UNIVERSITE DU
LUXEMBOURG

PhD-FSTM-2022-117
The Faculty of Science, Technology
and Medicine

DISSERTATION

Presented on 15/09/2022 in Esch-sur-Alzette
to obtain the degrees of

DOCTEUR DE L’UNIVERSITE DU
LUXEMBOURG EN SCIENCES DE

[ INGENIEUR
by

Sofia FARINA
born on September 5™ 1992 in Bologna, Italy

Modelling Astrocytic Metabolism in
Actual Cell Morphologies

Dissertation defence committee:

Dr Olivier Francis, Chairman

Professor, University of Luxembourg Dr Padmini Rangamani, member

Professor, University of California

Dr Alexander Skupin, Vice Chairman San Diego

Professor, University of Luzembourg
Dr Kevin Thurley, member

Dr Stephane P. A. Bordas, dissertation supervisor Professor, University of Bonn

Professor, University of Luxembourg



i



Declaration

I hereby declare that, the contents and organization of this dissertation consti-
tute my own original work and does not compromise in any way the rights of

third parties, including those relating to the security of personal data.

Sofia Farina, Friday 7" October, 2022



v



“Nature 1s written in mathematical language.”
Galielo Galilei



vi



Acknowledgements

The word philosophy originates from ancient Greek from ¢ihog (philos) “beloved”
and cogla (sophia) “wisdom”, thus love for wisdom. Literally, this Ph.D. journey

is about my love for wisdom and self-love.

First, I have to thank my supervisor, Stéphane, who gave me the chance
to follow this journey. Since day one, he showed me constant support and
excitement for the project. I am so thankful and grateful to him for having
gifted me with the chance to work here and doing what I love. His energy and

thirst for knowledge was really inspiring.

Second, I want to thank my co-supervisor, Alex. He welcomed me in the
biomedical world, teaching me and making me part of the team. I enjoyed our
weekly meetings, and he was always patient and kind in explaining to me. He
encouraged me with positive feedback even when the results weren’t great. I

am very thankful to have had the possibility to learn from him.

I thank my jury members. Thanks to Professor Padmini Rangamani and
Professor Kevin Thurley for being my external examiners and taking their time
to read my work. A special thank goes to Professor Olivier Francis for being
the chairman of my jury but, mostly, for all his jokes that made these four

years run faster.



In particular, I thank Jack, Susanne and Valérie. Thanks to Jack for all his
help and fruitful discussions. Thanks to Susanne for being part of my CET
and all her help and kindness. Thanks to Valérie, because I haven’t only found

a great researcher but also a dear friend.

A journey without companions is definitely much harder, and I had the
luck to have not one but two teams to count on. Thanks to Legato team for
sharing all these years in the office, Friday nights and Halloween parties. I have
found wonderful people who made the rainy days of Luxembourg more bearable.
Thanks to Arnaud, Hussein, Paul, Pratik, Raphaél, Saurabh, Chintan, Jakub,
Anas, Stéphane, Henry, Marie, and all the others. Thanks to ICS team for
welcoming me and sharing all the group meetings, retreats, bowling and BBQ.
Thanks to Sonja, Silvia, Michela, Thais, Corrado, Cristina, Francgoise, Melanie,
Dimi and all the others.

I also want to thank all the friends I encountered in Luxembourg and
supported me. Thanks to Anita, for all the breaks, to Benjamin, for climbing

and, to Giuseppe, for the endless chat.

I had the luck to receive love and support from many countries. I thank
my best friend, Giacomo, who told me long time ago to embrace my pace. Of
course, [ didn’t listen. Of course, he was right. Thanks to Lucia, she was really
a life saviour in the first period of the PhD. Thanks to Ginevra, Marco, Angela,
Camilla, Giovanna, Isabella, Alessandra. Thanks to all other friends, past and
present, that I did not mention if I am here is also thanks to them. Thanks
to all my friend from Asclepios: Yann, Manon, Wen, Cici, Shuman, Raphael,

Pawel; knowing you inspired me to start this journey.

Thanks to my family-in-lay, Dagmar, Dieter and Janina, for welcoming me

in their family.

Thanks to my family. Thanks to my Dad, Roberto, my brother, Luca, my

mum, Chiara, my aunt, Dada, my uncle, Stefano and my beloved Nonna.

Last, and above all, thanks to my future husband, Julian. I am immensely
gratitude to have met him. He believed in me, supported me all these years.
He was patient and loving and helped me to overcome obstacles. He was by

my side all along in bad and good times. He is the most kind hearted, caring,

viil



loving, independent and reliable partner. It’s thanks to him if this journey is

also about love.

1X






Financial Support

This work is part of the Doctoral Training Unit Data-driven computational
modelling and applications (DRIVEN) funded by the Luxembourg National
Research Fund under the PRIDE programme (PRIDE17/12252781).


https://driven.uni.lu

X1l



Abstract

The human brain is the most structurally and biochemically complex organ,
and its broad spectrum of diverse functions is accompanied by high energy
demand. In order to address this high energy demand, brain cells of the
central nervous system are organised in a complex and balanced ecosystem,
and perturbation of brain energy metabolism is known to be associated with
neurodegenerative diseases such as Alzheimer’s (AD) and Parkinson’s disease.
Among all cells composing this ecosystem, astrocytes contribute metabolically
to produce the primary energy substrate of life, ATP, and lactate, which
can be exported to neurons to support their metabolism. Astrocytes have
a star-shaped morphology, allowing them to connect on the one side with
blood vessels to uptake glucose and on the other side with neurons to provide
lactate. Astrocytes may also exhibit metabolic dysfunctions and modify their
morphology in response to diseases. A mechanistic understanding of the
morphology-dysfunction relation is still elusive. This thesis developed and
applied a mechanistic multiscale modelling approach to investigate astrocytic
metabolism in physiological morphologies in healthy and diseased human

subjects.

The complexity of cellular systems is a significant obstacle in investigating
cellular behaviour. Systems biology tackles biological unknowns by combining

computational and biological investigations. In order to address the elusive



connection between metabolism and morphology in astrocytes, we developed a
computational model of central energy metabolism in realistic morphologies.
The underlying processes are described by a reaction-diffusion system that can
represent cells more realistically by considering the actual three-dimensional
shape than classical ordinary differential equation models where the cells are
assumed to be spatially punctual, i.e. have no spatial dimension. Thus, the
computational model we developed integrates high-resolution microscopy images
of astrocytes from human post-mortem brain samples and simulates glucose
metabolism in different physiological astrocytic human morphologies associated
with AD and healthy conditions.

The first part of the thesis is dedicated to presenting a numerical approach
that includes complex morphologies. We investigate the classical finite ele-
ment method (FEM) and cut finite element method (CUTFEM) for simplified

metabolic models in complex geometries.

Establishing our image-driven numerical method leads to the second part
of this thesis, where we investigate the crucial role played by the locations of
reaction sites. We demonstrate that spatial organisation and chemical diffusivity
play a pivotal role in the system output. Based on these new findings, we
subsequently use microscopy images of healthy and Alzheimer’s diseased human

astrocytes to build simulations and investigate cell metabolism.

In the last part of the thesis, we consider another critical process for
astrocytic functionality: calcium signalling. The energy produced in metabolism
is also partially used for calcium exchange between cell compartments and
mainly can drive mitochondrial activity as a main ATP generating entity. Thus,
the active cross-talk between glucose metabolism and calcium signalling can
significantly impact the metabolic functionality of cells and requires deeper
investigation. For this purpose, we extend our established metabolic model
by a calcium signalling module and investigate the coupled system in two-

dimensional geometries.

Overall, the investigations showed the importance of spatially organised
metabolic modelling and paved the way for a new direction of image-driven-
meshless modelling of metabolism. Moreover, we show that complex mor-
phologies play a crucial role in metabolic robustness and how astrocytes’

morphological changes to AD conditions lead to impaired energy metabolism.
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CHAPTER 1

Introduction

Alzheimer’s disease (AD) is a age-associated progressive neurological disorder
and the most predominant cause of dementia. As a consequence of the pop-
ulation ageing, the expected number of people affected by AD is forecast to
increase to approximately 135 million world-wide in 2050 [49] compared to 43.8
million [163]| in 2016. Dementia is the main symptom of people suffering from
neurodegenerative diseases, including AD, causing memory loss and learning
difficulties. Due to neurological effects, these diseases will have an impact not
only on public health but also on the families of patients, placing the utmost

importance on research in this field.

There are many unknowns on neurodegenerative diseases. Mechanisms in
our brain get dysfunctional, leading to neuronal death, which is the underlying
cause of dementia. Typically, a brain suffering from neurodegeneration exhibits
an altered level of metabolic energy [172]. Energy is our brain’s fuel, and
cellular metabolism is the brain’s energetic supply. Therefore, it is fundamental
to investigate the metabolic behaviour of brain cells in neurodegeneration and

when and how it plays a role in disease development.

The complexity of the brain requires researchers from different fields to

collaborate to unravel its mystery. Thus, scientists with different backgrounds,
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including biologists, computer scientists, statisticians, physicians and math-
ematicians, merge their knowledge to support scienctific advancements. As
a mathematician, my contribution to the field lies in creating computational

models which help to investigate biological mechanisms by in silico experiments.

In this first chapter, we introduce the motivation and objectives of this work.
First, we discuss the fundamental role of metabolism in the brain, which can
be disrupted in neurodegenerative diseases. Subsequently, we present Systems
Biology as an approach to study these diseases by bridging different disciplines.
Next, we motivate and develop the overarching research question aimed at

addressing the main objectives of this thesis:

What is the relationship between morphology and metabolic dysfunctions

in astrocytes affected by neurodegenerative diseases?

Last, we present the structure of the manuscript and the scientific contribu-

tions of this thesis to the community.

1.1 Motivation

Metabolism is the process that transforms nutrients into usable energy in living
organisms. It is fundamental for life. At rest, our brain consumes most of the
energy produced by cellular metabolism [132]. Ideally, the cells composing our
central nervous system (CNS) live in a perfectly balanced ecosystem where
each cell contributes to the well-being of the brain through its functionality
and interdependence. Fundamental to the brain’s energetic symphony are
astrocytes [210], a type of glial cells which are metabolic mediators between
neurons and the blood vessels. More precisely, the metabolism of neurons is
tied to the lactate supply function of astrocytes [175]. However, in the case
of neurodegenerative diseases, the harmony of this ecosystem is undermined.
Cells display dysfunctional behaviour, including metabolic dysfunctions. For
example, in Alzheimer’s Disease (AD), energy production is impaired [34], and

thus, the brain is in energy deficiency.

Typically, neurodegenerative diseases are hard to detect initially, and the
diagnosis often comes when dementia is already in a moderate state. Dementia

is associated by loss of brain tissue that looks atrophied. Under the microscope,
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a lower number of neurons is visible compared to a healthy sample. For decades,
the investigation of neurodegenerative diseases has been neuron-centric and
only recently the focus has moved to other cell types, such as astrocytes. There
are still many unknowns in the genesis and development of these diseases
and the potential toxicity or rescuing contribution of different cell types. The
mystery of these open questions brings researchers from different disciplines to

collaborate to tackle the unknowns from different angles.

Systems Biology [128] is an interdisciplinary subject born in the early 2000s
that combines experimental data, computational techniques, and mathematical
tools to investigate biological phenomena. Mathematical models describe
physical processes by equations. An example of a famous mathematical model
in biology is the Hodgkin-Huxley model, representing the action potential in
neurons which received the Nobel prize in 1963 [115]. The strength of these
models lies in simplifying reality and focusing only on the main features. This
helps to understand complex biological systems including individual cells that

orchestrate all their functionality simultaneously.

Most previously proposed dynamic metabolic models describe the pro-
cess in time as uni-dimensional through sets of ordinary differential equations
(ODE) [16, 15, 71]. Since metabolism is a fast process with typical timescales
of seconds to a few minutes, an ODE system can represent an excellent ap-
proximation to describe the fast change in the average concentration of the
metabolites, and more or less detailed models can describe the metabolic process
of cells. However, it might be a limitation to describe a complex system in time
without considering the complex domain of the cell. Hence, it might be more
suitable to describe them by reaction-diffusion systems since it automatically
includes the spatial domain in more than one spatial dimension. The direction
of the next generation of metabolic models intends to describe the chemical
reactions as a function of space and time, thus, incorporating geometrical
information. Cellular geometries have probably developed during evolution
into shapes optimised for their functionality. Geometric-based models might
help to address the unexplained role of morphological changes in astrocytes in
neurodegeneration [42]. Such approaches may provide the research community
with models closer to reality, which would not be possible without the progress
made in the computational community with the advent of powerful computers

and new computational techniques enabling the simulation of complex models.
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This thesis was born as an interdisciplinary project between two research
teams at the University of Luxembourg (UL), the Integrative Cell Signalling
group of Luxembourg Centre for Systems Biomedicine and the Department of
Engineering. This work focuses on astrocytes that have become a centre of
attention for their many functionalities and morphology in recent years. The
goal of this thesis is to investigate the relationship between cellular morphology
and metabolism in AD through computational modelling. The project aims to
combine the scientific resources within the two groups involved in bridging the
knowledge on solving partial differential equations with finite element methods

in systems biology.

1.2 Objectives

Astrocytes, as metabolic supporters, provide neurons with lactate as energy
substrate. They have a very complex and ramified morphology that undergoes
significant changes in the presence of neurodegenerative diseases. This thesis
aims to examine astrocytic morphologies in neurodegeneration linked to their
role as metabolic supporters for neurons. The goal is to obtain a mechanistic
model of glucose metabolism, which is solved spatially in complex geometries.
To achieve this objective, we developed a model that describes the principal
pathways of cellular metabolism as a reaction-diffusion system. Thus, we
take into account more than one spatial dimension. For this purpose, we first
address the research question (Chapter 3): Which computational approach is
best suited to deal with the complex morphologies of cells directly from cellular

images and keeping stability and robustness in focus?

In the second part (Chapter 4), we investigate the system’s behaviour by
addressing the questions: how relevant are the spatial organisation of reaction
sites inside the cell and different geometries for the output of the metabolic
system? How is the physiological morphology of astrocytes relevant to their
metabolic role? How can our model be used in physiological geometries to

study neurodegeneration in AD?

In the last part, we investigate calcium signalling as a fundamental process
for astrocytic communication and coupling with glucose metabolism as the

main contributor to cellular energy. Therefore, the last question we start to
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investigate in this work (Chapter 5) is: what is the interplay between glucose

metabolism and calcium signalling in a spatially resolved domain of a cell?

1.3 Thesis Structure

Chapter 2 presents the interdisciplinary scientific background where we in-
troduce the biological context, the state-of-the-art in systems biology with
required modelling instruments and an overview of numerical methods to solve

such models.

In Chapter 3, we introduce a spatially resolved metabolic model described
by a reaction-diffusion system. Although our metabolic processes are more
coarse-grained than models presented in literature [71], we capture the primary
metabolic process by a simple mathematical formulation. The strength of our
model is the possibility of focusing on the relationship between metabolism and
cellular morphologies. To address the challenge of using complex geometries as
the domain for the model, we investigate a numerical approach to solve it within
complex morphologies of cells. The cut finite element method (CUTFEM)
proposed by Hansbo [111] and Burman [58] can disentangle the geometry from
the finite element mesh. Hence, we compare the classic finite element method
with the cut finite element method for our reaction-diffusion system. Our
results show the ability of CUTFEM to incorporate complex geometries while
ensuring the same results as classic FEM. Moreover, we provide an open-source
code that is easily accessible to a non-expert. This chapter was published as a
journal article in AMSES [97].

Chapter 4 presents a detailed investigation of how the spatial orchestration
of enzymatic sites inside cells and different geometries impact the dynamics of
the metabolic system. Our results in two dimensions highlight the relevance
of refining the next generation of metabolic models with spatial orchestration.
Next, we show how to incorporate confocal microscopic cellular images to
define the simulation domain. Last, we investigate Alzheimer’s Disease related
metabolic dysfunctionality in authentic astrocytic human morphologies. Our
results suggest the fundamental role of astrocytic geometries in enhancing the
robustness of the system. The work presented in this chapter is part of our

article under review [99].
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In Chapter 5, we incorporate a calcium-signalling model [225] into the
metabolic model presented before. The coupling of these two models aims to
investigate the impact of calcium signalling on the cellular energetic state and
lactate production in a spatially resolved model. We investigate the coupled
model in two dimensional domains. Our preliminary results show the stabilizing
effect of the calcium regulation on the metabolic profiles and the crucial role of

chemical diffusion as a buffering effect.

Last, we discuss and summarise the results obtained from the different

chapters in Chapter 6, and conclude by discussing possible future directions.

1.4 Publications

My project has led to the following scientific contributions.

Articles

Peer reviewed Journal article:

e Farina, S., Claus, S., Hale, J. S., Skupin, A., and Bordas, S. (2021). A cut
finite element method for spatially resolved energy metabolism models
in complex neuro-cell morphologies with minimal remeshing. Advanced

Modeling and Simulation in Engineering Sciences, 8(1):1-32
Submitted pre-prints:
e Farina, S., Voorsluijs, V., Fixemer, S., Bouvier, D., Claus, S., Bordas,
S., and Skupin, A. (2022b). Mechanistic multiscale modelling of en-

ergy metabolism in human astrocytes indicates morphological effects in

alzheimer’s disease. (Under review)
In preparation:

e Farina, S. et. al. (2022). Astrocytic metabolism and calcium signalling

cross-talk in a spatially resolved model. (In preparation)



1.4 Publications

Conferences

Presentations as speaker:

e Farina, S., Claus, S., Hale, J. S., Komin, N., Skupin, A., and Bordas,
S. (2020). A cutfem method for a spatially resolved energy metabolism

model in complex cellular geometries. WCCM

e Farina, S., Voorsluijs, V. e., Claus, S., Skupin, A., and Bordas, S. (2022c).
A cutfem method for a mechanistic modeelling of astrocytic metabolsim
in 3d physiological morphologies. ECCOMAS

e Farina, S., Voorsluijs, V., Fixemer, S., Bouvier, D., Claus, S., Bordas,
S., and Skupin, A. (2022a). 3d modelling of a spatially resolved energy
metabolism in physiological astrocytic morphology. ECMTB

Invited Talks

e Farina, S. (2022) A mechanistic multiscale metabolic model in human
astrocytes. EMIx Workshop , Simula Lab, Oslo (Norway).
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CHAPTER 2

Scientific Background

This chapter is devoted to the interdisciplinary scientific background of the work
presented in this thesis. First, we give the biological context by introducing
astrocytes, their functions, and their central role in neurodegenerative diseases.
To investigate the unknown mechanisms in biology, we present subsequently
the recent interdisciplinary approach of systems biology. After discussing the
state of the art in modelling metabolism and calcium, we give some of the
fundamental tools used for modelling. Last, we discuss different numerical

techniques to solve such models.

2.1 Astrocytes

The fundamental units of our central nervous system (CNS) are neurons.
They have the role of transmitting information through the whole body by
communicating with each other. A neuron communicates with another via
action potential (electrical signals) and chemical messengers exchanged in the
synapses. However, the CNS is composed not only of neurons but mostly

of glial cells. The most abundant glial cells are multitasking cells, named
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Fig. 2.1 Confocal microscopic images taken from a human CA1 hippocampus. (Left)
Protoplasmic astrocyte stained with GFAP. Scalebar: 15um (Right) Fibrous astro-
cytes stained with GFAP. Scalebar: 20um (Images provided by Sonja Fixemer).

astrocytes [210] (Figure 2.1). Their name refers to their particular star-like
shape and was given in 1895 by the anatomist Mihaly Lenhossék. Astrocytes are
a very heterogeneous group of cells that can be divided into subgroups depending
on the brain region and exhibit a brain location-dependent density [224]|. They
display multiple processes, the density of which helps differentiate between
different classes of astrocytes. The two main sub-classes are protoplasmic
and fibrous astrocytes, which differ by anatomical location and morphologies.
Protoplasmic astrocytes (Figure 2.1) are found in the grey matter and have
a very high density of long processes [59]. Fibrous astrocytes (Figure 2.1)
are located in the white matter and exhibit a lower branch density than
the protoplasmic astrocytes. Furthermore, protoplasmic astrocytes’ processes
enwrap synapses, while fibrous’ ones typically contact Nodes of Ranvier, which
are spots on the axon where the insulating myelin layer is interrupted. Both

kinds of astrocytes have thin processes that make contact with blood vessels.

For completeness, we also mention the existence of other sub-groups as the
interlaminar astrocytes, characterised by a vertical cable that originates in
layer one of the cerebral cortex and extends in layers three-four, and varicose

astrocyte similar to the interlaminar with long feet but present in layer five-six.

Each astrocyte has its spatial domain [60], and they are linked to each

other through gap junctions, forming an intricate, interconnected network

10
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Fig. 2.2 Confocal microscopic image of human protoplasmic astrocytes from a Lewy
body patient taken from CA1l hippocampus stained with GFAP. Scalebar: 50um
(Image provided by Sonja Fixemer).

(Figure 2.2). A single protoplasmic astrocyte has five to ten stem branches,
each of which has fine processes that spread through the astrocytic spatial

domain and can contact over 100,000 synapses [109].

2.1.1 Functions

Astrocytes have many functions strictly linked to their morphology and in-
termediate location between neurons and blood vessels (Figure 2.3). For
example, they can regulate blood flow by increasing or decreasing blood vessel
diameters [106, 118]. They promote the blood-brain barrier (BBB) [237, 91]

preventing the spread of harmful substances inside the brain.

In development, astrocytes guide the migration of developing axons [184] and
developing synapses [66]. After the establishment of the brain, they contribute
essentially to brain homeostasis, including the ion balance in the brain. In
particular, since they are in contact with synapses, they are fundamental in
regulating the concentration of [K*| which may accumulate in the extracellular
space after the occurrence of an action potential [228|. In relationship with
the synaptic activity, there is active bi-directional communication between
astrocytes and neurons during the neuronal activity, which led to the definition

of the tripartite synapses [177|. Astrocytes communicate with cytosolic calcium

11
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Fig. 2.3 Representation of the metabolic relationship of an astrocyte (green), blood
vessel (red), oligodendrocyte (purple) and neurons (blue). (Image provided by Michela
Bernini and Melanie Sengupta)

changes as discussed later (Section 2.1.4). In the presence of synaptic activity,
astrocytes display cytosolic calcium elevation. Through these changes in
calcium, they can detect neurotransmitters released from the neuron and
release their neurotransmitters or gliotransmitters, which can then modify the
electrophysiological excitability of neurons [176]|. This definition adds astrocytes

as crucial players in transmitting information between neurons.

Furthermore, their location between neurons and blood vessels is fundamen-
tal to neuronal metabolic processes [24| (Figure 2.3). Astrocytic metabolism is
crucial for the neuronal one, coupling even more tightly the astrocytic-neuron
relationship. They take up glucose from blood vessels and metabolise it by gly-
colysis. The main product of glycolysis is pyruvate which is either consumed by
the enzyme lactate dehydrogenase (LDH) to produce lactate or transported into
mitochondria. Inside the mitochondria, the tricarboxylic acid (TCA) cycle and
Oxidative Phosphorylation (OXPHOS) produce the main energetic resource of
the cell: ATP. On the other hand, lactate produced can be provided to neurons.
This process is known as the astrocyte-neuron lactate shuttle (ANLS) [175].
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2.1 Astrocytes

Fig. 2.4 Confocal microscopic image of a reactive protoplasmic astrocyte in Alzheimer’s
Disease acquired from CA1 subregion of a human hippocampus. Scalebar: 30um
(Image provided by Sonja Fixemer).

Whereas both neurons and astrocytes perform metabolism, due to the
high energy demand, neuronal metabolism relies more on the more efficient
mitochondrial mechanisms of the TCA cycle and OXPHOS. Thus, neuronal
metabolism is more oxygen-dependent. On the other hand, astrocytes rely
more on glycolysis to produce ATP [220, 197|. Moreover, astrocytes store part
of the glucose as glycogen and represent the biggest glycogen storage in the
brain [51, 50|. Glycogen is a polysaccharide of glucose which can be used to

produce lactate required for neurons or their maintenance.

All the mentioned functions clearly establish the centrality of these cells for

the homeostasis of the brain and neurons.

2.1.2 Reactivity

In the presence of injuries, pathological conditions or perturbations in cellu-
lar homeostasis, astrocytes respond with a “reactive” profile [94]| presenting
morphological, molecular and functional changes (Figures 2.2 and 2.4). This cel-
lular response is visible in most brain disorders like neurodegenerative diseases,

epilepsy, and brain cancer.

However, reactive astrocytes exhibit a different range of reactivity. Morpho-

logically, reactive astrocytes can show hypertrophy, over branching, dysmorphic
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processes [174, 43| and process polarisation towards the injury [21]. Physio-
logically, they can gain or lose functions and modulate their dynamics with
neighbouring cells. Molecularly, they over-express Glial fibrillary acidic protein
(GFAP), a marker for reactivity, and several genes are up or down-regulated
depending on the disease. An open question is whether reactive astrocytes
are protective or toxic for their micro-environment and the brain [42]. A first
classification divides reactive astrocytes into two groups: A1, neuro-toxic and
A2, neuro-protective [135]. Further, recent studies suggest a much broader and
heterogeneous classification of reactive astrocytes |76] which is more in agree-
ment with experiments showing how the reactive astrocytes respond differently
to injuries depending on the distance [21, 11] or by the location [149].

In severe brain injuries, astrocytes respond, creating a glial scar at the side
of the lesion [213], a compact and dense interconnected net of processes formed
not only by reactive astrocytes but also by microglia, endothelial cells and
fibroblasts and basal membrane. The glial scar is fundamental to prevent the
spreading of the damage. However, the thick matrix produced by the glial scar

might prevent the regeneration of neuronal axon [188|.

In conclusion, astrocyte reactivity is involved in many diseases. Since this
cellular state can last for a long time during the different stages of the disease,
it is essential to understand how reactive astrocytes impact disease progression
and investigate if their neurotoxicity might trigger or speed up the development
of diseases [42].

2.1.3 Metabolism

Section 2.1.1 presented the fundamental role of astrocytes as metabolic media-
tors, which is the astrocytic function of interest in this thesis. Metabolism is
the process performed by cells of our body to transform nutrients into ATP,
the energy substrate, and lactate (Figure 2.5). As pointed in Chapter 1, ATP
is essential for each living system. There are two ways that cells produce
ATP: from glycolysis and the majority from the mitochondria. To start the
production of ATP cells require glucose. Glucose is the nutrient that astrocytes

take up from blood vessels through glucose transporters.
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Fig. 2.5 A schematic representation of the main metabolic products in an astrocytes.
Glucose is uptaken from the blood vessels. Glycolysis transforms glucose into pyruvate
and ATP. Pyruvate goes through pyruvate oxidation and is transformed into Acetil
coenzyme A (AcCoA). AcCoA starts the TCA cycle inside mitochondria. TCA
cycle and Oxidative Phosphorylation produces the majority of ATP. Pyruvate is also
used by the lactate dehydrogenase to produce lactate which is partially exported to
neurons. (Image created with bioender.com.)
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In eukaryotic cells, glycolysis is the first step of glucose metabolism which
happens in the cytosol and is an anaerobic process. Thus, it does not require
oxygen. A coarse-grain description consists of the breakdown of the sugar
and ATP into pyruvate and ATP. As a matter of fact, glycolysis requires
first ATP-consumption and eventually produces ATP. For each molecule of
glucose consumed, the cell gain two molecules of ATP. In more detail, the first
stage is the phosphorylation of glucose consuming ATP by the hexokinase into
glucose-6-phosphate, which is then isomerised to fructose-6-phosphate by phos-
phohexose isomerase. Next, it is phosphorylated to fructose-1,6-biphosphate
by phosphofructokinase. The enzyme aldolase catalyses the consumption of
fructose-1,6-biphosphate into glyceraldehyde 3-phosphate. The phosphory-
lation of the latter by glyceraldehyde-3-phosphate dehydrogenase produces
bisphosphoglycerate. The latter is further phosphorylated by phosphoglycerate
kinase into phosphoglycerate and one molecule of ATP. Enolase catalyses the
conversion of phosphoglycerate into phosphoenolpyruvate. Finally, pyruvate

kinase catalyses the production of pyruvate and ATP.

The pyruvate produced from glycolysis is partially fermented and is catalysed
by the lactate dehydrogenase, producing lactate. This process happens also
in low or absence of oxygen. On the other hand, part of the pyruvate is
carried from the cytosol to the matrix of mitochondria through a process called

pyruvate oxidation [150].

Mitochondria are organelles that can be found in nearly every eukariotic
cell. They have a double membrane and enclosing a volume that is called the
matrix where the main energy (ATP) production is happening. The pyruvate
oxidation produces acetyl coenzyme A (AcCoA) and transfers the metabolic
process from the cytosol into the matrix. AcCoA starts the TCA cycle, which is
a closed-loop of chemical reactions meaning that some products of the reactions

are used to keep the loop going.

The metabolites of the TCA cycle function as electron carriers driving the
electron transport chain of the OXPHOS in the inner membrane of mitochondria.
There, the primary production of energy in form of ATP is happening by

oxidation and reduction reactions that release chemical energy.
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2.1 Astrocytes

2.1.4 Calcium Signalling

Astrocytes are, in contrast to neurons, not electrically excitable cells. Therefore,
they are not able to fire an action potential. However, they show a form of
excitability regulating cytosolic calcium concentration (Ca®") [65]. Calcium is
a central second messenger that translates external signals into intracellular
responses in many if not all cell types. Calcium signalling of astrocytes also
orchestrates the communication with neighbouring cells. Astrocytes can dis-
play different calcium dynamics: small and rapid transients in the cytosolic
calcium concentration within their thin processes; larger locally-propagating
waves; and slow calcium transients encompassing the whole cell. Calcium
changes in astrocytes can be spontaneous [171] or induced by stimuli including
neurotransmitters like glutamate [45]. Thus, synaptic activity during which

neurotransmitters are released causes cytosolic calcium elevation in astrocytes.
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Fig. 2.6 Schematic representation of calcium Ca?" exchange inside the cell. (Image
provided by Mahsa Moein)

Regarding calcium, this thesis investigates the crosstalk of calcium signalling
and metabolism. Within the cell, calcium is exchanged between three main

compartments: endoplasmatic reticulum (ER), mitochondria, and extracel-
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lular space (Figure 2.6). ER is the primary storage of Ca*" for cells. High
levels of Ca™ are toxic for the cell. Thus cytosol generally keeps a low Ca*"
concentration [30].

There is active crosstalk between Ca?t and ATP, which occurs between
cytosol, mitochondria and the ER. The leading player in changes in the Ca*"
concentration is the ER which uptake large amounts of Ca®" from the cytosol
and can release it quickly. SERCA pumps pump calcium from the cytosol
to the ER at the cost of ATP. Ca®" is released into the cytosol from the
ER by IPj; receptor (IPR) and ryanodine receptor (RyR). IPR and RyR are
activated by Ca* itself, inducing the calcium-induced calcium release (CIRC)
mechanism where a high calcium level induces further calcium release into
the cytosol [93]. IPR is additionally activated by IP3 molecules generated by
the phospholipase C (PLC)upon stimulation of G-protein coupled receptors

(GPCR) in the plasma membrane by, e.g. neurotransmitters or other agonists.

As discussed in Section 2.1.3, mitochondria are the primary energy producer.
However, crucial enzymes in the Krebs cycle require calcium for activation.
Hence, Ca*" is imported into mitochondria by the mitochondrial calcium
uniporter (MCU) [196] and released by the sodium/calcium exchanger (NCLX).
Spatially, mitochondria are typically located near the ER generating region
with a high Ca®" gradient [75].

Calcium signalling is a complex process, and the cell must balance the
cytosolic Ca®". Moreover, there is a clear interaction between Ca®" and cellular
energy. Thus, further investigation of the crosstalk between these two processes

is necessary.

2.1.5 Neurodegenerative Diseases

In the previous paragraphs, we established the central role that astrocytes
play in the well-being of the CNS (Section 2.1.1) and that their involvement in
neurodegenerative diseases leads to a reactive response (Section 2.1.2) impairing
their normal functions. Dysfunctional behaviour of astrocytes in several diseases
has been reviewed in different studies |1, 167] and also with a particular focus

on metabolic dysfunctions [62].
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Fig. 2.7 Confocal microsopic image of amyloid-3 plaque associated astrocytes acquired
from human AD patient. The astrocytes surround the plaque and they contribute to
the reactive glial net. Scalebar: 30um. (Image provided by Sonja Fixemer).

Alzheimer’s Disease is the most common neurodegenerative disease and
leads to the death of neurons in the brain. Even though causes are still not
fully understood, it is known that S-amyloid plaques and neurofibrillary tangles
impact the development of the disease [44]. Tangles cause damage inside of
the neurons, while plaques are localised in the extracellular space. On the
membrane of the neurons, there is a protein called amyloid precursor protein
(APP). Typically, APP is cleaved by a-secretases, and the fragments produced
are soluble in the extracellular space. However, if 3-secretases cleave APP,
then the fragment produced is a monomer called g-amyloid, which is not
soluble. The accumulation of S-amyloid in the extracellular space generates
B-amyloid plaques. While the detailed mechanisms are still elusive, these
plaques are toxic for neurons and the brain environment because they can
disrupt neuronal communications and attach to blood vessels, causing amyloid
angiopathy [154, 223]. While plaques disrupt the normal neuronal behaviour
from the outside, neurofibrillary tangles act from the inside. Microtubules are
filaments inside the neurons that provide structural support and are used to
transport cellular entities including vehicles of neurotransmitters and nutrients.
Typically, the protein 7 binds to these microtubules to stabilise them. However,
in AD 7 proteins abnormally detach and stick together, forming neurofibrillary

tangles. The detachments of the protein 7 disrupt the structure of neurons,
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which eventually degenerate. As a result, neuronal communication with the

neighbouring neurons is reduced and destroyed [183].

Various dysfunctions have been noticed in astrocytic functions in the pres-
ence of AD [1]. Astrocytes can internalise S-amyloid suggesting a protective
mechanism [161, 181], which might cost them metabolic impairments as pre-
sented in [6] or altered calcium signalling [112]. Moreover, they appear to be
responding with a morphological response moving their processes to surround
the plaque [230] (Figure 2.7).

The main metabolic dysfunctions associated with AD [62, 13, 74, 238| are (i)
impairment in up-taking glucose from the blood vessels [159], (ii) mitochondrial
dysfunction [136, 156, 178], as well as (iii) dysfunctional behaviour in glycolysis
and lactate dehydrogenase [33|. Impaired behaviours in astrocytes are not only
limited to AD but also other neurodegenerative diseases, such as Hungtington’s
Disease [168], Parkinson’s Disease [36] and Amyotrophic lateral sclerosis [233,
101].

2.2 Systems Biology

Studying complex biological or physical phenomena is always challenging when
different phenomena coincide, which is typically the case for investigating a com-
plex system such as a cell. Modelling is a valuable tool for investigating complex
phenomena by integrating experiments and computational research [128]|. A
new discipline was established in early 2000 to address the complexity of biomed-
ical research that merges experimental data, computational and mathematical

tools: systems biology [128, 127].

Systems biology approaches can be described as hypothesis-driven experi-
mental and mathematical modelling cycles (Figure 2.8). It starts by observing
the natural physical phenomena and deciding the relevant features to include
or to study through experiments. These features are used to simplify reality
and create a model that captures such phenomena mechanistically in a simple
manner. Since natural phenomena obey physical and mathematical laws, a
mathematical formulation can be used to translate the simplified model into

a mathematical framework. The advancements in computers and computer
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Fig. 2.8 This chart shows the circular process of systems biology, where biology,
technology and computation are subsequently applied to improve knowledge of
biological phenomena. New biological insights open new biological questions. The
aid of new technologies helps investigate these questions. The data obtained are then
used in new software leading to a new biological hypothesis. The loop can then start
over to test this hypothesis.
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science have enabled us to envision an alternative way to solve problems by
obtaining numerical solutions instead of analytical solutions. The next step
requires validating those numerical solutions, which can be done by comparing
the solutions with experimental data. When the solution is validated, we can
use mathematical and statistical tools to investigate the robustness of the
results, which may highlight new insight into the biological phenomena. Last,
the loop can start again to improve the description of the phenomena or to test

a new hypothesis.

2.2.1 Modelling Cell Metabolism

Systems biology has been widely used to investigate the metabolic process in
living cells [234]. Models contribute to studying metabolic diseases [72| and dis-
covering new therapies [77]. In the literature, there are several approaches [234].
For example, a modelling approach based on associated gene functions for
metabolism is the genome-scale model. These models reconstruct the metabolic
pathways using stoichiometry and then analyse the interactions of the entire
metabolic network at steady state by flux-balance analysis [133, 187]. Examples
of these models in astrocytes have been proposed [147], also considering the

coupling with neurons [61].

On the other hand, a more quantitative description of the metabolism is
given by kinetic models that describe the enzymatic activity and mass balances
leading to a system of ordinary differential equations (ODEs) for the evolution
of metabolite concentrations over time. Focusing on astrocytes, compartmen-
talised metabolic models have been proposed to study the astrocytic-neuron
interaction [15, 16, 71, 123]. Both of these approaches describe metabolism in
a pretty detailed manner with many parameters and chemical reactions, and
they provide a good approximation of the average metabolic concentration
behaviour, which is a fast process. However, in biology, chemical concentrations
inside the cell are not heterogeneous. Reactions happen in specific locations.
For example, mitochondria are neither homogeneously distributed nor ionic
pumps along the cell membrane. These observations point to the missing
component in these modelling approaches, the spatial dimension, which cannot

be neglected in the next generation of models as reviewed in [2].
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The importance of space geometry has started to be considered by different
scientists in different contexts: in excitable cells [92], in calcium signalling

either in dendritic spine [25] or in astrocyte [125].

In conclusion, most of the proposed metabolic approaches assume steady-
state concentrations or spatial homogeneity. However, in reality, cellular
processes are better described by a reaction-diffusion system. Thus, in this
thesis, we want to investigate the potential effects of the reaction-diffusion
system as a potentially more realistic approach than previously proposed models.
In particular, the interplay between the cellular geometry (morphology), spatial

dimension and metabolism had not yet been investigated before this thesis.

2.2.2 Modelling Calcium Signalling

The importance of calcium dynamics in astrocytes discussed in Section 2.1.4
has been under scientific investigation for decades, and many models have been
proposed [169]. The modelling approaches to investigate calcium dynamics
are very broad [87] ranging from deterministic to stochastic approaches, and
spatially homogeneous [79, 134, 78] to spatially distributed [169, 202| systems.
These modelling approaches can address the different scales: from molecules to

single cells and neuron-astrocyte networks.

The exchange of cytosolic calcium comes with the expense of ATP as
discussed in Section 2.1.4. Some mathematical models focus on the interplay
between Ca®t and mitochondria, such as [143, 144, 73, 31]. Geometric-based
models for astrocytes and calcium dynamics have also been investigated in
literature as in [202, 166, 222|. However, the field lacks a model to investigate
the interplay of the metabolic process and calcium signalling within a spatial

modelling framework.

2.3 Modelling Tools

After presenting the state-of-the-art models for metabolic processes (Sec-
tion 2.2.1) and calcium dynamics (Section 2.2.2), we introduce the mathematical

formulations used to include the spatial component. As previously discussed,
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cells can be seen as complex systems governed by reaction-diffusion equations.
Thus, the necessity is not to describe the model through a set of ODEs but
using partial differential equations (PDES) that include partial derivatives in
space and can be solved in two and three-dimensional domains. For further

reading, we refer the readers to [160].

2.3.1 Reaction-Diffusion System

Mathematically, a reaction and diffusion model is described by a parabolic
partial differential equation [200]. In chemistry, it describes the changes in
space and time of a chemical concentration. The partial differential equation

gives the general formulation for the concentration of a chemical specie wu:

ou_

5 DAu + R(u), (2.1)

where Au is the Laplacian of the concentration w. Thus, the sum of all the

second partial derivatives Au = Zle 86—;2 where d is the spatial dimension.

The left-hand side of Equation (2.1) describes the change in time of the
concentration of the chemical species through the temporal partial derivative,
%—7;. While on the right-hand side, the first term, DAuwu, describes the diffusion of
the chemical through the second spatial derivative of the specie concentration
multiplied by a diffusion coefficient D, and the second term, R(u), is a function

describing the chemical reactions where u is involved.

Equation (2.1) has a unique solution when it is supplemented with boundary

conditions and the initial value for the concentration.

In 1952, Turing [219] contributed significantly to biochemistry, suggesting
that chemicals can diffuse and react in a way that produces steady-state

heterogeneous spatial chemical patterns.

2.3.2 Fick’s Law

The first term on the right-hand-side of Equation 2.1 comes from the first Fick’s
law [102]. It describes the diffusion of concentration relating its gradient to the

diffusive flux. The flux moves from regions of higher concentration to regions
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with lower concentration:

J = —=DVu (2.2)

We can now derive Fick’s second law by applying the conservation of mass

equation. Thus, we require the system to be closed.

ou ou
E—FV-J—O:E—#V-(—DVU)—O. (2.3)

Assuming that the diffusion coefficient is a constant D, we can change the

differentiation order:
V- (=DVu)=—-DV -Vu=—-DAu.

Substituting in Equation (2.3), we obtain Fick’s second law:

ou
— —DAu=0. 2.4
T u=0 (2.4)

2.3.3 Law of Mass Action

A possibility for the reaction term, R(u), of Equation (2.1) is to describe
the chemical kinetics following the law of mass action [226, 124], one of the
fundamental laws of chemical kinetics. The law of mass action describes the
product accumulation rate as the probability of collision of the reactants.

Mathematically, considering two reactants, A and B, that react to produce C:

A+BE O

The rate of accumulation of the product [C] is considered as the concen-
trations of the reactants multiplied by a rate constant k that depends on the

reaction and on the temperature:

d[C]

== = k[A]B]

It follows that the reaction term of Equation (2.1) of the concentration [C]
is R([C]) = k[A][B].
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2.4 Numerical Methods

Numerical methods have been developed to solve engineering, physics and
science problems that cannot be solved analytically, which is often the case in

systems biology due to the complexity of the systems under consideration.

2.4.1 Finite Element Methods

In the latter half of the 20" century, finite element methods (FEM) have
become a leading numerical tool for solving partial differential equations [116].
In brief, it discretises the continuum space into a finite number of finite elements

and reduces the solution of the PDES into the solution of an algebraic system.

First, the problem is stated through a PDE. For example, we consider
Equation 2.1 in a bounded domain €2, which is well posed with an initial
condition at an initial time and a boundary condition. For the boundary
conditions, we consider pure Neumann, requiring that there is no flux on the
boundary of the domain (9€2). The problem is then to find the concentration
u: Q% [0,7] — R that satisfies:

% = DAu + R(U) in Qx (OvT]
u(t=0)=uy in (25)
Vu-n=0 on 099 x (0,T]

This differential form of the problem is called the strong formulation. How-
ever, FEM solves the weak formulation which is an integral form equivalent to
the strong form. The weak form is obtained by multiplying the strong form
with an admissible test function, integrating it over the domain and applying
Divergence Theorem. The general idea behind transforming the strong form
into the weak form is that the solution and the test function live in a Hilbert
space. In a Hilbert Space, the solution continuity is relaxed since it does not
need to be fully differentiable, but it is a set of functions which share the same
weak derivative. Since we are working with a class of equivalence of functions,
it is much easier to build a basis to generate the Hilbert space compared to a

classical differentiable space.
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In our example, the weak formulation of Equation 2.5 requires finding u
in a suitable Hilbert space V', such that for all admissible test functions v, u
satisfies:

—v dr = / DAuvdzx + / R(u)vdz. (2.6)
Integrating by parts:
ou
— [ DAuwvdz = DVuVoudz — D—uwvds.
Q Q o0 n

Since we have specified pure Neumann boundary condition (Equation 2.5),

the boundary terms vanish. We substitute it, and the weak form becomes:

/ OUdy = — /Q DVuVodz + /Q R(u)v dz. (2.7)

The theorem of Lax Milgram [17] ensures the existence of the weak solution
by requiring that the bilinerear form associated to equation (2.7) is bounded
and coercive. In particular, the proof for parabolic equations can be found
in [232].

After deriving the weak formulation, the problem needs to be discretised.

In parabolic equations, we need to discretise the problem in time and space.

In our example, the time interval is then discretised using a finite difference
scheme [209]. The time is divided into subintervals, where At denotes the time
step’s size. The subscript ¢ indicates the solution of the concentration at the
time ¢,,. Using a backward Euler method to approximate the continuous time,

we obtain the discretisation of the time derivative:

ou  Uny1 — Up

ot~ At
The spatial domain is discretised in finite elements generating the so-called
mesh. The nodes are the points on the finite elements where the unknown
function is calculated by solving the weak form. By interpolation, the values
at the nodal points (nodes) are used to approximate the values between the

nodes. The function used to make the interpolation is called shape function. A
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general formulation of the discretised solution uy of the weak problem for a

chosen vector space with shape functions ¢; has the form:

up(z) = Z bi()us, (2.8)

where u; are the unknowns at the th nodal point with ¢ = 1,--- , N. Moreover,

boundary conditions need to be taken into account in some nodes.

The discretised problem of Equation 2.7 leads to a sequence of problems
which seek for the solution,u,, 1, at the time ¢, knowing the solution at the

previous time step, u,,, for all test functions, v:

/ Gt Z W) dg = — / DV, Vodz + / R(ttn41)v da. (2.9)
Q At 9 Q

We can then rewrite Equation 2.9, more compactly:

Fn—&-l(un—i—h Unps U) =0 W

where

Fri1(Upy1, un;v) = /(Atl(unﬂ — Uyp) + DV, 1V — R(upqq)de

Q
In conclusion, we search the solution u,; in the form of Equation 2.8. This
discretisation leads to a system of equations defined by the interpolation matrix
where the unknowns are the nodal points that can be solved using direct or

iterative solvers [185].

The accuracy of the solution is assessed in terms of error [54, 88, 53] and
convergence. As the mesh is refined, the approximated solution u, converges

to the exact solution and convergence is ensured by Céa’s Lemma [64].
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2.4.2 Unfitted Methods

Fig. 2.9 In classic FEM, the mesh is built to conform to the boundary of the star
(right). While unfitted methods embeds the star in a background mesh allowing the
finite elements to get cut by the boundaries (left).

Unfitted methods were proposed to address problems where generating the finite
element mesh is challenging such as for highly complex geometries, fracture
propagation or large deformations, and might lead to numerical errors. Classical
finite elements require the mesh to conform to the boundary as well as internal
features such as material interfaces and cracks (Figure 2.9). On the other
hand, unfitted methods were created to overcome difficulties in meshing the
space [162] by allowing the boundary of the domain to be independent of the
mesh (Figure 2.9).

Babuska [18| was the first to suggest partition of unity to enrich the finite
element approximations with a priori knowledge about the exact solution to
allow arbitrary function to be reproduced exactly by the finite element spaces.
The partition of unity allows to describe a topological space as a collection of
non-negative functions. These functions have the properties that every point

has only finitely many nonzero values, and their sum is one.

Following the partition of unity idea, the Generalised Finite Element Method
(GFEM) proposed by Strouboulis et al. 214, 215] uses special numerically com-
puted functions and enrichments to include the a priori information. Similarly,
the extended finite element method (XFEM) [82, 151] uses local enrichment on

a portion of the mesh to restrict the effect of localised features in the surround-
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ing and was the first method to address discontinuities without remeshing or,

at least, with minimal remeshing [40].

t

Fig. 2.10 A level set function describes an evolving surface ®. The front of the
evolving surface is defined implicitly as the zero level set ®(z,y,t = 0) = 0. Different
time produce different values of the front as the intersection of ® with the plane ¢.

While partition of unity provides a great advantage in working with unfitted
mesh, it might also lead to numerical problems [3|. The matrix of the system
can be ill-conditioned, meaning that the solution of the system is inaccurate.
[ll-conditioning problems can arise depending on how the interface intersects
the finite elements. Thus, it requires treatments with pre-conditioning |23, 152,
108, 152, 5, 3].

For this reason, an extension of XFEM was proposed in the cut finite
element method (CUTFEM) [111, 58]. Both XFEM and CUTFEM can define
the object geometry with a level set function [206] (Figure 2.10) which has

already been used to model biological phenomena [82, 83].

Opposite to XFEM, CUTFEM allows the interface to cut the finite element
mesh arbitrarily, adding a stabilisation term in the weak form, such as the
ghost penalty technique [57|. The addition of this term ensures the coercivity
property, required for the solution existence by the theorem of Lax Milgram, and
the control of the conditioning number. This is the key difference with XFEM,
where it is necessary the addition of pre-conditioning to ensure the coercivity.

Lastly, boundary conditions are applied using Nitsche’s method [164].
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The recently introduced ®-FEM [90] appeared as an unfitted method where
the solution is found by multiplying the level set function with the finite
element function. In this way, the Dirichlet boundary condition is imposed on

the solution.

Unfitted methods proved their ability to disentangle geometry and mesh,
allowing them to generate the meshing independently from the geometry, and
therefore complex domains such as images can be used directly in simulations.
From the proposed methods, CUTFEM is the one that ensured proper condi-
tioning of the system even with a complex morphology such as an astrocyte.
Moreover, the CUTFEM library is based on the finite element software FEN-
1CS [138] which is an open-source software to solve PDES using FEM. Dolfin, a
Python package with an efficient C++ core, allows us to solve abstract scientific

models using finite element methods with a few lines of code.

Other libraries include open XFEM ++, AMIE [85], GETFEM [194],
FREEFEM [114], DEAL.1I [12].

2.4.3 Other Methods

For completeness, we point out that other approaches exist to solve partial
differential equations in literature. Proposed before the advent of FEM, the
finite difference method [209] approximates the derivatives with finite differences
and does not require the weak formulation. It discretised the spatial domain in
a grid of finite points and the time interval. The solution is found in each point
of the grid, solving an algebraic system that contains the finite differences and
the values at the neighbouring points. This method was used in our work for

time discretisation.

Moreover, we indicate generalised finite difference methods as a meshless
methods proposed in [216]. GFDM uses classical FDM on an irregular grid.
However, the position of the grid points requires some treatments to avoid

singularity and ill-conditioning [27].

Boundary Element Methods (BEM) [46, 20| solve the PDES by formulating
them as integral equations. Compared to FEM, BEM requires to discretise only
at the boundary. Thus, the advantage of BEM is its computationally higher
efficiency compared to FEM. Hence, BEM is a good method in problems where
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there is a good knowledge of the solution and it is possible to calculate the

Green’s functions which is not always an easy task.

In contrast with the finite difference method, Finite Volume Methods
(FVM) [95] use integration to approximate the solution. It requires that
conservation law holds through the volume elements based on fluxes using the

divergence theorem. FVM is primarily used in computational fluid dynamics.

The last method we suggest as an alternative approach is isogeometric
analysis (IGA) [117] which incorporates NURBS basis functions into finite
element frameworks. Since the NURBS are the building block of CAD ge-
ometries, IGA can provide seamless coordination between CAD software and
FEA packages. In addition, NURBS basis functions can exactly represent
conic sections. However, in IGA, geometries and finite element analysis are
strictly linked. The basis functions defining the CAD geometries are used as
the basis functions for the FEA. Even if CAD geometry can deal with complex
shapes, it generally requires patching together pieces of the geometry. This
patching might generate geometrical artefacts, a current open problem in IGA.
Moreover, local refinement is not straightforward in IGA [120], which can make
the identity between the geometrical space and the solution space an undesired
constraint. This led to the GIFT concept [14] where the geometry and “field
approximation” can be chosen arbitrarily, whilst keeping the exact boundary
description provided by CAD.

In conclusion, in this last section, we presented different numerical methods
to solve partial differential equations. In particular, these methods can be used
to solve models based on reaction-diffusion systems (Section 2.3). Moreover,
since we discussed the importance of geometry-based modelling as the next
direction for metabolic models (Section 2.2), we focused on methods that allow

to incorporate easily complex geometries.
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CHAPTER 3

CUTFEM for a Spatially Resolved Energy
Metabolism Model

As presented in Chapter 1, our goal is to incorporate physiological cellular
morphologies into a metabolic model. In our first manuscript [97] presented
in this chapter, we focused on the numerical approach to implement a spatial
energy metabolism model. For this purpose, we compared the standard finite
element method (Section 2.4.1) to the cut finite element method (CUTFEM)
as one of the unfitted methods discussed in Section 2.4.2. In this framework,
we also introduced a dynamic model for energy metabolism which is math-
ematically described by the tools presented in Section 2.3. The comparison
showed that CUTFEM leads to comparable results as the classic finite element
method with the ability to incorporate implicitly complex geometry. The
framework is explained below in detail to allow the usage also by non-experts in
Computational Sciences. As the first author of this manuscript, I contributed
to the development of the model, the implementation, the preparation of the

images and the writing of the manuscript.
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Abstract

A thorough understanding of brain metabolism is essential to tackle neu-
rodegenerative diseases. Astrocytes are glial cells which play an important
metabolic role by supplying neurons with energy. In addition, astrocytes
provide scaffolding and homeostatic functions to neighboring neurons and
contribute to the blood-brain barrier. Recent investigations indicate that
the complex morphology of astrocytes impacts upon their function and in
particular the efficiency with which these cells metabolize nutrients and pro-
vide neurons with energy, but a systematic understanding is still elusive.
Modelling and simulation represent an effective framework to address this
challenge and to deepen our understanding of brain energy metabolism. This
requires solving a set of metabolic partial differential equations on complex
domains and remains a challenge. In this paper, we propose, test and verify a
simple numerical method to solve a simplified model of metabolic pathways in
astrocytes. The method can deal with arbitrarily complex cell morphologies
and enables the rapid and simple modification of the model equations by
users also without a deep knowledge in the numerical methods involved. The
results obtained with the new method (CUTFEM) are as accurate as the
finite element method (FEM) whilst CUTFEM disentangles the cell mor-
phology from its discretisation, enabling us to deal with arbitrarily complex

morphologies in two and three dimensions.

3.1 Introduction

We propose to test and verify a simple numerical framework to solve a simplified
model of metabolic pathways, representative of cellular metabolism in the brain.
Metabolic models can aid the understanding of cell behaviour. Most metabolic
models involve the solution of a system of ODEs [71] leaving open the question
of how the geometry and spatial organization affect cell behaviour. This work
presents a method that is a first step towards extending existing models to
answer this question. The method, based on recent developments in unfitted
finite element methods is general, and can deal with an arbitrary number of
coupled reaction diffusion equations and handle complex cell morphologies.

Thanks to the versatility of the automatic code infrastructure provided by
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FENICS, the code is well-suited to newcomers to finite element methods

interested in modelling biological systems.

To test the new framework, we address complex cell geometries in two and
three dimensions and compare the method to the standard finite element method
in terms of accuracy. The results obtained with the new method CUTFEM are
as accurate as the finite element method (FEM) whilst CUTFEM disentangles
the cell morphology from its discretisation, enabling to deal with arbitrarily
complex morphologies, including kinks and triple junctions, in two and three

dimensions.

A thorough understanding of brain metabolism is essential to tackle neurode-
generative diseases [141, 62]. Astrocytes are glial cells which play an important
metabolic role by supplying neurons with energy [24|. These cells also provide
scaffolding and help repair neighboring neurons, where they maintain balanced
ionic concentrations (homeostasis) and contribute to the blood-brain barrier by

preventing the diffusion of large molecules into the brain.

Recent investigations show that the morphology of astrocytes, which can
be complex (see Figure 3.1), impacts upon their function, in particular the
efficiency with which these cells metabolise nutrients and provide neurons with
energy [199].

Modelling and simulation could be effective in furthering our understanding
brain metabolism by enabling to test biological hypotheses and investigate the

relative importance of model parameters on quantities of interest to biologists.

The challenges involved with modelling and simulating metabolic activity
in cells include:

1. Building a representative model of the metabolic pathways, usually a set
of reaction-diffusion equations;

2. Identifying the parameters for these partial differential equations (PDES)
as well as the sensitivity of the system to these parameters [191, 113, 190,
192, 193, 189];

3. Discretising the complex and evolving geometries of the cells;

4. Solving this set of PDES on these complex domains;
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Fig. 3.1 The complex morphology of an astrocyte from a human post mortem
sample obtained by fluorescent (GFAP) super-resolution light microscopy [186] and
reconstructed by the machine learning based tool MicMac [199].

5. Ensuring the accuracy of the solution by measuring discretisation error 54,

88, 53):

6. Ensure the usability of the numerical framework by non-experts.

This last point aims at simplifying multi-disciplinary interactions between
computational, data science and domain experts, it is also becoming increasingly
important to devise numerical frameworks which can be used and enhanced
without being a computational science expert. To do so, open-source frameworks
such as FENICS [138, 9, 110], GETFEM [194], FREEFEM [114], DEAL.1I [12]
are all possible candidates. These open-source frameworks enable the user to
write models in a language which is natural to them and requires minimal
interaction with technical details associated with well-established numerical

methods.

Concerning metabolic activities, some models focused their attention to the
metabolic pathways which they describe as a series of chemical reactions that
enable the synthesis and breakdown of molecules as [175, 153, 61, 205].
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So far, very little attention has been paid to the role of cell morphology on
the modelling [125, 92|. However, cell morphology is known to be important to
describe the state of the cell. For example, [13] show the importance of cell

morphology on the development of Alzheimer’s disease.

In this paper, we tackle points 1., 3., 4., and 6., above, and leave points
2. and 5. for further communications, as well as the extension to evolving

domains.

Model We present a simple model of energy metabolism which takes into
account the main pathways of the metabolic process in a single cell. Here, we
focus on an astrocyte as a specific cell, but the developments are general. In
particular, we include glycolysis, Lactate Dehydrogenase, TCA cycle and basal
cellular activity explicitly in the cell model. Each pathway is described by a

chemical reaction leading to a coupled reaction diffusion system.

Cell geometry Our ultimate goal is to enable the use of microscopy to
produce input geometries for our computational framework and include the
evolution of the cellular domain. To enable this, we define cell geometries using
signed distance functions, also known as level-set functions [170, 206], which
were successfully deployed in modeling other biological phenomena with moving

interfaces, such as (82, 83|.

Discretisation The solution of the set of coupled reaction diffusion equations
has two characteristics, which create challenges for the standard finite element
method:

e Local gradients in metabolite concentrations;

e Discontinuities across cell boundaries.
Standard finite element method would require to create a mesh that fits the
boundary of the object. Even though much progress has been made in meshing

technology [146], the advantages of methods that separate the geometry from

the object are very appealing for our ultimate objective of describing a cell
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evolving in time. Classic FEM would require to build a mesh conforming the

object at each time step leading to very high computational drawbacks.

Enriched finite element methods such as the partition of unity FEM
(PUFEM) [151, 18|, the generalized finite element method (GFEM) [215] and
the extended finite element method [26] are ideal to tackle these two challenges
[39, 82].

Indeed, these methods enable the local enrichment of the discrete solution
space with known features about the solution, including discontinuities and
sharp gradients or singularities. This makes it possible to handle arbitrarily

complex geometries quasi-independently of the mesh (see Figure 3.2).

0€2

(a) FEM (b) CUTFEM

Fig. 3.2 (a) Standard FEM requires the mesh to be conform the boundary of the
domain 052 (b) CUTFEM embeds the implicitly defined interface 052 into a background
mesh, in yellow the set of ghost penalty facets Fg.

Nonetheless, without preconditioning or special treatment [23, 131, 152,
108, 5, 4, 3| enriched finite elements cannot natively deal with arbitrarily
complex geometries because of particular geometrical limit cases (interfaces
passing close to a degree of freedom) and ill-conditioning stemming from linear
dependencies due to complex enrichment functions acting upon large parts of

the computational domain.

CuTFEM [111, 57, 58, 35, 68, 67, 69| is an extension of XFEM that
naturally addresses limit cases associated with complex geometries, and lends
itself to image-based simulations. Moreover, we use the libCUTFEM library,
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which is a cut finite element extension of the open-source framework of the
FENICS Project [9, 138, 110, 58|. FENICS offers a highly flexible and easy way
of transforming models expressed as partial differential equations into numerical
methods based on the finite element method through the Unified Form Language
(UFL) [10], a domain-specific programming language for writing the weak form
of partial differential equations. The UFL specification of the finite element
problem is then automatically translated by the other components of the
FEniCS Project (DOLFIN [9] and the FEniCS Form Compiler (FFC) [138])

into high-performance specific C++ code with little or no user intervention.

Solution scheme To solve the set of coupled, time-dependent and non-
linear PDES, we first discretise in time using a standard implicit time stepping
scheme. The non-linear equation is solved using a Newton-Raphson scheme. The
Jacobian, required for the Newton-Raphson scheme, is calculated automatically
at the symbolic level by FENICS. This greatly eases the implementation from
the user’s perspective, as deriving and implementing the consistent Jacobian
manually can be a tedious and error prone task. The resulting linear systems
at each step of the Newton-Raphson algorithm is solved using standard linear
solvers from the PETSc library [19].

Usability and extensibility of the framework Thanks to the flexibility
of FENICS, the framework is generic and usable by biologists without a back-
ground or specific training in Computational Sciences or Applied Mathematics.
The code used to create the two of the examples is freely online accessible
(see availability of data and materials) and can be adapted to other problems

straightforwardly.

The paper is organized as follows. In Section 3.2, we present the biological
model for energy metabolism followed by the governing equation and its weak
form. The FEM and CUTFEM discretization can be found in Section 3.3. In
Section 3.4 a detailed explanation of how implement our model in CuUTFEM
is presented. Our numerical results are introduced in Section 3.5 and the

conclusions follow in Section 3.6.
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3.2 The problem Formulation

The aim of this section is to introduce the energy metabolism model, which can
be expressed as a set of partial differential equations, in its strong and weak

form.

3.2.1 Basic Model for Energy Metabolism

The scope of this model is to isolate conceptually the essential mathematical
properties of the metabolic processes of a cell, the mechanism that generate

energy for cellular activities from the synthesis and breakdown of nutrients
[71].

The simplified model of metabolic pathway in a cell is sketched in Figure

3.3 and described by the following reactions (see abbreviations for details)

HXK := GLC + 2ATP — 2 ADP + 2GLY (3.1)
PYRK := GLY +2ADP — 2ATP + PYR (3.2)
LDH := PYR — LAC (3.3)
Mito := PYR — 28 ATP (3.4)
act := ATP — ADP. (3.5)

The pathway starts when the molecules derived from food (nutrients) enter
the cytosol of the cell, and the process called glycolysis starts the breakdown of
glucose (GLC) into two molecules of pyruvate (PYR). The glycolysis process
can be split, to our modeling purpose, into two main chemical reactions: ATP-
consuming (4.1) and ATP-producing (4.2). The pyruvate produced by glycolysis
can, then, be converted into lactate (LAC) by the enzyme lactate dehydrogenase
(LDH) simplified with the chemical reaction (4.3) or enter mitochondria and
used to produce ATP through the TCA cycle shown in reaction (4.4).

Last, we take into account the activity of the cell which uses ATP for its

own sustenance represented by the chemical reaction (4.5).
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Cell

' Cytosol \

PYR
ATP HXK
+
ADP <— <—f- PYRK GLC |
PYR

\_ ),

Fig. 3.3 The main pathways we consider in our Simplified Model of Energy Metabolism
of a cell. The glucose (GLC) enters inside the cell into the cytosol and takes part
into the glycolysis composed by the two reactions HXK and PYRK. The products of
the glycolysis, PYR and ATP, are then used into LDH reaction, that generates LAC,
into act reaction, that describes the cellular activity producing ADP, and inside the
mitochondria where the reaction denoted Mito happens generating the major source
of ATP for the cell.

In order to facilitate our model we consider that the backward reactions are
negligible. Moreover, we consider that the enzymes that catalyzed the chemical

reactions are located in a specific region of the cellular domain.

3.2.2 Strong Formulation of Governing Equations

Let © be an open and bounded subset of R? (d=2 or 3) with Lipschitz-continuous
boundary and we denote the concentration of the chemical species using the

bracket notation, [-], as a function

[]:Qx[0,T] = R.

Mathematically, we can express the sequence of reactions Equations (4.1)-
(4.5) with a coupled system of semi-linear parabolic reaction diffusion equations
[160]. We consider that the species involved are subject to diffusion in the

domain and we denote D[.; > 0 the diffusive constants. The reactions obey
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to the law of mass action [226] where KHXK) KPYRK7KLDH7 KMito and Kact
are the rate constants and we introduce Gaussian functions, indicated with

Guxk (o, ), Gpyr (%0, 0), Grou(To,0), Guite(T0, 0) and Gaei (7o, 0), to locate
the region where the reactions are happening

1 (x — xo.)?

exp — ,
2mo? P 202

G =G(xg,.,0)=

where zy. € (). and 0 € R. Eventually, to represent the entrance of the
glucose inside the cytosol we define a source term function f: A x [0, 7] — R,

where A is a subset of 2 as

f(l’,t): acR if <x’t)€AX[O71]7

0 otherwise.

The strong form of the reaction diffusion system is then, finding the con-
centrations [GLC|(x,t), [ADP|(z,t), [ATP](z,t), [GLY](z,t), [PYR](x,t) and
[LAC|(z,t) for all z € Q and t € [0,T] such that

( UG —  Diaro) V[GLC) — Kuxk [GLC)[ATP*Gaxx + f
% = Diarp)V?[ATP] — 2Kyxk [GLC][ATP]*Guxk
+2Kpyri[ADPP[GLY]Gpyrk + 28 Kntito[PYR]Gnico
— Koot [ATP]Goct
% = Diapp]V?[ADP] + 2 Kuxk [GLC][ATP]*Guxk
2 Kpy i [ADP[GLY|Goyni + Kot ATP]Goce (3.6)
AEN = Diery) V2IGLY] + 2Kyxk[GLC][ATP]Grrx
— Kpyrx|[ADP]?[GLY|Gpyrk
AR —  Dipyry V2[PYR] + Kpyrx[ADP]2[GLY|Gpyri
—Kipu[PYR]GLon — Kuito[PYR]Gutito
\ 5 = DuagVZLAC] + Kipu[PYR]Gron.
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The system is completed with homogeneous Neumann boundary conditions

on Jf) and initial conditions at time ¢ = 0

[GLC](z,t =0) = ap(z) z€Q
[ATP|(z,t =0) =bo(x) z €
[ADP](z,t =0) = co(x) z€Q (3.7)
[GLY](z,t = 0) = do(x) =€
[PYR|(z,t =0) =eo(z) z €
| [LAC](z,t = 0) = fo(x) z €

where ag, by, co, do, €o, fo : 2 — R.

Precise questions on global existence of solutions of reaction-diffusion sys-
tems are still an open problem, we refer the reader to [179]. In this work, we
consider all diffusion coefficients D[ equals, ensuring that a global solution of
the system (4.6) with initial condition (3.7) exists.

3.2.3 Weak Formulation of Governing Equations

In this section we convert the strong form of the PDES in Equation (4.6) into
a corresponding weak form. This is necessary step in order to discretise both
the FEM and CUTFEM methods. For further details see e.g. [47].

We define the standard Hilbert space V =wv € H'(Q) and we denote with
V=VxVxVxV xV xV the product space.

The weak form of system (4.6) can be found multiplying each equation by
a test function vy, va, v, vs, Vs, v6 € V and integrating over the space domain €2
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(fQ 8[%%0 vide = [, DigLo V?[GLC] vy da+
— Jo Kuxk [GLC][ATP]*Gyuxk v1 dz + [, f o1 do
[y P 4y dw = [;, Diarp) V2[ATP] vy da+
— Jo 2Kuxk [GLC][ATP*Guxxk vs dz+
+ [ 2Kpyri[ADP]?[GLY]Gpyrik v2 da+
+ Joy 28 Ktito[PYR]Gutinotz 42 — [, Kact [ATP)Gagyvz dav
Jo a[Aa]t)P] v3dz = [, Diapp)V?[ADP] v3 dz+
+ [ 2Kuxk[GLC][ATP]*Guxx vs do+
— Jo 2Ky [ADP[GLY]Gpyrx vs da-+
+ fQ Koot |[ATP]Goeq v3 d
o 8[%?{ vyde = [, Digry]V?[GLY] vy dz+
+ Jo 2Kuxx[GLC][ATP]*Grxk v4 dz+
- fQ Kpyrk [ADP]2 [GLY] Opyrk Vs dz
Jo I8 s da = [, Dipyr) V2[PYR] v da+
+ Jo, Kpyrk [ADP]?[GLY]Gpyrxk vs dz+
- fQ Kipn [PYR] Grpn vs do — fQ Rito [PYR] OMito Vs AT

L Jo 8[15?0} vedr = [, Diac)V?[LAC]vg dz + [o, Kipu[PYR]GLpn vs da.
(3.8)

Since Dy is constant, we apply integration by parts to the second-order

spatial derivative
_ 2 T dir — de— o,
DV lvide = | D, V[-] Vv, da Dy —=—v;ds. (3.9)
Q Q a0 on

Since we have specified pure Neumann boundary conditions for each con-

centration species, the boundary terms vanish. Leading to

/D[ ] v; d:v—/D 1V[-] Vu; da. (3.10)
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We can, then, substitute Equation (3.10) into Equation (3.8) and use the

following compact notation

(u,v) :/qu dz. (3.11)

allowing us to state the weak form of the problem problem as: we seek the
solutions [GLC],[ATP], [ADP],[GLY], [PYR], [LAC] in the space V such that

for all t € [0, T] and for all test functions vy, vy, v3, vy, v5,v6 € V

( (3[%%0172}1) — ( — DicLo V[GLC], Vvl) + (- Kuxi|GLC][ATP*Guxx
+f, Ul>
<3[/§P]7U2) = (- D[ATP]V[ATP],Vw) + (— 2Kuxx|[GLC][ATP]*Guxk
+2Kpyrk[ADP2[GLY]Gpyrk + 28 Knito[PYR]Ghito
~ K[ ATP|G,ci, )
( > — <_ Diapp)VIADP], va) + <+ 2 Kux [GLC][ATP]*Guxx
—2Kpyri[ADP*[GLY]Gpyri + Kact[ATP]Goct, v3)
(29, 0,) = (= Dy VIGLY], Vou ) + ( + 2Kiuxi[GLC]ATP G
(25, w5)
(25 )

—Kpyrk [ADP]Q[GLY] UPYRK, U4>
= (= DpvwVIPYR], Vo ) + ((+ Kpyi[ADPP[GLY [Grvig
—Kipn [PYR] Grou — Kito [PYR] OMitos U5>

= ( — Dpaq VILAC], VUG) + ( + Kipu[PYR|GLpw, Uﬁ)-
(3.12)

In the subsequent section we discuss the discretization of Equation (3.12)
using the standard finite element method and the CUTFEM.

3.3 Discretization
In order to solve Equation (3.12), we must discretise it in both space and

time. Discretisation is a process by which continuous mathematical objects

(e.g. vq) are transformed into a discrete counterpart that can be manipulated
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on a computer. We choose to discretise in space using the classical Finite
Element Method [7] (FEM) and then using the Cut Finite Element Method
(CuTtFEM) [58]. The FEM results serve as a baseline for comparison of the
CUTFEM method. For both FEM and CUTFEM we discretize in time using a

standard finite difference method.

The important distinction between FEM and CUTFEM from the point of
view of the user is that the FEM requires an extra mesh generation step; a mesh
must be generated that conforms to the boundary of the domain, before the
simulation can take place. This can be a difficult task, as the mesh must be of
sufficiently good quality to ensure an accurate solution, while still conforming
to the boundary. In contrast, CUTFEM removes the need for a conforming
mesh generation step. The boundary of the domain is described implicitly as a
level set function that can be extracted directly from e.g. processed image data,
or using constructive solid geometry (CSG) [195]. The promise of CUTFEM
is that discretization of geometry can be performed automatically without a

mesh generation step that often requires lengthy manual intervention.

We recognise that both the Finite Element Method, and even more so, the
CUTFEM are highly technical and take some time to understand. The point
of this section then is not to give a full and detailed exposition of both of
these methods. Instead we aim show a precise derivation of the discrete weak
forms and then in the subsequent section we show their translation into the
FENICS Project domain specific language, called the Unified Form Language
(UFL) [10]. In practice, if the user can convert their problem into a discrete
weak formulation then the the FENICS Project and the libCUTFEM library
can automatically perform all of the subsequent discretization steps. For full

details of how this process takes places the reader is referred to [9, 58|.

3.3.1 FEM

To discretise our problem in time we choose a finite difference approximation,
specifically, the backward Euler method [185]. First, we discretize the time
interval [0, T, denoting /At the size of the timestep. We denote with subscript
n a concentration of (possibly multiple) chemical species at time t,, where
0 <n < N with N = T/At is an integer that counts the time steps. The
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backward Euler method then approximates the continuous time derivative as

0 N[']nJrl_[']n’

Sl (3.13)

We discretize the spatial domain €2 using a triangulation 7, that conforms
(matches) the exact boundary 0. On this mesh we define the space of piece
wise Lagrange finite elements of degree one as V and with V the product
V=VxVxVxVxVxV. The space V can then be used to discretize the
weak form equations (3.12).

We denote U = ([GLC], [ATP], [ADP], [GLY], [PYR], [LAC]) the vector of
all the concentration solutions and v = (vy, vy, vs, v4, Vs, v6) € V the correspond-
ing vector of test functions. The initial conditions are denoted [U],. We then

solve a sequence of problems: find [U],41 € V for n =0,..., N — 1 such that

f([Uns1, [Ul;v) =0 Yo eV, (3.14)

where
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Fo([Ulns1, (Ul v) = /

Q
—+ D[GLC] \Y [GLC]n_val—F

— fu1 + Kuxx|[GLCl,11 [ATPLQH_lUlgHXK‘f'

+ At Y[ATP],41 — [ATP],)vg + Diarp) V[ATP], 1 Voo +
+ 2 Kuxi[GLC],41[ATP)?  02Grxx+

- QKPYRK[GLY]n-H[ADPE_HUQQPYRK"‘

— 28 Kntito[PYR]n4102G0it0 + Kact[ATP] 5 1102G 0+

+ At~ ([ADP),.41 — [ADP],)v3 + Diapp V[ADP], 11 Vs
— 2Kuxx [GLC]n+1[ATP]i+1USQHXK+

+ 2Kpyri[GLY],41[ADP]2 | v3Gpyric+

— Kot [ATP]nHUSgact

+ AtTH([GLY] 41 — [GLY],)vs + Dicry] VIGLY 1 Vos+
— 2Kuxk [GLC),, 41 [ATP)Z, jv4Guxk+

+ Kpyrk|GLY 41 [ADP]i.H'(MgPYRK

+ At ([PYR]n1 — [PYR],)vs + Dpyr]VIPYR], 41 Vos+
— Kpyrk[GLY],11[ADP]2 1 vsGpyrr+

+ Kipu[PYR],1195G1pn + Kito[P YR 1105G it

+ At~ ([LAC],41 — [LAC],)vs + Dypac) VILAC] 41 Vug+

— Kipu [PYR]n+1U69LDH> dz.

<At‘1([GLC]n+1 — [GLC],)vi+

(3.15)

Since equation (3.14) is a non-linear function of the unknown solution [U],1
we choose to use a Newton-Raphson type algorithm to solve it. This Newton-
Raphson algorithm requires the computation of the derivative of f;, with
respect to U (commonly called the Jacobian of f;,). We do not perform this
step manually, but instead use the automatic differentiation capabilities of
UFL [10], as shown in Section 3.4.
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3.3.2 CurFEM

Instead of discretizing the spatial domain €2 using a mesh that conforms to
the boundary, in CUTFEM, the problem domain 2 is described by a level-set
function. The level set function is a scalar function on R?, such that ¢(z) < 0
for x € Q, ¢(x) > 0 for x ¢ Q and ¢(z) = 0 for x € 9Q. We then cover
the domain 2 by a regular background mesh A (2 C A) of simple shape, e.g.
a box containing {2 meshed with a uniform triangulation. Let K denote a
triangle /tetrahedron in this triangulation. Now, let Ty be the fictitious domain
mesh composed by all elements K € A such that KNQ #£0 (Q C T, C A).

Furthermore, the union of all elements in 7y, is called the fictitious domain
Q). We denote with
Gi={KeT,: KNoQ# 0}

the set of elements intersected by the interface, and we define the set of so-called
ghost penalty facets [57] (see Figure 3.2

Fo={FfacetinT,: F=KNK where KeG or K eG}

The stabilisation term introduced in the next section will be applied to this

subset of facets. We consider the space
W ={vel Q) :v|x e P(K)VK eT}

and the jump gradient is defined for all facet F' and v € W by [0,,v] =
np-Vu|xg—ng-V|g where ng denotes the unit normal to F in fixed but arbitrary
direction. We use the same notation as the previous section, denoting the solu-
tion U = ([GLC], [ATP], [ADP], [GLY], [PYR], [LAC]), v = (v1, va, v3, U4, U5, Vg)
and the product space W =W x W x W x W x W x W, We then solve a
sequence of problems: find [U],.; € V for n =0,...,n — 1 such that

fh([U]n—i-la [U]n; v) +j([U]n+17 v)=0 Yve w (3'16>
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where f,([U]nt1, [Uln;v) is identical to the standard FEM Equation (3.15).

Here, j([U]n+1,v) denotes the following stabilization terms

J([Ulns1,0) = Y ((¥hDierai[0np [GLCT ], [Oupvi]) 7

FeFq

+ IYhD[ATP] anF [ATP]TH-l]]? [[aTLFUQ]])F
[

+

( [

(Vi D1y [0 [ADPln 1], [0npvs]) F
(VA D6y (00 [GLY |nt1], [Onpva] ) e
( [ [, [0nrv
(

+

3

)
+(YhDpyr) [Onp [PYR]n41], [Onpvs])
+(vhDipac)[0n [LAC],44], ﬂ@nFUG]])F) (3.17)

inspired by [58]. Here, «y is a positive penalty parameter. These stabilization
terms extend the solution from the physical domain §2 onto the fictitious domain
Q, it is consistent with the continuous system. They prevent ill-conditioning of
the system matrices in case only small parts of {2 are contained in an element
near the boundary 0€2. This stabilisation is critical for the robustness and

reliability of CUTFEM.

3.4 Implementation

The finite element method discretization has been implemented using Python
with the open source finite element solver DOLFIN from the FENICS Project,
see [138, 9]. The CUTFEM discretization has been implemented using Python
using the libCUTFEM library [58] which builds on top of DOLFIN and the
rest of the FEniCS Project. In this section we show parts of the code for the
libCUTFEM example that highlight the close link between the mathematics
and the concrete computer implementation. The standard FEniCS Project
implementation is similar so we have chosen to show only the libCUTFEM
implementation for reasons of brevity. The reader should refer to the free online
repository for two full working examples that are around 250 lines of code each.
The precise problem setup and results from this example are shown in Section
3.5.3.
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3.4 Implementation

We import the dolfin and cutfem Python modules. These two modules
contain all of the functionality we need to solve the problem using the CUTFEM

approach.

from dolfin import *

from cutfem import x*

We create the background mesh A and then define a level set function

describing the heart-shaped domain.

# Create background mesh
bg_mesh = RectangleMesh (-1, -1, 1., 2., N, N)

# Define heart-shaped level set function

level_set = Expression(’x[0] < 0. ? pow(x[1] - sqrt(-x[0]), 2)
-1 + pow(x[0], 2): pow(x[1] - sqrt(x[0]), 2) - 1 + pow(x[O0],
2)°’, degree=2)

In the next part of the code, we use two special ibCUTFEM methods to 1.
create a special cut mesh, and 2. a mesh_cutter that intersects the mesh with
the level set and computes the distinct sets of cells (i.e. those that are on the

inside of the level set and those that are outside).

# Define fictitious domain
mesh = CutFEMTools_fictitious_domain_mesh (bg_mesh, level_set,
0, 0)

# Compute mesh to levelset intersection and corresponding
marker

mesh_cutter = MeshCutter (mesh, level_set)

With these special objects in hand we can define special CUTFEM-specific
UFL Measure objects that will subsequently allow us to write the residual and
the stabilisation weak forms. Simply put, a measure defines regions of the
problem mesh (cells, edges, parts inside the level set, and parts outside etc.)

on which FENICS will integrate different parts of a weak form.

1|# Measure on all the cells having an intersection with the

levelset

2| # Marker O if the cell have an intersection with \{ level set <

0 \} and 1 otherwise
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dx = Measure("dx") [mesh_cutter.domain_marker ()]

# Measure on the fictitious boundary defined by the level set

# Marker O if the facet have an intersection with \{ level set
< 0 \} and 1 otherwise

dS = Measure("dS") [mesh_cutter.interior_facet_marker (0)]

# Measure on the interior part of cells cut by the level set

dxq = dc (0, metadata={"num_cells": 1})

# We combine the measure on the inside of the domain and the
measure

# on the interior part of the cut cells

dxc = dx(0) + dxq

We create a finite element function space V that we can use to further
define the UFL algebraic objects that we need.

V = FunctionSpace(mesh, "P", 1)

V_bar = MixedFunctionSpace([V, V, V, V, V, V])
v = TestFunction (V_bar)

v_1, v_2, v_3, v_4, v_.5, v_6 = v.split()

Now we have everything that we need to write the weak residual f,([U]n+1, [U]n; v)
in Equation (3.14) using the UFL. We use the integration measure dxc which
indicates the integration on cells inside the domain {2 and in parts of the cut
cells inside 2. This form would look identical in the standard FEniCS Project
code except that we would use the dx measure that denotes integration over

all cells of the mesh.

s|# Solution at current timestep

u = Function(V_bar)
u_n = project(u_0, V_bar) # Initial condition, details not
shown

# Solution at next timestep
a, b, ¢, d, e, £ = u.split() # GLC, ATP, ADP, GLY, PYR, LAC

a_n, b.n, c_n, d.n, e.n, f.n = u_n.split()
F = ((a - a_n) / k)*v_1%dxc + D_glc*dot(grad(a), grad(v_1))=*dxc

+ K_hxk*a*xb**2*xv_1%g_hxk*dxc - f_glc*xv_1*dxc + ((b - b_n) /
k)*v_2*dxc + D_atpx*dot(grad(b), grad(v_2))*dxc + 2*K_hxkx*ax

92



3.4 Implementation

b**2xv_2*xg_hxk*dxc - 2*xK_pyrk*dxc**2*xv_2xg_pyrk*xdxc - 28x%
K_Mito*xe*v_2*g_mito*xdxc + K_actxb*v_2xg_actxdxc + ((c - c_n)

/ k)*v_3*dxc + D_adp*dot(grad(c), grad(v_3))+*dxc - 2*xK_hxkx*
axbxx2xv_3*g_hxk*dxc + 2*%K_pyrk*d*cx*x*x2*xv_3*g_pyrk*dxc -
K_act*b*v_3*g_act*dxc + ((d - d_n) / k)*v_4xdxc + D_gly*dot(
grad(d), grad(v_4))*dxc - 2*xK_hxk*a*b**2*xv_4*xg_hxk*dxc +
K_pyrk*xd*c**2*v_4xg_pyrkxdxc + ((e - e_n) / k)xv_bx*xdxc +
D_pyrx*dot(grad(e), grad(v_5))*dxc - K_pyrk*d*c**2xv_b*g_pyrk
*dxc + K_ldhx*exv_5xg_ldhxdxc + K_Mito*e*xv_b6*g_mito*dxc + ((f

- f_n) / k)*v_6xdxc + D_lacx*dot(grad(f), grad(v_6))*dxc -
K_ldh*e*v_6*g_ldhx*dxc

The stabilization term j([U],41,v) Equation (3.17) is written in UFL using

the integration measure dS(1) which integrates on the ghost penalty facets Fg
(Figure 3.4).

Fig. 3.4 We can see the fictitious domain Q for the heart shaped function, and the
facets marked. In red the set of facets Fg where we apply the stabilization term

j([U]’VH-l’U)'

J

avg (gamma)*avg (h) *D_glc*dot (jump(grad(a), n), jump(grad(v_1
), n))*dS(1) + avg(gamma)*avg(h)*D_atp*dot (jump(grad(b), n),
jump (grad(v_2), n))*dS(1) + avg(gamma)=*avg(h)*D_adpx*dot (
jump (grad(c), n), jump(grad(v_3), n))*dS(1) + avg(gamma)*avg
(h)*D_gly*dot (jump(grad(d), n), jump(grad(v_4), n))=*dS(1) +
avg (gamma) *avg (h) *D_pyr*dot (jump (grad(e), n), jump(grad(v_5)
, n))*dS(1) + avg(gamma)*avg(h)*D_lac*dot (jump(grad(f), n),
jump (grad(v_6), n))*dS(1)
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For both forms F and j we remark how similar the UFL notation is to the
mathematical notation in Equation (3.14) and Equation (3.17). Calculating
the UFL expression for the Jacobian J can be performed automatically using

the derivative function.

F o+= j
J

= derivative(F, u)

The last step before the solver is to use the Composite framework of CUT-

FEM to define the problem on different parts of the mesh domain.

# Fictitious domain

composite_mesh = CompositeMesh ()

3| composite_mesh.add (mesh)

5|W = CompositeFunctionSpace (composite_mesh)

W.add (V_bar) ;
W.build () ;

# Constrain dofs outside

FidoTools_compute_constrained_dofs (W, mesh_cutter)

a = FidoForm(W,W)

35| form_a = create_dolfin_form(J)

a.add(form_a, mesh_cutter)

i|L = FidoForm (W)

form_L = create_dolfin_form(F)
L.add(form_L, mesh_cutter);

Eventually, we can solve the non-linear and time-dependent problem with
the following two nested loops, the outer one for the timestepping, and the inner
one for the Newton-Raphson algorithm. The FEniCS Project infrastructure
(UFL+FFC+DOLFIN) automatically generates and executes low-level code to
assemble the sparse matrices A and b. This linear system is then solved using

PETSc and MUMPS.
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3.4 Implementation

# Timestep loop
max_iters = 50
toll_a = 1.e-10
for i in range(num_steps):
j =20
# Newton-Raphson algorithm

while j < max_iters:

A = composite_assemble (a)
b = composite_assemble (L)
uc = CompositeFunction (W)

# Solve linear system for Newton step using MUMPS
direct solver

solve (A, uc.vector (), -b, ’mumps’)

# Newton update
u.vector () .axpy (1.0, uc.part(0).vector())

# Terminate if tolerance reached

if uc.part(0).vector () .norm("12") < toll_a:
break

else:

jo= 1

# Update the solution
u_n._assign(u)

# Update the time step
t[0] = t[0] + dt

# Update the source term
f_glc.t = t[0]

In the previous piece of code, we used the increment as stopping criteria
for the Newton-Raphson algorithm. We refer the reader to the free online
repository with an example where the stopping criteria is the tolerance to
the residual. In the full example, in the free online repository the solution at
each timestep is outputted to a VTK file that can be opened with Paraview

(https://paraview.org) for visualisation.
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3.5 Numerical Results

In this section we evaluate the accuracy of the CUTFEM discretisation scheme
for different geometries by comparing the CUTFEM solution to the standard
FEM solution. In addition, we want to confirm that at the steady state solutions
(for large values of time t) predicted by CUTFEM tend towards the asymptotic
solutions of the associated ordinary differential equation (ODE) system. Then,
we investigate the accuracy of CUTFEM in comparison with the standard FEM
for a simple circular geometry. We increase the complexity of the geometry and
we show the ability of CUTFEM to straightforwardly solve a test case within a

non-Lipschitz domain. Lastly, we consider a three dimensional domain.

The numerical scheme was implemented using the CUTFEM library [58]
based on FENICS Project |9, 138, 110]. The linear systems arising in the
numerical experiments are solved using a direct (MUMPS) solver for the two-
dimensional examples and a iterative (CG) solver with algebraic multigrid

preconditioning (hypre) for the three-dimensional example.

3.5.1 Asymptotic Solution ODESs

The aim of this section is to validate our CUTFEM implementation highlight
that the solution of the reaction-diffusion system tends to the solution of the
ODE system associated to the chemical reactions Equations (4.1)-(4.5) for time
going to infinity. The solution of the ODE system is computed in two ways 1.
we use the solve_1vp of the package scipy in python 2. we manually compute
the asymptotic solutions, which can be found in Appendix A.1 together with
the ODE system in Equation (A.1).
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Fig. 3.5 (a) The locations of the chemical reactions Equations (4.1)-(4.5) and the
influx of GLC are shown in the circular domain in order to prove the convergence of
the PDESs solutions to the ODEs. Note, the chemical reactions LDH Equation (4.3)
and Mito Equation (4.4) have been placed in the same location. (b) The solutions of
the PDES obtained using CUTFEM and integrated over the domain (red line) are
plot in comparison with the asymptotic solutions of the ODEs for each concentration
(blue line) and with the ODEs solved using scipy. The convergence of the PDES to
the ODEs solutions is reached for ¢ > 200.

For the PDES, we solve the reaction diffusion system in a circular domain
defined in CUTFEM using the level set function ¢(z,y) = (z—4)?+(y—3)*—25.
The Gaussian parameters locating the chemical reactions, that are shown
in Figure 3.5a, have been set as following: Guxk(rg = 0.5,y0 = 2.0,0 =
0.1), Gpyrk(xo = 1.1,y0 = 1.2,0 = 0.1), Gipu(ze = 4.0,y0 = 5.0,0 = 0.1),
Guito(T0 = 4.0,y = 5.0,0 = 0.1) and Guet(xg = 6.0,y9 = 6.5,0 = 0.1). Note,
we have co-localized the reactions (4.3) and (4.4), in order to obtain that PYR
is used equally in the two reactions, such that we can set the parameter a of

the ODE asymptotic solutions of Equation (A.3) equal to 0.5.

The influx of GLC entering the cell domain has been set equal to 100 until
time t = 1 and is entering the cell into a circular subdomain with radius 0.3

and center the origin.

The rate constants K. of the chemical reactions are set equal to 10.0, in

order to avoid that one reaction dominates over, and the diffusive parameters
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Dy of each chemical species is 100.0 to accelerate the convergence to the ODEs
solutions. The initial amount of concentrations inside the cell are set to zero
except for [ATP] and [ADP] that are equal to 1. Final time is 1000, as well
as the number of time step. The CUTFEM penalty parameter v has been set
equal to 0.1. The mesh size is set to a maximum diameter of 0.1744. In this
experiment, a finer mesh is not required for proving the convergence to the
ODE:s solutions.

As initial condition, the asymptotic ODEs use the solution of PDES at
time equal to 1 when the source term of glucose stops, which keeps the total

amounts of concentration unchanged, as shown in Appendix A.1.

To use scipy to solve the ODEs we set all the parameters as the PDEs,
the influx of GLC and the initial conditions are obtained from the PDE ones

integrating over the domain.

In order to compare the numerical solution of the system (4.6) solved using
CUTFEM, we integrate the solutions of the concentrations over the domain {2
to obtain the average chemical concentration of each species at each time step.

We use the following notation

1) = /Q () dz Vi€ [0, T]. (3.18)

In Figure 3.5b, we plot the solutions obtained using the Formula (3.18)
for the PDESs, the asymptotic ODE solutions obtained using Equation (A.3)
and the ODE solutions with scipy. As expected from the asymptotic solutions
computed in Appendix A.1, the average concentrations of GLC, ATP, GLY
and PYR go to zero whilst the products of the system are LAC and ADP. We
can see that the ODE solutions with scipy converge to the asymptotic solution
very quickly, and after time ¢ = 200 also the PDE solutions tend to the same

values.

3.5.2 Two-dimensional Circular Domain

In this section, we assess the accuracy of the CUTFEM solution. First, we
consider the cell, €2, as a circle defined by the level set function ¢(z,y) =
(r —4)* + (y — 3)® — 25 and we show that the results obtained with CUTFEM
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are of the same order as those obtained with FEM, where the circular domain

is explicitly meshed using package mshr.

To investigate the behaviour of CUTFEM for more complex boundaries we
consider an irregular cell geometry defined by a perturbed circle represented
by the level set function ¢(z,y) = (z —4)? + (y — 3)® — cos (4z) cos (5x) —
sin (4y) cos (5y) — 25. We highlight how it is easy for CUTFEM to work with a

more complex shape just by changing the level set function.

In this experiment the glucose source term and the reaction locations and
parameters are set as in section 3.5.1, with the exception of the Mito reaction
that is located at Gypito(xo = 4.0,y0 = 7.5,0 = 0.1). The test case is represented

schematically in Figure 3.6a.

The chemical species are allowed to diffuse inside the cell with diffusive
constants Dj.; = 1.0 for each species. The rate constants of the chemical
reaction and the initial chemical concentrations are set as in the previous test
case, see Section 3.5.1. Final time is 10 and we set the number of time steps as
300. As before, the penalty parameter of CUTFEM is set to 0.1. The choice of
the mesh size is shown in Table 3.1 in accordance with the size of the Gaussian

parameters o.
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Fig. 3.6 (a) The chosen location of the chemical reactions Equations (4.1)-(4.5) and
of the influx of GLC are shown to compare FEM and CUTFEMresults in a circular
domain. (b) In the y-axis is plot the integral over the domain at each time step using
Equation (3.18), giving us the average concentration, of CUTFEM and FEM in a
circular domain and CUTFEM solved in a circular domain with perturbed boundary.
The average concentration of each species of FEM (blue line) and CUTFEM (red
line) are equivalent while the CUTFEM solutions of the perturbed domain (black
line) share the same results for concentrations ATP, GLY, PYR, LAC and differs
but show the same trend for GLC and ADP.

Maximum Cell Diameter DOF | Computational Time
Circle FEM 0.049999 | 477114 4h30m
Circle CUTFEM 0.049741 | 387786 23 h
Perturbed Circle CUTFEM 0.048893 | 402288 21 h

Table 3.1 In the table shows the maximum cell diameter, the number of DOFs, and the
computational time for FEM and CUTFEM in a circular domain and for CUTFEM
for the perturbed boundary domain.

In Figure 3.6b, we investigate the average concentrations inside the three
domains at each time step using Equation (3.18). The average concentrations
for each species computed in the circular domain with FEM and CUTFEM show
equivalent results. The solutions obtained using the perturbed domain show
higher average concentration of GLC and ADP than the results in the circular

domain. We remind the reader that the system solved inside the perturbed
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domain is not supposed to produce same results as the circular one, however
the dynamics show the same trend as shown in Figure 3.6b.

For time equal to 5, we plot the solutions of the concentrations for each
chemical species in Table 3.2. We notice how the Gaussian functions drive
the chemical reactions in the regions defined in Figure 3.6a. For example, we
can notice that ATP is consumed in two regions that locate respectively HXK
and act, while ADP is produced. The GLC entered the cell is diffusing in the
domain and taking part to the HXK reaction. In comparison, the results of
FEM and CUTFEM are almost identical.
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FEM___ CUTFEM___ CUTFEM
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Table 3.2 Solutions of the concentrations, from top to bottom: GLC, ATP, ADP,
GLY, PYR and LAC, at time ¢ = 5 in a circular domain solved with FEM (Left),
CuTFEM (Center) and CUTFEM in a perturbed boundary (Right). The source
term of GLC is no longer active, and the quantity of GLC is spreading through the
domain and participating into the reaction HXK. ATP and ADP show that in the
region where HXK, PYRK and act are located, when one is consumed the other
is produced. We can notice production of GLY, PYR and LAC. Comparing the
results in the three domain, they are extremely close to each other and visually not
distinguishable. 62



3.5 Numerical Results

To further analyze the plot shown in Table 3.2, we compare in Figure 3.7
FEM and CUTFEM solutions line = y at time 5 (Figure 3.7a) and final time
10 (Figure 3.7b). We can recognize where the reactions are from the bump in

the curve. The plot indicates that the results are equivalent.

Our experiments suggest that CUTFEM produces similar solutions to the
FEM but the computational time needed to solve CUTFEM is five times as
high as standard FEM. The number of DOFs is smaller for CUTFEM compared
to FEM, as shown in Table 3.1.

Concerning the larger computational time requires for CUTFEM, the CUT-
FEM implementation is based on FENICS 1.5.0 released in 2015, while the
FEM ones on FENICS 2019.1.0 released in 2019 with significant improvements
and computational optimizations. Since CUTFEM relies in large parts on
the FENICS functions, its computational time would be highly reduced when
using a newer version of FENICS. Breaking down the total computational time,
we identified that the CUTFEM implementation of assembly is significantly
slower than the FENICS implementation of assembly. However, critically, we
have verified that both implementations scale at the expected optimal rate
O(N) in the number of cells N (results not shown). The larger constant in the
O(N) scaling in the CUTFEM implementation points to certain computational

kernels not optimised for efficiency.

In conclusion, in this section we showed how CUTFEM and FEM gives
equivalent results for a circular domain. Moreover, we investigated the behaviour

of CUTFEM with a more complex domain, the perturbed circle.
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Fig. 3.7 We plot the solutions of the concentrations in a circular domain obtained
with FEM and CUTFEM along the line z = y at time ¢t = 5 (a) and final time 7" = 10
(b). We can notice in the plot the location where the reactions are happening thanks
to the bump in the plot. The only small differences detectable are in LAC at ¢t =5
and in GLC at t = 10 where CUTFEM is slightly below the FEM curve.

64



3.5 Numerical Results

3.5.3 Two-dimensional non-Lipschitz Domain

In this section, we consider an irregular boundary, i.e. where the normal field
along the surface is non-smooth. We choose a heart-shaped domain, which has

two singularities (this is known as a non-Lipschitz domain).

Y

GLC |

Fig. 3.8 Location of the chemical reactions Equations (4.1)-(4.5) and the source term
of GLC in the heart shaped domain.

The heart-shaped is described by the level set function ¢(z,y) = (y —
V]#[)? = 1 + 22, The description of the problem setting is shown in Figure
3.8. The gaussian functions are defined as Guxk (2o = 0.1,y0 = —0.5,0 = 0.1),
Gryri(zo = 0.3,y0 = 10.0,0 = 0.1), Grpu(zo = —0.5,y0 = 0.5,0 = 0.1),
Oumito(To = 0.5,99 = 0.7,0 = 0.1) and G,ct(zo = 0.0, = 0.9,0 = 0.1). We
consider a source term for GLC active within a disk of radius 0.3, centered at
the cusp and take the GLC influx to be 100.

The diffusive constants, the reaction rate and the initial concentrations are

as in Section 3.5.2, as well as the penalty parameter for the stabilization term.

We solve the reaction diffusion system (4.6) using CUTFEM, where we
have set a background mesh with a maximum cell diameter equal to 0.01803,
the number of DOFs is 129,606 and the total time to run the simulation was

approximately 4 hours.
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Figure 3.9 and Figure 3.10 show the solutions obtained in the heart-shaped
domain for each chemical species at the initial and final time. At the initial
time, we can see how the GLC (Figure 3.9a) enters the cellular domain, diffuses
and takes part in HXK. On the other hand, the region where the reaction
act (consuming ATP and producing ADP) is clearly visible (Figure 3.9b-3.9¢).
Observing the plot of GLY (Figure 3.9d) we can see the region where GLY is
produced by HXK and at the same time consumed by PYRK. Interestingly,
we can notice that at the initial time, the PYR produced by PYRK contributes
to generating LAC, however PYR has not reached the Mito reaction site, so
that there is no production of ATP from this reaction (Figures 3.9e-3.9f).

At the final time (7" = 10), the GLC has diffused into the domain, and is still
used to generate HXK (Figure 3.10a). Concentrations ADP, PYR and LAC
have reached a stable state (Figure 3.10c-3.10e-3.10f), while ATP is consumed
by the act reaction and is produced by the Mito reaction (Figure 3.10b). GLY
is still consumed by PYRK and produced by HXK (Figure 3.10d).

Briefly, we observe that CUTFEM solves the test case inside the heart
shaped domain, the singularities are well described thanks to the choice of a
fine mesh. The computational time of CUTFEM in this test case is smaller
than in the previous experiment since the number of DOFS is 4 times less then

the previous test case.
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Fig. 3.9 Solutions of the Model obtained in a heart-shaped domain at the Initial time
(t=0). GLC is entering the domain from the infimum of the domain. ATP is used
in the region where act and HXK are located, vice versa ADP is produced. GLY
is produced from HXK. We can see PYR and LAC produced by PYRK and LDH,
respectively.
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Fig. 3.10 Solution of the Model obtained in a heart-shaped domain
at the final time (T=10). From top to bottom from left to right:
[GLC], [ATP], [ADP], [GLY], [PYR], [LAC]. GLC is still consumed in the infimum
where HXK is. ADP, PYR and LAC have reached a state where the amount of
concentration is uniformly distributed into the domain. ATP is consumed to produce
ADP by act and produced by the Mito reaction. GLY is consumed by PYRK and
produced by HXK. 68
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3.5.4 Three-dimensional Complex Domain

For the last experiment, we work with a 3 dimensional domain. We consider a
union of six spheres that generate a pop-corn shape. To create the shape we
use the union of the following level set functions

Or(z,y,2) = (& —4)° + (y —3)* +2° — 25
Ga(z,y,2) = (x —12)° + (y — 3)* + 2° — 25
o3(x,y,2) = (x —8)*+ (y—7)*+2*°—25
ba(r,y,2) = (x =8+ (y+ 1)+ 22— 25
¢s5(,y,2) = (x —8)* + (y — 3)*> + (2 +4)> — 25
G6(,y,2) = (= 8)* + (y—3)* + (2 —4)* - 25

We sketch in Figure 3.11a the problem setting projected onto the xy plane.
The parameters chosen for the reaction locations are: Guxk(ro = 0.5,90 =
2.0,29 = 0.0,0 = 0.5), Gpyrk (0 = 1.1,50 = 1.2, 20 = 0.0,0 = 0.5), Grpu(zo =
4.0,y = 5.0, 290 = 0.0,0 = 0.5), Gumito(z0 = 4.0,y = 7.5, 20 = 0.0,0 = 0.5) and
Gact(g = 6.0,99 = 8.5,2z0 = 0.0,0 = 0.5). The source term is located in a
ball of radius 0.3 centered on the origin, and we increase the source influx to
1,000 until time 1. The diffusive constants, the reaction rates and the initial

conditions are set as in Section 3.5.2.
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(a) (b)

Fig. 3.11 (a) Setting of chemical reactions Equations (4.1)-(4.5) and the source term
of GLC for the 3D domain, projected into the x-y axes. (b) The plot shows the
average concentrations of each species computed in the three-dimensional example
(blue line) compared with the one obtained in Figure 3.6b with CUTFEM in the
circle.

Based on the converged mesh sizes obtained for the two-dimensional exam-
ples, we set the mesh size to h = 0.3772. Note that the choice of the Gaussian
parameters o is designed to make the reactions significant since the mesh is
coarser than the meshes used in the previous examples. Also, we increase the
number of time steps to 100, while the final time is 10. The CUTFEM penalty

parameter is 0.1.

In Figure 3.11b, we plot the average concentration of each species using
Equation (3.18). We examine the trend of the average concentrations plotting
them with the ones computed in Section 3.5.2. Even though the system
solved one in 2D and one in 3D gives different results, we expect their average
concentrations to behave similarly. Clearly, we have a higher influx of GLC
entering the three-dimensional domain, as well as higher initial concentrations of
ATP and ADP. As expected, the average concentrations are higher in the three-
dimensional domain but they all follow the same trend as the two-dimensional

cases.

We show the results obtained in the three-dimensional domain at time 5 in

Figure 3.12. The results are in accordance with the ones showed in Section 3.5.2.
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3.6 Discussion

We notice that the species are diffusing inside the domain and the reactions

are happening in the location we indicated with the Gaussian functions.

In conclusion, in our three-dimensional experiment we can see how the chain
of chemical reactions describe the energy metabolism of a cell in a complex
structure. CUTFEM is able to work with complex three-dimensional geometries,

although the computational time is large (is three days in this case).

3.6 Discussion

Studying brain energy metabolism can be helpful to further our understanding
of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s but
a mechanistic perspective is still lacking. To investigate energy metabolism in
biological relevant morphologies, we presented a simplified model of metabolism
in a single cell using reaction-diffusion equations and demonstrated how to
discretize the model using the FEM and CUTFEM numerical methods. CuT-
FEM has the advantage of enabling the use of a single level set function per
cell, independent of the complexity of the cell geometry. Implementing using
FENICS and libCUTFEM ensures the usability by non-experts. In particular,
modifying one or several of the reaction diffusion equations can be made by
altering only a few lines of code and any linearisation and parallelisation is
done automatically by the FENICS framework. One of the difficulties of non-
conforming methods for implicit domain definition ([157], [158], [152]) is due to
the ill-conditioning of the system matrices when the interfaces or the boundary
of the domain passes close to a node, leading to very large or very small diagonal
terms. The consistent stabilisation term used by CUTFEM prevents this issue
and leads to a stable and convergent scheme. Other approaches are provided
in [5, 4, 3].

Our results indicate that CUTFEM is a valuable approach to deal with
biological problems with arbitrarily complex cell morphologies. The appeal
of level set descriptions coupled to enriched finite element approaches such as
CUTFEM lies in the fact that the motion of geometries over time only requires
updating the level set function, without modifying the mesh. This will be
instrumental to consider complex and time dependent shapes of cells such as

astrocytes.
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Fig. 3.12 Solution of the reaction-diffusion system at time ¢t = 5 solved using CUTFEM
inside a 3 dimensional pop corn shape. From top to bottom from left to right [GLC],
[ATP], [ADP], [GLY], [PYR], [LAC]. The GLC is diffusing into the domain starting
from the influx location. ATP and ADP are consumed and produced by the reaction
act. GLY is produced by HXK and PYR7%roduced by PYRK.



3.6 Discussion

Our next steps will be to initiate the geometry of the cells through microscopy
images 3.1 and to investigate the effect of perturbed astrocytic metabolism on
neuronal support, which could lead to a better understanding of mechanisms

in neurodegeneration.
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CHAPTER 4

Mechanistic Multiscale Metabolic Model in

Human Astrocyte

Our previous work, presented in Chapter 3, established CUTFEM as a valid
numerical approach to defining complex morphologies as the domain for numer-
ical simulations. In this chapter, based on our manuscript [99] currently under
review, we extended the investigation of metabolic modelling to the spatial
and geometrical dimensions compared to the literature (section 2.2.1). We
investigated the impact of reaction sites’ spatial orchestration and geometries
on our previously proposed metabolic model, where parameters for astrocytes
are calibrated based on literature. First, we studied how different metabolic
arrangements impact the metabolic system in simple two-dimensional geome-
tries. Then, we explored Alzheimer’s Disease metabolic conditions in human
astrocytic three-dimensional images taken from confocal microscopy. My contri-
butions to this manuscript, where I am the first author, consisted of developing
the model and the software, performing the formal analysis, investigating the

results, preparing the images, and writing the manuscript.
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Abstract

Astrocytes with their specialized morphology are essential for brain home-
ostasis as metabolic mediators between blood vessels and neurons. In neu-
rodegenerative diseases such as Alzheimer’s disease (AD), astrocytes adopt
reactive profiles with molecular and morphological changes that could lead to
the impairment of their metabolic support and impact disease progression.
However, the underlying mechanisms how metabolic function of human astro-
cytes is impaired by their morphological changes in AD is still elusive. To
address this challenge, we developed and applied a metabolic multiscale mod-
elling approach integrating the dynamics of metabolic energy pathways and
physiological astrocyte morphologies acquired in human AD and age-matched
control brain samples. The results demonstrate that the complex cell shape
and intracellular organization of energetic pathways determine the metabolic
profile and support capacity of astrocytes in health and AD conditions. Thus,
our mechanistic approach indicates the importance of spatial orchestration in
metabolism and allows for the identification of protective mechanisms against

disease-associated metabolic impairments.

4.1 Introduction

The human brain is the organ with the highest energy demands required
to sustain the high activity of neurons [132]. Astrocytes are multitasking
glial cells directly contributing to brain homeostasis and metabolism. By
their complex architecture as star-like branched cells, they are intermediate
structures sitting between neurons and their synapses, which they enwrap
with their intricate processes, and the blood vessels, which they engulf with
their endfeet. Based on this strategic positioning, astrocytes act as metabolic
supporters providing energy in the form of lactate (LAC) to neurons and
modulating their activity [175, 24]. Astrocytes are also known to respond to
brain “insults” and drastically change in many brain diseases such as Alzheimer’s
disease (AD). In these situations, they engage reactive profiles with changes
in morphology and in their molecular program [94, 42| like in AD where
human astrocytes exhibit hypertrophy and overbranching [174, 43|. In addition

to morphological changes, AD-associated astrocytes also exhibit metabolic
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dysfunctions [33, 62, 13, 74, 238|, altering their role as neuronal supporters,
but the relation to morphology is not established.

The metabolic support function of astrocytes depends on sufficient LAC
production and efficient LAC export at the perisynapses as energy substrate
for neurons [203], and on sufficient availability of adenosine triphosphate (ATP)
for its own metabolic sustainability [218| requiring an ATP : ADP ratio at
least larger than one [8|. Furthermore, physiological conditions for functional
astrocytes are characterized by an approximate 10:1 ratio between LAC and
pyruvate (PYR), the substrate for lactate production and mitochondrial activity,
further indicating their metabolic support function [142]. Hence, astrocytes
have to keep a balance between a LAC based “altruistic” support mode and a
more “egocentric” self-sustainability characterized by a high ATP : ADP ratio.
The mechanistic relation between the observed disease-related modifications
in morphology and metabolic dysfunctions are still to be characterized and
whether morphology changes might represent a compensatory mechanism

remains elusive.

Here, we develop a general interdisciplinary approach to systematically in-
vestigate the interplay between astrocytic morphology and energy metabolism
in AD by a novel spatiotemporal in silico model that allows for physiologi-
cally realistic simulations by integrating complex morphologies obtained by
high-resolution confocal microscopy and thereby addresses the impossibility of
appropriate in vivo human astrocyte studies. Metabolic modelling has been
extensively addressed in literature at different levels via detailed genome-scaled
metabolic network models [147] or via targeted dynamic models 28], including
astrocytic metabolism [61, 71, 205]. All existing models neglect the spatial di-
mensions as they describe the metabolic processes through ordinary differential
equations (ODEs). The underlying assumption that diffusion and reaction rates
of metabolism are large enough to smear out spatial aspects are challenged by
the complex morphology of astrocytes and an increasing amount of evidence for
relocation of enzymes and other reaction site in different conditions [201, 119].
To include spatial variations and geometric effects, we developed a metabolic
model by means of a complex reaction-diffusion system (RDS) in realistic
three-dimensional (3D) morphologies obtained from high-resolution confocal
microscopy images of astrocytes in post mortem brain samples of AD patients

and age-matched control subjects [186]. The modelling framework incorpo-
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rates the two essential astrocytic properties: 1) the main reactions of glucose
metabolism are spatially localised to reflect the heterogeneous distribution
of enzymes in the cell, and 2) the complex and context-dependent geometry
of cells is directly incorporated from high-resolution microscopy. To address
the resulting computational challenges in solving the corresponding partial
equations of the RDS in realistic astrocytic morphologies with thin branches
and regions of high curvature and kinks, we adapted our previous approach
[97] utilizing the power of the cut finite element method (CUTFEM) [58, 67]
to disentangle the complex astrocytic geometries from the mesh generation of
finite-element methods and handle complex geometries as independently of the

mesh as possible.

By this approach, our model paves the way to a more physiological modelling
of the effect of astrocytic morphology in AD. Our framework is general and
open-source and can be used for other cell types characterized by high-resolution
imaging. For model establishment, we first performed simulations in simple
two-dimensional (2D) geometries and studied how metabolic dynamics are
affected by the spatial arrangement of reaction sites. The findings in 2D
indicated the importance of the spatial component and the diffusion limitation
that arise from the competition between the corresponding reaction centers for
the metabolic substrates. Furthermore, the results highlighted the fundamental
role of mitochondrial organization for the metabolic output of the system.
Based on these insights, we subsequently investigated spatiotemporal metabolic
dynamics in real 3D human astrocytic morphologies by our multiscale modelling
approach and demonstrate the potential of our framework to study metabolic

dysfunction in AD-related reactive morphology of astrocytes.

4.2 Methods

To investigate the potential mechanistic link between morphology and en-
ergy metabolic activity, our model describes glucose metabolism by five main
metabolic pathways (Fig. 4.1a). We describe glycolysis via two subsequent
pathways where the first represents the ATP consuming and the second one the
ATP producing reactions. The first pathway is catalysed by a set of enzymes

(hexokinase, phosphoglucose isomerase, phosphofructose kinase and the fructose
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bisphosphate aldolase), which consume glucose (GLC) and ATP to produce
ADP and glyceraldehyde 3-phosphate (GLY'). In the following, we describe this
pathway by a coarse-grained hexokinase (HXK) activity. In the second lumped
reaction, these metabolites are transformed into ATP and pyruvate (PYR) by
a second set of enzymes (glyceraldehyde phosphate dehydrogenase, phospho-
glycerate kinase, phosphoglycerate mutase, enolase and the pyruvate kinase),
which we describe by the overall activity of the pyruvate kinase (PYRK). The
generated PYR is subsequently metabolised into LAC by the lactate dehydro-
genase (LDH) or used by mitochondrial metabolism to generate ATP. The
mitochondrial metabolic activity of the Krebs cycle and oxidative phospho-
rylation is described by the coarse-grained effective reaction Mito. Finally,
another effective reaction (act) accounts for various ATP-consuming processes
associated to cellular activity. These metabolic pathways are put into a spatial

context by distributing the corresponding reaction centers into a spatial domain.

4.2.1 Energy Metabolism Model

The core energy metabolism is broken down into the core metabolic pathways

by the coarse-grained non-reversible reactions:

HXK := GLC + 2ATP — 2 ADP + 2GLY (4.1)
PYRK := GLY + 2ADP — 2ATP + PYR (4.2)
LDH := PYR — LAC (4.3)
Mito := PYR + 28 ADP — 28 ATP (4.4)
act := ATP — ADP , (4.5)

where the first two reactions consider the ATP consuming and ATP produc-
ing parts of glycolysis, LDH describes the activity of lactate dehydrogenase.
Mito reflects the overall metabolic activity of mitochondria in terms of ATP

production and general cellular activity is reflected by the act reaction.

Reaction Diffusion System

To investigate the spatial coupling of the metabolic pathways (Eqgs. (4.1)-(4.5)),
the reactions were integrated by a RDS [160]. The domain of the PDEs is
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a bounded subset of R? (d = 2 or 3), denoted by  and concentrations |- ]
are defined as function [-] : © x [0,7] — R. Diffusion coefficients for each
species are given by D[.; and chemical reactions are modeled using mass action
kinetics [226]. The reaction rate for homogeneous cellular activity (K,.;) and a
spatial reaction rate density, KC;, for the other four reactions. Considering M
reaction sites located in {x;}, € Q, the spatial reaction rates are defined as
the product between the classical reaction rates, K;, and Gaussian functions

located at those reaction sites with variance o; € R™:

M
K.
Ki(x) = ?]meas(Q) > G(xi,01) j ={HXK,PYRK, Mito, LDH}.
=1

¢ is a parameter that ensure the property that fQ K,;dz = K; and meas({2)
is the area of the domain in 2D or the volume in 3D. The source of GLC is
described through a function J;, : Q x [0,7] — R:

aeR if (x,t) € Yy x[0,T], where €, C
Jin($7t> =
0 otherwise.

Similarly, the degradation of LAC, which is proportional to the amount of LAC
in region Qoyy C 2 is described by function npac : 2 x [0,7] - R

nelR if (x,t) € Qo X [0, 7], where Qg C
nrac(x,t) =
0 otherwise.

With this definition the reaction diffusion system is given by
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(26— D1 V2(GLO) ~ Kuxx [ GLCJATPP + J,

ANTP] —  Dinrp) V2ATP] — 2Kixic [GLC][ATP)? + 2Kpyri[ADP2[GLY]
+28Kti0[PYR][ADP]* — Koo [ATP]

% = Diapp)V?[ADP] + 2Kuxk [GLC][ATP]? — 2Kpyrk[ADPJ*[GLY]
+ K 4ot [ATP] — 28/Cpsi40[PYR][ADP]28

AT = DiowyV?[GLY] + 2Kux[GLC][ATP]? — Kpyrk[ADPJ?[GLY]

ANR) Dy V2PYR] + Kpyrg[ADP2[GLY] — Kppu[PYR]
—Kiito[PYR][ADP]*

8[LAC] = D[LAC]V2 [LAC] + ’CLDH [PYR] - 77LAC [LAC] ?

\ Ot

(4.6)
where we considered von Neumann boundary condition to consider no-flux
settings at the cell membrane. To characterize the system’s behavior, we
analysed the equilibrating dynamics towards the steady state from the initial

conditions for ATP and ADP concentrations

[ATP](z,t=0)e R z€Q
[ADP](z,t =0) e R z€Q

where an initial ATP concentration is required for the initial glycolysis reactions
and vanishing concentrations for the other species. To ensure robust simulations,
we transformed the RDS into a dimensionless system allowing for convergence

over a large parameter range (Appendix B.5).

Physiological Model Parameters

The parameters used in our model are given in Table 4.1. The diffusion
parameters were chosen for ATP and ADP following [198], for GLC based on
[212] and for the other species based on the Polson method [182, 221].

The calibration of the reaction rates has been done in accordance with the
steady states of the ODE system [71] associated to Eq. (4.6). For J;, we used
the maximum transport rate of GLC from [71]. For J,,; we used the maximum

transport rate of LAC but divided it for the steady state, since we required our
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transport of LAC to be proportional to the local concentration of LAC inside
the cell.

Model parameters

Parameter name Value Description Units Reference
Dgic 0.6E3 diffusion coefficient of glucose [um2s1] [212]
Darp 0.15E3 diffusion coefficient of ATP [pm?2s~1] [198]
Dapp 0.15E3 diffusion coefficient of ADP [m?2s1] [198]
Dary 0.51E3 diffusion coefficient of glyceraldehyde [pm?s™1] [182, 221]
Dpyr 0.64E3 diffusion coefficient of pyruvate [pm?s™] [182, 221]
Dy ac 0.64E3 diffusion coefficient of lactate [pm?s™] [182, 221]

GLC(t = 0) 0.0 initial concentration of glucose [mM]
ATP(t =0) 1.6 initial concentration of ATP [mM] [71]
ADP(t = 0) 1.6 initial concentration of ADP [mM]
GLY (t =0) 0.0 initial concentration of glyceraldehyde [mM]
PYR(t =0) 0.0 initial concentration of pyruvate [mM]
LAC(t =0) 0.0 initial concentration of lactate [mM]
Jin 0.048 influx of glucose [mMs™!] [71]
Jout 0.0969 degradation term of lactate [s71] [71]
Kuxk 6.19F — 02 reaction rate of hexokinase [(mM)~2s71] [71]
Kpyrk 1.92 reaction rate of pyruvate kinase [(mM)~2s7!] [71]
Knito 8.13E — 02 reaction rate of mitochondria activity —[(mM)~28s7!] [71]
Kact 1.69F — 01 reaction rate of cellular activity [s7] [71]
Kipn 7.19F — 01 reaction rate of lactate dehydrogenase [s71] [71]

Table 4.1 Model parameters

4.2.2 Image Processing of Human Astrocytes
Human Brain Tissue

Post-mortem brain tissue was obtained from the Douglas-Bell Canada Brain
Bank and handled according to the agreements with the Ethics Board of
the Douglas-Bell Brain Bank (Douglas Mental Health University Institute,
Montréal, QC, Canada) and the Ethic Panel of the University of Luxembourg
(ERP 16-037 and 21-009). The two hippocampal samples used in this work were
donated from a male 87-year-old Alzheimer’s Disease patient with a disease
stage of A2B3C2 and a post-mortem interval of 21,75 hours, and by a female
89-year-old (age-matched) control subject with a post-mortem interval of 23,58

hours.
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Immunofluorescence Stainings

The PFA-fixed hippocampal samples were cryosectioned into 50 — 100 pm thick
slices on a sliding freezing microtome (Leica SM2010R). To visualize astrocytes
and mitochondria, we co-immunostained the slices against glial fibrillary acidic
protein (GFAP) and Tu translation elongation factor mitochondrial (TUFM)
respectively. The target-binding primary antibodies used here were Anti-
GFAP guinea-pig (Synaptic Systems Cat# 173 004, RRID:AB_10641162) at a
dilution of 1:500, and Anti-TUFM mouse (Atlas Antibodies Cat# AMAb90966,
RRID:AB_2665738) at a dilution of 1 : 200. The corresponding fluorophore-
coupled secondary antibodies used were Alexa Fluor 647-AffiniPure Donkey
Anti-Guinea Pig IgG (H+L) (Jackson ImmunoResearch Labs Cat# 706-605-148,
RRID:AB_2340476) at a dilution of 1 : 300 and Alexa Fluor 488-AffiniPure
Donkey Anti-Mouse IgG (H+L) (Jackson ImmunoResearch Labs Cat# 715-
545-150, RRID:AB_ 2340846) at a dilution of 1 : 400. We followed a previously
published protocol [186] with the exception of a double incubation with primary
antibodies for the TUFM staining.

Image Acquisitions

High-resolution confocal images with 0.333 ym z-step were acquired using a
Leica DMi8 microscope with a 93X glycerol objective and LAS X software
(Leica Microsystems). The region of interest was fixed on the hippocampal
subregion CA1l.

Image Pre-Processing

The surface function of Imaris 9.6.0 software was used to segment GFAP
staining to produce astrocyte morphology 3D reconstructions. The surface
grain size parameter was set to 0.3 um for the segmentation of astrocyte
morphology. Upon segmentation of the GFAP signal of the entire image, we
manually selected the astrocyte of interest and removed all other non-relevant
segmentation structures. The spots function was used to segment TUFM
staining. The estimated spots diameter was set to 0.2 um. To select only the

mitochondria of interest (corresponding to the astrocyte of interest) we applied
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the filter of the spots function called ‘Shortest Distance to Surface’ [segmented
astrocyte]|. In the control astrocyte some mitochondria of interest were not
automatically selected by this filter setting, because they were too far away
from the segmented surface, however part of the astrocyte, notably in the cell
soma. To include these mitochondria into the analysis, a second filter was
applied twice by selecting the central mitochondria of the soma compartment

and applying ‘Shortest Distance to Surface’ function.

The direct use of the astrocytic segmented images as domain for our simu-
lation would require a mesh fine enough to capture the thin branches of the
cellular structure. This would mean billions of quality finite elements, with a
good aspect ratio. In literature, this problem was addressed by refining the
mesh in critical regions [70]. However in our case, this would require refining all
branches. We overcome these issues by additional image pre-processing where
we dilated and down-sampled the binary images. These two steps enlarged the
thin branches and avoid discontinuities when we map the images to the finite
element mesh. These steps are not critically affecting the real morphology of the
astrocytes and might actually address partially the GFAP staining limitation.
Moreover, we impose the astrocytic volume in the simulations to be equal to
the one of the segmented images obtained with Imaris. Eventually, we obtained
the final segmented images (f) with labeling the voxels inside (—1), outside (1)
and on the boundary (0) of the astrocytes.

Before applying the same steps to the binarised segmented mitochondrial
images, we applied a convolution filter to smooth the voxels. To extrapolate the
information about mitochondrial density, we selected all connected components
in the images and for each of them, we identified the center and the radius of

the circle that contains such component.

4.2.3 Numerical Methods

To solve numerically the RDS, the first step is to convert Eq. 4.6 into a
corresponding weak form [47|. Then, we discretise the weak form both in time
and space. we discretise the time derivative using a finite difference method
(backward Euler) [185] and the spatial domain by finite elements [116] and

cut finite elements [38]. The 2D experiments were solved using classical finite
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element methods based on FENICS [138, 9], while the 3D experiments were
solved using CUTFEM [58, 38]. Since the weak RDS formulation is non-linear,
we linearised it and used a Newton-Raphson algorithm to iteratively solve the
problem. The linear system at each time step of the Newton-Raphson algorithm
was solved using standard linear solver from the PETSc library. For further

details and numerical parameters see Appendices B.6 and B.7, respectively.

4.3 Results

4.3.1 Metabolic Dynamics and Reaction Sites Competi-

tion in 2D Domains

For model establishment and calibration, we first analyzed the effect of different
spatial arrangements of reaction sites on the metabolic profile in simple 2D
geometries. For this, we considered a circular domain and compared different
configurations of reaction locations. The diameter of the circular domain was set
to 140 pm as an average diameter that contains a full astrocyte [165]. To reflect
the metabolic flux from the endfeet towards the perisynapses at the neurons’
locations, we placed the entry of GLC and the exit of LAC at opposing sides
of the circle (Fig. 4.1b) where the subregions are defined as the intersection of
a circle with a radius of 10 um and centers are located at the origin for GLC
and the antipodal point for LAC .

In this simplified setup, we first assumed that a given reaction occurs around
a single location with a spatial extent of a Gaussian distribution with a width of
o = 20.0 um. As a control case, all four reactions were located in the center of
the circle as shown in Fig. 4.1c, mimicking a well-stirred condition. In a more
complex enzyme arrangement, we located the four reactions on the vertices
of an equilateral triangle inscribed inside the circle: one reaction is placed on
the top vertex close to the LAC exit, one reaction on the bottom right vertex
and two reactions are placed on the bottom left vertex. An example is shown
as “Location 1”7 in Fig. 4.1b, where PYRK and LDH are placed on the top
of each other, while HXK and Mito are on the top and bottom right vertex,

respectively.
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The resulting dynamics of the Location 1 and the control setup are shown in
Fig. 4.1d where the average concentration dynamics inside the domain for each
involved metabolite is shown. As a reference, we also plotted the steady state
concentrations from Cloutier et al. |71], which was used to calibrate parameters
of our model for which no literature information was available (see Table 4.1).
As expected, the control configuration leads to steady-state concentrations in
agreement with Cloutier et al. during an equilibrium period of &~ 50s, with an
exception for LAC which exhibits an almost doubled level. By contrast, the
arrangement of the enzyme sites in spatially distributed configurations such as
Location 1 affects the metabolite levels of interest. For example, the steady
state corresponding to Location 1 is characterized by concentrations of GLC,
GLY, PYR and LAC that are approximately four, ten, two and three times
higher compared to the well-mixed condition described by ODES in Cloutier

et al., respectively.

The steady state solutions of Location 1 indicates the necessity of the
species to diffuse inside the domain and reach the corresponding enzyme sites:
GLC needs to diffuse into the other part of the domain to act as substrate
for HXK, and the produced GLY needs to reach the PYRK to be metabolized
into PYR. The reactions are thereby diffusion-limited and the system reaches
the steady state before consuming more GLY. Finally, the increased LAC level
for Location 1 in relation to the control case is caused by the co-localization
of PYRK and LDH where produced PYR is directly metabolized into LAC
whereas in the control case Mito and PYRK compete for PYR as substrate.
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Spatial arrangement of metabolism has an impact on cellular

metabolite concentrations.

a Cell membrane b

ADP
© Mit ATP

oA e " LDH
220 IpyR)|/ PYR

Glycolysis]
* HXK
YPYRK
Cytosol

Location 1

0.0008
0.0007
0.0006
ATP —

T 0.0005
0.0004
0.0003
0.0002

0.0001

0.0000

C d [GLC] (mM) [ATP] (mM)
0. 2
Control o .
0.0016 S0 50 100 150 200 0 50 100 150 200
0.0014 [ADP] (mM) [GLY] (mM)
0.0012 ZJ ”“}
0.0010
1 0.0
0.0008 0 50 100 150 200 0 50 100 150 200
0.0006 [PYR] (mM) [LAC] (mM)
nz} 2.3}
0.0001
0.0002 0.0 0.0
00000 0 50 100 150 200 0 50 100 150 200
0 50 100 Time (s) Time (s)

a—axis (pm) ‘ Control Configuration 1~ == Cloutier et al. 2009 Steady State ‘

Fig. 4.1 a GLC enters the cytosol of the cell and takes part in glycolysis whose
effective kinetics is captured by the two reactions HXK and PYRK. The products
of glycolysis are subsequently consumed by the LDH reaction for generating LAC,
by the act reaction describing ATP consumption due to cellular activity, and by
mitochondria where the effective reaction Mito produces ATP from PYR through
the Krebs cycle and oxidative phosphorylation. b (left) Generic configuration to
investigate the effect of metabolite transport on the output of metabolism in a 2D
circular domain. The color map highlights the position of the reaction sites, which are
located on the vertices of an equilateral triangle. Two reaction sites are colocalised at
the bottom left corner. (Right) Position of the reaction sites in Location 1: HXK
on the top close to the eflux of LAC, PYRK and LDH colocalised close to the GLC
influx, and Mito on the last vertex. ¢ Control scenario: all reaction sites are located
in the center. d Dynamics of the average concentration of each species in Location 1
and control cases, compared with the steady state values from Cloutier et al..

To investigate systematically the effect of co-localisation and/or proximity of
reaction centers to GLC influx or LAC efflux, we considered all possible location
configurations for the four reactions on the vertices of the triangle (Fig. 4.1b).
Considering the colocalisation of two reactions in the left-bottom vertex, leads
to twelve possible location configurations (Figs. 4.2a and 4.2c). As a first

attempt to address slightly more complex morphologies, we studied the twelve
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locations within a two-dimensional star shape (Fig. 4.2b) as a simplified version
of an astrocyte. This setup allows for comparable results between the two
domains, since molecules have to pass similar distances between the subregions
where GLC enters and the subregion where LAC is exported. Reaction sites
were located analogously at the three vertices of an equilateral triangle within
the star. As in the circular setup, we placed two reaction sites colocalised closer

to the influx of GLC, and one reaction site at each of the remaining vertices.

Fig. 4.2d shows the steady-state and spatially averaged concentration of
each species of interest for the twelve possible configurations of the circular
(left columns) and the star domain (right columns) where the maximum and
minimum values for each species are highlighted in red and blue, respectively.
Simulations performed in both domains exhibit similar trends. The species that
are affected the most by the different spatial arrangement are GLC, GLY and
PYR for the co-localisation of the reaction sites HXK-PYRK (Location 6 and
9) and PYRK-LDH (Location 1 and 4) which led to low level of GLY or PYR,
respectively. In the control case, where all the reaction sites overlap in the center
of the domain, the system is more efficient with low levels of GLC, GLY and
PYR, and a medium value of LAC. Although LAC shows differences depending
on the location of the reaction sites, the changes are less significant due to the
eflux which reduces LAC steady state concentrations. Interestingly, the star-
shape domain exhibits the highest values of LAC pointing to the importance
of morphologies with branches and higher complexity. Since cellular activity is
assumed to occur homogeneously inside the domains, variability in ATP and
ADP levels across the setups are rather small confirmed by the [ATP] : [ADP]

ratio with a variance between all the simulations of 0.005 (mM?) (Fig. 4.2e).

Overall, these in silico experiments emphasize the variable output of the
metabolic RDS as a function of the intracellular spatial organization of reaction
sites. To further investigate this effect, we next modelled the effect of enzyme

distributions in more detail.
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Spatial organization and competition between reaction sites affect

the metabolic activity of the system.

a b c Location & & ®
1 HXK PYRKLDH  Mito
2 HXK Mito LDH  PYRK
3 HXK  Mito PYRK LDH
4 Mito PYRK LDH  Mito
5 Mito HXK LDH PYRK
6 Mito HXK PYRK LDH
7 LDH PYRK Mito HXK
8 LDH Mito HXK  PYRK
9 LDH HXKPYRK  Mito
10 PYRK  Mito LDH HXK
11 PYRK  HXK Mito LDH
12 PYRK HXK LDH Mito
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§ [GLC] (mM) ) [ATP] (mM) * * min
? ® max *  max
00 0 [ATP] : [ADP]
Comtrll 2 3 4 5 6 7 8 9 10 11 12 Comtroll 2 3 4 5 6 7 8 9 10 11 12
[ADP] (mM) [GLY] (mM) 20
1
0
15
0 0.0
Comtroll 2 3 4 5 6 7 8 9 10 11 12 Comtroll 2 3 4 5 6 7 8 9 10 11 12 10
[PYR] (mM) [LAC] (mM)
0.5 0
2
0.0 0 0.0

Fig. 4.2 a Spatial setting of simulations performed in a 2D circle. GLC enters along
one side, and on the diametrically opposite side, LAC is exported. Each of the three
symbols is associated to one (diamond and spade) or two (club) reactions. b Spatial
setting of simulations performed in the star shape. The reaction sites are located
analogously to the circle domain with the same distance between the GLC entry
vertex and the LAC efflux/degradation. ¢ Table of the 12 possible configurations
corresponding to the allocation of one reaction site to diamond and spade vertices,
and two colocalised reaction sites at the club vertex. d Spatially averaged steady-state
concentrations of each species for the circle (left) and the star (right) e Spatially
averaged steady state ATP : ADP ratio for simulations in a circular (left) and star-like
geometry (right).

4.3.2 Uniform and Polarised Distribution of Reaction

Sites in a Rectangular Domain

Based on the establishment of the spatiotemporal metabolic model for one
reaction center for each pathway reaction, we next explored the effect of
inhomogeneous distributions of reaction centers on the metabolic state of the

cell. For this purpose, we considered for each metabolic reaction ten distinct
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reaction sites with a smaller spatial extent (¢ = 1.0 pm), while conserving the
overall metabolically activity. To mimic the morphology of astrocytic branches,
the shape of the RDS domain was chosen as a two-dimensional rectangle of
dimension [0,] x [0, L], with width [ = 4 ym and a length L = 140 ym where
GLC enters from the bottom left corner of the rectangle (origin) and LAC exits
from the top right corner. We considered two types of cellular organisation:
one where the reaction sites are uniformly distributed inside the domain and
the extreme opposite setting of a polarised cell where some reactions occur
predominantly at one of the extremities of the cell. To ensure robustness of
the findings, the two settings were compared by ensemble simulations of 200
distinct realizations of each setting. For the uniform cells, the coordinates
of the 10 reaction sites of each type were randomly selected from a uniform
distribution that covers the rectangular domain. Realizations of polarised
cells were generated either by normal distributions (N'(m,¢’), where m and
o’ denote the mean and standard deviation, respectively) or by log-normal
(log N (m, 0’)) distributions. Fig. 4.3a shows the position of the reaction sites
along the y coordinate of the 200 realisations and Fig. 4.3b exemplifies enzyme
distributions for a given cell for each setting. The different strategies for
polarised cells lead to a certain probability for mitochondria localization in
the upper part of the domain for the “Polarised” configuration but not for
the “Polarised log N'(2)” configuration (Fig. 4.3a). These settings allow for
investigating the competition between the Mito and LDH reactions for their
shared substrate PYR (Appendix B.1).
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The steady-state level of metabolites is affected by the polarised

distribution of enzymes within cells.
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Fig. 4.3 a Distribution of the enzymes along the y-axis of the rectangular domain:
HXK in light blue, PYRK in dark blue, LDH in green and Mito in dark red (top
panel). In the Uniform setting, the reacting sites are uniformly distributed along the
y-axis. In the Polarised settings, HXK, PYRK and LDH are spread unevenly over
the domain with the first two located close to the origin and the latest close to the
top of the domain. Mito reaction sites are distributed in the following way: 6 of them
are normally distributed and colocated in the same area as HXK and PYRK, and 4
of them are uniformly located in the upper part of the domain (middle panel). In the
Polarised log NV (2) setting, mitochondria are located in the domain according to a log-
normal distribution (bottom panel). b Examples of Uniform, Polarised and Polarised
log NV (2) distributions for the less energized cell where mitochondrial production is the
most affected by polarisation. ¢ Box plot of the average steady-state concentration of
each species for the Uniform, Polarised and Polarised log A/(2) distributions. (The
mean and median of each box is signed in red and blue, respectively.)

91



Mechanistic Multiscale Metabolic Model in Human Astrocyte

Holm-Bonferroni Method
T test independent [GLC] [ATP] [ADP] [GLY] [PYR] [LAC]
Uniform Polarised 0.0 0.0 0.0 0.093 0.0 0.0
Uniform  Polarised log NV (2) | 0.0 0.0 0.0 0.0 0.0 0.0
Polarised Polarised log N'(2) | 0.0 0.0 0.0 0.0 0.598 0.0
Wilcoxon-Mann-Whitney test | [GLC] [ATP] [ADP] [GLY] [PYR] [LAC]
Uniform Polarised 0.0 0.0 0.0 0.0001 0.0 0.0
Uniform  Polarised log N (2) | 0.0 0.0 0.0 0.0 0.0 0.0
Polarised Polarised logN'(2) | 0.0 0.0 0.0 0.0 0.345 0.0
Table 4.2 p—values of the significance tests for Experiment 2. We used multiple
comparison Holm-Bonferroni Method on a parametric independent T-test and a
non-parametric Wilcoxon-Mann-Whitney test with significance threshold of p—value
< 0.05.

To assess the effect of the different spatial arrangements, the steady state
concentration of the 200 realizations, for the three different configurations,
were compared statistically (Fig. 4.3c) including T-test and Wilcoxon-Mann-
Whitney with Holm-Bonferroni compensation (Table 4.2 and Appendix B.2).
In general, the polarised cells consume more GLC than the uniform distributed
ones, which is consistent with the fact that the reaction HXK is closer to the
influx. GLY is present at a very low level for all configurations as also shown in
the significance test. Interestingly, PYR and LAC differ strongly in polarised
cells compared to the uniform setting with a higher level in PYR caused by
faster metabolizing of GLC by the HXK and subsequent PYRK reactions. On
the other hand, LAC levels are higher for the uniform cells since in polarised
cells PYR reaches the more distant LDH reaction only by the amount which
has not been consumed by the closer located Mito reactions. The resulting
LAC : PYR concentration ratio for the cells with uniformly distributed enzymes
cells respect the physiological constraints, whereas polarised cells exhibit ratios

below one indicating an unphysiological or diseased state.

The corresponding ATP and ADP concentrations show a rather low vari-
ability for the uniform configuration with higher ATP and lower ADP concen-
trations (Fig. 4.3c) compared to the polarised cells. Interestingly, the Polarised
log NV(2) configuration exhibits a very wide range for both concentrations with
significantly different average values also in comparison with the Polarised
configuration indicating the importance of mitochondrial distribution. Thus,
the ATP : ADP ratio for the three cellular configurations (Fig. 4.4a) confirms
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that the Polarised log N'(2) realisations cover an ATP : ADP ratio range from
unhealthy (ratio < 1) to healthy (ratio > 1).

The impact of the configurations on the metabolic activity and in particular
with a focus on the “altruistic” behaviour producing more LAC or an “ego-
centric” strategy producing more ATP, can be visualized by the relationship
between LAC and the ATP : ADP ratio (Fig. 4.4b). We found two distinct
clusters formed by uniform and polarised cells, where the uniform cells dis-
play a co-existing egoistic and altruistic mode characterized by high ATP and
LAC concentrations for self-sustainability and neuronal support. Indeed, the
correlation between the variables, the ratio and LAC, is only slightly negative
for the uniform cells (—0.19), whereas the group of polarised cells exhibits
stronger negative correlation (—0.65) indicating that high values of one quantity
lead to low values of the other. “Polarised” cells are located on the top of the
cluster and the “Polarised log N'(2)” cells are predominantly in the lower part
of the cluster characterized by a lower ATP : ADP-ratio and slightly higher
LAC concentrations (Fig. 4.4b). This difference indicates the importance of
mitochondria localization as shown by the color-indicated classification of the
vertical arrangement of mitochondria. We colored the metabolic profile of each
realisation based on the highest y—coordinate of Mito sites (ymax): yellow, or-
ange, red or black, if ymax < 30, 30 < Ymax < 60, 60 < Ymax < 100 OF Ymayx > 100,
respectively. This analysis highlights that the lowest level of ATP coincides
with realisations where all mitochondria are grouped in the lower region. By
contrast, simulations with a high energetic profile correspond to arrangements
where mitochondria are distributed throughout the whole rectangular shape.
The spatial arrangements and the corresponding mitochondrial activation that
describe the most energized cell for each configuration are shown in Figs. 4.4c-d
and confirm the necessity of mitochondria to be well-distributed in the whole
domain to sustain high ATP levels. Comparing the mitochondrial activity at
steady state for each of these cells, we notice low activity in the lower part of
the polarised cells indicating the co-localization of Mito and PYRK leads to
substrate competition. This suggests that PYRK inhibits the mitochondrial
activity. On the other hand, the cellular arrangements presented in Fig. 4.3b
produce the less energised cells with minimum ATP and all mitochondria

gathered in clusters.
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Mitochondrial distribution determine [ATP] : [ADP]| ratio and thereby
energetic states of cells.
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Fig. 4.4 a Box plot of the final average values of the [ATP] : [ADP] for Uniform,
Polarised and Polarised log V'(2) (Mean in red and median in blue). b (top) scatter
plot of ratio against LAC final average values. There are two distinct clusters between
the Polarised cells and the uniformly distributed ones. (bottom) Zoom on the ratio
against LAC for Polarised cells colored based on the region where we can find the
mitochondria with the highest y-coordinate. Interestingly if the enzymes are well
distributed inside the domain, so if there is at least one mitochondria with a y-
coordinate larger than 100 (black), the ratio value is higher. On the other hand, if
the mitochondria are all located within the first or second region (yellow and orange),
with y-coordinate lower than 60, the cell is in unhealthy status. ¢ Mitochondria
activation of the configurations with maximum ATP production for the three type of
cells at steady state d Reaction sites setting for the maximum level of ATP for the
three distributions.
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Overall, this analysis demonstrates the impact of the interplay between
spatial enzyme orchestration and morphology on the metabolic profile of cells.
Our finding highlights that different cellular organization leads to different

steady state concentrations which might be linked to potential disease of cells.

4.3.3 Morphological effects on Metabolic Activity of Hu-
man Astrocytes in Health and AD

Finally, we extend our work to 3D reconstructions of human astrocytes acquired
from GFAP-immunostained post-mortem brain samples from age-matched con-
trol subjects (Figs.4.5a-c) and AD patients (Figs.4.5d-f). The 3D confocal
images of the astrocytes were acquired in the CA1 subregion of the hippocam-
pus (Figs. 4.5a and 4.5d). Given the typical post-mortem nature of such brain
samples, the dynamical consequences of the morphology for metabolic profiles
can be only assessed by an appropriate in silico strategy. The respective
segmentations of the prototypical astrocytes (Figs. 4.5b and 4.5e) reveal sig-
nificant differences in the volume and morphological diversity of the two cells:
the reactive AD astrocyte exhibits hypertrophy, proliferation of branches and
coverage of wider spatial domains in comparison with the less complex shape
of the control astrocyte (Figs. 4.5g and 4.5h). Based on mitochondria staining
and segmentation (Figs. 4.5a-b and 4.5d-e), a realistic spatial arrangement
of mitochondria is implemented in the multiscale model (Figs. 4.5¢ and 4.5f).
The presence of regions with different mitochondrial density is respected by
tuning the center positions and variances of the Mito spatial reaction rates
(Figs. 4.5¢ and 4.5f). The minimum variance is set to 1.0 ym and we scale
accordingly the size of the other regions with a maximum of 2.0 um. The
number of reaction sites for the other reactions is set according to the amount
of mitochondria selected from post-processing, 97 for the control and 140 for
the reactive astrocyte (Fig. 4.51). For each Mito reaction site, we located a
HXK site close by in agreement with the observed relationships between these
two enzymes [121, 140|. The reaction sites of PYRK and LDH are taken from
a uniform distribution defined in the three dimensional box containing the

astrocyte. The locations of the reaction sites for the simulations inside the
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control and AD reactive astrocyte are shown in Figs. 4.6a and 4.6¢c together
with the assumed endfeet for GLC influx and the subregions at the perisynapses

for LAC export into the extracellular space (Figs. 4.6a-c).

Human hippocampal astrocytes from an age-matched control subject

and AD patient: from microscopy image to 3D simulation setting.

g w Volume ()

W Surface (jm?)

W #Mito
;

Fig. 4.5 High-resolution confocal microscopy images a from an age-matched control
subject and d from an AD patient were obtained from 50 — 100 yum brain sections
that were immunostained against GFAP (cyan) to visualize astrocyte cytoskeletal
morphology, and against TUFM (dark red) to reveal mitochondria in the hippocampus.
Using Imaris 9.6.0 b and e, astrocyte 3D morphology was segmented using the surface
tool and mitochondria were labelled with the spots tool for the astrocytes in both
conditions. Finally, based on the segmentation, we created the domains for our
simulations and we selected the locations with higher density to define the Mito
reactions. ¢ and f show the spatial reaction rates Kyt describing the mitochondria
activity inside the cells. In the bar charts g-i, we compared the cell volumes —
3673 um? for the control astrocyte (C) and 15161 um? for the reactive (R), cell
surfaces — 5569 um? for C and 16854 um? for R, and the number of mitochondria
activity centers — 97 for C and 140 for R computed in ¢ and f. Scalebars: a-b 15 um,
d-e 30 pm.

As a first analysis, we ran three baseline simulations based on the physi-

ological parameters (Table 4.1) with one simulation inside the protoplasmic
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control morphology (C) (Fig. 4.6a), one within the same morphology but with
a polarised distribution of reaction centres (P) (Fig. 4.6b) and one inside the
reactive astrocyte (R) (Fig. 4.6¢c, more details are given in Appendix B.3).
The resulting dynamics of these baseline simulations (Fig. 4.6d) are in good
agreement with the investigation of enzyme distributions in the 2D domains
where scenarios C and R resembles properties of the uniform distributed cell
and P corresponds to the polarised cell (Fig. 4.3b). However, the average LAC
concentration is higher than expected for P and lower than expected for C and
R. Also the PYR concentration is closer to that of the uniform setting for the
P configuration. While the concentration values of C and R are on average
very close (Fig. 4.6b), smaller differences are visible mostly in GLC and LAC,
and attributed to the effect of the morphological differences and reaction site

configurations.

To investigate a reactive astrocyte subject to AD, we extended our simula-
tions by gradually adding AD-related dysfunctions. Experiment 1 (E1) mimics
a loss of GLC uptake [159] by a 30% decreased GLC influx. Experiment 2 (E2)
includes the dysfunction in mitochondrial activity [136, 156, 178] inducing a
lower ATP production by a reduced reaction rate for Mito (Kpio107°). In
accordance with available experimental data [33], we considered an increment
of the activity of LDH by a factor of ten in Experiment 3 (E3) and an increment
in the glycolysis rate in particular in the PYRK reaction, also by a factor of
ten in Experiment 4 (E4). In the final experiment (EAD), all four conditions

were combined to explore their possible synergistic effects.

Fig. 4.7a exhibits the percentage of the concentration loss at steady state
for experiments E1, E2, E3, E4 and EAD compared to R. Interestingly, the
30% reduction in GLC uptake in El is reflected by the final steady state
in GLC (= 28.7% loss) which induced a loss of ~ 35% in GLY, PYR and
LAC. Dysfunctional Mito reactions lead to an increase in final GLC level
and a loss in ATP and GLY whereas the level of LAC is not affected. The
experimentally observed increased activity of LDH (considered in experiment
E3) results mainly in faster metabolizing of PYR. On the other hand, GLY

consumption is maximised by the turnover of PYRK in the E4 experiment
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Metabolite dynamics in 3D astrocytes with physiological reaction
site versus extreme polarised arrangements.

a + *& GLC b *& GLC
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Fig. 4.6 Setting of the 3D simulations for the a control (C), b polarised (P) and ¢
reactive (R) astrocyte. For C and R, Mito reaction centers were inferred from the
microscopic images. Each HXK site is sorted from a gaussian distribution centered
at each Mito site. In this way for each Mito we have an HXK reaction close by.
PYRK and LDH are uniformly distributed inside the box that contains the cells. The
reaction centers of P are sorted in the way that HXK and PYRK are colocalised close
to the GLC influx, while on the other extremity of the cell we locate LDH centers.
Mito centers are sorted using a log-normal distribution that locate them in the same
region as HXK. The number of centers per reaction type is 90 for C and P, and 140
for R. For the three settings, GLC enters three sub-regions from the branches of the
cell in contact with the blood vessels and LAC exits from four sub-regions at the
other extremity of the cell. d Time behavior of the average concentration of each
species for C (cyan), P (yellow) and R (red).
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while the other concentrations are not affected. The combined effect of the
individual dysfunctions in the EAD experiment leads to a significant change in
the metabolic profile (with the highest loss in ATP, GLY and PYR Fig. 4.7a).

(The dynamics of these experiments is shown in Appendix B.4.)

The functional state of cells in terms of ATP : ADP and LAC : PYR
ratios at steady state is preserved for a wide range of conditions. Even for the
polarised P configuration, the ATP : ADP ratio is higher than 1.0 (Figs. 4.7b
and 4.7c), suggesting that a complex shape makes the cell more robust against
extreme situations. This is also confirmed by the ratios of the E2 experiment,
that does not exhibit a ratio below 1.0 despite mitochondrial dysfunction. The
only cell that reaches a critical unhealthy state is the EAD condition (0.93),
where mitochondrial dysfunction adds to the other dysfunctions. Also the ratio
of LAC : PYR is always within physiological range (> 10) for all conditions
except P. However, a LAC : PYR ratio of above 80 are reported in E3 and
EAD, which may indicate hypoxia with low levels of oxygen in blood [142].

Since LAC export into the extracellular space is an essential mechanism of
astrocytic support to neurons, we also quantified LAC eflux exporting LAC
from the corresponding subregions (Fig. 4.7d). The asymptotic behaviour of
the efflux indicates that cells with the C and P configuration export more LAC,
suggesting that the less ramified morphology of the protoplasmic astrocyte
allows for faster diffusion of molecules and subsequent export regions. On the
other hand, E1 and EAD configurations export less, indicating that the 70%
decrease in GLC uptake might drive this AD symptom. The different metabolic
states of the cell are also assembled in the “altruistic” vs “egocentric” map in
terms of the LAC concentration and the ATP : ADP ratio (Fig. 4.7e). This
map indicates the C configuration as the most efficient cell with high levels for
both in agreement with the previous finding on uniform distributed cells. The
P setup exhibits a more altruistic behaviour than expected by producing more
LAC than ATP, potentially facilitated by the morphology. When cells lack
GLC, they become more egoistic and produce more ATP. Remarkably, the
steady state of LAC of the R, E2, E3 and E4 experiments is ~ 1.3 uM but the

ATP concentration is decreasing from high levels in the R and E4 configuration
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Effects of AD conditions on metabolic average concentrations.
a b c
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Fig. 4.7 We consider four pathological conditions of AD, in the setting of the
reactive astrocyte R. E1 describes the deficiency of GLC uptake (magenta); E2, the
mitochondria dysfunction (dark red); E3, the LDH overwork (green); E4, PYRK
overwork (blue) and EAD, the four conditions combined (black). a Final average
concentration loss respect to R. The experiments reflect their loss/gain imposed to
the cell through the conditions. Steady-state spatially averaged b ATP : ADP ratio
and ¢ LAC : PYR ratio of control (cyan), polarised (yellow), reactive (red) and all the
AD experiments. d Efflux of LAC molecules exported over time from the astrocyte
to the extracellular space. The experiments with higher export are the two control
astrocyte with C and P configurations. The experiments with a lower export are E1
with a loss in GLC uptake and EAD with the combination of the AD conditions. e
Scatter plot of ATP : ADP against LAC final average values. The most efficient cell
is the control one. Then, the different AD conditions affect the cell status leading
the reactive cell affected by all the AD conditions to an unhealthy state. In order
to save the EAD cell, we increase the uptake of GLC up to 85% (white star with
magenta edge), and the cell responds by using the more available fuel to produce more
LAC. However, blocking the LDH overwork (white star with green edge) increases
ATP : ADP and thereby rescues the astrocyte from the AD conditions.
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to lower concentration in E2. Finally, lower levels of both ATP and LAC is the
AD-related EAD condition suggesting that it can neither support neurons nor
itself. Last, we studied how to support an AD-impacted astrocyte where the
results of the individual conditions helped to disentangle the different effects.
Importing more GLC (by increasing the uptake to 85% of the healthy control
condition) turns the cell into a more altruistic state by using the additional fuel
predominantly for LAC production. Blocking the excessive activity of LDH
saves the cell from AD-related energy deprivation but with the cost of reduced
LAC export.

To investigate the impact of diffusion limitation as an underlying mecha-
nism in reactive astrocytes, Fig. 4.8 illustrates the time evolution of the 3D
distribution of concentrations for the healthy C and AD-related EAD condition
considering the properties and spatial distribution of reaction sites (Supple-
mentary Movies 1-12). In particular, the trapping effect discussed above is
highlighted in the reactive astrocytic morphology for ATP and PYR where

branches exhibit a higher concentration variability.
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Spatially resolved Control and EAD astrocytes for GLC, ATP, PYR

and LAC at different times.
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Fig. 4.8 3D spatial concentration of metabolites at three different time steps in control
(C) and reactive astrocyte affected by AD pathology (EAD). a GLC enters from
the blood vessels and spreads inside the astrocytic domains activating the glucose
metabolism. b ATP, already present in the cells at the initial time, is produced and
consumed. In particular, in correspondence with regions with high numbers/absence
of Mito sites, we can notice high/low levels of ATP in EAD. ¢ PYR produced by
PYRK diffuses inside the 3D domains and highlight the complex shape of the reactive
astrocyte with high variability of concentration within the cell. d LAC shows a slow
production, in fact at time 5, both C and EAD show low concentrations. At the final
time, we can appreciate the steady state level of LAC where the regions where it is
exported are highlighted by lower concentrations.

To summarise, the physiologically realistic simulations reproduce important
features of astrocytes in healthy and diseased conditions. The incorporation
of real morphologies highlights cellular robustness against extreme enzymatic
configurations. This is also seen for AD conditions, indicating the influence

of the cellular domain on the metabolic state of the cell. In fact, a single
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AD characteristic does not lead to an unhealthy cell, only combinations of

AD-terrain leads to severe metabolic dysfunctions.

4.4 Discussion

Although the link between cellular morphology and metabolic activity might
have implications for neurodegeneration including Parkinson’s disease and
Alzheimer’s disease, our understanding of this connection remain imperfect due
in part to experimental limitations. To address this challenge, we developed
a multiscale model for energy metabolism in complex cellular domains with
a specific focus on the intracellular spatial orchestration of astrocytes. To
build the mathematical model, we first considered a single reaction site for
each metabolic subpathway in a 2D circular geometry and validated the model
in terms of physiological concentration ranges for astrocytes (Fig. 4.1), in
accordance with previous ODES model [71]. We showed numerically that
different spatial organisation of reaction sites lead to distinct metabolic profiles
due to diffusion limitation and local substrate competition (Fig. 4.2). The
observed differences between the circular and the star-shaped domain indicated
a possible trapping effect for molecules in more complex shapes. These trapping
effects might be overestimated compared to a more physiologically realistic
astrocyte, since many more reaction sites are typically present within an
astrocytic branch. Nevertheless, these results strongly indicate that the spatial
dimension and the domain complexity can have a crucial effect on metabolic
profiles and may be of particular importance for the metabolic support function

of astrocytes.

To further characterize these spatial effects in a more physiological setting,
we considered a larger number of reaction sites, which were distributed either
within a uniform or polarised arrangement inside a rectangular shape, mimicking
an astrocytic branch. For each configuration, we ran 200 realisations, allowing
for robust statistical comparisons between the different settings (Fig. 4.3).
The results showed that cells with uniformly distributed reaction sites are
significantly more efficient in both the “altruistic” LAC production as well as
the “egocentric” intracellular energy state. Although polarised organization

corresponds to an extreme and rare biological setting, the analysis of these
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realisations indicates the importance of a more homogeneous mitochondria
distribution for a sufficient activity and a related energized cell state (Fig. 4.4).
This is in line with experimental observation of mitochondrial organisation and
homeostasis including fission and fusion where impairment of these processes

are linked to neurodegeneration [137].

Based on the 2D model, we extended our investigations to physiological
3D morphologies of astrocytes, obtained from confocal microscopy images of
human post-mortem brain samples of an AD patient and a healthy control
subject. Our approach is thereby able to integrate directly the spatial orches-
tration of reaction enzymes as demonstrated by the experimentally quantified
mitochondrial distribution (Fig. 4.5). We first confirmed that using different
morphologies but the same parameters lead to concentrations in the physio-
logical range in agreement with the findings in the simplified 2D geometries
(Fig. 4.6). To investigate the effect of AD-related molecular modifications, we
analysed a reactive astrocyte with baseline parameters and four individual
metabolic dysfunctions linked to AD and their combinations (Fig. 4.7). The
results highlighted that different pathological effects arouse specific system
response and differentiated the cell behaviour between an “altruistic” and an
“egocentric” mode. Furthermore, the results indicated that any give dysfunc-
tion does not lead necessarily to a dysfunctional cell with a low ATP : ADP
ratio but it is the cumulative metabolic insufficiencies that lead the cell into
a critical state. This synergistic phenotype might be related to the multi-hit
perspective in neurodegeneration which addresses the transient compensation
and typical disease onset at higher age [173, 236|. The systematic study of the
individual dysfunctions allowed to suggest that reducing LDH activity could
sustain astrocytic function. Such approaches are also discussed in the context
of cancer [126, 107|. However, in the context of AD, the challenge would be to

interfere with metabolism in a cell-type specific manner.

Furthermore, the comparison between the simplified 2D domains and the
complex 3D morphologies indicates that real astrocytic shape affect the cell
state with robustness towards enzyme orchestration and different metabolic
dysfunctions. This robustness might be caused by the trapping of molecules in
thin branches as further indicated by the analysis of 2D star-shaped morphology.
The thin processes may hamper the diffusion of molecules as shown by the

spatial concentration profiles (Fig. 4.8) which increased mitochondrial activity
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and corresponding ATP production with the cost of decreased LAC export.
Thus, the complex morphology might provide a mechanism to support an
“egocentric” state if the system reaches limiting conditions, similar to energy

buffering in complex mitochondrial morphologies [105].

To our knowledge, our approach is the first 3D model of cellular energy
metabolism using physiological human cellular morphologies. Our analyses of
hippocampal control and AD-related reactive astrocytes clearly demonstrate the
importance of morphology for cellular metabolic activity. Our approach has lim-
itations, such as the lack of cellular compartmentalisation, the coarse-graining
of enzymatic reaction into effective metabolic pathways, the limitation of the
GFAP staining and the incomplete information on reaction site localization
provided by imaging modalities. Despite these limitations, we demonstrate the
general importance and feasibility of physiological simulations by integrating
molecular properties, spatial intracellular orchestration and morphology. Based
on our multiscale framework, future investigations will allow to disentangle
different mechanisms underlying neurodegeneration, including mitochondrial
morphology [207, 105], organization and dysfunction {122, 211, 80] by more

detailed models.
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CHAPTER D

Cross-talk between Metabolism and Calcium

Signalling

The fundamental role of calcium was introduced in Section 2.1.4 and the
state-of-the-art modelling was presented in Section 2.2.2. In the sight of our
studies on the importance of metabolic spatial organisation and the relevance of
cellular geometries presented in Chapter 4, we focus our research in this chapter
on the spatio-temporal crosstalk between metabolism and calcium signalling.
We adapt our previously proposed metabolic model to communicate with a
calcium signalling module that focuses on mitochondrial dynamics proposed
by V. Voorsluijs et al. (2022) [225]|. A corresponding journal submission is in
preparation.

5.1 Introduction

Metabolism and calcium signalling are two fundamental processes in astrocytes.
However, they are not entirely decoupled (Figure 5.1). There is an active

crosstalk between Ca®" and ATP. Ca®" is transported inside the mitochondria
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and used to activate the TCA cycle. On the other hand, ATP is consumed to
transport Ca*" into the ER.

In more detail, the transport of Ca®" from the cytosol to the mitochondria
is mediated by the mitochondrial calcium uniporter (MCU). Moreover, the
sodium-calcium exchanger (NCX), an antiporter membrane, exchanges Ca*"
between mitochondria and cytosol using sodium ions. On the other hand, the
passage of Ca>" to the ER is performed by the sarco/endoplasmic reticulum
Ca’T-ATPase (SERCA), which comes at ATP costs.

Modelling has been a valid tool to study these processes, complementary to
biological investigations. These two processes can be investigated separately.
Metabolic models have been proposed for a single astrocyte or neuron-astrocyte,
and a geometric-based model investigation was done in our previous work [99].
On the other hand, calcium signalling models have been widely investigated.
The investigation of models for calcium signalling in astrocytes is extensive, from
deterministic to stochastic, from spatial [166, 222] to homogeneous. A model
that study the interplay between these two processes was proposed by Voorsluijs
et al. [225] based on other models presented in literature [143, 227, 31, 73].
However, in their model they did not incorporate the spatial domains, nor

glycolysis, lactate dehydrogenase and pyruvate oxidation.

Therefore, we propose a computational spatio-temporal model to investigate
the relationship between cytosolic calcium and ATP in relationship with the
morphology of the domain. We combine our metabolic proposed model [97, 99|
with the calcium model proposed in [225]. This work focuses on the crosstalk
between Ca?* and ATP. In particular, they propose a more detailed description
of mitochondrial activity than our previous work. The combination of these
two models allow (i) improve our metabolic model with a more detailed model
of mitochondrial activity (ii) investigate the impact of calcium on the metabolic
output and wviceversa (iii) consider the geometrical effect and the impact of

chemical diffusivity.

Our preliminary results indicate how the calcium interaction with our
metabolic model benefits the cell, improving the energy level and the lactate
concentration. Moreover, our studies on simple two-dimensional geometries
show the geometrical effect on the system behaviour. Last, investigating

glucose deficiency highlights the robustness of the system. In conclusion, these
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» GLC » PYR
Ca*
ATP
% U
ADP

Fig. 5.1 Schematic representation of the interaction of Ca?* with the metabolic
process, GLC enters the cytosol and is transformed through glycolysis into PYR.
PYR is either transported inside mitochondria or transformed into lactate which is
then exported to the extracellular space. The pyruvate inside the mitochondria is
transformed into AcCoA. TCA cycle and OXPHOS produce ATP, which is exported
back to the cytosol. Cytosolic Ca?* is exchanged between ER and mitochondria. To
enter the ER, Ca?T requires the use of ATP. (Image created with bioender.com)

AwCoA
LAC

preliminary results highlighted promising interactions between a calcium and

metabolic model spatially-solved.

5.2 Metabolism and Calcium Model

To investigate the potential interplay between metabolism and calcium, our
model proposes a coupling between two existing models. The metabolic model
is taken from our previous work [99], while the calcium signalling model is
based on the work [225]. The dynamic calcium model from [225] describes a
detailed interaction between cytosol, ER and mitochondria, focusing on the
interplay between ATP and Ca®*". To refer to the cytosol, the endoplasmic

reticulum and the mitochondria, we introduce the subscripts ¢, ER and m.

The steps of glucose metabolism are described through a combination of
these two models. Glycolysis modelling is following [99], where two additional
reactions describe it in a coarse-grained manner. As before (Chapter 4), we

divide glycolysis into an ATP-consuming and ATP-producing reaction. The
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first represents the combined action of hexokinase, phosphoglucose isomerase,
phosphofructokinase and the fructose bisphosphate aldolase enzymes in the
cytosol and name it HXK. The HXK reaction represents the consumption
of GLC at the cost of two molecules of ATP, to produce GLY, and ADP..
The second reaction (incorporating glyceraldehyde phosphate dehydrogenase,
phosphoglycerate kinase, phosphoglycerate mutase, enolase and the pyruvate
kinase occurring also in the cytosol) is referred to as PYRK. PYRK consumes
cytosolic GLY . and ADP,. to produce two molecule of ATP,. and PYR,. in the
cytosol. Thus, glycolysis produces two molecules of ATP, per molecule of GLC,.

The chemical equations for glycolysis are then:

HXK : GLC.+ 2ATP. — 2ADP, + 2GLY, (5.1)

PYRK : GLY.+ 2ADP, — 2ATP, + PYR.. (5.2)

We further consider then the transformation of cytosolic pyruvate (PYR, )
into lactate (LAC,), performed by lactate dehydrogenase (LDH) in the cytosol:

LDH: PYR. — LAC.. (5.3)

Part of the PYR produced by PYRK, enters the mitochondria through a
pyruvate exchanger (PyrEx), which is modelled following [28|. PyrEx describes
the reversible reaction where cytosolic pyruvate (PYR,.) becomes mitochondrial

pyruvate (PYR,,) using hydrogen protons:

PyrEx: PYR.+ H.” = PYR,, + 11, .

Then, the PYR,, is transformed by the pyruvate dehydrogenase complex
(pdh) into acetyl co-A (AcCoA). This reaction is modelled following [28] as:

pdh: PYR,, + CoA + NAD = AcCoA + CO, + NADH .
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The AcCoA produced enters the TCA cycle. From now on, the model is
taken from the work of [225]. Their model describes the TCA cycle through

eight reversible chemical reactions defined as:

CS: OAA 4 AcCoA + 11,0, = CIT 4 CoA
ACO: CIT = ISOC
IDH: ISOC + NAD = aKG + NADH + CO,
KGDH: oKG + NAD + CoA = SCoA + NADH + CO,
SL: SCoA + ADP,, + Pi,, = SUC + ATP,, + CoA
SDH: SUC + Co() = FUM + CoQH,
FH: FUM + H,0,, = MAL
MDH: MAL + NAD = OAA + NADH .

The products of the TCA cycle go through the electron transport chain
and oxidative phosphorylation, modelled by two reversible reactions (OX and
F1) [143]:

OX: NADH +10H,

m

1
+ 5()2 = NAD + 10H + H,0,,
Fl1: ADP, + Pi, +3H = ATP,, + H,O,, +3H,,

m *°

Finally, the ATP,, produced in the mitochondria is exchanged with the
cytosol at the cost of ADP, modelled by the ANT reversible reaction [143]:

ANT: ATP,, + ADP. = ATP. + ADP,, .

Furthermore, the exchange of hydrogen protons between cytosol and mito-

chondria is taken into account by the reversible reaction:
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H: H =1H .

The calcium dynamic of the model proposed by [225] considers the exchange

of calcium between cytosol, ER and mitochondria. NCX and MCU reactions
describe the exchange of Ca?t between the cytosol and mitochondria. The
exchange of Ca?" with the ER is captured by SERCA and ER,y. In particular,
the SERCA pump exchange of Ca®t from the cytosol to ER hydrolyzes ATP,
into ADP,. ERout mimic the flux of Ca®>" depending on the concentration of

[P35 mimicking IP3 sensitive receptors. The chemical equations are:

IP3
ERout : CaZjf = Ca2t

1 1 1 1
SERCA : Ca’t + FATP + SH0. = Caph + FADP. + o Pic
NCX: CaZf +3Na' = CaZt +3Na,
MCU: Ca’t = CaZf.

To conclude, our model considers the dynamics of ATP hydrolysis in the
cytosol described by a reversible reaction (Hyd) [225] to mimic other cellular

activities as

Hyd: ATP.+ H,O.= ADP.+ Pi. .

Chemical species whose concentration is considered constant (and hence

treated as fixed parameters) are highlighted in gray.

5.3 Mathematical Model

The metabolic and calcium modelling combined in this work [99, 225] have

been defined by a PDE and an ODE, respectively. Here, we keep the distinction
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between describing the metabolic model via a reaction diffusion system and

the calcium signalling model by a kinetic dynamic model described by ODEs.

5.3.1 PDE System

The metabolic model presented in the previous section is defined mathematically
through a reaction-diffusion system of partial differential equations. Consid-
ering (2 being a bounded domain of dimension d (d = 2,3), we look for the
concentrations ([-] : Q@ x [0,T] — R), [GLC]., [ATP]., [ADP]., [GLY]., [PYR].
and [LAC],, for all z €  and for all ¢ € [0, 7] such that

( a[@;;c}c = DqrcV?[GLC|. — Kgxk|GLC].[ATP]? + Ji,
UMPL —  DappV2[ATP]e — 2K s  [GLC]o[ATP2
+2Kpy rc[ADPZ[GLY e — Juya+0Jant — 5J/seRCA
—  DappV2[ADP]. + 2K xx[GLC][ATP]2
—2Kpy ric[ADP2[GLY e + Juya—0Jant + 3JsERCA
ICY]e — Dy V2IGLY] + 2Ky x x [GLC[ATP]?

ot
— Kpy ric[ADP2[GLY].

J[ADP].
at

(5.4)

AR —  Dpyy V2[PYR]. + Kpy pic[ADP2[GLY],
_KLDH[PYR]C_(SJP}/I‘EX
. 6[L§tC]C - DLACVQ[LAC]C + Krpu[PYR|c — nrac(z, t)[LAC]. ,

where Ds are the positive diffusion coefficients, K's are the classical reaction
rate of the law of mass action and J is the volume ration between mitochondria

and cytosol. .J;, is the source of glucose defined as

acR if (x,t) € Yy x[0,T], where i C
Jin(l’,t) =
0 otherwise.
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The outflux of lactate is defined as:

neR if (x,t) € Qow X [0,T], where Quy C Q2
nac(x,t) =
0 otherwise.

We impose pure Neumann boundary conditions:

Viu]-n=0 09 u={GLC,ATP,ADP,GLY,PYR,LAC}.

The system is complete with initial conditions for each specie at initial time.
In Equation (5.4), we have highlighted in blue the fluxes that communicate
with the ODE system.

5.3.2 ODE System

The ODE system from [225] has been adapted with the addition of two equations
that describe the pyruvate in the cytosol (PYR,) and the acetyl Co-A (AcCoA).
The system is solved by finding the concentrations ([-] : [0,7] — R), such that:
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dt PYR] pyrEx — deh
dt ACCOA] = Jpdh — Jcs

[
[
d;[ADP],, = Jant — Jr1 — Jsi
dy [CYKG] = Jipn — Jkapn
d[ATP] = —Jant + Jr1 + Jsp
d¢[Ca®*]. = %(—JSERCA + JER e + 0(INex — Juicu))
di[Ca*" ], = f—m(JMCU — JNnex)
d;[CIT],, = Jes — Jaco
d;[FUM],, = Jspu — Jru (5.5)
d;[ISOC],, = Jaco — JipH
d,[MALlw = Jrn — Jaon
d;[NAD];, = Jox — Jipn — Jxkepn — Jupn — Jpdn
d¢[NADH],, = —Jox + Jipn + Jkapn + Jups + Jpdn

d;]OAA]L = Jupn — Jos

A AT = 2-(10Jox — 3Jp1 — Jant — Jm — Jnex — 2Jmcu)
d[SCoAl,, = Jkepu — Jsi

d;[SUC], = Jst. — Jspw -

\

Fluxes are explicitly stated in Appendix C in Table C.1. The system is com-
pleted with initial condition for each specie at the initial time. In Equation (5.5),

we have highlighted in blue the fluxes that communicate with the PDE system.

5.4 Methods

We discretise the time interval and solve the PDES and ODEs at each time
step. To solve the PDES, we compute the fluxes using the solution of the ODEs
at the previous time step. Afterwards, the ODEs solution is computed with

the most recent values of the concentrations solved in the PDES.
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The PDES model Equation (5.4) is solved using classic finite element
method implemented in FENICS [138]. The solution of the PDEs is defined in
the space of P1 Lagrange elements, and the solver is a classic built-in solver,
Newton [185], of FENICS. The time is discretised using a backwards Euler.

For more detail on the implementation we refer to [97].

The interaction between the two systems is enabled by solving the ODEs at
each nodal point of the finite element mesh. Due to the stiffness of the ODE
system, we solve using an implicit scheme, Euler backwards, solved at each
degree of freedom of the mesh. The ODEs output is used as a input for the

PDES by projecting the solutions into the discontinuous Lagrange space.

5.5 Results

In this section, we present our first results on investigating the effect of calcium
and metabolism interaction in our spatially resolved metabolic model. The
parameters based on literature and the initial conditions for the chemical species

are shown in the Appendix C in Section C.2 and Section C.3.

First, we validate the coupled model, comparing the results with the as-
sociated ODE system. Then, we investigate the effect of different spatial
geometrical domain on the output. Last we consider the shortage of energetic

substrate by deprivating the cell from a percentage of glucose influx.

5.5.1 Validation of the Coupled PDE-ODE System

To validate our combined model, we show that the solution of the coupled
metabolic-calcium model (Equations (5.4)-(5.5)) converges to the solutions of

the associated ODE system.

To assess the PDE-ODE model’s convergence to the associated system,
we solve it in a small spatial domain to mimic a system where reactions are
not limited by diffusion. Hence, we consider a circular domain with radius
V3 um. We locate the influx of GLC and the exit of LAC in a surrounding

of two antipodal points. These surroundings are defined as the intersection
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of the domain with a circle centred in the selected points and a radius 0.3 pm
(Figure 5.2a).

The associated ODE system is solved using two different solvers. First, we
consider the built-in LSODA solver of scipy which was already used for the
original system in [225]. Second, we consider an Implicit Euler solver to assess
it as a valid choice for the coupling. The time step for the coupled model is set

to 0.01 as the Euler solver for the associated ODE system.
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Fig. 5.2 a Spatial setting of the two dimensional simulation in a 2D circle of radius
V3. GLC enters from one point and LAC exits from the antipodal point.b dynamics
of the ODE system associated (dashed lines) and the spatial average concentration in
the circle for the metabolites and Ca?" in cytosol and mitochondria (Circle in cyan,
ODE solved with Euler magenta and ODE solved with scipy in black dashed line).
c Comparison of average ATP : ADP obtained in the two-dimensional simulations
from Chapter 4 Figure 4.2e (white) and the minimum and maximum ratio from the
average simulation in the circle (cyan).

Figure 5.2b presents the behaviour of the metabolic species and the Ca*" in
the cytosol and mitochondria in the time interval [0, 1500]. For the PDE-ODE
coupling, the plotted solution is the average concentration at each time step.

The results show convergence in all three applied methods.

Comparing the interaction of the metabolic-calcium model to our previous

work [99], we notice that the calcium oscillation is induced in the whole system
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of metabolites. Moreover, comparing the average ATP : ADP from Section 4.3.1
(Figure 4.2e) with the minimum and maximum ratio of the coupled system in
the circle (Figure 5.2c), it is visible the improvement of the cellular energetic

maximum status.

In conclusion, the implicit Euler scheme is an appropriate choice to solve
the ODE in our coupled model. Our PDE-ODE coupled model in a small
domain converges to the ODE of the associated system. The benefit of the
calcium signalling on our previously proposed model is already evident by a

higher average value of ATP.

5.5.2 Metabolic-Calcium Dynamics in 2D Domains

After validating our coupled scheme, we investigate the spatial effect on the
system. As a first approach, we consider a circular and a star-shape domain
in two dimensions (Figures 5.3a-b). The circular domain is set up as in the
previous experiment. However, the diameter is now biologically significant,
set to 140 um, as the spatial extent of a typical astrocyte [165]. Based on the
diameter of the circle, we build the star shape. The GLC enter and LAC exit
locations are placed on two vertices of the star. We set the distance between
these two vertices equal to the circle diameter. The subregions are defined for
the circle and the star as the intersection of their respective domain with circles

of radius 10 pum.
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Fig. 5.3 a-b Spatial setting of the circular and star shape domain. The distance
between the two vertices of the star is equal to the circle diameter. ¢ Dynamics of
concentration for the ODE system associated (black dashed), circle (blue) and star
(orange).

Figure 5.3c shows the system’s dynamics for the two-dimensional domains
and the associated ODE system as reference. The spatial domain models add
the crucial role of the diffusivity of the species solved by the PDES. The effect
of the diffusion flattens the oscillation of the chemical concentration species in
the spatial experiments compared to the ODEs. However, the system behaviour

is in agreement with the ODEs. The spatial models lower the oscillation
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amplitude at larger time steps, suggesting that the system is still converging
towards the oscillatory steady state with damped oscillation compared to the
ODEs. The chemical species most affected by the spatial solution is LAC. LAC,
a crucial component for astrocytic metabolism, is much higher in the spatial
models compared to the ODE associated. The diffusion effect is responsible for
the high lactate levels. The lactate molecules are first required to be produced.
Then they need to travel to the region where they are exported, contrary to the
ODEs, where production and export of lactate are independent of the position.
Moreover, the higher levels of LAC obtained in the star-shape domain follow
our findings in Chapter 4, indicating that a more complex morphology might

interfere with the molecules’ diffusivity.

Investigating the energetic production of the different systems, we compare
in Figure 5.4a the minimum and maximum quantity of ATP : ADP and show
Figure 5.4b the changes of the latter in time. The ratio must be more than 1
to indicate a healthy cellular status [217]. The ODE system associated presents
the highest amplitude, followed by the star shape and last from the circle. In
contrast, the circle shows faster oscillation followed by the star and the ODEs.
Moreover, we compare in Figureb.4d the two main metabolic productions,
LAC and ATP versus Ca*". This plot highlights the good performance from
a metabolic point of view, with high values of LAC and ATP, for the three
experiments pointing to the importance of the more complex morphology of
the star. Compared to our results investigating the altruistic-egoistic behaviour
in Chapter 4, the spatial results here exhibit a high concentration of both ATP
and LAC in the cytosol, suggesting the bursting effect of cytosolic calcium
dynamics on the metabolism. Moreover, Ca*™ affects the egoistic-altruistic
balance adding an oscillatory behaviour. The spiral behaviour is better shown
in Figure 5.4e where Ca®" and ATP change over time. The three experiments
show a spiral behaviour that decreases in amplitude over time for the spatial
experiments, suggesting that in time the spatial experiments will reach the
oscillatory steady state with lower oscillatory amplitude but with a similar
cyclic trend as the ODEs.

In Figure 5.4c, we consider the relationship between mitochondrial pyruvate
and cytosolic calcium. These two species are related because PYR,, is then
transformed by pdh into AcCoA fundamental for the activation of the TCA

cycle. The two species showed a relationship through their maximum and
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minimum points. In the minimum calcium points, PYR,, clearly shows a point
of maximum and maximum points of Ca®" correspond to maximum points of
PYR,,. Also, in this case, the ODE performs smooth functions compared to
spatial domains. Moreover, we can appreciate the difference between pyruvate’s
star and circle behaviour, where PYR,,, displays sharper peaks in the star than

in the circle.
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Fig. 5.4 a Histogram of minimum and maximum ATP : ADP for the ODE system
associated (white), average for circular (blue) and star-shape (star) domains. b
ATP : ADP changing in time. The circular and star-shape domains show the average
concentration at each time step. d three-dimensional plot of ATP, LAC and Ca?*
in the cytosol for the three experiments. e three-dimensional plot in time of Ca?*
and ATP showing their spiralling behaviour for the three experiments. The two
spatial experiments decrease the oscillatory amplitude in time.c cytosolic calcium
Ca®* plotted and mitochondrial PYR plotted in time for the ODE (top), circle
(middle), star (bottom).

Next, we investigate the interplay between Ca?* and metabolism in the three
experiments of ATP and cytosolic Ca?t in the spatial domains (Figures 5.6
and 5.5). The dynamics are shown in the right plot of Figures 5.6 and 5.5 for a
time interval [0, 550](s), the two systems exhibit similar trends. On the left side
of Figures 5.6 and 5.5, we plot ATP and Ca*" spatial results for four-time steps.
We consider four times: the initial time (¢ = 0(s)), ¢t = 250 (s), ¢ = 500 (s) and

121



Cross-talk between Metabolism and Calcium Signalling

t = 540 (s). At the initial time, both ATP and Ca*" are homogeneous in high
concentrations. At time 250(s), ATP is close to its minimum, while there is a
high Ca®" concentration. Phase opposition that is also present in ODE model
from Voorsluijs et al. [225]. Spatially the results are non-homogeneous. ATP
is produced close to the GLC influx and low in the rest of the cell, opposite
behaviour for the Ca?". At time 500 (s), ATP is close to its maximum point.
In accordance, the spatial solution shows high concentrations. On the other
hand, Ca" concentration goes from its point of minimum to maximum. In the
spatial solutions, we see the heterogeneity of concentration levels. Last, at time
540 (s), both concentrations are at a high level. Between the spatial results of
the circle and the star, we can notice the geometrical effects, mostly at times
250 (s) and 500 (s). At these two time steps, we can notice that transport of
matter proceeds faster in the circular domain compared to the star domain. For
example, the trapping effect in the branches of the star is visible at ¢ = 500 (s)
and impacts Ca”>" concentration, which is lower in these regions of the domain.
In Voorsluijs et al. [225], we could see only phase opposition between ATP
and Ca®" concentrations. However, our coupled model showed a much more
complex behaviour of the species adding the heterogeneity of concentration
solved in a spatial domain which is then affected by the geometrical domain

choice.

122



5.5 Results

~
[ATP.] (mM)
0

1.0e+00 15 24 25 2.9e+00 9e:01 30e-l 40l 50el 6.0e-1

[CaZ*] (uM)

] ]

[ATP]. (I;L\[)

e reee et W,

Fig. 5.5 Circle domain’s spatial results (left) of cytosolic ATP (red box) and cytosolic
Ca®* (blue box), plotted at four time steps. The interplay dynamics of ATP and
Ca?* (Right) shows the four time selected (¢ = {0,250, 500,540} (s)). High calcium

levels induce low ATP and wiceversa.
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Fig. 5.6 Star shape domain’s spatial results (left) of cytosolic ATP (red box) and
cytosolic Ca** (blue box), plotted at four time steps. The interplay dynamics of
ATP and Ca®* (Right) shows the four time selected (¢ = {0,250, 500, 540} (s)). High

calcium levels induce low ATP and wviceversa.

Compared to our previous work [99], calcium dynamics pushes the cell
to perform better metabolically with high ATP and high LAC and inducing
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oscillations. This improvement is favoured by the geometries of the cellular
space considered. In agreement with Chapter 4 because of the trapping effect,
the star shape geometry performs better than the circle, and the spatial results
strengthen our belief that a more complex shape benefits the system due to
molecules’ trapping effects. These preliminary results represent an exciting
development to study the interplay of metabolism and calcium signalling
in spatial domains. Moreover, they allow us to investigate the system in
dysfunctional behaviour, similar to what we did in Chapter 4 for the astrocytic

morphology.

5.5.3 Effect of Glucose Impairment on the Metabolic-
Calcium Model

In this in silico experiment, we want to investigate the behaviour of the
metabolic-calcium model in the presence of glucose dysfunction. We test our
model considering that only 95% of the glucose was imported inside the cell.
First, we assess the ODE system’s behaviour (Figure 5.7). Interestingly, it
directly shows the sensitivity of the system towards changes in GLC. The lower
GLC uptake induces the cell to consume the ATP present in the cell’s cytosol
too quickly. Consequently, the glycolysis is blocked, and GLC accumulates in
the cell. Moreover, the low level of ATP in the cytosol block the exchanges of
Ca*" with the ER, disrupting calcium signalling.

125



Cross-talk between Metabolism and Calcium Signalling

[GLC]. (mM) [ATP]. (mM)
0 2 \ ,l"_ T S -
0 0
[ADP]. (mM) [GLY].. (mM)
3 1 A I
2 .- . . Vi N, Vs .
1 4” ‘\ ________ a’, \\ _________ 'l ‘\\ 0 \‘ /I \\\‘ /, \\\
[PYR], (mM) [LAC], (mM)

______ P === n N _ )=l A
0.1 j ’ \\

0.0

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Time (s) Time (s)

---- ODE  —— ODE 95% of [GLC]

Fig. 5.7 Dynamics of the ODE systems associated to the metabolic-calcium model.
The dynamic behaviour of the metabolites and the calcium shows that diminishing
the GLC uptake to 95% (gray) leads the fast consumption of ATP blocking the
system.

We run the same deficiency of GLC inside the circle (Figure 5.8a) and the
star shape (Figure 5.9a) in our coupled model. The diffusivity of the chemicals
is then playing a pivotal role, and the oscillations then survive, suggesting that
the spatial model, including diffusivity and space, is making the system more
robust (Figures 5.8b and 5.9b). The lower GLC uptake increases the oscillation
amplitude for GLC, ATP ADP showing the susceptibility of the system and
the thin balance between these species that lead the ODEs to not reach the
steady state.

Figures 5.8c and 5.9¢ shows ATP and Ca?' dynamics in the cytosol. Bio-
logically the decrease of nutrients should lead to faster calcium spiking [155].
This trend is slightly visible in the star shape domain, while we cannot observe
this behaviour in the circle. This suggests again that a star shape is more

biologically significant than a circle for the system behaviour.
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Fig. 5.8 a The setting of the circular domain simulation. b average concentrations
dynamic of the system for normal GLC uptake (blue), 95% GLC uptake (dark blue)
and 105% GLC uptake (cyan). ¢ Dynamic of Ca?* and ATP in the cytosol for normal
GLC uptake (top), 95% GLC uptake (middle) and 105% GLC uptake (bottom).

Even if the spatial results show a higher robustness in glucose deficiency
compared to the ODE, decreasing the glucose uptake to 90% was already
showing the same ODE system behaviour (Figure 5.7).

On the other hand, considering an increase of the GLC influx of 105%, the
system presents lower amplitude than normal condition (Figures 5.8b and 5.9b).
However, the systems present another dysfunctional behaviour. GLY starts

accumulating in the cell, preventing the system from reaching a steady state.

To conclude, these experiments with 90% and 105% GLC uptake show
dysfunctional behaviour in glycolysis. These results suggest that our model
might benefit from a better modelling interaction choice between GLC and
ATP. Thus, their interaction could be improved by investigating alternative
modelling ways. Nevertheless, the spatial model highlights how the spatial
component and chemical diffusivity made the system more robust to glucose

deficiency.

5.6 Discussion

Glucose metabolism and calcium signalling are two fundamental functions in

cells, particularly in astrocytes. Investigating these functions is fundamental to
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Fig. 5.9 a The setting of the star shape domain simulation. b average concentrations
dynamic of the system for normal GLC uptake (orange), 95% GLC uptake (dark
orange) and 105% GLC uptake (yellow). ¢ Dynamic of Ca*" and ATP in the cytosol
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(bottom).

discover new insights in disease developments. A hallmark for astrocytes in
neurodegeneration is low energy production [136, 156, 178| and morphological
changes [94]. Studying the interplay between these two cellular functionalities
can be done with the help of mathematical models. Many models studied
calcium signalling and metabolism separately. However, calcium requires ATP
to be transferred from the cytosol to ER, and, on the other hand, calcium in
mitochondria is used to activate key enzymes in the TCA cycle and thereby
enhances the flux of high energy electrons to the electron transport chain and
the ATP production by enzyme complexes in the inner mitochondrial membrane.
Due to this interplay, it is also necessary to study these two processes together
and, in sight of our work on spatially resolved metabolic model, with a geometric-
based model. Therefore, we proposed to couple together two existing models.
We consider our previously proposed metabolic model solved in spatial domains
through a reaction-diffusion system [99] and the kinetic dynamic calcium model
proposed in [225]. We solve these models as a PDE system coupled with an
ODE system. The two models are merged, adding two additional chemical
species which are PYR,, and AcCoA.

Our first results showed the exciting effect of the spatial model on the
coupling between these two processes. First, in Section 5.5.1, we have validated
our coupled scheme by comparing it to the associated ODE system. The

system showed the classic oscillatory calcium behaviour reflected in the whole
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metabolism. Then, we considered two 2D spatial domains, the circle and a star
shape (Section 5.5.2). The diffusivity affects the chemical species’ behaviour by
smoothing out the oscillation amplitude compared to the ODE. The coupled
model is more efficient in terms of ATP and LAC production compared to the
ODE. The calcium and ATP behaviour is in line with biological expectations:
peaks in ATP are followed by peaks in Ca®". Moreover, the spatial results
showed the heterogeneous concentrations level of ATP and Ca®". In particular,
the geometrical effect of the star shape are visible in the branches concentrations,
confirming our hypothesis of the molecular trapping effect in more complex
domains. Therefore, a complex domain ensures higher cellular metabolic

performance comparing LAC levels in the two shapes.

Last, we consider GLC impairment to simulate dysfunctional cellular glucose
uptake [159] (Section 5.5.3). Our findings highlight that the coupled system is
more robust than the associated ODE. The diffusivity is the key to simulate
buffering effect and robustness. However, these experiments pointed also to a
limitation in our model. The system is susceptible to small changes in glucose,
indicating the necessity to investigate further the relationship between GLC
and ATP. A possibility is to change the glycolysis model to keep a better
balance between these two species. Moreover, the Ca®" and ATP behaviour is
more biologically significant in the star shape compared to the circle pointing

towards the impact of complex morphologies.

In conclusion, our model combines spatial metabolic and calcium kinetic
models. The coupling is fundamental for investigating the interaction between
these two processes. Our preliminary results require further investigation.
Nevertheless, our results indicate that the geometric and diffusivity component

is essential for the system output.
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CHAPTER 0

Conclusion

This thesis aimed to investigate the metabolism of astrocytes in relation with
their morphologies in neurodegeneration. We discussed the motivation and
objectives of this project in Sections 1.1 and 1.2 respectively, highlighting the
interdisciplinarity of the work.

In Chapter 2, we presented a comprehensive overview of the state-of-the-art
of involved disciplines and detailed the scientific background of the method-
ologies applied in this thesis. For this purpose, we discussed the centrality of
astrocytes in the brain, focusing on their metabolism and morphologies, and
highlighted the changes in these features in neurodegeneration (Section 2.1).
We introduced systems biology as an interdisciplinary model-based approach
to investigate complex biomedical mechanisms and in particular the unknowns
in brain energy metabolism. When discussing the state-of-the-art of metabolic
models, we indicated the need for investigating geometry-based cellular models
and highlighted the lack of such approaches. Finally, we concluded the chapter

by reviewing some numerical methods to solve geometry-based models.
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6.1 Main Contributions

Within a widely used open source computational code base (FENICS [138]),
this thesis presented a flexible and easy-to-use image-based modelling approach
to study metabolic dynamics in actual physiological geometries. In Section 1.2,

we presented the first research question to reach our overarching goal:

“Which computational approach is best suited to deal with the complex
morphologies of cells directly from cellular images and keeping stability and

robustness in focus? ”

We addressed this question in Chapter 3. Astrocytes require a numerical
method that allows to include complex morphologies as a simulation domain.
As an ideal candidate for handling complex geometries, we investigated the
existing cut finite element method proposed in [58] and based on the idea of
partition of unity introduced in [18] and recently surveyed in [38]. CUTFEM is
adapted to complex geometries defined by images since the domain is implicitly
described as a level set function [206] on a simple non-conforming background
mesh. In contrast, the classical finite element method requires a more complex

mesh conforming to the object’s boundary.

Hence, we compared the results of our proposed metabolic model for in-
creasingly complex domains with the classical FEM and CUTFEM. We thus
established the validity of CUTFEM to solve complex diffusion-reaction sys-
tems on arbitrary complex geometries. Moreover, the open-source code allows

adapting our framework to any set of coupled PDEs on complex geometries.

After establishing a suitable numerical approach, we directed our research

to the following question:

“How relevant are the spatial organisation of reaction sites inside the cell

and different geometries for the output of the metabolic system?”

The question was addressed in our second manuscript [99] presented in
Chapter 4. First, we proposed an improved energy metabolism model based
on physiological astrocytic parameters. Then, we used simple two-dimensional
geometries to investigate the relevance of the spatial orchestration of the reaction
sites. The steady-state of the metabolic system showed a clear dependence on

the intra-cellular organisation. Moreover, geometrical differences between a
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circle and the star domain were reflected in the level of the final metabolite
concentrations. When exploring a more significant number of reaction sites in a
rectangular domain, we characterised the energetic cellular status based on the
distribution of mitochondria. Overall, our two-dimensional investigation proved
the impact of spatial arrangements on the metabolite profiles highlighting the
necessity of including spatial arrangements in future modelling. These results
are in accordance with the fundamental role of mitochondria distribution in
cells [104, 137] and with the necessity of refining the metabolic model [2].

In the second part of Chapter 4, we used confocal microscopy images of
astrocytes from human post-mortem brain samples with a reactive astrocyte
from an Alzheimer’s disease sample and a representative astrocyte from an
age-matched control sample as our simulation domains. Following our previous
work [97], we solved the model using CUTFEM and described the astrocytes
implicitly through a level-set function defined from the microscopic images. We

then addressed the two specific research questions:

“How is the physiological morphology of astrocytes relevant to their metabolic
role?” How can our model be used in physiological geometries to study neurode-

generation in AD?”

Our three-dimensional experiments showed that complex morphologies en-
sured the robustness of the metabolic system toward extreme reaction site
configurations. We then simulated AD-related metabolic dysfunctions [159,
136, 156, 33| and found that a single dysfunction impacts the system but does
not necessarily lead to an unhealthy energetic status of the cell. However, the
sum of all the metabolic dysfunctions led the cell to a state of energetic de-
mand. This combined response might be related to the multi-hit perspective in
neurodegeneration [173, 236]. Moreover, examining the individual dysfunctions
suggested that reducing LDH activity could help astrocytic function, in accor-
dance with cancer studies [126, 107|. In conclusion, our model incorporated
confocal microscopy images to infer the astrocytic shapes paving the way to
new in silico experiments that can help to compensate for the lack of human
in vivo samples. Moreover, we showed the applicability of our approach to
studying impaired brain energy metabolism in neurodegenerative diseases at

unprecedented resolution.

Finally, Chapter 5 addressed the question:
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“What is the interplay between glucose metabolism and calcium signalling

in a spatially resolved domain of a cell?”

For this purpose, we coupled our developed metabolic model with a dynamic
model of calcium signalling with a focus on ATP [225]. Our first results show
that the coupled systems can improve cellular energy metabolism. Our model
captured the energetic and calcium interaction in the cytosol. Furthermore,
we showed the system’s robustness compared to the ODE system under the
substrate, i.e. glucose, deficient condition. Even if it is a work in progress, we
presented promising results to investigate better the interplay between two key

features of astrocytes in spatial domains.

To summarise, our main contributions are

e areaction-diffusion system based on CUTFEM for central energy metabolism

including a step-by-step implementation,

e a numerical indication of the impact of different spatial arrangements of

reaction site on the metabolite concentrations,

e an image-based computational model for real human astrocytes suitable

to study energy metabolism in neurodegenerative diseases,

e a coupled model to investigate glucose metabolism and cellular signalling

in spatial domains.

6.2 Perspectives and Future Applications

The work presented in this thesis has proven to pave the way for many new and
exciting investigations on the relation between metabolism and geometries in
astrocytes. However, the reason why astrocytes undergo morphological changes
and their role in neurodegeneration remains to be clarified. In this last section,
we want to discuss the future perspective and future research directions opened
by the work in this thesis.
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6.2.1 Discretization

In our first paper [97], we applied CUTFEM to deal with geometries complexity.
However, working with 3D astrocytic images is computationally very expensive.
The addition of moving interfaces in CUTFEM is still under investigation [69]
and gets more challenging with a highly complex shape such as those of an
astrocyte. Other numerical tools presented in Section 2.4 can be investigated.
Furthermore, we could use error estimation to optimize the quality of the
mesh [89, 56, 55| for a given quantity of interest, e.g. energy production ATP.
This would enable to optimize the computational model to control the geo-
metrical, boundary condition and quantity of interest. We could also ensure
the accuracy of the solution by measuring the discretization error [37, 54, 88].
Moreover, the parameters of the model are uncertain. Papers on uncertainty
quantification [113, 189] should be developed to investigate parametric un-
certainties and their impact on quantities of interest. The interplay between

discretisation error and model/parameter uncertainty would be desirable.

6.2.2 Modelling

The metabolic model proposed in our work [97, 99| was beneficial in proving the
pivotal role of spatial distribution in the cell. However, it is a coarse-grained
model with chemicals modelled simply using the law of mass action. Therefore,
we could consider more detailed enzymatic models [61, 71|. The first step in

this direction has been done in our metabolic-calcium coupled model.

Moreover, on the coupled calcium signalling and metabolism model (Chap-
ter 5), we already discussed the model limitation that would require the
improvement of modelling glycolysis. However, the model describes the in-
teraction between three compartments (cytosol, mitochondria and ER). For
simplicity, we have not yet considered cellular compartmentalization for the
calcium module. Hence, a possible next step would be to include cellular

compartments in the model, defining different subdomains.

So far, our model focused on a single astrocyte, and we investigated the
metabolic output concerning their role as neuronal metabolic supply [24]. Hence,
a 3D coupled model of an astrocyte and a neuron could be a next meaningful

expansion of our model. As discussed, lactate is fundamental for neurons.
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However, neuronal metabolism differs from astrocytes since it is more based on
the TCA cycle. The coupled model could be investigated by adding a neuronal
morphology and calibrating the metabolic parameters with the literature [71].
The high computational cost of solving two complex morphologies is an arising

challenge.

Last, our model is entirely deterministic, but stochasticity is an immanent
property of biological processes. Including a stochastic component [48] in
activating our reaction sites or in the coupled model with calcium would add a
new realistic component to the model.

6.2.3 Biophysics

Astrocytes are very heterogeneous [210], as presented in Section 2.1. Thus, a
first application of our framework could be to consider a broader spectrum of
different types of astrocytes and investigate their metabolism and the impact

of their different cellular morphology on metabolism.

In our investigation of the reaction site locations [99], we highlighted the
central role of mitochondrial location [104, 137]. The potential development
of our work would be to use machine learning techniques [235] to investigate
reaction site locations and where they could be more efficient for metabolite

production in astrocytic morphologies.

Furthermore, the investigation of reaction sites pointed to the fundamental
role of mitochondria location for healthy, energetic cellular production. Mito-
chondrial dysfunction is a significant feature of Parkinson’s disease (PD) [41].
Therefore, our studies could be applied to PD wvia a multiscale approach which

can go from mitochondrial morphological level [105, 207| to the full astrocyte.

Last, we proposed to use our 3D model to investigate the metabolism of a
healthy astrocyte and an AD one. In the future, we would like to address the
challenge of a dynamic model that describes the morphological and molecular
changes of the cell from a healthy to a reactive state. A spatiotemporal model
describing the cellular changes from healthy to diseased would be a valid tool
to investigate cellular degeneration in silico. However, this comes with many
challenges. A stable numerical method is required to simulate morphologic

changes over time, leading to high computational costs.
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In conclusion, the work presented in this thesis demonstrated the efficiency
of interdisciplinary research in addressing biological complexity. The compu-
tational approaches shown are promising for investigating diseases and help

biologists test new hypotheses and unravel the mystery of the brain.
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Supplementary Information 1

A.1 Asymptotic Solution

The system of ordinary differential equations is obtained applying the law of
mass action to Equations (4.1)-(4.5). To avoid misinterpretation, we denote the
concentration A = [GLC|, B = [ATP], C = [ADP], D = [GLY], E = [PYR],
F = [LAC] and we obtain the system

(
dA __ 2
a _KHXKAB

B — 2KpxkAB? + 2Kpy rC*D 4 28 Kpito E — Ko B
% = ZKHXKAB2 - 2KPYRKC2D + KaCtB (A].)
% = QK—HXKAB2 - KPYRKC2D

Cil_? = KPYRKCQD - KLDHE - KMitoE

dF
(% = KionE

The initial condition for Equation(A.1) are chosen using the solution of the

PDES system Equation (4.6). We compute the integral over the domain §2
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using Equation (3.18) of the solutions of the PDES when the source term ends,
making stable the total amount of concentrations inside the domain

At =0) = [[GLC](t = 1)dx := Ay
B(t =0) = [,[ATP](t = 1)dz := B,
C(t=0) = [,|[ADP](t = 1)dz := C (4.2)
D(t=0) = [ [GLY](t = 1)dz := D,
E(t=0)= [4[PYR](t =1)dz := E,
| F(t=0)= [,[LAC](t = 1)dz := Fy

Considering abundance of ATP and ADP inside the domain, this lead to
only a possible system of steady state solution, that is when all the GLC is
consumed by reaction HXK Equation (4.1), GLY is consumed by reaction
PYRK Equation (4.2) and ATP is fully transformed into ADP from Equation
(4.5):

.

A =0
B =0

) IC)Z ; gﬂ + By + 28(Ey + Dy + 2Ap) (A3)
Ex=0

(Foo = Fo + (Eo + 240 + Do) (1 — )

In the solutions we have introduced a parameter a € [0, 1] which take into
account the fact that the concentration of PYR is transformed not in equal
part to LAC and ATP from the reaction LDH Equation (4.3) and reaction
Mito Equation (4.4).
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Supplementary Information 2

B.1 Spatial Arrangements for 2D Simulations in

Rectangular Shape

In the rectangular domain we set up our simulation with ten reaction sites per
reaction type. We define the entrance of GLC at the origin, the bottom left
corner and the exits of LAC on the opposite vertex (4, 140) um. The subregions
of entrance and exits have been defined as the intersection of the rectangle and

the circle with center the origin or the top right corner and radius 1.0 ym.

We present in Supplementary Table B.1, the different distributions used
to define the x and y coordinates of the enzyme arrangements inside the 2D
rectangle ([0,11] x [0,l5]). As presented in the main text, each setting has 10
reaction sites per reaction type. The uniform cells have all their sites sorted from

a uniform distribution, noted U|a, b] covering the whole rectangular domain.

In polarised cells, we assumed the enzymes to be distributed according to
normal distribution (N (m,o’), where m and ¢’ are the mean and standard

deviation, respectively) or log-normal (log N (m, ¢’)) distributions. Close to the
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Reaction site distributions

Uniform Polarised Polarised log NV (2)

T Y T Y T Y
HXK u[O,ll] U[O,lﬂ N(%72) N(l()? 5) N(%? 2) N<1Oﬂ 5)
PYRK Uy Up N(%,2) N(10,5) N(L,2)  N(10,5)
LDH  Upy Uow N(E,2) N(ly — 10,5) N(&,2) N(l, —10,5)
Mito Uy Uow N(3.2) N(10,5) or U[60,5]* N(1,2) logN(2,2)

Table B.1 The table shows the distributions chosen for z and y coordinates for
each metabolites for the simulations in the 2D rectangle for the Uniform, Polarised
and Polarised log N'(2) cells. * indicates that we sorted the Mito sites from two
distributions: six from the normal and four from the uniform. In this way, we ensure
the probability of having four Mito sites on the top of the rectangle.

GLC influx we place HXK and PYRK reactions, using NV(%,2) and N(10,5)
to select the x and y coordinates, respectively. The ten enzymes of LDH are
located close to the LAC efflux with (z,y) € (M(%,2)), N (I — 10,5). For the
ten mitochondria, we select the x coordinate as for the other reaction sites with a
normal distribution N (%, 2). For polarized cells, one option consists in locating
six reacting sites with y selected from a normal law A/ (10,5) and distributing
the remaining four uniformly within the top part of the cell (y > 60). We refer
to this setting as the “Polarised" one. We also consider a different sampling

where mitochondrial locations are distributed according to a log-normal law
log N (2.,2). We call this setting “Polarised log N'(2)".

Typical polarised configurations are although lacking mitochondria in the

middle part of the cell as shown in the corresponding figure of the main text.

B.2 Significance Test for 2D Realisation

We run 200 realisations for each of these configurations (i.e. uniform, po-
larised and polarised log A/(2) for the purpose of statistical testing. In order
to find out if the three types of spatial arrangements lead to statistically
significant differences in the realisations, we perform a multiple comparison
Holm-Bonferroni method since we consider simultaneously the distribution of
the different concentrations. The Bonferroni method is applied to a parametric
independent T-test to evaluate if there is a significant distance between the

means of the concentrations of the three configurations and to a non-parametric
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Wilcoxon-Mann-Whitney test to verify if two statistical samples come from
the same population. The results of the significance tests were presented in
Table 2. When the p—value is smaller than 0.05 then the hypothesis of the tests
is rejected, meaning that our samples describe different populations, which is

mainly the case.

The p-value results show that only GLY for the uniform and polarised cell,
and PYR for the two polarised configurations are not significantly impacted
by the spatial arrangements where GLY exhibits a high p—value only in the
t-test but not in the non-parametric one. This finding is consistent with the
similar average of the steady state concentration but the distinct underlying
distribution (Fig. 4.3 ¢). For PYR, the distributions for the two polarised cells
exhibit a similar range (Fig. 4.3 ¢) but since the two polarised cells only differ
by the distribution of mitochondria it is expected that the distribution of PYR

is similar, since it is produced in PYRK reaction.

B.3 Spatial Arrangement for 3D Simulations

We present in detail the settings of the simulation shown in Figs. 4.6 a-c. For
the control, C, and the reactive, R, LDH and PYRK sites were sorted by a
uniform distribution defined in the boxes that contains the two astrocytes, see
Fig. B.1. While HXK sites were sorted from a normal distribution centered in
each Mito site and with variance 0.03 X L where L is a dimensionless parameter

(see belowB.5). In particular, 1.38 ym for the control and 2.75 um for R.

The polarised settings were arranged colocalising HXK and PYRK en-
zymes from a uniform distribution that cover the endfeet of the astrocyte
(U[()Jz}x[yl,ly}x[o,lzp where [, [, [, are the dimensions of the box that contains the
control astrocyte). LDH were sorted from the opposite side of the box containing
the LAC export sub-regions of the astrocyte from another uniform distribution
Ulo,1,1x[0..y2]x[0,.]- While the Mito were sorted from a log-normal distribution
log N(1,,0.64,1,,0.2) in the manner that colocalise HXK and PYRK.

Last, the three sub-regions chosen for the GLC entrance and the four LAC
exits were selected manually and they are defined as the intersection of the

cellular morphology with a sphere with a radius of 1.0 ym.

163



Supplementary Information 2

< &

Fig. B.1 Astrocytic morphologies embedded into a finite element back-
ground mesh. a control and b reactive AD astrocytes are implicitly defined using a
level set function and embedded in a structured background mesh. This is how we
separated the finite element mesh from the geometries of the objects. Moreover, we
used the dimensions of the background meshes to define the bounds of the uniform
distributions to sort some of the reaction site centers.

B.4 Additional Figure for AD Simulations

We present in Supplementary Fig. B.2 an extension of Figure 4.7, where we
show the trajectories of the average concentrations of the metabolites. This
plot highlights the behaviour of the system in response to different AD related
conditions. The systems reach the steady state in ~ 50(s).
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Fig. B.2 Effects of AD conditions on metabolite dynamics in 3D reactive
astrocyte. Dynamics of the average concentration of each metabolites the simulations
are solved inside the reactive astrocyte in AD with the setting presented in Figure
6 c of the main manuscript. R is the solution obtained with healthy parameters
presented in Table 1 (red). E1 describes the deficiency of GLC uptake (magenta); E2,
the mitochondria dysfunction (dark red); E3, the LDH overwork (green); E4, PYRK
overwork (blue) and EAD, the four conditions combined (black).

B.5 Dimensionless System

To obtain the dimensionless system from the RDS Eq. 6, we impose [GLC] =
G4 1aTp) = B [ADP] = BPY [GLy] = S [pYR] = X [LAC) =
[LAC] , where Atot is the total amount of ATP and ADP inside the cell and o a

constant that we set to 0.16. The spatial dimensionless is 7 = ¥ § = ¥ and
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zZ = Z where L is a parameter based on the volume of the astrocyte:

%

=
Va

where V' is the real volume of the astrocyte segmented and Vf, is the volume of

the astrocyte in the dimensionless box with fixed x size of 1.0. We also define

the dimensionless time parameter as t = i and we choose t. = #ic. So, we
have that the dimensionless system is:
(259 = V2(GLC] - KaxBiezo [GLCJATPT + gy T
T D = - — 2
oATE B VAIATP] = 2Kuxk Sazp) [GLC][ATP] -+
+2KpyrkY[aTp) [ADP] i [GLY]
+28/C o€ wtp) [PYRIADP]™ — Koot p) [ATP]
5 D = - -2
W = perV2[ADP] + 2K fjape [GLCJATP] +
-
—2KpyricYatp)[ADP] [GLY] (B.1)
- _ _ g .
3 D = = — 2
UG = FEIV2[GLY] + 2K By [GLCJATP] +
5
_ICPYRK’Y[ATP} [ADP] [GLY]
Y D S = 2. =
W = Gt VPPYR] + Keviyjare) [ADP] [GLY]+

S > - .28
—/CLDHM[P\?R} [PYR] — Khito§ [PYR] [PYR][ADP]

D — — —
(2559 = SEAVALAC] + KionpypicPYR] = npag [LAC]

GLC]

where the dimensionless coefficients are shown in the Table B.2:
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Dimensionless coefficients

HXK PYRK LDH Mito act
Biaic) = teAby diaic) = =
Biaip) = te@Ator  Vatp) = Atorle atp) = L@ AT, Tiagp) = L
Biabp) = teAtor Vapp) = Atote §anp) = L AT, Tate) =t

Biciv) = teAbr  Vaiy] = Aborte
YPYR] = A‘%ottc HipyRr) = te §[P\?R] = tCAggt
HLac) = te MLac) = ke
Table B.2 The table present the dimensionless coefficients for the dimensionless
system B.1.

In this way, we define a dimensionless system that depends only on the

dimensionless volume of the cell.

B.6 Detail on Numerical Methods for 2D Simu-

lations

The 2D experiments were solved using standard finite element method (FEM)
implemented in Python with the open source finite element solver DOLFIN
from FENICS [138, 9]. The domains are explicitly meshed using the package
mshr, which generate a finite element mesh that conforms to the boundary
of the domains. The solution of the weak problem is defined on the space of
piece wise Lagrange finite elements of degree one. We solve the non-linear
equation using a Newton-Raphson scheme, where the Jacobian is calculated
automatically by the automatic differentation capabilities of UFL [10]. The
linear system at each time step of the Newton-Raphson algorithm is solved

using standard linear solvers from the PETSc library. For further details [97].

B.7 Details on Numerical Methods for 3D Simu-

lations

To solve the system on the 3D astrocytic domains, we use a cut finite element [58]

approach able to deal with the complexity of the cellular geometry, as shown
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in [97]. The difference between FEM and CUTFEM lies in the fact that FEM
requires to generate a mesh conformed to the boundary of the domains. This
can be a difficult task and CUTFEM removes this need. In CUTFEM, we
describe the boundaries implicitly through a level set function [170, 206] that
can be extracted from images. In particular, the level set function ® is a
scalar function that has negative values inside the domain, positive outside and
zero on the boundary of the object. We obtained the level set, ®, of the final
segmented image f solving the following system in the domain B which is a

three dimensional box where we have mapped the image f:

NP+ D =f inB
V& -n=0 ondB

where € is a smoothing parameter that we set to 0.001. This step smooth
the boundary of the cells to reduce the mesh size and related computational
complexity respectively. In Supplementary Fig. B.1, we show the regular
background mesh of finite element covering the two astrocytic domains. To
solve the weak formulation of the RDS using CUTFEM, we define the fictitious
domain as all the cells of the background mesh that have a non-zero intersection
with the cellular domain (Supplementary Fig. B.3). We apply a ghost-penalty
stabilisation term [57] to all the edges that are intersected by the interface
and all the edges that connect the intersected cells with the interior of the
cellular domain. These stabilisation terms extend the solution from the physical
domain €2 onto the fictitious domain. This is of fundamental importance to
ensure the stability and accuracy of the numerical solution as the ghost-penalty
stabilisation prevents ill-conditioning of the system matrices in case intersected
cells contain very little of the cellular domain [58]. In this case, the linear
system arising in the numerical experiments are solved using a direct (MUMPS)

solver.

For further reading we address the reader to our previous work [97] and
alternative proposed for enriched FEM [18, 38, 5, 3].
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Facet

Fig. B.3 Fictitious domain and facet markers for the two astrocytic mor-
phologies. Fictitious domain for the two astrocytic shape a control and b reactive,
defined as the non-zero intersection of the finite elements with the cellular domain.
We apply the stabilization term to the facets marked in red.

B.8 Numerical Parameters

The parameters used for the 2D experiments are presented in Supplementary
Table B.3 and for the 3D experiments in Supplementary Table B.4. The penalty
parameter v used to ensure stability on the cut cells is set to 0.1. Convergence

study were done extensively in the 2 dimensional experiments.

2D Numerical parameters

geometry # cells # dofs max cell diameter At

circle 88768 44856 * 0.93 0.25
star 51046 26164 * 0.77 0.25
rectangle 25298  13207* 0.33 0.17

Table B.3 The table presents the numerical parameters used in the 2D experiments
for the three domains: circle, star and rectangle. We show the number of cells in the
finite element mesh, the number of degrees of freedom (dofs), the maximum diameter
of the finite element cell and the time step used for the time discretisation. * In the
table the number of dofs refers to one subspace. The total number of dofs for all the
six subspaces is 269136 for the circle, 156984 for the star and 79242 for the rectangle.
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3D Numerical parameters

astrocyte # cells in bg mesh # cells on €2 # dofs max cell diameter At
control 1000008 158938 37742 0.022 0.08
reactive 1301760 162579 39143 0.018 0.026

Table B.4 The table presents the numerical parameters used in the 3D experiments for
the control and reactive astrocytes. We show the number of cells in the background
finite element mesh, the number of cell covering the astrocyte domains €2, the number
of degrees of freedom (dofs), the maximum diameter of the finite element cell and
the time step used for the time discretisation.
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C.1 Fluxes

Fluxes used in Equation (5.5) are defined in Table C.1, taken from [225].

In Table C.1, Vi is the volume of reference with respect to which each
reaction rate, J., and the corresponding entropy production rate, o, are
normalised. Starting from the corresponding pseudoisomer concentrations,
Magnus and Keizer [143] estimate that [ATP4’L = 0.05 [ATP]_, [ATP4’]m =
0.05 [ATP],,, [ADP?"] = 0.45 [ADP]_ and [ADP’"] = 0.36 [ADP] .
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Table C.1 Fluxes of the system.

Process Vi J, (mMs™) Ref
. 1S0C]
ACO Vi Jaco = K ([CIT]m - [K,r\c]om) 73]
AJP“’] [ADP“’ —av
e e
ANT Vi Jant = VAN — L ]“‘ oI, [143]
(v+firfee ) (1+fert2)
_ Vs
cs Vio Jos = 14 fAcoa | K{toAA (] . {Ammm> K5 AcCoAKfToaA (84]
" TAcCoAly, " [OAA], "Ki Accon ) (IORA][AcCoA]y,
1PsR__ [IP3)? [Ca“]f Kica LEAK 24 24
ERout Ve oo = \ Vot iz, oo T wgariort * V) (O e =[G
[m103’-“""+pc10$11 /4r17mﬂgr"€#+pc24rm”k#
F1 Ve Jr1 = —pr 3 143
' (11 Apr e T2 4ot ApJe T (142
with Ap; = KH%
o MAL]

FH Vi Jen = K ([FUM),, — D2 ) (73]
HI Vi Jim = gu (AT — 2.3035L ApH) [143]
! _ [ATP], .
Hyd Ve Jraya = Kty [ATP] + Ky aTPe [227]

_ Vil
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KGDH  V,,  Jkepu = ‘72:’.1:!‘);4 ToRG [84]
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[MAL],, [NAD],, — [CAAL NADH],,
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RT(I—C T) <]+4§Kuans> +7[(,n§+] -
(Hﬁ)
Pox s = VRS I s 20
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172



C.2 Parameters

C.2 Parameters

The parameters for the model have been chosen based on literature. The
metabolic model’s parameters are taken from our previous work shown in
Table 4.1. The parameters used in [225] for the calcium model are presented in
Table C.2.
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Table C.2 Reference parameter values.

Parameter Definition Value (units) Reference
el Ratio between ER and cytosol volumes 0.10 [227]
Aot Total concentration of cytosolic adenine nucleotides 3 mM [155]
Aot Total concentration of mitochondrial adenine nucleotides 15 mM |143]

b Dependence of electrogenic Na*/Ca®! exchanger on AU 0.5 [143]

Chn Mitochondrial membrane capacitance 1.812 x 1073 mM mV-  [73]
[COy) Total CO, concentration in mitochondrial matrix 21.4 mM [231]
[CoA] CoA concentration in mitochondrial matrix 0.02 mM [73]
[CoQ)] CoQ concentration in mitochondrial matrix 0.97 mM [231]
[CoQH,| CoQ; concentration in mitochondrial matrix 0.38 mM [231]
Ciot Total free Ca®* concentration of the cell normalised by V. 1500 pM [225]
CKtot Total concentration of TCA cycle intermediates 1 mM [73]

0 Ratio between mitochondrial matrix and cytosol volumes 0.15 [208, 139]
ApH pH difference between cytosol and mitochondrial matrix (pHe — pHy,) -0.80 |52, 63]
AU* Membrane potential offset for Ca®" transport 91 mV [143]
AVp Total phase boundary potential 50 mV [143]

F Faraday constant 96.485 kC mol™!

f Fraction of AW responsible for the behaviour of ANT in energised mitochondria 0.5 [143]

fe Fraction of free cytosolic Ca?* 0.01 |227]

fe Fraction of free Ca?" in the ER 0.01 [227]

fm Fraction of free mitochondrial Ca?" 0.0003 [143]

5 Conversion factor between mM and pM 1000 pM mM-!

g Fitting factor for voltage in respiration rate 0.85 [143]

gu Tonic conductance of the mitochondrial inner membrane 1075 mM mV-! st |73]
[H*], Cytosolic proton concentration 6.31 x 1075 mM [52, 63]
[HY], Concentration of proton in the mitochondrial matrix 107 mM [52, 63]
Ko cCac Activation constant of IP3Rs for cytosolic Ca* 0.60 uM [225]
Kaco Equilibrium constant of ACO 0.067 [103, 29|
Kot Dissociation constant of mitochondrial uniporter for activating Ca®* 0.38 [143]
Karpe Dissociation constant of SERCA for cytosolic ATP 0.05 mM |204, 155]
K, App Activation constant of IDH for ADP,, 0.062 mM (84, 73]
Kacam Activation constant of IDH for mitochondrial Ca?" 1.41 uM [73]
Kaip, Activation constant of IP3Rs for IP3 1.00 uM (86, 227]
Kca Dissociation constant of SERCA for Ca?* 0.35 uM (86, 227]
Kp.ca Dissociation constant of KGDH for mitochondrial Ca? 1.27 M (84, 73]
Kp g Dissociation constant of KGDH for mitochondrial Mg?! 0.0308 mM |73

Kpy Equilibrium constant for ATP hydrolysis in mitochondrial matrix 1.71 x 106 (180, 73]
Kru Equilibrium constant for FH 3.942 [103]
kpeo Forward rate constant of ACO 125 st [73]

K Forward rate constant of FH 8.3 st [225]
kv Forward rate constant of SL 0.127 mM2 st (73]

ka1 First ionisation constant of IDH 8.1 x 107° mM (84, 73]
kn2 Second jonisation constant of IDH 5.98 x 107° mM (84, 73]
Ktiya Hydrolysis rate of ATP, due to cellular activity 0.088 mM s! This work
K AcCon Inhibition constant of CS for AcCoA 3.7068 x 1072 mM 184]
Kica Inhibition constant of IP3Rs for cytosolic Ca®* 1.00 M [225]
Kirum Inhibition constant of SDH for fumarate 1.3 mM |73]
Kioaa Inhibition constant of SDH for oxaloacetate 0.15 mM [73]
Kinapu Inhibition constant of IDH for NADH 0.19 mM [73]
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Table A2 (continued). Reference parameter values.

Parameter Definition Value (units) Reference
K AcCon Michaelis constant of CS for acetyl-CoA 1.2614 x 1072 mM  [84, 73]
Kyakc Michaelis constant of KGDH for a-ketoglutarate 1.94 mM |73]
Ky arpe Michaelis constant for ATP, hydrolysis due to cellular activity 1 mM [227]
Kuica Michaelis constant of Na®/Ca*" exchanger for Ca?" 0.375 uM [73]
Kisoc Michaelis constant of IDH for isocitrate 1.52 mM (84, 73]
KyivaL Michaelis constant of MDH for malate 0.145 mM [29]
KyiNa Michaelis constant of Na'/Ca?" exchanger for Na' 9.4 mM [143]
KMo Michaelis constant of IDH for NAD 0.923 mM [84, 73]
KX, Michaelis constant of KGDH for NAD 387 x 1072 mM  [225]
KR Michaelis constant of MDH for NAD 0.06 mM [29]
Kyinapn Michaelis constant of MDH for NADH 0.044 mM [73]
KS?OAA Michaelis constant of CS for oxaloacetate 5% 107% mM [148, 130, 29]
K\Oaa Michaelis constant of MDH for oxaloacetate 0.017 mM [29]
Kwusuc Michaelis constant of SDH for succinate 3 x 1072 mM [73]
Kupnu Equilibrium constant of MDH 2.756 x 107° [103]
Kies Equilibium constant of Oy reduction by NADH in mitochondrial matrix 1.35 x 108 [143]
K AcCon Other binding constant of citrate synthase for AcCoA 8.0749 x 1072 mM  [84]
K1, Equilibrium constant for SL 0.724 [103]
Kirans Dissociation constant of mitochondrial uniporter for translocated Ca?* 19 uM [145]

L Equilibrium constant for mitochondrial uniporter conformations 110 [145]
Mg**],, Mg concentration in the mitochondrial matric 0.4 mM [73]

n Number of Na™ binding to electrogenic Na®/Ca?" exchanger 3 [143]
Ng Mitochondrial uniporter activation cooperativity 2.8 [143]
[Nat], Cytosolic Na® concentration 10 mM |73]
[Na*], Mitochondrial Na® concentration 5 mM [81]
NGKG Hill coefficient of KGDH for o KG 1.2 [73]

n; Hill coefficient of IDH for isocitrate 2 [229]
Niot Total concentration of mitochondrial pyridine nucleotides 0.8 mM [225]
[02] O, concentration in mitochondrial matrix 2.6 x 107> M [22]

p1 Combination of elementary kinetic constants for the 6-state ATPase model 1.346 x 1078 [143]
D2 Combination of elementary kinetic constants for the 6-state ATPase model 7.739 x 1077 [143]
D3 Combination of elementary kinetic constants for the 6-state ATPase model 6.65 x 1071° [143]
PDa Combination of elementary kinetic constants for the 6-state ATPase model 1.656 x 1075 st [143]
Det Combination of elementary kinetic constants for the 6-state ATPase model 9.651 x 10714 g1 [143]
De2 Combination of elementary kinetic constants for the 6-state ATPase model 4.845 x 10719 g1 [143]
[Pi]. Inorganic phosphate concentration in cytosol 1 mM [32]
[Pil,. Inorganic phosphate concentration in mitochondrial matrix 20 mM [143]
R Gas constant 8.314 J mol! Kt

P Density of ATPase pumps 1.5 [225]
Dres Density of H" pumps in mitochondrial membrane 1.00 [225]
T Combination of elementary kinetic constants for the 6-state respiration model 2.077 x 10718 [143]
Ty Combination of elementary kinetic constants for the 6-state respiration model 1.728 x 10~ [143]
T3 Combination of elementary kinetic constants for the 6-state respiration model 1.059 x 1026 [143]
Tq Combination of elementary kinetic constants for the 6-state respiration model 6.394 x 10710 gt [143]
Tl Combination of elementary kinetic constants for the 6-state respiration model 2.656 x 1071 st [143]
T Combination of elementary kinetic constants for the 6-state respiration model 8.632 x 10727 g7t [143]
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Table A2 (continued). Reference parameter values.

Parameter Definition Value (units) Reference
T Temperature 310 K [73]
VANT Limiting rate of adenine nucleotide translocator (ANT) 15 mM s [73]
VEes Limiting rate of CS 52 mM s [225]
V/IDI Limiting rate of IDH 0.15 mM st [225]
VPR Limiting release rate of Ca" through IP3Rs 15 s [225]
Y KGDH Limiting rate of KGDH 5 mM s [225]
VLEAK Leak rate of Ca’" from ER 0.15 5! [225]
Y MDH Limiting rate of MDH 32 mM st [225]
NOX Limiting rate of Na®/Ca®" exchanger 2x 1073 mM st [225]
VSDH Limiting rate of SDH 1 mM s [225]
V/SERCA Limiting rate of SERCA pumps 0.12 mM s [227]
MCU Limiting rate of mitochondrial uniporter 0.30 mM st [225]

The additional parameters to merge the two models are shown in Table C.3.

Table C.3 Reference parameter values.

Parameter Definition Value (units) Reference
Ky pyr. Michaelis constant of PyrEx for cytosolic pyruvate 0.15 mM [29]

K 1]\)] ;%Rm Michaelis constant of PyrEx for mitochondrial pyruvate 0.15 mM [29]

Y PyrEx Limiting rate of pyruvate exchanger 128 mM s~! [29]
Vpdh Limiting rate of pdh 13.1 mMs~! [29]
AGam Modulator factor for Ca®" regulation 1.7 [28, 29]
K4 can Activation constant of pdh for mitochondrial Ca®* l.e-3 uM [28, 29]
Kﬁ’g }FI’YR,” Michaelis constant of pdh for mitochondrial pyruvate 0.090 mM [28]
KprNap Michaelis constant of pdh for NAD 0.036 mM [28]
Krconn Michaelis constant of pdh for coa,, 0.0047 mM [28, 29]
[IP3] IP? concentration 0.5 uM [225]

C.3 Initial Conditions

Th initial conditions have been selected using the one in [99, 225| as initial
selection for the ODE system associated to the two models combined. We then

selected initial conditions closer to the steady state oscillations (Table C.4).
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Table C.4 Reference parameter values.

Species Definition Value (units)
GLC Initial condition for cytosolic glucose 1.023e-01 mM
ATP, Initial condition for cytosolic ATP 2.79 mM
ADP, Initial condition for cytosolic ADP 3.05e-01 mM
GLY. Initial condition for cytosolic glycerhalderaide 5.20e-01 mM
PYR. Initial condition for cytosolic pyruvate 1.38¢-01 mM
LAC. Initial condition for cytosolic lactate 2.75e+00 mM
PYR,, Initial condition for mitochondrial pyruvate 1.87e-06 mM
AcCoA,, Initial condition for mitochondrial acetyl coenzyme A 1.60e-07 mM
ADP,, Initial condition for mitochondrial ADP 1.28e+01 mM
aKG Initial condition mitochondrial a-ketoglutarate 6.65e-06 mM
ATP,, Initial condition for mitochondrial ATP 2.15 mM
CaZt Initial condition for cytosolic calcium 5.76e-01 uM
CaZt Initial condition for mitochondrial calcium 1.62 uM
CIT,, Initial condition for mitochondrial citrate 9.61e-02 mM
FUM,, Initial condition for mitochondrial fumarate 1.36e-01 mM
ISOC Initial condition for mitochondrial isocitrate 6.43e-03 mM
MAL,, Initial condition for mitochondrial malate 5.36e-01 mM
NADH,, Initial condition for mitochondrial NADH 5.70e-05 mM
NAD,, Initial condition for mitochondrial NAD 7.99e-01 mM
OAA,, Initial condition for mitochondrial oxaloacetate 2.25e-01 mM
Ay Initial condition for membrane potential 1.02e+02 mM
SCoA,, Initial condition for mitochondrial succinyl coenzyme A 1.67e-05 mM
SucC,, Initial condition for mitochondrial succinate 4.41e-05 mM
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