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ABSTRACT. We say that two abelian varieties A and A’ defined over a field F are polyquad-
ratic twists if they are isogenous over a Galois extension of I’ whose Galois group has expo-
nent dividing 2. Let A and A’ be abelian varieties defined over a number field K of dimension
g > 1. In this article we prove that, if g < 2, then A and A’ are polyquadratic twists if and only
if for almost all primes p of K their reductions modulo p are polyquadratic twists. We exhibit
a counterexample to this local-global principle for g = 3. This work builds on a geometric
analogue by Khare and Larsen, and on a similar criterion for quadratic twists established by
Fité, relying itself on the works by Rajan and Ramakrishnan.

1. INTRODUCTION

Let K denote a number field and let A and A’ be abelian varieties defined over K of dimension
g = 1. Call X the set of nonzero prime ideals of the ring of integers O of K. Only finitely
many primes in X are of bad reduction for A and A’. In this article, by “almost all p € X ™
we will mean all primes of X i outside a zero density subset containing the finite set of primes
of bad reduction.

Faltings isogeny theorem [Fal83] asserts that A and A’ are isogenous if and only if their re-
ductions A, and A; modulo p are isogenous for almost all p € Y. We say that two abelian
varieties are geometrically isogenous if their base changes to an algebraic closure of their field
of definition are isogenous. Building on Faltings isogeny theorem and a result by Pink [Pin98]],
Khare and Larsen [KL20, Thm. 1] have shown that A and A’ are geometrically isogenous
if and only if their reductions A, and A;J modulo p are geometrically isogenous for almost
all p € Yk (in fact, they show that it suffices to require this property for a set of primes of
sufficiently large density).

In the context of the result of Khare and Larsen, Faltings isogeny theorem asserts that the
property of A and A’ admitting an isogeny defined over K can be read purely from local
data. There is a variety of results in the literature studying whether certain global properties
of isogenies can be inferred from local information. For example, when ¢ = 1 and m is a
positive integer, the articles [Sutl2], [Annl14]], [Vog20] study the problem of characterizing the
existence of a degree m isogeny of A in terms of the existence of degree m isogenies for A,
for almost all p € X i. The analogous problem when g = 2 has been recently explored by
[Ban21]] and [LV22]]. Rather than on the degree of the isogeny, in the present article we focus
on its field of definition.
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We say that A and A’ are quadratic twists if A’ is isogenous to A,, where A, denotes the
twist of A by a quadratic character y of G, regarded as an element in H!(Gf, {+1}) C
H(Gg, Aut(Ag)). Notice that the condition of being quadratic twists is finer than that of
being isogenous over a quadratic extension. We say that A and A’ are locally quadratic twists
if A, and A; are quadratic twists for almost all p € Y. In the spirit of the previously
mentioned results, the main theorem of [Fit21] shows that, for g < 3, A and A’ are quadratic
twists if and only if they are locally quadratic twists. Moreover, a counterexample to this
local-global principle in dimension g = 4 is presented.

In this article we are concerned with a notion that unwinds that of being quadratic twists. We
say that a Galois field extension is polyquadratic if its Galois group has exponent dividing 2.
Note that a polyquadratic extension of a finite field is either trivial or quadratic. We say that
two abelian varieties are polyquadratic twists if their base changes to a polyquadratic exten-
sion are isogenous. We say that A and A’ are locally polyquadratic twists if A, and A;J are
polyquadratic twists for almost all p € Y.

It is easy to see (cf. Remark [16) that if A and A’ are polyquadratic twists, then A and A’ are
locally polyquadratic twists. The goal of this article is to study the converse of this implic-
ation. For g = 1, this converse follows easily from results of Rajan [Raj98, Thm. B] and
Ramakrishnan [Ram00, Thm. 2]. The main result of this article is the following.

Theorem 1. Suppose that A and A’ are abelian surfaces defined over a number field K. Then
they are polyquadratic twists if and only if they are locally polyquadratic twists.

To complement the above theorem, in §5| we exhibit two abelian threefolds that are locally
polyquadratic twists but are not polyquadratic twists. In §2] we translate our problem into a
problem about /-adic Galois representations and reinterpret the notions defined in this intro-
duction in group theoretic terms. We also recall the main results of [KL20] and [Fit21]], and
we prove some technical results that will be used in later sections. In §3|we carry out the proof
of Theorem [I]in the most complicated case, that is, when A is either geometrically isogenous
to the square of an elliptic curve or has geometric quaternionic multiplication. A crucial input
in this case is the tensor decomposition of the Tate module 7y(A) provided by [FG22]. This
remarkably allows us to translate our problem concerning ¢-adic representations of degree 4
into a problem concerning Artin representations of degree 2 (see Theorem [I2]for a solution of
the latter problem). The proof of the remaining cases of Theorem |1| takes place in where
we benefit from the classification of Sato-Tate groups of abelian surfaces of [FKRS12]]. We
remark however that our proof is independent of the Sato-Tate conjecture.

Notation and terminology. All algebraic extensions of K are contained in some fixed algeb-
raic closure Q of Q, and we denote by Gk the absolute Galois group Gal(Q/K). For a field
extension L/ K, we write Ay, to denote the base change of A from K to L. Given a represent-
ation p, we call " its contragredient representation, ad(g) ~ p® p" its adjoint representation,
and ad’(p) the subrepresentation of ad(p) on the trace 0 subspace. If g is a representation
of Gx with coefficients in a field E and L/K an algebraic extension, we denote by o|r, the
restriction of o to G'z; we say that g is absolutely irreducible if ¢ ® E is irreducible; and
we say that g is strongly absolutely irreducible if g|z, is absolutely irreducible for every finite
extension L/ K.
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2. PRELIMINARIES

2.1._Group theoretic descriptions. Let £ be a topological field, and fix an algebraic clos-
ure E. Let G be a compact topological group, and let g, ¢’ : G — GL,(E) be semisimple
continuous group representations, where r is a positive integer.

Definition 2. We call g and ¢’ locally quadratic twists if for every s € G there exists €5, € {+1}
such that

det(1 — o(s)T) = det(1 — €50 (s)T) .
We call them locally polyquadratic twists if for every s € G we have

det(1 — o(s*)T) = det(1 — o' (s*)T).

Definition 3. We call o and ¢ quadratic twists if o' ~ x ® o holds for some quadratic charac-
ter x of G. We call them polyquadratic twists if

t
(1) 0~Po ad =P
=1 ]

holds for representations g;, ¢ : G — GL,, (E) such that ¢} ~ x; ® 0;, where n; is a positive
integer and ; is a quadratic character of G.

Remark 4. Suppose that r = 2, and let o and ¢’ be polyquadratic twists. Then either o and o
are quadratic twists or there exist characters X1, x2 of G and quadratic characters @1, p2 of G
such that 0 ~ x1 ® x2 and o' ~ p1X1 D Pax2.

We have the following characterization of polyquadratic twists.

Proposition 5. The representations o, ¢ are polyquadratic twists if and only if olg ~ o |u
holds for some normal subgroup H C G such that G/H is a finite abelian group of exponent
dividing 2.

Proof. Supposing that o, ¢’ are polyquadratic twists, we may take for H the intersection of the
kernels of x1, ..., x,. For the converse implication, let 6 be an irreducible constituent of p. By
the argument in the proof of [Fit12, Thm. 3.1], the representation € is an irreducible constituent
of Hompy (0, o') ® o', where Hom (6, ¢’) denotes the space of H-equivariant homomorphisms
from 6 to ¢'. Since Homp (6, ¢'), as a representation of G/ H, is a sum of quadratic characters
of G/H, there exists an irreducible constituent 6’ of ¢’ and a quadratic character y of G/H
such that #’ ~ y ® 6. We can apply the same argument to the complement of 6 in ¢ and the
complement of 6’ in ¢/, and the proposition follows by iterating the above step. g
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Remark 6. By the above proposition, in Definition|3{we may replace E by E.

Remark 7. If o and ¢ are quadratic (respectively, polyquadratic) twists, then clearly they are
locally quadratic (respectively, polyquadratic) twists.

Remark 8. Let o; and ¢, for i € {1,2,3}, be semisimple representations of G satisfying

01~ 0B 03, 0~ 0hDoh.

Suppose that o; and o) are polyquadratic twists (resp. locally polyquadratic twists) for all
i € I, where I is a subset of {1,2,3} with |I| = 2. It then follows immediately from the
definitions that o; and o), are polyquadratic twists (resp. locally polyquadratic twists) for all i.
The previous property is not true in general if we replace “polyquadratic” by “quadratic”.

Theorem 9 (Ramakrishnan). Suppose that r = 2. If o and ¢ are locally quadratic twists, then
they are quadratic twists.

Proof. The hypothesis is equivalent to having A2p ~ A%¢' and o ® 0 ~ o ® o. Since
0V ® A?p ~ o (and the same holds for ¢’) we obtain ad®(p) ~ ad"(¢’). By [Ram00, Thm. B]
(the result is stated for £-adic representations, but the proof is valid in our context) there exists a
character x of G such that ¢’ ~ y ® o. Morever, Y must be quadratic because A2p ~ A?¢/. O

Remark 10. The above result also holds for r odd by [Fit21l Cor. 4.3].

Example 11 (Chidambaram). For » = 4 and G with [GAP] identifier (12, 1), there are loc-
ally quadratic twists that are not quadratic twists. Indeed, let # denote the only rational 2-
dimensional irreducible representation of GG up to isomorphism, let € be the rational nontrivial
character of (G, and let x denote any character of G of order 4. It is a straighforward compu-
tation to verify that 1 ® e @ x ® 6 and x & ey @ 6 are locally quadratic twists, but are not
quadratic twists.

Theorem 12. Suppose that r = 2. If o and o' are locally polyquadratic twists, then they are
polyquadratic twists.

Proof. By Remark [6] we may assume that E is algebraically closed. For every s € G, let
as, Bs € E be such that

det(1 - o(s)T) = (1 — a T)(1 - B.T).
By assumption, there exist ¥, ps € {£1} such that

det(1 - ¢(5)T) = (1 — o0, T)(1 — paBT).
The map ¢ : G — {£1} mapping s € G to

_ % B det (o)

@ = = el

(s)

is a quadratic character.

Suppose that ¢ is trivial. Then ad’(p) ~ ad®(¢’), and by [Ram00, Thm. B] there exists a
character y of G such that ¢’ ~ y ® o. Since det(o') = x?-det(p), we find that y is quadratic.
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Now suppose that ¢ is nontrivial. We claim that both ¢ and ¢’ are reducible. Thus there exist
characters x1, x2, X1, X5 : Gk — E* such that o ~ x1 ® x2 and ¢’ ~ x| ® x4. By comparing
traces, one immediately verifies that
ex) _ext

Y X e

X2 X1 X2 X1
Up to renaming X/, x5, we may assume x1/x2 = €x}/x5. Also, by (Z) we have that x;x2 =
eX X% Multiplying the last two equations we get (x1)? = €2(x})? = (x})?, which implies
that y; and x/ differ by a quadratic character. The same holds for x2 and x5. Hence o and ¢
are polyquadratic twists.

We prove the claim for o’ (the proof for ¢ being the same) by showing that the multiplicity of
the trivial representation 1 in ado(g’ ) is positive. Denoting by y the (normalized) Haar measure
of GG, this multiplicity is

Ladte) = [ (140G w0 )

Qs
Qs Bs 0
= 14+ e(s) |1+ +— |p=1+(c,ad’(p)) > 1,
seG Bs Qs
where we have used that, by the orthogonality of characters, fs ca e(s)u = 0if € is nontrivial.

O

Example 13. For r = 3 there are locally polyquadratic twists that are not polyquadratic twists.
A straightforward computation shows that such an example is given by any pair of noniso-
morphic faithful irreducible degree 3 representations o and ¢’ of the group G with [GAP]
identifier (48, 3). This also yields counterexamples for any r > 4: if € is any representation of
degree r — 3, consider o @ 0 and o’ & 6.

We conclude this section by giving purely group theoretic characterizations of locally poly-
quadratic twists and locally quadratic twists when r = 4.
Lemma 14. The representations o, o' are locally polyquadratic twists if and only if
3) Sym? o — A2p ~ Sym? o' — A%/
as virtual representations.
If r = 4, they are locally quadratic twists if and only if
Sym? o ~ Sym? ¢’ and Ao~ N2

Proof. For the first assertion, it suffices to verify that both sides of (3) have the same virtual
character. Indeed, if for s € G we denote by «; the eigenvalues of o(s), then we have

Tr Sym? o(s) — Tr A?o(s) = Z o? = TrSym? ¢/(s) — Tr A?¢/(s) .

Now consider the second assertion. As r = 4, we know that ¢ and ¢ are locally quadratic
twists if and only if we have

@ o®o~d®d, Nox=Ad, o@Nox~d @A, det(o) ~det(d).
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Then it suffices to show that the third and fourth of the above isomorphisms follow from the
first two. Taking determinants, the first (respectively, second) isomorphism implies det(0)® ~
det(o')® (respectively, det(0)® ~ det(o’)®) and we deduce det(p) ~ det(¢’). As ¢ and ¢’ are
locally quadratic twists, we know o ® ¢ ~ o ® ¢'V. Considering that A3p ~ det(p) ® 0"
(and similarly for o’), we obtain o ® A3p ~ o' @ A3¢'. O

2.2. Polyquadratic twists of abelian varieties. In this section, we consider /-adic represent-
ations of abelian varieties. For some prime /, let

0ae: G — Aut(Vy(A))

denote the (-adic representation attached to A, where V;(A) = Ty(A) ® Q and Ty(A) is the
¢-adic Tate module of A (use the analogous notation for A’). For p € X, let Fr, denote an
arithmetic Frobenius at p. From Weil, we know that, for every p 1 ¢ of good reduction for A,
the polynomial det(1 — o4 ¢(Frp)T") is well defined and does not depend on the choice of .

Proposition 15. The abelian varieties A and A’ are polyquadratic twists if and only if pa ¢
and p ¢ are polyquadratic twists for some { (equivalently, for all £). Moreover, they are
locally polyquadratic twists if and only if 04 and o4 ¢ are locally polyquadratic twists for
some { (equivalently, for all £).

Proof. The first assertion is an immediate consequence of Faltings isogeny theorem [Fal83]] and
Proposition |5, so consider the second assertion. Since A and A’ being locally polyquadratic
twists does not depend on /, it suffices to prove the statement for some fixed prime ¢. By the
Chebotarev density theorem it suffices to show the following: if p € X is a prime of good
reduction for A and A’ with p 1 ¢, then A, and A;J are polyquadratic twists if and only

5) det(1 — ga,¢(Fr;)T) = det(1 — g7 ¢(Frj)T)

holds. And this is clear because, by [Tat66, Thm. 1], (5) amounts to saying that the base
changes of A, and A; to the quadratic extension of the residue field K (p) of K at p are
isogenous. ([l

By the above proposition and Remark (7, we see that if A and A’ are polyquadratic twists,
then they are locally polyquadratic twists. This may be seen more directly by means of the
following remark.

Remark 16. Suppose that A and A’ are polyquadratic twists. Then A and A’ are locally poly-
quadratic twists at almost all primes of Y. Indeed, choose a polyquadratic extension L] K
and an isogeny f : A7 — Ap. There exists a finite set S C X such that for everyp € X\ S
the abelian varieties A and A" have good reduction at p and, if 3 € X, lies over p, then there
is an isogeny fuy A,L,‘B — Ap s making the diagram

A —L s oa

redl lred

Arp —5— ALy

commutative.
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Remark 17. Let o and ¢ be as in The argument of the proof of Proposition 5| shows
that there exists a normal subgroup H C G of index 2 such that o|p ~ ¢'| if and only if o
and ¢ admit decompositions as in such that each of the characters x; is either the trivial
or the nontrivial character of G/H. Hence, if A and A’ are abelian varieties that become
isogenous over a quadratic extension L] K, then each of the characters x; relating their (-adic
representations is either the trivial or the nontrivial character of Gal(L/K). According to our
definition, A and A’ are called quadratic twists precisely when all of the x; can be taken to be
equal.

In §4] we will make use of the following lemma to prove Theorem [I]

Lemma 18. Let A and A’ be abelian surfaces and let p be a prime of good reduction for A
and A'. If Ay and Ay are polyquadratic twists and for some prime { the traces of 0 ¢(Fry)
and o o1 ¢(Frp) are both zero, then A, and A; are quadratic twists.

Proof. Let o, @, 3, 3 be the eigenvalues of 04 ¢(Fry). Then there exist €, € {41} such that
ea, o, 3, 73 are the eigenvalues of o A’ ¢(Fry). The vanishing of the traces yields the equation

() (65)-6):

This implies that € = y or a+a = 3+ 3 = 0. Either of the possibilities shows that Ay and A;
are quadratic twists. g

We conclude this section by recalling a result that will be used multiple times in the proof
of Theorem |1} In we observed that Theorem [9] does not remain true in general for rep-
resentations of degree r > 4. However, the following result asserts that Theorem [9] remains
true in degrees 4 and 6 if one restricts to /-adic representations attached to abelian surfaces or
threefolds.

Theorem 19 ([Fit21]]). Suppose that A and A’ have dimension at most 3. If o A and oy g are
locally quadratic twists, then they are quadratic twists.

2.3. A theorem by Khare and Larsen. We denote by A, the base change of A, to the al-

gebraic closure of K(p), and similarly define Z;. The following result of Khare and Larsen
[KL20] will play an important role in our investigation.

Theorem 20 (Khare—Larsen). The abelian varieties A@ and A?@ are isogenous if and only if
for almost all primes p € X the abelian varieties Zp and Z; are isogenous.
Proof. For the “only if” implication we may reason as in Remark [16] Now suppose that for

almost all p the abelian varieties Zp and Z; are isogenous. We invoke [[KL20, Thm. 1], which
asserts:

(6) If Hom(Ay, 4,) # 0 for almost all p € X, then Hom(Ag, A%) # 0.

The theorem follows from (6] by induction on the number n of simple isogeny factors of A@.
Note that the assumption implies, in particular, that A and A’ have the same dimension. Hence
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if n = 1, the existence of a nontrivial homomorphism from A@ to Af@ is equivalent to A@
/
. . . . @ .

isogeny factor. Let B and B’ be the complements of this simple isogeny factor in A@ and Ag@,

and Af@ being isogenous. For general n, (6] implies that A@ and AZ have a common simple

respectively. Then, for almost all p in X i, the reductions of B and B’ modulo p are isogenous.
Since the number of simple isogeny factors in B is n — 1, by induction we find that B and B’
are isogenous. Hence so are A@ and A?@. O

3. SQUARES OF ELLIPTIC CURVES AND QUATERNIONIC MULTIPLICATION

This section is devoted to proving Theorem[I]in the following particular case:

Suppose that the abelian surfaces A and A’ are locally polyquadratic twists,
and that A@ is either isogenous to the square of an elliptic curve or has qua-
ternionic multiplication. Then A and A’ are polyquadratic twists.

By Theorem the assumptions imply that there exists a finite Galois extension L/K such
that either:

e There is an elliptic curve E defined over L such that A;, ~ E? and A~ E?; or
e End(Ar) ® Q ~ End(A4) ® Q is a quaternion algebra.

We divide the first case into three subcases, according to whether £ has CM or not, and in
the former case according to whether the imaginary quadratic field M by which E has CM
is contained in K or not. Notice that by Proposition [15] it suffices to show that for some ¢
the representations p4 ¢ and o4/ ¢ are polyquadratic twists. Alternatively, by Theorem it
suffices to show that A, and A; are quadratic twists for almost all primes p.

3.1. Non CM or quaternionic multiplication. By [FG22, Thm. 1.1] (see also [Fit21, Thm.
4.5 ()] for a restatement of this result in our situation) and after enlarging L/K if necessary,
there exist a number field F', Artin representations 6,6 : Gal(L/K) — GLa(F'), a prime ¢
totally split in F', and strongly absolutely irreducible F-rational ¢-adic representations o, ¢’ of
G of degree 2 such that

a0 =0®op, oas =0 ®¢, olr ~¢|r.

In particular, there exists a character x of Gal(L/K) such that ¢’ ~ x ® o. Let o p, cvpp be
the eigenvalues of o(Fry); 81y, B2, the eigenvalues of §(Fry); and 1 p, 72, the eigenvalues of
x ® ¢'(Frp). By [Fit21, Lem. 4.7], there exists a density 1 subset X of X g of primes of good
reduction for A and A’ such that for every p € ¥ the quotient vy /a2 p is not a root of unity,
and there exist €;;, € {£1} such that

2 2

H (1 = jpBjpT) = H (1 — €ijpipVjpT) -

ij=1 ij=1
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Hence, for every p € ¥ and for i € {1, 2}, we have

2 2
H(1 — BjpT) = H(1 — €ijpYipT) -
j=1

By the Chebotarev density theorem, this implies that § and x ® 6’ are locally polyquadratic
twists and hence polyquadratic twists by Theorem [I2] By Remark [] and the fact that g4y =~
¢ ® x ®pand gy~ 6 @ o, we conclude that p4 ¢ and p 4/ ¢ are locally quadratic twists.

3.2. CM over K. By [FG22, Thm. 1.1] (see also [Fit21, Thm. 4.5 (ii)]), after enlarging
L/K if necessary, there exist a Galois number field F' containing M, Artin representations
0,0" : Gal(L/K) — GLy(F), a prime / totally split in F', and continuous F-rational ¢-adic
characters 1), 9’ of G such that

7 oar=00P)e@eY), and ous~ (@ @) ® O @9).

Here 0 (resp. 7, 1), @/) stands for the “complex conjugate” of 6 (resp. ¢, v, ¢'). By this,
more precisely we mean the following. Fix a complex comjugation - in Gal(F'/Q), that is, a
lift of the nontrivial element of Gal(M/Q). That 1) is an F-rational /-adic character implies
that ¢)(Frp,) € F for almost all p € Y. For any such p, the (-adic character 1) satisfies

¢(Fry) = 9(Fr,). Similar descriptions hold for ', ¢, and .

After reordering 1/ and 1 if necessary, we may assume that |7, ~ v/|1. Hence there exists a
character ¢ of Gal(L/K) such that ¢’ >~ @i. Let /31 ,, B2, be the eigenvalues of 6(Fr,) and
Y1.p, V2, the eigenvalues of ¢ ® ¢'(Fry). By [Fit21, Lem. 4.7], there exists a density 1 subset
Y. of ¥ of primes of good reduction for A and A’ such that for every p € ¥ the quotient
¥(Fry) /1 (Fry) is not a root of unity, and there exist €, d;, € {£1} such that

2 2
[T = ()87 = 0(Frp)B;,T) = [T = €50 (Frp)pT) (L — 6158 (Frp)7,,T)
j=1 J=1

Hence for every p € 3 we have

2

2 2
H (1= 6;pT) = H —eipvpT) and  JJ(1-3B;,T
=1 P

pryjp )

||:w

By the Chebotarev density theorem, each of the above equations implies that § and ¢ ® 6’ are
locally polyquadratic twists and we conclude as in the previous case.

3.3. CM not over K. Given a representation ¢ of G, for a finite extension L/K, we write
IndX (o) to denote the induction of ¢ from Gz, to Gg. In this section, to shorten the notation,
we omit the subindex and superindex fields in Ind% (o). The last statement of [Fit21, Thm.
4.5 (ii)] implies that there exist Artin representations 6,6 of Gk, an f-adic character
of Gk, and a character ¢ of Gal(L/K M) satisfying

040 ~Ind(0 @), o4y ~Ind(p® 6 ® ).
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Moreover, by the construction of 8 and ¢ (see [FG22, §2] and especifically [FG22| Lem. 2.10]),
one has that if £ is a constituent of 6, then

®) Ind(@Y)|L ~ERYVBERY.

By the previous case, one of the following holds:

i) There exists a quadratic character y of Gal(L/K M) such that 0’ ® ¢ ~ y ® 6.
ii) There exist characters &, &2 and quadratic characters x1, x2 of Gal(L/K M) such that

0~& @&, 0" ® o~ x161 @ X262
‘We first consider case ii). Then, we have

04, ~ Ind(&19) © Ind(§29) , oar ¢ =~ Ind(x1619) © Ind(x262¢) -

Observe that Ind(&;%) and Ind(x;&;) are locally quadratic twists for ¢ = 1,2 (this can be
seen by comparing traces on an element s € G if s € G, then use (B), and if s ¢ G, then
notice that both traces are 0). By Theorem[9] they are quadratic twists, which finishes the proof
in this case.

In case i), we claim that A and A’ are locally quadratic twists, which is enough for our purposes
in virtue of Theorem Let p € Yk be a prime of good reduction for A and A’ of absolute
residue degree 1. If p is split in K M, it follows from that the reductions A, and A;J are
quadratic twists. If p is inert in K M, then the same conclusion is attained by using the lemma
below.

Lemma 21. Let A and A’ be abelian surfaces Q-isogenous to the square of an elliptic curve
with CM, say by an imaginary quadratic field M. Then, for every p € X of good reduction
for A and A', inert in KM, and of absolute residue degree 1, the reductions Ay and A;J are
isogenous if and only if they are polyquadratic twists.

Proof. Letp € Xk be as in the statement, and let p denote its absolute norm. Define the set of
polynomials

S:={1 -T2, 1-T?*+T* 1+T" 14+ T*+7T*, (1 +T%7?}.

The fact that such a p is of supersingular reduction for A, together with the Weil bounds,
implies that Ly (A, p~'/2T) € S. We similarly have L,(A’,p~'/2T) € S. Consider the set

R={1-T)* Q-T+T1T?* 1-T%%1+T+T7T%2,(1+17)"},

and observe that the map ® : S — R defined by P(T') + Resz(P(Z), Z* — T) is a bijection.
Notice that Ay and Ay, are polyquadratic twists if and only if the polynomials Ly (A, p1/2T)

and Ly (A', p 12T ) have the same image under ®. Since P is a bijection, this is equivalent to
their equality, and we conclude by [Tat66, Thm. 1]. U

4. PROOF OF THEOREM

In this section we complete the proof of Theorem |I]

Notation. For an abelian surface A defined over K, denote by End®(A) the endomorphism
algebra End(A4) ®Q, and by X'(A) the absolute type of A, that is, the R-algebra End(Ag) ®@R.
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We borrow from [FKRS12, §4.1] the labels A, ..., F for the different possibilities for X'(A).
These are in bijection with the possibilities for the connected component of the identity of
the Sato—Tate group of A, denoted ST(A). This is a closed real Lie subgroup of USp(4), only
defined up to conjugacy. It captures important arithmetic information of A and it is conjectured
to predict the limiting distribution of the Frobenius elements attached to A. See [BK15| §2] or
[EKRS12| §2] for its definition in our context; see [Serl2, Chap. 8] for a conditional definition
in a more general context. We will use the notation settled in [FKRS12| §3] for Sato-Tate
groups of abelian surfaces.

It follows from Theorem [T9] (as explained in [Fit21, Rem. 2.10]) that two abelian surfaces
which are locally quadratic twists share the same Sato-Tate group. There are however ex-
amples of abelian surfaces that are locally polyquadratic twists with distinct Sato—Tate groups.
Indeed, let F be an elliptic curve defined over K without CM and x a nontrivial quadratic char-
acter of Gi. Let E, denote the twist of F/ by x. Then E x E has Sato—Tate group |1, while
E x E, has Sato-Tate group J(F7). Despite the existence of these examples, the Sato-Tate
group is preserved under locally polyquadratic twist in most of the cases. This is essentially
the first step in the proof of Theorem|I]in the cases considered in this section.

From now on, let A and A’ be abelian surfaces that are locally quadratic twists. By The-
orem A and A’ are geometrically isogenous, and hence they have the same absolute type.

We will repeatedly use the following well known lemma, whose proof may be found split
between the proofs of [Fit21, Cor. 2.5] and [Fit21} Cor. 2.7].

Lemma 22. Let ¢ and ¢ be strongly absolutely irreducible representations of Gg. If there
exists a finite extension L/ K such that o|f, ~ ¢'|L, then there exists a finite order character x
of Gk such that ¢ ~ x ® o. In particular, if B and B’ are abelian varieties defined over K
such that By and Bf@ are isogenous and such that X (B) ~ X (B') ~ R, then B and B’ are

quadratic twists.

4.1. Absolute types E, F, A, C. If A has absolute type E or F, namely, X'(A4) ~ M(R) or
Mj(C), then Theorem was proven in If A has absolute type A, equivalently, X'(A) ~ R,
then A and A’ are quadratic twists by Lemma Now suppose that A has absolute type C. By
Lemma [Fit21, Lem. 4.13], A is isogenous to the product of an elliptic curve £ without CM
and an elliptic curve Fy with CM. We similarly define E| and E), for A’. By Theorem 20, F;
and E (respectively, Fs and E)) are geometrically isogenous, and hence, by Lemma Eq
and E] are quadratic twists. Then Remark [8] implies that 5 and EY are locally quadratic
twists, and hence quadratic twists by Theorem Thus A and A’ are polyquadratic twists.

4.2. Absolute type D. Suppose that A has absolute type D, namely, X(A) ~ C x C. Then
precisely one of the following two conditions hold:

D.1) Aisisogenous to the product of two nonisogenous elliptic curves £ and Fo with CM;
D.2) A@ has CM by a quartic CM field.

Suppose that A falls in case D.1. By [Fit21, Lem. 4.13] and Theorem [6] there exist elliptic
curves B} and E), such that A’ is isogenous to E{ x E. After possibly reordering E; and Es,
and using [Fit21, Lem. 4.14], we may assume that F; and E] are locally quadratic twists.


https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.E.2.1b
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Hence they are quadratic twists by Theorem@ As the same holds for Fs and EY, we conclude
that A and A’ are polyquadratic twists.

Now suppose that A falls in case D.2. Denote the CM field by M and its reflex field by M™*.
As explained in [Fit21}, §5.1.1] (see the references therein), precisely one of the following three
cases occurs:

i) M* C K and End"(A) ~ M,
ii) KM*/K is quadratic and End(A) is a real quadratic field;
iiiy K M*/K is cyclic of degree 4 and End®(A) ~ Q.

Moreover, which case occurs depends on whether A has Sato-Tate group |F', |Fy| or |[Fi, ) re-
spectively. Notice that, as it is clear from the case distinction, A and A’ fall in the same case.

Suppose that A and A’ fall in case i). Let £ be a prime inert in M, let A be the prime of M
lying over ¢, and let M) denote the completion of M at \. Then V;(A) is an M-module of
dimension 1, and hence strongly absolutely irreducible. Therefore there exists a character ¢
of Gk such that 94y ~ ¢ ® 4. Since in this case the Sato—Tate group is [, we can apply
[Fit21], Prop. 2.11], which implies that A and A’ are quadratic twists.

Now suppose that A and A’ fall in case ii) or iii). We choose a prime ¢ totally split in M, so
that the four distinct embeddings \;: M — Q,, fori =1, ..., 4, take values in Q. Define

V>\i (A) = W(A) ®M®Qg,)\i @f)

where Qy is being regarded as an M ® Qg-module via ;. It is a 1-dimensional vector space
over Qg. We equip it with an action of Gk by letting this group act naturally on V;(A) and
trivially on Q.

Let n = [End®(A) : Q]. By [Fit21} (5.2)], we have an isomorphism

n
©) Vo(A) ~ @ Indfg - (Va,)
i=1
where we assume that A1, ..., A4 have been ordered so that the restrictions of A\;,..., A\, to

End’(A) C M are all distinct.

Let p € X be a prime of good reduction for A and A’. If p is totally split in K M*, then A,
and A{J are quadratic twists by case i). If p is not totally split in K M*, then (9) implies that
Tr(0a,e(Fry)) = Tr(oar,¢(Frp)) = 0. Hence we can apply Lemma [I8 which implies that A,
and A;, are quadratic twists. It follows that o4 ¢ and o4/ are locally quadratic twists, and
hence they are quadratic twists by Theorem [I9]

4.3. Absolute type B. Suppose that A has absolute type B, which means that X'(A4) ~ R x
R. Then, as explained in [Fit21, §5.1.2], there exists a prime £ so that precisely one of the
following two conditions holds:

B.1) oa¢ >~ 01 @ 02, Where 01, 02 : Gg — GL2(Qy) are strongly absolutely irreducible ¢-
adic representations that do not become isomorphic after restriction to GGy, for any finite
extension L/ K;


https://www.lmfdb.org/SatoTateGroup/1.4.D.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.D.2.1a
https://www.lmfdb.org/SatoTateGroup/1.4.D.4.1a
https://www.lmfdb.org/SatoTateGroup/1.4.D.1.1a
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B.2) 0a¢ =~ Ind% (o), where L/K is quadratic and ¢ : G, — GL2(Qy) is a strongly abso-
lutely irreducible ¢-adic representation.

Whether B.1 or B.2 holds depends on whether ST(A) is isomorphic to SU(2) x SU(2) or
N(SU(2) x SU(2)).
Lemma 23. If A falls in case B.1 (respectively, B.2), then so does A’.

Proof. Let p be the tautological representation of ST(A), and similarly define ¢’ for ST(A’).
Let 6 denote Sym? o — A%p and 6, denote Sym? o4 ¢ — A204 . Define similarly 6’ and g;.
The same argument used in the proof of [Saw16, Thm. 1] shows that the virtual multiplicity
of the trivial representation in € coincides with the virtual multiplicity of the ¢-adic cyclotomic
character x; in 6,. By Lemma we have

<17 9> = <X€7 9€> = <X€a 02> = <17 9/> :
Suppose that the statement of the lemma were false. Without loss of generality we may assume
that A falls in case B.1 and A’ in case B.2. However, [FKRS12, Table 8] yields

<179> = <1’ o0® Q> - 2<17 /\2Q> = _27 <170/> = <17 Q/ ® Ql> - 2<1’/\2Q/> =-1,
which gives a contradiction. g

Lemma 24. If A falls in case B.1, then N?p A has no 1-dimensional constituent of the form
xe, where 1 is a nontrivial finite order character and Xy is the {-adic cyclotomic character.

Proof. Write 04 as 01 © o2, where o1, 02 are as in B.1. By [Rib76, Thm. 4.3.1], we have
det(p;) = x¢ and hence

Noae=xe® (01 02) ® xe-
Suppose that g1 ® g3 has a 1-dimensional constituent of the form ¢y, and let L/ K be the field
extension cut out by ¥. Then the subspace affording v is contained in
(01® 02 ® x; 1) = (of ® 02)“* =~ Homg, (01, 02)
This contradicts that g; and g2 are strongly absolutely irreducible and g1 |, % 02|L. O

Suppose that A and A’ fall in case B.1. Write accordingly o4 ¢ as o1 @ g2 and p Ar,0 @S 0] & 0h.
After possibly reordering o1 and g2, Lemma@] shows that there exist finite order characters
and x2 of Gk such that ¢f ~ x1 ® g1 and ¢, ~ x2 ® p2. Since

Noare =~ X3xe ® x1x2(01 ® 02) B X3xe
Lemma [24]implies that the characters y; and x2 must be quadratic.

Now suppose that A and A’ fall in case B.2. Then we write g4, =~ Indf((g) and p4rp ~

Ind¥ (¢'), where L/K and L /K are quadratic extensions, and o and ¢’ are strongly absolutely
irreducible representations. Observe that Ay, falls in case B.1. Then Lemmaimplies that A’
also falls in case B.1. This can only occur if L = L.

Let 7 denote an element of G i projecting onto the nontrivial element of Gal(L/K). Let o”
denote the representation of G, defined by ¢” (s) = o(7s7) for every s € G1.. Then we have

(10) oAl 0@ 0", oaylr~=d ®o7.


https://www.lmfdb.org/SatoTateGroup/1.4.B.1.1a
https://www.lmfdb.org/SatoTateGroup/1.4.B.2.1a
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After possibly reordering g and o”, by the B.1. case of the proof, there exist quadratic charac-
ters x and ¢ of GG, such that

(11) 0 ~x®o, 0T Yo,

We claim that the characters x and v coincide. Assuming the claim, the proof of Theorem
takes the following steps. Let p € X be a prime of good reduction for A and A’. If p is split
in L/ K, the isomorphisms and show that A, and Aj are quadratic twists. The same
holds, by Lemmal[18] if p is inert in L /K. Then by Theorem[19} A and A’ are quadratic twists.

We now turn to prove the claim. There are two cases to distinguish: either A is an abelian
surface such that EndO(A 1) is isomorphic to a real quadratic field F' or Ay, is isogenous to the
product E x E7, where E is an elliptic curve defined over L without complex multiplication,
and E7 is the Galois conjugate of F by 7.

In the first case, ¢ is split in F'. Let ~ denote the nontrivial element of Gal(F'/Q). After
possibly renaming the primes A and A of F' lying over ¢, we have that g (resp. o") is the
F'-rational representation afforded by

VA(A) := Vi(A) @reg. Q (TCSP- V5(4) :== Vi(A) ®pgo, x Qe) :

From [FG22, Lem. 2.10], we deduce that ¢” ~ g, where g is the F'-rational ¢-adic repres-
entation characterized by the property that, for almost all p € X, the traces of p(Fr,) and
o(Fry) are Galois conjugates in F'. Since x is quadratic and takes rational values, using the
first isomorphism of (ITJ), we find

M0 x®ox®0,
which together with the second isomorphism of concludes the proof of the claim in the
first case.

In the second case, by Theorem [20} there is an elliptic curve E’ defined over L such that A’ is
isogenous to £’ x E'", and we may take

0=0ge, 0 =084, 0 =0, 0 =o0prs.

Then, the first isomorphism of (TT)) expresses the fact that £’ is the quadratic twist of E by .
Choosing Weierstrass equations y? = 2% + ax + b and dy? = x> + ax + b, with a,b,d € Oy,
for E and E’ respectively, we see that for almost all p € X whether x(Frp) is 1 or —1
depends on whether d is a square or not in L(p)*. The same reasonning using E™ and E'"
instead, shows that for almost all p € X whether 1) (Frp) is 1 or —1 depends on whether
7(d) is a square or not in L(p)*. Since d is a square in L(p)* if and only if so is 7(d) in
L(7(p))* ~ L(p)*, we deduce that y and v coincide, as desired.

5. A COUNTEREXAMPLE IN DIMENSION 3

Let o and ¢’ be as in Example namely, a pair of nonisomorphic faithful irreducible degree 3
representations of the group G with [GAP] identifier (48,3). They are realizable over the
quadratic ring Z[i]. Let|F be the number field Q[T']/(f), where

f(T) =T + 2710 — 827% + 50T° + 595T* + 50072 + 25 .


https://www.lmfdb.org/NumberField/12.4.213838914125824000000.1
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Let F' be the Galois closure of F. According to [LMFDB], the [GAP] identifier of Gal(ﬁ‘ /Q)
is (48,3). A straightforward computation shows that /" does not contain the quadratic field
K = Q(i). Let L denote the compositum of F' and K, and choose an isomorphism between G

and Gal(L/K). Use this isomorphism to regard ¢ and ¢’ as Artin representations of the group
Gal(L/K).

Let E be an elliptic curve with CM by Z[i] defined over K, and let A and A’ be the abelian
varieties ¢ ®z;) E and o ®z[;) £ defined over K as described in [Mil72, §2]. By [MRSO07,
Thm. 2.2 (iii)], we have that there exists a K -rational /-adic character ¢ of G i such that

(12) 04~ (0®Y)® (@®1Y), and oap~(d @Y)® (@ ®Y).

Observe that this is compatible with (7): by our choices of A and A’, the Artin representations 6
and ¢’ in that formula can be taken as p and ¢’. From (12)), we see that the fact that o and ¢’ are
locally polyquadratic twists implies that so are A and A’.

We claim however that the threefolds A and A’ are not polyquadratic twists. If the contrary
were true, then as in the existence of a density 1 subset X of ¥ of primes of good
reduction for A and A’ such that for every prime p € ¥ the quotient ¥ (Fr,) /1 (Fry) is not
a root of unity, would imply, via the Chebotarev density theorem, that ¢ ® v and ¢’ ® 1) are
polyquadratic twists. This contradicts the fact that ¢ and ¢’ are not polyquadratic twists.
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