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Abstract—This paper proposes a distributed learning frame-
work for network slicing in multi-cell open radio access networks
providing two services: Ultra-Reliable Low Latency Communi-
cations (URLLC) and enhanced Mobile BroadBand (eMBB). In
particular, a resource allocation optimization problem is formu-
lated with an objective to maximize the average eMBB data rate
while considering URLLC constraints and the data rate variance
among eMBB users. A multi-agent Deep Reinforcement Learning
(DRL) based algorithm is developed to solve the formulated prob-
lem, where network components collaboratively train a global
machine learning model and then share learning parameters for
distributed executions at network edges. Specifically, DRL agents
are installed at Near-Real-Time Radio access network Intelligent
Controllers (Near-RT RICs) located in the network edge servers
to provide online resource allocation decisions while the training
process is performed offline at the Non-Real-Time RIC (Non-RT
RIC) located in a regional cloud server. The achieved simulation
results show that the proposed algorithm can ensure the required
URLLC reliability while keeping the Quality-of-Service (QoS)
requirements of the eMBB service.

Index Terms—O-RAN, distributed learning, DRL, network
slicing, eMBB, URLLC, 5G NR.

I. INTRODUCTION

The Open Radio Access Networks (O-RAN) Alliance, a
consortium of industry and academic institutions, has intro-
duced a new vision for Next-Generation (NextG) cellular
systems, where standardized interfaces are proposed to allow
operators to use shared infrastructure belonging to multiple
vendors. An important innovation proposed by the O-RAN
Alliance is the RAN Intelligent Controller (RIC), which en-
ables RAN optimization via closed-control loops. Specifically,
two types of RIC are introduced in the O-RAN vision [1]: 1)
Non-Real-Time RIC (Non-RT RIC) and 2) Near-Real-Time
RIC (Near-RT RIC). The Near-RT RIC handles operations
at small time scales and enables intelligence in the RAN by
hosting third-party applications (xApps), while the Non-RT
RIC conducts functions with large time scales, i.e., training
machine learning models [2].

Furthermore, NextG cellular networks enable diverse ap-
plications that come under three categories: 1) Ultra-Reliable
Low-Latency Communications (URLLC), 2) enhanced Mobile
Broad-Band (eMBB), and 3) massive Machine-Type Com-
munications (mMTC). Practically, applications supported by
the URLLC service transmit short packets sporadically. Con-

trarily, eMBB transmissions spread over long time intervals
to improve spectral efficiency. The 3GPP has proposed the
preemption (puncturing) multiplexing technique' that allows
scheduling URLLC packets over eMBB transmissions to sat-
isfy URLLC latency while improving spectral efficiency. Fi-
nally, mMTC devices transmit at a fixed rate; hence, statically
allocating specific radio channels for MMTC service is more
efficient than dynamic allocation [4].

The coexistence of eMBB and URLLC on the same radio
resources with different Quality of Service (QoS) requirements
leads to a challenging resource allocation problem. Recently,
research on the coexistence problem of eMBB and URLLC
traffics has gained attention. The work in [5] studies the
impact of the puncturing resource allocation approach on
eMBB service. The authors modeled this impact as convex,
threshold, and linear functions. The coexistence of visual and
haptic applications over wireless systems was discussed in [6].
In this study, the visual transmissions are accommodated by
the eMBB service, while the haptic is considered a URLLC
application. In [7], the resource allocation to eMBB and
URLLC traffics is performed over two different time scales,
i.e., time-slots and mini-slots. Specifically, an algorithm based
on the BSUM technique was developed to allocate resources
to eMBB users over time slots, while the transportation model
was used to solve the URLLC scheduling problem on a mini-
slots time scale. In [8], a relaxation-based algorithm was
developed to solve the eMBB/URLLC resource allocation
problem aiming at maximizing the network throughput. The
study in [9] modeled the resource allocation problem of eMBB
and URLLC services in a single cell network scenario as a
risk-aware optimization problem that considers the random-
ization nature of URLLC traffic. The authors proposed an
optimization-aided DRL algorithm to solve the formulated
problem, where the training and execution stages are per-
formed centrally at the BS.

Literature review shows that there is still a lack of studies
on the eMBB-URLLC coexistence problem in multi-cell O-

13GPP has proposed a new scheduling mechanism named puncturing, also
called preemptive, for dynamic multiplexing of eMBB and URLLC traffics
[3]. In this approach, URLLC traffic is scheduled over short transmission
time intervals on top of the ongoing eMBB transmissions by allocating zero
transmission power to the selected eMBB users.
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Figure 1: System model.

RANS. In this work, we leverage the advantages of O-RAN
architectures in implementing learning algorithms to design
a novel algorithm based on the multi-agent DRL technique
to solve the dynamic multiplexing problem of eMBB and
URLLC traffics in a multi-cell network scenario. In the pro-
posed framework, agents are deployed at the network edge to
provide online executions, while a centralized offline training
process is performed at the Non-RT RIC located in a regional
cloud server to train deep neural networks using the collected
data from all agents to overcome the slow convergence issue
in DRL algorithms. 7o the best knowledge of the authors, this
is the first work to use the new O-RAN features to support
distributed learning for eMBB-URLLC coexistence in a multi-
cell wireless network.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network Model

Consider a multi-cell network providing two different ser-
vices to users: eMBB and URLLC, as shown in Fig. 1. In the
considered model, multiple edge servers are deployed at the
network edge and connected to a regional cloud server. Follow-
ing the O-RAN network architectures in [10], the Non-RT RIC
is located at the cloud server, while Near-RT RICs are installed
at the edge servers. We define B = {1,..., B} as the set of
all BSs, where a BS b € B serves a set Mj = {1,..., M{} of
eMBB users and a set M} = {1,..., M}*} of URLLC users.
Furthermore, each BS is associated with one edge server. The
time-frequency plan is divided into K resource blocks (RBs),
where each RB spans a time interval defined as a time slot
in the time domain and includes a bandwidth of f Hz in the
frequency domain. Each time slot is further divided into N
short transmission time intervals (sTTI), i.e., mini-slots.

Due to the stringent latency requirement of the URLLC
users, we prioritize the scheduling of their arrival traffic by
adopting the puncturing scheme where the arrival URLLC

traffic will be scheduled immediately in the next sTTI. We
define the following puncturing decision variable:

if the n'™ sTTI of the time sot ¢ is punctured
a?™(t)={ " by the m™ URLLC user, V k € K, b € B,
’ 0, otherwise.

ey
Let k" (t) denote the eMBB time-varying channel gain
over the ™ RB in the b™ cell, and pj}" () is the transmission
power to the eMBB user m at the RB k. Thus, the Signal-to-
Noise-and-Interference (SINR) of the eMBB user m is given
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Accordingly, the achieved eMBB data rate at the m'" user
using the k™ channel connected to the BS b is defined as
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the term =2=1-E"-" represents the eMBB data rate loss due

to URLLC scheduling and the notation f represents the RB
bandwidth. Let xfn)k(t) be the RBs allocation indicator to
eMBB users
1 if RB k is assigned to eMBB user m, Vb €
x?’n,k(t) =< B
0, otherwise.
“)
Thus, the total downlink eMBB data rate obtained by user
m is given by

7al?,m,(t) = Z xfn,k(t)rz:]:l(t)' (5)
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The achievable URLLC rate cannot be accurately obtained
using the Shannon capacity model due to the short packets
nature of URLLC transmissions. Instead, the URLLC rate can
be obtained in the finite blocklength regime [9]. Thus, the data
rate achieved by the m"™ URLLC user associated with the BS
b at time slot ¢ is

Zf
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where 7,7 is the SINR of URLLC user m over the k™ RB,
given by
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where ¢, (t) is the number symbols in each sTTI (URLLC
mini-slot) called the length of the CB. The notation Q(-) refers
to the Gaussian Q-function, and the notation ¥ > 0 defines
the error probability associated with URLLC transmissions.
D;j’,z”(t) is the channel dispersion, a measure of stochastic
channel variations compared to a deterministic channel, de-
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B. Problem formulation

Scheduling URLLC traffic over eMBB users with poor
channel quality causes more burden on eMBB transmissions,
which may violate the minimum required QoS. Thus, we
design a risk-averse objective function that includes the mean-
variance tradeoff of the eMBB data rate as follows:

G(X,P,A) =) > Eilrg,,(t)] - BVar[rg,. ()], 9)

beB meM;

where the notation E defines the expectation, § is a con-
trollable weighting parameter to adjust the preference of the
variance part, and Var defines the variance. In particular, the
objective function (9) is designed following the Markowitz
mean-variance riks-averse equation [11]. The variance term
can capture the investment risk in the modern portfolio theory.
Besides, in (9), the variance part characterizes the uncertainty
in channel variations, which is vital in defining transmission
reliability. Analogous to the investment process in the modern
portfolio theory, the BSs obtain appropriate URLLC schedul-
ing considering eMBB users with poor channel quality.

Furthermore, the transmission reliability of URLLC users is
defined in terms of the transmission error probability ¥} which
should not exceed a given threshold e

b <& Vme My, beB. (10)

Let p.,, be the packet size of URLLC user m, [,,(t) be the
number of generated URLLC packets to user m at time slot

t, and T be the time slot duration, the data rate of the m"
URLLC user in can be expressed as

m X lm(t
e (1) = Hm Xm0 (1)

Accordingly, from (10) and (11), we can define the URLLC
reliability constraint as follows:
u,m m In2
(1 + %" (V) — 7fica]
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IR

<e. (12)

Our objective is to formulate an optimization problem to
optimize the eMBB RBs allocation, transmission power to
eMBB users, and URLLC scheduling strategy. Therefore, we
formulate the resource allocation optimization problem for
eMBB and URLLC services as follows:

maximize G(X, P, A), (13a)
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where the notation Py, defines the transmission power thresh-
old of each BS. The formulated optimization problem in
(13) aims to obtain the optimal resource slicing decisions
that include the optimum X™*, P*, and A*. The constraint
(13b) ensures that the URLLC transmission error probability
doesn’t exceed a predefined value €. Furthermore, constraints
(13c), (13d), (13e), (13f), (13g), (13h), and (13i) represent
the resource allocation visibility constraints. In the formulated
optimization problem, we include the eMBB transmission
power in the decision variables to reduce the impact of
scheduling URLLC traffic over eMBB users by increasing
the transmission power over users experiencing more burden.
However, URLLC transmission power is set at the maximum
allowed value to achieve ultra-reliable transmissions.

III. PROPOSED DISTRIBUTED LEARNING FRAMEWORK

Problem (13) is a mixed-integer programming that is NP-
hard in general. Moreover, the URLLC scheduling variable is
coupled with the RB and power allocation variables, increasing
the complexity of the optimization problem. In particular,
an online solution is essential to satisfy the sensitive delay
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Figure 2: Proposed distributed learning framework.

requirement of URLLC users and cope with the high net-
work dynamic caused by users’ mobility. However, it is hard
to obtain an online solution using the typical optimization
methods, such as convex optimization, as (13) is an NP-
hard problem. Furthermore, the randomized nature of URLLC
traffic necessitates the need for a dynamic resource allocation
technique. These challenges drive us to use DRL techniques
to solve the formulated optimization problem.

A. Markov Model for the Multi-Cell Cooperation Network

We transform the formulated problem (13) into a Markov
game for B agents. The Markov game is defined as a set of
states S = {S51,82, - ,Sp,- -+ ,Sp}, and a set of actions
A={A1, Ay, Ap, -, Ap}. For a given state s,(t) €
Sy, the corresponding agent uses the policies, m, : Sp — Ap
to choose an action from their action spaces according to their
observations corresponding to sp(t).

The state space contains the channel states of all eMBB and
URLLC users and the network traffic status at each decision
step, i.e., time slot. For instance, the state of an agent b at
time slot ¢ is a vector s;(t) = {h®(t), hy' (), Ay, Mg, My'}.
Each edge server? is regarded as an agent. We consider that
each agent receives only its own state, i.e., users’ informa-
tion in the same cell, to reduce the overheads caused by
information exchange among the cells. Each agent has an
actor-network that decides the agent’s decision, i.e., the action
selection policy. The actions of each agent are the output of
its actor-network which contains the decision variables of the
optimization problem (13). Thus, the action space is defined
as A={X,P,A}.

2In the considered network model, each edge server is associated with one
BS.

Let R(t) : S x A — R be the instantaneous returned reward
at time slot ¢. The requirements of each service should be
considered in designing the reward function. Thus, the reward
function is formulated in the following two parts:

R(t) =" Y Eulrfn(t)] —pVar[r,, ()], (14
beB meM;
In(1 + ~%™(¢)) — umlrL2
RYt+1)=Q a4 (1) — i e, (15)
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where R°(t) defines the data rate and reliability requirements
of eMBB users and R“(t) captures the URLLC reliability.
Accordingly, the total reward function is given by

R(t) = R°(t) — () R" (1),

where ¢(t) is a weighting parameter that varies over time slots
to satisfy the required URLLC reliability. Here, we update the
values of the parameter ¢(t) over time slots as follows:

ot + 1) = max {¢(t) + 9(t) — &,0},

where 1¥(t) is the obtained transmission error probability at
the ™ time slot. In particular, adjusting the value of ¢(t) over
time slots allows us to verify URLLC reliability dynamically
per service requirements.

(16)

a7

B. Multi-Agent DRL Algorithm

As depicted in Fig. 2, the DRL agents are distributed at the
network edges, whereas a central training unit is located at
the regional cloud server to ease implementation and improve
stability. The centralized server trains a global model using
the gathered experiences from all edge agents. This approach
allows agents to learn together for faster convergence and
better performance. Furthermore, the decision made by each
agent is unaware to others. Here, sharing the same learning
parameters by the central trainer to all agents still gives
different action decisions by the agents as they execute the
trained model with different local states.

A fully connected neural networks model is trained offline
at the Non-RT RIC, installed at the regional cloud, using the
collected data from all edge agents. The trained model is
then signaled to the DRL agents at Near-RT RICs installed
at the edge servers. The global model is trained with an
objective to maximize the designed global reward function in
(16). Specifically, a policy gradient-based learning algorithm
is adopted in Actor-Critic networks. The actor part makes
decisions on action selection according to the learned policy
7, while the critic network evaluates the decided actions. We
use the experience replay technology with a buffer size of D
to improve the stabilization of the training process. The central
training unit samples a mini-batch with size d from the replay
buffer to train the actor-critic networks.

The state-action function is given by

Q(s,a):ZCR(t—&—U | w,s =s(t),a=a(t), (18)
=0



where ( is a discount factor. The network objective function
J(m) is defined as

J(W):E[QW(S,G)} :/S/Aw(s,a)Q”(s,a)dads. (19)

At the actor part, the policy is initialized according to the

network parameter 8 as follows:
7(s,a;0) = Pr(a|s,0). (20)

We obtain the objective function gradient with respect to 6 in
the following equation:

VgJ(W):/S/AVWQ”(s,a)dadS‘

Then, the actor network paraemnters 6 is updated based on
the (21) as

2y

O(t+1) = 0(t) + paVoJ (m), (22)

where p, represents the actor network’s learning rate.

At the critic unit, we use the function estimator technique to
obtain an approximation of the state-action function Q7 (s, a).
Thus, the approximated state-action value function using the
linear function estimator is give by

V(s,a)=¢"k(s,a) =Y &iri(s,a), (23)
€S
where K = [Ki(s,a),...,k5(s,a)]T is a basis function,

£(s,a) = (&1,...,&5)T is a weight vector. The Temporal-
Difference (TD) technique is used to find the error in the
estimated values as compared to the real values

5(t) = R(t+1) +CV(t+1) — V(1) (24)

We leverage the gradient descent technique to update the
weighting vector £(s,a) as follows:

Et+1)=&() + pd(t)VeV (s, a), (25)

where p. denotes the learning rate of the critic network.
Finally, the value function in (23) is updated according to
value of £(s,a) in (25).

At the edge servers, each agent uses the received trained
model from the Non-RT RIC to determine the best resource
allocation policy based on the given local network states. The
agents’ reward is obtained according to the selected policy and
network states. The edge agents send the network observations
and the obtained reward to the experience replay memory at
the regional cloud server for improving the trained models
over time.

IV. PERFORMANCE EVALUATION

A wireless network composed of three BSs is considered.
Each BS covers an area of 200 m? and serves eMBB and
URLLC users with a constant full-buffer traffic rate and
Poisson traffic with arrival rate (\), respectively. URLLC
packets length is set to be 125 Bytes [9]. Moreover, users’
mobility is considered with time-varying path loss and channel
conditions. The path loss between users and the associated
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settings.

BS is given as 120.8 + 37.51og;,(d) dB, where d defines the
BS-user distance in meters. The AWGN is set as 02 = —114
dBm. The maximum transmission power threshold is 38 dBm.
The period of each time slot is configured at 1 ms and
contains 7 mini-slots. The bandwidth of each RBs is set at
180 kHz [7]. We train the proposed algorithm under different
network settings, e.g., different URLLC traffic rates, varying
the distance between BSs and users. A neural network model
consisting of three hidden layers with 600, 300, and 250
neurons, respectively, is used. The discount factor is set at
0.95, while the learning rate is adjusted at 0.001. The reply
buffer memory size is set to 2000, and the mini-batch size is
configured at 32 [9].

Algorithm Convergence: We discuss the convergence rate
of the proposed algorithm and compare it to the Fully Cen-
tralized approach, where a central agent, meta-agent, is trained
using states collected from all agents. In such a scenario, the
meta-agent decides the action selection of all agents and then
forwards the results to BSs. As depicted in Fig. 3, the Fully
Centralized approach incurs a worse performance and requires
a longer convergence time. This is due that the action space of
the meta-agent contains the joint actions of all BSs, increasing
the dimension of the action space. On the other hand, the
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proposed approach has a fast convergence rate, achieving a
better response to the dynamic environment.

eMBB Data Rate: We compare the proposed method
to the orthogonal resource allocation technique in terms of
the obtained average eMBB data rate in Fig. 4. The results
show that the proposed approach performs better under light
URLLC traffic (A = 50 packets per time slot). However,
the performance of the proposed algorithm is lower than the
orthogonal method when increasing the URLLC traffic rate.
In particular, the proposed algorithm schedules URLLC traffic
over the ongoing eMBB transmissions, giving higher priority
to URLLC service. This impacts eMBB transmissions under
a heavy URLLC traffic rate scenario. It is also noticeable
that the orthogonal method gives the same performance under
different URLLC traffic settings as this approach allocates
fixed resources to each service regardless of the URLLC
traffic. Moreover, Fig. 4 shows that the average eMBB data
rate reduces when the number of eMBB users is increased for
the same available resources.

URLLC Reliability: Finally, we discuss the URLLC trans-
mission error rate obtained by the proposed algorithm in Fig.
5. Here, URLLC reliability is defined in terms of the violation
probability of (12). To do so, we plot the Cumulative Distri-
bution Function (CDF) of the transmission error probability
of URLLC traffic for different settings of A\ at ¢ = 0.025
to emphasize the worst-case scenario. It is noticeable that
the transmission error rate falls lower than the predefined
threshold € with a probability higher than 0.99 when setting
A = 100 packet/time slot. In fact, the proposed URLLC
scheduling method allocates resources to URLLC users by
learning the network traffic and channel variations, which
improve transmission reliability. It is also shown in Fig. 5 that
increasing URLLC traffic rate over the same network resources
may cause a violation of URLLC reliability. This is because
the proposed algorithm schedules URLLC traffic over eMBB
transmissions considering the trade-off between eMBB and
URLLC requirements.

V. CONCLUSION

This paper has studied the resource allocation problem in
multi-cell wireless systems serving two types of users, eMBB

and URLLC. We first formulated a risk-averse optimization
problem that incorporates the requirements of each traffic
type. A distributed learning framework has been developed
considering the novel O-RAN network architectures that fa-
cilitate learning over wireless networks to solve the resource
allocation problem. In particular, a multi-agent DRL-based
algorithm has been developed that can provide online decisions
on resource allocation by deploying trained execution agents
at Near-RT RICs located at network edges. Simulation results
have shown the performance of the proposed algorithm in
satisfying the QoS requirements of both eMBB and URLLC

users.
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