = w⊤x+ b , (2.1)

y = g(z) , (2.2)

where w ∈ Rn is the vector of weights multiplied with to n inputs x ∈ Rn. Then, an
ensemble of multiple neurons composes a layer of a network. Therefore, the operation of a
single neuron becomes a matrix-vector multiplication:

z = W⊤x+ b , (2.3)

whereW ∈ Rm×n is the weights’ matrix form neurons connected to n inputs; b ∈ Rm and
z ∈ Rm instead are the bias and respectively the output in vector form.
A neural network is composed of numerous layers other than input and output, called

“hidden layers” because their output is not visible outside. We call a fully connected network
of neurons, as represented in Figure 2.3, MLP. Each of the subsequent layers learns a non-
linear decision boundary by projecting its input vector into a higher dimensional spacewhose
size depends on the number of neurons. Intuitively, by getting deeper into the network lay-
ers, the MLP learns and refines an abstract representation of the data that is meaningful for
the task. Recent techniques for visualising the weights of the hidden layers allow observ-
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ing this insight experimentally by optimising each neuron input to maximise the activation
function’s stimulus [312]. Hence, the alternative and more general naming DNN recall the
design of stacking layer after layer to process the data with networks that expand highly along
the depth dimension and less along the width [113].
Finally, the “universal approximation theorem” [119] grasps the outstanding capability

of DNN to address tasks that are difficult to solve with hard-coded programs. Notably, it
states that a neural network can approximate any arbitrarily complex functions that are con-
tinuous on a compact domain [152]. This ability depends on the presence of a non-linear
activation function in the hidden layers’ neurons. Otherwise, we could reduce the network
to a single linear projection. The choice of the activation function will influence the shape of
the decision boundary created by the neurons and is one of the leading architectural design
decisions.

...
...

...
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x3

xn

y1
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Input
layer

First Hidden
layer

Nth Hidden
layer

Ouput
layer

Figure 2.3: Example of a multi-layer perceptron (MLP)

Generated by editing code from [264].
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2.1.1 Activation Functions

The initial versions of neural networks primarily used logistic sigmoid σ(·) or hyperbolic tan-
gent tanh(·) as an activation function. The properties of differentiability and continuity at
all points were preferred for the learning process (see Figure 2.4). Also, they output a value
bound between -1 and 1 or 0 and 1, which makes it intuitive to implement a network of
logic gates. The two functions are defined as follows, where the tanh(·) definition reuses the
sigmoid expression to highlight their close relation:

σ(x) =
1

1+ exp(−x)
, (2.4)

tanh(x) = 2σ(x)− 1 . (2.5)

−10 −5 0 5 10

−0.5

0

0.5

1

x

y

σ(x)
tanh(x)

Figure 2.4: Logistic sigmoid and hyperbolic tangent functions
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However, a downside of these functions is that they saturate quickly for high input values,
i.e., the gradients approach fast zero at the two extremes of the domain. Because the train-
ing process of a neural network is gradient-based (explained in the following Section), this
characteristic could slow down the learning if not also prevent its progress completely. This
issue motivates using different activation functions for the innermost hidden layers to help
propagate the gradient up to the shallower.

The default design recommendation for recent implementations of DNNs is to use the
Rectified Linear Unit (ReLU) activation function [3] (see Equation 2.6). ReLUs resemble
closely linear functions and preserve most of its properties that make the gradient-based op-
timisation easier and generalise well for its simplicity, e.g., the Occam’s razor principle men-
tioned in subsection 2.1.3. It is said to be piecewise linear as it is composed of two pieces
of a linear function connected at zero, where there is only discontinuity in the gradient. In
practice, careful software implementations can solve the differentiability issue. So, for posi-
tive inputs, the ReLU has a positive and constant gradient, while for the rest of the domain
is zero. This property captures the nature of biological neurons, which have a proportional
response or are inactive, where the deactivation at certain inputs allows learning of sparse
representations.

ReLU(x) = max(x, 0) =

0 if x ≤ 0 ,

x if x > 0 .
(2.6)

Following theReLU,manyvariationshavebeenproposed to address the absence of a gradi-
ent for negative inputs. Among the most popular, it is worth mentioning the ELU [51](see
Equation 2.8), Leaky ReLU [191](see Equation 2.7), and Swish [222](see Equation 2.9),
also called SiLU. Contrary to ReLU, these functions can also output negative values, and
the Swish is non-monotonic, as visible in Figure 2.5. Also, they introduce a parameter α to
control the shape of the function. However, they contribute to learning improvements only
in restricted circumstances and tasks while adding computational cost.

LeakyReLU(x) =

αx if x ≤ 0 ,

x if x > 0 .
(2.7)
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ELU(x) =

α(ex − 1) if x ≤ 0 ,

x if x > 0 .
, (2.8)

Swish(x) =
x

1+ e−αx . (2.9)
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ReLU

LeakyReLU
Swish
ELU

Figure 2.5: ReLU functions and their variations

2.1.2 Optimisation

The first component to design for learning a task is the loss function. The loss J(θ) is a scalar
function parameterised by the set of network weights θ that produces a cost to beminimised.
The cost is an expressionof thenetwork’s predictionquality and ismeasuredusing theoutput
ŷ = hθ(x), where hθ is the model approximation function, and the ground truth labels y in
the case of a supervised task. For example, in the case of a regression task with known ground
truth labels y, it is possible to compute anLp loss between the two and reduce the average sum
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overN data samples:

J(θ) =
1
N

N∑
i

‖hθ(xi)− yi‖p =
1
N

N∑
i

‖ŷi − yi‖p . (2.10)

In general, the loss cost can be expressed as the expected value of a per-sample loss function
L, like the former Lp example, computed over the training dataset distribution ptrain:

J(θ) = E(x,y)∼ptrainL (hθ(xi), yi) =
1
N

N∑
i

L (hθ(xi), yi) . (2.11)

Hence, the learning process corresponds to finding the best DNN’s parameters θ∗ that min-
imise the loss cost value:

θ∗ = argmin
θ

J(θ) . (2.12)

The search for a (close to) optimal solution involves an optimisation algorithm tuning the
parameters based on the loss improvement direction. In mathematical terms, this direction
is found by computing the partial derivatives of the loss function J concerning each of the
neurons’ weights wij, i.e., ∂J

∂wij
. Furthermore, the notion of gradient∇θ J(θ) generalises that

of partial derivatives with θ representing the set of all network parameters or weights wij.
The calculation of the gradients is the most expensive operation and is performed in three

steps:

1. A“forwardpropagation”of the inputs produces theoutput values for all neuronsuntil
the end of the network.

2. The loss cost is computed using the final predictions and the ground truth labels if
they are available.

3. The “back-propagation” (shortly “backprop”) step computes the gradients by build-
ing a computational graph and leveraging the chain rule of derivatives.

The graph tracks the flow of information through the network and creates nodes for each
operation applied to the input to produce the final output. Also, the graph is needed to com-
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pute the chain of derivation efficiently by following a specific computation order and min-
imising the waste of operations. The chain rule of calculus is a basic approach to breaking
down complex function derivative formulations into other functions for which it is simpler
to compute the derivatives. In general, the rule states that the derivative of a composed func-
tion z = f(g(x))with y = g(x) is:

dz
dx

=
dz
dy

dy
dx

. (2.13)

For a complete treatment of backpropagation algorithms, the reader is referred toChapter
6 of the bookDeep Learning [101].

So, once the gradient is obtained, it is possible to optimise theweights by descending along
the curvatures of the loss cost surface [165]. Since the gradient points to cost increases, we
perform a step in the opposite direction tominimise it. Hence, the followingweights’ update
rule represents the optimisationmethod known as steepest descent or batch gradient descent:

θ = θ− η∇θ J(θ) = θ− η
N∑
i=1

∇θLi , (2.14)

where N is the size of the training set and ∇θLi is the gradient of the per-sample loss with
respect to the network parameters θ computed on the i-th training data point. The quantity
η is called the learning rate and is the primary hyperparameter to tune for setting convergence
speed. The update is performed until a stopping condition is reached, e.g., the loss is less
than a certain ε, or when several training “epochs” have been completed. The term “batch”
suggests using the entire training dataset in every update step. Therefore, the optimisation
process is deterministic and becomes quickly intractable as the memory requirements grow
with larger datasets.

Due to the non-linear nature of aDNNmodel, the optimisation problem is certainly non-
convex. Thus, it is impossible to guarantee that the optimisation algorithm converges to a
globally optimal solution but more probably lands on a local minimum or a saddle point.
However, it is possible to obtain improved solutions using wiser optimisation strategies. The
first fundamental measure is randomly initialising the weights with small positive random
values because of the flat or low gradient signal in the negative part of the activation func-
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tions’ domain. Instead, the biases may also be zero and sometimes are not included among
the parameters at all. Secondly, it is possible to introduce some degree of stochasticity in
the learning process by considering “mini-batches”, e.g., using small batches of data and not
the entire training dataset, which helps escape local minima and find a larger convergence
basin. Stochastic Gradient Descent (SGD) is an extension of the basic gradient descent in
Equation 2.14 that performs the update step using only a randomly sampled subset of the
training set, a mini-batch. It is called stochastic because it estimates an approximation of the
real gradient as the average gradient of the mini-batch:

θ = θ− η∇θ J(θ) = θ− η
B∑
i=1

∇θLi , (2.15)

where B is the batch size.
Notably, Keskar et al.. [138] discuss the role of small batch size in escaping “sharpminimis-

ers” [117], which are points of convergence forwhich the cost increases rapidly in their neigh-
bourhood, and that showweak generalisation properties. However, increasing the batch size
is fundamental to speeding up learning on large datasets. In such cases, adjusting the learning
rateη is required tomaintain the generalisation capabilities. With this regard,Goyal et al.. [103]
present a warmup strategy and suggest the following rule to modify the learning rate in rela-
tion to the batch size :

Linear Scaling Rule: when the mini-batch size is multiplied by k, multiply the
learning rate by k.

From a probabilistic perspective, the trade-off between the batch size and learning rate in-
fluences the noise scale that controls the fluctuations in the gradient descent dynamics [259].
This noise scale g is expressed as:

g = η
(
N
B
− 1
)

, (2.16)

where N is the number of samples in the training set, and B is the batch size. In general,
the noise level has to be gradually reduced by applying a learning rate decay schedule that
ensures a stable point of convergence is reached and that respects the following sufficient
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conditions [231]:

∞∑
i=1

ηi = ∞ and (2.17)

∞∑
i=1

η2i < ∞ . (2.18)

Various scheduling functions are commonly used in practice, from linear to exponential
or even step decay. Alternatively, following the previous considerations on the noise scale,
Smith et al.. [258] propose to increase the batch size for exploiting training on multiple dis-
tributed GPUs.

2.1.3 Regularisation

Due to the increase of layers in deeper models neural networks, the maximum complexity
of the learned approximation function tends to augment proportionally to the number of
parameters. The ability of a model to represent a wide hypothesis space is defined as capac-
ity [101]. When a model cannot grasp the mapping between the input training data and its
label, the training error does not decrease further after reaching a minimum plateau line. In
this case, the model is said to underfit the training data, and this issue can be overcome by
altering its capacity to apprehend more about the hidden properties of the data. In contrast,
when the model expresses a large capacity in relation to the quantity of training data to anal-
yse, we can incur the adverse challenge of overfitting. If the gap between the training and the
test error is large, a model is said to overfit the training set as its generalisation error is high.
This scenario occurs when the model selects an approximation function in the hypothesis
space that perfectly fits the data points of the training set, but it fails to grasp unseen samples.
Occam’s razor principle conveys the idea that among the set of viable hypotheses, the model
should choose the least complex that best explains the data points. Regularisation techniques
address the issue of generalisation error by modifying the learning algorithm to control the
complexity of the model.
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ParameterNorm Penalty , or weight decay, works by adding to the loss function J(θ)
a constraint on the norm of the network’s parameters, thus limiting the capacity of learned
models effectively, as in the following Equation:

J̃θ = Jθ + α‖θ‖p , (2.19)

where p represents the degree of the norm defined on the parameter space, and α is a hyperpa-
rameter controlling the penalty magnitude. The L2 norm is frequently preferred, referred to
as ridge regression or Tikhonov regularisation in this context, which encourages evenly small
weights by affecting more outliers. Another option is the Lasso regression, i.e., L1 penalty,
which invokes sparsity by pushing the norm of some parameters to zero. It has been exten-
sively applied as a form of feature selection with simpler linear models or SVM.

Dropout [260] is a form of regularisation that deactivates, or drops out, a subset of the
neurons (see Figure 2.6) selected randomly from a Bernoulli distribution with probability
p. Also, it makes the learning noisy, making it harder for the network to overfit the train-
ing data. Furthermore, Dropout limits the co-adaptation problem that prevents the neurons
from learning independently from each other and instead encourages learning sparse repre-
sentations. Finally, since only a portion of the neuron is active during each update, Dropout
reduces the actual capacity of the hypothesis space. However, for this reason, themore nodes
are shut down, the larger the network has to be tomaintain the same test accuracy, and longer
training times are required.
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Figure 2.6: Dropout effect visualisation

On the left, a neural network with two hidden layers. On the right, the same network after applying
dropout. The red crossed nodes have been randomly selected to be shut off. Image inspired by the

original paper [260]. Generated by using the code from [230].

BatchNormalization [124] was not designed to be a regularisationmethod per se but
to make the training easier and faster by reducing the “Internal Covariate Shift” effect. This
issue is due to the assumption that weights not involved in calculating the gradient for the
update step remain constant while simultaneously optimising all the network parameters.
Hence, the activation’s output distribution moves uncontrolled without the hidden layers
being aware of this variation, which causes deep model training to slow down. Batch nor-
malization addresses the problem through an adaptive reparametrisation of the hidden lay-
ers’ inputs. First, it tracks the mean μB and the standard deviations σ2B of the mini-batch B
linear transformation x(k)i computed by the k-th layer’s neurons:

μB =
1
B

B∑
i=1

x(k)i , (2.20)

σ2B =
1
B

B∑
i=1

(x(k)i − μB)
2 . (2.21)
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Following, the input to each layer’s activation function is normalized, or “whithened”, by the
following operation:

x̂i(k) =
x(k)i − μB√
σ2B + ε ,

(2.22)

where B is the size of the mini-batch, and ε is a small constant for numerical stability. Then,
the network learns two parameters, i.e., the new variance γ(k) and mean β(k) of the batch
distribution, which shift and scale the input of the previous layer in a regulated manner and
are required for preserving the expressive capability:

y(k)i = γ(k) ∗ x̂i(k) + β(k) . (2.23)

The noise introduced by Batch Normalisation provides an additional source of regulari-
sation that reduces the amount of Dropout or even makes it unnecessary. This operation is
applied by default in most modern DNN architectures for its effectiveness while being ele-
gant and easy to implement.
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2.2 Convolutional Neural Network
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Figure 2.7: Example of a CNN architecture

The figure illustrates a VGG16 [256] CNNmodel. At its end, 3 fully connected layers, part of and
MLP, and a Softmax function layer are connected to output a probability score. This plot was

generated by using the code from [125].

Reasoning about the complexity of the MLP network design, it is noticeable that the fully
connected layers’ complexity scales quadratically with the input size. This computational
cost hinders the application of neural networks to computer vision due to the high dimen-
sionality of images. The DNN research expanded with the introduction of the CNN tech-
nique that settled the premises for advancing in all those tasks that required visual data anal-
ysis. The LeNet architecture [154] represents the first breakthrough advancement in deep
CNNs applied to handwritten character recognition. With a lower memory footprint and a
computationally effective implementation on GPU hardware, the CNN approach obtained
a similar error rate to SVM. However, even if, in the subsequent years, CNN started win-
ning challenges in various tasks, the establishment of CNN as the best approach for com-
puter vision problems arrived with the publication of AlexNet [148]. The authors proposed
a network with 60 million parameters, shared between five convolutional layers and three
fully connected layers. This surpassed the previous SotA approaches and drastically reduced
the image classification error on the challenging ILSVRC-2010 dataset [14]. Furthermore,
AlexNet demonstrated that deeper architectures could achieve impressive results, paving the
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road for the research toward large networks. The VGG model (represented in Figure 2.7)
enhances this design principle of creating bigger models towards the depth dimension and
enlarging the width. This architecture uses mainly 3 × 3 kernels and doubles the channels
after halving the feature maps spatial dimension with max pooling. With this elegant and
simple design, VGG has been one of the most popular architectures able to achieve high per-
formance in the image classification task.

2.2.1 CNN Basic Operations

Herein, we briefly describe the two operations that make most of the computation in a stan-
dard CNN architecture, convolution and pooling. Then, Dumoulin and Visin [70] provide
a complete treatment of the CNN’s arithmetics, to which we refer the reader to knowmore
about the topic.

Convolution Operation

(a) Valid convolution (b) Same convolution (c) Full convolution

Figure 2.8: Convolution operation types compared
Figure openly available from the Github repo related to [70].

The convolution operation is a sparse linear transformation, which uses only a portion of
the input in a local neighbourhood, and preserves the notion of adjacency [70]. Figure 2.8
provides an example of three types of convolutions. The blue grid is the input matrix, also
called the feature map, whereas the shaded region represents the convolution kernel, i.e., a
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matrix of learned weights. These are shared for all the locations of the input feature maps
over which the kernel is passed. In fact, as in the standard convolution on 1D inputs for
signal processing, the kernel slides over the input, and, for each overlapping position, a cor-
responding output value is computed. The output feature map, coloured in green, is created
by an element-wise multiplication of the kernel with the underlying input portion and sum-
ming up the result, represented with a darker green colour. Based on the input and kernel
size, the output size may also vary by adding some padding values around the input feature
map. Besides the kernel size, the convolutions are characterised by the stride, which consists
of kernel sliding move step length. The number of single kernels learned at each layer of a
CNN corresponds to the channel dimension. Each kernel then learns a separate function,
or filter, which can recognise a specific pattern in the image of feature maps and hallucinate
abstract high-dimensional feature representations.

Pooling Operation
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(b) Max Pooling

Figure 2.9: A numerical example of the avg. and max pooling operations
Figure openly available from the Github repo related to [70].

Besides the convolutional blocks, CNN is frequently made up by adding the pooling oper-
ation to shrink the spatial dimensions of the input features size, i.e., the width and height.
This operation allows computing convolutions on smaller inputs, which, in turn, permits
expanding the depth. Pooling applies a function, typically the average or the max, to con-
dense the information contained in sub-regions of the input features map. Hence, pooling
works similarly to convolution kernels with a sliding window (without learned parameters
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usually) that feeds the underlying values to the pooling function [70]. In Figure 2.9, a nu-
merical example compares the result of average pooling (on the left) with max pooling (on
the right). Finally, pooling is also characterised by its kernel size and stride parameters.

2.2.2 CNN Architectures

Herein, we describe some of the most relevant CNN architectures. These have already been
mentioned in our survey regarding object detection methods for UAV [33] as an efficient
network architecture that is suitable for feature extractions in real-time robotics applications.
For this reason, we recall some principal characteristics that motivate their application in the
algorithms introduced.

MobileNet [121] is built upon the concept of depthwise separable convolutions, first
introduced by Sifre & Mallat [254] and popularised by the Xception network [47]. This
computationmodule consists of one first layer of kernels that operate on each input channel
independently, the depth-wise convolution, followed by the point-wise that combines the
intermediate feature maps through a 1× 1 convolution. MobileNet controls the number of
output channels at the end of each block with a hyperparameter named width multiplier.

MobileNetV2 [238] adds linear bottleneck layers at the end of the separable convolu-
tions to create what the authors call inverted residual block since the skip connection with
the identity feature maps is performed when the network shrinks the number of channels.
The authors believe ReLUnon-linearity can preserve the informationmanifold contained in
the channels when it lies in a low-dimensional subspace of the input.

Neural Architecture Search (NAS) is a novel, prolific field whose purpose is to
use search algorithms, usually either Reinforcement Learning or Evolutionary optimisation
methods, to find a combinationofmodules that obtains an optimal trade-offbetween latency
and accuracy. For instance, the optimisation metric could be specified as a Pareto multi-
objective function as demonstrated in MnasNet [270]. FBNet [304], ChamNet [54], and
MobilenetV3 [120] are other examples of successive contributions to mobile network archi-
tecture search. The reader can refer to [74, 303] for a thorough analysis of this technique.
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EfficientNet [271] improves the ability to manually tune the model complexity letting
the users choose the desired trade-off between efficiency and accuracy. Pointedly, the au-
thors propose a compound scaling hyperparameter that adjusts the network depth, i.e., the
number of layers or blocks, the width, i.e., the number of channels, and the input image
size, which influences the inner feature maps’ resolution, all at once in an optimal way. This
scalingmethod follows the observation that the network’s dimensions do not independently
influence the latency-accuracy trade-off. Finally, this novel scaling concept is applied to a
baseline network found by taking advantage of the multi-objective optimisation and search
space specified inMnasNet.
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Chapter 3. Unsupervised Ego-Motion andDepth Estimation

In this chapter*, we discuss the problem of visual odometry estimation using amonocular
camera. Unsupervised learning for monocular camera motion and 3D scene understanding
has gained popularity over traditional methods, which rely on epipolar geometry or non-
linear optimization. The unsupervised training protocol is similar to the direct SLAMmeth-
ods. Both approaches synthesize a time-adjacent frame by projecting pixel intensities using
the current depth and pose estimations and minimizing a photometric loss function. How-
ever, the learned strategy differs from the traditional one because the network incrementally
incorporates the knowledge of the 3D structure and the possible range of motions into its
weights, giving better hypotheses during later training iterations. Moreover, deep learning
can overcome many of the typical issues of traditional monocular visual odometry. For ex-
ample, the support of a large amount of example data during training can help solve degener-
ate motions (e.g., pure rotational motion), scale ambiguity and scale drift, initialization and
model selection, low or homogeneously textured areas, and perceptual aliasing [268]. In ad-
dition, concerning supervised learning, we can fully leverage video stream data without need-
ing depth or motion labels. However, being aware of the solid theory behind the traditional
methods [107] and their more general applicability, we leverage geometrical image alignment
to improve the pose estimation. Herein, we note that rotational motion can limit the accu-
racy of the unsupervised pose networks more than the translational component. Therefore,
RAUM-VO is introduced to address this issue. RAUM-VO, shown in Figure 3.1, is an ap-
proach based on a model-free epipolar constraint for F2F estimation (shortly named F2F) to
adjust the rotation during training and online inference. To this end, wematch 2Dkeypoints
between consecutive frames using pre-trained deep networks, while training a network for
depth and pose estimation using an unsupervised training protocol. Then, the predicted ro-
tation is adjustedwith themotion estimated by F2F using the 2Dmatches and initializing the
solver with the pose network prediction. Ultimately, RAUM-VO shows a considerable ac-
curacy improvement compared to other unsupervised pose networks on the KITTI dataset,
while reducing the complexity of other hybrid or traditional approaches and achieving com-
parable state-of-the-art results.

*The work presented in this chapter has been published in the Sensors journal [48] and reproduced herein
with few modifications.
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Figure 3.1: RAUM-VO block diagram.
The figure shows the flow of information inside RAUM-VO from the input image
sequence to the final estimated pose between each pair of consecutive image frames.
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3.1 Literature Review

Unsupervised Learning of Monocular VO

The pioneeringwork ofGarg et al.. [88] represents a fundamental advancement because they
approached the problem of depth prediction from a single frame in an unsupervisedmanner
for the first time. Their procedure synthesises a camera’s depths in a rectified stereo pair by
warping the other using the calibrated baseline and focal lengths. Godard et al.. [99] use
the stereo pair to enforce a consistency term between left and right synthesized disparities
while adopting the Structural Similarity Metric (SSIM) metric [299] as a more informative
visual similarity function than the L1 loss. SfM-Learner [324] relies entirely on monocular
video sequences and proposes the use of a bilinear differentiable sampler introducedwith the
Spatial Transformer Network (STN) [127] to generate the synthesized views.

Because the absolute metric scale is not directly observable from a single camera (without
any prior knowledge about object dimensions), stereo image pairs are also helpful to recover
a correct metric scale during training while maintaining the fundamental nature of amonoc-
ular method [100, 166, 313]. Mahjourian et al.. [192] impose the scale consistency between
adjacent frames as a requirement for the depth estimates by aligning the 3D point clouds
using iterative closest point (ICP) and approximating the gradients of the predicted 6 DoF
transform. Instead, Bian et al.. [16], arguing that the previous approach ignores second-order
effects, show that it is possible to train a globally consistent scale with a simple constraint over
consecutive depth maps, allowing one to reduce drift over long video sequences. In [190],
a SfMmodel is created before training and used to infer a global scale, using the image space
distance between projected coordinates and OF displacements. More recently, several ap-
proaches [167, 314, 320] have leveraged learned OF dense pixel correspondences to recover
up-to-scale two-view motion based on epipolar geometry. Therefore, they resolve the scale
factor by aligning a sparse set of points with the estimated depths.

One of themain assumptions of the original unsupervised training formulation is that the
world is static. Hence, many works investigate informing the learning process about mov-
ing objects through OF [30, 43, 129, 157, 164, 189, 223, 292, 298, 311, 316, 329]. TheOF,
which represents dense maps of the pixel coordinates displacement, can be separated into
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two components. The first, the rigid flow, is caused by the camera’s motion. The second,
the residual flow, is caused by dynamic objects that move freely in relation to the camera
frame. Therefore, these methods train specific networks to explain the pixel shifts inconsis-
tentwith the two-view rigidmotion. However, thesemethods focus principally on the depth
and OF maps quality and give few details about the impact of detecting moving objects on
the predicted two-view motion. Notably, they use a single metric to benchmark the rela-
tive pose that is barely informative about the global performance and cannot distinguish the
improvements clearly.

A recent trend is to translate traditional and successful approaches such as SVO [84], LSD-
SLAM [77], ORB-SLAM [203], and DSO [76] into their learned variants, or to take them
as inspiration for creating hybrid approaches, where the neural networks usually serve as an
initialization point for filtering or pose graph optimization [17, 44, 169, 182, 283, 297, 307,
308]. However, RAUM-VO focuses on improving the predicted two-view motion of the
pose network without introducing excessive computation overhead as required by a PGO
backend.

Instead of training expensiveOF,RAUM-VO leverages a pre-trained Superpoint [66] net-
work for keypoint detection and feature description and Superglue [240] for finding valid
correspondences. Unlike OF, the learned features do not depend on the training dataset and
generalize to a broader set of scenarios. In addition, using Superglue, we avoid heuristics
for selecting good correspondences among the dense OF maps, which we claim could be a
more robust strategy. However, we do not use any information about moving objects to
discard keypoints lying inside these dynamic areas. Finally, differently from other hybrid ap-
proaches [314, 320], we do not entirely discard the pose network output, but we look for a
solution that improves its predictions efficiently and sensibly.

Pure Rotation Problem in Monocular VO

Pure rotationalmotion is themainproblem inmonocularVOandSLAMbecause depth can-
not be inferred by triangulation and the epipolar constraint becomes numerically intractable
when the translation vector norm approaches zero [145, 268]. Many SLAM approaches,
as for example ORB-SLAM [203] in its initialization phase, handle this issue using the geo-
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metric robust information criterion (GRIC) score introduced by Torr et al.. [284] for model
selection. In practice, they decide when is the case to apply a homography transformation
that can correctly model the 3D rotation.

A complementary technique found in the literature of keyframe-based indirect SLAM is
that of relying on panorama maps and on deferred feature registration by tracking points
at the infinite plane or rays until a large baseline is found for the triangulation. Gauglitz
et al.. [90] were the first to adopt panoramas but their use is limited to describe a wider
range of motions. However, as noted in [217], they do not use the information contained
in panoramas for augmenting the global 3D map. Therefore, Pircheim et al.. [217] create a
single hybrid map in which points with finite and infinite depth are combined and used for
optimizing the reprojection error. When enough correspondences are found between finite
and infinite points, panorama keyframes are relocalized with respect to the 3Dmap and new
infinite features can be triangulated. In DT-SLAM [25], 2D and 3D features contributes
together to the pose estimation and BA formulations. Frames showing pure rotation con-
strain the translation to be zero and non-triangulated features are mapped along with the
others so that their depth estimation can be deferred until enough parallax is observed. Zhou
et al.. [326] expose the pose estimation flaws of LSD-SLAM[77]when rotation-onlymotion
occurs. Instead, they adopt the Bayesian framework to model the depth observations first
presented in [295], which distinguishes between good and unknown measurements with a
probability π that balances the distribution for the two kinds.

Amore recent approach to the pure rotationmotion problem is that of decoupling it from
the translation component and estimating it in isolation. Once relative rotations, possibly
noisy, are obtained for multiple camera positions, the problem of finding n optimal absolute
orientations consistent with the relative estimates is formalized as rotation averaging [109]
and several methods have been proposed to solve it [38, 39, 62, 79, 108, 194]. Carlone
et al.. [29] evidence that 3D pose graph SLAMwould reduce to a linear least-square problem
in the case the rotationswere known. That being said, they survey five techniques to initialize
the pose graph with optimized rotations and show the improved solutions and convergence
times. In [24], a variant of Trimmed ICP [45] is used to align back-projected feature rays,
and themethod of Chatterjee et al.. [38] is adopted to refine the estimation by solving the ro-
tation averaging problem. Chng et al.. [46] propose an incremental formulation of rotation
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averaging. To estimate the relative rotations, they use the novel method of Kneip and Ly-
nen [144] who propose an alternative epipolar constraint based on normal vectors and find
the rotation by solving an iterative eigenvalueminimization problem independently from the
translation. Recently, Lee and Civera [158] extend this method to multiple views proposing
an approach that preserves the properties of BA and rotation averaging, thereby deserving
the name of rotation-only BA.

Contrary to the traditional VO methods, unsupervised neural networks can improve the
ego-motion estimation even in the presence of pure rotational motion by predicting the
depth maps along with the relative poses and transferring prior learned knowledge of the
scene to the most difficult frame sequences. Additionally, from the literature on geometrical
frame-to-frame motion estimation methods, we select the model-free epipolar constraint of
Kneip and Lynen [144] to find the best rotation between two subsequent camera views. Re-
markably, thewhole set of inputmatches canbemodelled at oncewith this approachwithout
resorting to multiple motion models and RANSAC iterative fitting loops.

3.2 Unsupervised Learning of Depth and Ego-
Motion

This section outlines the proposed algorithm, RAUM-VO, for estimating the motion from
a sequence of monocular camera images using a combination of deep neural networks and
traditional epipolar geometry. This work follows Zhou et al.. [324], who established an un-
supervised training protocol based on view synthesis andphotometric loss, whichwedescribe
in subsection 3.2.1. In addition, to facilitate the learning process, we describe additional
techniques implemented in our training in subsection 3.2.2 and subsection 3.2.3. As shown
in Figure 3.2, the training outcome is a depth network that has learned to associate a disparity
map to a single input image frame and a pose network that predicts the 6 DoF rigid transfor-
mation between two consecutive frames. Additionally, we use the Superpoint [66] network
to extract 2D keypoints descriptors. Consequently, using a pre-trained Superglue Graph
Neural Network (GNN) [240], RAUM-VO matches the corresponding features between
pairs of successive frames. These matches are the input for the two-view motion estimation
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method [144] (see section 3.3), whose rotation corrects the network’s output.

3.2.1 View Synthesis and Photometric Loss

The principle for obtaining a supervision signal is similar to direct visual odometry [297].
Given two images at time t and t + 1, It and It+1, respectively, the depth network produces
disparity (inverse depth) maps dt and dt+1, respectively, and the pose network produces a
6 DoF transformation.
Tt→t+1 = [R | t ].
Then, we obtain the depth maps Dt and Dt+1 by inverting the disparities and normaliz-

ing them between a predefined minimum and maximum range limit. Finally, let K denote
the intrinsic camera matrix, and pt = [u, v] a 2D pixel coordinate on It image plane, in 2D
homogeneous coordinates. The projection of pt into the reference frame of It+1, pt→t+1, is
given by the following equation:

pt→t+1 = π(KTt→t+1K−1H(pt,Dt[pt])) , (3.1)

where Dt[pt] denotes the depth value at the point pt, andH is the operation to lift the 2D
pixel coordinates to 3D homogeneous coordinates:

H : ([u, v], z) 7→ [u ∗ z, v ∗ z, z, 1] = [x, y, z, 1] , (3.2)

while π is the projection to the image plane:

π : ([x, y, z, 1]) 7→ [x/z, y/z] = [u, v] . (3.3)

Using the (sub-)differentiable bilinear sampling operation, which we note with S , intro-
duced with the STN [127], we obtain a synthesized version of It+1, It→t+1, by interpolating
its intensity values at the locations indicated by a grid of points pt→t+1.

It→t+1 = S(It+1, pt→t+1) . (3.4)

Next, we optimize the estimated disparities and poses by minimizing the perceptual dis-
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tance between the image It+1 and its synthesized version It→t+1. Following the initial sugges-
tion of [317] and the example of previous similarworks [99, 166], this distance is best assessed
by a combination of L1 and SSIM [299], which is differentiable concerning both depth and
pose networks parameters. Particularly, the SSIM function aims to quantify the visual simi-
larity of It+1 and it’s synthetic reconstruction It→t+1 by comparing the luminance, contrast,
and structure measurements on windows of size n× n.

Therefore, the photometric loss Lp, equates to:

Lp = αSSIM
1− SSIM(It+1, It→t+1)

2
+ αl1‖It+1 − It→t+1‖1 . (3.5)

In our experiments, we set αSSIM = 0.85 and αl1 = 0.15.
Notably, this warping mechanism succeeds with the assumption that the scene is static,

there arenoocclusions, and the lighting conditions are constant,without reflections. Notwith-
standing that the training process may be robust to minor violations of these assumptions,
solutions for reducing dynamic objects [189] and non-Lambertian surfaces’ [307] impact on
the optimization convergence have been provided in the recent literature. Instead, we rely on
simpler mechanisms to alleviate the dynamic world conditions. During training, we extend
the view synthesis procedure to the previous frame It−1 as well. Hence, we consider the min-
imum between Lp(It−1, It) and Lp(It−1, It) on a per-pixel basis as the final photometric loss.
This strategy mitigates the effects of disoccluded pixels [100].

To conclude, we would like to add a few observations. First, while the output would be
random at the beginning, it is expected to converge to a meaningful value through the joint
optimization process of the two networks. Next, the scale of the 6DoF transformation, fore-
seeably, reflects the depth scale, as they are jointly optimized. However, even if not aligned
with the metric scale of the scene, it is plausibly globally consistent. Remarkably, this is an
advantage over geometrical methods since, for the latter, we would need to take further pre-
cautions to avoid scale drifts [77, 261]. In subsection 3.2.3, we will introduce an additional
loss term to reinforce a global consistency constraint during training.
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3.2.2 Depth Smoothness Loss

The photometric loss is not informative with homogeneous or low-textured areas of an im-
age, and the depth estimation problem becomes ill-posed. The pixels in these regions can be
associated with disparity values and still obtain a similar visual appearance for a fixed rigid
transformation [100]. However, we can introduce a prior on the estimated depth maps that
encourage smooth changes of the disparities inside these regions while discouraging the for-
mation of holes. Thus, by considering the first (or second [297])-order gradients of the im-
age as weighting terms, we allow sharp discontinuities to appear only in correspondence of
edges [99].

Therefore, the following equation constitutes the depth smoothness loss Ls:

Ls = |∂xdt| e−|∂xIt| +
∣∣∂ydt∣∣ e−|∂yIt| , (3.6)

where ∂x and ∂y are the first derivatives of the colour image and disparity map taken along x
and y directions.

3.2.3 Depth Consistency Loss

An issue of monocular VO, famously, is the non-observability of the metric scale of the
surrounding environment and, consequently, the motion between two views. This limita-
tion leads to the well-known issue of scale drift, which has been successfully addressed in
traditional BA-SLAM by performing the pose graph optimization over 3D similarity trans-
forms [77, 261]. From the perspective of learnedmonocularVO,Tateno et al.. [277] explores
the path of predicting depthmaps usingCNN, confident of their capability to reproduce the
metric scale passed through the ground-truth depths supervision. On the other hand, with-
out depth supervision, an alternative approach to learning a metrically scale-aware network
is from information regarding the translation vectors norm, as in [106], where the authors
impose a velocity loss. Even though we cannot obtain the real scale during training, ensur-
ing depth consistency is fundamental for reducing the drift and easing the task of aligning the
estimated trajectory with an externalmetricmap. Therefore, in this work, lacking the knowl-
edge of real-world scale and ground-truth depths, we adopt the loss for imposing depth con-
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sistency between two frames introduced by Bian et al.. [16]. The following equation defines
the depth consistency loss Ldc:

Ldc =
|Da→b −Db|
Da→b +Db

, (3.7)

whereDa→b represent the synthesized version of the depth estimated for image Ia to the cam-
era reference of image Ib through the estimated poseTa→b and the bilinear sampler.

3.3 Geometrical Loss and Rotation Adjustment
Here, we describe the pivotal component of our proposed method. In particular, we in-
corporate the rotation optimization formulated by Kneip and Lynen [144]. They offer an
alternative epipolar constraint that enables one to solve the relative pose problem without
many of the issues encountered in essential-matrix-based methods. Namely, these are:

• the indirect parametrization of the motion that has to be decomposed from the essen-
tial matrix, as in [107]:

E = [t]x R ; (3.8)

• multiple solutions from the decomposition that have to be disambiguated through a
cheirality check and hence by triangulation;

• degenerate solutions that may result from either point lying on a single planar surface,
distribution of the points in a small image area, and pure translational or rotational
motion. In these cases, one approach is to select a different motion model, e.g. the
homography matrix, after identifying the degeneracy with a proper strategy.

Therefore, given a set of image points (pi, p′i)matched between two views, we translated
them into pairs of unit-bearing vectors (fi, f′i) through normalization. These vectors ideally
start from the camera centre and point in the direction of the corresponding 3D points, and
each pair defines an epipolar plane. Then, the authors observe that all the normal vectors of
the epipolar planes need to be coplanar [145]. The normal vectors form together a 3-by-n
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matrixN = [n1 . . . nn], and are defined as follows:

ni = fi ×Rf′i . (3.9)

Due to the coplanarity constraint, the covariance matrixNN⊤ = M has to be at most of
rank 2. Notably, the problem is equivalent to a rankminimization parametrized byR, and is
solved by finding the matrixMwith the smallest minimum eigenvalue:

R = argmin
R

λM,min . (3.10)

Furthermore, the authors observe that the eigenvector associated with λM,min corresponds
to the translation direction vector. Therefore, this method, which we name F2F, is able to
retrieve the full frame-to-frame motion.

The problem is solved with a LM procedure. To avoid the possible presence of local min-
ima typical of non-linear optimization, we use the rotation estimated by the pose network as
a starting point. In Section subsection 3.6.1, we show the benefits of this initialization. In
addition, we choose to perform a single optimizationwith all thematches instead ofmultiple
RANSAC iterations. For restricting the number of matches outliers, we set the threshold of
the Superglue match confidence score to 0.9. At the moment, we found that this approach
works best for the data at hand after empirical evaluation of multiple RANSAC settings and
inlier criteria.

Lastly, we include the rotationRf2f as supervision for the rotation output of the pose net-
work, RPN, in the residual rotation loss Lr. To this aim, we map the rotation matrices into
their axis-angle counterparts through the logarithm function:

log : SO(3) → so(3); R 7→ log(R) , (3.11)

where so(3) is the Lie algebra associated to the Lie group of 3D rotations SO(3) [87]. Based
on the isomorphism between so(3) andR3 with the cross product, we treat the logarithm of
a rotation matrix as a vector ω ∈ R3 decomposed into a unit-norm direction vector u ∈ R3,
representing the rotation axis, and its L2 norm θ ∈ R, where θ ∈ [0, π] represents the angle
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of rotation:
log(R) = ω = θu . (3.12)

Therefore, we can compute the L1 norm, denoted by ‖·‖1, of the distance between the
rotation vector predicted by the network, ωPN, and the one estimated by F2F, ωf2f. Thus, we
obtain the following residual rotation loss Lr:

Lr = ‖ωF2F − ωPN‖1 . (3.13)

The implementation of F2F used in this work is the one provided by the OpenGV li-
brary [143].

3.4 Networks Architectures
The depth network has an encoder-decoder architecture [232] with skip connection similar
to DispNet [196] used by SfM-Learner [324]. Specifically, the encoder is a ResNet18 [114],
and the decoder has five layers of 3× 3 convolutions followed by an Exponential Linear Unit
(ELU) activation function [51], an up-sampling, and a concatenation with the ”connected”
encoder feature. In accordance with [16], we avoid multi-scale training for efficiency pur-
poses. Therefore, we apply the sigmoid function to the last output to obtain a disparitymap.

The pose network consists of one ResNet18 [114] encoder that inputs a pair of images
concatenated along the channel dimension. The feature extracted by the last layer is then the
input to a small CNN decoder composed by:

1. one linear layer that reduces the feature to a 256-dimensional vector followed by the
ReLU [3] non-linear activation function;

2. two convolutional layers with 256 kernels of size 3× 3 followed by ReLU;

3. one linear layer that outputs the 6 DoF pose vector as the vector x ∈ R6, which con-
tains the concatenation of the translation t ∈ R3 and the axis-angle rotation ωPN ∈
R3.
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The network architectures are based on the Monodepth2 implementation [100] and use
PyTorch [210]. Both network encoders are initialized with pre-trained weights on the Ima-
geNet dataset [63].

3.5 Experiments
This Section provides details regarding our experimental procedure and the settings for accu-
rately reproducing our results. In addition, we provide the results of VOobtained onKITTI
and compare them with state-of-the-art methods.

3.5.1 Training Procedure

Because we have experienced a degradation in performance when including the ldc term early
in training, we split it into two phases. Particularly, when the depth network has not yet
found a convergence direction for a plausible geometrical structure, the ldc term, especially if
it has a magnitude outweighing the photometric loss norm, could cause the depth maps to
collapse towards a local minimum during the initial training phase. An alternative solution
may be to adaptively adjust the weighing of ldc based on the value of lp. Therefore, we add
the depth consistency loss after the convergence of the photometric loss. In addition, we add
the contribution of the loss lr in the second training phase to let the pose network reach an
initial convergence plateau first. In Figure 3.2, we showhow all the componentswe described
interact during the training of RAUM-VO.

Consequently, we obtain two models:

• Simple-Mono-VO is obtained after the first training phase by selecting the checkpoint
with the best terr on the training set;

• RAUM-VO is obtained after the second phase by selecting the checkpoint with the
best terr on the training set and correcting the rotations with the output of F2F.
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Figure 3.2: Diagram of RAUM-VO training.
A sequence of images and 2Dmatches between pairs is the input for the training. The depth network takes only a single image to
output a disparity map. The pose network outputs the 3D rigid transformation, as rotation and translation, between the two input
images temporally ordered concatenated along the channel dimension. The matches are the input to the frame-to-frame rotation

algorithm, whose output guides the training and adjusts the pose network estimation at test time.
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3.5.2 Training Settings

The images are resized to 640×192 before entering the network. During training, we sample
with repetition 2000 images for each epoch. We use standard colour image augmentation
by slightly changing saturation, brightness, contrast, and hue, as in [100], and horizontal
flipping. For the optimization, we use Adam [139] with parameters β1 = 0.9 and β2 =

0.999, and a learning rate lr = 10−4 . We halve the learning rate when the loss does not
decrease for 10 epochs. We keep the training until convergence of the loss or for atmost 1800
epochs. The depth smoothness loss, depth consistency loss, and residual rotation loss weighing
factors are 10−3, 5× 10−1, and 1, respectively.

3.5.3 Dataset and Metrics

We evaluate our visual odometry network on the KITTI odometry dataset [91]. In fact,
despite not being recorded from a UAV, this dataset currently represents the most popular
benchmark for VO and SLAM in challenging urban settings. To this aim, we use sequences
from 0 to 8 for training and sequences 9 and 10 for testing. Furthermore, we use the tool
provided by the author of DF-VO [314] to ensure we apply the same criteria for evaluation.
Notably, we evaluate with the “7 DoF alignment” setting that computes the similarity trans-
form that best aligns the predicted trajectory with the ground truth using the Umeyama al-
gorithm [288]. With this, we obtain a set of estimated posesP = {pi ∈ SE(3)|i ∈ F}where
F = {1, 2, ...n} is the set of frames in a sequence. Similarly, Q = pii∈F indicates the set of
ground-truth poses for each frame.

The principal metric used to evaluate odometry is the Absolute Trajectory Error (ATE)
thatmeasures how consistent the estimated trajectory is with the real path. First, we compute
the residual pose between pairs of frames using the inverse pose composition operator [151]:

ei = qi 	 pi , ∀i ∈ F . (3.14)

The the ATE is the Root Mean Square Error (RMSE) of the translational component error
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terms [219]:

ATE =

(
1
n

n∑
i=1

‖trans(ei)‖2
) 1

2

. (3.15)

Secondly, the Relative Pose Error (RPE), which is composed of the translational error in
meters and the rotational in degrees, measures the drift by computing the average error of
estimatedmotion between each frame interval. Precisely, we obtain theRPEof the rotational
part as follows:

RPE(◦) =
1
n

n∑
i=1

∠[(qi+1 	 qi)	 (pi+1 	 pi)] , (3.16)

where∠[·] gets the rotation angle from the pose matrix. Instead, the RPE for the translation
is obtained using the euclidean norm of the translation vectors:

RPE(m) =
1
n

n∑
i=1

‖trans((qi+1 	 qi)	 (pi+1 	 pi))‖2 . (3.17)

.
Finally, while the previous metrics are general for the majority of visual odometry bench-

marks, in KITTI the authors introduce a variant of the translation and rotation errors by
computing RPE for all possible subsequences of length (100,...,800) meters and averaging
them at the end [92].

3.5.4 Results

In Table 3.1, we compare our results with two geometrical approaches, ORB-SLAM [203]
and VISO2 [93]; two unsupervised networks methods, SfM-Learner [324] and the variant
from Bian et al.. with depth consistency, SC-SfMLearner [16]; and with a hybrid approach
DF-VO [314]. We note that the reported results for SC-SfMLearner are slightly different
from the one in the paper andmay refer to training with additional data. For our evaluation,
we select those works that use only monocular image sequence during training and evalua-
tion phases, as RAUM-VO does, because stereo image pairs give an unfair advantage to the
depth reconstruction and, consequently, to the pose estimation, as documented in the liter-
ature [100]. Another condition for the evaluation regards the architectures of the depth and
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pose networks. Therefore, we selectedmethods in the learned categories that use comparable,
not equal, deepnetworks. Unfortunately, this is one element of discrepancy among theworks
in the literature on the unsupervised pose and depth estimation, and that has to be consid-
ered when making comparisons. While RAUM-VO does not surpass DF-VO performances
in many sequences, its accuracy is comparable while being more efficient. Because DF-VO is
one of themost promising hybrid approaches usingmonocular images for theVO, in subsec-
tion 3.6.2, we examine the differences and advantages of our method inmore detail. Regard-
ing traditional methods, the average error of RAUM-VO is generally lower, except for the
rerr metric computed on ORB-SLAM only. However, unlike ORB-SLAM, we do not apply
local BA. Regarding the unsupervised pose networks category, the proposed RAUM-VO
reduces the error effectively with the proposed rotation adjustment step.
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Table 3.1: Odometry quantitative evaluation on KITTI odometry seq. 00–10.

Best results are highlighted in bold, second best with an underline. Data is partially retrieved from [314].
Category Method Metric 00 01 02 03 04 05 06 07 08 09 10 Train Avg. Err. Tot. Avg. Err.

Geometric

ORB-SLAM2 [203]
(w/o LC)

terr 11.43 107.57 10.34 0.97 1.30 9.04 14.56 9.77 11.46 9.30 2.57 19.604 17.119
rerr 0.58 0.89 0.26 0.19 0.27 0.26 0.26 0.36 0.28 0.26 0.32 0.372 0.357
ATE 40.65 502.20 47.82 0.94 1.30 29.95 40.82 16.04 43.09 38.77 5.42 80.312 69.727

RPE (m) 0.169 2.970 0.172 0.031 0.078 0.140 0.237 0.105 0.192 0.128 0.045 0.455 0.388
RPE (◦) 0.079 0.098 0.072 0.055 0.079 0.058 0.055 0.047 0.061 0.061 0.065 0.067 0.066

VISO2 [93]

terr 10.53 61.36 18.71 30.21 34.05 13.16 17.69 10.80 13.85 18.06 26.10 23.373 23.138
rerr 2.73 7.68 1.19 2.21 1.78 3.65 1.93 4.67 2.52 1.25 3.26 3.151 2.988
ATE 79.24 494.60 70.13 52.36 38.33 66.75 40.72 18.32 61.49 52.62 57.25 102.438 93.801

RPE (m) 0.221 1.413 0.318 0.226 0.496 0.213 0.343 0.191 0.234 0.284 0.442 0.406 0.398
RPE (◦) 0.141 0.432 0.108 0.157 0.103 0.131 0.118 0.176 0.128 0.125 0.154 0.166 0.161

Unsupervised

SfM-Learner [324]

terr 21.32 22.41 24.10 12.56 4.32 12.99 15.55 12.61 10.66 11.32 15.25 15.169 14.826
rerr 6.19 2.79 4.18 4.52 3.28 4.66 5.58 6.31 3.75 4.07 4.06 4.584 4.490
ATE 104.87 109.61 185.43 8.42 3.10 60.89 52.19 20.12 30.97 26.93 24.09 63.956 56.965

RPE (m) 0.282 0.660 0.365 0.077 0.125 0.158 0.151 0.081 0.122 0.103 0.118 0.225 0.204
RPE (◦) 0.227 0.133 0.172 0.158 0.108 0.153 0.119 0.181 0.152 0.159 0.171 0.156 0.158

SC-SfMLearner [16]

terr 11.01 27.09 6.74 9.22 4.22 6.70 5.36 8.29 8.11 7.64 10.74 9.638 9.556
rerr 3.39 1.31 1.96 4.93 2.01 2.38 1.65 4.53 2.61 2.19 4.58 2.752 2.867
ATE 93.04 85.90 70.37 10.21 2.97 40.56 12.56 21.01 56.15 15.02 20.19 43.641 38.907

RPE (m) 0.139 0.888 0.092 0.059 0.073 0.070 0.069 0.075 0.085 0.095 0.105 0.172 0.159
RPE (◦) 0.129 0.075 0.087 0.068 0.055 0.069 0.066 0.074 0.074 0.102 0.107 0.077 0.082

Simple-Mono-VO
(Ours)

terr 9.365 8.920 6.830 3.697 2.570 4.964 3.138 3.568 7.125 13.625 11.131 5.575 6.812
rerr 2.840 0.562 1.582 2.478 0.566 2.083 0.959 1.866 2.608 3.146 4.784 1.727 2.134
ATE 94.949 30.004 83.155 4.112 2.377 30.227 8.726 8.872 59.887 66.591 18.792 35.812 37.063

RPE (m) 0.090 0.304 0.087 0.037 0.055 0.041 0.051 0.044 0.074 0.166 0.077 0.087 0.093
RPE (◦) 0.072 0.042 0.057 0.048 0.036 0.049 0.040 0.048 0.052 0.067 0.083 0.049 0.054

Hybrid

DF-VO [314]
(Mono)

terr 2.33 39.46 3.24 2.21 1.43 1.09 1.15 0.63 2.18 2.40 1.82 5.969 5.267
rerr 0.63 0.50 0.49 0.38 0.30 0.25 0.39 0.29 0.32 0.24 0.38 0.394 0.379
ATE 14.45 117.40 19.69 1.00 1.39 3.61 3.20 0.98 7.63 8.36 3.13 18.817 16.440

RPE (m) 0.039 1.554 0.057 0.029 0.046 0.024 0.030 0.021 0.041 0.051 0.043 0.205 0.176
RPE (◦) 0.056 0.049 0.045 0.038 0.029 0.035 0.029 0.030 0.037 0.036 0.043 0.039 0.039

RAUM-VO
(Ours)

terr 2.548 8.354 2.578 3.217 2.860 3.045 3.033 2.390 3.632 2.927 5.843 3.517 3.675
rerr 0.775 0.868 0.582 1.334 0.645 1.153 0.837 1.037 1.074 0.318 0.683 0.923 0.846
ATE 16.272 23.748 16.139 2.602 2.283 17.470 9.234 2.164 16.303 8.664 12.297 11.802 11.561

RPE (m) 0.040 0.257 0.050 0.030 0.052 0.038 0.046 0.028 0.053 0.068 0.078 0.066 0.067
RPE (◦) 0.059 0.062 0.048 0.048 0.035 0.044 0.042 0.058 0.045 0.042 0.051 0.049 0.049
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Figure 3.3: KITTI train trajectories

Estimated trajectories for the KITTI odometry sequences from 00 to 08. Poses are given in camera
frame. Thus, positive xmeans right direction and positive zmeans forward. Best viewed in color.

62



Chapter 3. Unsupervised Ego-Motion andDepth Estimation

200 100 0 100 200 300 400
x (m)

0

100

200

300

400

500

z 
(m

)

Ground Truth

Simple-Mono-VO

RAUM-VO

(a) Seq. 09

0 100 200 300 400 500 600
x (m)

300

200

100

0

100

200

300

400

z (
m

)

Ground Truth
Simple-Mono-VO
RAUM-VO

(b) Seq. 10

Figure 3.4: KITTI test trajectories

Estimated trajectories for the KITTI odometry sequences 09 and 10. Poses are given in camera
frame. Thus, positive xmeans right direction and positive zmeans forward. Best viewed in color.

In Figure 3.3, we show the plots of the trajectories for the training sequences predicted
by our two models and the ground-truth poses. By comparing these with the testing se-
quences displayed in Figure 3.4, we can appreciate the generalization capability of the neural
network to unseen sequences, even if KITTI contains images from similar scenarios. In the
link (https://youtu.be/4woTiJRCrUI), a video that shows the depthmap predictions for all
the KITTI sequences is provided.

3.6 Discussion
Herein, we discuss and analyze the characteristics of RAUM-VO. First, in subsection 3.6.1,
we consider the rotational and translational components of the pose error separately to argue
that the rotations offer a larger space to decrease the absolute trajectory error (ATE) shown
inTable 3.1. In turn, thismotivates the adoption of a specificmeasure to adjust the predicted
rotations. Hence, we demonstrate how the pose network plays a valuable role in initializing
the F2F solver. Lastly, in subsection 3.6.2, we speculate on the factor that contributes the
most to the accuracy of DF-VO compared to our approach.
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3.6.1 General Considerations

In Table 3.2, we show that by modifying the simple-mono-VO predictions using the ground
truth of either the translation or the rotation, there is a larger margin for improvement en-
closed in the current rotation estimates than in the translational component of the error. We
presume that this behavior is because we optimize translations directly on their vector space,
contrary to the rotations. Themanifold of rotations, special orthogonal group SO(3), only lo-
cally resembles a Euclidean topology [156] and needs intermediate representations to enable
the optimization with gradient descent methods. As such, the axis-angles are a many-to-one
mapping with SO(3), and alternative representations may be easier to approximate with a
neural network [325]. In addition, the linear distance metric between translation vectors is
easier to approximate than the non-linear counterparts for the SO(3) group [123]. Never-
theless, the rotation provided by the pose network is a better initialization point for the F2F
than the identity or constantmotion assumption. The results of the different types of initial-
ization are visible in Table 3.3. By this, the pose network’s predicted rotations are always the
best option for initializing the F2F solver and are paired only by constantmotion assumption
in some cases.

Then, we suggest that the pose network can regress themotion even in difficultmotion sit-
uations, assuming that the depth network has learned a valid geometric structure. The pose
and depth outcomes are strongly entangled due to their joint training, even if produced by
separate networks. However, more precisely, we note that the performance of one compo-
nent may be restricted by the other. While this may seem a trivial conclusion, it is necessary
to clarify the limitations of this approach and bring us to the last reflection. We evaluate the
odometry poses obtained by PnP combined with the depth network to prove our argument.
To this aim, we back-project to 3D coordinates the matches in one view frame, the same uti-
lized for our RAUM-VO, by interpolating the depth map values with the bilinear sampler
of STNs.

Consequently, we can apply PnP with RANSAC to estimate the two viewmotions for all
the sequences. Remarkably, the outcome of PnP, on average, matches closely that of the pose
network (see Table 3.4), especially for the training sequences when we fix the rotation with
F2F. This result aligns with those of, for example, DeepMatchVO [251] or DF-VO [314],
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which do not obtain significantly better odometry results by leveraging PnP directly during
the training or at the test time. Interestingly, though, the combination of a PnP with the
estimated depths works best for the test sequences, indicating that this approach may gener-
alize more.

Table 3.2: Network prediction results separately mixed with ground-truth data.

The table shows an insight into the possible margins for improvement in the pose predictions
coming from unsupervised methods. Hence, we substitute the ground-truth translations and

rotations alternately in the pose network estimates. We show the variation in the relevant metrics for
the KITTI test sequences 9 and 10.

Metrics 09 10

Simple-Mono-VO

terr 13.625 11.131
rerr 3.146 4.784
ATE 66.591 18.792

RPE (m) 0.166 0.077
RPE (◦) 0.067 0.083

Ground-Truth
Translation

terr 13.325 11.409
rerr 3.146 4.784
ATE 65.081 20.715

RPE (m) 0.162 0.028
RPE (◦) 0.067 0.083

Ground-Truth
Rotation

terr 3.029 6.038
rerr 0.010 0.014
ATE 9.026 12.894

RPE (m) 0.070 0.080
RPE (◦) 0.005 0.005
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Table 3.3: F2F solver initialization

Comparison of different initialization approaches for the LM scheme that solves the frame-to-frame motion. Overall, the rotation
from the pose network is the best, followed by a constant motion model.

Initialization Metrics 00 01 02 03 04 05 06 07 08 09 10 Avg.Train Avg.All

Identity

terr 6.192 8.023 5.888 3.919 2.860 7.659 9.100 10.969 5.402 3.851 9.475 6.668 6.667
rerr 2.222 1.025 1.670 1.909 0.645 3.340 2.926 6.565 1.926 0.742 2.605 2.470 2.325
ATE 39.195 21.231 91.621 2.651 2.283 40.192 19.682 20.592 30.142 12.939 13.399 29.732 26.721

RPE (m) 0.040 0.259 0.060 0.030 0.052 0.039 0.046 0.036 0.052 0.069 0.077 0.068 0.069
RPE (◦) 0.100 0.101 0.072 0.082 0.035 0.083 0.059 0.158 0.067 0.070 0.088 0.084 0.083

Constant Motion

terr 6.062 12.009 5.823 6.606 2.860 5.877 3.033 2.481 19.533 3.255 5.843 7.143 6.671
rerr 2.128 1.833 1.728 3.119 0.645 2.105 0.837 1.150 7.772 0.862 0.683 2.368 2.078
ATE 58.308 49.099 79.710 6.678 2.283 29.920 9.234 2.258 99.024 11.190 12.297 37.390 32.727

RPE (m) 0.044 0.265 0.056 0.030 0.052 0.039 0.046 0.028 0.160 0.069 0.078 0.080 0.079
RPE (◦) 0.075 0.086 0.059 0.066 0.035 0.060 0.042 0.068 0.702 0.072 0.051 0.133 0.120

Pose Network
(RAUM-VO)

terr 2.548 8.354 2.578 3.217 2.860 3.045 3.033 2.390 3.632 2.927 5.843 3.517 3.675
rerr 0.775 0.868 0.582 1.334 0.645 1.153 0.837 1.037 1.074 0.318 0.683 0.923 0.846
ATE 16.272 23.748 16.139 2.602 2.283 17.470 9.234 2.164 16.303 8.664 12.297 11.802 11.561

RPE (m) 0.040 0.257 0.050 0.030 0.052 0.038 0.046 0.028 0.053 0.068 0.078 0.066 0.067
RPE (◦) 0.059 0.062 0.048 0.048 0.035 0.044 0.042 0.058 0.045 0.042 0.051 0.049 0.049
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Table 3.4: PnP vs pose network

Comparison of the trajectory estimated by PnP combined with the depth network and the poses predicted by our trained network.

Poses Source Metrics 00 01 02 03 04 05 06 07 08 09 10 Avg.Train Avg.All

Pose Network
(Simple-Mono-VO)

terr 9.365 8.920 6.830 3.697 2.570 4.964 3.138 3.568 7.125 13.625 11.131 5.575 6.812
rerr 2.840 0.562 1.582 2.478 0.566 2.083 0.959 1.866 2.608 3.146 4.784 1.727 2.134
ATE 94.949 30.004 83.155 4.112 2.377 30.227 8.726 8.872 59.887 66.591 18.792 35.812 37.063

RPE (m) 0.090 0.304 0.087 0.037 0.055 0.041 0.051 0.044 0.074 0.166 0.077 0.087 0.093
RPE (◦) 0.072 0.042 0.057 0.048 0.036 0.049 0.040 0.048 0.052 0.067 0.083 0.049 0.054

PnP

terr 6.808 17.627 6.319 4.046 2.627 4.629 2.981 3.013 6.360 7.019 6.708 6.045 6.194
rerr 2.190 1.195 1.339 2.364 0.582 1.863 0.781 1.691 2.317 2.029 2.644 1.591 1.727
ATE 79.125 63.596 76.800 4.402 2.424 29.000 8.660 7.106 52.700 35.664 9.576 35.979 33.550

RPE (m) 0.061 0.636 0.086 0.033 0.055 0.039 0.049 0.040 0.067 0.082 0.073 0.118 0.111
RPE (◦) 0.060 0.057 0.049 0.042 0.029 0.039 0.032 0.036 0.043 0.068 0.085 0.043 0.049

F2F rotation w/
PnP translation

terr 2.796 15.552 2.775 3.482 3.123 3.008 3.164 2.373 3.876 3.072 4.343 4.461 4.324
rerr 0.775 0.868 0.582 1.334 0.645 1.146 0.837 0.861 1.074 0.318 0.683 0.902 0.829
ATE 17.662 41.782 15.194 2.342 2.459 17.203 9.451 3.983 16.741 8.288 8.909 14.091 13.092

RPE (m) 0.043 0.527 0.053 0.034 0.055 0.040 0.050 0.035 0.055 0.071 0.073 0.099 0.094
RPE (◦) 0.059 0.062 0.048 0.048 0.035 0.045 0.042 0.059 0.046 0.042 0.051 0.049 0.049

F2F rotation w/
Pose Network translation
(RAUM-VOw/o Lr)

terr 2.829 9.870 2.766 4.146 3.080 3.029 3.177 2.802 3.804 3.130 5.875 3.945 4.046
rerr 0.775 0.868 0.582 1.334 0.645 1.146 0.837 0.861 1.074 0.318 0.683 0.902 0.829
ATE 18.339 28.499 15.497 2.468 2.419 17.363 9.502 4.732 16.426 9.033 12.410 12.805 12.426

RPE (m) 0.043 0.307 0.053 0.037 0.055 0.041 0.051 0.036 0.056 0.070 0.079 0.075 0.075
RPE (◦) 0.059 0.062 0.048 0.048 0.035 0.045 0.042 0.059 0.046 0.042 0.051 0.049 0.049
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3.6.2 Comparison with DF-VO

We can probably ascribe the success of DF-VO to an accurately trained OF, which provides
a significantly higher number of precise matches in thousands. Still, these correspondences
are specific to the scenario they use to train the OF network. Conversely, the 2D features
detected by Superpoint are fast to compute, distinctly identified, repeatable, and, more im-
portantly, sparser (a few hundred). Therefore, we note that theOF network can hardly reach
the generalization capability of a dedicated feature extraction network. Additionally, due to
dense but noisy correspondences, DF-VO needs to iteratively search the best fit mode (e.g.,
based on the number of inliers), and decide between the essential or homography motion
model with multiple RANSAC routines. While this approach accurately describes the two-
view motion of the KITTI sequences, it is computationally expensive. Instead, RAUM-VO
uses all the matches found by Superglue for solving the eigenvalue minimization problem of
F2F only once, adding minimal overhead to the pose network run-time. Thus, we remove
the need for repeated samples of the correspondences and avoid the numerous estimation of
homography and essential matrices with the related model selection strategy. Therefore, we
resort to the output of the pose network and a single model-free rotation adjustment step,
which is comparably a more efficient approach.

Furthermore, another potential determining factor of success is the depth scale consis-
tency. DF-VO considers the depth maps as a source of multiple hypotheses for the transla-
tion vector scale. Thus, we can presume that the disparities jointly learned with the OF have
a higher degree of long-term scale consistency and structure accuracy. In this way, the DF-
VO scale alignment procedure can recover the best norm for the translation vector, which
the employed Nister 5-point [207] algorithm delivers only up to a scale factor. In addition,
the depth consistency lossmay not be as effective as the consistency loss between rigidmotion
and OF in maintaining a unique long-term scale factor.

Consequently, for evaluating our depth scale consistency, we applied a scale alignment
procedure similar to DF-VO for scaling the translation solutions obtained from the F2F and
essential matrix, using the implementations of OpenGV [143] and OpenCV, respectively.
First, we pick the essential matrix with the most inliers after ten iterations, sampling 20% of
the matches each time and estimating it using RANSAC with threshold 10−3. Next, we tri-
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angulate the 2D correspondences and keep only those that pass the cheirality check. Finally,
we sample 80% of the triangulated pointsXt ten times and fit a linearmodel withRANSAC:

Yd = sXt (3.18)

to find the coefficient s that mapsXt toYd, which is the set of 3D points obtained by project-
ing the matches with the estimated depths. Finally, we take the scale s that has the minimum
δ = ‖1− s‖2. We fall back to the pose-network-estimated translation only if less than 51% of
matches do not pass the cheirality check or if δ > 5 × 10−1. We accept the F2F or essential
matrix translation in 93–97% of the cases with these loose constraints. We present the result
of this test in Table 3.5. Still, we could not obtain a better translation than the pose net-
work’s output. Besides, the multiple RANSAC routines and sampling matches from dense
correspondences may grant a decisive advantage to DF-VO.We leave a deeper analysis to un-
derstand the factors at stake for future works.

Table 3.5: Scale alignment.

Results of the scale alignment procedure applied to the translation vector from the F2F and the
essential matrix estimated motions.

Metrics 09 10

F2F
Translation

terr 4.14 5.68
ATE 12.91 11.67

RPE (m) 0.114 0.091

Essential Matrix
Translation

terr 4.02 5.99
ATE 11.77 12.42

RPE (m) 0.124 0.099

Pose Network
(RAUM-VO)

terr 2.927 5.843
ATE 8.664 12.297

RPE (m) 0.068 0.078
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3.7 Summary
In this chapter, an unsupervised learning method for ego-motion estimation has been pre-
sented. The approach, named RAUM-VO, combines the translation predicted by a pose
network with the rotations estimated by a geometrical method called F2F. Also, an addi-
tional self-supervised loss has been introduced to guide the training. More importantly, dur-
ing online inference, the rotations predicted by the pose network are adjusted with a single
estimation of F2F, avoiding complex strategies for model selection and multiple RANSAC
loops. In addition, RAUM-VO uses Superpoint with Superglue to find robust 2D corre-
spondences in place of randomly sampling OF, thus reducing training time and generalizing
to more environments. Finally, RAUM-VO has been evaluated on the KITTI odometry
dataset and compared with other relevant state-of-the-art methods. Remarkably, this adjust-
ment step is decisive for improving the prediction of unsupervised pose networkswhile being
more efficient than using OF and essential matrix estimation.
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In this chapter *, we address the problem of global metric localisation, using an efficient
CNN architecture as a feature extractor and an MLP to regress the pose vector. Thus, we
leverage MobileNetV2 [238] as a network backbone to process the images, allowing us to
achieve a trade-off between competitive performances and computation speeds.

Precise and robust localisation is of fundamental importance for robots required to carry
out autonomous tasks. Above all, in the case of UAVs, efficiency and reliability are critical in
developing solutions for localisation due to the limited computational capabilities, payload
and power constraints. On the other hand, GNSS is a standard solution to the problem of
retrieving a global position. Still, it often fails due to signal loss in cluttered environments
like urban canyons or natural valleys. Moreover, the precision of GNSS correlates with the
number of satellites in direct line of sight [8]. Significantly, the accuracy requirements for
robotics applications are often not met by some technological implementations, such as the
GPS, where the provided measurements can be affected by uncertainty up to some meters.
As an alternative to GPS, visual based localization (VBL) [216] refers to the set of methods
that estimate the 6 DoF pose of a camera, that is, a composition of translation and rotation,
in a global coordinate system defined at the centre of themap of the navigation environment,
solely relying on the information enclosed in the images. In robotics, VBL is related to solv-
ing the kidnapped robot problem, i.e., locating a robot without knowledge of the previous
location and its movements. Whereas, in a SLAM pipeline, VBL is part of a relocalisation
module that allows recovering the global position in the map and is applied, for example,
after losing the feature tracking, for loop-closing in PGO, or for reducing the drift of the
odometry estimation [269].
Visual localisation methods can be categorised either as indirect, also called topological or

appearance-based, or direct, sometimes referred to asmetric [216]. On the one hand, indirect
VBL formulates the localisation as an image-retrieval problem, providing a rough estimate of
the current location resulting from a database search for themost similar place. Nevertheless,
the precision depends on the granularity of the space represented by the images saved in the
database with a known associated pose [52, 302]. Also, these methods are generally inserted

*Thework presented in this chapter has been published in the proceedings of the International Conference
on Computer Analysis of Images and Patterns [50] and of the 2019 16th IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS) [49], and reproduced herein with few modifications.
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among the loop closure techniques since they aim only to recognise a previously visited place
and delay to a later stage the recovery of the relative pose between the loop-connected pose
nodes (see section 1.2). On the other hand, direct methods cast localisation as a regression
problem and thus provide both position and orientation for each new camera view without
other processing steps. Therefore, the direct localisation approach is the most appropriate
when the operating environment is confined to a well-defined area. We expect to obtain a
pose as precise as possible when the tracking is lost.

Finally, to achieve real-time run-times and low latency predictions, we leverage an efficient
deep neural architecture for the problem of 6 DoF pose estimation from single RGB camera
images. In particular, we exploit the MobileNetV2 design to jointly regress the position and
orientation of the camera relative to the navigation environment. Experimental results show
that the proposed network can retain similar outcomes concerning the most popular SotA
methods while being smaller and with lower latency, which are fundamental aspects for real-
time robotics applications.

4.1 Literature Review
This section reviews the methods proposed in the literature on VBL techniques. Currently,
the approaches to direct localisation follow three distinct directions. The first relies on es-
tablishing matches between 2D image features and 3D points of a structured environment
model usually generated by SfM [247, 305]. Another general approach is to exploit machine
learning algorithms to learn the 3D world coordinates associated with each image pixel to
estimate the transformation from the camera’s system of coordinates to the world-centred
coordinate frame. Lastly, it is possible to obtain a solution to the global localisation by train-
ing “end-to-end” a neural network, e.g., a CNN, for predicting the most probable 6 DoF
directly pose associated with an input image.

Structure-based localisation indicates the family of methods supported by a 3D recon-
struction of the environment created through an SfM pipeline [247] offline or with other
mapping techniques that can guarantee high global consistency and accuracy of the locations
of the 3D points. Hence, thesemethods can establish correspondences between local 2D fea-
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tures extracted from a query image and those associated with the 3D points in the model.
Finally, the PnP algorithm [131, 160] can recover the camera’s pose using a putative matches
set’s sample to iteratively search for the lowest reprojection error solution with a RANSAC
robust fitting scheme [221]. Since the points in the 3Dmap Irschara et al.. [126] use image re-
trieval methods in conjunction with a compressed scene representation composed of natural
and synthetic views. Li et al.. [168] propose to invert the search direction using a prioriti-
sation scheme. Sattler et al.. [241] enhance the 2D-3D matching with a Vocabulary-based
Prioritised Search (VPS) that estimates the matching cost for each feature to improve the
performances and combines the two opposite search directions [242]. Despite being precise
when correct correspondences are found, the main drawbacks are the computational costs,
whichdonot scalewith the extent of the area to cover, and theneed to store a 3Dmodel [216].
Scene coordinates regression methods use machine learning to speed up the matching

phase by directly regressing the 3D scene coordinates associated with the image pixels. Shot-
ton et al.. [252] train a random forest on red green blue and depth (RGB-D) images and for-
mulate the localisation problem as an energy functionminimisation over the possible camera
location hypothesis. Hence, they use the Kabsch algorithm [132] inside a RANSAC loop to
iteratively refine the hypothesis selection. The downside of these methods is the need for
depth maps and high-resolution images to work well.

End-to-end learning has been adopted only recently to solve the direct localisation prob-
lem. Following the success of neural networks in many computer vision tasks ranging from
image classification to object detection [153], PoseNet [137] is the first work inwhichCNNs
are applied to thepose regression task. Inparticular, they reuse apre-trainedGoogLeNet [267]
architecture on the ImageNet dataset [64], demonstrating the ability of the network to gener-
alise to a completely different task thanks to transfer learning [69]. In laterworks,Walch et al.. [296]
extend PoseNet with LSTM [118] to encode contextual information, and Wu et al.. [306]
generate a synthetic pose to augment the training dataset. Subsequently, Kendall et al.. [135]
introduce a novel formulation to remove weighting hyperparameters from the loss function.
Though these single CNNmethods for pose regression could not surpass the average perfor-
mance of classical approaches [243, 252], they are capable of handling themost visually tricky
frames, more robust to illumination variance, cluttered areas, and textureless surfaces [296].
Multi-task networks [220, 290] demonstrate that by leveraging auxiliary task learning,
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such as Visual Odometry or Semantic Segmentation, the neural network improves on the
main task of global localisation. As a result, they were able to outperform the state-of-the-art
of feature-based and scene-coordinate regression methods.
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4.2 End-to-End Pose Regression
Inspired by previous works on direct visual localisation exploiting CNNs [135, 306], we aim
to estimate the camera pose from a single red green blue (RGB) image by adding a regressor
fed by the network’s output chosen as a base feature extractor. In the following subsections,
we describe the representation of the pose vector, the loss function used to learn the pose
estimation task, and the architectural details of the deep learning model.

4.2.1 Pose representation

The output for each input image consists of a 7-dimensional vector p, representing both the
translation and rotation of the camera relative to the navigation environment:

p = [x, q] (4.1)

wherex ∈ R3, represents theposition in the 3Dspace and theorientationq ∈ R4 is expressed
as a quaternion.

Our choice of using a quaternion over other representations for the orientation is moti-
vated by the fact that any 4-dimensional vector can be mapped to a valid rotation by scaling
its norm to unit length. Instead, opting for rotation matrices would require enforcing the
orthonormality constraint since the set of rotation matrices belongs to the special orthogo-
nal Lie group, SO(3) [135]. Other representations, such as Euler angles and axis-angle, suffer
from the problem of periodic repetition of the angle values around 2π. Wu et al.. [306] pro-
posed a variant of the Euler angles, named Euler6, to overcome the issue of periodicity in
which they regress a 6-dimensional vector e = [sinφ, cosφ, sinθ, cosθ, sinψ, cosψ]. Notwith-
standing in [306], the authors showed an improvement empirically over quaternions, we de-
cided not to express the rotation as Euler6 for a closer comparison with the majority of the
SotA approaches, unsure of whether these different representations consist of a significant
improvement.
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4.2.2 Loss Function

To train the network for the task of pose estimation, weminimise the difference between the
ground truth pose, [x, q], associated with an image I in the training dataset, and the pose
predicted by the deep learning model, [x̂, q̂]. Hence, the loss function aims to optimise the
two components of the pose, translation andorientation, denoted byLx andLq, respectively:

Lx(I) = ‖x− x̂‖p , (4.2)

Lq(I) =

∥∥∥∥q− q̂
‖q̂‖2

∥∥∥∥
p
, (4.3)

where with the notation ‖·‖p we refer to the p-norm. In our experiments, we apply p = 2,
which corresponds to the Euclidean norm. Besides, the predicted quaternion is normalised
to unit length to ensure a valid rotation representation.

Since the two components, Lx and Lq of the loss function we want to minimise are on
a different scale, a weight β is added to the quaternion error to balance the backpropagated
gradient magnitudes [137]. In light of this, the complete loss function is defined as follows:

L(I) = Lx(I) + β · Lq(I) (4.4)

To minimise the hyperparameter from the loss function, [135] replace β with two learn-
able variables, ŝx and ŝq, in the formulation of the loss with homoscedastic uncertainty:

L(I) = Lx(I) · exp(−ŝx) + ŝx + Lq(I) · exp(−ŝq) + ŝq (4.5)

Homoscedastic uncertainty, contrary to heteroscedastic uncertainty, is independent of the
input data and, therefore, is not an output of the model. Instead, it captures the uncertainty
of themodel relative to a single task, treating the regression of translation and rotation as two
separate tasks while training the model for multiple tasks simultaneously. For this reason, it
is helpful inmulti-task settings to weigh the loss components based on the differentmeasure-
ment units relative to the particular task [136]. In our experiments, we initialised ŝx and ŝq to
0.5 and 0.1 respectively.
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4.2.3 Deep Learning model

MobileNet

2048 1024

512 512
512

512 512
512

Mobile-PoseNet Mobile-PoseNet HLS Mobile-PoseNet SLS

Figure 4.1: Architecture of Mobile-PoseNet
The diagram shows the overall structure of the network and how the last layers are symmetrically

branched.

Since the current approaches rely on very deep network architectures, e.g., GoogLeNet,
we propose replacing them with a more efficient architecture to produce a more appealing
solution for deployment on a UAV. Improving on the previous generation of “mobile”, e.g.,
efficient, networks [121],MobileNeV2 [238] combine the depthwise separable convolution
with a linear bottleneck layer drastically decreasing the number of operations and weights
involved in the computation of the output. We show that this shallower network can run
faster than other single CNN solutions without sacrificing the localisation accuracy.

To build a small network for localisation, we adopted the MobileNetV2 [238] architec-
ture by adding fulling connected layers to regress the pose. Hence, we refer to our proposed
network as Mobile-PoseNet.

MobileNetV2 leverages the depthwise separable convolution to reduce the number of pa-
rameters and themultiply additions (madds) operations as in the previous iteration [121]. In
addition, they introduce the linear bottleneck that reformulates the original residual block in
a more efficient design[113], which supports the propagation of the gradient across numer-
ous stacked layers. Moreover, MobileNetV2 allows tuning a width multiplier α to choose
the best trade-off between accuracy and size of the network. For example, we set α = 1 to
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obtain a network with 3.4M parameters and 300Mmadds, resulting in a sensible shrinking
compared to GoogLeNet with 6.8M parameters and 1500Mmadds.
Thus, we perform an average pooling on the output ofMobileNetV2’s last convolutional

layer, deriving a vector of 1× 1280 dimension that contains a high-dimensional feature rep-
resentation of the input image. Therefore, we connect a fully connected layer of 2048 neu-
rons followed by a ReLu6 [147] non-linearity, which maps the features to the desired 7-
dimensional pose vector. Krizhevsky et al.. argue that the ReLu6 helps to learn a sparse fea-
ture representation earlier in training than the ReLU counterpart. More importantly, it can
exploit fixed-point low-precision calculations [121] on supported hardware.
Furthermore, to improve the generalisation capability of the network, we add a batch nor-

malisation layer [124] before the non-linearity. In addition, we adoptDropout [260], which,
as described in chapter 2, is an alternative form of activation regularisation that reduces over-
fitting and indirectly induces sparsity by dropping random neurons at training time.

Ultimately, inspired by the branching technique proposed in [306], we offer to regress the
translation and rotation vectors separately (see Figure 4.1) by designing two other versions of
the pose regressorMLP (see Figure 4.1). Hence, we symmetrically split the neurons into two
groups of 1024 to maintain the same total number intact. Additionally, we experiment with
a third version of the network that keeps a shared fully connected layer for translation and
rotation of 1024 neurons and splits in half the rest forming two groups of 512. Our purpose
is to compare the benefits of jointly learning position and orientation, that is, sharing the
information enclosed in the sharedweights, against training two individual branches for each
task. Therefore, we distinguish these design choices by referring to the first as symmetric layer
split (SLS), and the latter as half layer split (HLS).
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4.3 Experiments and Results
In this section, we evaluate our trainedmodels on 7-Scenes [252] andCambridge Landmarks
datasets [137]. The first includes indoor images, whereas the second one contains pictures
captured in an outdoor urban environment. These datasets have been adopted bymost of the
relevant SotAmethods. Using an indoor dataset also allows the analysis of how the proposed
method behaves in scenarios with characteristics different from outdoor urban settings.

4.3.1 Datasets

(a) Chess (b) Fire (c) Heads

Figure 4.2: 7-Scenes sample images

(a) King’s College (b) Old Hospital (c) Street

Figure 4.3: Cambridge Landmarks sample images

7-Scenes [252] is a dataset for RGB-D designed to benchmark relocalisation methods.
Thus, it was collected through a Microsoft Kinect camera in seven indoor scenarios, which
contains more than 40K frames with 640 × 480 resolution and an associated depth map.
This dataset’s challenging aspects are its high camera pose variations in a small area generat-
ingmotion blur, perceptual aliasing, and light reflections. These unique characteristicsmake
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the pose estimation particularly difficult for methods relying on handcrafted features, espe-
cially in views where textured areas are not distinguishable [296].
Cambridge Landmarks was introduced in [137], and currently provides six outdoor sce-

narios. It contains more than 10K images sampled from a high-resolution video captured
by a smartphone. The ground truth labels were generated through an SfM reconstruction
of the environment. Visual clutter caused by the presence of pedestrians and vehicles plus a
substantial variance in the lighting conditions is the main challenge posed by this dataset.

All the scenes in both datasets are subdivided into sequences, depending on the trajecto-
ries from which they were generated. Each of the sequences shows a different perspective of
the surrounding environment. Hence, for training and testing our model, we use the same
partitioning of the datasets provided by the respective authors. Thus, we create a separate
validation (val) set for evaluating the models during the training phase by taking a random
sample of 10% of the frames from all the sequences in the training set. To better approximate
the test set’s performance more accurately, we form the val set from sequences that are not
overlapping those in the training set.

4.3.2 Experimental Setup

The network is implemented using the TensorFlow open-source library [1]. We initialised
MobileNet with weights pre-trained on the ImageNet dataset and the fully connected layers
using the method proposed by He et al.. [112]. Before training, we normalise the images by
computing an RGB image representing the standard deviation and the mean of a particular
dataset scene. Then, we remove the mean for each image and divide it by the standard devi-
ation to centre the data and uniformly scale the pixel intensities. The dropout rate is set to
0.1, which means only 10% of the neurons are turned off during training, whereas the batch
normalisation moving average momentum is set to 0.99. We optimised the models using
Adam [139] with a learning rate α = 1e−4, β1 = 0.9, and β2 = 0.999, on batches of size 128
shuffled at each new epoch, using an NVIDIA Tesla V100 with 16GB of memory. Thus, we
let the training last until the convergence of the loss is reached on the “dev” set.
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4.3.3 Discussion of the results

InTable 4.1,we compare the resultswith threeotherCNN-based localisationmethods: PoseNet [137],
PoseNet2 [135] with learned σ2 weights in the loss, and BranchNet [306], which represents
rotations with Euler6 and splits the network into two branches to regress the position and
the orientation separately. Whereas we benchmark our result against PoseNet [137] because
it pioneered the approach to the direct localisation problem using CNNs, we share with the
othermethods some architectural choices. On the onehand,we adopt the homoscedastic un-
certainty introduced by [135] to balance different loss components; on the other hand, we
split the network layers following the work of [306], who showed significant improvements.

In general, Mobile-PoseNet can outperform PoseNet and BranchNet in most scenarios.
The automatic balancing of the translation and rotation components of the loss function is
themain factor that gives us an advantage over thesemethods. Instead, PoseNet2 obtains the
best results in all the benchmark scenes apart from Old Hospital in which Mobile-PoseNet
HLS can surpass the translation error by a small margin. Also, we note that PoseNet2 uses
frames with a resolution of 256× 256, whereas our models require a minor input of 224×
224. Besides, we observe thatMobile-PoseNet performs better on scenes spread over smaller
areas. In contrast, Mobile-PoseNet HLS and SLS competitively gain higher scores in Cam-
bridge Landmarks scenarios with an elevated spatial extent.

Finally, we run the network on a TegraTX2 to test the latency, that is, the time interleav-
ing from the submission of one frame into the network to the moment of receiving the esti-
mated pose. Hence, using the integratedTensorFlow tool for run-time statistics, we note that
MobileNet-PoseNet takes on average 17.5ms of run time, while the classic PoseNet 24ms.

At last, we want to remark that the proposed solution employs a base feature extractor
that carries half the number of parameters, in contrast to the aforementioned state-of-the-art
methods we compare. This factor inevitably impacts the accuracy of the output.
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Figure 4.4: Cumulative distribution of the localisation error
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Figure 4.5: Cumulative distribution of the localisation error
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Table 4.1: Median localisation errors on the 7-Scenes and Cambridge Landmarks datasets

Area or
Volume

BranchNet[306]
Euler6

PoseNet[137]
βWeight

PoseNet2[135]
Learn σ2 Weights

Mobile-PoseNet
(proposed)

Mobile-PoseNet
HLS

(proposed)

Mobile-Posenet
SLS

(proposed)

7-Scenes

Chess 6m3 0.20m, 6.55◦ 0.32m, 8.12◦ 0.14m, 4.50◦ 0.17m, 6.78◦ 0.18m, 7.27◦ 0.19m, 8.22◦
Fire 2.5m3 0.35m, 11.7◦ 0.47m, 14.4◦ 0.27m, 11.8◦ 0.36m, 13.0◦ 0.36m, 13.6◦ 0.37m, 13.2◦
Heads 1m3 0.21m, 15.5◦ 0.29m, 12.0◦ 0.18m, 12.1◦ 0.19m, 15.3◦ 0.18m, 14.3◦ 0.18m, 15.5◦
Office 7.5m3 0.31m, 8.43◦ 0.48m, 7.68◦ 0.20m, 5.77◦ 0.26m, 8.50◦ 0.28m, 8.98◦ 0.27m, 8.54◦
Pumpkin 5m3 0.24m, 6.03◦ 0.47m, 8.42◦ 0.25m, 4.82◦ 0.31m, 7.53◦ 0.38m, 9.30◦ 0.34m, 8.46◦
Red Kitchen 18m3 0.35m, 9.50◦ 0.59m, 8.64◦ 0.24m, 5.52◦ 0.33m, 7.72◦ 0.33m, 9.19◦ 0.31m, 8.05◦
Stairs 7.5m3 0.45m, 10.9◦ 0.47m, 13.8◦ 0.37m, 10.6◦ 0.41m, 13.6◦ 0.48m, 14.4◦ 0.45m, 13.6◦

Cambridge Landmarks

Great Court 8000m2 — — 7.00m, 3.65◦ 8.68m, 6.03◦ 8.12m, 5.60◦ 8.60m, 5.58◦
King’s College 5600m2 — 1.92m, 5.40◦ 0.99m, 1.06◦ 1.13m, 1.57◦ 1.20m, 1.79◦ 1.14m, 1.53◦
Old Hospital 2000m2 — 2.31m, 5.38◦ 2.17m, 2.94◦ 3.11m, 4.11◦ 2.13m, 3.73◦ 2.62m, 4.21◦
Shop Façade 875m2 — 1.46m, 8.08◦ 1.05m, 3.97◦ 1.39m, 6.37◦ 1.55m, 5.64◦ 1.73m, 6.19◦
St. Mary’s Church 4800m2 — 2.65m, 8.48◦ 1.49m, 3.43◦ 2.34m, 6.23◦ 2.16m, 5.97◦ 2.18m, 6.01◦
Street 50000m2 — — 20.7m, 25.7◦ 22.9m, 36.3◦ 22.6m, 32.6◦ 22.9m, 36.2◦
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4.4 Pose Estimation in Dynamic Scenes
In the event of a robot operation inside an urban environment, the localisation can be af-
fected by the occlusions caused by dynamic objects. In some cases, where the occluding ob-
jects severely obstruct the field of view, we cannot expect any algorithm based on visual input
to obtain any helpful information on the current position. Instead, we argue that if points
of interest are included in some patches of the images, then a robust algorithmmust provide
the estimated pose based solely on these important clues without being distracted by the fea-
tures of the dynamic objects. Hence, our objective is to empirically show the effectiveness of
convolutional neural networks in focusing on the part of the image containing the relevant
information. To confirm such a proposition, our strategy is to detect the parts of the image
belonging to moving objects and to train a pose regressor using the pre-processed masked
dataset. Eventually, we compare the results with those obtained by training a network on the
typical dataset to test if the model outcome is sensitive to the missing features in the masked
objects. Thus, we perform an ablation study where the single varying element is the input
dataset for training. To this aim, during the experimental phase, we keep all the hyperparam-
eters of the networks unchanged.

4.4.1 Object Segmentation in SLAM

Works to deal with segmented dynamics objects in the SLAM have been proposed in the
past. In [301], a 3D object tracker is used to prevent a SLAM algorithm from relying on fea-
tures belonging to moving parts in its map and removing features occluded by moving ob-
jects. Riazuelo et al.. [229] introduced a human tracker to remove certain regions from the
SLAM pipeline, showing that such a strategy improves the performance of camera tracking
and relocation. A solution that addresses the same problem for both movable and moving
objects has been proposed by Bescos et al.. [15]. Authors employ a CNN to segment dy-
namic objects in the images to avoid extracting features made by SLAM algorithms on those
parts. They also propose a reconstruction of occluded parts, but for the RGB-D case only.
Mask R-CNN [111] is used to segment dynamic objects’ shapes, while RGB-D informa-
tion strengthens the segmentation and labels moving objects not detected from the CNN.
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Instead, in [300], the object detection network YOLOv3 [226] has been used to propose a
semantic SLAM in real time.
If the benefits of prior knowledge and of adding a segmentation step have been shown in

classic SLAM scenarios, very few works have been provided for the case of neural networks.
In fact, state-of-the-art architectures automatically learn to extract the relevant information,
i.e., the “important” parts of an image for the different tasks under consideration.An attempt
in the SotA between masking parts of the images and neural network performance has been
provided in [67], where random region masking has been used to get regularisation on the
input layer (cutout). Furthermore, saliency maps can visually offer empirical evidence of the
ability of neural networks to recognise relevant data. In [256], a milestone work has been
proposed to visualise models for the image classification tasks of CNNs through the visual
saliency maps, a topographical representation of unique features in visual processing. Fur-
thermore, [257, 266] advanced in themethods for quantifying the input pixels’ contribution
to the final prediction. Hence, they propose different techniques to visualise saliency maps
describing the magnitude of the backpropagated gradient. Finally, Sundararajan et al.. [266]
introduce two axiomatic principles that saliency methods should enforce to be reliable in
their evaluation. In [257], a smoothing technique is proposed in which Gaussian noise is
added to the input, creating multiple intermediate saliency maps that are averaged together.

4.4.2 Dataset pre-processing

For the following experiments, we use the King’s College scenario since this representation
of an urban scenario is ideal for our study case due to the presence of pedestrians and vehicles
(see Figure 4.6).

The phase of moving object segmentation is performed offline, pre-processing all the im-
ages in the dataset in advance. We used a pre-trained Mask R-CNN [111] (implemented by
[2]) to segment automatically the objects (see Figure 4.7a). The output of Mask R-CNN is
the list of object classes that are detected in the image and a mask labeling the pixels that be-
long to each object. From the original 90 MS COCO [174] categories, and we picked those
that best fit the concept of a moving object not relevant to the localisation objective. Among
those, we include things that a person could carry, e.g., a backpack, and all the animals inde-
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Figure 4.6: King’s College sample pictures from the Cambridge Landmarks dataset

pendently from their presence in the King’s college dataset, as resumed in Table 4.2.

Table 4.2: Number of objects detected per each category

The object categories and the number of detected objects found for each are displayed here. Only
the categories with at least one detected object are included in the table.

Category Person Bicycle Car Truck Handbag Backpack Motorcycle Suitcase
Count 6059 2976 2716 256 248 121 93 41

Category Umbrella Tie Boat Bird Bus Airplane Dog Horse
Count 9 7 5 2 2 1 1 1

Hence, the outcome of this step is a binary mask of the same size as the processed images
representing whether or not the corresponding pixel has to be ignored (see Figure 4.7b).
Following, we compute the per-channel mean and standard deviation of the pixel value

on the entire dataset. Before training, we standardise the images by subtracting the mean
and dividing by the standard deviation to obtain zero-centred and unitary variance input
distribution. Henceforth, we apply the binary mask setting to zero the input underlying the
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(a) Object Segmentation (b) Binary Mask

Figure 4.7: Pre-processing applied to a sample image of the King’s College sequence

black part of themask (see Figure 4.7b) and leave unchanged the rest. This procedure retraces
the cutout regularisation technique [67] in applying a zeromask after normalising the input.
Ultimately, we trained using random crops of size 224× 224 of the original images. Instead,
during the tests, only the central crop is used.

4.4.3 Experiment Results and Discussion

Herein, we propose the experiment on global localisation using ResNetV2 [115] with 152
layers andGoogLeNet [267] as feature extractors. Then, we discuss the results obtainedwith
ResNet andGoogLeNet and perform an ablation study on the use of themasking procedure
either at training time, at test time, or during both phases.

The CNNs’ implementations are provided within the TensorFlow-Slim open-source li-
brary [1] and the weights are initialised from models pre-trained on the ImageNet dataset.
The fully connected layers that regress the pose are initialised randomly using the method
proposed by He et al.. [112]. The dropout rate is set to 0.12 so that 12% of the neurons are
turned off during training on average, whereas the Batch Normalisation momentum is set
to 0.99. Adam [139] optimiser is used to minimise the loss with a learning rate α = 1e−4,
β1 = 0.9, and β2 = 0.999, on batches of size 64 shuffled at each new epoch. A single
NVIDIA Tesla V100 has been used for each training.
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Table 4.3: Median and mean errors w/ and w/o object masking

Median and mean errors of translation and rotation for the four different combinations of masking
and unmasking images at training and test time.

UT/UT UT/UM MT/UT MT/MT

GoogLeNet

Median Error 0.93m, 3.29◦ 1.01m, 3.12◦ 0.94m, 2.86◦ 0.95m, 2.84◦

Mean Error 1.36m, 3.85◦ 1.39m, 3.84◦ 1.21m, 3.40◦ 1.19m, 3.39◦

ResNetV2 152

Median Error 1.06m, 3.18◦ 1.10m, 3.12◦ 1.13m, 3.31◦ 1.09m, 3.12◦

Mean Error 1.58m, 3.99◦ 1.73m, 4.20◦ 1.40m, 4.21◦ 1.33m, 4.20◦

Hence, we obtained the mean and median error statistics for four different combinations
thatwename: UnmaskedTraining+UnmaskedTest (UT/UT),UnmaskedTraining+Masked
Test (UT/MT),MaskedTraining+UnmaskedTest (MT/UT), andMaskedTraining+Masked
Test (MT/MT).
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Figure 4.8: Cumulative distribution plot of the translation and rotation error
Comparing the four approaches, we can notice that the trends are overall similar.
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Comparing themean andmedian values inTable 4.3, it is possible to observe that amethod
that outperforms the others does not clearly emerge. For example, while the median transla-
tion error is slightly lower in theUT/UT approach, it is the contrary for the rotation. This re-
sult is reflected in the lower plot of Figure 4.8a, inwhich theMT/MT (orMT/UT) approach
exhibits a higher probability of obtaining lower rotation error with GoogLeNet, whereas
with ResNet (upper plot in Figure 4.8b) it shows a mildly lower translation error for the last
percentile of frames.

Inspecting the box plots in Figure 4.9, we notice that the medians of MT/MT fall in the
95% confidence intervals of theUT/UT respectivemedians (shown through the notches and
a blue dotted line), apart from the rotation error of GoogLeNet. Therefore, we can conclude
that the medians do not differ with 95% confidence. From one point of view, this evidence
could imply that the UT/UT approach already incorporates the capability of masking irrele-
vant information contained in the input images. However, on the other side, it validates the
prior assumption that features contained in the dynamic objects are not influencing the pose
estimation and can be hidden without harming the accuracy of the results.

Ultimately, we study possible relationships between the portion of the image that can be
masked and the error in the localisation. With this regard, we bin the test images by the
percentage of pixels belonging to detected dynamic objects over the total number of pixels,
i.e., 224 × 224, which is displayed in Figure 4.11. Since the majority of images have lower
than 5%masked pixels and very few over 35%, in Figure 4.10we show the results for the bins:
0% to 5%masked pixels, which contains 207 images; 5% to 15%, containing 56 images; 15%
to 35% containing 28 images.

Thus, the box plot in Figure 4.10 reveals an apparent connection between the increase in
the localisation error, both translation and rotation part, and the portion of the image that
is covered by dynamic objects especially when this is a significant part, e.g., more than 15%.
Furthermore, in the test set, there are 3 more images over the 35% threshold. These are not
included in the plot since their mean error is markedly higher than the other bins’ means
and would not make possible a clear visualisation. Anyway, this evidence further confirms a
relationship between localisation error and the size of dynamic objects.
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Legend
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(b) ResNetV2 152 errors box plot

Figure 4.9: Box plots of the translation and rotation errors
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Figure 4.10: Translation and rotation errors grouped by occluded pixels percentage
Translation and rotation errors on the test images are grouped by the percentage of pixels that could

be masked with the proposed method (for the legend see Figure 4.9). The figure shows a slight
relationship between the portion of the image that is obscured and the increase in the mean/median

error.
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Figure 4.11: Histogram of the percentage of the masked pixels
Histogram of the distribution of the images with the percentage x% of masked pixels in the test set of the Cambridge King’s College
dataset. Among the 343 images used for testing, almost 100 have less than 1%. Instead, the remaining images present more evidence of

masked objects.
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4.4.4 Saliency Maps Visualisation

Herein, we investigate the contribution that each pixel is supposed to give to the final pose
estimate. For this purpose, we use the saliency maps produced by SmoothGrad [257] tech-
nique combined with the Integrated Gradients method [266]. Integrated Gradients (IG)
accumulates the contribution given by the pixels in the images that lie in the straight inter-
polation line between the original image, e.g., the one for which we would like to visualise
the saliency, and a baseline image, e.g., a black picture which is supposed to have a neutral
pose estimation (high error). Hence, it integrates the gradient of the network output with
respect to each input image by computing the Riemman approximation of the integral, with
a discrete number of stepsm. Naming x the original image and x′ the baseline, and calling F
the function represented by the neural network, we calculate the saliency for the pixel i as:

IGi(x) = (xi − x′i)×
m∑
k=1

∂F(x′i + k
m × (xi − x′i))
∂xi

× 1
m

(4.6)

In our experiments, we usem = 40 integration steps.
Furthermore, SmoothGrad (SG) sharpens the saliency maps by taking into account the

possible fluctuations of the backpropagated gradients. The authors showed that the gradient
is sensitive to slight input variations. Henceforth, they proposed to smooth themaps by aver-
aging the backpropagated gradient ofmultiple input instances created by applying aGaussian
filter. For this reason, SmoothGrad is compatible with any saliency algorithm since by itself
does not compute the maps. The computation takes a saliency function S applied to an im-
age x. Then, it iterates n times sampling additive noise from a Gaussian normal distribution
N (0, σ2)with zero mean and standard deviation σ:

SG(x) =
1
n
×

n∑
k=1

S(x+N (0, σ2)) (4.7)

In our experiments, we parametrised SGwith n = 35 and σ = 0.1 · (xmax − xmin), i.e., the
10% of the pixel intensity range.

Finally, the saliency maps obtained using GoogLeNet for the UT/UT and MT/MT ap-
proaches are displayed for two specific scenarios: first, anobject in the foreground, Figure 4.12;
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second, objects in the background, Figure 4.13. It is possible to observe that in the first case,
the UT/UT approach almost masks most of the cyclist shape as well as the MT/MT ap-
proach. On the contrary, the second frame shows that the gradient “leaks” inside the form
of the white camper, making it visible. The vehicle’s presence possibly explains this effect
in the same spot in many frames of the dataset; therefore, the network overfits the features
carried by its visual appearance. When the dataset presents a recurring fixed dynamic object,
it may be beneficial to obfuscate those objects by masking them or augmenting the dataset
with synthetic images or additional raw data sequences.
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Original Image Masked Image

Translation Err.: 0.52; Rotation Err.: 4.00

UT/UT

Translation Err.: 0.94; Rotation Err.: 1.87

MT/MT

Figure 4.12: Saliency maps with a person in the foreground
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Original Image Masked Image

Translation Err.: 0.31; Rotation Err.: 1.36

UT/UT

Translation Err.: 0.35; Rotation Err.: 1.89

MT/MT

Figure 4.13: Saliency maps with vehicles in the background
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4.5 Summary
In this chapter, we applied an efficient CNN to solve the global localisation problem. In
particular, we combined MobileNetV2 architecture with an MLP to estimate the 6 DoF
pose. Moreover, we compared multiple design options for the MLP by symmetrically split-
ting the neurons into fully connected layers for learning the orientation and rotation sep-
arately. Comparison with other SotA methods using a single CNN for direct pose regres-
sion shows that our method achieves competitive results despite using a shallower network
for feature extraction. Moreover, from an ablation study performed on one indoor and one
outdoor environment, we noted that a monolithic MLP design, i.e., sharing the weights be-
tween translation and rotation regression layers, outperforms the others in smaller scenarios.
Instead, separating the last regression layers for outdoor environments obtained slightly bet-
ter results. Lastly, using an NVIDIA Jetson TX2 board, we showed that the proposed ap-
proach runs faster than other methods without sensibly reducing the localisation accuracy.
Subsequently, we addressed the problem of the global camera localisation in the case of dy-
namic object presence when using a CNN for pose regression. To this end, we proposed
pre-processing images with an object segmentation network. Hence, the pre-processed and
original datasets have been used to train two localisationCNNmodels. Through the statisti-
cal analysis, we showed that the performances of the two training approaches are similar, with
a slight reduction of the error when hiding occluding objects from the views. Ultimately, we
used the SmoothGrad techniquewith IntegratedGradients to create saliencymaps highlight-
ing the pixels contributing to the pose loss. Therefore, inspecting the obtained figures, we ar-
gue that, whilst the pose estimation would benefit overall frommasking the pedestrians and
other dynamic objects, the CNNs can inherently extract salient features through learning.
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In this chapter*, we tackle the problem of intrusion detection in a restricted access zone
around a building or, more generally, in a confined urban area. As mentioned in the intro-
duction (see section 1.4 for a brief review of object detection), we frame the problem of aerial
surveillance applications as detecting people from colour images and locating them inside an
outdoor navigation environment. Whereas approaches for solving the relative and global lo-
calisation of an UAV have been proposed in the earlier parts of the present thesis, herein, we
discuss the last perception elements for fulfilling the outlined autonomous aerial surveillance
system’s requirements. Also, similarly to the localisation tasks, the drone sensor system is lim-
ited by a single RGB camera. Such constraint is a factor that hampers the capability of 3D
geometry understanding and causes the reconstruction algorithms to require further infor-
mation to establish actual people’s locations on a metric scale. The proposed methodology
proceeds in two steps to obtain this information in more detail. First, an object detection
algorithm predicts the presence of people. Specifically, it encloses the image area that tightly
contains the pixels of the detected person shape with 2D bounding boxes. This procedure
is explained in more detail in section 5.2. Consequently, projecting the 2D bounding box
on a given ground plane, we find the 3D location of the person in section 5.3. Finally, in sec-
tion 5.4, we use SfM to create a 3D reconstruction of the environment, which is fundamental
for retrieving the parameters of the ground plane and for training the robot self-localisation
algorithms with ground truth pose labels. Then, we could inject metric information to scale
themap and obtain people’s distances at this stage. Notably, themetric scale is of paramount
importancewhen the complete system envisages an autonomous flight control based onmet-
ric units and needs to give an interpretable patrol report to the human operator. Otherwise,
there would be no concern about the scale to exclusively check violations of a restricted access
area. Finally, the proposedmethodology results are presented on two reconstructed outdoor
environments, one ofwhichhas been collected as part of this project to emphasise the localisa-
tion capabilities of the previously introduced approaches. Hence, we conclude by visualising
odometry and localisation results on the 3Dmap with projected human body shapes.

*The work presented here has not been published yet but will be submitted for review to a journal. How-
ever, related articles have been published in collaboration with Cazzato et al.. in the Sensors journal [33], in
the proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graph-
ics Theory and Applications, and in the proceeding of the International Joint Conference on Computer Vision,
Imaging and Computer Graphics [34].
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5.1 Related Work
In the recent literature, few works directly address the perception problems in the context
of surveillance assisted by an aerial robotic platform with a monocular camera. For example,
Perera et al.. [214] use the R-CNN method for detecting humans and fine-tuning AlexNet
for processing salient image regions proposed by the EdgeBoxes algorithm [328]. Then, they
train 64 4-class SVM to classify the human body rotation from HOG features extracted on
the detected bounding boxes. Notwithstanding, they do not attempt to obtain the distance
or even the full translation vector of the human pose with respect to the drone’s point of
view. Thus, they fly at known heights and with fixed camera tilt angles to experiment on
human trajectory tracking. Similar to our approach, Zhang et al.. [315] use SVOmonocular
visual odometry [84] to track drone motion and estimate sparse depth maps. Hence, they
obtain denser maps using PatchMatch Stereo [18], which are necessary to measure multiple
averaged depth values at the bottom of detected people’s bounding boxes that are assumed
to lie on the ground. Hence, they find the ground plane normal vector n⊤ = [n1, n2, n3]⊤

by solving the linear systemwithCramer’s rule and project again the bounding box’s bottom
centre point b = [u, v, 1] on the plane to find the person 3D location c with the following
equation:

c = π−1
G (b) =

hcamK−1b
n⊤K−1b

, (5.1)

where K is the intrinsic camera matrix, and hcam is the camera height defined by one point
[x, y, z] on the ground and pitch angle θ as hcam = y cos θ− z sin θ.
Compared to this work, the present methodology leverages SfM to reconstruct the navi-

gation environment accurately. Currently, we do not employ depth maps like those learned
by RAUM-VO (see chapter 3), but it provides a more reliable drone position to locate the
human in 3D. Also, we do not requiremultiple detected people to estimate the ground plane
robustly with the proposed approach. Further, we note that Equation 5.1 is probably erro-
neous, and we correctly reformulate the problem equations for projecting the point on the
plane without needing the calculation of hcam in section 5.3.
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5.2 2D Object Detection
Theobject detection task involves enclosing image regions that contain anobjectwithbound-
ing boxes of various sizes that fit as tight as possible to the object’s shape. Then, once positive
boxes are found, a classifier marks them with the object’s type label. Since we are interested
only in people detection, the person is the only positive class, while other objects that may be
present and the background are considered negative examples. To this aim, an object detec-
tion network has been implemented considering the recent SotA approaches to improve the
accuracy of the predictions. So, we describe the full methodology in this section.

For the same reason for localisation andmany other computer vision tasks, DL dominates
the SotA literature on object detection. A Convolutional Neural Network processes images
and produces high dimensional feature representations at every stage, or network’s layer, of
computation by gradually reducing the width and height dimensions to increase the chan-
nels. Therefore, in the early layers, small and contiguous regions of the image are processed
to produce shallow, intermediate representations, but that retain the scale of the input with
more fidelity, whereas, in the deeper stages, more abstract and complex features are formed
at the cost of lower resolutions maps.

In earlyDLapproaches, the classifier and theboundingbox’s coordinates regressor areusu-
ally connected to the last network’s layer, thus having a reduced resolution that would not
ease the capture of smaller objects. However, as in the SSD approach [177], including initial
layers contributionsmay bemarginally beneficial as the additional features contain less infor-
mation thanmore deep levels, even if the input resolution is better preserved. For this reason,
FPN [172] has been introduced to give the same rich semantic content to different levels of
the network. To achieve their intent, the authors proposed to add a parallel network struc-
ture that would process the features of the last k levels again from top to bottom, connected
with lateral pathways to the main CNN backbone. The top-down structure, illustrated in
Figure 5.1, combines features from the standard feed-forward bottom-up pathway with new
feature maps generated by an up-sampling operation to match the increasing resolution.
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1x1 conv +

predict

predict

predict

Figure 5.1: Feature Pyramid Network illustration

The figure shows the top-down feature pyramid. The highlighted block zooms over the 2x
up-sampling and the 1 x 1 convolution to match the channel dimension of the lateral feature maps.

Image from the FPN paper [172].

After introducingFPN,numerous improvements have beenproposed as this design is fun-
damental to obtaining multi-scale detection precision. For example, PANet (Path Aggrega-
tion Network) [176] adds another bottom-up network besides the first, which behaves as a
shortcut connection that shorted the path between CNN kernel recognising low-level pat-
terns, e.g., edges, and high-level semantics. Subsequent works, instead, design more complex
modules to control the information flow in the pathways [170, 318] or use NAS to find the
optimal configuration for top-down and bottom-up connections [94]. Taking inspiration
from the previous works, Tan et al.. [272] introduce the BiFPN with “efficient bidirectional
cross-scale connections andweighted feature fusion” as their core contribution to the SotAof
object detection networks. The resulting architecture is then named EfficientDet (pictured
in Figure 5.2). Their design is bidirectional, composed of repeatable top-down and bottom-
up layers. Furthermore, it is cross-scale as it fuses features frommultiple scales and adds extra
edges to propagate the signal between same-level computation nodes. To control the infor-
mation flow in the fusion process, the BiFPN learns weighting factors wi ≥ 0, which are
then normalised either by the Softmax function or with the following more efficient “Fast
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normalised fusion”:
O =

∑
i

wi∑
j wj + ε

· Ii , (5.2)

where Ii is the i-th input feature,O is the output, and ε is a small constant to avoid numerical
instability. Lastly, the EfficientDet design develops a family of models through a single com-
pound scaling factor that allows to shrink or expand the BiFPN’s channels and layers jointly
with the EfficientNet backbone’s width, depth, and input resolution. Hence, seven models
are available in total, from D0 to D6. Due to its flexibility and multi-scale detection capa-
bilities, EfficientDet is used in the following experiments as the base model to regress people
bounding boxes.

Input

P1 / 2

P2 / 4

P3 / 8

P4 / 16

P5 / 32

P6 / 64

P7 / 128

conv

EfficientNet backbone

BiFPN Layer

conv

conv conv

Class prediction net

Box prediction net

Figure 5.2: EfficientDet Architecture

The EfficientDet architecture employs EfficientNet as the backbone and a novel FPN design, namely
BiFPN, to provide multi-resolution object predictions. The labels Pi/2i are associated with the i-th

block output feature map of EfficientNet, which propagates into the BiFPN. Image from the
EfficientDet paper [272].

A characteristic that makes EfficientDet faster is adopting a one-stage detection paradigm.
As a result, it lacks a dedicated RPN as in Faster R-CNN [227]. Instead, it provides predic-
tions for a predefined large (in the order of 105) set of anchor boxes that densely cover the
image and present multiple possible aspect ratios and scales. This vast number of box can-
didates causes the effect known as the class imbalance between those spatial positions that
cover objects and the majority that do not. The most common solution to this approach
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involves bootstrapping, i.e., re-sampling data from a low represented class, or hard negative
mining, which samples fewer hard examples of the most represented class. However, Lin
et al.. [173] propose to down-weight the easy examples while enhancing the contribution of
the most difficult. Their intuition is to design a loss that behaves similarly to robust losses,
such as theHuber function, in reducing the effect of outliers but addressing the opposite use
case. Hence, they extend the Cross-Entropy loss used to classify bounding box regions into
object types bymost object detection works with a novel Focal loss. Due to its remarkable ef-
fect in facilitating training and obtaining better results, we implement this loss for the object
classification task.

Before introducing the Focal loss equation, we must clarify how the standard approach
categorises bounding boxes. The first step is to map the logits quantities produced by the
network to the positive class probability p, i.e., that of being a person, by normalising the
values with the Sigmoid function (see Equation 2.4). We deal with a binary classification task
between one foreground object type and the background in practice. Therefore, we define
the BinaryCross Entropy (BCE) loss between the network prediction p and the ground truth
label y as follows, borrowing the convention used in the Focal loss paper:

BCE(p, y) = BCE(pt) = −log(pt) , (5.3)

where pt is:

pt =

p if positive class or y = 1,

1− p otherwise .
(5.4)

An easy way to balance the weight of the positive class with the vast majority of negatives,
e.g., background regions, is to add a factor α ∈ [0, 1] that is inversely proportional to the
frequency of the class.

BCE(pt) = −α · log(pt) . (5.5)

However, the Focal loss intends to address the imbalance between easy and hard examples,
thus focusing more on the challenging data that results in higher loss values. Therefore, a
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tunable hyper-parameter γ ≥ 0 is added to down-weight the importance of easy examples:

Focal(pt) = −(1− pt)γ · log(pt) . (5.6)

Eventually, we can combine the two modulating factors in a single loss to achieve a more
substantial counter effect over class imbalance causes:

Focal(pt) = −(1− pt)γ · log(pt) . (5.7)

Thehyper-parameter α is set to0.8 for thepositive class and γ to 1.2unless statedotherwise.
Adjacent to the convolutional structure that predicts the class logits, EfficientDet archi-

tecture includes a similar network that regresses an offset between an anchor box and the
ground truth object box. The anchors compose a set A of default boxes scattered over the
entire image plane. Hence, the last layer of the regression network produces a feature map
withW×H (width and height) spatial dimensions and 4×A channels, whereA is the num-
ber of anchors per spatial position and4 is due to the [x, y] coordinates of the anchors’ corners
offset. In practice, we use three aspect ratios {1:1, 1:2, 2:1} and three scales {20, 21/3, 22/3}
for each of the five pyramid levels. Then, given a set of ground truth boxes Y , each anchor
a ∈ A is either unassigned or assigned to a single box y ∈ Y based on the IoU overlapmetric,
also known as the Jaccard index:

IoU(a, y) =
aarea

⋂
yarea

aarea
⋃
yarea

. (5.8)

With a slight abuse of notation, we denotedwith aarea and yarea the area of the anchor boxes
and that of the ground truth label, respectively.
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Figure 5.3: SmoothL1 loss plot

The SmoothL1 loss used for bounding box coordinates regression extends the Huber loss and is
controlled by the hyper-parameter β. The latter differs by a factor δmultiplied on both cases of

Equation 5.9. When the hyper-parameter β converges to zero, the loss corresponds to the simple L1

loss. Instead, it is equivalent to the Huber loss for β = 1. For large β values, the SmoothL1 tends to
constant 0, in contrast with the Huber that gets closer to the Mean Squared Error (MSE) loss.

An anchor is assigned to the label with the maximum overlap if IoU > 0.5. Otherwise,
it remains unmatched and contributes to the set of negatives or background areas discarded
for regression but used for classification, as explained before. Then, we can compute the
regression loss using the following SmoothL1 function:

SmoothL1(acoords, ycoords) =


0.5·|acoords−ycoords|2

β if |acoords − ycoords| ≤ β ,

|acoords − ycoords| − 0.5
β otherwise ,

(5.9)

where acoords, resp. ycoords, denotes the anchor box, resp. target box, corners’ coordinates.
The β hyper-parameter controls the shape of the SmoothL1 as shown in Figure 5.3, and we
set it to 1/9.
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Wediscard all the boxeswith a confidence threshold during online inference, i.e., the prob-
ability p, lower than 0.05. Consequently, theNon-Maximum Suppression (NMS) is applied
to post-process the predicted boxes that are usually more numerous than the actual quantity
of objects present in the scene. NMS is a technique to remove redundant boxeswhose overlap
area with higher confidence boxes is over a certain IoU threshold, usually 0.5.

Having established ourmethodology for detecting people on the 2D image plane, wemove
on to describe the process for obtaining their 3D location in the next section.

5.3 3D Object Localisation
In Figure 5.4, the relationship between the drone camera transformation and the object po-
sition is represented in an abstraction of the 3D world. The main assumption to obtain a
3D person location in this environment, besides an object detection algorithm, are that we
know the 6 DoF pose transformation from the drone camera frame into the world frame
Tw

c . Also, we need the ground plane parameters in the 3D space, which are its normal n⊤ =

[n1, n2, n3]⊤ and the distance d from the origin of the coordinate system.
Then, for every point p = [x, y, z] lying on the plane, the following equation holds:

Plane : n⊤p+ d = n1 · x+ n2 · y+ n3 · z+ d = 0 . (5.10)

Toobtain the plane parametersn⊤ andd, we rely on a sparse 3Dmodel of the environment
(see section 5.4), where we can set the ground level manually. The ground level does not
always correspond to z = 0, especially if the axis origin is aligned with the earth’s altitude.
Nevertheless, the ground level allows filtering the points cloud with the relevant portion,
which is selected within±1 meters of distance from the ground level in the z axis direction.
So, usingRANSAC robust fitting scheme, we can find the plane parameters that best explain
the selected points with amaximum error distance of 0.4meters for considering them inliers.
Notably, it would be possible to retrieve a ground plane from dense depthmaps estimated by
a neural network with the same procedure since we are assuming to know the camera’s pitch
and height. However, this would be possible only when a portion of the ground is visible.
Also, to ensure the stability of the estimation, we would require a more complex and robust
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GROUND 
PLANE

2D projection of 
the person on the 
image plane

Detected person 

Figure 5.4: Representation of the 3D object localisation
A person is first detected on the 2D image plane using a CNN for object detection to regress the

bounding box coordinates. Then, the intersection between the ground plane and line starting from
the camera origin and passing by the bounding box’s middle point determines the 3D location of the
person. Hence, knowing the transformationTw

c from the drone’s camera and the world coordinates
systems, we can derive the translation vector twp that represents the person’s position in the

environment. Notably, this method does not estimate human body orientation.
The represent coordinate systems axis uses the xyz 7→RGB colour mapping convention.
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model, e.g., tracking the ground measurements within a factor graph.
Since theplane is alreadydefined in theworld coordinates,weneed to transformthebound-

ing box base central point bc = [u, v, 1] from the image to the camera coordinates and con-
vert it into theworld frame. Notably, the point is expressed in 2Dhomogeneous coordinates.
Also, it represents the 3D vector that origins from the camera and go to infinity, or, in other
words, the line that intersects the ground plane passing by the person’s base location. First,
however, weneed to obtain the line in the sameworld reference of the plane to find the sought
intersection point. To this aim, we use an operationH(·) to lift the vector to 3D homoge-
neous coordinates to apply the intrinsic matrix, denoted with K ∈ R3×3, and the extrinsic
matrixTw

c ∈ R4×4 correctly:

H : R3 → R4; [x, y, 1] 7→ [x, y, 1, 1] . (5.11)

So, the pointbc can be transposed and rotated fromcamera toworld coordinates applying the
camera to world transformation matrix Tw

c after transforming pixels coordinates to camera
coordinates using the intrinsic matrixK:

bw = Tw
c H(K−1bc) . (5.12)

Moreover, the difference between the point bw and the camera translation vector twc from the
map origin returns the line direction in world coordinates:

vw = bw − twc . (5.13)

Thus, knowing that a point on the line can be obtained by specifying a parameter t ∈ R
in the line equation:

Line : p = bw + t · vw , (5.14)

we compute the t value for which the line intersects the plane, by substituting p in Equa-
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tion 5.10 with the right-hand side of Equation 5.14:

n⊤(bw + t · vw) + d = 0 , (5.15)

t = −n⊤bw + d
n⊤vw

, (5.16)

Finally, we can find the translation vector twp representing the location of the detected person:

twp = bw −
n⊤bw + d
n⊤vw

· vw (5.17)

Therefore, the described approach permits obtaining an approximation of the detected per-
son’s location in 3D, whose precision is subjected to the estimated ground plane accuracy
and limited by the assumption that the base of the bounding box lies on the ground close
to the person’s feet. Enhancing this method aspect would be possible with an algorithm
for estimating the human body’s 2D keypoints, e.g., OpenPose [28], as proposed in Caz-
zato et al.. [34, 35] for detecting UAV pilot using the estimated arm joint angles. In practice,
OpenPose would predict the position of the person’s feet in the image and would also allow
predicting the body orientation after the appropriate 3D projection. However, the Open-
Pose’s network would introduce a significant amount of additional computations, and its
benefits have not been weighted in the perspective of this work’s objective.

5.4 Environment 3D Reconstruction
In section 1.2, we described the SLAM problem as aMAP estimation. Besides, theMAP in-
ferencederives fromamathematical formulationbasedon the graphicalmodel called the “fac-
tor graph”. Notably, it encodes the optimisation variables in the nodes, i.e., the robot’s states
and map keypoints. Instead, edges form an adjacency set of nodes, where the sensors’ mea-
surements are parameters of a function of the adjacent states, the factor. The factors are the
basis for factorising a complex global optimisation function into a product of independent
elements. As a result, the factor graph model visualises the problem’s computational struc-
ture and the relationships between all the optimisation variables. For example, in SLAM,
the graph resulting from any trajectory track reveals the sequential nature of the problem,
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with odometry measurements linking pairs of keyframes, landmark points appearing along
the path, and revisited locations creating loop closure connections.

Unlike SLAM, reconstructing a 3D environment usually involves an unordered collection
of images, sometimes captured at various times, and possibly even using different cameras.
Structure frommotion (SfM) is the most popular strategy for modelling the motion and the
geometrical structure from unrelated images. Thus, the lack of a chronological sequence and
real-time computation requirements are the principal distinctions between SLAM and SfM,
extending its capabilities tomap large outdoor environments from heterogeneous sets of pic-
tures [4]. As a result, the mathematical formulation of the SfM problem is closely related to
SLAM, but with a few different constraints also noticeable through its factor graph model.

x1 x2 x3

l3l1 l2

Figure 5.5: Factor graph representing the SfM problem

This figure illustrates a typical but simplified case of SfM through a factor graph model, similar to
that described in Dellaert’s review article on factor graphs [59]. In this example, there are three pose
variables {x1, x2, x3}, and three landmarks {l1, l2, l3}. No odometry measurements are available to

connect the poses. Still, only landmarks’ observations constrain them to the environment.

The computational structure of a typical SfM problem, a simplified version shown in Fig-
ure 5.5, contains connections between camera poses tomapped landmarks 3D points, which
can be clustered based on their co-visibility. These rise from visual observations of the 3D
scenes in the overlapping parts of frames’ FoV and are fundamental to constraining the prob-
lem of understanding the camera pose and the map structure. However, we lack the notion
of odometry measurement, i.e., the camera’s change of motion between keyframes, which
would provide another source for constraining the problem. Hence, landmarks’ observa-
tions need to be collected by performing visual feature extraction and have to be matched
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to find the co-visibility relationships. Those images without or with few correspondences
would be disconnected from the graph or would not have enoughmeasurements to obtain a
satisfactory pose optimisation result.

Figure 5.6: COLMAP sparse reconstruction pipeline

The figure shows the steps to create a sparse reconstruction of a large outdoor environment from a
set of images. The first block of steps involves the extraction of 2d features from each image that are

matched to find the image views that share common points.
Image from COLMAP website [130] and paper [247].

The complete SfM pipeline, shown in Figure 5.6 as implemented in COLMAP, under-
takes, in fact, feature extraction and matching as its first steps. COLMAP* [247–249] is a
popular SotA technique for incremental SfM publicly released by Schönberger et al.., and its
implementation is employed for creating the reconstructions of our outdoor environments.

Feature extraction involves using a 2D keypoint detection and description algorithm that
should be robust to various types of geometric or illumination changes. Borrowing the nota-
tion from [247], we describe the feature extraction phase as the detection of salient locations
xj ∈ R2, also called keypoints, in the i-th image of the collection I = {Ii | i = 1 . . .NI}
to be reconstructed and create a set of local 2D features Fi = {(xj, fj) | i = 1 . . .NF}. The
2D features associate a vector fj ∈ Rd to each keypoint for describing its visual appearance
with a d-dimensional code. Ideally, these codes would uniquely identify the referred spatial
location to be matched with other observations of the same 3D spot. In practice, the qual-
ity of a feature descriptor is measured by its repeatability and distinctiveness properties [87].
Because we adopt the Scale-Invariant Feature Transform (SIFT) [185] method for this step,
we obtain 128-dimensional vectors.

*open-source software available at https://github.com/colmap/colmap
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The matching phase discovers the connections between the frames in I based on the ex-
tracted featureFi. The outcome of the step is a scene graph that joins couples of images that
share an overlapping FoV based on the features in common. The brute force approach com-
pares all the feature combinationsFa ×Fb using a similarity metric to establish a match be-
tween two images (Ia, Ib). The quadratic complexity of this approach, i.e.,O(N2

IN2
F), makes

it unfeasible for extensive collections, but it ensures that all the frames are strongly connected
to the graph. Nevertheless, a more efficient strategy is to rely on image retrieval techniques
that speed up finding the nearest neighbours’ images in the collection. We use a vocabu-
lary tree with 256K words trained on the Flickr100k dataset [215] to perform BoVW image
retrieval with spatial re-ranking [248] and visual burstiness weighting [128] (procedure im-
plemented in COLMAPwithin the vocab_tree_matcher function). We also apply the tran-
sitive matching strategy to densify the scene graph (COLMAP transitive_matcher func-
tion). If we already possess an approximate knowledge of the camera position, e.g., through
GPS, we also apply a spatial matching with the nearest neighbours inside a certain radius
(COLMAP spatial_matcher function). To conclude the first stage of the SfMpipeline, the
matches are verified by finding a valid frame-to-frame transformation, either described by a
homography or an essential matrix, that can project a sufficient amount of features from one
image to the other with a low reprojection error. Figure 5.7 shows the adjacency matrices of
the scene graphs resulting from the reconstruction of two environments introduced later.
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(a) AU-AIR dataset

(b) Belval dataset

Figure 5.7: Plots of the adjacency matrix of the scene graph

The matrices show the matching connection between every pair of images in the two collections
reconstructed in the experiments. The resulting graph does not contain any separate components.
Nevertheless, it is not so dense to hamper the optimisation. The colour represents the strength of a
match, where red corresponds to a higher number of features and green to a lower. The two scene
graph may appear with different connection densities, but this effect is due to the more significant
number of frames mapped in the Belval dataset (around 10x more) that scales the plot. The original
images have a prohibitive resolution to be displayed, corresponding to a number ofNI ×NI pixels.

Therefore, they have been scaled down to 2000× 2000 pixels for illustration purposes.
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The second stage of COLMAP is the actual incremental reconstruction of the environ-
ment. It uses the previous stage outputs, the match matrix and the set of features for reg-
istering the camera frame in an increasingly growing scene model. The process starts from
a two-view motion model estimation and continues with an alternation between the trian-
gulation and the registration steps. The first step extends the set of the map’s 3D points
X = {Xk ∈ R3 | k = 1 . . .NX}. The second step adds new camera pose estimates to set
P = {Pc ∈ SE(3) | x = 1 . . .NP} using PnP and the correspondences between 2D features
and triangulated 3D points. Finally, BA refines all pose and point measurements by min-
imising the reprojection error function with an iterative non-linear problem solver, such as
LM. BA is a problem tightly related to theMAP optimisation of the factor graph. However,
as evident, the factor types are restricted to the camera projective geometry functions, and
the data is entirely available from the start of the SfM process [26]. Hence, we formulate an
energy function E that sums the contributions of the distances between all 2D features xj
and their associated 3D pointsXk projected on the image plane by a function π and camera
parameters Pc:

E =
∑
j

ρ
(
‖π(Pc,Xk − xj‖22

)
, (5.18)

where ρ(·) is a robust cost function to down-weight the influence of outliers, such as
the Cauchy function [10]. Then, SfM alternates between local BA of highly connected
parts of the scene graph and global BA to reduce the drift consequent to the model growth.
COLMAP hierarchical_mapper functionperforms these reconstruction steps bypartition-
ing the scene graph and parallelising the BA process. Then, COLMAP merges the small
sub-models based on overlapping scene observations. Ultimately, we perform the last trian-
gulation and a refinement BA with point_triangulator and bundle_adjuster functions.
At the end of the reconstruction, SfMproduces a sparsemodel of the environmentswhose

origin is placed arbitrarily within the scene and with a meaningless scale. Therefore, we first
transform “latitude-longitude-altitude” GPS coordinates to an xyz coordinate frame whose
origin is placed at a specified GPS position. We used the Matlab function latlon2local in
our reconstructions, which assumes the geographic coordinates have been recorded with the
standard WGS84 reference ellipsoid. Finally, using the RANSAC routine implemented in
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the COLMAP function model_aligner, we compute a 7 DoF transformation that applies a
translation, rotation, and scale to align the poses estimated by SfMwith those approximated
by the GPS xyz coordinates.

5.5 Experiments and Results
In this section, we present the experiments on two outdoors environments, AU-AIR and
Belval, where the latter has been created as part of this project. First, we show the 3D re-
construction of each dataset obtained using COLMAP and adapting the parameters. Next,
we present the people detection and localisation using the objects portrayed in the AU-AIR
dataset’s images. Only a qualitative evaluation is presented since 3D object labels have not
been released (only classical 2D bounding boxes are available). Then, a global localisation
network is evaluated with a methodology similar to that explained in chapter 1 but adopts a
different network for the feature extraction.

Furthermore, we introduce a novel dataset, Belval, created within this project’s scope to
highlight the capabilities of the neural network approach for the odometry estimation prob-
lemwithmonocular cameras compared to traditional techniques. Nevertheless, the purpose
of this dataset is to recreate a scenario for the surveillance task as initially described. How-
ever, we do not yet provide 2D objects and 3D pose ground truth labels for this dataset for
evaluation. Thus, the evaluation of the detection and localisation of people is left for future
work.

Finally, we illustrate numerically and graphically (in the reconstructed scene) the results
obtained with the odometry methodology described in chapter 3. To this aim, we use the
SfM pipeline to get a reliable source of ground truth poses to benchmark the localisation
method and qualitatively appreciate the estimated drone trajectories in all three dimensions.

5.5.1 AU-AIR Dataset

AU-AIR [21] dataset has been created from 8 videos captured from a Parrot Bepop 2 drone
performing low-level flight trajectories (from 10 to 30meters of height) over a large road junc-
tion (a roundabout). The dataset, meant for traffic surveillance, contains bounding boxes of
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eight object categories, e.g., person, car, bus, van, truck, bike, motorbike, and trailer, with the
majority of labels corresponding to cars, 100K, and considerably fewer people, around 5K.
Notably, AU-AIRconsists of 32, 823 frames shot at 30 FPSwith a resolution of 1920×1080.
Also, it delivers multi-modal data recordings of the drone state, such as altitude, IMU, and
GPS synchronised by the given timestamp. However, this additional information may be
used to test object tracking. Still, the lack of camera intrinsic parameters and more precise
ground truth poses do not permit the correct localisation of the drone and the detected ob-
jects. For this reason, we provide a 3D reconstruction to recreate the missing information
from the images and align the reconstructed model of the scene with the given GPS. Never-
theless, the limited pose variation in the space does not contribute to a challenging testbed
for localisation algorithms.

3D Reconstruction

Figure 5.8: AU-AIR sparse reconstruction

3D scene model of AU-AIR obtained with COLMAP.
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In Figure 5.8, we display the 3D reconstruction obtained registering only a portion of the
over 32K images. In detail, after ordering all the frames chronologically, we select images
basedon a 1.5 seconds time interval. This process is needed to ensure enoughmotionbetween
one image and another to triangulate points. In addition, the distribution of the registered
camera frames highlights the issue of the poses grouped in two clusters, which results in a
restricted variability of the scene observation viewpoints. Then, in Figure 5.9, we show the
report of the reconstructed model.

Figure 5.9: AU-AIR 3D reconstruction stats

Starting from the sparse reconstruction, we used COLMAP multi-view stereo [249] to
create a dense point cloudmodel of the scene shown in Figure 5.10. Using this dense model,
we fit the 3D plane parameters representing the ground plane. To compute them and display
the results, we use the Open3D python library for 3D point cloud manipulation* [323].

*Open source-code available at http://www.open3d.org/
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Figure 5.10: AU-AIR dense reconstruction

Dense reconstruction of AU-AIR obtained with COLMAP and multi-view stereo technique.

Object Detection and Localisation

To detect objects, we train an EfficientDet-D2 model. The suffix D2 stands for the com-
pound coefficient 2 (chosen between 0 and 7) used to scale themodel width and height prop-
erties, finding a trade-off between detection performances and efficiency. Consequently, the
input images size 768× 768 pixels, the BiFPN is repeated 5 times and the final object regres-
sor and classifiers are composed of 5 convolutional layers before the final output. Also, the
backbone is an EfficientNet using the same scaling coefficient. We modify an open-source
implementation* and use their pre-trainedweights on theMSCOCO [174] dataset on all 90
object classes, adapting them to the binary classifier for our task. Among the improvements,
we adapt the convolutional operation to correctly export the network’s computation graph
to an ONNX intermediate format. Consequently, this meta-representation is translated to
theNVIDIATensorRTmodel, which can run at higher speeds on embeddedplatforms, such
as the Jetson Nano or TX2.

*https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
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Furthermore, we improve the training process to enable multi-GPU deployments on dis-
tributed server clusters. We use the PyTorch [210] library as a wrapper of the NVIDIA
Collective Communications Library (NCCL) to communicate between multiple NVIDIA
V100 GPUs. Thanks to the University of Luxembourg’s High-Performance Computing
(HPC) infrastructure, we can run the network on a theoretical maximum of 18 server nodes
with 4 NVIDIAV100-16 GB each plus 6 nodes with 4NVIDIA V100-32GB each. In prac-
tice, we limit to the use 4 or 8 GPUs when needed. This training procedure permits training
on large datasets, such as MS COCO with more than 60K training data samples, faster by
spreading a batch of data over multiple devices. The current implementation does not allow
the allocation of more than 8/16 samples in 16 GB of memory. Also, we apply the Synchro-
nized BatchNormalization that gathers the batch statistics from all devices. then, it keeps the
running average computing x̂new = (1 − momentum) × x̂ + momentum × xt, where xt is
the tracked statistic, x̂ its running average, and momentum is a parameter set to 0.1.
Then, we use AdamW [184] optimizer with an initial learning rate of 10−3 for the regres-

sor and classifier weights and a lower 10−4 for the backbone. Also, we add a weight decay
regularization with a L2 penalty norm of 10−5. Furthermore, we schedule the learning rate
decay to follow a cosine annealing with warm restarts strategy [183]:

ηt = ηmin +
1
2
(ηmin − ηmax)

(
1+ cos

(
Tcur

T
π
))

, (5.19)

where ηtis the learning rate after the decay, ηmin is the minimum learning rate set to 10−8

and ηmax is the initial value. The ratio
Tcur
T regulates the learning rate interpolation between

each restart, where Tcur is the current epoch number, and T is the interval of epochs before
for every restart. In the experiments, we set it to 50.

Differently from the original work, we combine the cosine decay with a step function that
reduces the maximum learning rate ηmax in correspondence of every restart by a factor γ (set
to 0.25). We note that restarting at the initial learning rate hampers the training because the
loss jumps back to high loss values and keeps a long time to reach a minimum. We show a
plot of this combined schedule in Figure 5.12a relative to the global localization experiment.
Also, we multiply T by 2 after every restart to increase the interval length.

Then, we train for 15 epochs on the COCO dataset using the BCE loss and finish the
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training on AU-AIR for the other 10 epochs. After this period, we noticed a degradation in
the evaluated test metrics. The metric used for the evaluation are the average precision (AP)
and average recall (AR). As a reminder, precision and recall are defined as follows:

precision =
TruePositive

TruePositive+ FalsePositive
, (5.20)

recall =
TruePositive

TruePositive+ FalseNegative
. (5.21)

Then, we compute the precision at the interpolated points of the Precision-Recall curve
with an IoU area threshold of 0.5% between the prediction and the ground truth. A similar
procedure is used to obtain the AR, averaged in the interval [0.5, 0.95] with a step size of
0.05.

Following, we show the results obtained on AU-AIR in Table 5.1:

Table 5.1: AU-AIR object detection results

EfficientDet-D2

AP 0.401
AR 0.417

In the following Figure 5.11, we display the 3D people localisation. We cannot quantify
the amount of error without the ground truth positions for this task. For the visualization,
we used the ground truth position of the drone as registered by the SfM.However, it is always
possible to obtain the camera pose estimate from the SfMwith the registrationmodule, even
less efficiently than the proposed global localisation network.
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Figure 5.11: 3D locations of detected people in the dataset

Two points of view on the AU-AIR scene displaying the 3D position of the detected people
detected. The grey plane is the ground. The red points are the inliers of the RANSAC parameter

fitting. The blue lines, originating from the camera centre, pass from the bounding box on the image
plane and end at the intersection with the ground plane, where we place a 3Dmesh of the human

body for illustration.
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Global Localisation

Using the camera poses registered by SfM on the AU-AIR dataset, we test the global pose
localisation DL approach of chapter 4. However, we substitute the backbone network with
an EfficientNet-B2, the same as for object detection. Also, the output of the network is the
quaternion logarithm as proposed by Brahmbhatt et al.. [22]:

w = log(q) =

 b
∥v∥ arccos(u) if ‖v‖ 6= 0,

0 otherwise ,
(5.22)

where q is a unit quaternion composed by a scalar part u and a vector part v ∈ R3, and ‖ · ‖
is the Euclidean norm. The log quaternion w ∈ R3 is mapped back to the corresponding
quaternion with the exp function:

q = exp(w) =
(
cos(‖w‖), w

‖w‖
sin(‖w‖

)
= (u, v) . (5.23)

Then, we train using the same training distributed technique and the learning rate sched-
ule for object detection, with an initial η set to 10−3. We train until convergence but keep
the model that achieves the lowest loss, e.g., at epoch 1100 in this experiment. The loss curve
in Figure 5.12b resembles that of the learning rate in Figure 5.12a, displaying a sudden in-
crease in correspondence of the restart. We limited this effect with the integration of the step
function.
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Figure 5.12: Plot of the learning rate decay and pose train loss

In Figure 5.13 and Figure 5.14, we show the median rotation and translation error during
training on the train set and a small validation (val) set. The median and mean error com-
puted on the test set are then included in Table 5.2. The proposed method allows localising
the drone’s position in the AU-AIR scene with an accuracy in the order of a few centimetres
in most cases. Also, in Figure 5.15, the cumulative distribution of the translation and rota-
tion errors shows thatmost of the frames are localised within an acceptable distance from the
real pose. The orientation, which is the most difficult to predict, is also less than 5◦ in about
the 90% of cases.

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2

0 1 2 3 4 5 6 7 8 9 10 11
  1e2EPOCHS

E
R

R
O

R
 (°)

E
R

R
O

R
 (°)

(a) Median rotation error for the train set

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2

0 1 2 3 4 5 6 7 8 9 10 11
  1e2EPOCHS

E
R

R
O

R
 (°)

(b) Median rotation error for the validation set

Figure 5.13: Plot of the median rotation error during training
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Figure 5.14: Plot of the median translation error during training

Table 5.2: Global Localisation Results on AU-AIR

The table includes the results of the localisation using EfficientNet-B2 for feature extraction. We
compute the Median andMean of the Translation Error and the Rotation Error.

EfficientNet-B2

Median Translation Error 0.16 (m)
Median Rotation Error 1.22 (◦)

Mean Translation Error 0.332 (m)
Mean Rotation Error 2.346 (◦)
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Figure 5.15: Cumulative distribution of the localisation error

5.5.2 Belval Dataset

Herein, we describe the Belval dataset*, which takes the name from the locality in which
the main building of the University of Luxembourg is located. We perform various flight
sequences in a limited area confined within the university buildings on three sides. In Fig-
ure 5.16, we plot the geographic position of a manually controlled DJI Mini 2 drone, which
records the meta-data with timestamps. These synchronize the drone monocular camera,
which streams a video in FullHD resolution, i.e., 1920 × 1080 pixels per frame, at 30 FPS.
Hence, we created a set of 5 sequences, counting from 3 to 7 since the first 2 were discarded,
for a total of 17955 images.

*Available at https://github.com/snt-arg/BelvalDataset
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Figure 5.16: Belval dataset GPS coordinates

3D reconstruction

We have reconstructed a model of the Belval 3D scene by registering all the dataset frames.
Notably, for matching improvement, we initialise the pose of the frames with the associated
GPS coordinate. Also, we pre-calibrate the camera’s intrinsic parameters using OpenCV.
The obtained perspective transformation parameters and the non-linear radial distortion co-
efficients are:

[fx, fy, cx, cy] = [1515.911603, 1522.668902, 993.757878, 535.610019]

, [k1, k2, k3, k4, k5] = [−0.0057670.038655− 0.0002050.0090460.000000] .

InFigure 5.17, we show the statics of the reconstruction process, which took approximately
3 days. Figure 5.18 displays the sparse point cloud obtained at the final stage after aligning
the model with the GPS. We also performed a dense reconstruction. However, due to the
model’s size, it was impossible to fit it into the memory for visualization.
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Figure 5.17: Belval 3D reconstruction statistics

Figure 5.18: Belval 3D sparse reconstruction

Relative Localisation

In Table 5.3, we illustrate the results of the odometry estimation using the methodology de-
scribed in chapter 3. We used the sequences 4 to 6 to train the models, while the other two
were used only for testing. We compare the simple network training model, Simple-Mono-
VO, the RAUM-VO model, RAUM-VO w/ PoseNet, which uses the translation vector
estimated by the pose network, and the RAUM-VO model with translations estimated by
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PnP, RAUM-VO model RAUM-VO w/ PnP. Notably, in this dataset, the poses obtained
by combining the rotations fromRAUM-VOand the translations fromPnP outperform the
pose network output. Compared toKITTI, Belval dataset sequences 5 and 6 exhibit complex
trajectories. Notably, we argue that, in KITTI, VO algorithms are assisted by the holonomic
movement constraint of the car and by an almost absent height variation.

Table 5.3: Odometry quantitative evaluation.

The table displays the results of the estimated ego-motion for each trajectory in the Belval dataset.

Model Metrics 03 04 05 06 07 Avg.Train Avg.All

Simple-Mono-VO

terrs 9.380 6.697 12.031 15.762 19.638 15.810 12.702
rerrs 32.777 26.745 33.257 56.701 91.224 60.394 48.141
ATE 1.561 0.712 2.408 3.793 4.380 3.527 2.571

RPE (m) 0.088 0.056 0.072 0.069 0.063 0.068 0.070
RPE (◦) 0.115 0.090 0.150 0.155 0.232 0.179 0.148

RAUM-VO
w/ PoseNet

terrs 14.843 10.771 12.708 14.731 22.347 16.595 15.080
rerrs 7.870 5.451 22.885 27.116 38.768 29.590 20.418
ATE 1.352 0.540 3.019 3.391 3.122 3.177 2.285

RPE (m) 0.087 0.055 0.072 0.067 0.059 0.066 0.068
RPE (◦) 0.063 0.054 0.186 0.213 0.206 0.202 0.145

RAUM-VO
w/ PnP

terrs 4.021 4.819 11.660 14.711 9.471 11.947 8.936
rerrs 7.870 5.451 22.885 27.116 38.768 29.590 20.418
ATE 0.637 0.257 2.776 3.394 1.330 2.500 1.679

RPE (m) 0.047 0.026 0.061 0.060 0.040 0.054 0.047
RPE (◦) 0.063 0.054 0.186 0.213 0.206 0.202 0.145

In Figure 5.19 and Figure 5.20, we plot the estimated trajectories for the train and test
sequences, respectively. Note that the camera coordinate frame is rotated with respect to
a classical xy ground plane and z up direction. Hence, z is aligned with the drone’s forward
direction and xwith its right. As a result, it is possible to observe that the networkmodels can
predict the pathwith fewer abruptmotions. At the same time, on themost complex sequence
6, it hardly manages to keep track of the odometry. Instead, a traditional SLAM method,
such as ORB-SLAM, could partly estimate the odometry only in the simplest sequences 3
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and 4.
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Figure 5.19: Belval train trajectories
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Figure 5.20: Belval test trajectories
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Depth Estimation

(a) Seq. 04

(b) Seq. 05

(c) Seq. 06

Figure 5.21: Example of estimated depth for Belval train sequences

The figure shows the depth maps estimated for the first frame of each train sequence in the Belval
dataset. The depth network can accurately describe the scene 3D structure of buildings, small static

objects, and people in the camera FoV.
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(a) Seq. 03

(b) Seq. 07

Figure 5.22: Example of estimated depth for Belval test sequences

The figure shows the depth maps estimated for the first frame of each test sequence in the Belval
dataset. The depth maps present a few artefacts of objects apparently ‘leaking” in the foreground

and high-frequency details in correspondence of edges, which could be mitigated with a less extreme
depth smoothness prior.
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5.6 Summary
This chapter discussed detecting people from images and obtaining their position in 3D re-
constructing an outdoor environment. In the context of this thesis, we presented a method-
ology to effectively and efficiently detect intruders or, in general, the presence of people in the
sensible area, leading to the implementation of a fundamental component of an autonomous
aerial surveillance system.

We analysed current approaches for a similar problem and proposed our solution for pro-
jecting 2D bounding boxes, obtained by training EfficientDet CNN for object detection on
a virtually placed ground plane. We tuned a SotA SfM approach, i.e., COLMAP, to recon-
struct a 3D scene from a sparse collection of images and aligned it with GPS coordinates to
obtain the metric scale. Hence, after placing a ground plane in the environment, we locate
the people in the 3D space using the camera toworld transformation obtainedwith the global
localisationnetwork. Therefore, wepresented the results on theAU-AIRdataset for outdoor
object detection, providing a multi-modal sensor data recorder from a drone.

Furthermore, we introduced a novel outdoor environment created from images collected
with a simple commercial drone flying in a populated urban area. Hence, we use the SfM
approach to obtain the ground truth labels necessary to evaluate our proposed RAUM-VO
method for ego-motion estimation. Finally, we concluded the chapter with an analysis of
the results on the novel dataset, showing that our proposed method outperforms traditional
V-SLAM in outdoor environments with repetitive textures and from an UAV performing
purely rotational motions.
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In this thesis, we addressed the application task of video surveillance that we intended to
carry out autonomouslywith the support of an aerial robot, i.e., aUAV.Thus, after analysing
the complexity of an autonomous system, we focused our attention on the perceptual level
of the UAV, which is a core aspect in the context of the treated application challenge. In
this regard, we defined an autonomous aerial surveillance mission as enabling an UAV to
autonomously navigate in a controlled urban environment, where the drone has to detect
people who are possibly unauthorised to access a specific area around buildings and may be
considered intruders. Therefore, other than autonomous control and planning, which are
not treated in this work, an intelligent robotic agent needs solutions for answering the fol-
lowing perception-related questions to complete the mission successfully: “Where am I lo-
cated?”, “What is the structure of the surrounding environment?”, and “Which objects lie inmy
field of perception and where?”. These questions constitute the general objective of the thesis,
and we declined them into practical problems.

While the perceptionmay rely on a broad spectrum of sensors, we restricted the hardware
platform to small commercial drones that can fly in urban areas without any regulation re-
strictions, i.e., the newly introduced EASA rules. Primarily, we targeted algorithms relying
on a limited set of sensors carried by light-weight quadrotors, possibly less than 250 grams,
such as the Parrot Bepop or the DJI Mavic Mini 2 used in our last experiments. Therefore,
we focused on monocular cameras, which are the most common in this type of drone, and
on computer vision algorithms for finding solutions to the posed challenges. Moreover, we
noticed those leading robotic industries, such as Tesla, are moving towards the direction of
purely vision systems for developing robots with autonomous capabilities, motivating, even
more, our research in monocular vision. Additionally, we pushed further the restrictions
on the sensor by excluding the IMU, which is rarely synchronised in commercial platforms
and would require additional considerations for proper integration with the vision output.
Instead, the GPS has been applied to obtain maps that are scaled and aligned with the geo-
graphic coordinates of the scene, which is the sole information that is not retrievable with
monocular cameras. Finally, due to the demanding nature of the active computer vision top-
ics, we identified DL as the general paradigm for establishing a valid methodology in most
cases. For this reason, we described the theoretical framework of DL in chapter 2 and, espe-
cially, of the CNN, which is the preferred neural model for image processing.
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Contributions
The contributions of this thesis revolve around the perception questions recalled above. The
primary problem has been the UAV self-localisation because it is deemed fundamental for
navigating the controlled environment and contributes to discovering the position of the
people that are possibly detected. Then, distinguishing between the ego-motion estimation,
or odometry, and global localisation, which is performed relative to an established map or
reconstruction of the environment, we considered the two problems separately.

Regarding the ego-motion estimation, in chapter 3, we presented RAUM-VO, an algo-
rithm to improve the monocular odometry estimates of unsupervised pose networks. To
this end, we introduced an additional self-supervision loss using a SotA algorithm, named for
simplicity F2F, for estimating the rotation between two camera frames utilising a set of local
features. Consequently, we adjusted the rotationpredicted by the trainedpose network using
the motion estimated by F2F during online inference to improve the final odometry. Finally,
we compared our method with SotA approaches on the widely adopted KITTI benchmark.
RAUM-VO enhances the performance of pose networks and is comparably good to more
complex hybrid methods while being more straightforward and efficient to implement. Fur-
thermore, the rotation adjustment procedure reduces the rotational drift, which is the more
challenging component of the pose to learn. Also, RAUM-VO can estimate more accurate
poses on trained scenes than traditional SLAMmethods, such as ORB-SLAM.

• These findings have been published in the Sensors journal [48].

Regarding global localisation,we reviewed the literature onVBL, andwe identified, among
the direct pose estimations paradigms, the end-to-end learning approach as themore efficient
and well-suited to our objective. Therefore, we implemented a neural network model based
on the MobileNetV2 architecture, named MobilePoseNet, to hallucinate abstract features
from amonocular RGB camera image. Consequently, these are processed by anMLP for re-
gressing a global pose vector. Moreover, we compared multiple design options for the MLP
performing an ablation study. From the experimental result on two environments with op-
posite characteristics, one indoor and one outdoor, we noted a monolithic MLP design, i.e.,
sharing the weights between translation and rotation regression layers, outperforms the oth-
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ers on smaller scenarios. Instead, separating the last regression layers for outdoor environ-
ments obtained slightly better results. Finally, we evaluated the run-time performance on an
NVIDIATX2 and showed that theMobilePoseNet runs faster than the SotA PoseNet while
retaining its general capabilities.

• These findings have been published in the proceedings of the International Conference
on Computer Analysis of Images and Patterns [50].

Related to global localisation and in conjunction with the next object detection topic, we
investigated the impact of dynamic objects on the training of global pose regressors. To this
end, we performed an ablation study withmultiple trained networks and elements. In detail,
we introduced a dataset pre-processing step to mask dynamic objects before training a global
localisation CNNmodel. Comparing the localisation errors, we showed that the presence of
objects might cause only a minor performance degradation proportional to the percentage
of occluded pixels. Furthermore, we implemented techniques to compute gradient saliency
maps and visualised the image features on which the network focuses to regress the pose.
Remarkably, the maps highlight pixels around the building’s structural elements more, but
static objects, such as vehicles, may cause the network to overfit to produce the pose predic-
tion.

• These findings have been published in the proceedings of the 2019 16th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance (AVSS) [49].

Following, we tackled the second identified problem in the context of the surveillance ap-
plication, i.e., the detection of people and the estimation of their location in the same naviga-
tion environment. Notably, this has been placed in a subordinate position to understanding
the robot’s pose since we remarked on the importance of localisation as a fundamental com-
ponent in an autonomous robotic system.

Hence, we discussed the details of an EfficientDet architecture for detecting people and
of the Focal loss for addressing the imbalance class issue caused by our particular use case
of binary object classification. Additionally, we deployed the network to be trained on a
server cluster and exploited the available multi-GPU hardware leveraging distributed com-
putation techniques. Following, we derived the equations to find the 3D position of the
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detected people in a reconstructed environment. For this purpose, we proposed to find the
intersection point between a line passing by an object 2D bounding box base central point
and an estimated ground plane. Ultimately, we used the COLMAP SotA implementation
of an incremental SfM to create the 3D model of the environment necessary for the people
3D localisation algorithm. Additionally, we aligned the reconstructed scenewith the approx-
imate recorded GPS coordinates of the registered camera frames to obtain the correct metric
scale. Furthermore, we introduced a novel dataset with images recorded from a DJI Mini 2
drone and its monocular camera flying on the University of Luxembourg’s Belval campus.
We concluded with extensive results to prove the validity of the methodologies developed
throughout this thesis on natural outdoor urban environments.

• These findings have not been published yet, but will be submitted for review to a jour-
nal. However, related articles have been published in collaborationwithCazzato et al..
in the Journal of Imaging [33], in the proceedings of the 15th International Joint Con-
ference on Computer Vision, Imaging and Computer Graphics Theory and Applica-
tions [35], and in the proceeding of the International Joint Conference on Computer
Vision, Imaging and Computer Graphics [34].

Other works related to the perception system, as described in section 1.1, have been pub-
lished in collaboration with other researchers:

• on the human recognition from ocular biometrics in the [36] Proceedings of the 2019
3rd International Conference on Artificial Intelligence andVirtual Reality, and inAp-
plied Sciences [31];

• on the human-robot interaction Proceedings of the 2019 3rd International Conference
on Artificial Intelligence and Virtual Reality [32].

Future Work
Regarding localisation, newly appeared DL techniques could better exploit the local future
extracted by the neural network, such as Superpoint, for the ego-motion estimation and pre-
dict the global pose. Remarkably, the Transformers networks have revolutionised the field
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of NLP. Still, a great emphasis has been put on applying them to computer vision problems,
such as object detection and image captioning. We believe that their capabilities of finding
patterns by posing attention to a different part of the image while retaining the information
of spatial pixel distancemay ease the problem of finding the transformationmatrix on which
localisation is standing. Furthermore, this technique would combine the relative and global
pose estimation problems with an architecture that maximises parameter sharing and com-
putation reuse. Finally, a similar approach between more related tasks, e.g., ego-motion and
global pose estimation, lets us foresee more promising results.
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