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Abstract: Among the software engineering development phases, requirements engineering is the
one that has the most impact on project success or failure. To be executed in various contexts, there
is an important need for flexibility and efficient tool support. A flexible requirements engineering
method should include several levels allowing for more or less completeness and precision. Some
project contexts would need a lightweight activity using structured natural language but still being
guided and grounded partly on professional standards. Some more advanced projects would need
more complete requirements documents and would benefit from a description language based on
scientific notions allowing for better precision for specific system operations. Some business or safety
critical systems would need an approach allowing for requirements simulation and verification.
Requirements engineering education is an important objective to prepare future engineers to
understand those requirements engineering needs and be prepared for practice in a professional
setting. In the last five years, we have developed a requirements engineering method called Messir
with a tool Excalibur and experiments in academia have been made to see how it was solving
actual software engineering problems focusing first on requirements engineering education. Messir
components represent in themselves some improvements w.r.t. the state of the art of the “standard”
theories, methods and tools, mainly by introducing an improved requirements engineering process,
language and verification support based on executable requirements specifications. Furthermore,
the Messir approach solves also some actual problems related to software engineering education by
offering a product line framework for setting up or improving courses in computer science curricula.
The main result being to contribute to develop the software engineering capabilities of engineers and
scientists that feed the job market in industry, research or education.

Keywords: requirements analysis; model-driven software engineering; software engineering
environments; software engineering education

1. Introduction

Since the software crisis, as addressed in the NATO conference [1], a huge amount
of progress has been made on the research, engineering and teaching dimensions. It is
admitted that software engineering (SE) can be defined as “the disciplined application of
engineering, scientific, and mathematical principles, methods, and tools to the economical
production of quality software” [2]. In order to be more precise on what SE is, an
important standardization effort by ISO and IEEE has been made in the last decade
offering a proposal to define the SE body of knowledge [3]. This body of knowledge
defines 15 knowledge areas (KA) decomposed into topics and sub-topics (as illustrated in
Figures 1–4). The SWEBOK represents one of the best joint efforts from research, education
and industry actors to improve the SE domain. It is thus used as a basis and is exploited in
the remaining parts of the paper.

It is a fact that the expansion speed of the software development domain at conceptual
and technological levels is so high that it is very difficult for researchers to produce SE
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knowledge solving SE problems such that they can be scaled and transferred in time to be
deployed consistently in education and in real industrial projects.

The spectrum of SE approaches can be observed using the two following axis:
science and engineering. Approaches at the extreme end of the science axis will only
consider an SE artifact if it has a sound (rigorously defined in a complete and consistent
way) mathematical basis. On the extreme of the other axis, one will consider only notions
that proved to solve efficiently (time and money) actual problems encountered in real world
projects considering the reality of technological and human resources.

A wide spectrum of approaches exists that we could see as going from so-called formal
or mathematical methods such as all the ones that are based on or extend the fundamental ones
including: B [4], Z [5], VDM [6], Process Algebras [7], or Petri nets [8]; through semi-formal
methods such as the one proposed on the basis of UML [9] and its process RUP [10] or
similar ones empowered by the model-driven engineering community (MDE) actively
supported by the OMG including the method for development processes (i.e., “agile
methods”), such as Scrum [11] or XP [12]; and finally, from in-house “spontaneous, intuitive
and empirical” approaches to software development.

Software and hardware systems (i.e., IT systems) development is an engineering
discipline for which we expect it to benefit from scientific methods. Unfortunately, if we
analyze the success of formal methods [13], the success of agile methods [14] and the
maturity of the IT industry in their project development [15], we can notice that scientific
approaches did not penetrate widely the SE industry mostly due to the lack of economically
viable, mature, pragmatic and ready to use solutions.

Among all the phases of software development, the requirements engineering activity
has a high potential to impact the quality and prize of IT systems [16]. Requirements of
good quality and well-managed projects allows to predict the project success in more than
90% of the cases [17].

The problem addressed by MESSIR, introduced in this paper, is to propose a
requirements engineering approach that has variable coverage levels of science and
engineering, as advocated by Ivar Jacobson et al. in [18], which is driven by pragmatics and
that integrates sound theories, methods and tools. In addition, we aim to provide artifacts
that can be deployed in SE curricula or in life-long learning trainings in order to be used by
engineers to improve their requirements engineering expertise.

Being flexible for a requirements engineering approach means to have the possibility
to describe requirements with a variable level of completeness and precision and still being
able to move from one level to another one depending on the project context. Being efficient
means to have means to execute faster and better the requirements analysis phase.

The main contributions contained in the MESSIR approach presented in this
paper are:

• An integrated and flexible method for scientific requirements engineering;
• An approach supported by a software engineering environment;
• A flexible requirements textual description language;
• An improved use case modeling approach;
• An axiomatic and operational semantics supporting declarative executable

requirements specifications necessary for automated verification.

Section 2 presents the background from software engineering in research, industry
and education on which MESSIR is based and situates and compares our approach with
the existing ones that share common goals; Section 3 presents in details the MESSIR
requirements engineering approach including the process and models, its EXCALIBUR
tool support and its application in software engineering education; Section 4 discusses
the experimental and informal assessment made that is a basis for a more rigorous one;
and Section 5 synthesizes the main contributions of the approach proposed and highlights
interesting perspectives that will be developed in the near future.
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Nb. Knowledge Area Names
1 Software Requirements
2 Software Design
3 Software Construction
4 Software Testing
5 Software Maintenance
6 Software Configuration Management
7 Software Engineering Management
8 Software Engineering Process
9 Software Engineering Models and Methods
10 Software Quality
11 Software Engineering Professional Practice
12 Software Engineering Economics
13 Computing Foundations
14 Mathematical Foundations
15 Engineering Foundations

Figure 1. Swebok knowledge areas.

Nb Topic Names
1 Modeling
2 Types of Models
3 Analysis of Models
4 Software Engineering Methods

Figure 2. Swebok topics for (9) software engineering models and methods.

Nb SubTopic Names
1 Modeling Principles
2 Properties and Expression of Models
3 Syntax, Semantics, and Pragmatics
4 Preconditions, Postconditions, and Invariants

Figure 3. Swebok sub-topics for (9.1) modeling.

Nb SubTopic Names
1 Heuristic Methods
2 Formal Methods
3 Prototyping Methods
4 Agile Methods

Figure 4. Swebok sub-topics for the (9.4) software engineering methods topic.

2. Background and State of the Art
2.1. Background

We introduce and motivate the existing theories, methods and tools available for
software engineering that constitute the main background of MESSIR. Since the complexity
resides in the selection, adaptation and integration of SE artifacts, we introduce and
motivate the selected artifacts.

The basic notions issued from scientific research that represents milestones and on
which MESSIR is based are the following main notions:

• Theories: Concerning basic or more advanced theoretical notions applied to SE and
exploited in the context of formal methods, MESSIR is mainly grounded on the
following ones:

(a) Set theory: concepts necessary for modeling information;
(b) Mathematical logic: basic concept for declarative characterization of information

and behavior properties;
(c) Language theory: notions for textual modeling using domain specific languages;



Software 2022, 1 83

(d) Axiomatic semantics: notion for semantic interpretation of declarative descriptions;
(e) Operational semantics: concepts for semantic interpretation of state modifications

of abstract computing machine models.

• Methods: Modeling is a fundamental scientific activity which provides a Cartesian
view of reality and is one of the main discovery and communication tools for the
scientist. It implies to represent a phenomenon using a pre-defined modeling notation.
Research has produced an important contribution in defining theories, methods and
tools for modeling in all areas including computer science. For what concerns software
engineering, model-driven engineering (MDE) has been intensively developed in the
last 30 years mainly supported by the OMG around its model driven architecture
initiative (MDA) [19]. In this context, it may be mentioned the following notions
related to modeling for SE:

(a) MOF: The Meta-Object-Facilities [20], providing a metadata management
framework, and a set of metadata services to enable the development and
interoperability of model and metadata driven systems;

(b) UML: The Unified Modeling Language [9], providing categories of modeling
concepts adapted to model various types of properties of IT systems;

(c) OCL: The Object Constraint Language [21], providing a formal language used to
describe logical constraint expressions on UML models.

• Tools: Supporting SE activities with IT tools has often been a concern for researchers
to support their SE solutions. In the context of SE tools, the problem is not only to
find the correct set of tools supporting the targeted activities but to integrate them to
set up the needed SE workbenches or environments. From this perspective, MESSIR
considered the following general tools issued from research and industry:

(a) Eclipse [22]: The open source integrated development environment having a
powerful plug-in system for customization;

(b) Xtext [23]: An advanced framework for development of general or domain
specific languages;

(c) Sirius [24]: A generic eclipse tool for graphical modeling workbench
development;

(d) Sictus Prolog [25]: A generic logic programming tool including constraints solver
libraries allowing for implementation of axiomatic and operational semantics of
declarative formal specifications.

For a requirements engineering approach to be pragmatic, it should also be grounded
on industrial best practices. Determining the state of practice of software engineering in
industry is not an easy task mainly due to the fact that the main goal of industry is neither
to conduct such studies nor to make public their engineering practice. When they conduct
such studies, they furthermore are not keen to publish them since they evolve in a highly
competitive environment in which any information can become sensitive and may impact
their business. Nevertheless, it is still possible to find direct or indirect ways to have some
information on this subject.

According to the software engineering institute (SEI), “the quality of a system or
product is highly influenced by the quality of the process used to develop and maintain
it” [26]. CMMI-DEV is the last and most advanced maturity model proposed as a reference
model covering activities, products and service development. It is thus interesting
to observe industry practice through the capability maturity model in order to better
determine the problem of improving software engineering practice. According to available
studies [15,27–29], which we have witnessed during our own empirical experience in
handling more than 600 internships in industry for bachelor and master students and as
expert for the court of justice on conformance questions in trials for the software industry,
we can state that:
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(a) Approximately 3/4 of companies are at level 1 or 2 (initial or repeatable);
(b) Among the companies that go for CMMI appraisal, approximately 80% are at or below

level 3 (defined) and 20% at level 4 (managed) and 5 (optimizing).

This meant for us that the focus should be made on problems encountered by low
maturity level companies thus targeting requirements engineering and more precisely
requirements definition, verification and validation.

The success that the so-called “agile methods” had, especially in companies having
maturity level below 3, has also been studied. From our point of view, agile methods
represent a “success story” from the software engineering point of view. This is because it
penetrated industry at a high rate and contributed to improve the SE practices in industry,
especially promoting the following SE knowledge areas: Software Construction, Software
Testing, Software Engineering Management, Software Engineering Process, Software Quality,
Software Engineering Professional Practice.

Available studies [30,31] or [32,33] show the significant adoption of the approach by
the majority of the software development industry actors.

It can be deduced from this observation that important success factors for improving
SE practice, mainly for those level 3 (or less) companies, are dependent on the following
practices or facts:

(a) The development process should be iterative and incremental;
(b) Validation is mainly based on usage scenarios (user stories) as test cases;
(c) The customer should be easily integrated in the loop for requirement definition and

validation;
(d) A large part of the product quality relies on the programmer who is the one-man band

impacting all SE knowledge areas. A large project taskforce includes a collection of
one-man bands that need adequate project management to be orchestrated;

(e) Documentation and modeling are seen as a burden even though partly tolerated.

In order to observe more precisely how modeling is used in industry, the following
study is mentioned [34] which was made in a context of model-driven engineering projects,
including over 17 companies and 250 engineers. The interesting facts that can be extracted
from this study are:

(a) On modeling approaches used: 85% make use of UML, 40% use a DSL of their own
design, 25% use a DSL provided by a tool, 25% use BPMN, 10% use SysML and
MATLAB/Simulink;

(b) On UML Diagrams usage: 87% Class Diagram, 56% Activity Diagram, 38% use Case
Diagram, 33% Sequence Diagram, 23% State Machine Diagram. Other diagrams, such
as Component Diagram, Flow Diagram, Entity Relationship Diagram, Deployment
Diagram, Object Diagram, Composite Structure Diagram, are rarely cited;

(c) On the perceived impact on (P)roductivity or (M)aintainability of Model-Driven
Approaches used (it is indicated here the percentage of the respondents that declared
to have noticed an impact on the indicated dimension): communication: 73.7% (P),
66.7% (M), use of models for understanding a problem at an abstract level: 73.4 (P),
72.2% (M), code generation: 67.8% (P), 56.9% (M), use of models to capture and
document designs: 65.0% (P), 59.9 (M), use of model-to-model transformations:
50.8% (P), 42.6% (M), use of domain-specific languages (DSLs): 47.5% (P), 44.0% (M),
model simulation—executable models: 41.7% (P), 39.4% (M), use of models in testing:
37.8% (P), 35.2% (M).

From those extracted facts, it has been deduced for MESSIR that:

(a) Modeling notations should be reduced to the smallest possible set and based on
standard concepts;

(b) Design and usage of domain-specific languages is encouraged if based on standard
concepts and supported by automated tools;

(c) Simulation, testing and code generation are mandatory features to make diagrams
perceived as having impact on productivity;
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(d) Usage of modeling notations should be flexible enough to allow various and freely
chosen precision (i.e., scientific) levels.

To contribute to the maturity of requirements engineering and its diffusion, a
requirements engineering approach should also be based on best educations practices
and sound conceptual and terminological frameworks. To this aim, important milestones
provided to the SE community are:

• SWEBOK—Software Engineering Body of Knowledge (submitted [3,35]);
• CS2013 Undergraduate Curriculum (submitted [36]);
• SE2014 Undergraduate Curriculum (submitted [37]);
• GSwE2009 Graduate Software Engineering 2009 ([38]).

In order to determine the actual coverage of the SWEBOK knowledge areas in
education, the main results of evaluation made [39] over a sample of academic curricula
(selected worldwide) are presented here, in order to determine how they were covering
the SWEBOK knowledge areas (KAs). The sample has been structured using ISCED
classification [40] and world regions defined for this study. The table given in Figure 5
shows the main global results giving, for each knowledge areas, the coverage percentages
(mean, minimum, maximum and standard deviation) for the 18 curricula studied.

KA Name Mean Min Max StdDev
1 Software Requirements 71 33 100 24
2 Software Design 50 17 69 21
3 Software Construction 41 0 67 27
4 Software Testing 22 0 42 18
5 Software Maintenance 9 0 28 13
6 Software Configuration Management 4 0 17 7
7 Software Engineering Management 54 0 75 31
8 Software Engineering Process 28 0 40 16
9 Software Engineering Models and Methods 53 0 100 39

10 Software Quality 23 0 50 22
11 Software Engineering Professional Practice 57 0 84 34
12 Software Engineering Economics 20 0 60 24
13 Computing Foundations 46 0 79 38
14 Mathematical Foundations 42 0 71 32
15 Engineering Foundations 31 0 65 24

Figure 5. Global KA coverage (%).

This observation study has been useful to determine some of the main issues in SE
education and their probable causes which largely impacted MESSIR goals and design.
They can be summarized as follows:

(a) Most of the curricula consider software engineering as a discipline in itself and thus
include a specific SE course only once in a full bachelor program. This makes the
lecture difficult to design and execute since it implies that the teacher has to select a
subset of the KAs to cover in a short time budget, and it also supposes that the teacher
is expert in all the KAs which, of course, can rarely be the case;

(b) Most of the KA subtopics are covered thanks to Engineering Projects offered in
the curriculum. Those projects are ideally used to cover KAs such as: Software
Construction (3), Software Engineering Management (7), Software Engineering
Professional Practice (11);

(c) Software Requirements (1) are quite well covered and often benefit from a full lecture;
(d) Software Testing (4) is less covered than expected, especially regarding its importance

in industry;
(e) The importance, volume and coverage of theoretical computer science at bachelor level

(being professional oriented or not) is way over what is described in the SWEBOK. This
is mainly due to the profile of academic teachers that are mostly scientists, recruited
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based on scientific results that often have been obtained based on theoretical work. It
also represents a wish and a need to provide a strong scientific and theoretical basis
during education;

(f) The topics poorly addressed are Software Configuration Management (6), Software
Engineering Economics (12) and Software Quality (29) and, more surprisingly,
Software Maintenance (5). This last fact seems in direct opposition with the reality
of engineering activities which, for the majority, consists in supporting software
evolution and maintenance.

Furthermore, other studies [41] show that in the coming years, 74% of the jobs in the
STEM (Science, Technology, Engineering and Mathematics) areas will be in the computer
science area and only 30% of the new jobs in computer science could be fulfilled by newly
graduated bachelor students.

The conclusion drawn is that it is mandatory to provide the education community with
a knowledge transfer support that contributes to improve the capabilities of our engineers
and technicians with regards to all the SWEBOK knowledge areas.

2.2. State of the Art

For what concerns the analysis about software engineering and its current practice in
industry and education from a general perspective, the situation depicted in [42] presents a
complete survey on requirements engineering practices and standardization needs which
presents important principles that we share. For functional requirements documentation,
it is necessary to support engineers in their current activities which focus on: textual
structured requirements (42%); semi-formal use cases (39%), constraints expression (36%)
and semi-formal data models (33%). It is shown that change management, traces between
requirements design and code, and impact analysis are practiced and required. This study
is confirmed by another interesting one given in [43] which confirmed the UML models
choices, the necessary usage of textual description (i.e., which corresponds to the Messir
documentation level) but also the priority management of requirements which is currently
not yet supported in Messir.

In [44], the authors present an approach to SE education that supports the education
of engineers for mastering modeling and validating models using jointly UML and OCL
meta-models for requirements and design. It is also the chosen class diagram for concepts
while the protocol of the system is partly modeled using state machine instead of protocol
attributes as in MESSIR. Model execution is presented as a key feature for scientific
development and the USE/UML SOIL language [45] is used. Sequence diagrams are used
at design level for modeling objects interactions. Their internal survey about tools and
modeling confirms the choices made which are shared by Messir concerning the models
and tool support for SE education. It is worth mentioning that the choice of SWEBOK
as a basis for defining the content of a software engineering curriculum has been made.
On the knowledge acquisition results of using UML/OCL modeling notation and tools in
requirements engineering education, the students’ know-how results and perceptions we
noticed in our experiences are similar to the ones made in the same context and described
in [46]. Mainly, the fact that supporting tools are needed and that the use of OCL is tractable
for engineers.

For what concerns a full textual first approach to requirements engineering, there
is no existing work to our knowledge that is comparable to MESSIR. The majority
of requirements engineering approaches that were developed combine requirements
documentation standards such as the ISO/IEC/STANDARD IEEE 29148 [47], with some
UML models, produced using a graphical syntax supported by a graphical editor, such
as MagicDraw or Papyrus [48], which are manually integrated in the documentation. In
addition to this, UML has been designed to be a generic modeling language targeting the
modeling of the largest set of system properties at any abstraction level (analysis, design
implementation). All the 13 sub-meta-models of UML allow for multiple ways to build
semantically equivalent models. This capability makes UML not directly usable for well-
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guided requirements engineering methods but needs some selection and limitations to be
used efficiently by engineers in a restricted time and knowledge context. This is the choice
of methods, including MESSIR, developed with a shared spirit with the original Fusion
method [49,50].

3. Results

In this section, the main elements are presented allowing us to understand the
definition of the MESSIR approach for requirements engineering. Due to the limited
size of this paper, it cannot be expected to have the full details of the approach, this is why
the description is highly synthetic and focuses on the main characteristics. This allows a
wide presentation of MESSIR showing the integration achieved. The full material that
presents in more details the MESSIR methodology including the teaching material can be
found in [51].

3.1. Running Example

MESSIR concepts illustrations are given using a crisis management case study. It is
a simplified version of the one proposed in [52,53]. In the version used in this paper, the
system (called iCrash ) is intended to support the management of crisis situations. The
iCrash stakeholders are:

• Communication Companies: They have the capacity to ensure communication of
information between its customers and the iCrash system. Objectives are: to be able to
deliver any SMS sent by any human to the iCrash ’s dedicated phone number; to be
able to transmit SMS messages from the ABC company that owns the iCrash system to
any human having an SMS compatible device accessible using a phone number.

• Humans: A human is any person who considers himself related to a car crash (a specific
type of crisis situation) either as a witness, a victim or an anonymous person. The
objectives of a human are: to inform the iCrash system about the crisis situation he
detected; to be sure that the ABC company has been informed about the situation; to
be informed about the situation of the crisis he his related to as a victim or witness.

• Coordinators: Employees responsible for handling one or several crises. The
objectives of a coordinator are: to securely monitor the existing alerts and crisis;
to securely manage alerts and crisis until their termination.

• Administrator: The employee of the ABC company responsible for administrating
the iCrash system. The objectives of an administrator are to add or delete coordinator
actors from the system and its environment.

• Creator: Technician who is installing the system on the targeted deployment
infrastructure. The objectives of a Creator are: to install the iCrash system; to
define the values for the initial system’s state; to define the values for the initial
system’s environment; to ensure the integration of the iCrash system with its
initial environment.

• Activator: Logical representation of the active part of a system. It represents an
implicit stakeholder belonging to the system’s environment that interacts with the
system autonomously without the need of an external entity. It is usually used for
representing time triggered functionalities. The objectives of the iCrash activator
are: to communicate the current time to the system; to notify the administrator that
some crises are still pending for a too long time.

3.2. Messir Process

The MESSIR Requirements Engineering process (MEVOP) is iterative and
incremental and depicted in Figure 6 which sketches the process activities. The main
objective is to describe a set of functional and non-functional properties. The functional
properties are modeled using five model types:

• Use case Model;
• Environment Model;



Software 2022, 1 88

• Concept Model;
• Operation Model;
• Test Model.

Requirements Analyst

[Correct&Complete]

[Incorrect or Incomplete]

Use Cases

Concepts

Environment

Operations

Tests

Iteration
Closure

Figure 6. MESSIR MEVOP Diagram.

A requirements document can be provided using three precision levels which are:

• Definition Level: Using natural language descriptions (structured textual or
graphical) for each of the predefined MESSIR model type;

• Specification Level: All what is provided at definition level plus the possibility to
specify the system operation and tests using OCL language (i.e., object-oriented
constraints specification of operations);

• Simulation Level: All what is provided at definition level plus the possibility to
provide PROLOG executable code for operations and tests allowing for requirements
simulation using the MESSIR simulator (MESSIM) in compliance with the MESSIR
abstract machine MESSAM.

Figure 7 sketches the model focus by scientific level targeted. For example, it shows
that if Definition level is targeted, then most of the focus will be on use case modeling.

Requirements descriptions are provided using textual languages and their use depends
on the targeted scientific levels. Thus, it is up to the engineer to determine, for the
requirements description, the scientific level targeted and the languages used. It can
be chosen to use jointly different scientific levels for different functionalities of the system
under consideration. Such choice is based on several project constraints and system
characteristics. Safety or business critical parts of the system might need more precise and
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rigorous requirements descriptions, while the project delays, budget and team expertise
might justify to provide only natural language descriptions of the requirements or, even,
no description at all.

Definition Specification Simulation

Use Case

Environment

Concept

Operation

Test

Figure 7. MESSIR MEVOP—Model Focus by Level.

MESSIR provides three domain-specific languages defined at meta-level using
grammars supported by the Xtext technology [23]). The languages available are:

• Documentation language ( msrd): Allowing for free natural language descriptions
but structured using domain-specific templates. Figure 18 provides an illustration
of this template language for the system’s operation oeAddCoordinator description.
The generated documentation from this description is shown in Figure 19;

• Specification language ( msr): Allowing for more precise conceptual and logical
descriptions given the use of the MESSIR language mclwhich is an adapted
executable version of the OCL language [21]. Figure 20 provides an extract illustrating
this language for the system’s operation oeAddCoordinator specification;

• Axioperational Language ( pl): A Prolog-compliant language is proposed to allow
for axioperational (i.e., axiomatic and operational) semantics of the requirements
descriptions. Figure 21 provides an extract illustrating this language for the
same operation.

This approach allows the requirements analyst to tune the scientific level of
the requirements description to the exact need and is synthesized in the generated
documentation by a scientific level table using the system operations as observation criteria.
The table shown in Figure 8 indicates the languages usage degree (+/−) by scientific level.
The colors indicate the level (green, orange and red respectively for Definition, Specification
and Simulation levels). Figure 9 shows this principle in the context of the iCrash case
study. A “•” indicates the targeted level, a “X” indicates a reached targeted level and, a “ x”
indicates a reached level. Thus, the targeted and reached levels are clearly indicated and
the flexibility of the combinations covers pragmatically all the needs (i.e., reached level
equal, lower or greater than targeted level).

Level msrd msr pl
Definition +++ + −

Specification ++ +++ −
Simulation + + +++

Figure 8. Categories of MESSIR languages by Scientific level.
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Actor Operation Def. Spec. Sim.
actMsrCreator oeCreateSystemAndEnvironment x
actCoordinator oeSetCrisisHandler • • X

oeGetCrisisSet x •
oeGetAlertsSet •
oeValidateAlert •
oeInvalidateAlert •
oeSetCrisisType •
oeSetCrisisStatus •
oeReportOnCrisis •
oeCloseCrisis X x

actAuthenticated oeLogin X
oeLogout X

actComCompany oeAlert x •
actActivator oeSollicitateCrisisHandling •

oeSetClock •
actAdministrator oeAddCoordinator •

oeDeleteCoordinator •

Figure 9. Illustration of MESSIR Scientific Levels Management for iCrash .

MESSIR includes a detailed process definition giving guidelines for activities to
iteratively and incrementally engineer the requirements description models [54]. The
different models to be provided are introduced in the next sections.

3.3. Requirements Engineering Basic Concepts

MESSIR considers that the system under development is made of a central system
(called system) and its environment. The system has an observable state and a set of system
operations. An environment is defined by a set of actor instances each of which having an
output interface defining a set of asynchronous messages that can be sent by the actor to
the system and an input interface defining a set of messages received by the actor from the
system. Interactions are sequences of input and output messages between the environment
and the system. An actor sends an output message in order to trigger a system’s atomic and
instantaneous operation which might include: change the system’s state or the environment
composition and generate message sending to the actors of the environment.

3.4. Messir Use Case Model

Use cases analysis is a very efficient technique for requirements elicitation which has
been studied and applied efficiently in industry [55–57]. The main objective of use case
modeling is to specify and illustrate business use cases of the actors concerned directly or
not by the system under development. MESSIR introduces a new use case approach that
overcomes some limitations encountered in practice when using tool-supported “standard”
approaches. To this purpose, MESSIR use case analysis has the following characteristics:

• Uses a textual modeling language for engineering the use case model;
• Uses graphical use case diagrams generated from textual models as communication

views. Views are based on the standard UML use case diagrams;
• Replaces extends and includes by a reuse association to simplify the modular

description of use cases;
• Replaces sequential ordering of activities ( main success scenario and extensions)

by a set of steps and a set of ordering constraints over those steps. This solves a
main issue in use case writing which is misuse or inefficient use of main scenario
and extensions;

• Introduces use case instances to illustrate concrete scenarios that represent meaningful
scenarios satisfying the use case model description;

• Restrict abstraction to three levels (summary, user-goal and sub-function);
• Introduces for each use case the possibility to describe typed parameters;
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• Introduces for each actor the notions of role (primary/secondary), mode
(direct/indirect), involvement (pro-active/active/reactive/passive) and multiplicity;

• Allows to provide documentation for each use case including: goal description and
protocol/pre/post conditions description if necessary);

• Provides graphical representations of use cases and use cases instances using MESSIR
use-case diagrams and sequence diagrams generated, maintained automatically w.r.t
the textual descriptions. This contributes to make MESSIR useful for production and
not only used as a documentation approach as often encountered.

Figure 10 provides a textual description of a use case of the MESSIR use case model
using the msr language and Figure 11 represents the automatically generated diagrammatic
view for this use case. Figure 12 shows a textual description extract of a use case instance
and Figure 13 its graphical representation.
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1 Use Case Model {
2 use case system summary
3 suGlobalCrisisHandling () {
4 actor actCoordinator[primary ,active]
5

6 reuse ugSecurelyUseSystem [1..*]
7 reuse ugMonitor [1..*]
8 reuse ugManageCrisis [1..*]
9

10 step a: actCoordinator
11 executes ugSecurelyUseSystem
12 step b: actCoordinator
13 executes ugMonitor
14 step c: actCoordinator
15 executes ugManageCrisis
16

17 ordering constraint
18 "steps (a) (b) and (c) executions are interleaved
19 (steps (b) and (c) have their protocol constrained by

steps of (a))."
20 ordering constraint
21 "steps (a) (b) and (c) can be executed multiple times."

Figure 10. Illustration of a textual use case description.

Figure 11. Illustration of generated graphical view for a use case description.

Figure 10. Illustration of a textual use case description.

Figure 11. Illustration of generated graphical view for a use case description.
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1 // ----------------------------------------------------
2 steve
3 executed instanceof subfunction
4 oeLogin("steve","pwdMessirExcalibur2017"){
5 ieMessage('You are logged ! Welcome ...') returned to

steve
6 }
7 // ----------------------------------------------------
8 steve
9 executed instanceof subfunction

10 oeGetCrisisSet("pending"){
11 ieSendACrisis("crisis with ID 1 details") returned to

steve
12 }
13 // ----------------------------------------------------
14 steve
15 executed instanceof subfunction
16 oeSetCrisisHandler("1"){
17 ieSmsSend("+3524666445252","The handling of your alert

by our services is in progress !")
18 returned to tango
19 ieMessage("You are now considered as handling the

crisis !")
20 returned to steve
21 }
22 // ----------------------------------------------------

Figure 12. Illustration of a textual use case instance description.

Figure 13. Illustration of generated graphical view for a use case instance description.

3.5. Messir Environment Model

The objective of the environment model is to describe actors with their output and input
interfaces used to interact with the system which is the same environment notion as the
one introduced in [58]. The environment model is textually described using the MESSIR
language and graphical view generated using simple class diagram notation.

Figure 14 illustrates such a textual description for a part of the iCrash example for the
coordinator actor ( actCoordinator) while Figure 15 provides its graphical view. An actor
is associated to the system state root (instance of the ctState class) (the role provides the
association name end) and can inherit from another actor (extends). It must be mentioned
that the message parameters are typed using the concept model below. So, iterations and
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Figure 13. Illustration of generated graphical view for a use case instance description.

3.5. Messir Environment Model

The objective of the environment model is to describe actors with their output and input
interfaces used to interact with the system which is the same environment notion as the
one introduced in [58]. The environment model is textually described using the MESSIR
language and graphical view generated using simple class diagram notation.

Figure 14 illustrates such a textual description for a part of the iCrash example for the
coordinator actor ( actCoordinator) while Figure 15 provides its graphical view. An actor
is associated to the system state root (instance of the ctState class) (the role provides the
association name end) and can inherit from another actor (extends). It must be mentioned
that the message parameters are typed using the concept model below. So, iterations and
increments must be made consistently between the environment model and the concept
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model (the EXCALIBUR tool [59] provides support for this task). Those messages and
their parameter types are partly elicited thanks to the use cases (sub-functions) and the use
case instances.
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increments must be made consistently between the environment model and the concept
model (the EXCALIBUR tool [59] provides support for this task). Those messages and
their parameter types are partly elicited thanks to the use cases (sub-functions) and the use
case instances.

1 actor actCoordinator
2 role rnactCoordinator
3 cardinality [0..*]
4 extends actAuthenticated{
5

6 operation init():ptBoolean
7

8 output interface outactCoordinator{
9 operation oeInvalidateAlert(AdtAlertID:dtAlertID ):

ptBoolean
10 operation oeCloseCrisis(AdtCrisisID:dtCrisisID ):ptBoolean
11 operation oeGetAlertsSet(AetAlertStatus:etAlertStatus ):

ptBoolean
12 operation oeGetCrisisSet(AetCrisisStatus:etCrisisStatus ):

ptBoolean
13 operation oeSetCrisisHandler(AdtCrisisID:dtCrisisID ):

ptBoolean

. . .
1 input interface inactCoordinator{
2 operation ieSendAnAlert(ActAlert:ctAlert ):ptBoolean
3 operation ieSendACrisis(ActCrisis:ctCrisis ):ptBoolean
4 }
5 }

Figure 14. Illustration of a textual Environment Model description.

Figure 15. Illustration of the generated graphical view for a Environment Model description.

3.6. Messir Concept Model

The objective is to specify the types structuring the information either used to define
the system’s state during its life cycle or exchanged with its environment. The MESSIR
Concept Model provides the specification of: Primary types used for structuring the
information defining the system’s state; Secondary types for additional types necessary
either for the information used in input or output message parameters, for actors’ attributes
or for the operation specifications given in the operation model.

Primary and secondary types can be defined using the following meta-types: Class
type, DataType type and Relation type consistent with the standard data structures:

Figure 14. Illustration of a textual Environment Model description.

Figure 15. Illustration of the generated graphical view for a Environment Model description.

3.6. Messir Concept Model

The objective is to specify the types structuring the information either used to define
the system’s state during its life cycle or exchanged with its environment. The MESSIR
Concept Model provides the specification of: Primary types used for structuring the
information defining the system’s state; Secondary types for additional types necessary
either for the information used in input or output message parameters, for actors’ attributes
or for the operation specifications given in the operation model.

Primary and secondary types can be defined using the following meta-types: Class
type, DataType type and Relation type consistent with the standard data structures:

• A class type is defined using a name, a set of typed attributes and an optional supertype
name. There is only one class type named ctState dedicated to the system state root.
A class attribute type must be of datatype type. Each primary class type is associated
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to the ctState class by an aggregation association in order to provide an access
to instances from the ctState instance necessary to describe operation semantics
(see below);

• A datatype type can be a structured data type, an enumeration or a primitive type. A
structured data type defines a set of tuples whose elements (named attributes) are typed
using any primary type. Primitive types are: B oolean , I nteger , R eal or S tring (a
naming convention in MESSIR proposes to use prefixes to ease understanding while
reading textual descriptions (e.g., pt,dt,ct,et,oe,ie will stand for primitive type,
datatype, class type, enumeration type, output event, input event) and correspond
to types defining atomic values supported by the abstract machine of the simulator
(all the useful primitive type operations are provided in MESSIR libraries written in
MESSIR at simulation level);

• Relation types are aggregation, composition or (common) association;
• Functions can be part of a class type definition or a datatype type definition. Those

operations semantically correspond to logical predicates and are used to allow for a
structured and concise writing of predicates.

Figure 16 illustrates such a textual description for the concept model using a class-type
primary type ctAlert. Its graphical representation is shown in Figure 17 which depicts
the full concept model for the iCrash example.
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to types defining atomic values supported by the abstract machine of the simulator
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structured and concise writing of predicates.
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primary type ctAlert. Its graphical representation is shown in Figure 17 which depicts
the full concept model for the iCrash example.

1 Concept Model {
2

3 Primary Types{

. . .
1 class ctAlert role rnctAlert cardinality [0..*]{
2 attribute id:dtAlertID
3 attribute status: etAlertStatus
4 attribute location:dtGPSLocation
5 attribute instant:dtDateAndTime
6 attribute comment:dtComment
7

8 operation init( Aid:dtAlertID ,
9 Astatus:etAlertStatus ,

10 Alocation:dtGPSLocation ,
11 Ainstant:dtDateAndTime ,
12 Acomment:dtComment ):ptBoolean
13 operation isSentToCoordinator(AactCoordinator:

actCoordinator ):ptBoolean
14

15 }

Figure 16. Illustration of a textual Concept Model description.
Figure 16. Illustration of a textual Concept Model description.
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Figure 17. Illustration of the generated graphical view for a Concept Model description.

3.7. Messir Operation Model

The objective of operation specification is to provide the properties that “characterize”
all valid “executions” for each system operation. Considering a transition system as semantic
model, we need to characterize the transitions < statei , envi >

oei ,[ie1,...,ien ]−−−−−−−→< statei+1, envi+1 > in which
< statei, envi > (resp. < statei+1, envi+1 >) represents the system’s state and environment
state @pre (resp. @post), oei the system operation executed triggered by an output event
sent by an actor, iei the input events sent to actors that define the specification semantics.

An operation specification in MESSIR is an axiomatic specification of its semantic
properties. Those properties are grouped in the following categories: Pre-protocol, Pre-
functional, Post-functional and Post-Protocol:

• Pre-functional properties are conditions under which the system operation is
considered defined. Expressed using: the system’s state @pre, the environment state
@pre and the operation parameters;

• Pre-protocol properties are conditions under which the operation is considered
available. Expressed using: the system’s state @pre including the additional variables
for protocol specification, the environment state @pre and the operation parameters;

• Post-functional properties are conditions describing the operation’s functionality. It
characterizes a set of valid post-states for the system and the environment, a multiset
of messages sent to actor instances. Expressed using: the system’s state @pre or @post,
the environment state @pre or @post and the operation parameters;

• Post-protocol properties are conditions describing the operation’s impact on the
system’s interaction protocol (i.e., the system status @post makes available only the
wished operations). They are expressed using the variables for protocol specification
@post.
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To illustrate the operation model, we consider an operation used by the administrator
actor to add a coordinator actor. Figure 18 provides its description at definition level using
the msrd documentation grammar of MESSIR. Figure 19 illustrates the automatically
generated presentation of this definition level documentation. Figure 20 provides its
description at specification level using the msr specification grammar of MESSIR which
includes the “OCL -like”mcl constraints specification of the conditions. Finally, Figure 21
shows an extract of its implementation using the Prolog language (this can only be done by
requirements engineers having a high scientific level) and using the MESSIR Prolog layer
offered by the MESSIM simulator (e.g. msrOp, msrNav predicates).
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To illustrate the operation model, we consider an operation used by the administrator
actor to add a coordinator actor. Figure 18 provides its description at definition level using
the msrd documentation grammar of MESSIR. Figure 19 illustrates the automatically
generated presentation of this definition level documentation. Figure 20 provides its
description at specification level using the msr specification grammar of MESSIR which
includes the “OCL -like”mcl constraints specification of the conditions. Finally, Figure 21
shows an extract of its implementation using the Prolog language (this can only be done by
requirements engineers having a high scientific level) and using the MESSIR Prolog layer
offered by the MESSIM simulator (e.g. msrOp, msrNav predicates).

1 @@Operation
2 icrash.environment.actAdministrator.outactAdministrator.

oeAddCoordinator

1 @description
2 "sent to add a new coordinator in the system 's post state and

environment 's post state."
3

4 // preProtocol descriptions
5 @preP
6 "the system is started"
7 @preP
8 "the actor logged previously and did not log out ! (i.e. the

associated ctAdministrator instance is considered logged)"
9 @endPreP

10

11 // preFunctional descriptions

1 @postF
2 "the system 's state has a new instance of ctCoordinator

initialized with the given values."
3 @postF
4 "the new actor instance and ctCoordinator instance are related

."

Figure 18. Illustration of a generated documentation for an Operation description at Definition level.

5.3 Environment - Out Interface Operation Scheme for actAuthenticated 51

5.2.2 Operation Model for oeAddCoordinator

The oeAddCoordinator operation has the following properties:

Operation
oeAddCoordinator
sent to add a new coordinator in the system’s post state and environment’s post state.
Parameters
1 AdtCoordinatorID: dtCoordinatorID

used to initialize the id field
2 AdtLogin: dtLogin

used to initialize the login field
3 AdtPassword: dtPassword

used to initialize the password field
Return type
ptBoolean
Pre-Condition (protocol)
PreP 1 the system is started
PreP 2 the actor logged previously and did not log out ! (i.e. the associated ctCoordinator instance is

considered logged)
Pre-Condition (functional)
PreF 1 it is supposed that there cannot exist a ctCoordinator instance with the same id attribute than the

one the administrator wants to create.
Post-Condition (functional)
PostF 1 the environment has a new instance of coordinator actor allowing for input/output message

communication with the system.
PostF 2 the system’s state has a new instance of ctCoordinator initialized with the given values.
PostF 3 the new actor instance and ctCoordinator instance are related.
PostF 4 the new actor instance and ctCoordinator instance are related according to the authenticated

association.
PostF 5 the administrator actor is informed about the satisfaction of its request.
Post-Condition (protocol)
PostP 1 none

5.3 Environment - Out Interface Operation Scheme for actAuthenticated

5.3.1 Operation Model for oeLogin

The oeLogin operation has the following properties:

Operation
oeLogin
sent to request authorization to request access secured system operations.
Parameters
1 AdtLogin: dtLogin

first information used to determine accessibility rights for the actual actor.
2 AdtPassword: dtPassword

second information used to determine accessibility rights for the actual actor.
Return type
ptBoolean

continues in next page . . .

Figure 19. Illustration of an Operation description documentation table at Definition level.

Figure 18. Illustration of a generated documentation for an Operation description at Definition level.
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PostF 4 the new actor instance and ctCoordinator instance are related according to the authenticated
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Post-Condition (protocol)
PostP 1 none

5.3 Environment - Out Interface Operation Scheme for actAuthenticated

5.3.1 Operation Model for oeLogin

The oeLogin operation has the following properties:

Operation
oeLogin
sent to request authorization to request access secured system operations.
Parameters
1 AdtLogin: dtLogin

first information used to determine accessibility rights for the actual actor.
2 AdtPassword: dtPassword

second information used to determine accessibility rights for the actual actor.
Return type
ptBoolean

continues in next page . . .

Figure 19. Illustration of an Operation description documentation table at Definition level.
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1 operation: actAdministrator.outactAdministrator.
oeAddCoordinator(AdtCoordinatorID:dtCoordinatorID , AdtLogin
:dtLogin , AdtPassword:dtPassword):ptBoolean

1 postF{
2 let TheSystem: ctState in
3 let TheactCoordinator:actCoordinator in
4 let ThectCoordinator:ctCoordinator in
5 self.rnActor.rnSystem = TheSystem
6 and self.rnActor = TheActor
7 /* PostF01 */
8 TheactCoordinator.init()
9 /* PostF02 */

10 and ThectCoordinator.init(AdtCoordinatorID ,AdtLogin ,
AdtPassword)

11

12 /* PostF03 */
13 and TheactCoordinator@post.rnctCoordinator = ThectCoordinator
14

15 /* PostF04 */
16 and ThectCoordinator@post.rnactAuthenticated =

TheactCoordinator
17

18 /* PostF05 */
19 and TheActor.rnInterfaceIN^ieCoordinatorAdded ()

Figure 20. Illustration of a Specification level operation description.

1msrop(outactAdministrator ,
2 oeAddCoordinator ,
3 [preProtocol ,Self ,
4 AdtCoordinatorID ,
5 AdtLogin ,
6 AdtPassword
7 ],
8 []):-

. . .
1/* PostF03 */
2 msrNav ([ TheactCoordinator],
3 [msmAtPost ,rnctCoordinator],
4 [ThectCoordinator ]),
5/* PostF05 */
6 msrNav ([ TheActor],
7 [rnInterfaceIN ,
8 ieCoordinatorAdded ,[]],
9 [[ptBoolean ,true ]]),

Figure 21. Illustration of a Simulation level operation description.

3.8. Messir Test Model

The objective of the test model is to define test cases for verification and validation
purposes. A test case is a sequence of test steps. Each test step defines: the test message
characterizing the system operation triggered; the test constraints which define the domain
for the parameter values and the test oracle to define the test step acceptance conditions.

MESSIR mainly exploits test cases to:

Figure 20. Illustration of a Specification level operation description.
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3.8. Messir Test Model

The objective of the test model is to define test cases for verification and validation
purposes. A test case is a sequence of test steps. Each test step defines: the test message
characterizing the system operation triggered; the test constraints which define the domain
for the parameter values and the test oracle to define the test step acceptance conditions.

MESSIR mainly exploits test cases to:
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3.8. Messir Test Model

The objective of the test model is to define test cases for verification and validation
purposes. A test case is a sequence of test steps. Each test step defines: the test message
characterizing the system operation triggered; the test constraints which define the domain
for the parameter values and the test oracle to define the test step acceptance conditions.

MESSIR mainly exploits test cases to:

• Verify the requirement descriptions by simulation to detect if the specification
contains errors;
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• Validate the requirements description by asking the system’s customer to determine
validation test cases;

• Verify the delivered system program produced after each project implementation
iteration by using the test case specification to implement verification test cases to find
errors in the implemented program.

Figure 22 illustrates a textual description for a test step of a test case for the
iCrash system. This test step is given at specification level and tests the correct execution
of the operation oeSetCrisisHandler triggered by the coordinator actor. The test step is
considered successful if the simulator can execute a valid transition on the abstract machine
and if the oracle constraint is satisfied. Figure 23 illustrates a graphical representation using
UML sequence diagram generated from an actual test case instance either produced by the
simulator or manually provided, to illustrate the expected execution of the test case.
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1 test step ts12oeSetCrisisHandler order 12{
2 variables{
3 TheActor : actCoordinator
4 AdtCrisisID : dtCrisisID
5 }
6 constraints{
7 TheActor=TheSystem.rnactCoordinator
8 ->select(a | a.rnctCoordinator.login.value.eq('steve '))
9 ->any2(true)

10 and AdtCrisisID.value= '1'
11 }
12 test message{
13 out:TheActor sends to system actCoordinator.

outactCoordinator.oeSetCrisisHandler(AdtCrisisID)
14 }
15 oracle{
16 variables{
17 AMessage:ptString
18 AdtPhoneNumber:dtPhoneNumber
19 AdtSMS:dtSMS
20 ActAlert:ctAlert
21

22 TheComCompany: actComCompany
23 TheCoordinator:actCoordinator
24 }
25 constraints{
26 AMessage = 'You are now considered as handling the

crisis !'
27 AdtSMS.value = 'The handling of your alert by our

services is in progress !'
28 TheComCompany.inactComCompany.ieSmsSend(AdtPhoneNumber ,

AdtSMS)
29 TheCoordinator.inactCoordinator.ieSendAnAlert(ActAlert)
30 TheActor.inactAuthenticated.ieMessage(AMessage)
31 }
32 }
33 }
34 //

---------------------------------------------------------------------

Figure 22. Illustration of a Specification level test description.
Figure 22. Illustration of a Specification level test description.
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Figure 23. Illustration of a generated graphical representation of a Test instance description.

3.9. Non-Functional Requirements

MESSIR bases the requirements description for non-functional requirements (NFR)
on the ISO standard on quality requirements [60] (SQUARE) including a quality model
organized in Quality Criteria (see Figure 24) and Quality sub-characteristics (such as Time
behavior, Resource and utilization Capacity for the performance-efficiency quality criteria).

1 Functional suitability
2 Performance efficiency
3 Compatibility
4 Usability
5 Reliability
6 Security
7 Maintainability
8 Portability

Figure 24. SQUARE Main Quality Criteria.

Currently, MESSIR only allows for inclusion of functional requirements using natural
language based on the ISO standard structure. It is planned to integrate a domain-specific
language for NFRs that will allow for better handling of NFRs improved with some
quantification criteria based on the ISO standard and the formal framework proposed
in [61].

3.10. Messir Tool Support

Software engineering is the pragmatic integration of theories, methods and tools
for software production. The MESSIR approach is supported by a software engineering
environment that is built using, as a central part, its specifically designed SE workbench
EXCALIBUR ([59]).

A software engineering environment set up for a software development project
aims at supporting the following main dimensions: Requirements Analysis, Design,
Construction, Management, Quality and Maintenance.

We have designed and developed an Eclipse plug-in (called EXCALIBUR) to support
the requirements engineering as defined in the MESSIR methodology.

MESSIR Requirements Analysis is supported by the EXCALIBUR SE workbench
allowing for the requirements’ textual and graphical modeling, the verification using
partial Prolog code and for the complete formatted report generation. Technologies used
are: Eclipse, Sirius, Xtext, UML, OCL, Prolog, Latex, PDF.
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EXCALIBUR was presented at the tools session of the 11th ACM SIGPLAN
International Conference on Software Language Engineering [62]. In this short paper
it is included a related work section in which the differences between Excalibur and
comparable approaches can be found. Figure 25 shows a sample of the tool interface
during simulation of test case instances provided textually and graphically abstracted
using a sequence diagram. The lower panel allows to monitor the test results as well as the
MESSAM state machine state observable at each test step.

In order to allow for wider software engineering support, in the context of our case
study iCrash , we have an integrated eclipse plugin that can also be used outside the scope
of MESSIR to support the following activities:

• Design: Eclipse UML Designer for production of design graphical models, design
document using the provided template for Latex. Technologies used are: UML,
Latex, PDF;

• Construction: Java for functionalities, JavaFx for graphical user interfaces, MySQL
for data persistence, Java RMI for distributed processing, Apache, Tomcat and qmail
for internet services. Technologies used are: Eclipse, Java, JavaFx, efxclipse, Apache,
TomCat, MySQL, qmail;

• Management: Atlassian Confluence for knowledge base collaboration tool,
SubVersioN versioning and revision control tool, Atlassian Bamboo and Apache
Maven continuous integration server for project build Technologies used are: Atlassian,
Confluence, Bamboo, SVN, Maven;

• Quality: Test-based Verification & Validation using the Prolog simulator, the SWTbot
testing tool for graphical user interface, JUnit unit testing framework and EclEmma
Java code coverage. Ensuring syntax validation tools using Eclipse and Xtext
frameworks. Technologies used are: Eclipse, Xtext, Prolog, Junit, SWTbot;

• Maintenance: Atlassian JIRA as issue tracking tool, SubVersioN for versioning and
revision control tool, Atlassian Bamboo and Apache Maven continuous integration
server for project builds. Technologies used are: Atlassian, Jira, Bamboo, Maven.

Figure 25. MESSIR Requirements V&V using the EXCALIBUR SE Workbench.
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3.11. Messir in Software Engineering Education

This section presents a knowledge transfer initiative called MESSEP for “MESsir
Software Engineering project courses Product line”. The idea is to allow an instructor
to derive a full project course, including syllabus, project description and project inputs
including a software engineering environment as described in the previous section. The
possible variation points are: SWEBOK (knowledge areas, topics, sub-topics), Application
Domains [63] (market, categories, sub-Categories) and IT Technologies.

Two derivation processes are possible: forward and back-and-forth. The forward
process requests to: bind the variabilities, define deltas (add/modify variation points,
variants, constraints) and derive the SE project variant. The back-and-forth process requests
to: select a SE project variant from the product line; define deltas (optional); derive a refined
SE project variant (optional).

This allows to engineer a full SE project that can be included in any courses at bachelor
or master level (using the International Standard Classification of Education ISCED [40]).
At bachelor level, the main courses that could benefit from MESSEP are: Requirements
engineering with use cases; Practical development projects with Java, JavaFx, MySQL;
Introduction to software engineering concepts; Introduction to development methods
concepts; Introduction to product quality; Verification and Validation. At master level,
it could be: Advanced Requirements Engineering; Model Driven Engineering; Domain
Specific Languages: concepts and tools; Software Engineering Environments: use and
development; Formal Methods; Operational and Axiomatic Semantics; Testing and Model
checking; Constraint logic programming.

Figure 26 provides a synthesis of the main project course characteristics obtained
using the back-and-forth derivation process. It results in a project for bachelor ICSED level
655 that has two periods of two phases spread over a full year program, focuses on the
SWEBOK knowledge areas KA1 (Requirements), KA9 (Modeling) and KA3 (Construction).
Figure 27 presents the detailed coverage of the SWEBOK knowledge areas for our SE
Project course variant derived. It shows that a global coverage of 36% of the SWEBOK is
obtained with the course. The detailed coverage is given and, for instance, it indicates not
surprisingly that 80% of the SWEBOK knowledge related to the Software Requirements
knowledge area are covered by the course.

For what concerns long-life learning, professional trainings for software engineering
can be set up using the MESSIR approach presented in this article (two experiments will
be made with industrial partners in the near future). It can be a solution to increase the
knowledge level on the SWEBOK knowledge areas. Since the job offers in computing
and mainly in software development will increase and be 3 times higher than the degrees
awarded, the SE knowledge level might decrease if no life-long learning solutions are
developed. The flexible scientific approach proposed by MESSIR is a limited but real
contribution to raising the scientific level of software engineers.

In SE research, MESSIR can be used to tackle an interesting pool of open research
problems mainly in the following areas: Domain-Specific Languages, Model-Driven
Engineering, Specification-based testing, Dependability requirements or Simulation and
verification of modeling languages and, problem-driven development using constraint-
oriented specifications.
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Features
Details

Project Name iCrash v 1.0
ISCED Level BA 655 (Bachelor/Professional/First degree)
Schedule 10 hours * 14 weeks * 2 periods
Group Size 4 [2-4]
Phases Per.1 [Pha.1/6w + Pha.2/8w]

Per.2 [Pha.1/8w + Pha.2/7w]
Main SWEBOK KAs KA1/REQ + KA9/MOD + KA3/CONS
Main Market Applications/Collaborative Applications/Team Collaborative Applications

Main Technologies

VirtualBox

Figure 26. Reference Card of a SE Project Course Variant.

Nb Knowledge Area Cov. (%)
1 Software Requirements 80
9 Software Engineering Models and Methods 75
7 Software Engineering Management 67

11 Software Engineering Professional Practice 63
2 Software Design 46
3 Software Construction 39
8 Software Engineering Process 33
4 Software Testing 32
5 Software Maintenance 28

14 Mathematical Foundations 19
15 Engineering Foundations 18
10 Software Quality 17
13 Computing Foundations 11
12 Software Engineering Economics 8
6 Software Configuration Management 0

Figure 27. Example of SWEBOK Coverage for SE Project Course Variant.

4. Informal Assessment of the Proposed Approach in an Education Context

In order to verify that the MESSIR approach really impacts positively requirements
engineering, some experiments have been conducted in an academic setting at bachelor
and master degrees level. During 3 years, around 80 projects have been developed in which
the requirements were engineered using the MESSIR approach. An analysis has been
made in order to determine the benefits of using the MESSIR approach together with the
EXCALIBUR tool. We only present here the main facts noticed and verified during our
applied experiences:

• The use case instances are efficient to ensure a complete and consistent definition of
the set of system operations;

• The scientific level choice allows to invest time coherently w.r.t. to the criticality of
system operations;
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• The unique capability of MESSIR to have simulation of axiomatic requirements
impacts positively the reliability of the system by avoiding to implement
invalid requirements;

• Students with EXCALIBUR were producing the project MESSIR requirement
documentation in a time which was twice to four times faster than students
that used a tool set made of Microsoft word and UML free open source tool
(e.g., http://www.umletino.com, accessed 28 February 2022);

• The average knowledge level acquired on the software engineering notions covered by
the MESSIR approach is higher by 1 Bloom level [64] compared to a project without
the MESSIR method.

It has also been evaluated that the MESSEP process can be used to set up requirements
engineering courses at bachelor and master levels at two universities (University of Geneva
and Peter the Great Saint-Petersburg Polytechnic University). Thanks to the derivation
processes, new courses have been defined in a short period of time (2 days), allowing to
set up a new course improving the existing requirements engineering courses. Thanks
to the learning material available, the learning curve for the tutors has been reduced to a
manageable amount which is critical in academic environment in which teachers have low
time budget to re-engineer their lectures.

Since no formal data were collected, a rigorous assessment would be to define and
conduct such measures as future work. To this aim, some metrics should be developed,
data acquisition should be made on a significant population of requirements engineering
projects. The current setting would only allow to proceed to assessment in an education
context. To this aim, our work presented in [39] could be extended and adapted for by
refining the SWEBOK Requirements Engineering covering in sub-topics related to the
MESSIR methodology.

5. Conclusions and Perspectives

Software development is an activity difficult to master both technically and
scientifically. This is due to many reasons, such as the rapid development rate both
of the technologies available, and of the quantity of products developed and requested by
the society. The challenge for the software engineering domain is to produce SE theories,
methods and tools that are efficient for the industry needs, at the right cost, at the right
time. Many unitary results exist but the complexity also resides in integrating those results,
making them ready to use, and ensuring the necessary knowledge transfer. The MESSIR
approach, developed during the last years and presented in this paper, aims at contributing
in that direction for what concerns requirements engineering research and education. We
believe that this approach integrates and improves some of the SE theories, methods and
tools and offers an solution for efficient knowledge transfer. Among all the contributions
brought, the main achievements we foresee are: an improved use case modeling approach,
a declarative and executable requirement specification technique, a consistent integration of
requirements analysis components using model-driven engineering techniques, a flexible
scientific engineering of requirements analysis, and a pragmatic knowledge transfer process
for software engineering education based on the standard body of knowledge for software
engineering (SWEBOK).

The EXCALIBUR tool is limited in coverage since it handles the functional
requirements part of requirements engineering and that, even if it includes independent
modules that can be used for other development phases, it does not support them in
an integrated and guided manner. The next version of EXCALIBUR should first cover
non-functional requirements using the ISO/SQUARE standard and propose design models
linked to requirements models.

High priority perspectives are to deploy the approach in education (a network of
12 partners is currently in development and new SE project courses are setup with the
approach introduced in this paper) and industry (some professional requirement analysis
training are in preparation for professional engineers). Concerning the evolution of the

http://www.umletino.com
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MESSIR approach, it is first planned to develop a DSL for modeling non-functional
requirements definition and to integrate the modeling of dependability requirements
specifications. This will be done keeping the flexible scientific levels, which imply ensuring
the soundness of the theories and the consistency of the methods and the tools.

For what concerns the future of MESSIR in industry, our experience as expert for
the court of justice for conformance questions showed that there is a critical need of
standardization and professionalization of the contractual collaboration. It would be
an improvements to create a neutral certification third-party that would be in charge of
producing the IT system requirements. The produced requirements would be the basis for
the IT system provider/customer contract. The certification body will also be responsible of
the system conformance evaluation necessary for the customer. To this aim, the possibility
to use MESSIR on concrete industrial projects by creating a Requirement Engineering and
Conformance Certification spin-off will be studied. This will allow MESSIR to also have
its own requirements coming from concrete industrial needs for requirements engineering.

For a usage of MESSIR in small companies such as start-ups, even though Messir has
been designed to be flexible, its use in a context of a startup would need some adaptations.
More precisely, we would need to provide a mode presenting only the description level, to
avoid the need of using latex for the introduction section by adding in the messir grammar
a section for introduction, and it would be necessary to reformat the documentation using
IEEE/ISO standards for requirements documentation [47].
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