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Summary

The characterization of cells escaping the physiological landscape, the understanding of
pathological mechanisms, and the identification of novel targets for new therapeutic
strategies are part of the main aims of computational disease modelling. The accurate
characterization of cell identity and identification of key transcription factors (TFs) for cell
conversion holds great promises to revert disease states towards healthy ones. Moreover, the
characterization of the Gene Regulatory Network (GRN) is crucial to better understand
impaired regulatory mechanisms and identify potential targets for disease treatment. To date,
several computational methods have been implemented to tackle the aforementioned aims.
First, some methods were developed to characterize cell identity, including the identification
of cell identity genes. However, these computational methods solely rely on tissue samples,
usually composed of a mixture of cell classification (e.g., cell types, subtypes) which hinders
the accurate capture of identity genes. Moreover, they categorize genes as being expressed
or non-expressed, and hence discard intermediate levels of expression which have been
shown to be involved in the functional outcome of the cells. Further, current methods rely
on genome-wide or highly variable genes to identify subtle differences such as cell states.
However, these approaches do not accurately decipher functional cell states neither the genes
that characterize them. Finally, several GRN inference methods based on single cell
transcriptomics have been developed over the years. However, few of them exploit the single
cell multi-OMICS data to infer more comprehensive GRNs, including the interaction
between TFs and the enhancers of regulated genes, to provide a better understanding of

impaired regulatory mechanisms in disease conditions.

In this thesis, three computational strategies were developed to overcome the limitations of
current methods and tackle main challenges of systems biology and disease modelling. First,
HCellig was implemented to accurately characterize cellular identity. HCellig is based on a
hierarchical cell identity composed of three layers including cell type, subtype and
phenotype to overcome the mixture of different cell classification that can hinder the capture
of identity genes. In addition, HCellig quantifies gene into three levels of expression to
provide a more refined functional characterization of the cell identity. The use of HCellig on
mouse and human large-scale datasets allowed us to generate two high-resolution cell
identity atlases for both organisms. Second, FunPart was developed to decipher functional
cell states while capturing the key genes characterizing them by using a feature selection

strategy combined with a clustering approach. The application of FunPart on a large

il



compendium of mouse infection datasets generated a Catalogus Immune Muris comprising
all the functional cell states identified and the key genes defining their state. In particular,
these genes could be candidate immunomodulator as we demonstrated for Zfp591, a
previously unknown transcription factor modulating macrophages response to Salmonella
infection. Lastly, we designed RNetDys, a systematic multi-OMICS pipeline to infer
regulatory interactions mediated by TFs and enhancers of regulated genes for specific cell
(sub)types or states and identify candidate impaired regulatory interactions in diseases due
to single nucleotide polymorphisms (SNPs). We showed that RNetDys overcome current
approaches to infer cell (sub)type specific GRN and validated the relevance of captured

impaired interactions across five diseases.

In summary, the three computational methods proposed in this thesis cover the cell identity
and gene regulatory mechanisms aspects, in physiological and pathological conditions.
Together, they will contribute to a better understanding of cells escaping the physiological
landscape, a more accurate characterization of pathological cells states and dysregulated
regulatory mechanisms, and the identification of candidate genes to design novel therapeutic

strategies to treat diseases.

v



1 Introduction

1.1 Disease modelling to guide new therapeutic approaches

1.1.1 Diseases and systems biology

Diseases result from abnormal modifications in the function or structure of a tissue, organ
or group of organs. They can be roughly grouped as those resulting from genetic factors or
environmental factors (Antony et al., 2012). In particular, diseases resulting from genetic
factors can range from single causal factors (monogenic disease) to polygenic or
multifactorial diseases (Weatherall, 2000; Antonarakis and Beckmann, 2006; Visscher et al.,
2021). Nevertheless, the combination of both genetic and environmental factors has been
reported to impact the onset and progression of most diseases (Knip et al., 2005; Antony et
al., 2012). In that regard, multifactorial or complex diseases, such as Parkinson’s disease
(PD) and epilepsy, are those for which the interplay of environmental factors and several
genes is believed to influence their progression (Ottman et al., 1996; Warner and Schapira,
2003). For instance, the multifactorial nature of PD has been demonstrated by the
identification of several PD-related genes (e.g. SCNA, LRRK2, DJ-1), the characterization
of diverse genetic risk factors and the study of some environmental factors such as cigarette
smoking and caffeine consumption that could alter the risk of PD development (Pérez-Tur,

2006; Kouli et al., 2018).

The prevalence of many complex diseases, such as diabetes and cardiovascular diseases, has
dramatically increased in the last few years (Mardinoglu and Nielsen, 2016). Moreover, a
considerable number of diseases still lack of effective medical treatments to prevent, treat
and cure them (Kiser and Pronovost, 2009; Cummings et al., 2021; Hansson, 2021).
Therefore, there is a need for new therapeutic approaches that would allow the detection,
prevention and treatment of diseases. However, the development of new therapeutic
strategies requires a deep understanding of the cellular heterogeneity and underlying
molecular mechanisms involved (Gitler et al., 2017; Schett et al., 2021; Mortada et al.,
2021). In that regard, systems biology is an active and evolving multidisciplinary field of
research that includes computational modelling and wet-lab expertise, to pave the way
towards new therapeutic approaches and personalized medicine (Wolkenhauer ef al., 2013;
Gabhann et al., 2010; van Kampen and Moerland, 2016). In particular, disease modelling

using computational approaches is an active research field of systems biology that aims at



developing computational models to study different aspects of diseases. These models aspire
at providing a valuable guidance for experimental and clinical setups to develop strategies

that detect, prevent and/or treat diseases.

1.1.2 Computational approaches to guide treatments and personalized medicine

Computational modelling methods aim at developing models based on assumptions and data
evidences to provide explanations and insights into a scientific problem that can then tested
or refined using further investigations involving experimental validations (Barh et al., 2020).
In particular, models can be categorized in two main categories depending on their general
aim, with descriptive models intending at providing explanations for an observation, and
predictive models aiming at predicting the result of novel observations (Motta and
Pappalardo, 2013). The development of a model is an iterative process in which it is common
to use additional observations for refinement purposes. In addition, a descriptive model or
the predictions obtained from a predictive model can be validated using in vitro or in vivo
experimental strategies (Kitano, 2002). Over the years, several computational models have
been implemented to study a wide spectrum of diseases and get a better understanding of
their cellular and molecular complexity. For instance, methods have been developed to study
the characteristics of diseases and identify candidate genes involved in diseases using
different models and approaches (Gill et al., 2014). Notably, computational modelling
methods contributed to the discovery of heterogeneity and complexity of Alzheimer’s
disease (AD) and PD for which the notion that they are fundamentally governed by amyloid-

B, tau, and a-synuclein proteins has been challenged (Lam et al., 2020).

The findings and insights provided by computational methods help the development of novel
therapeutic approaches and personalized medicine strategies (Figure 1). In particular, models
at the cellular and molecular levels such as Gene Regulatory Network (GRN) based methods
holds great promise to predict key transcription factors (TFs) for cellular conversion that can
be applied for cell-based therapies (del Sol and Jung, 2021). In that regard, one main goal of
regenerative medicine is the replacement of damaged cells by healthy and functional ones
using cell transplantation strategies (Edgar et al., 2020). The guidance provided by
computational methods greatly contributed to the stem cell engineering, allowing the
reprogramming or differentiation of cells toward the target cells of interest (Cahan et al.,
2021). For instance, induced pluripotent stem cells (iPSCs) are used to produce functionally

mature dopaminergic neurons to treat PD, characterized by the loss of dopaminergic neurons



in the substantia nigra. Notably, the first clinical trial to treat PD using iPSCs has been
initiated by Shinya Yamanka in 2018 (Aly, 2020). In addition, computational models are
powerful tools to advance personalized medicine by optimizing outcomes of patients based
on their unique disease features and biological properties (Figure 1). The generation of
patient-specific models held great promises to monitor diseases and open new venues for

personalized healthcare (Chen and Snyder, 2012).
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Figure 1. Computational disease modelling contribution for personalized medicine.
Figure modified from (Wang et al., 2020), from (Gu et al., 2012) for the GRN and (Niewiadomska
et al., 2011) for the signalling pathway. It shows the interplay of disease modelling to contribute to
the development of novel therapeutic strategies applied to personalized medicine.

Over the years, several studies have been focusing on different aspects of diseases using
computational biology approaches to dissect cellular heterogeneity and shed the light
towards the composition of biological systems (Satija et al., 2015; Butler et al., 2018).
Moreover, many approaches focused on deciphering their molecular complexity to provide
mechanistic insights on the processes involved in diseases progression or to identify
candidate genes that could be used as therapeutic targets for disease treatment (Szabo et al.,
2019; De Luca et al., 2020). Notably, efforts have been made to develop computational
methods driving the discovery of cellular heterogeneity, identifying molecules for cell
phenotype conversion and providing insights of the underlying mechanisms leading to a
disease state (Figure 2) (Hassan et al., 2018; Jenner et al., 2020; Collin et al., 2022;
Pappalardo et al., 2016; Ford Versypt, 2021). However, despite recent efforts and valuable

contributions to develop computational systems biology strategies aiming for therapeutic or



clinical applications, several challenges remain to be solved (Ma and Lim, 2021; Cha and

Lee, 2020; Zhao et al., 2020).
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Figure 2. Computational models for disease modelling.

This figure summarizes some aspects tackled by research projects exploiting computational models
to study diseases. The development of computational systems biology approaches focused on
different aspects such as the comprehensive characterization of cell identity, the dissection of cellular
heterogeneity and identification of candidate genes for cell phenotype conversion, and the study of
dysregulated regulatory mechanisms.

1.1.3 Development of single cell-based technologies

For years, research studies have been relying on bulk-sequencing technologies allowing the
measurement of features such as genes quantification across pool of cell populations (Li and
Wang, 2021). However, these averaged measurements obscured the discovery of tissues
composition, cell-to-cell variability and rare cell (sub)populations that could be involved in
diseases (Wang and Navin, 2015). The emergence and fast development of single-cell based
technologies led to the generation of different types of omics data, such as single cell RNA-
seq and single cell ATAC-seq, that allowed large-scale and refined measurements at the cell
level. The high-resolution of this data enhanced the dissection of cells heterogeneity and
molecular complexity of mechanisms involved at different biological scales (Wang and

Bodovitz, 2010; Trapnell, 2015; Papalexi and Satija, 2017; Ldhnemann ef al., 2020).

Single-cell technologies uncovered a considerable number of previously unknown cell

(sub)types throughout the generation of organism-wide cell atlases (Rozenblatt-Rosen et al.,



2017; The Tabula Muris Consortium et al., 2018; Zhang et al., 2021; The Tabula Sapiens
Consortium et al., 2022). In addition, this high-resolution data enhanced the discovery and
characterization of novel cellular states (Trapnell, 2015). The creation of a comprehensive
landscape of cell phenotypes would contribute to the systematic identification of cells that
cross physiological bounds towards pathological states (Motris ef al., 2019; Szabo et al.,
2019). Moreover, single-cell data contributed to our understanding of cell fates and gene
regulatory mechanisms by providing an unprecedent molecular resolution at the cell level
(Perkel, 2021). The development of single cell OMICS data allowed to link different features
to decipher the complexity of multicellular organisms and the underlying mechanisms
driving physiological and pathological processes. In particular, the combination of
epigenomics and transcriptomics helped the study of lineage determination and mechanisms
involved in the development of diseases (Ogbeide et al., 2022). However, the precision in
features measurement provided by single cell technologies raised several challenges (Potter,
2018; Cha and Lee, 2020; Lahnemann et al., 2020). Notably, the sparsity and important
variability of single cell data hinders the accurate detection of relevant features, complex
gene patterns and discovery of new cell (sub)types or states (Kiselev, Tallulah S. Andrews,

et al., 2019; Lahnemann et al., 2020).

1.2 Characterization of cell identity

1.2.1 Cellular identity and destabilization in disease state

Multicellular organisms are composed of highly heterogeneous cells organized in different
layers to form complex entities such as tissues and organs. For a long time, cells were
classified based on diverse features including their location, morphology or interactions with
other cells (Arendt et al., 2016; Morris et al., 2019). However, the emergence of single-cell
based technologies allowed for a more precise and refined measurement of cell features that
uncovered the wide complexity of biological systems and showed the limitation of the
previous classification system. Indeed, the generation of organism-wide cell atlases provided
more insights into the cellular heterogeneity (The Tabula Muris Consortium et al., 2018;
Zhang et al., 2021; The Tabula Sapiens Consortium et al., 2022). For instance, the Tabula
Sapiens is a single cell transcriptomics atlas reporting the gene expression profiles for 475
cell (sub)types across 24 human tissues. This atlas allowed for the discovery of shared and
tissue-specific properties across cell types such as the macrophages, a cell type shared across
tissues but displaying subtle differences in genes expression that are tissue-specific (The

Tabula Sapiens Consortium et al., 2022).



Cells originate from different lineages and acquire part of their identity during the
developmental process, guided by cell fate determinants, in which pluripotent cells
differentiate to give rise to more specialized cells such as cell types or cell subtypes (Mayor,
2019; Belmonte-Mateos and Pujades, 2022). In addition, cells express different sets of genes
depending on their micro-environment and the functions they have to perform, leading to
different phenotypes. Indeed, the most refined level of resolution for cellular heterogeneity
is the cell state level for which the same cell (sub)type could respond differently to
perturbations and hence display a variety of phenotypes (Dueck et al., 2016; Nimmo et al.,
2015). Single cell RNA-seq technologies greatly contributed to the dissection of cellular
heterogeneity by leveraging the high-resolution of gene expression patterns displayed by
individual cells (Choi and Kim, 2019). The hematopoietic system has been widely studied
to better understand hematopoiesis and uncover the wide diversity of cell types and subtypes
differentiating from hematopoietic stem cells (Watcham et al, 2019; Dolgalev and
Tikhonova, 2021). Indeed, the study of the hematopoietic cell landscape using single-cell
technologies shaped, modified and extended the hematopoietic development tree (Watcham
et al., 2019). Notably, hematopoietic progenitor cells were found to be in a continuous
transcriptional landscape branching into seven fates including erythroid, basophilic,
megakaryocytic, lymphocytic, dendritic, monocytic and granulocytic neutrophil lineages
(Tusi et al., 2018). In addition, immune cells have been shown to display a wide diversity of
phenotypes during immune responses, highlighting their dynamic and plasticity (Satija and
Shalek, 2014; Gause et al., 2020). In particular, the binary classification of M1 and M2
macrophages, with M1 macrophages displaying pro-inflammatory properties and M2
macrophages displaying anti-inflammatory properties, has been questioned by the discovery
of the wide spectrum of macrophages polarization states (Kim and Nair, 2019; Liu ef al.,
2020). Therefore, the identification and molecular characterization of more subtle
differences such as rare cell (sub)populations or cell states still remains elusive (Nguyen et

al., 2018; Andreatta et al., 2021).

The comprehensive characterization of cells identities in the organism cellular landscape
(e.g., human) would allow the identification of cells displaying non-physiological features
and potentially going toward disease-related states (Morris et al., 2019). Indeed, the
maintenance of cellular identity is crucial to conserve the homeostasis and integrity of the

organism. Cell identity is maintained by a set of genes, named identity genes, that ensure the



physiological properties of the cells such as their functions (Xia et al., 2020; Kim et al.,
2021). In that regard, identity genes are defined as a combination of unique genes specifically
expressed to characterize and maintain cell identity. The loss or perturbation of identity
genes can lead to the destabilization or disruption of cell identity, which has been shown to
be associated with pathological processes and involved in several diseases (Ikeda et al.,
2018; Brumbaugh et al., 2019; Budday et al., 2015). For instance, the identity of human
dopaminergic neurons was shown to be destabilized in response to diverse PD related stress
factors (Fernandes et al., 2020). Another example is the loss of B-cell identity which has
been shown to be involved in diabetic phenotypes (Mostafa et al., 2020). Therefore, it is
required to accurately characterize cell identity by deciphering identity genes to have a
comprehensive understanding of the cellular landscape heterogeneity and distinguish

physiological features from pathological ones.

1.2.2 Deciphering identity genes and its limitations

The accurate identification of identity genes to characterize cell identity remains a central
challenge in biology (Morris et al., 2019). Several efforts have been made in this direction
and diverse computational methods aiming at identifying such genes based on single-cell
transcriptomics data have been developed and used in the past few years (Stuart ez al., 2019;
Wang et al., 2019; Delaney et al., 2019). Notably, Seurat is a well-established pipeline for
single cell RNA-seq datasets analysis composed of several features such as the quality
control of the data, normalization, dimensionality reduction, visualization and identification
of identity genes based on differential expression (DE) using a Wilcoxon test by default
(Satija et al., 2015). The use of DE analysis methods allows to discover differentially
expressed genes (DEGs) that have a significant quantitative change in their expression
between different conditions or group of cells (Mou et al., 2020). DEGs found to be uniquely
up-regulated in one condition or one cell (sub)type have been used as markers as this
property reflects their specificity to characterize the condition or cell (sub)type (Cliff et al.,
2004; Squair et al., 2021). In addition, other computational methods relying on different
strategies have been implemented such as scMarker that uses information theory principles

to identify markers for cell types (Wang et al., 2019).

Existing computational methods have several limitations that hinders the accurate capture of
identity genes to characterize cell identity (Figure 3). First, they do not account for the

underlying biological complexity of cells classified in a hierarchy composed of cell types,



subtypes and phenotypes. Indeed, the identity genes identification highly relies on the
biological environment in which cells are studied accordingly with their hierarchical
classification. Nevertheless, these methods identify such genes by performing comparison
of gene expression profiles between a target cell population with other cell populations in
given tissues (Figure 3). Whereas these tissues do not necessarily contain all representative
cell populations, they are also usually composed of a mixture of different cell types, subtypes
and phenotypes, which hinders the accurate identification of the target cell population

identity genes.
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Figure 3. Limitations of current methods to characterize cellular identity.

The t-SNE was modified from (Butler et al., 2018). This figure shows the concept behind current
computational method to identify identity genes of a target cell (sub)population. For instance, the
identity genes of TCD8+ cells are identified by performing pairwise comparisons with all other group
of cells or by performing a comparison against all of them grouped together as a background. From
this comparison based on differential expression, identify genes are captured as up-regulated in the
target cell (sub)population. Of note, down-regulated genes that could correspond to negative markers
can also be identified but are not shown in the figure. NK: natural killer, DC: dendritic cell, eryth:
erythrocyte, MK: megakaryocyte, pDC: plasmacytoid DC, mono: monocyte.

Moreover, current methods rely on a Boolean approach of gene expression that identifies
whether a gene is expressed or not expressed in a specific cell population. However, it has
been shown that the same gene with different levels of expression can lead to different
functional outcomes (Bigas and Espinosa, 2012; Shats et al., 2017; Huang, Yang, George W
Ye, et al., 2021) and, hence their approach is too stringent to capture such subtle differences.
For instance, E2F] expression levels were shown to be critical in the control of cell fates,
with a low level promoting cell proliferation, an intermediate level driving the mitotic cell

cycle arrest and a high one promoting apoptosis (Shats ez al., 2017). In addition, it have been



shown that Notch targets and receptors are found at different levels of expression in
hematopoietic cell types and impact on their lineages fate (Sandy and Maillard, 2009; Huang,
Yang, George W. Ye, et al., 2021).

1.3 Identification of disease-related functional states and genes

1.3.1 Functional cell states identification and its limitations

Cell identity is defined by a set of genes that characterize the specific features, such as
specific functions, displayed by the cell. Whereas the functional specialization of cell
(sub)types arose during the developmental process, it is further shaped by external signals.
Indeed, in response to various stimuli, the same cell (sub)type can exhibit diverse phenotypes
defined by specific molecular and functional features, hence corresponding to different
functional cell states (Morris et al., 2019; Masuda et al., 2020). A compendium of
computational methods based on single-cell transcriptomics data have been implemented in
the past few years to identify cell (sub)populations using clustering-based approaches
(Andrews and Hemberg, 2018). Clustering methods aim at grouping cells that share similar
expression patterns to identify cell (sub)populations that could correspond to cell types,
subtypes and/or states. They can be divided into two major categories comprising
unsupervised clustering approaches that solely rely on the data and supervised clustering
ones that use prior-knowledge to guide de grouping of cells (Abdelaal et al., 2019; Kiselev,
Tallulah S Andrews, ef al., 2019; Sun et al., 2022). Firstly, a wide range of unsupervised
clustering methods have been implement and commonly used such as K-means (Kiselev et
al., 2017), hierarchical clustering (Guo et al., 2015), density based clustering (Januzaj et al.,
2004) or graph-based clustering (Satija et al., 2015). In that regard, the standard method is
the k-means algorithm which identifies k centroids, corresponding to cluster centers, and
assign each cell to the closest centroid. In addition, the hierarchical clustering is another
widely used algorithm that combines cells into larger groups (agglomerative) or divides
group of cells into smaller ones. In particular, Seurat, a state-of-the-art pipeline to analyze
single-cell data (Satija et al., 2015), builds a shared-nearest-neighbors graph to connect cells
and applies the Louvain community detection algorithm to detect strongly connected
communities that corresponds to cluster of cells. These clustering approaches are widely
used for the discovery of novel cell (sub)populations, but they often miss cell states
displaying subtle changes and require additional analyses to annotate and characterize them.

Identified clusters corresponding to cell (sub)types can be manually annotated based on



expert knowledge well-defined markers (X. Zhang et al, 2019) or with the use of
computational methods providing systematic approaches (Sun et al., 2022). Notably,
iterative clustering approaches have been developed to identify sub-clusters, aiming at a
better identification of rare cell subpopulations or states but prone to over-clustering (Miao
et al., 2020). Secondly, supervised clustering approaches have been developed to overcome
the manual annotation of cells by identifying group of cells based on reference datasets or
set of defined markers (A. W. Zhang et al., 2019; Pliner et al., 2019; Lee and Hemberg,
2019). However, supervised approaches are limited to the prior-knowledge provided and are

then unable to discover new cell (sub)populations.

1.3.2 Identification of relevant features to characterize cell states

Current computational methods to resolve cellular heterogeneity primarily focus on genome-
wide gene expression patterns to identify cluster of cells (Andrews and Hemberg, 2018).
However, the use of genome-wide gene expression patterns usually obscured the detection
of cell clusters distinguished by subtle differences. To overcome this limitation, diverse
approaches were implemented to pre-select the most relevant features to improve the cell
partitioning (Xie et al., 2019; Yang et al., 2021). In that regard, one standard feature selection
strategy has been the detection of highly variable genes (HVGs), implemented in Seurat
(Satija et al., 2015), consisting of genes having the highest variability across cells to leverage
the capacity of clustering methods to better account for subtle differences (Yip et al., 2019).
Once the cell (sub)clusters are identified, it is usually required to characterize them and
interpret their biological meaning (Figure 4) (Kiselev, Tallulah S. Andrews, ef al., 2019).
One standard strategy consists of the identification of DEGs between the cell
(sub)populations identified, followed by functional enrichment analyses to find biological
processes and/or pathways over-represented to guide the biological interpretation (Figure 4)
(Luecken and Theis, 2019). In particular, gene set enrichment analysis (GSEA) aims at
identifying genes significantly enriched in specific annotations of interest to guide the
functional interpretation (Reimand et al., 2019). Of note, widely used annotations are the
Gene Ontology (Ashburner et al., 2000), composed of biological processes, molecular
functions and cellular component, as well as pathways such as KEGG pathways (Wixon,
2001; Kanehisa et al., 2017). Nevertheless, the functional characterization of identified cell
(sub)populations, such as cell states, highly relies on the obtained clusters which has been

shown to not be always reliable (Andrews and Hemberg, 2018). Therefore, existing
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computational methods lack functional relevance when aiming at detecting distinct

functional cell states.
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Figure 4. General workflow to identify and characterize cell (sub)populations.

Figure modified from (Luecken and Theis, 2019) and (Kiselev, Tallulah S. Andrews, ef al., 2019).
The general workflow to identify cluster of cells consists of the feature selection to select the most
informative genes to then perform the clustering to identify cell (sub)populations. Then, the
characterization of these cell (sub)populations is usually performed by manual or automatic
annotation, the identification of differentially expressed genes and functional enrichment analysis.

1.3.3 Cell states conversion

The cell states conversion or transition is a biological process happening in physiological
conditions to maintain the organism integrity in response to different stimuli. For instance,
neurogenic niches are composed of neuronal stem cells in active or quiescent state to ensure
tissue maintenance (Codega et al., 2014). Another example is the transitioning states of
immune cells, such as quiescent or active T cells, in response to inflammatory signals
(Andreatta et al., 2021; Hua and Thompson, 2001). However, cells can display non-
physiological expression patterns in response to stimuli and potentially undergo toward

pathologic states due to important dysregulations (Schwartz et al., 2013; Prinz and Priller,
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2017). The accurate characterization of cellular states is required to allow the accurate
identification of candidate genes that could be used to induce conversion between cell states.
Especially, some cell conversion strategies aim at inducing the transition between cell states
to promote changes under different conditions, as for instance the conversion of a disease
state towards a healthy one. In that regard, several studies aimed at identifying candidate
genes that could be used to modulate or convert cellular states to pave the way towards new
therapeutic approaches applied to diseases treatment (Kwon and Koh, 2020; Gyun Jee Song,
2017). For instance, it has been shown that the conversion between pancreatic endocrine cell
states was a promising strategy to recover the 3 cell mass for diabetes (Wei et al., 2022). In
addition, immunomodulator candidates were identified using a single-cell based approach in
the case of acute myeloid leukemia (Guo ef al., 2021). Indeed, single-cell transcriptomics
based analyses are a valuable strategy to identify candidate genes that could be targeted using
a variety of experimental techniques such as viral vectors (Miyamoto ef al., 2018) or guide
RNA (Liu et al., 2018) to overexpress or repress the specific candidate genes(s). In addition,
chemical compounds specifically targeting candidate gene(s) can contribute to the drug
discovery and development field (Ebrahimi, 2016; Liu et al, 2016; Li and Ding, 2010).
Whereas computational-based predictions are not directly applicable for clinical setups, they
provide a valuable guidance for experimental investigation and contribute to the

development of novel therapies aiming at preventing or treating diseases.

1.4 Deciphering impaired regulatory mechanisms in diseases

1.4.1 Gene Regulatory Networks inference and limitations

Gene regulation constitutes a fundamental biological process involving mechanisms that
activate and repress genes to specify the gene expression profile of cells and hence their
identity (Almeida et al., 2021). This process generates diverse gene expression patterns
leading to a high cellular heterogeneity for which cells have different sets of proteins to
ensure their identity and functionality. It is composed of complex mechanisms in which
molecular regulators interact following internal and external signals sent by the
(micro)environment (Bahrami and Drables, 2016). The gene expression in eukaryotes
involves several steps that can be regulated from the DNA availability to the translation in
proteins (Wray et al., 2003; Cooper, 2000) (Figure 5). Indeed, a gene can be regulated at
each step of the regulatory process. First, the chromatin accessibility can be modulated from

a compact to an open structure in order to make enhancer and/or promoter regions of genes
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accessible (Klemm et al., 2019). Then, the transcriptional process, a key point of the
regulatory process, in which TFs bind to specific parts of the DNA such as enhancer and/or
promoter regions to initiate or repress the transcription of a gene (Spitz and Furlong, 2012).
Finally, the transcribed RNAs are processed via splicing for which the same pre-mRNA
produced can lead to different mRNAs (Nilsen and Graveley, 2010). Then these mRNAs are
translated into proteins that can undergo several post-translational modifications that may
affect their activity including ubiquitylation, methylation, phosphorylation or acetylation

(Wang et al., 2013).
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Figure 5. Gene regulation mechanisms in eukaryotes.

Figure modified from (Buchberger et al., 2019), the post-translational modifications picture was
taken from (Wang et al., 2013). This figure summarizes the main regulatory mechanisms covering
the gene regulation to the set of proteins expressed in the cell. The transcriptional regulation takes
place in the nucleus, once the chromatin is open TF binding sites are accessible and TFs can bind to
enhancer or promoter regions to enhance or repress the transcription of a specific gene. Once the
mRNA is transcribed, it is exported in the cytoplasm to be translated into amino acids and form the
protein. Several post-translational modifications such as acetylation or methylation can then modify
the protein structure and/or its function.

Reliable and fast inference of large-scale GRNss from transcriptomics data is a long-standing
challenge and is crucial for understanding key biological processes such as differentiation
and reprogramming (Marbach et al., 2010). Over the years, diverse computational methods

have been proposed to infer GRNs from transcriptomics data, especially during the DREAM
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challenges (Meyer and Saez-Rodriguez, 2021). These methods aim at reconstructing the
GRN that reflects the underlying mechanisms regulating cell expression patterns. Early
methods for bulk gene expression data were based on capturing changes in average gene
expression profiles as a function of time or perturbations (Sima et al., 2009; Huynh-Thu et
al.,2010; Margolin et al., 2006). However, bulk gene expression data can often obscure true
biological signals due to averaging of expression over all cells in a given sample (Pratapa et
al., 2020; Chen et al., 2019). In this regard, advances in single cell RNA-sequencing has led
to development of different kinds of computational methods that leverage the high-resolution
gene expression profiling of individual cells and overcomes the major limitations of bulk
sequencing (Efremova and Teichmann, 2020). One of the key challenges in GRN inference
involves the accurate prediction of regulatory relationships between TFs and their target
genes from their expression patterns. Putative regulatory relationships between genes can be
detected by simple correlation analysis, or through more advanced measures like mutual
information or partial information decomposition that detect statistical dependency between
pairs of genes (Chan et al., 2017; Aibar et al., 2017; Nguyen et al., 2021). Notably, SCENIC
uses a two steps approach by first using GENIE3, a method using random forests that detects
regulatory relationships based on covariation (Huynh-Thu et al., 2010), to infer the
regulatory interactions between genes based on scRNA-seq data. It then performs a TF-motif
enrichment analysis using RcisTarget to refine the predictions and identify putative TF-
targets regulatory interactions (Aibar et al., 2017). In particular, most of the existing GRN
inference methods exclusively relies on scRNA-seq data, widely available and rapidly

expanding (Chen et al., 2019; Mercatelli et al., 2020).

Computational methods inferring networks from single cell gene expression data still poorly
perform (Chen and Mar, 2018; Pratapa et al., 2020). The increasing generation of chromatin
immunoprecipitation sequencing (ChIP-seq) data greatly contributed to the understanding
of the transcriptional regulatory landscape by providing TF-binding evidence supporting TF-
genes regulatory interactions (Mei et al., 2017; Oki et al., 2018). In that regard, GRN
inference methods that solely rely on scRNA-seq can predict regulatory interactions among
TFs and genes (Wray et al., 2003). However, these methods are not designed to model the
direct regulatory interactions involving enhancers, and hence the regulatory mechanistic
insights provided remains limited. Indeed, it is well described that genes are regulated in
time and space by the interplay between enhancers and promoters to define specific

expression patterns (Dao and Spicuglia, 2018). Therefore, another key challenge to model
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genes regulation is the prediction of enhancer-promoter regulatory interactions. Particularly,
some methods have been implemented to predict regulatory interactions between enhancers
and promoters using chromatin physical interactions bulk data such as Hi-C or CTCF ChIP-
seq (Hariprakash and Ferrari, 2019; Belokopytova et al, 2020). In addition, valuable
resources have been created such as GeneHancer, a comprehensive database reporting
known human enhancers and their connected genes (Fishilevich et al., 2017). Notably,
computational approaches relying on bulk data are strongly limited regarding their
applicability to uncover cell (sub)type or state specific enhancer-promoter regulatory
interactions that would require the high-resolution of single cell technologies. In that regard,
Cicero, a single-cell cis-regulatory network method relying on scATAC-seq data was
developed to exploit the high-resolution of single cell data by identifying co-accessible pairs
of DNA elements, and hence connect regulatory elements such as enhancers to their putative
target genes (Pliner ef al., 2018). Whereas the described methods are valuable to uncover
regulatory relationships involving enhancers and key elements impacted in disease
conditions (Claringbould and Zaugg, 2021), they partially model the regulatory machinery
as the interplay with TFs remains missing. Therefore, GRN inference methods based on
single-OMICS data remain limited to model comprehensive regulatory interactions between

the key elements involved in gene regulation.

1.4.2 Multi-OMICS approaches for better mechanistic insights

In order to address the mechanistic limitations of GRN inference methods based on single-
OMICS approaches, such as scRNA-seq only, strategies based on multi-OMICS data were
implemented (Hu et al., 2020). In that regard, combinative or integrative approaches have
been developed based on multi-OMICS data over the past few years to account for gene
expression and genomics information, such as chromatin accessibility and/or histone
modifications (Zarayeneh et al., 2017; Jung et al., 2021). For instance, IRENE, a systematic
GRN inference method that integrates diverse OMICS data including gene expression,
chromatin accessibility, histone modification, ChIP-seq, and protein—protein interaction data
was developed to predict cell-type specific core GRNs (Jung et al., 2021). Whereas efforts
have been made in integrating bulk-based multi-OMICS data to predict more comprehensive
GRNs that cover a larger part of the complex regulatory machinery, future direction of
development should integrate different single-cell layers to more accurately depict
regulatory mechanisms underlying disease and biological processes (Figure 6) (Hu et al.,

2020). In that regard, scGRNom, a computational pipeline combining bulk and single cell
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multi-OMICs, was developed to infer tissue and cell type specific regulatory interactions
involving TFs, genes and enhancers using Hi-C data, single cell transcriptomics and/or

chromatin accessibility data (Jin et al., 2021).
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Figure 6. Multi-OMICS integration for more accurate GRNs prediction.

Figure from (Hu ef al., 2020). It shows the different single-cell technologies ranging from the DNA
to the mRNA that could be used for single cell-based multi-OMICS GRN inference approaches to
investigate gene regulatory mechanisms.

Furthermore, the exploitation of single cell modalities to decipher regulatory mechanisms of
heterogeneous cell (sub)populations still remains a challenge, mainly due to the lack of
single cell sequencing techniques or datasets (Bravo Gonzélez-Blas ef al., 2020). Recently,
efforts have been made to integrate single cell layers and provide a more comprehensive
understanding of the regulatory mechanisms landscape (Kartha et al., 2021; Boix et al.,
2021; Lyu et al., 2021). Notably, EpiMap, a map of the human epigenome has been
generated and used to compile a comprehensive view of the human genes regulation across
tissues and cell lines that describe gene regulatory regions, their upstream regulators and
specific targets (Boix ef al., 2021). In addition, the integration of scRNA-seq and scATAC-
seq data allowed for the generation of a comprehensive cis-regulatory landscape for immune
responses across cell types, time and different stimuli (Kartha et al., 2021). Recently,
DIRECT-NET, a GRN inference method based on matched scRNA-seq and scATAC-seq

has been developed to model the regulatory relationships between key elements involved in
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genes regulation including TFs, genes and enhancers (Zhang et al., 2022). Therefore, the
future direction to uncover cell heterogeneity at the transcriptional regulatory level will be
based on the integration or combination of different single cell layers (Hu et al., 2020)

(Figure 6).

1.4.3 Exploiting the gene regulatory network information

GRN models are powerful tools to unveil the fundamentals of cells heterogeneity and
functionality (Liu et al., 2019). They provide a guidance for the resolution of several
biological and biomedical questions (Emmert-Streib et al., 2014). Indeed, GRNs provide a
molecular map that can be used to derive novel hypotheses about these mechanisms and their
implications. Standard GRNs are weighted and directed graphs in which source nodes (e.g.,
TFs) are regulating target nodes (e.g., genes) with a certain degree of confidence or strength
(weight) (Aibar et al., 2017). In addition, these graphs can be signed to provide information
about the type of interaction which could be an activation or a repression. Graph theory
approaches can then be applied to exploit the structure and topology of the graph to identify

particularities or features of interest (Koutrouli et al., 2020) (Figure 7).
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Figure 7. Overview of graph theory to exploit GRNSs.
Gene regulatory networks in which TFs are sources (red) and genes are targets (blue). A non-
extensive representation of the main graph properties is presented: hubs in which a TF has a high
outdegree and modules that contains highly connected nodes.

In particular, highly connected genes, named hubs, have been of particular interest to identify
main regulators of a network. They can be identified based on the indegree of a node,

corresponding to the number of other nodes regulating it, and its outdegree, corresponding
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to the number of targets (Figure 7). Indeed, the main regulators are usually hubs with a high
outdegree compared to the other nodes of the network (Wolf et al., 2021). Moreover,
regulatory modules can be detected based on the network topology by identifying clusters
of nodes highly connected (Song et al., 2017) (Figure 7). These regulatory modules have
been shown to provide functional insights into the biological processes involved (Manners
et al., 2016). In addition, other topological properties such as specific motifs are of specific

interest to understand the regulatory mechanisms involved (Zhang and Zhang, 2013).

GRNs have been widely exploited to identify optimal TFs candidate based on the network
topology for cell conversion strategies such as reprogramming into a cell type of interest
(Hartmann et al., 2019). Master regulator TFs (MRTFs) can be captured by identifying TFs
acting like hubs in the GRN, and hence are the main regulators of a group of genes. These
MRTFs have most likely an important effect on the gene regulation if their expression is
perturbed, which has been shown as a promising strategy for cell conversions (Wild and
Tosh, 2021). Moreover, GRNs have been used to study diseases and provide transcriptional
mechanisms insights into the dysregulations involved (lacono et al., 2019). One standard
strategy consists of performing a comparative analysis between the GRN in healthy
condition and in disease one (Singh et al., 2018). Such comparison unveils the changes in
regulatory interactions and allows to identify the regulations involved in the disease, the
genes dysregulated and potential targets for disease treatment (Weighill et al., 2021). For
instance, the generation of a GRN around LRRK? in PD guided the discovery of RGS2 as a
modulator of LRRK?2 activity that could be used as a therapeutic target to interfere with

neurodegeneration in PD patients having the LRKK2 mutations (Dusonchet ef al., 2014).

1.4.4 Identification of dysregulated mechanisms in diseases

The disruption of gene regulation is an important contributor to diseases (Tong Thn Lee,
2013). Indeed, the impairment in gene expression levels above or below certain thresholds
can lead to significant impacts on the phenotype of cells and lead to a wide diversity of
diseases (Matharu and Ahituv, 2020). It has been shown that mutations in cis-regulatory
elements such as enhancers are key drivers of the alteration of gene regulation in diseases
(Epstein, 2009; Claringbould and Zaugg, 2021). In addition, genome-wide association
studies (GWAS) have been widely used to discover genomic loci containing SNPs
associated with disease-related phenotypes and systematically investigate disease-related

molecular mechanisms (Visscher et al., 2017). In particular, the majority of SNPs have been
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shown to lie in non-coding regions such as enhancers, for which the regulatory mechanisms
remain unresolved (Ward and Kellis, 2012; Claringbould and Zaugg, 2021). Nevertheless,
the identification and study of expression quantitative trait loci (eQTLs) uncovered the effect
of variants on gene expression to provide a better understanding of their implication in
diseases (Nica and Dermitzakis, 2013). Recent efforts were made to provide more insights
into the functions of disease variants by building enhancer-gene landscapes for cell types
and studying their relationships with SNPs (Kikuchi ef al., 2019; Chen et al., 2021; Vdsa et
al., 2021; Nasser et al., 2021). For instance, genome-wide maps containing millions of
enhancer-gene connections were generated to highlight the function of variants related to
inflammatory bowel disease (Nasser et al., 2021). Notably, future directions for a more
comprehensive view of the complexity of dysregulated mechanisms involved in diseases lie
into the use of single cell strategies to dissect the heterogeneity of eQTLs effects across cells,

such cell state-dependent eQTLs effects (Nathan et al., 2022).

Data-driven computational methods to infer regulatory interactions in healthy and disease
conditions provided a valuable approach to study dysregulations of transcriptional regulatory
mechanisms (Emmert-Streib et al., 2014). Indeed, the detailed GRN of disease-relevant cell
(sub)types or states is required to translate risk-variants into mechanistic insights (Chiou et
al.,2021). Moreover, the fine-mapping of SNPs to regulatory networks has been used to aid
the discovery of core disease genes and downstream impacts to provide cell type and disease
specific insights (Broekema et al., 2020). In addition, the prioritization of SNPs falling into
regulatory regions has been widely performed using computational analysis of the TF
binding sites or motifs (Maurano et al., 2015; Broekema et al., 2020). Whereas cell-type
specific impairment has been widely studied over the years (Watanabe et al., 2019;
Doostparast Torshizi et al., 2020; Bryois et al., 2021; Wong et al., 2021), the specificity of
cell subtype and state impairment as well as their implication in diseases remains
undetermined (Figure 8). In that regard, a recent study uncovered for the first time a specific
subpopulation of dopaminergic neurons that selectively degenerate in PD, demonstrating the
importance of dissecting cell (sub)populations heterogeneity to discover specific impairment
in diseases (Kamath et al., 2022). In addition, a method to characterize complex trait and
disease relevant genetic associations has been implemented to study cell (sub)types, states
and trajectories, hence putting emphasis on the importance to leverage the single-cell

resolution to unveil the complexity of diseases (Yu et al., 2022).
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Figure 8. Perspectives to uncover cell (sub)populations specific impairment in diseases.
Bottom left picture was taken from (Factor et al., 2020). This figure summarizes the current studies
focusing on uncovering cell-type specific impairment or involvement in specific diseases (left panel)
and recent studies that started to focus on the characterization of cell subtypes or states specific
impairment (right panel).
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2 Scope and aims of thesis

2.1 Scope

This PhD thesis is focused on disease modelling using single cell-based computational
approaches to pave the way towards the development of new therapeutic strategies.
Computational biology applied to disease modelling is an active research field of systems
biology aiming at developing computational methods to study and understand diseases. In
that regard, the aspects presented in this thesis include the characterization of cell identity,
the dissection of cellular heterogeneity, the identification of potential candidate molecules
for cellular conversion, and the capture of impaired regulatory mechanisms in diseases. The
emergence and fast development of single-cell based technologies allowed an unprecedented
resolution of the cell features measurement and highly contributed to the development of
novel computational methods that tackle different aspects of disease modelling. However,
despites several efforts that have been made in the past few years, several challenges remain

to be solved and many limitations need to be overcome.

2.2 Aims

This PhD project aimed at developing three computational methods to address different
aspects of disease modelling to guide the development of novel therapeutic strategies. Taken
together, these methods aim at contributing to a better understanding and characterization of
cellular heterogeneity in physiological and pathological conditions, and at providing

additional insights into impaired regulatory mechanisms in diseases.

Aim _1: Development of a computational method to characterize cell identity and
accurately capture identity genes. In this study, we focused on the characterization of cell
identity by capturing identity genes for any cell type, subtype and phenotype. We aimed at
overcoming the main limitations of current methods that do not account for the underlying
biological complexity of cells (e.g., mixture of cell types, subtypes and phenotypes) and also
drastically categorize genes as being expressed or not, hence discarding genes at medium
level of expression. Moreover, several studies have shown that the levels of expression of
genes can lead to different functional outcome of the cells. Therefore, we sought at
developing a computational method that can be applied to accurately characterize the identity
of any cell type, subtype or phenotype. In addition, we aimed at generating high-resolution
cell identity atlases to complete the existent knowledge and provide a comprehensive

identity landscape that could be used to uncover cells displaying non-physiological features.
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Aim 2: Implementation of a computational method to dissect functional heterogeneity
and decipher the key genes characterizing the functional cell states identified. In this
research study, we focused on the development of a systematic approach to dissect functional
heterogeneity across cells in physiological and non-physiological conditions. We aimed to
overcome the current limitations of computational methods that do not put emphasis on the
subtle differences between cell states and do not provide an accurate functional
characterization. Therefore, we sought at developing a method to accurately decipher
functional cell states, the genes characterizing them as well as providing insights into the
biological processes in which they are involved. In addition, we aimed at dissecting the
functional heterogeneity of mouse immune cells in different type of infections to generate a
large-scale catalog of candidate immunomodulators to pave the way towards the

development of novel immunotherapies strategies.

Aim 3: Development of a computational pipeline to infer comprehensive cell (sub)types
specific GRNs and identify impaired regulatory mechanisms due to SNPs in diseases.
With this study, we sought at developing a multi-OMICS pipeline to infer comprehensive
cell (sub)type or state specific GRNs and systematically identify impaired regulatory
mechanisms due to disease-related SNPs. Notably, we focused on the inference of GRNs
describing the regulatory interactions mediated by TFs and enhancers of regulated genes by
combining scRNA-seq, scATAC-seq, ChIP-seq and prior-knowledge data. We aimed at
providing the scientific community with a user-friendly pipeline that exploit the GRN
information to identify cell (sub)type or state specific regulatory interactions impaired by

disease-related SNPs to provide better regulatory mechanistic insights for the disease.

2.3 Originality

The three computational methods presented in this thesis are addressing different challenges
of disease modelling. They were developed to overcome the main limitations of existing
approaches to characterize cell identity, decipher functional cell states, and infer
comprehensive cell (sub)type or state GRNSs to identify impaired regulatory interactions due
to SNPs in diseases. Therefore, these methods and the findings of this PhD thesis are a
valuable resource to have a better understanding of the cellular heterogeneity and complexity
in physiological and pathological conditions. Furthermore, these outcomes provide a

guidance for the development of novel therapeutic strategies.
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3 Materials and methods

Materials and methods details are presented in the results section of this thesis for the three

manuscripts (sections 4.1 to 4.3). A brief summary is described below for each of them.

3.1 Characterization of cell identity

In “Quantification of gene level to characterize hierarchical cell identity” (section 4.1), we
developed HCellig, a hierarchical cell identity-based computational method that quantifies
gene expression into three levels, including low, medium and high, to capture identity genes
of any cell type, subtype and phenotype. The implemented hierarchical cell identity model
was composed of three hierarchical layers including cell type, subtype and phenotype. These
three layers were used as a reference background to quantify the gene expression levels and
capture identity genes of a target cell (sub)population. Notably, the gene expression
quantification strategy was a single-cell based implementation of RefBool that uses a
reference background dataset to quantify genes in three levels of expression including low,
medium and high, using bulk RNA-seq data (Jung et al., 2017). Briefly, the reference
background datasets were generated by first cleaning and normalizing the data using
scTransform (Hafemeister and Satija, 2019), and then scaling each gene using its maximum
value. Then, a bootstrapping approach was used to sample the background so that each cell
population was equally represented to derive lower and upper thresholds distributions for
each gene by solving an optimization problem. Finally, we identified genes displaying a
bimodal pattern by using kernel density to compute the number of modes of the distributions
(Statisticat, LLC., 2021) and selected genes having a distribution with two modes. Using a
query cell (sub)population and the appropriate background dataset (e.g., cell type, subtype
or phenotype), genes from the query were first normalized and scaled using the background
information to make them comparable. Then, gene expression levels were quantified into a
discretized matrix by computing p-values and g-values for each gene using the background
thresholds distribution to categorize them as significantly low, medium or high. Notably,
genes for which no significance could be determined were classified as non-significant, as
the quantification level could not be determined with confidence. The general expression
level of each gene in the query (sub)population was determined by first identifying genes
significantly not expressed, and then distinguishing medium and high level of expression by
computing their frequency across cells. Finally, identity genes of the query cell

(sub)population were identified as genes being expressed with a high level and medium
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level, under the condition that the gene was displaying a bimodal pattern in the background.
Indeed, a gene expressed at a medium level in the query cell (sub)population and having a
bimodal pattern in the background reflects a unique medium pattern for the cell

(sub)population.

We compiled reference background datasets for each hierarchical layer using the Tabula
Muris (The Tabula Muris Consortium et al., 2018) and Tabula Sapiens datasets (The Tabula
Sapiens Consortium and Quake, 2021) by manually curating the annotations and classifying
them as cell type, subtype and phenotype. We then applied HCellig to all available cell types,
subtypes and phenotypes to generate a high-resolution cell identity atlas for mouse and
human independently. In addition, we applied our method to the mouse neuronal landscape
(La Manno et al., 2021) to characterize the identity of neurons, neuron subtypes and neuron
phenotypes, corresponding to neuron subtypes located in different brain regions. Finally, we
performed functional enrichment analyses (Wu et al., 2021) and found extensive literature-

based evidences to showcase the functional relevance of the captured identity genes.

3.2 Identification of disease-related functional states and genes

In “A Catalogus Immune Muris of the mouse immune responses to diverse pathogens”
(section 4.2), we developed FunPart, a network-based method combined with a recursive
hierarchical clustering approach to decipher functional cell states and capture the functional
gene modules characterizing them. Briefly, FunPart was based on a recursive feature
selecting strategy combined with a hierarchical clustering approach to first select the most
relevant set of genes and then perform the binary clustering of the cells. The identification
of the functional gene modules was done by first building a correlation network between
genes while keeping significant edges. Then, cliques of genes positively correlated together
were identified and, pairs of cliques negatively correlated were selected. Finally, a functional
enrichment (Wu et al., 2021) for each pair of cliques was performed and candidate pairs of
cliques were selected if both cliques, named modules of genes, were found enriched in
specialized biological processes. The best candidate was then identified by ranking the
modules of genes by their enrichment score, and it was then used to perform the binary
splitting of the cells using the hierarchical clustering approach. This strategy was performed
recursively over the groups of cells until no more module of functional genes was identified,
in which case the algorithm stopped as it had reached to functional homogeneity of the

identified cell states. The output of the method was composed of all the functional cell states
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identified, the module of genes characterizing each of them, and the biological processes in

which these gene modules were enriched.

FunPart was applied to a large compendium of mouse single-cell RNA-seq datasets
composed of six immune cell types in the context of twelve different pathogens including
virus, bacteria, fungi and parasites. A large atlas of immune functional states and key
functional genes was generated from this analysis. Moreover, we compared FunPart
performances to Seurat (Stuart et al., 2019), using the default parameters, and assessed their
ability to identify homogeneous functional cell states. Finally, we performed an experimental
validation of two TFs (Statl and Zfp597) belonging to gene modules negatively correlated
and characterizing two distinct functional states of macrophages under Salmonella infection.
The experiments were performed using shRNAs (Moore et al., 2010) to silence the two TFs
independently, and the survival of Sa/monella in each condition was assessed based on the

hypothesis made from the analysis of the two macrophage states.

3.3 Deciphering impaired regulatory mechanisms in diseases

In “RNetDys: regulatory network inference to identify impaired interactions in diseases”
(section 4.3), we developed RNetDys, a multi-OMICS pipeline to infer comprehensive cell
(sub)type or state specific GRNs and systematically identify impaired regulatory
mechanisms due to SNPs in diseases. Notably, the combination of scRNA-seq, sScATAC-
seq, ChIP-seq and prior-knowledge data allowed the inference of GRNs describing the
regulatory interactions mediated by TFs and enhancers of regulated genes. The pipeline was
divided into two main parts composed of (i) the cell (sub)type or state specific GRN
inference in healthy condition and (ii) the contextualization towards the disease state to
identify impaired regulatory interactions due to SNPs. First, the GRN inference was
performed by inferring TF-gene regulatory interactions using scRNA-seq data to select
genes conserved at least in 50% of the cells from the cell (sub)type, and open promoter
regions as well as binding TFs were identified by intersecting scATAC-seq and ChIP-seq
data (Oki et al., 2018). Then, we inferred the enhancer-promoter interactions by computing
a scATAC-seq peak correlation analysis to identify significant correlations between
promoter and enhancer regions that were then intersected with the GeneHancer database
(Fishilevich et al., 2017). We then predicted TF-enhancers interactions by intersecting the
ChIP-seq and scATAC-seq data. Finally, each regulatory interaction of the GRN was signed

based on correlation to distinguish activation from repression. Second, using the cell
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(sub)type specific GRN, we contextualized the network towards the disease state and
identified candidate impaired interactions by mapping the SNPs to TF binding sites of
enhancer and promoter regions. We then performed a TF binding affinity analysis for TFs
involved in the impaired interactions. The list of impaired regulatory interactions was then
refined by selecting the ones involving at least one TF with impaired affinity. Finally, we
ranked the TF regulators mediating the regulatory impairment by their degree of importance
using the network topology, their impaired binding affinity score and the MAF score of each
SNP involved.

We assessed the performances of RNetDys in inferring cell (sub)type specific GRNs by
benchmarking two types of interactions. First, we benchmarked the capacity of our approach
to accurately predict cell (sub)type specific TF-gene regulatory interactions, and compared
its performances to state-of-the-art methods including ppcor (Kim, 2015), CLR (Faith et al.,
2007), GENIE3 (Huynh-Thu et al., 2010), PIDC (Chan et al., 2017) and SCENIC (Aibar et
al., 2017). Then, we assessed the accuracy of RNetDys to accurately predict cell (sub)type
specific enhancer-promoter regulatory interactions compared to Cicero (Pliner ef al., 2018).
Of note, state-of-the-art GRN inference methods solely relying on scRNA-seq did not infer
such interactions and hence were not included in this comparison. The precision (PPV) and
Fl-score were used to assess the performances of each method, using human cell line
specific ChIP-seq GS for the TF-gene interactions and pcHi-C GS for the enhancer-promoter
ones. Finally, we applied RNetDys to infer cell (sub)type specific GRNs from human brain
and pancreas tissues and identify impaired regulatory interactions due to disease-related
SNPs. We collected disease-related SNPs from ClinVar (Landrum et al., 2018) for five
diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), Epilepsy (EPI),
Diabetes Type I (T1D) and Type II (T2D). We validated the relevance of the predicted

impaired regulatory interactions using GWAS, eQTL and literature-based evidences.
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4 Results

4.1 Characterization of cell identity

4.1.1 Preface

In this study entitled “Quantifying gene expression to characterize hierarchical cell
identity”, we tackled one of the main challenges in systems biology consisting of the accurate
characterization of cell identity. Current methods can identify identity genes by comparing
gene expression of mixed cell (sub)populations, usually composed of different cell types,
subtypes and phenotypes, which hinders the accurate characterization of the target cell
(sub)population identity. Moreover, they do not distinguish between genes expressed at high
or medium levels, important to accurately determine the cell functional identity as shown in
several studies. To overcome these limitations, we present HCellig, a computational method
that relies on the hierarchical organization of cell identity in three hierarchical layers
including cell type, subtype and phenotype, to quantify gene expression levels into low,

medium or high and capture identity genes.

We made two novel contributions with this study. First, we developed a computational
method to accurately capture identity genes and pre-compiled large-scale hierarchical
background datasets to allow the identification of identity genes for any cell type, subtype
or phenotype. Second, using HCellig we generated a high-resolution identity atlas composed
of several cell types, subtypes and phenotypes for mouse and human. Furthermore, we
showed the functional relevance of the captured identity genes and their importance for the
cell identity. Finally, we applied HCellig to study the mouse neuronal landscape identity and
highlighted the brain-region dependence of some identity genes, especially the ones
expressed at a medium level. In summary, this study generated a high-resolution
characterization of cell identity, while putting emphasis on the importance of the identity
genes expressed at a medium level, which have been poorly studied so far. Moreover,
HCellig will be of great use to pave the way towards a more accurate characterization of cell

identity, especially with the ongoing generation of new organism-wide scRNA-seq data.

Contribution: I implemented the computational method, performed the stability analysis of
the algorithm, collected and pre-processed the human data, manually curated the annotations
for the mouse, human and brain datasets, compiled the hierarchical backgrounds, generated

the hierarchical cell identity atlases for mouse and human, and wrote the manuscript.
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4.1.2 Manuscript
Quantifying gene expression to characterize hierarchical cell identity

Céline Barlier', Kartikeya Singh', Sascha Jung®, Antonio del Sol'*?

1 Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of
Luxembourg, L.-4362 Esch-sur-Alzette, Luxembourg

2 Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio,
Spain 48160

3 Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, 48012. Spain

Abstract

Cellular identity, which reflects functional specialization of cells, depends on the biological
context. In this regard, we present a hierarchical cell identity-based method which considers
three hierarchical layers (cell types, subtypes and phenotypes), that quantifies different levels
of gene expression to accurately identify cell identity genes (HCellig). We generated a high-
resolution cell identity atlas for human and mouse, and showed the functional relevance of

identity genes expressed at different levels.

Main text

Multicellular organisms are composed of diverse cells which display different morphologies
and specialized functions depending on their hierarchical classification of cell type, subtype
or phenotype. The characterization of cellular identity, including the identity genes remains
to be a central challenge in biology. Indeed, cell identity is initially acquired during
development and then shaped by the micro-environment to perform specific functions!-2,
The identification of identity genes remains a challenge as it highly relies on the biological
context in which cells are characterized according to their hierarchical classification as cell
types, subtypes or phenotypes®. Current computational methods are able to identify identity
genes by comparing gene expression profiles of the target cell population with other cell
populations in given tissues*>. Nevertheless, these tissue samples do not always contain all
representative cell populations and are usually composed of a mixture of different cell types,
subtypes and phenotypes, which hinders the accurate identification of the target cell
population identity genes. For example, in order to identify the cell subtype identity genes
of a dopaminergic neuron the proper comparison should be carried out with respect to the
complete set of other neuronal subtypes (e.g., glutamatergic, serotoninergic) without

including non-neuronal (sub)types. In addition, these methods categorize genes as expressed
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or non-expressed and hence discard genes displaying medium expression level. However, it

has been shown that varying expression levels can lead to diverse cellular functions®’.

Here, we present HCellig, a hierarchical cell identity-based method, which considers three
hierarchical layers (cell types, subtypes and phenotypes), to quantify gene expression levels
for the detection of the identity genes at each of these hierarchical layers (Fig. 1A,
Supplementary Fig. S1). In particular, the quantification of gene expression considers three
levels (low, medium and high) to characterize cell identity genes. Moreover, the cell type
level is composed of all cell types of the organism, whereas the subtype level comprises
every subtype of a cell type, and the phenotype level considers the tissue type or condition
specificity for a particular cell subtype (Fig. 1A). For this purpose, we built an extensive
background database for each hierarchical layer by compiling scRNA-seq data for both
mouse® and human’ cell atlases (Supplementary Tables S1, S2). In order to extend the current
knowledge of cell identity, we applied HCellig on a large-scale repository of cell types,
subtypes, and phenotypes to generate a high-resolution cell identity atlas for each organism
(Fig. 1B, Supplementary Fig. S3 and Tables S3, S4). Clustering cell types based on their
identity genes showed that cell types which belong to the same broad categories were
grouped together, reflecting their functional similarity (Fig. 1B, Supplementary Fig. S2).
Furthermore, HCellig identified known markers for specific cell types and cell subtypes. For
example, as expected the high expression of CD3 was able to identify T cells in both human
and mouse (Supplementary Table S5). Moreover, CD8 expressing T cells were
distinguishable as either cytotoxic or memory based on the medium expression of identity
genes for these subtypes including 7BX21, STK10 and ZBTB7A, which have not yet been
fully elucidated (Fig. 1C, Supplementary Table S4). We then showed the functional
relevance of detected identity genes, particularly those expressed at a medium level. In this
regard, an enrichment analysis indicated that these identity genes participate in biological
processes which are consistent with the cell (sub)type function. For instance, identity genes
of monocytes were enriched for immune-related processes, such as phagocytosis and
regulation of effector immune processes'® (Supplementary Fig. S4 and Table S6). In
addition, we observed that T cell identity genes expressed at the medium level were enriched
in functions involved in immune responses such as cytokine production and response to
stimulus, supporting their functional relevance!! (Fig. 1C). In particular, we found that the
identity gene FYN is typically expressed at the medium level amongst T cells, however

amongst specific subtypes the expression level is high (Supplementary Tables S4, S7).
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Indeed, some studies have shown that the expression levels of FYN have an impact on T cell

activation signals!?!3

, supporting the accuracy of our method to find functionally relevant
cell identity genes. However, we noticed that most of the genes expressed at the medium

level were poorly studied for the cell subtype-specific context (Supplementary Table S7).

Finally, we applied HCellig to perform a case study of the mouse neuronal landscape (Fig.
2A, Supplementary Table S8). At the cell type level, we identified neuron identity genes
expressed at a medium level known to be involved in neuronal functions (Supplementary
Table S9). Moreover, we found that some identity genes ought to be expressed at the medium
level, and changes in their expression have been shown to lead to dysregulation of the
neuronal functionality (Supplementary Table S9). For instance, low and high expression
levels of the gene Clasp?2 dysregulate the neuronal polarity and synaptic function, suggesting
its importance as an identity gene expressed at the medium level for neurons'®. Similarly,
Dscaml1 low and high expression levels lead to impaired migration or self-avoidance defects
in neurons'® (Supplementary Table S9). Moreover, we studied the variation of gene levels
across the different neuronal subtypes (Fig. 2B, Supplementary Fig. S4). Interestingly, we
found Pbx1 to be an identity gene highly expressed in dopaminergic neurons, while it was
not an identity gene for other neurotransmitter neurons but found at a medium level (Fig.
2B, Supplementary Fig. S4). Indeed, Pbx/ is known to be involved in maturation of
dopaminergic neurons from neuroblasts and represses other cell fates, supporting its high
level in dopaminergic neurons'®. Finally, we observed variation of identity genes expressed
at the medium level specific for subtypes across brain regions. This shows the region-
specificity of these medium expressed genes for the neuronal subtypes (Fig. 2C,

Supplementary Fig. S5).

In conclusion, we developed HCellig, a hierarchical cell identity-based method, that
quantifies gene expression in low, medium and high levels, to capture cell identity genes for
any cell type, subtype and phenotype. We generated a cell identity atlas for mouse and
human, the latter being more complete due to the extensiveness of the data. Moreover, we
provided background datasets that can be used to quantify gene expression levels to detect
identity genes of any new cell type, subtype or phenotype. Furthermore, we showed the
functional relevance of deciphered identity genes, highlighting the lack of knowledge for
those medium identity genes. Indeed, studies cataloging cells have been only focusing on

highly or lowly expressed genes!®, hence missing valuable data when it comes to genes
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expressed at a medium level that could lead to important functional differences®’. In
summary, we expect the cell identity atlases, as well as the implemented method HCellig, to
be of great use to pave the way towards a more accurate characterization of functional

cellular identity.

Online Method

HCellig workflow

We developed HCellig, a hierarchical cell identity-based method, that quantifies gene
expression in low, medium and high levels, to capture cell identity genes for any cell type,
subtype and phenotype at each hierarchical level. The quantification strategy is based on
RefBool!” and was adapted for single-cell UMI data. HCellig takes as an input the single cell
UMI matrix of a cell type, subtype or phenotype and the background data based on the
hierarchical level. The quantification strategy is composed of two main parts: (1) the
construction of a background at one of the three hierarchical levels, (2) the gene
quantification of a query cell type, cell subtype or phenotype. In fact, the background
construction is optional as we built pre-compiled backgrounds for mouse and human,
generated in this study, to quantify gene expression levels and identify identity genes of a

query cell population.

Background construction

The compilation of a background was the first step of the method and was later used to
quantify gene expression of a query cell population, including cell type, cell subtype and
phenotype. The strategy to build the background at the cell type level was different from the
one at the cell subtype and phenotype level as it included two layers of information to process
the thresholds. Regardless of the level of hierarchy considered, the first step was to clean the
data. We removed all genes expressed in less than 10 cells, cells with no gene expression, as
well as low quality cells using the strategy provided in the Scuttle R package. In addition,
cell populations with less than 50 cells were removed from further analyses to assess the
threshold distribution properly. Then, the single cell matrix was normalized using
scTransform!'®, which considers the batch correction which is a necessary step especially for
cell type backgrounds that might contain different datasets. In fact, normalization factors
used for each gene were saved as a component of the background that were used for gene
quantification. After normalization, the general scaling factors were retrieved and saved for

each gene as being the maximum gene expression value found in the normalized data. Then,
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the next step consisted into the generation of lower and upper-threshold distributions using

optimization functions combined with a bootstrapping approach:

1. Sampling of the data: this step differed between the different hierarchical levels. In the

case of a cell type background, two layers of information composed by the tissue and
cell type were used, whereas for the subtype or phenotype level, only the cell population
was used to sample the data. For each gene, cells with non-zero values were kept under
the condition that at least 10 cells are found. If less than 10 cells with non-zero value
are identified, the gene was removed from the analysis. This step aimed to represent
equally each cell population in the background. Therefore, 100 cells from each

population were sampled with replacement from the normalized data.

2. Scaling of the sampled data: each gene was scaled using its maximum expression value

to have a range from 0 to 1, required for the threshold computation.

3. Lower and upper-thresholds identification: for each gene, thresholds were derived using
two step functions by solving the optimization problem of maximizing the area over the
step function for the left tail and maximizing the area under the step function for the

right tail of the empirical cumulative distribution function'” (Supplementary Fig. S1).

The computation of 1000 bootstraps of the three previous steps resulted into the background
threshold distributions, composed of upper and lower thresholds for each gene. Finally,
genes with bimodal expression pattern were identified by calculating the number of modes

of the distribution based on kernel density using the LaplacesDemon R package as follow:

1. We performed 100 bootstraps of background sampling and scaling to obtain the
background distribution of each gene.
2. The number of modes was computed. If the gene distribution had 2 modes, it was

considered to be bimodal (is.bimodal() function of the R package).

These two steps were repeated three times and bimodal genes consistently identified were
considered as being truly bimodal in the background. In summary, the background
construction provided for each gene the following outputs that are used for the gene level
quantification and gene identity identification including: (1) the normalization factor, (2) the

scaling factor, (3) the thresholds distribution and (4) if the gene was bimodal.

Gene level quantification
HCellig quantified the gene expression of a query cell population (cell type, cell subtype or

phenotype) into three levels of expression: low, medium and high compared to a specific
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background. As for the background construction, data was cleaned using the same strategy,
each gene was normalized and scaled using the corresponding factors from the background.
Then, based on the derived threshold distribution described previously and the genes
expression of the query cell population, the method computed p-values for each gene to
determine if the gene was significantly high or not by performing a one-sided test against
the null hypothesis for which the gene is not significantly high. In addition, g-values were
derived and a Benjamini Hochberg multiple testing correction was performed. Furthermore,
HCellig identified an intermediate level of expression defined as values significantly greater
than the lower-thresholds and significantly lower than the higher thresholds. The output was
a discretized matrix of quantified gene levels consisting of low, medium, high expression
levels (Supplementary Fig. S1). Genes with non-significant p-values (default to p < 0.05)
were assigned as non-significant, as the quantification level cannot be determined with
confidence. Finally, HCellig identified the overall level of expression of each gene in the
query cell population. Based on the generated discretized matrix, for each gene we calculated
the frequency of the three levels. Then, we computed a Z2-score threshold based on a
binomial distribution to distinguish significantly expressed genes (high or medium) from the
ones lowly expressed. Finally, high and medium levels of expression were distinguished

based on their maximum frequency in the query cell population.

Identification of identity genes

HCellig identified the identity genes of the cell population (cell type, cell subtype or
phenotype). We defined as identity genes those highly expressed genes as well as genes
expressed at a medium level with a bimodal pattern in the background. Indeed, if a gene was
found to be at a medium expression level in the cell population while it displayed a bimodal

pattern in the background, we considered this gene to be part of the identity.

Pre-compiled backgrounds construction

We collected organism-wide UMI data for Human, from the Tabula Sapiens study’, and
Mouse, from the Tabula Muris study®. We performed a manual curation of the original
metadata to classify cell types and cell subtypes accordingly for each tissue provided. In
addition, due to the large size of the Tabula Sapiens data, we performed a downsampling
while limiting the loss of information as follows: each cell subtype of each cell type of each
tissue was downsampled to 200 cells. In case the number of cells was smaller than 200 cells,

we kept the original number of cells for the specific cell subtype. The downsampling of the
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Tabula Sapiens allowed us to have about 62 200 cells compared to about 450 000 cells from
the original data, while conserving all the cell (sub)types across tissues. For each dataset, a
quality control was performed: all non-expressed genes were removed and cells containing
less than 2500 UMIs were removed from further analyses. We applied HCellig to pre-
compile backgrounds for both organisms at each hierarchical level: cell type, cell subtype
and phenotype. In fact, we could not build phenotype backgrounds for Mouse as no subtypes
with at least 50 cells could be found in at least two different tissues. The different

backgrounds were processed as follow for each organism:

- Cell type backgrounds: the tissue and cell type information were provided to the

algorithm, hence allowing a sampling based on two layers of information to build the

background thresholds.

- Cell subtype backgrounds: for each cell type independently, the cell subtypes were

provided to the algorithm to build the background thresholds.

- Phenotype backgrounds: for each cell subtype independently, the specific tissues in

which the cell subtype could be found were used in order to compile the background

thresholds.

Large-scale repository of hierarchical cell identity for mouse and human

We built a large-scale identity atlas for mouse and human by quantifying gene expression
and identifying key identity genes for each cell population available including cell types, cell
subtypes and phenotypes. Indeed, few subtypes and no phenotypes for Mouse could be
included due to the limited annotations and number of cells in the dataset. The gene
quantification and key identity genes identification was performed for each cell population
with at least 10 cells accordingly with the hierarchical cell identity model: (1) the cell type
background was used for every cell types, (2) cell subtype backgrounds were used
accordingly with the subtype considered (e.g., the T cell background was used for T
regulatory cells) and (3) human phenotype backgrounds were selected in accordance with
the phenotype to analyze (e.g., the classical monocyte background was used for the classical
monocytes of the spleen). Furthermore, as the original Human data provides Ensembl IDs,
we identified their corresponding Gene Symbol using the AnnotationDbi R package with the
org.Hs.eg.db database version 3.12.0 and reported them accordingly in Supplementary Table
S4. The hierarchical UMAPs were generated by computing for each corresponding level a

discrete matrix with all identity genes identified in rows, the corresponding cell populations
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in columns and the gene expression levels as value. In the discretized matrix, high level was
equal to 1, medium level to 0.5, low level to 0 and non-significant or not found in the cell
population to -0.5. For the cell type level UMAP visualization, cell types were grouped by
broad categories displayed with different shapes whereas the different cell types were shown

with gradient of colors.

Stability assessment of HCellig

We validated the stability of HCellig when different backgrounds were created using the
same dataset as input (Supplementary Fig. S6). Indeed, as the method relies on a
bootstrapping approach, we ensured its stability across runs and performed 10 runs using
available mouse and human data at the subtype level (Supplementary Tables S1, S2). First,
we assessed the stability of the background thresholds using a Kolmogorov-Smirnov test
between the threshold distributions of each run across all genes for each subtype level
background, by considering the thresholds to be stable if p-value < 0.05. Then, we computed
the stability of the p-values, used to quantify the gene expression, using a Wilcoxon test
between the p-values of each run for each cell subtype across all genes. The p-values
thresholds were considered stable if p-value < 0.05. Finally, we verified the stability of the
gene quantification into three expression levels by comparing for each cell subtype across
each run (1) the significant genes identified and (2) their level of expression. The stability
was measured by computing a ratio of common predictions versus all predictions, between
pairwise runs, with a ratio of 1 reflecting a stability of 100%. Finally, we assessed the
average stability of bimodal genes identified across the 10 runs for each subtype background
by computing the ratio of common bimodal genes versus all bimodal genes between pairwise
runs and computed the average by calculating the median value for each subtype

background.

Literature-based validation of the generated repository of identity genes

We ensured that in our large-scale cell identity atlases, HCellig captured experimentally
reported cell type and cell subtypes markers. Of note, phenotypes were discarded due to the
lack of cell subtype tissue specific available information in literature. We used the Cell
Marker database!® as a reference to collect experimentally validated markers in normal
conditions and reported the ones matching with HCellig identity genes identified for each
cell type and cell subtype, for mouse and human. In addition, we performed a literature

search of medium identity genes, guided by the functional enrichment, for human T-cells
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and four well studied subtypes (Treg, TCD4+ memory, TCD8+ memory, T cytotoxic) to

support their functional relevance.

Functional enrichment of large-scale cell identity genes

We validated that the cell identity genes captured at each hierarchical level reflected the
functional features of the specific cell types, cell subtypes and phenotypes analyzed. In order
to validate the relevance of the captured identity genes, we performed a functional
enrichment for every cell population on all identity genes and independently only on
mediumly expressed identity genes. We used the ClusterProfiler R package®® to carry out
an over-representation analysis of biological processes (BP). The universe was respectively
set to all sequenced genes for mouse or human, BP categories tested were limited to
categories containing 5 to 500 genes hence removing broad processes, a Benjamini-
Hochberg multiple correction was performed and enriched BP with a p adjusted value <0.05
were selected. Of note, gene symbols were used to perform the functional enrichment of the
human cell population. For both organisms and each hierarchical level, we removed shared
BPs between cell populations of the same level, hence keeping the specific ones, and selected
the top 10 most enriched unique BPs, based on the GeneRatio provided by ClusterProfiler,

for each cell population.

Application on the mouse brain

We utilized a comprehensive mouse brain atlas data?! to perform a deep case study. A quality
control as well as a down-sampling was performed on the raw data, using the same strategy
as the one used for the Tabula Sapiens to conserve as much information as possible. In
addition, a manual curation of the neuron annotation was performed to fit the hierarchical
identity concept. We applied HCellig to quantify gene expression of neuronal cells at each
hierarchical level including cell type, cell subtypes and phenotype. For the cell type level,
we used the background constructed from Tabula Muris to quantify the neuronal gene
expression. Then, based on the curated metadata, we selected neuronal subtypes including
dopaminergic, GABAergic, glutamatergic, serotonergic, glycinergic, sensory and motor
neurons to build cell subtype level backgrounds to accordingly quantify the gene expression
of these neuronal subtypes and capture identity genes for each one of them. Finally, the
neuronal subtypes were further divided based on the major brain region including Forebrain,
Midbrain and Hindbrain. The region based neuronal subtypes data was used to construct the

phenotype level background for five of the neuronal subtypes. Indeed, phenotype
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backgrounds for dopaminergic and motor neurons were not generated due to the lack of data.
We then performed pairwise comparisons of gene expression levels across the neuron
subtypes to identify genes displaying different levels depending on the neuron subtype.
Finally, we performed an analysis at the phenotype level by merging medium identity genes
of the neuronal subtypes across the three major brain regions. Genes with strong variation
were ranked based on the Euclidean distance between the distribution of gene level

quantification values.
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Figure 1. Hierarchical cell identity concept, repository and validation.

(A) Hierarchical cell identity concept to capture refined identity genes. (B) Hierarchical cell identity
landscape for Human cell types, T cell subtypes and Treg phenotypes. (C) Functional relevance of
medium identity genes for human T cells and four related subtypes.
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(A) Hierarchical identity concept applied to the mouse brain. (B) GABAergic and Dopaminergic
neurons gene quantification comparison. (C) Brain region variation of gene expression levels for
Serotoninergic neurons.
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4.1.3 Supplementary Information

The supplementary tables S3, S4, S6 and S8 can be found in the GitHub repository of the project,

due to their size and complexity: https://gitlab.com/C.Barlier/HCellig_analyses.

Supplementary Tables legends:

Table S1. Composition of the hierarchical layers for Mouse.

Table S2. Composition of the hierarchical layers for Human.

Table S3. Cell identity genes for mouse cell types and cell subtypes.

Table S4. Cell identity genes for human cell types, cell subtypes and phenotypes.

Table S5. Literature based validation of known markers.

Table S6. Functional enrichment of identity genes for each hierarchical level.

Table S7. Literature support for medium identity genes of T cells and related subtypes.
Table S8. Hierarchical cell identity genes for the brain application.

Table S9. Literature support for medium identity genes in the brain study case.

Supplementary Figures:

Figure S1. General workflow of HCellig.

Figure S2. Landscape of mouse cell types.

Figure S3. Functional enrichment of hierarchical identity for human monocytes.
Figure S4. Genes level of dopaminergic neurons compared to other neuronal subtypes.
Figure S5. Glycinergic and Sensory medium identity genes across brain regions.

Figure S6. HCellig stability of thresholds and predictions.
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Table S1. Composition of the hierarchical layers for Mouse.

Mouse Cell Type Background

Cell types
basal epithelial cell
basophil
B cell
chondrocyte
endothelial cell
epithelial cell
erythroblast
fibroblast
granulocyte
hematopoietic precursor cell
hepatocyte
keratinocyte
luminal epithelial cell
luminal progenitor
macrophage
mesangial cell
mesenchymal stem cell
monocyte
NK cell
podocyte
skeletal muscle satellite cell
stromal cell
T cell
Thymocyte
umbrella cell

2 Mouse Cell Subtype Backgrounds

Cell types Cell subtypes
mesenchymal stem mesenchymal cell Car3+
cell mesenchymal cell Scara5+
T cell CD4+
T cell T cell CD&+

Table S2. Composition of the hierarchical layers for Human.

Human Cell Type Background
Cell types

acinar cell
adventitial cell
aerocyte
B cell
basal cell
basophil
beta cell
cardiomyocyte
ciliated cell
club cell
common myeloid progenitor
dendritic cell
ductal cell
endothelial cell
enterocyte
enteroendocrine cell
epithelial cell
erythrocyte
erythroid progenitor cell
eye photoreceptor cell
fibroblast
goblet cell
granulocyte
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hematopoietic stem cell
hepatocyte
intestinal crypt stem cell
ionocyte
keratinocyte
lacrimal gland functional unit cell
limbal stem cell
luminal epithelial cell
macrophage
mast cell
melanocyte
mesenchymal stem cell
microglial cell
monocyte
mucus secreting cell
Muller cell
muscle cell
myoepithelial cell
myometrial cell
natural killer cell
neutrophil
pancreatic stellate cell
paneth cell
pericyte
platelet
pneumocyte
radial glial cell
skeletal muscle satellite stem cell
smooth muscle cell
stromal cell
surface ectodermal cell
T cell
tendon cell
thymocyte
transit amplifying cell
tuft cell
urothelial cell

9 Human Cell Subtype Backgrounds

Cell types Cell subtypes
B cell memory b cell
plasma cell
CD141 myeloid dendritic cell
dendritic cell CDI1C myeloid dendritic cell
plasmacytoid dendritic cell
capillary endothelial cell
endothelial cell of artery
lymphatic endothelial
vein endothelial cell

endothelial cell

keratocyte
Ll myofibroblast cell
classical monocyte
monocyte intermediate monocyte

non-classical monocyte
fast muscle cell
slow muscle cell
type i pneumocyte

muscle cell

pneumocyte type ii pneumocyte
mature NK T cell
regulatory t cell
TCDA4 alpha/beta memory
Ll TCD4 helper

TCDS8 alpha/beta cytotoxic
TCDS alpha/beta memory
DN1 thymic pro-T cell

44



thymocyte

DN3 thymocyte

24 Human Cell Phenotype Backgrounds

Cell subtypes

capillary endothelial cell

CD1C myeloid dendritic
cell

classical monocyte

endothelial cell of artery

fast muscle cell

immature enterocyte

intermediate monocyte

lymphatic endothelial

mature enterocyte

mature NK T cell

memory b cell

myofibroblast cell

naive b cell

plasma cell
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Tissues
bladder organ
lung
muscle tissue
thymus
tongue
lymph node
skin of body
blood
lung
lymph node
spleen
lung
mammary gland
muscle tissue
thymus
vasculature
muscle tissue
thymus
large intestine
small intestine
lung
lymph node
spleen
bladder organ
muscle tissue
saliva-secreting gland
thymus
uterus
large intestine
small intestine
adipose tissue
bladder organ
blood
bone marrow
kidney
liver
lung
lymph node
prostate gland
saliva-secreting gland
skin of body
spleen
thymus
vasculature
blood
bone marrow
lymph node
saliva-secreting gland
spleen
thymus
adipose tissue
bladder organ
blood
bone marrow
lymph node
saliva-secreting gland
spleen
thymus
bladder organ
blood



regulatory t cell

TCD4 alpha/beta

TCD4 alpha/beta memory
TCD4 alpha/beta naive

TCD4 helper

TCDS alpha/beta

TCDS alpha/beta cytotoxic

TCDS alpha/beta memory

type I NKT cell

vein endothelial cell
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bone marrow
large intestine
lung
lymph node
mammary gland
pancreas
saliva-secreting gland
small intestine
spleen
thymus
trachea
lymph node
skin of body
spleen
bone marrow
large intestine
lung
lymph node
muscle tissue
skin of body
small intestine
spleen
trachea
blood
lymph node
skin of body
spleen
blood
lymph node
kidney
saliva-secreting gland
skin of body
thymus
blood
bone marrow
kidney
large intestine
lung
lymph node
prostate gland
saliva-secreting gland
skin of body
small intestine
spleen
thymus
trachea
skin of body
thymus
lymph node
spleen
blood
lymph node
spleen
bladder organ
lung
mammary gland
thymus
tongue



Table S5. Literature based validation of known markers.

Hierarchical .
Level Cell (sub)population
Hepatocyte

Limbal stem cell
Endothelial cell

Hematopoietic stem cell
Fibroblast
Pericyte
Mesenchymal stem cell
Smooth muscle cell
Myoepithelial cell
Cardiomyocyte

Macrophage

B cell

Microglial cell
Stromal cell

Epithelial cell
Intestinal crypt stem cell
Keratinocyte

Erythrocyte

CELL TYPE Neutrophil

Neuron
Monocyte

T cell
Granulocyte
Basophil

Dendritic cell

Platelet
Basal cell
Natural killer cell
Mast cell
Beta cell
Mesothelial cell
Eye photoreceptor cell
Urothelial cell
Transit amplifying cell
Luminal epithelial cell
Alpha cell
Muller cell
Club cell
Erythroid progenitor cell
Myofibroblast cell
Type 1I pneumocyte
TCD4 alpha/beta naive
CELL T helper follicular
SUBTYPE Regulatory T cell
TCD#4 alpha/beta
Intermediate monocyte

HUMAN
Identity genes found in CellMarker

CPS1,ABCC2,HNF4A,ARG1,CYP3A44,ALB
TP63,SOD2,KRT15,KRTI4
ICAM1,FLT1,ENG,ICAM2,VWF,PTPRB,NECTIN2,PLVAP,EMCN
,THBD,CDH5,AQP1,ECSCR,PECAM1

CD38,PROM1,PTPRC

VIM,PDGFRB,PDGFRA
MCAM,ACTA2,PDGFRB,CSPG4,PECAM1
VIM,CD44,ZBTB16,CD81,PDGFRA,ITGB1,VCAMI1,BSG,MME
MCAM,ACTA2,DES
ACTNI,CNN1,ACTN4,BHLHE40,ITGB1,S10041,KRT14
ACTNI,TNNT2,TNNI3,VCAMI,MYH6
TFRC,FCGR2B,PTPRCICAM1,LYZ,CD83,ILIRN,FCGR24,ITGB
2,CDI14,CD163,HLA-DQBI1,CSFIR,HLA-DRBI1,HLA-DQAI,HLA-
DRB5,FCGR34,HLA-DMA,HLA-DRA,AIF1,HLA-DPB1,HLA-
DPAI,MRCI
CD74,POU2F2,PTPRC,CD79A4,MS4A1,HLA-DRB1,HLA-
DRA,IGHM

AIFI

VIM,CD44,NTSE,ITGB1,ANPEP, GREM1,CD34
VIM,CDHI1,KLF6,TJP1,KRT18, EPCAM,KRT7,PIP,CLDN1,CTNN
BI,KRTS8,KRT19,KRT13,MUC16,MUCI,KRT3

CD24
CD44,ALDH3A2,ITGA6,ALDH3A1,ALDH2,ALDH3B2,ALDHY9A1,
ALDH7A1,ALDHIA1,KRT5 KRT14,SPRR24

GYPA
PTPRC,CEACAMS,LCN2,FCGR3B,MNDA,CXCL8,ITGAM,CD14,
FPR1,FCGR34,CD24

MAP2
TNFRSF1B,PTPRC,LYZ,CD36,FCGR2A,S10048,I1TGB2,MNDA4,C
D52,CD14,CD163,SELL, HLA-DRB1,FCGR3A4,HLA-
DRA,PECAM1I
PTPRC,CD69,CD2,CD3G,CD3D,IL7R,CD7,CD3E
PTPRC,FUT4,HLA-DRA

CD6Y,HLA-DRA
CD83,CD86,CDI1A,CDIC,CDI14,THBD,HLA-DQB1,HLA-
DRBI1,HLA-DQA1,CLEC9A,HLA-DMA,HLA-DRA,HLA-
DPBI1,HLA-DPA1,HLA-DQA2,HLA-DMB
ITGA2B,SELP,PECAM1I

CDI151,KRT5,KRTI14,510046

PTPRC,KLRDI

KIT,SLC1842,FCERIA

FXYD2,NKX6-1,HEPACAM?2,INS

UPK3B

CRX,RCVRN,RHO

DHRS2,UPK1B,NECTIN4,5100P

FABPS

KRTI18,KRTI9MUCI

GCG

GLUL

SCGBIAI

TFRC

VIM,ACTA2,FN1

CD44,PGC

CCR7,SELL,CD3E

CCR7,ICOS,SELL,CD3E
IKZF2,FOXP3,IL2RA,ENTPD1,CTLA4,CD3D,TIGIT,TNFRSF18,
CD3E

CD3E,LTB

CEACAMS,CD14,FCGR34
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Classical monocyte
Non-classical monocyte
Plasmablast
Plasma cell
CD1C myeloid dendritic
cell
CD141 myeloid dendritic
cell
Lymphatic endothelial
Mature NKT cell
TCDS alpha/beta
TCDS alpha/beta cytotoxic
Plasmacytoid dendritic cell

H‘ei“e"vcg‘cal Cell (sub)population
Basal epithelial cell
Basophil
B cell
Cardiomyocyte
Dendritic cell

Endothelial cell

Epithelial cell
Erythroblast
Fibroblast
Granulocyte
Hematopoietic precursor
cell
Hepatocyte
Luminal epithelial cell

CELL TYPE

Macrophage

Mesenchymal stem cell
Monocyte
Skeletal muscle satellite cell
Smooth muscle cell
Stromal cell
T cell
Thymocyte
TCD4 cell
Mesenchymal cell Car3+
Mesenchymal cell Scara5+

CELL
SUBTYPE

CD14

FCGR34

CD38
CD38,TNFRSF17,SDC1,CD27

ITGAX,CDIC

ITGAX,CDIC

FLT4,PROX1,PDPN

GZMB,KLRD1,FCGR34

NKG7,CD8A,CD3E

CD84,CD3E

THBD,CLEC4C
MOUSE

Identity genes found in CellMarker

Cd24a,ltgab

Mcpt8

Cd79a,Ms4al,Cd24a,Ptprc
Tnnt2,Ryr2,Actcl,Nppa, Tnncl,Myh6,Atp2a2,Actn2
Cd74,H2-Ab1

Egfl7,Fabp4,Cdh5,Pecaml,Eng, Emcn,Epasl,Plvap, Tiel, Cd34,Edn
rb,Lyvel

Ly6a,Cd24a,Epcam

Tfrc

Gsn,Sparc,Vim,Fstll, Mmp2,Fbln2,Col3al,Colla2
ltgam

Cd47,Cd48,Kit,Cd34

Alb

Cd24a

Cd74,H2-
Abl,Lyz1,Lgals3,5100a4,Csf1r,S100al0,Fcgr3,5100a9,5100a8
Ly6a,Cd34,Thyl1,1tgbl,Pdgfra,Vcaml
Cd48,Itgam

Cavl,Cdhl5

Rgs5

Cd34
Cd3d,Thyl,Cd2,Cd3e,Cd5,Cd8a
Cd8a,Cd4,Cd5

Ptpre

Car3

Scaras

Table S7. Literature support for medium identity genes of T cells and related subtypes.

Hierarchical Cell Gene
Level (sub)population Symbol PMID Comment
MYL6 25770220
https://www.jimmunol.org/content/20
TPM3 6/1_Supplement/14.05
Antitumor immune
RPS19 28228558
reponses
PSME] 9189757
22544928 PA28 subunit
CELL TYPE T cells PTGER4 22544928 Suppor? f(_)r level
variation
15489916
Support for the
FIN 7594580 medium level
identity
HCLS1 30537294
GAPDH
IQGAP] 22573807
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TCD4+ memory
Treg
CELL
SUBTYPE
TCD8+ cytotoxic
TCD8+ memory

ISCU

ENOI

PARPI
ATP5FIB
ATP5F14

ATP6
APRT

ENOI
PRKARIA
FERMT3

SIRPG

CSK

NCK2
TNIPI

DUSPI10

WNK1

TMED?2
TMED9
CISC

RABIB

GABARAP
GABARAPL2
ENOI

ATP6AP2
HOOK2
PTK2B
ZAP70
STK10

WNK1

TBX21

RC3HI

PHB

WNK1

MBP

MYADM
CYRIB

RPLI34

CRBN

ARFGEF1
TMEMS59
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34880854

32709897
23977081

20686167

32709897
24007532
30187863

18524990

26302204

20709959
20181891

22387553

27400149

31375559

31632966

32709897

20688918
24596147

27400149

29488879

34879274

18086671

27400149

12067310

32005148
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migration
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T cells in general

(cell type)
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infection
T cells in general
(cell type)

T cells in general
(cell type)

T cells in general
(cell type)

T cells (cell type)
general program,
involvement toward
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T cells in general

(cell type)

T cells in general

(cell type)
Study in disease
case (MS)
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DHX36
XRCCS

cCcr7

CNOTI

ZBTB7A4

PHB

33268369

34349771

34349770

18086671

T cells in general
(cell type)
Thymocyte to T cell
transition
T cells development
program
T cells in general
(cell type)

Table S9. Literature support for medium identity genes in the brain study case.

Medium Identity Gene
Ncaml
Ulk2
Nf1
Camk2d
Klf7
Kif7
Clasp2
Clasp2
Epha7
Dscaml]
Dscaml]
Fzd3
Fzd3

Medium Identity Gene
Tubb3
Chll
Stkl1
1d4
1d4
Cux?2
Semaba
Ache
Ache
Ndell
Nr3cl
Nr3cl

CELL TYPE
PMID
32632143
29099309
31234911
22612808
15964824
11336497
28285824
23035100
24707048
33585465
30745319
34414184
26939553
CELL SUBTYPE
PMID
22159867
23949217
30333724
15882580
31552825
20510857
22685427
15136152
31031601
22114287
33715314
32547368
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Supplementary Figure 2
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Supplementary Figure 3
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Figure S3. Functional enrichment of hierarchical identity for human monocytes.
Top 10 unique BPs for (A) all identity genes and (B) only medium ones of human monocytes, (C)
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Supplementary Figure 4
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Supplementary figure 5
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Supplementary Figure 6
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Figure S6. HCellig stability of thresholds and predictions.

(A) Background thresholds average stability across 10 runs using all human and mouse subtype
backgrounds. (B) p-value thresholds average stability across 10 runs for all cell subtypes discretized
using its corresponding subtype background. (C) Stability of the gene quantification for each cell
subtype. (D) Average stability of the bimodal genes identified across 10 runs for all human and
mouse subtype backgrounds.
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4.2 Identification of disease-related functional states and genes
4.2.1 Preface

This manuscript entitled “A Catalogus Immune Muris of the mouse immune responses to
diverse pathogens” has been published in Cell Death and Disease in August 2021 and is
accessible with the DOI: 10.1038/s41419-021-04075-y. The paper is under a CC BY license
and the accepted version of the manuscript is presented in this thesis. The supplementary

methods and figures are shown in this thesis, but supplementary tables are accessible online.

In this study, we present a Catalogus Immune Muris, a valuable resource of functional
immune cell states for designing novel immunomodulatory strategies. Indeed, discerning the
functional states of immune cells and their transcriptional characterization is pivotal for the
development of immunomodulatory therapeutic strategies. However, the development of
such therapies based on the reprogramming of functional states is significantly impeded by
the incomplete knowledge about the functional cell states established in response to
pathogens and their characterization. We made two novel contributions with this study. First,
we developed FunPart, a computational method to decipher functional cell states in diverse
conditions and identify the genes characterizing their states. We showed that genes identified
are functionally relevant for the deciphered cell state by manually collecting literature
evidence. Moreover, we showed that our method accurately detects functional cell states
compared to current state-of-the-art methods. Second, we built a Catalogus Immune Muris
by applying FunPart to 114 single-cell datasets composed of six immune cell types in the
context of twelve viral, bacterial, fungal and parasite infections. We demonstrated how the
resource can be exploited to modulate the cellular response to pathogens in the context of
macrophages infected by Salmonella enterica Serovar Typhimurium. Indeed, we identified
a previously unreported TF, Zfp597, as a functionally relevant gene of a macrophage cell
state and showed that its inhibition significantly increases their phagocytic activity, and

hence results in a significant decrease in surviving bacteria.

Contribution: I implemented the computational method, collected and processed the data,

performed the analyses, and wrote the manuscript.
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4.2.2 Published paper
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Abstract

Immunomodulation strategies are crucial for several biomedical applications. However, the
immune system is highly heterogeneous and its functional responses to infections remains
elusive. Indeed, the characterization of immune response particularities to different
pathogens is needed to identify immunomodulatory candidates. To address this issue, we
compiled a comprehensive map of functional immune cell states of mouse in response to 12
pathogens. To create this atlas, we developed a single-cell-based computational method that
partitions heterogeneous cell types into functionally distinct states and simultaneously
identifies modules of functionally relevant genes characterizing them. We identified 295
functional states using 114 datasets of six immune cell types, creating a Catalogus Immune
Muris. As a result, we found common as well as pathogen-specific functional states and
experimentally characterized the function of an unknown macrophage cell state that
modulates the response to Salmonella Typhimurium infection. Thus, we expect our
Catalogus Immune Muris to be an important resource for studies aiming at discovering new

immunomodulatory candidates.

Introduction

The immune response to pathogens, such as viruses, bacteria, or fungi, is a complex process
involving multiple immune and nonimmune cell types!?. Although transcriptional changes
of these cells in response to pathogens have been studied for decades, the development of

sensitive analytical techniques such as single-cell RNA sequencing (scRNAseq) only now
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enables the identification and functional characterization of cellular subpopulations in
response to different stimuli. Thus, heterogeneous subpopulations can be identified by
specialized transcriptional profiles that determine their identity and govern their interactions
with invading pathogens®®. Recent studies utilizing various pathogens have shown that
complex transcriptional variability in macrophages govern their divergent response against
individual invasive agents’®. For instance, in the case of Salmonella enterica Serovar
Typhimurium, the interplay between the bacteria and macrophages triggers two different
scenarios in which some cells are polarized to anti-inflammatory response whereas others
display an inflammatory output’. Moreover, a subsequent study was able to identify two
distinct cellular states that are responsible for a bimodal type I interferon response!‘.
However, most of these studies focus on a single pathogen, making them unable to decipher
common and distinct cellular states established in response to different infections. To date,
only a few meta-analyses exist that aim at identifying common and unique patterns of the
immune response to pathogens!!. Nevertheless, these studies are based on the average
response across a population of cells or tissues, making them unable to detect functionally
distinct subpopulations. Moreover, the number of pathogens considered in these studies
remains limited, which impedes more general conclusions regarding the cellular response to

different types of infectious agents.

To date, several functional states of immune cells, such as macrophages, natural killer, and
T cells, have been identified and characterized!?!>. In general, discerning the functional
states of immune cells and their transcriptional characterization is pivotal for the
development of immunomodulatory therapeutic strategies. For instance, previous studies
demonstrated the beneficial effect of reprogramming the macrophage polarization state to

16,17 However,

promote tumor suppression or alleviate autoimmunity in encephalomyelitis
the development of new immunomodulatory therapies based on the reprogramming of
functional states is significantly impeded by the incomplete knowledge about the functional

cell states established in response to pathogens and their characterization.

To address this challenge, we collected 114 single-cell datasets of six immune cell types in
the context of 12 viral, bacterial, fungal, and parasite infections, and developed a
computational method for identifying functional immune cell states in response to these
pathogens, creating a Catalogus Immune Muris. We believe it will serve as a valuable

resource of functional immune cell states to devise novel immunomodulatory strategies.
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Materials and Methods

Data collection, processing and annotation

We collected 114 single-cell datasets composed of 6 immune cell types and 12 pathogens
(Table S1). Raw data (accession numbers: PRJEB14043, E-MTAB-3857, and E-MTAB-
4388) were processed using state-of-the-art pipelines'®. Smart-seq data were subjected to a
quality control step using fastqc, reads were mapped to the mm10 genome using STAR
aligner and the count matrix were obtained using featureCounts tool. A similar workflow
was applied for UMI-based data, adding the demultiplexing step and replacing the counting

tool by umi-tool.

Datasets composed of several cell types were clustered using Seurat pipeline with default
parameters, manually annotated and extracted. Cells were annotated using prior knowledge
and CIPR web tool with default parameters'®. Only the cells annotated with a good

confidence were extracted and used to build the resource.

Functional partitioning algorithm

In order to reliably identify and characterize functionally relevant cell states, we developed
a network-based approach combined with a recursive hierarchical clustering named FunPart.
The algorithm is composed of four main parts: (1) cleaning and normalization of the data,
(2) network-based approach to identify set of genes strongly correlated, (3) functional
characterization of the set of genes using manually annotated immune modules by Singhania
etal.!!, and (4) recursive unsupervised hierarchical clustering to perform the splits. Each step
is detailed in the Supplementary Information. A dataset for which no module is found is

considered to be functionally homogenous and corresponds to one functional cell state.

Validations and comparison with the state-of-the-art

We first aimed at validating our method at two levels: (1) the relevance of genes belonging
to the detected functional modules, and (2) the relevance of the predicted cell states. We
collected literature evidences for some of the main TFs identified in each module focusing
on evidences of the immune process identified for macrophages. Next, we aimed at
comparing our method with Seurat, a state-of-the-art method?’. Seurat and FunPart were
used with default parameters for the 17 macrophages datasets. We assessed the functional

relevance of predicted clusters by both methods and computed a score reflecting the
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precision of each method in identifying real or artificial functional heterogeneity per dataset

(Supplementary Information).

Characterization of functional cell states

FunPart provides gene modules characterizing the predicted functional cell states as well as
the specific immune process in which they are enriched. In order to have an additional layer
of information, we aimed at identifying known markers to further characterize these cell
states. Immune cell type markers were collected from the CellMarker database by
considering experimentally validated evidences only?!. We performed feature selection
using the Boruta algorithm??, a wrapper built around the random forest classification
algorithm, to determine the importance of markers in classifying each cell states. Boruta was
used in classification mode with default parameters for each cell state, details are provided
in Supplementary Information. Fold changes and cell expression ratios were then computed

for each cell states markers extracted by the algorithm (Supplementary Information).

Metadata analysis

Data integration was performed for each dataset using the standard workflow of Seurat
(Supplementary Information). Cell states were then aggregated across datasets for each cell
type by following a hierarchical clustering approach: (1) Each dataset was first normalized
individually by the third quantile to overcome the different types of expression values
present in the different datasets (TPM, CPM, UMI and counts), (2) The median expression
of each gene in each cell state was calculated, (3) Euclidean distance was then used to build
the dendrogram reflecting the similarity between states, and (4) the dendrogram was splitted
at a height corresponding to the seventh quantile of the heights distribution. The aggregated

states were then embedded into the computed UMAP for visualization and analyses.

Mice and bacteria

C57Bl1/6 (B6) mice were purchased from Charles River Laboratories and bred in the Animal
Facility at CIC bioGUNE. All the assays performed were approved by the competent
authority (Diputacion de Bizkaia) under European and Spanish directives. CIC bioGUNE is
accredited by AAALAC Intl.

Salmonella enterica subsp. enterica serovar Typhimurium SL1344 (German Collection of
Microorganisms and Cell Cultures, Leibniz, DE) was grown in Luria Bertani medium

(Sigma—Aldrich) without antibiotics.
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Cell culture and gene silencing

Bone-marrow-derived macrophages (BMMs) were generated from 6—12-week-old B6 mice,
as previously described®. Low-passaged HEK293FT cells were cultured in DMEM
containing 10% FBS and 1% penicillin-streptomycin.

Lentiviral particles containing shRNA targeting Zfp597 (TRCN0000215620,
TRCNO0000179758, TRCN0000245367, Sigma—Aldrich) and Stat/ (TRCN0000235839)
were generated using a third-generation lentivirus vector with a conditional packaging
system**®. Zfp597-silencing in BMMs was conducted by co-infection with lentiviral
particles containing the three silencing constructs whereas for Statl one single construct was
used. Lentiviral particles were added at days 3 and 5 of the differentiation process in the
presence of 8 pug/ml protamine sulfate (Sigma—Aldrich). Controls were infected with
lentiviral particles containing the empty vector, PLKO.1. BMMs derived from three

independent mice were used in each silencing assay.

Salmonella survival in murine macrophages

S. typhimurium was grown from a diluted (1:50) overnight inoculum until they reached an
0.D. = 0.6. BMMs were infected following the protocol by Avraham et al.!® at an m.o.i. of
10. In the experiments using shSTAT1 cells, 100 ng/ml of recombinant murine IFNy was
added at the same time than the bacteria. The mixture was centrifuged, incubated for 30 min,
washed twice, and further incubated in the presence of 50 pg/ml gentamicin for 1 h.
Macrophages were then washed and lysed in medium containing 0.1% Triton X-100. Cell
lysates were centrifuged and resuspended in 1 ml of LB broth. Serial 1:10 dilutions were

plated on LB-agar plates to determine the number of live intracellular bacteria per condition.

Real time PCR

Total RNA was isolated using the NucleoSpin® RNA kit (Macherey-Nagel) and reverse
transcribed with M-MLV reverse transcriptase (Thermo Fisher Scientific). Real-time PCR
was performed using the PerfeCTa SYBR Green SuperMix low ROX (Quantabio) on a ViiA
7™ Real-Time PCR System (Thermo Fisher Scientific). Fold induction of Zfp597 was
calculated relative to Rpl19 whereas Statl was compared to Actb by using the 224 method.
Standard curves of all primers were performed by testing serial dilutions of cDNA-
experimental samples obtaining an average of 100% £5% efficiency. Correlation between

target and housekeeping genes was assessed by standard curve comparisons (Zfp597-Rpl19
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slope 0.0194 / Stati-Actin slope 0.0188). Details about the primers used can be found as

Supplementary Information.

Statistics

Three independent mice were used in each silencing assay. Data normality assumption was
first validated using the Shapiro-Wilk test and variances between groups were analyzed
using an F-test. Statistical difference between the two groups (control versus silenced assay)
was then computed using a paired Student t-test. Results with a p value less than 0.05 were

considered as being significant.

Results

Identification and characterization of functional immune cell states

In order to create an atlas of functional immune cell states, we developed FunPart, a single-
cell-based computational method that partitions heterogeneous cell types into functionally
distinct states and simultaneously identifies modules of functionally relevant genes that
characterize them. Starting from a population of cells belonging to the same cell type, the
method partitions them into two subpopulations by searching for modules that are (i)
exclusively expressed in one subpopulation and (ii)) composed of co-expressed TFs
belonging to the same immunological process. This procedure is recursively repeated until

no functionally relevant modules, associated to new subpopulations, can be found (Fig.1A).

To demonstrate the ability of this method to detect functional immune cell states, we
collected 17 macrophage datasets corresponding to the infection with eight different
pathogens profiled at different timepoints (Table S1). Application of our proposed method
to these datasets revealed the presence of 9 M1-like, 13 M2-like cell states, and 14 middle
range states expressing simultaneously some M1-like and M2-like markers'? (Fig. S1).
Moreover, literature evidences were found for every immune process and pathway reported
by FunPart for the 12 intermediate genes modules, used to distinguish groups of functional
states and 26 terminal gene modules, characterizing each individual state (Fig. 1B, C, Table
S2). Next, we aimed at demonstrating that current clustering tools are unable to identify
subtle functional differences and applied Seurat?*-?®, a widely used state-of-the-art clustering
method, to each of the datasets. As expected, the subpopulations obtained are vastly
different, with FunPart identifying 46% of functionally enriched ones compared to 33% for
Seurat across the 17 datasets (Fig. S2A,B). Furthermore, FunPart distinguishes more

accurately functional homogeneity and heterogeneity with 67% and 43% of true positives,
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respectively, compared to 25% and 22% for Seurat (Fig. S2C). In summary, FunPart
identifies immune cell states more reliably and with an increased resolution compared to

state-of-the-art methods.

295 functional immune cell states create a Catalogus Immune Muris

After validating our approach for detecting functional cell states, we collected 114 single-
cell RNA-seq datasets of B cells, T cells, natural killer (NK) cells, macrophages, monocytes,
and dendritic cells (DCs) in the context of 12 viral, bacterial, fungal, and parasitic pathogens
(Table S1). For each cell type we obtained data for six to nine pathogens across three to six
tissues (Fig. 2A, B). Application of our method to these datasets resulted in the detection of
295 functional cell states in total, thus, creating a Catalogus Immune Muris (Fig.2C, Table
S3). On average, we identified 2.26 cell states per dataset and cell type, with NK cells and
B cells having the lowest (average:1.06 and 1.07, respectively) and T cells having the highest
(average: 4.45) functional heterogeneity. The low levels of functional heterogeneity in B
cells are expected as their primary function is antibody secretion. Only in the context of
lymphocytic choriomeningitis (LCMV), B cells exist in two distinct states characterized by
two TFs modules composed of Irf2, Rere, Sp140 for the first and Irf5, Tcf25, Tcf4 for the
second state, respectively (Fig. 3A, B, C). Moreover, Irf5 is known to play a role in B cell
differentiation?’” whereas Ir/2 is known to regulate B cell proliferation and antibody
production?®, suggesting differences in the maturation stage of these cells. On the contrary,
T cells exist in multiple cell states upon infection with various pathogens, such as LCMV,
Influenza, and Salmonella Typhimurium. These are characterized by a marked difference in
processes linked to stress response, inflammation and oxidative phosphorylation (Fig. S3).
Interestingly, these processes are known to be involved in the functional diversity of T cells,
more specifically by playing a role in their differentiation, activation, and function?®-*°.
Finally, we extracted known cell markers to further characterize the identified functional cell
states (Fig.3D, Table S4, S5). We found that combination of broad markers (e.g., CD3 for T
cells) and specific markers (e.g., 7/r9 for DCs) was important to classify the functional cell
states, regardless of their relative expression (Table S4, Fig. S4). Finally, we further
characterized functional states by identifying the expression of the extracted known cell
markers for each functional state (Fig.3D, Table S5). Interestingly, we observed few
diversity in markers signatures for B and NK cell states whereas specific signature patterns

were found for macrophages and T cells (Fig.3D).
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Exploiting TF modules for modulating the inflammatory response

Due to the enrichment of TF modules distinguishing different cell states in immune cell
processes, we hypothesized that the Catalogus Immune Muris can be exploited to modulate
the inflammatory response to pathogens by perturbing the TFs characteristic of different
states. In order to provide support to this hypothesis, we selected the macrophage response
to Salmonella enterica Serovar Typhimurium!® due to a characteristic temporal change in
macrophage states during the infection. In particular, while only a single macrophage state
can be detected 2.5 h after the infection, heterogeneity rapidly increases after 4 h (three
states) and diminishes again after 8 h (two states) (Fig. 4A). By focusing on the two
macrophage states detected 8 h after the infection, we found the first state to be characterized
by the module containing Irf7, Hmgal, Zfp275, and Statl (Fig. 4B) that has been previously
shown to initiate the inflammatory response to pathogens in an interferon gamma dependent
manner'’. In contrast, the second state is characterized by a module composed of Zfp597,
Zbtb38, and Zfp180 (Fig. 4C), but lacks a functional characterization. Enrichment of these
TFs and their co-expressed targets showed their involvement in RNA and DNA processes
as well as pathways such as janus kinase (JNK) signal transduction (Table S2). Indeed,
previous studies highlighted the importance of kinase activity in response to bacterial
infection and the interference of pathogens with kinase-mediated phosphorylation as a

3132 Thus, we

beneficial strategy for bacterial survival, replication and dissemination
hypothesized that macrophages exhibiting the second cell state are not responding to
Salmonella infection due to kinase-mediated phosphorylation of proviral signaling
pathways. We sought to validate this hypothesis by knockdown of Zfp597 as this TF had the
strongest co-expression pattern with its targets in the cell state characterized by the gene
module. Therefore, we assessed the survival of Salmonella in primary murine bone-marrow-
derived macrophages after silencing Zpf597 with shRNA lentiviral constructs during the
differentiation process®® (Fig. 4D). The results in three independent mice showed that
silencing of Zpf597 resulted in a decreased ability to recover viable bacteria upon 90 min
incubation periods demonstrating that Zpf597 is responsible for preventing the macrophage
response to Salmonella infection (Fig. 4E). Thus, the subpopulation characterized by the
module involving Zfp597 is indeed not responding to the pathogen due to the propathogenic
effects of Zfp597 and its inhibition induced a change in cell state. To further support the
induced macrophage state change, we employed the same experimental setup to silence Stat/

and hypothesized that bacterial survival is increased. Indeed, recovery of viable bacteria

upon 90 min incubation periods in the presence of IFNy demonstrated that Stat/ is a driver
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of bacterial clearance (Fig. 4F), which is consistent with previous reports®**34. Moreover, we
analyzed the expression of both silenced TFs on their respective TF module counterparts in
order to determine regulatory relationship between the two modules (Fig. 4G, H). We
observed that silencing of Zfp597 induced a significant increase in Stat/ expression whereas
Statl silencing did not significantly alter Zfp597 expression (Fig. 4G, H). This suggests a
regulatory relationship between the two modules, with Zfp597 inhibiting the expression of
Statl, which belongs to the opposite module.

In summary, the TFs characteristic of the detected cell states could be harnessed to modulate

the immune response to pathogens by inducing a transition of cell states.

Integration across pathogens identifies common and unique cell states in time and
space

As previously described, a major bottleneck of previous studies is the inability to compare
the immune response across pathogens and timepoints. To address this issue, we set out to
unify the previously detected cell states across different datasets by combining similar states.
As a result, we obtained between 5 and 45 unique states for each cell type. We observed that
the majority of functional states is homogeneous although some states display heterogeneous
functionalities shared by other states (Fig. S5). Similar to the analysis conducted for
individual datasets, NK and B cells have the lowest number of unique states whereas T cells
have the highest. Next, we leveraged this integrated collection to identify functional states
common and unique in the response to different pathogens. Interestingly, we observed
largely distinct responses to different types of pathogens for most of the cell types,
underscoring the previously reported predominance of pathogen-specific immune
responses® (Fig. 5A). Finally, we set out to interrogate the changes in cell states at different
timepoints of an infection. We analyzed the Mycobacterium smegmatis infection for the six
cell types and observed a conserved functional state for T cells, NK cells, and monocytes
across the three timepoints, respectively (Fig. 5B). Indeed, no functional diversity is
observed for T cells, which are in one conserved state across the 7 days. However, B cells
and DCs have conserved and unique states, with the functional diversity of DCs increasing
at day 7. We noticed a shift of functional B cell states between the first and second day,
mainly characterized by the differential expression of IgD (Fig. (Fig.5C)5C) [36].
Furthermore, we observed that the functional diversity of DCs at day 7 is characterized by
three functional states (Fig. 5D) and could reflect differential DCs maturation during the

inflammatory response, as reported in previous reports®’. In addition, the functional state
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CS3 is the most different with the expression of Cd86, Cd4, and especially Cc/22, suggesting
this state to be actively recruiting other cells, such as invariant NKT or regulatory T cells, in

response to the infection3®4!,

Discussion

In this study, we developed FunPart, a single-cell-based computational method to dissect the
heterogeneous cellular response of immune cells to pathogens. In particular, this method is
conceptually different from traditional clustering methods** as it accounts for functional
aspects by identifying specific set of genes required to belong to the same immune process.
Moreover, the striking difference between our approach and current -clustering
methodologies can be exemplified in the context of B cell states. Although traditional
clustering methods detected 11 memory B cell states in a recent study, only a few states
exhibited significant differences*. This is in accordance with our observation that B cells do
not exhibit a high functional diversity with respect to immune processes. Furthermore, it was
not unexpected to identify the largest number of functional states for T cells***°. The
differential diversity between B and T cells was observed at the marker expression level,
initially used to distinguish cells (sub)types?!, but not fully explanatory of the functional
diversity captured. Thus, the main advantage of our approach is that it mainly captures
functional rather than transcriptional heterogeneity. Moreover, FunPart provides modules of
genes used to identify the functional cell states and the immune processes!! to which they
belong. As a result, we were able to compile a Catalogus Immune Muris, the most

comprehensive atlas of immune cell states currently available to the research community.

In addition, the Catalogus Immune Muris contains a molecular characterization of each state
that can be leveraged to design novel immunomodulatory strategies. Here, we showed that
the cellular response to Salmonella infection can be modulated by inhibiting TFs from
identified gene modules by FunPart to enhance or inhibit pathogen clearance. Indeed, as

3334 whereas

reported in previous studies, we found Stat! to be a driver of bacterial clearance
we identified Zfp597, a previously unreported TF, to have propathogenic effects. We showed
that perturbation of TFs predicted to be characteristic of two macrophage cell states allows
the modulation of their response to the infection by a switch between functional cell states.
Moreover, our analysis suggests a regulatory relationship between the two modules where
Zfp597 inhibits the expression of Statl. Therefore, targeting the identified TFs provides a

rationale strategy for immunomodulatory therapies*®*’. Nevertheless, the development of
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novel immunomodulatory therapies typically relies on the utilization of drugs and
compounds to alter cellular functions*®#°. In this regard, a limitation of the presented strategy
is that it solely considers modules composed of transcription factors that are potentially

difficult to target.

Finally, the strategy implemented in FunPart could be of use for deciphering and
characterizing functional heterogeneity within cell populations in diverse pathological and
physiological conditions. Indeed, our method is not biased by the cell type it analyzes and
thus could be applied to any cell type in any tissue or condition. Although FunPart currently
identifies modules enriched in immune cell processes, it can be easily adapted to other
genesets characteristic of any biological process. For instance, it could be applied to study
the functional impairment of cell (sub)types in liver-related diseases®*>!. Indeed, it is known
that the cellular location around the lobule plays an important role for their function®?,
however the dysregulations imparing the hepatocytes functions is not well defined®!->*. The
identification and characterization of such functional subtypes could help improving

regenerative medicine strategies®*.

In summary, we presented a computational strategy for resolving functional cell states in the
context of infections and identifying TFs involved in the maintenance of these states. We
expect our approach to be of great utility for deciphering and characterizing functionally
distinct cell states in physiological and pathological conditions. Moreover, application of our
method to 114 datasets created a Catalogus Immune Muris, which we believe to be of great

utility in the development of novel immunomodulatory therapies.
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Figure 1. FunPart general workflow and validation.

(A) General workflow of the functional states identification and characterization. The computational
method we developed, named FunPart, takes single cell RNA-seq data of one cell type as an input,
to identify functional states based on functional modules of genes. The method searches for modules
exclusively expressed in one group of cells and belonging to the same immune process. Cells are
recursively splitted in two groups until no more functionally relevant modules associated to new
states can be found. (B) Binary heatmap of the 26 terminal genes modules identified by FunPart for
the macrophages functional cell states CS. Only TFs are displayed. (C) Functional enrichment of
these 26 terminal gene modules. Each immune process has a different color, the size of the dots
represents the number of gene modules enriched in the specific process. Intermediate gene modules
are not displayed.
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Figure 2. Overview of the Catalogus Immune Muris content.

(A,B) Composition of the Catalogus Immune Muris. Repartition by immune cell type of the (A) nine
pathogens and (B) seven tissues across the 114 datasets. (C) Binary heatmap displaying the terminal
gene modules identified by FunPart for each functional cell states belonging to one of the six broad
immune cell type. Shared genes, colored in grey, correspond to transcription factors found in more
than one terminal gene modules. Only TFs of terminal gene modules are displayed.
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Figure 3. Functional cell states analysis and characterization.

(A) Correlation plot and (B) dotplot of the functional TFs characterizing two B cells functional states
in LCMYV infection at time point 72h. Colored boxes in (A) indicate correlations considered by the
algorithm with green boxes indicating cliques of genes and red boxes the negative correlation
considered as significant. (C) Network representation of the significant edges retained by the
algorithm for the six TFs shown in (A). Each module consists of a clique of three transcription factors
positively correlated together. The negative correlation between the two modules is supported by the
interaction between Tcf4 and Rere. (D) Heatmaps showing the expression ratio of the cell markers,
extracted using Boruta, for each functional cell state. Identified cell states are in columns and markers
in rows. A ratio of one corresponds to the marker being expressed in all cells of the functional cell
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Figure 4. Immunomodulation of macrophage responses and functional states analysis.
(A) t-SNE displaying functional states identified by FunPart across three time points for macrophages
infected by Salmonella typhimurium. (B,C) Violin plots showing the expression levels for the two
functional states identified at time point 8h of (B) the first module composed of Irf7, Zfp275, Hmgal,
Statl and (C) the second module composed of Zp597, Zfp180, Zbtb38. (D) Summary of the
experimental design used to validate Zfp597 and Statl as immunomodulators. (E,F,G,H) Differential
survival of S. enterica typhimurium in Zfp597-silenced and Stat1-silenced macrophages compared
to their respective pLKO controls. (E,F) Colony-forming units recovered from silenced and control-
transfected BMMs infected with Salmonella at an m.o.i of 10 for (E) Z{p597 and (F) Statl. (G,H)
Zfp597 and Statl gene expression levels in macrophages lentivirally infected with shRNAs targeting
the gene or controls (pIKO). The results are represented as average + SE of 3 independent mice per
silencing. The p values were calculated by paired Student’s t test. A result is considered as significant
if its p-value is less than 0.05.
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4.2.3 Supplementary Information

Supplementary Methods

Functional partitioning algorithm
In order to reliably identify and characterize functionally relevant cell states, we developed
a network-based approach combined with a recursive hierarchical clustering named FunPart.

The algorithm is composed of four main parts:

(1)_Cleaning and normalization of the data: The algorithm accepts any type of data (counts,

UMI or normalized). In case raw data are provided, a normalization procedure will be
performed using Seurat. Outliers cells will be removed using a Rosner test on the number
of genes expressed in each cell. Finally, two last quality control steps are performed on
the genes: (1) any gene expressed in less than 5% of the cells will not be considered and
(2) genes that are too lowly expressed are removed, with a gene too lowly expressed

falling below the 5% of genes expression sum distribution.

(2) Network-based set of genes identification: To identify functional sets of genes, a

correlation network is constructed around all the genes. Based on the correlation scores
distribution, the 2.5% of each tail are considered to be the strongest interactions and are
kept for the following steps: (1) identification of cliques of transcription factors (TFs) that
are positively correlated together, (2) filtering of cliques that are not unique, with a unique
clique defined as a clique with less than 70% of common TFs, (3) an expression score
reflecting the average expression of the clique is calculated and only the top 30% is kept,
(4) in order to identify antagonistic pairs of cliques, a negative score is calculated between
each pair of positive clique identified in 3., (5) if less than ten antagonistic pairs are found,
all of them are used in step 6., however if more than ten are found, only the top 5% most

negatives are kept, (6) the top target genes are identified for each TF of the two modules.

(3)_Functional characterization of the set of genes: An enrichment analysis is then performed

on the candidate pairs of modules, using manually annotated immune modules by
Singhania et al. The functional enrichment is performed using the clusterProfiler R
package as the following: (1) all the genes profiled in the dataset are used as the universe
and genes of the module considered are used to perform the comparison, (2) a multiple
test correction (Bonferroni) is performed and only the enriched annotations with an
adjusted p-value less than 5% are kept, (3) enriched categories mapped to only one gene

of the set are not considered, (4) a score consisting in the sum of all the resulting gene
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ratio for the module is computed, (5) the two negatively connected modules need to be
both enriched to be considered, (6) each pair of negatively connected modules is ranked
according to the computed score. The top one enriched set, consisting of two gene

modules, is then used for the hierarchical clustering.

(4) Recursive unsupervised hierarchical clustering: In order to investigate each level of

resolution, a recursive binary splitting is used (unsupervised hierarchical clustering). For
each level, a bi-clustering is performed by building a heatmap using the cells of the
corresponding level as well as the identified genes of the two gene modules. The general
workflow is the following: (1) at each level, a hierarchical tree is constructed using the
single cell expression data, the best set of genes and the Pearson correlation measure using
the complete aggregation approach, (2) the first level of the cells dendrogram is used to
perform the binary cutting with k = 2, (3) the two distinct groups of cells identified will
then be splitted separately as explained in steps 1 to 2. The algorithm stops once the

groups of cells are homogeneous and no more functional gene modules are found.

FunPart deciphers functional diversity by identifying and using set of gene modules to
pinpoint and characterize functional cell states. Each gene module identified is composed of
TFs, forming a clique of positively co-expressed edges only, and their direct neighbor genes
for which they have a strong positive interaction. Furthermore, these genes modules can be
classified as intermediate modules or terminal modules. A genes module is intermediate if
the group of cells identified is further splitted whereas a genes module is terminal if the
group of cells identified is not further splitted (corresponds to a functional cell state and leaf
in the hierarchical tree). Indeed, an intermediate gene module characterize a group of
functional cell states whereas a terminal gene module characterizes a specific functional cell

state.

The module attribution to a group of functional cell states or one functional cell state is
performed for each binary splitting. Indeed, each binary splitting is performed using two
gene modules, with each of them belonging to one of the two groups resulting from the split,
according to FunPart rationale. Thus, the module attribution is performed based on the
average number of cells expressing the TFs of the clique in the module. Each gene module
is then assigned to the group (branch 0 or 1) in which it is expressed the most and classified
as characterizing this group. This step allows the assignment of intermediate gene modules

to group of functional cell states and terminal gene modules to specific functional cell states.
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Validations and comparison with the state-of-the-art

The functional relevance of the predicted subpopulations by FunPart and Seurat was
assessed as follow: for each dataset, a ROC test, using FindAllMarkers function from Seurat
R package, has been applied to each predicted cluster; genes with an AUC greater or equal
to 0.7 were considered as good candidates to classify the group of cells; genes were
submitted to an enrichment analysis using annotated immune modules, a Benjamini-
Hochberg correction and a p-adjusted value less than 5%. We then defined four classes to

assess the functional relevance of the predictions based on each dataset:

- “True homogeneous”: dataset for which one method do not identify subpopulations and

the other one identifies some from which more than 50% are non-functional;

- “False homogeneous”: dataset for which one method do not identify subpopulations but
the other one identifies some from which more than 50% are functionally relevant;

- “True heterogeneous”: dataset for which more than 50% of the cell states identified are

functionally relevant;

- “False heterogeneous”: dataset for which less than 50% of the cell states identified are

functionally relevant.

The four non splitted datasets by both methods were discarded from this analysis. We

computed a precision score such as precision = True / (True + False).

Characterization of functional cell states
The feature extractions were done using the R version of Boruta’s algorithm, a wrapper built
around the random forest classification algorithm, for each functional cell state. Boruta was

used with default parameters and the following predictors and response vector:

- Predictors: matrix with features in columns and cells in rows. The features used
consisted of the collected markers for the broad cell type of the functional cell state.
- Response vector: vector with two classes (binary classification), with class 1 for the

cell state under consideration and class 0 for all the other cell states (background).

For each functional cell state, we kept markers classified as an important feature and then
computed a fold change (FC) such as:

mean(xg;
Fe = Teantin) ’l’j)
mean(x;,)

With m: marker, cs: functional cell state, b: background, x: gene expression.
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A positive FC represents an overexpression of the marker in the functional cell states
whereas a negative one represents a down-expression of the marker.

In order to compile markers profile for each functional cell states we identified, we computed
cell expression ratios for each functional cell state and each extracted feature of the immune
cell types. The ratios were computed for each functional cell states such as:

X

nCS

m _—
RCS_

With R the ratio, m the marker, cs the functional cell state, x the binary expression (0 or 1,

with 1 = expressed) of the marker m in the cell i and n the total number of cells.

Metadata analysis

Data were integrated using the standard Seurat pipeline. Due to the high disparity between
the number of cells, the integrations were performed in three steps with the biggest datasets
(>1000 cells) being integrated together and then, integrated with the medium ones (>100 and
<1000 cells) to finally be integrated with the smallest ones. The UMAP is computed, for
each cell type, on the integrated data using Seurat and the functional set of genes

characterizing the functional cell states identified using the functional splitting algorithm.

Real time PCR

The primers used corresponded to the genes Rpl19 (5’-GAC CAA GGA AGC ACG AAA
GC-3’ and 5’-CAG GCC GCT ATG TAC AGA CA-3’), Zp597 (5’-ATC GGA TGA GCA
GAG ACC AC-3’ and 5’-TGA ACA ACG GGT GCA GCA AT-3’), Statl (5° -TCT GAA
TAT TTC CCT CCT GGG- 3’ and 5° -CGG AAA AGC AAG CGT AAT CT- 3’) and Actb
(5"-GAC GAT GCT CCC CGG GCT GTA TTC-3" and 5°-TCT CTT GCT CTG GGC CTC
GTC ACC-3").

Supplementary figures
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Fig. S1. M1-like and M2-like markers used to classify macrophages functional states.
Representation of the M1-like (Cclx9, Nos2, Cxcll1) and M2-like (Argl, Mrcl, Tgm2) markers
distribution used to classify macrophages functional cell states (CS) as Ml-like, M2-like and
intermediate. CS underlined in red are classified as M1-like, CS underlined in purple are classified
as M2-like and CS underlined in blue are classified as intermediate states.
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Fig. S2. FunPart validation and comparison to state-of-the-art.

(A) Predicted states by FunPart and Seurat for the 17 macrophages datasets. (B) Ratio of enriched
and non-enriched predicted subpopulations for the 14 datasets for which FunPart and Seurat were
not in agreement. Datasets D12, D13, D16 and D17 have been excluded from this analysis. (C)
Assessment of the accuracy of both methods in distinguishing functional homogeneous datasets and
identify functionally relevant subpopulations (True Heterogeneous). The computation of the
different classifications is described in the Methods section.
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Fig. S3. Enrichment of the terminal and intermediate gene modules identified for T
cells.

FunPart identified 132 terminal and 102 intermediate gene modules across the 30 T cells datasets
analyzed that were enriched in diverse immune processes. Most of the modules are enriched in
processes involved in broad processes such as oxidative phosphorylation, stress response and
inflammation metabolism whereas fewer are enriched in more specific ones such as type I IFN and
cytotoxic T cells processes.
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Fig. S4. Extracted features for each functional cell state.

Feature extraction was performed to identify important markers to classify the identified functional
cell states. Stacked boxplots represent the frequency of each marker being found as important for the
classification. Light blue parts represent markers found down-expressed in the specific functional
cell considered and red parts represent over-expressed markers. We can observe that broad markers
such as CD3 for T cells are more frequent than specific markers such as Tlr9 for dendritic cells,
regardless of their expression level.

83



A Integrated macrophages B Integrated monocytes

|« 4

CENDO DA WN
CONDO DA WN =

-20 -10 0 10

UMAP_2
CENDN D WN

o000
DB WN =
00000 OGOOONSNOSIDS

E F

Integrated B cells Integrated T cells

" :

7 A ! L0 ¢ RO
N “.-,?-‘,-..‘:Z“,‘."-;“{&l;" - 31
e sl 32
S e 33
35
36
a7
38

©E®NDGO D WN =

UMAP_2
UMAP_2

40
el
42
43

o000
OGO AWN =

000 00O0OGCOOIOSNONONOSNONDPS
00 0000OGONONOGNOSONOSNOIDS
N
@

00000 O0OGOOOIOOGNONOSNONDPS

45

Fig. S5. UMAPs of the integrated data for the six immune cell types.

UMAP were computed for integrated data of the (A)macrophages, (B) monocytes, (C) natural killer
(NK) cells, (D) Dendritic cells (DCs), (E) B cells and (F) T cells. They were built using all
functionally relevant genes reported by FunPart for the non-integrated analysis for each cell type as
features. Functional states identified after the integration analysis are displayed with some of them
in intermediate states and not distinct. NK cells and B cells have the lowest number with 5 and 6
respectively compared to the T cells composed of 45 functional states
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4.3 Deciphering impaired regulatory mechanisms in diseases
4.3.1 Preface

In this study entitled “RNetDys: regulatory network inference to identify impaired
interactions in diseases” we present a multi-OMICS pipeline to infer comprehensive cell
(sub)type and state specific GRNs and systematically identify transcriptional regulatory
interactions impaired due to SNPs in diseases. RNetDys is a pipeline that aims at providing
a better understanding of cell (sub)type and state specific regulatory mechanisms impaired
in diseases due to SNPs. Indeed, the comprehensive view of cell (sub)type or state specific
regulatory landscape impaired due to disease-related SNPs is a promising approach to have
better transcriptomic regulatory mechanistic insights and guide the development of strategies
for therapeutic intervention. Thus far, several strategies and methods have been developed
to study the effect of SNPs and their involvement in diseases, but there is still a lack for a

comprehensive view of the regulatory mechanisms that could be impaired.

In that regard, we propose RNetDys, a computational pipeline to infer comprehensive cell
(sub)type or state specific GRNs and identify regulatory interactions impaired due to
disease-related SNPs. We showed the better accuracy of RNetDys to infer cell (sub)types
specific regulatory interactions including TF-genes and enhancer-promoters compared to
state-of-the-art methods. Moreover, we applied our pipeline in five disease case studies and
validated the relevance of the predicted impaired interactions using literature, GWAS and
eQTL evidences. In summary, we provide a user-friendly pipeline to generate
comprehensive cell (sub)type or state specific GRNs and identify transcriptional regulatory

mechanisms impaired in diseases due to SNPs by leveraging the GRN information.

Contribution: I implemented the computational method, collected and processed the data,
performed the benchmarking analysis, generated the cell (sub)type specific GRNSs, collected

the disease-related SNPs, performed the data analysis, and wrote the manuscript.
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Abstract

Gene regulation is a fundamental process largely controlled by transcription factors to
activate or repress genes. The dysregulation of regulatory mechanisms due to SNPs can lead
to non-physiological conditions such as disease development. However, regulatory
dysregulations do not affect all cell types and subtypes equally. Therefore, having a
comprehensive view of the cell (sub)type specific regulatory landscape is required to
accurately decipher specific regulatory interactions impaired in diseases. Here, we present
RNetDys, a pipeline that leverages multi-OMICS data to infer regulatory interactions
mediated by TFs and enhancers of regulated genes for cell (sub)types or states, and to
identify specific regulatory interactions impaired due to SNPs in diseases. We showed that
the cell (sub)type specific GRNs inferred by RNetDys were more accurate compared to state-
of-the-art methods. Moreover, we validated the ability of RNetDys to accurately identify
impaired regulatory interactions due to SNPs in five disease case studies by leveraging the

GRN information.

Introduction

Gene regulation is a complex and fundamental process that gives rise to highly
heterogeneous gene expression signatures which define cell identity (Cooper, 2000). Indeed,
transcription is largely controlled by transcription factors that bind to specific DNA loci such
as promoter and enhancer regions to either express or repress gene expression (Latchman,
2011). This regulatory process is triggered in response to stimuli, and the cell (sub)type
specific regulatory mechanisms are largely conferred by enhancers (Andersson et al., 2014).
Therefore, it plays a critical role to maintain the homeostasis, integrity and physiology of an
organism (Wray et al., 2003). The impairment of these regulatory interactions can lead to

dysregulations that trigger pathological gene expression changes and contribute to disease
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development (Lee and Young, 2013). In that regard, single nucleotide polymorphisms
(SNPs) have been shown to be associated with regulatory dysregulations driving complex
diseases such as diabetes and heart diseases (Hiramoto et al., 2015; Akhlaghipour et al.,
2022). Notably, genome-wide association studies (GWAS) showed that the majority of
disease-related genetic variants such as SNPs were found in enhancer regions (Claringbould
and Zaugg, 2021). Thus, characterizing the gene regulatory network (GRN) describing the
interactions mediated by TFs and enhancers of regulated genes is critical to understand the
underlying mechanisms of gene regulation in both physiological and pathological
conditions. Indeed, the characterization of the regulatory landscape impaired due to SNPs in
diseases would provide better mechanistic insights and aid the development of strategies for

therapeutic intervention (Uddin ef al., 2020).

Over the years, several GRN inference methods were developed to predict the interactions
between genes using bulk transcriptomics data (Margolin et al., 2006; Huynh-Thu et al.,
2010; Guo et al., 2016). The emergence and fast development of single-cell based
technologies enhanced the development of more refined computational methods to predict
cell (sub)type specific genes regulatory interactions using scRNA-seq data, such as PIDC
(Chan et al., 2017) and SCENIC (Aibar et al., 2017). However, although these methods take
advantage of the high-resolution offered by scRNA-seq data, they are not designed to infer
direct regulatory interactions involving enhancers. Therefore, these methods remain limited
for the inference of cell (sub)type specific regulatory mechanisms, mainly driven by
enhancers, that are required to provide cell (sub)type specific mechanistic insights in
diseases (Andersson et al., 2014; Claringbould and Zaugg, 2021). In that regard, the
combination of different type of OMICS data has been shown to be a promising approach to
build comprehensive GRNs by taking advantage of the high-resolution provided by single
cell technologies (Zhang et al., 2022). However, the applicability of such method remains
limited as it requires matched data between cells, which remains poorly available (Bravo

Gonzalez-Blas et al., 2020).

GRNs have been widely used to gain insights into diseases (Emmert-Streib et al., 2014;
Ament et al., 2018; Bakker ef al., 2021) but the characterization of underlying regulatory
mechanisms dysregulated due to SNPs in diseases and the cell (sub)types specifically
impaired remains elusive. The resolution of cell (sub)type specific regulatory mechanisms

impaired due to SNPs in disease would provide additional mechanistic insights and pave the
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way towards the development of gene-based therapies for disease prevention and treatment
(Uddin et al., 2020). Here we present RNetDys, a multi-OMICs pipeline combining scRNA-
seq, sSCATAC-seq, ChIP-seq and prior-knowledge to decipher cell (sub)type specific
impaired regulatory interactions due to SNPs in diseases. This pipeline exploits the GRN
information, obtained from the GRN inference of RNetDys, to identify impaired regulatory
mechanisms due to SNPs. In particular, RNetDys provides the binding affinity score of TFs,
the sign of interactions to distinguish activation from repression and, a list of ranked TFs
based on their involvement in the regulatory impairments. Notably, compared to existing
strategies to study SNPs (Yu et al., 2022; Nathan et al., 2022), our pipeline provides a
comprehensive view of the impaired regulatory landscape to provide better mechanistic
insights. In addition, RNetDys does not require matched datasets hence allowing for a wider
applicability. We first showed that RNetDys predicts cell (sub)type specific GRNs more
accurately than existing methods. We then applied our pipeline to five diseases to study the
differential cell (sub)type specific impairment and validate the relevance of the predicted

impaired regulatory interactions.

Material and methods

General workflow of RNetDys

We implemented a systematic pipeline that leverages multi-OMICS data to decipher
impaired regulatory mechanisms due to SNPs in disease by leveraging the GRN information.
The pipeline was divided in two main parts composed of (i) the cell (sub)type specific GRN
inference, and (ii) the capture of impaired regulatory interactions due to SNPs to gain

regulatory mechanistic insights for the disease condition.

Cell (sub)type specific regulatory interactions inference

The cell (sub)type specific regulatory network inference was based on a multi-OMICS
approach that relied on single cell transcriptomics and single cell chromatin accessibility,
not necessarily matched, as well as prior-knowledge, including ChIP-seq data and reported
enhancers interactions. First, using the scRNA-seq we selected genes that were conserved at
least in 50% of the cells for further analyses. Then, we ensured the accessibility of the
corresponding promoter regions using scATAC-seq data and predicted TF-promoter
interactions by intersecting the ChIP-seq TF-binding evidence with the open promoter
regions using BEDTools (Quinlan and Hall, 2010). Then, we performed a peak correlation

using the scATAC-seq data and carried out a statistical test, as well as a BH multiple
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correction, to select the significant interactions such as p-adjusted value < 0.05. The
identified enhancer-promoter interactions were then intersected with GeneHancer
(Fishilevich et al., 2017), used as a backbone and, interactions involving active promoters
were kept. Then, TF-enhancers interactions were inferred by intersecting the ChIP-seq and
scATAC-seq data. Finally, the regulatory interactions were signed to distinguish activations
from repressions by computing the Pearson correlation between TFs and genes using the
scRNA-seq dataset (Figure S1). Correlation scores for enhancer-promoter interactions were
computed such as:

corVg, ¢, = z corVrp, ¢,

X

With corV: correlation value, TF: transcription factor, E: enhancer, G: gene

And correlation scores for TF-enhancer were computed such as:

corVrp, g, = z corVrg, s,

X

With corV: correlation value, TF: transcription factor, E: enhancer, G: gene

Then, positive correlation scores were considered to be activations whereas negative ones
were considered to be repressions. Further details are provided in Supplementary

Information.

Identify candidate impaired regulatory interactions

Using the cell (sub)type specific GRN inferred in healthy condition, we then contextualized
the GRN towards the disease condition. The contextualization required a list of SNPs for the
disease studied and the cell (sub)type GRN of interest. The SNPs were mapped to the GRN
by using their coordinates and interactions for which a SNP was falling into a TF binding
region of an enhancer or promoter were considered as candidates to be impaired in the
disease. We then performed a TF binding analysis using PERFECTOS-APE (E. Vorontsov
et al., 2015) to refine the candidate interactions by selecting the ones having at least one
binding site significantly impaired by the SNP (Supplementary Information). Finally, we
ranked TFs by their involvement in the regulatory impairments based on the network

topology and the MAF score of SNPs such as:

NG T r T
Rankyye = RE X 2 X Z|A1|i x (MAF; XZMAF )

With RE: number of regulatory elements regulated by the TF, NG: number of downstream
genes across RE, Al: binding affinity impairment log2FC, i: SNPs, r: regulatory element.
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Prior-knowledge collection and processing

RNetDys relied on prior-knowledge data that were collected and processed to be integrated
in the pipeline. The ChIP-seq bed files were downloaded from ChIP Atlas (Oki et al., 2018)
for human hg19 and hg38 assemblies. Bed files were annotated using HOMER (Heinz et al.,
2010) with the latest GTF file for each assembly. Enhancer regions and their connected genes
were obtained from the GeneHancer database (Fishilevich ez al., 2017). Of note, GeneHancer
database provided information for hg38 coordinates and hence, we used LiftOver
(https://genome.ucsc.edu/cgi-bin/hgLiftOver) to convert these coordinates for hgl9 to

provide more flexibility to our pipeline.

Data collection and processing

First, to perform the benchmarking analysis, we collected 20 publicly available scRNA-seq
and 11 scATAC-seq datasets from six human cell lines including BJ, GM12878, H1-ESC,
A549, Jurkat and K562 (Table S1). Then, we collected sScRNA-seq and scATAC-seq healthy
data from pancreas and brain tissues to extract cell (sub)types using Seurat (Hao et al., 2021)
and Signac (Stuart ef al., 2020), and then generated the GRNs (Supplementary information).
Finally, we collected SNPs from ClinVar (Landrum ef al., 2018) for five diseases including
Alzheimer’s disease (AD), Parkinson’s disease (PD), Epilepsy (EPI), Diabetes type I (T1D)
and type II (T2D) to perform the network contextualization towards the disease condition.
Notably, SNPs were defined as being single nucleotide variants found at least in 1% of the

global population such as MAF >= 0.01 (Supplementary Information).

Validation and comparison to state-of-the-art

We assessed the performances of RNetDys in identifying cell (sub)type specific regulatory
interactions and compared them to state-of-the-art GRN inference methods (Aibar et al.,
2017; Chan et al., 2017; Kim, 2015; Huynh-Thu et al., 2010) (Supplementary Information).
First, we benchmarked the performances of each method to infer cell (sub)type specific TF-
gene interactions. The gold standards (GS) were compiled using cell line specific ChIP-seq
from Cistrome (Mei et al., 2017) by selecting only the highest quality data. Then, we
assessed the performances of RNetDys for capturing cell (sub)type specific enhancer-
promoter regulatory interactions compared to Cicero, a widely used method to identify cis-
interactions based on scATAC-seq data (Pliner et al., 2018). The GS networks were built
using promoter capture Hi-C data from 3DIV (Yang et al., 2018) for three of the human cell
lines. Of note, cell lines should be homogeneous and thus we assume that the performances

obtained using cell line specific GS can be extrapolated for more specialized cell
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(sub)populations such as cell subtypes. For both benchmarking analyses, we computed the

precision (PPV) and F1-score (F1) to assess the performances such as:

TP 2XTP

PPV = and F; = ——
(TP+FP) 2XTP+FP+FN

With TP = True Positive (predicted and found in the GS), FP = False Positive (predicted but
not found in the GS) and FN = False Negative (not predicted but found in the GS).

Results

RNetDys, a multi-OMICS pipeline to decipher impaired regulatory mechanisms

We implemented RNetDys, a systematic pipeline based on multi-OMICS data that
systematically decipher impaired regulatory interactions due to SNPs in diseases by
leveraging the information of cell (sub)type specific GRNs. RNetDys is an integrative
approach relying on single cell transcriptomics and single cell chromatin accessibility from
a specific cell (sub)type, as well as prior-knowledge information including extensive ChIP-
seq data (Oki et al., 2018) and reported enhancer-promoter relationships (Fishilevich ez al.,
2017). The pipeline is composed of two main parts: (i) the cell (sub)type specific GRN
inference and (ii) the identification of impaired regulatory mechanisms due to SNPs in
diseases (Figure 1, Material and methods, Figure S1). The first part consists of the GRN
inference for a healthy cell (sub)type based on scRNA-seq and scATAC-seq data as an input.
Notably, the two single cell datasets do not need to be matched but they need to contain the
same cell (sub)type. Moreover, RNetDys could be applied for any cell (sub)populations,
including cell states, as it exploits the high resolution of single cell data. The second part
takes as an input a cell (sub)type or state specific GRN and a list of SNPs of particular interest
for the disease studied (Visscher et al., 2017; Landrum et al., 2018). In particular, the SNPs
provided could have been described as related to the disease of interest in prior-knowledge
databases (Landrum et al., 2018) or identified by genotyping analyses (Nielsen et al., 2011).
As a result, RNetDys provides the impaired regulatory mechanisms, the corresponding
SNPs, the affinity scores of TF having their binding site impaired, and a list of ranked TF

regulators based on their involvement in the observed impairments (Figure 1).

RNetDys is more accurate to infer cell (sub)type specific GRNs
RNetDys highly relies on the cell (sub)type specific regulatory landscape to identify
impaired regulatory interactions due to SNPs in diseases. Therefore, we assessed the

performance of RNetDys in predicting cell (sub)type specific GRNs (Figure 2). We
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performed the benchmarking of both TF-gene and enhancer-promoter interactions,
compared to state-of-the-art methods. We showed that our approach overcame the state-of-
the-art GRN inference methods for predicting cell (sub)type specific TF-gene interactions
with an average precision of 0.20 and average accuracy of 0.28 (Figure 2A, B). This
assessment highlighted the strength of combining different regulatory layers with prior-
knowledge to provide predictions with a higher confidence. Moreover, we showed that
RNetDys outperformed Cicero in capturing cell (sub)type specific enhancer-promoter
interactions with a median precision of 0.76 and median accuracy of 0.72, supporting the
confidence provided by the prior-knowledge leveraged by our approach (Figure 2C, D). In
summary, we showed the better performances of RNetDys to predict cell (sub)type specific
regulatory interactions between TF-genes and enhancer-promoters. Therefore, we
demonstrated that the cell (sub)type specific GRN information leveraged by our pipeline to

capture impaired transcriptional regulatory mechanisms due to SNPs in diseases is accurate.

Cell (sub)type differential dysregulation in diseases

We applied RNetDys to five diseases, including AD, PD, EPI, T1D and T2D, by collecting
disease-related SNPs from ClinVar (Landrum ef al., 2018) and cell (sub)type specific GRNs
generated from human pancreas and brain tissues. First, we validated the impact of the
mapped SNPs in each of the predicted impaired interactions. Across the five diseases, we
were able to validate the relation SNP-target gene in 90% of our results using GWAS from
ClinVar database. Furthermore, by using cell type specific eQTL data, we were able to
validate the occurrence of certain SNPs and their impact on the predicted target genes in
specific cell types. Notably, by using the same data in PD, we were able to validate novel
SNP-target genes interactions such as rs11538371, rs2072814 and rs8137714 found to be
linked to TIMP3 in astrocytes (Table S4). In fact, 7IMP3 is an inhibitor of
metalloproteinases, enzymes secreted by astrocytes (Yin ef al., 2006), that are implicated in
several PD-associated processes such as dopaminergic neuron degeneration,
neuroinflammation, and proteolysis of a-synuclein (Sung et al., 2005; Choi et al., 2008;
Annese et al., 2015). Furthermore, TIMP3 has been shown to inhibit f-amyloid precursor
(APP) proteolysis and hence increase B-amyloid aggregates, a major hallmark of PD
dementia (Hoe et al., 2007). Then, we studied the differential impairment across cell
(sub)types in the five diseases as it has been reported that some cell (sub)types were more
prone to be dysregulated in diseases (Muratore et al., 2017; Kamath et al., 2022). We

observed that cell (sub)types shared few impaired interactions in the studied diseases,
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especially in EPI and PD (Figure 3). Interestingly, in EPI, astrocytes and OPCs seem to be
the most impaired cell types. This is consistent with literature evidence that shows that
modifications in GABA receptors, which are expressed in inhibitory neurons, are closely
linked to epilepsy (Tanaka et al., 2012). Furthermore, impairment of antiquin expression,
encoded by the gene ALDH7AI, in astrocytes has been described to be linked with
dysregulation of neurotransmitter shuttling and recycling, one of the major causes of

neurological deficits (David et al., 2009; Jansen ef al., 2014).

Cell (sub)type specific disease-related regulatory impairment

We finally aimed at exploiting the GRN information provided by RNetDys to further analyze
the regulatory impairments of cell (sub)types (Figure 4, Figure S2-S5). We observed that in
AD (Figure 4), the same enhancers were involved in every cell (sub)type specific networks
with an impact on the expression of 4PP and presenilin 1 (PSENI). Indeed, alterations in
the expression of these genes are primarily linked to the development of AD (Dewachter et
al.,2002; Matsui et al., 2007). Furthermore, recent studies have shown that not only neurons,
but also astrocytes and microglia to be involved in the accumulation of B-amyloid plaques
(Palop and Mucke, 2010; Frost and Li, 2017). However, the impairment of the TFs and
enhancers regulating these two genes seems to be different across cell (sub)types (Figure 4).
Indeed, most of the SNPs in astrocytes and microglia would induce a repression of APP
whereas this gene seems to be activated in other cell (sub)types (Figure 4). It has been
described that these two cell types provide protective effects, with microglia facilitating the
clearance of B-amyloid, overproduced by neurons in AD (Fakhoury, 2018). Interestingly,
CREBI was found to be the main TF regulator involved in AD and EPI in every cell
(sub)types apart from astrocytes (Table 1, Figure 4, Figure S3). CREB is a TF responsible
for regulating the major pathways that mediate neurotrophin-associated gene expression, a
group of proteins that promotes survival and neuronal development (Shaywitz and
Greenberg, 1999). Indeed, increased CREB activity promotes hyperexcitability, one of the
main triggers of seizures, while reduced levels seem to prevent epilepsy (Zhu et al., 2012;
Wang et al., 2020) (Figure S3). In AD, PSENI has been shown to be a downstream target of
CREBI, which further supports the results obtained by our pipeline as CREB [ was predicted
to regulate PSENI (Cui et al., 2016) (Table 1). Moreover, MXII was found to be one of the
main regulators involved in impaired regulatory interactions for PD, apart from
dopaminergic neurons (Table 1, Figure S2). MXII has been described to be involved in the

mitochondrial homeostasis, dysregulated in PD and known to be involved with
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neurodegeneration (Leston Pinilla ef al., 2021; Malpartida et al., 2021). Finally, STAT3 was
overall found to be the main regulator involved in impaired interactions of T1D and T2D
(Table 1, Figures S4 and S5). In the pancreas, STAT3 has been shown to regulate insulin
secretion and islet development (Saarimdki-Vire et al., 2017). In addition, in T2D,
exacerbated STAT3 signalling has been shown to lead to insulin resistance in skeletal muscle
of diabetic (Mashili et al., 2013), supporting its importance as a regulator of the

dysregulations involved in the disease.

Discussion

The study of cell (sub)type specific regulatory interactions impaired due to SNPs in diseases
is required to pave the way towards the development of novel gene-based therapies to treat
diseases (Rao et al., 2021). In addition, the comprehensive view of the regulatory landscape
is critical to study dysregulated mechanisms in diseases (Emmert-Streib et al., 2014; Chiou
etal.,2021). In that regard, existing strategies to study the impact of SNPs do not exploit the
GRN information to get a better understanding of the disease-related dysregulations (Rao et
al., 2021; Bryois et al., 2021). In addition, current approaches have been mainly focused on
cell types, but it has been recently shown that more specialized group of cells, such as cell
subtypes, are not equally involved in diseases (Nathan et al., 2022; Kamath et al., 2022).
Here we present RNetDys, a systematic multi-OMICS pipeline to decipher cell (sub)type
specific regulatory interactions impaired due to SNPs in diseases. This pipeline exploits the
high-resolution of single cell to infer a comprehensive regulatory landscape used to identify
impairment due to SNPs. Notably, RNetDys can be applied to more specialized cell
(sub)populations such as cell states due to its design. We first ensured that the multi-OMICS
approach used by RNetDys was outperforming existing methods for inferring cell (sub)type
specific regulatory interactions. Notably, the main limitation of the GRN inference part of
RNetDys was the use of prior-knowledge. Indeed, it strongly increases the confidence in the
predicted edges but also discard the discovery of unreported ones. Nevertheless, we
alleviated this limitation by using GeneHancer, the most complete prior-knowledge available
to date (Fishilevich et al., 2017; Oki et al., 2018). We applied RNetDys to five disease cases
and observed that cell (sub)type specific regulatory mechanisms were not equally impaired,
suggesting their differential involvement in the studied diseases. Moreover, we validated the
relevance of the impaired regulatory mechanisms and provided additional insights into the
main regulators involved. In particular, the presented analysis was performed using SNPs

retrieved from ClinVar, but RNetDys could be of great use to provide valuable regulatory

94



mechanistic insights while leveraging the GRN information from genotyping studies. In the
present study, we were able to predict known and unreported cell (sub)type specific SNP-
gene interactions, hence showing how RNetDys could facilitate the discovery of regulatory
impairments. To conclude, we foresee our pipeline to be a valuable tool to comprehensively
identify cell (sub)type specific regulatory mechanisms impaired due to SNPs and aid the

development of strategies for therapeutic intervention in diseases.
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Tables

Table 1. TF regulators involved in impaired regulatory mechanisms.

DISEASE CELL (SUB)TYPE RANKED TFS*
Astrocyte MXI1, STAT3
Excitatory neuron CREBI, USF2, MXI1
Inhibitory neuron CREBI, MXI1, STAT3
AP Microglia CREBI, USF2, MXI1, IKZF1
Oligodendrocyte CREBI, MXI1
OPCs CREBI, MXIl, ETV1
Astrocyte MXI1, STAT3, BCL6, ZFX, RXRA
Excitatory neuron CREBI, MXI1
Inhibitory neuron CREBI, STAT3, STAT1, MXI1
E Microglia CREBI1, MXI1
Oligodendrocyte CREBI1
OPCs CREBI, BCL6, MXII, STATI, ETV1
Astrocyte MXI1, BCL6
Dopaminergic neuron STAT3
PD Excitatory neuron MXI1, CREBI1
Oligodendrocyte MXI1
OPCs BCL6, MXI1, ETV1
Alpha cell STAT3, STATI1, RXRA
T1D Beta cell STAT3, CREB1
Delta cell STAT3, CREB1
Alpha cell STAT3, RXRA, STAT1, CREBI1, ATF2, EHF
Beta cell CREBI, STATI1, STAT3, PDXI, ETS1, ATF2, RXRA, MXI1
1P Delta cell CREBI, STATI1, STAT3, PDX1, ETVI, EHF, ATF2

Gamma cell

STAT3, CREBI, STATI1, ETV1, EHF, ATF2

* TFs are ranked by their order of importance in the detected impaired regulatory mechanisms.
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Figure 1. General workflow of RNetDys to decipher regulatory dysregulation in

diseases.

RNetDys is composed of two main parts including (1) the GRN inference using scRNA-seq,
scATAC-seq and prior-knowledge, and (2) the identification of candidates impaired
regulatory interactions using the GRN and a list of SNPs. The first part provides the cell
(sub)type or state specific GRN describing the regulatory interactions mediated by TFs and
enhancers of regulated genes. The second part provides the list of candidate impaired
regulatory interactions in the cell (sub)type, the SNPs that were mapped to these interactions,
the TFs for which the binding affinity is impaired, and the regulatory TFs ranked based on
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Figure 2. Performances of RNetDys and comparison to other methods.

(A, B) TF-gene regulatory interactions performances assessed using (A) the PPV and (B)
the F1-score metrics. Performances were assessed for RNetDys and state-of-the-art methods
on 20 datasets from six human cell lines. (C, D) Enhancer-promoter regulatory interactions
performance assessment using (C) the PPV and (D) the F1-score metrics. Performances were
assessed for RNetDys and Cicero on 6 scATAC-seq datasets from three human cell lines.

101



Epilepsy

chr5:126592200-126596201|ALDH7A1

chr3:64223200-64226459|PRICKLE2 5
MXI1|chr5:126592200-126596201

4

chr4:122920756- 122924601|SPATA5 2
STAT3|KCTD7
chrX:47619001-47620600|SYN1
STAT3|SYN1
STAT3|CACNB4
STAT3|chrX:47619001-47620600
MXI1|KCNC1

| |CREB1|RBFOX1
CREB1|chr3:64223200-64226459
CREB1|PRICKLE2
STAT1|SCARB2
chr12:42468600-42471319|PRICKLE1
CREB1|SCN9A
ETV1|chr4:76205669-76215919
BCL6|chr12:42468600-42471319
CREB1|chr12:42468600-42471319
STAT3|PRICKLE2
MXI1|chr3:64223200-64226459
BCL6|chr4:76205669-76215919
chr4:76205669-76215919|SCARB2
chr6:145733617-145737579|EPM2A
ZFX|ALDH7A1
STAT3|ALDH7A1
BCL6|EPM2A
ZFX|chr5:126592200-126596201
STAT3|chr3:64223200-64226459
BCL6|chr6:145733617-145737579
RXRA|chr5:126592200-126596201
ZFX|EPM2A
STAT3|EPM2A
ZFX|chr6:145733617-145737579
ZFX|chr4:76205669-76215919
STAT3|chr6:145733617-145737579
MXI11|chr6:145733617-145737579
RXRA|chr6:145733617-145737579

Alzheimer’s disease

MXI1|chr21:26166164-26172001 2
chr21:26166164-26172001|APP
MXI1|APP
STAT3|chr14:73135401-73138601 15

STAT3|PSEN1

CREB1|PSEN1
chr14:73135401-73138601|PSEN1
CREB1|chr14:73135401-73138601 1
CREB1|chr21:26166164-26172001
ETV1|chr21:26166164-26172001
USF2|chr21:26166164-26172001
IKZF1|chr21:26166164-26172001

0.5

i

Parkinson’s disease

i

MXI1|chr4:41255600-41259401 I 3

chr4:41255600-41259401|LIMCH1
chr4:41255600-41259401|UCHL1
STAT3|chr4:41255600-41259401
STAT3|UCHL1
CREB1|chr4:41255600-41259401
CREB1|UCHL1
¢hr22:32473200-32478044|TIMP3 1.5
chr22:32473200-32478044|FBXO7
BCL6|chr12:40222200-40227694
chr12:40222200-40227694|LRRK2
ETV1|chr22:32473200-32478044
BCL6|FBXO7
BCL6|chr22:32473200-32478044
MXI1|chr22:32473200-32478044

25

2

1

I 0.5
0

Diabetes Type Il

ETV1|chr20:45334860-45349300 2
chr20:45334860-45349300|PIGT
STAT3|chr20:45334860-45349300
STAT3|ABCC8 15
ATF2|chr12:120977075-120985314
chr20:44397802-44420654| TTPAL
chr12:120977075-120985314|ANAPC5
RXRA|chr20:44397802-44420654 1
CREB1|chr12:120977075-120985314
RXRA|chr12:120977075-120985314
EHF|chr20:45334860-45349300

chr4:26318200-26324401|RBPJ 05
ATF2|RBPJ '
0

CREB1|chr4:26318200-26324401
STAT1|chr20:45334860-45349300

PDX1|ABCC8

STAT3|KCNJ11
chr20:45334860-45349300|SYS1
RXRA|chr20:45334860-45349300
MXI1|RBPJ
MXI1|chrd:26318200-26324401
ETS1|chr20:45334860-45349300
ETS1|chr4:26318200-26324401

Diabetes Type |

chr20:44397802-44420654|TTPAL [l 4
RXRA|chr20:44397802-44420654
STAT1|chr20:44397802-44420654 = 3
STAT3|chr20:44397802-44420654
CREB1|KCNJ11

STAT3|KCNJ11 2

1

i,

(0]
o
3
3
D

eydy
elog
ejeq

Type of interaction

-TF-Gene DEnhancer—Promoter .TF-Enhancer

Figure 3. Cell (sub)type differential regulatory impairment in diseases.

Heatmaps showing the distribution of impaired interactions due to disease-related SNPs
across cell (sub)types for Alzheimer’s disease (AD), Parkinson’s disease (PD), Epilepsy
(EPI), Diabetes type I (T1D) and type II (T2D). The colors of the heatmap represent the
number of SNPs impacting the regulatory interactions. Astro: astrocytes, Ex: excitatory
neurons, Inh: inhibitory neurons, Mic: microglia, Oligo: oligodendrocytes, OPCs:
oligodendrocyte progenitors, DAn: dopaminergic neurons.

102



A- Astrocytes B- Excitatory neurons MXI1
STAT3 MXI1
51800839 1545476095 5459543 15459543
545476095
’ G 5459543
s s
ohr1473135401-73138601 1545476095 chr21:26166164-26172001 "W
A N ~
11800839 459543 chr14:73135401-73138601 51800839 chr21:26166164-26172001 4= USF2
< v Y » 15459543
PSENT APP
A A
PSEN1 APP

C- Inhibitory neurons D- Microglia

MXI1 CREB1 STAT3

5459543
51800839
1545476095 MXi1
IKZF1
1545476095 :y
459543 1800839
1800839
A A\ / CREB1 chr14:73135401-73138601
chr21:26166164-26172001  chr14:73135401-73138601 UG o | enzrzstesreszerzzoon | 5459543 51800839 ’
s
w
151800839 - 1545476095 \

\4 Y G PSEN1

APP PSEN1
E- QOligodendrocytes F -oprcs

MXI1
MXI1
lrsmm 145476095 1459543 145476095
-« PN
5459543 51800839
chr21:26166164-26172001 — CREB1 ———  chr14:73135401-73138601 ETVI  —————|  chr21:26166164-26172001 CREBI ————]  chr14:73135401-73138601
15459543 5459543 rs1800839
v YS|BOUB3{ J
A A =
APP PSEN1 APP PSEN1

Figure 4. Cell (sub)type specific regulatory impairment in AD.

Network visualization of impaired regulatory interactions for (A) astrocytes, (B) excitatory
neurons, (C) inhibitory neurons, (D) microglia, (E) oligodendrocytes and (F) OPCs. TFs are
represented as diamond in light red, enhancers as yellow rectangles and genes in blue
rectangles. Arrows represent activations and T edges represent repressions. The weight of
edges from TFs correspond to the strength of the impairment, with the thinnest translating a
strong lack of binding affinity and a large edge being a strong increase in binding affinity.
The color of the edges from TFs represents the log2FC with green being a decreased affinity
and red an increased one.

103



4.3.3 Supplementary Information

Supplementary Methods

Supplementary References

Supplementary Figures:

Figure S1. Strategy to compute the sign of the regulatory interactions.
Figure S2. Cell (sub)type specific regulatory impairment in PD.

Figure S3. Cell (sub)type specific regulatory impairment in EPI.
Figure S4. Cell type specific impairment in T1D.

Figure SS5. Cell type specific impairment in T2D.

Figure S6. Threshold selection to define accessibility of promoter regions.
Supplementary Tables:

Table S1. Single cell datasets used for validation and comparison.
Table S2. Collected datasets to generate healthy cell (sub)type GRNs.
Table S3. Matching of the scRNA-seq and scATAC-seq brain datasets.

Table S4. Literature-based validation of the predicted impaired regulatory interactions.

Supplementary Methods

RNetDys workflow

Cell (sub)type specific GRN inference

The GRN inference part of RNetDys relies on the combination of multi-OMICS data
including single cell datasets (scRNA-seq and scATAC-seq) and prior-knowledge (ChIP-
seq and GeneHancer). First, a quality control was performed on the scRNA-seq and
scATAC-seq in which any rows (gene or peaks) or columns (cells) having a sum of zero
were removed from further analyses. Then, the following steps were computed to infer the
cell (sub)type specific regulatory interactions:

(1) TF-Genes interactions. First, using the scRNA-seq data, we pre-selected genes

conserved at least in 50% of the cells for candidate interactions. Indeed, we considered
genes expressed in the majority of the cells to be representative in the specific cell
(sub)type. In addition, from the scATAC-seq peaks matrix, coordinates were extracted
to identify accessible promoter regions. Notably, a gene promoter region was identified
from the ChIP-seq collected from ChIP-Atlas (Oki ef al., 2018), using HOMER (Heinz
et al., 2010) annotations by filtering peaks related to gene types annotated as protein

coding, and defined as a region between 1500bp upstream and 500bp downstream. A
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promoter was considered to be accessible if its gene was expressed (conserved at least
in 50% of the cells) and at least one ATAC peak was overlapping. The overlap between
promoter regions and the peaks coordinates was performed using BEDTools (Quinlan
and Hall, 2010) with the parameter -f = 0.48 in reciprocal mode (-r). We identified the
overlap parameter f= 0.48 as being the one with the highest probability to capture a real
cell (sub)type accessible promoter region. The procedure used to select 0.48 is described
in “Identification of accessible gene promoter regions” of the Supplementary Methods.
Finally, the resulting overlapping between promoter regions and chromatin accessibility

allowed us to predict the cell (sub)type specific TF-gene interactions.

(2) Enhancer-Promoters interactions. First, we identified open enhancer regions by

intersecting the ChIP-seq data and the scATAC peaks coordinates using BEDTools with
the parameter -F 1.0 selecting open enhancer if 100% of the region was accessible. Then,
we splitted the scATAC peaks matrix such that one matrix contained accessible
promoter regions, obtained previously, and the other one accessible enhancer regions.
We then computed the correlation between the two matrices, using the Pearson metric
with the propagate R package (Andrej-Nikolai Spiess, 2018) that requires few
computational resources to perform correlation of large matrices. Z-scores and
corresponding p-values using a one-sided test on a normal distribution were computed
for each pairwise correlation. Then, a Benjamini-Hochberg multiple test correction was
applied on the computed p-values. The network was generated by selecting enhancer
regions as sources, and promoter regions as targets, filtering the edges such as p-adjusted
value < 0.05, and keeping promoters for which genes were found in the TF-genes
network. Notably, only positive correlation could be found as being significant as a
negative correlation between accessibility peaks translate an absence of interaction
between enhancers and promoters. We then retrieved the genes corresponding to the
promoter regions using the ChIP-seq data used by RNetDys. Finally, the enhancer-
promoter correlation network was intersected with all GeneHancer (Fishilevich ef al.,

2017) reported connections.

(3) TF-Enhancers interactions. First, enhancers present in the Enhancer-Promoter network

were selected. They are then intersected with the ChIP-seq data, using BEDTools and -
F 1.0. Therefore, if 100% of the ChIP-seq TF peak felt inside an enhancer region, then

this TF was a regulator of the enhancer.
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All the interactions of the comprehensive network were then signed based on the scRNA-
seq dataset using the Pearson correlation metric between TFs and genes. For TF-genes
interactions, the correlation value defined the sign of the interactions such as positive
correlations were most likely activation whereas negative ones were most likely repression.
The signs for enhancer-promoter interactions were determined by computing the sum of
correlation values for the TFs binding to the enhancer regulating the specific gene. Notably,
the correlation values were corresponding to the TF-gene relationship. The correlation score

to determine the sign was computed such as (Figure S1) such as:

corVg g, = corVre ¢
a b X b

X

With corV: correlation value, TF: transcription factor, E: enhancer, G: gene

Finally, signs for TF-Enhancers were computed by summing, for each TF binding of the
enhancer, the TF-genes relationship correlation values for each gene regulated by the
enhancer (Figure S1) such as:

corVrp, g, = z corVrg, ¢,

X

With corV: correlation value, TF: transcription factor, E: enhancer, G: gene

Contextualization towards the disease state to identify candidate impaired interactions

Based on a GRN from a healthy cell (sub)type, the regulatory network was contextualized
towards the disease condition based on a list of SNPs. First, promoter regions coordinate for
which a TF binding site has been identified were retrieved from the ChIP-seq data used by
RNetDys. Then, the SNPs were mapped to these regions and enhancer regions of the GRN
using BEDTools, under the condition that the SNP mapped exactly inside one of the regions
(parameter -F 1). This step allowed for the identification of candidate impaired regulatory
interactions, including TF-genes and enhancer-promoters, for the specific cell (sub)type.
Finally, a TF binding affinity analysis was performed on the candidate impaired binding
sites. The fasta sequences for impacted enhancer and promoter regions were retrieved from
genome.ucsc.edu accordingly with the genome assembly, 50bp upstream and downstream
were selected from the SNP position and the SNP [ref/alt] alleles were added to the sequence.
Then, we used PERFECTOS-APE (E. Vorontsov ef al., 2015) to perform the TF motif
binding affinity analysis for each SNP on each candidate impaired binding region. Then, we

refined the impaired regulatory interactions by selecting the ones having at least one TF
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binding site significantly impacted. Notably, we used PERFECTOS-APE with the following
modified parameters: --pvalue-cutoff 0.05 --fold-change-cutoff 2. Finally, we ranked the TFs
to prioritize the regulators involved in the impairments due to SNPs, and hence were most
likely to play a role in the dysregulations observed in the disease condition. The rank of each

TF regulator was computed as follow:

Rank;y = RE X g—g X (z |AI|T % (MAFiT % ZMAFr))

With RE: number of regulatory elements regulated by the TF, NG: number of downstream genes
across RE, Al: binding affinity impairment log2FC, i: SNPs, r: regulatory element.

Identification of accessible gene promoter regions

We intersected ChIP-seq peaks related to gene promoter regions with ATAC peaks from
scATAC-seq data to identify accessible cell (sub)type promoter regions using bedtool. In
order to define the best threshold to use for the overlapping between the ChIP and ATAC
peaks, we collected ChIP-seq from ChIP-ATLAS and compiled four human cell line specific
ChIP-seq gold standards (BJ, GM12878, HI ESC and K-562). We then used all the ChIP-
seq collected from ChIP-ATLAS (aspecific) and considered a ChIP peak to be a true positive
(TP) if it was found in the cell line specific GS and a false positive (FP) if it was not found
in the GS. We computed the percentage of overlaps between ATAC peaks and TPs or FPs
ChIP-peaks independently. Then, we computed the delta probability distribution such as:
ecdf(TPs overlap) - ecdf(FPs overlap), and selected the highest point = 0.48. Indeed, 0.48
corresponded to the reciprocal threshold for which the probability to capture a TP (cell
(sub)type specific ChIP peak) was the highest and was used as default by the RNetDys
(Figure S6).

Generation of the cell (sub)type specific GRNs in healthy condition

We collected scRNA-seq and scATAC-seq data from human pancreas and brain tissues
(Table S2). The scRNA-seq datasets were processed using Seurat v4 (Hao ef al., 2021) and
annotations were used from their original studies. Similarly, the scATAC-seq datasets were
processed using Signac (Stuart et al., 2020) and annotations were kept from their respective
studies. The gene expression and peaks matrices for each cell (sub)type were extracted for
each tissue as follow:

- Pancreas: We performed the peak calling with Signac using MACS2 (-q 0.05 --call-

summits) for each cell (sub)type, and the peak matrices were extracted for the cell
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(sub)types having a corresponding scRNA-seq matrix by using the FeatureMatrix
function. We then used Seurat to extract all the cell (sub)type scRNA-seq matrices.

- Brain: several datasets were collected to match scRNA-seq and scATAC-seq data in order
to extract cell (sub)types for two different brain regions (Table S3). The scATAC-seq
fragment files were obtained after request to the authors, and the general peaks matrix as
well as metadata were retrieved from the public repository of their study (Corces et al.,
2020). We performed the peak calling with MACS2 (-q 0.05 --call-summits) for each cell
(sub)type in each brain region. The peak matrices were extracted for the cell (sub)types
having a corresponding scRNA-seq matrix by using the FeatureMatrix function provided
by Signac. We then used Seurat to extract all the cell (sub)type scRNA-seq matrices. First,
we processed the frontal cortex data, imputed the dropouts using MAGIC due to the high
rate of zeros (van Dijk et al., 2018) and used the annotations provided by the authors to
extract the cell (sub)types (Lake ef al., 2018). Of note, excitatory subtypes were merged
as excitatory neurons and inhibitory ones as inhibitory neurons to match with the
scATAC-seq. Then, we extracted the cell (sub)types of the substantia nigra for healthy
patients while keeping the annotations provided by the authors (Smaji¢ et al., 2022).

Each cell (sub)type GRN was generated using the extracted scRNA-seq and scATAC-seq

datasets with the GRN inference part of RNetDys using the default parameters.

GRN inference benchmarking and comparison to state-of-the-art

We first assessed the performances of RNetDys to capture cell (sub)type specific TF-Gene
interactions and performed a comparison with state-of-the-art methods including CLR
(Zhang et al., 2016), GENIE3 (Huynh-Thu et al., 2010), SCENIC (Aibar et al., 2017), PIDC
(Chan et al., 2017) and ppcor (Kim, 2015). All methods were used with default parameters
to infer the TF-Genes networks and applied to 20 single cell RNA-seq datasets collected
from six human cell lines (A549, Jurkat, K-562, GM12878, H1 ESC, BJ). Of note, only
genes expressed at least in 50% of the cells for each scRNA-seq dataset were provided to
the methods to be consistent for the comparison with RNetDys. In addition, predicted
(un)directed GRNs were formatted to obtain TF-gene networks by filtering the Source
(regulator) such that it contains any human TFs or co-TFs reported in Animal TFDB
(accessed on the 08/04/2022) (Hu et al., 2019). Notably, due to large computational
resources or a running time higher than two days, five networks could not be generated,
including scRNA-seq datasets of one K562, one GM12878 and three HI-ESCs. RNetDys
was used with default parameters on the 20 scRNA-seq datasets and scATAC-seq datasets
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retrieved for each of the six human cell lines (Table S1). We benchmarked the inferred
networks against cell line specific GS standard networks compiled from the Cistrome
database and computed the precision (PPV) and accuracy (F1-score). Of note, more than one
network was generated by RNetDys for each scRNA-seq dataset used for other methods,
depending on the number of scATAC-seq datasets. We hence computed the median PPV
and F1 score over the networks to have one metric by scRNA-seq, as we had for each state-
of-the-art method. We then assessed the performances of RNetDys in capturing cell
(sub)type specific enhancer-promoter regulatory interactions. State-of-the-art methods used
for the TF-gene benchmarking did not account for enhancers, as they solely relied on
scRNA-seq, and hence we performed a comparison using Cicero (Pliner et al., 2018), a
widely used strategy to identify co-accessibility between regulatory regions based on
scATAC-seq. We applied RNetDys on twelve combinations of scRNA-seq and scATAC-
seq datasets for three human cell lines (Table S1) for which we could compile reliable cell
line specific gold standard networks from 3DIV database (GM 12878, H1 ESC, BJ/IMR90).
We used Cicero on the scATAC-seq datasets using default parameters and annotated the
enhancer and promoter regions using the ChIP-seq leveraged by RNetDys. Notably, no
significance score was provided on the interactions and hence, accordingly with Cicero
guideline, we selected interactions with a co-accessibility score greater than zero. Finally,
we benchmarked the predicted networks against the human cell line specific GS networks to
compute the PPV and Fl-score. Notably, cell line specific GS were used to assess the
performances for inferring cell (sub)type specific GRNs. Indeed, cell lines are well studied
and hence data is available to compile GS with confidence. In addition, we assume that the
performances obtained using cell line specific GS can be extrapolated for more specialized

cell (sub)populations such as subtypes due to their homogeneity.

Compilation of the gold standard networks
We compiled two types of GS networks, both directed, to assess the performances and
validate the specificity in identifying cell (sub)type specific regulatory interactions:

(1) TF-Genes GS networks: for each human cell line, we collected high quality ChIP-seq

data specific to the cell line from Cistrome (Mei et al., 2017). The highest quality was
defined as peak data passing all the quality control available in Cistrome.
(2) Enhancer-promoter GS networks: for each human cell line, we collected Promoter

Capture Hi-C data from 3DIV (Yang et al., 2018) database. We then filtered the GS networks
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to retain enhancers found in GeneHancer and gene promoter regions defined in the ChIP-

seq data retrieved from ChIP-Atlas using BEDTools (Quinlan and Hall, 2010).

Cell (sub)type specific regulatory mechanisms impaired in diseases

We performed a general study of cell (sub)type specific impairment in diseases by using
prior-knowledge SNPs to validate the relevance of the captured interactions. We first
collected single nucleotide variants (SNVs) from ClinVar (Landrum et al., 2018) and
extracted SNPs such as SNVs found at least in 1% of the global population (MAF >= 0.01).
Of note, MAF scores were retrieved for each SNV using BioMart R package and the
‘hsapiens_snp’ dataset. Then, we extracted the SNPs for each disease by selecting the ones
that have been reported as disease-related in ClinVar, and we performed a systematic
extraction using regex in R with the disease name as pattern. Finally, for each cell (sub)type
and each disease, we applied RNetDys using the cell (sub)type GRN and the list of SNPs to
capture candidate impaired regulatory interactions, TF binding impairment information and
the ranked regulators. Notably, SNPs related to AD were mapped to the brain cortex

networks whereas SNPs related to PD were mapped to the midbrain networks.
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Compute the sign of the regulatory interactions
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Figure S1. Strategy to compute the sign of the regulatory interactions.
The scRNA-seq dataset is used to compute the correlation between the TFs and genes of the GRN.
TF-gene interactions are directly signed using the correlation values. Enhancer-promoter interactions

Signed regulatory interactions

are signed by summing the correlation values between the TFs binding to the enhancer and the
regulated gene. TF-enhancer interactions are signed by computing for each TF the sum of the
correlation values between the TF and the genes regulated by the enhancer.
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A- Astrocytes B- Excitatory neurons
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Figure S2. Cell (sub)type specific regulatory impairment in PD.

Network visualization of impaired regulatory interactions for (A) astrocytes, (B) excitatory neurons,
(C) dopaminergic neurons, (D) oligodendrocytes and (E) OPCs. TFs are represented as diamond in
light red, enhancers as yellow rectangles and genes in blue rectangles. Arrows represent activations.
The weight of edges from TFs correspond to the strength of the impairment, with the thinnest
translating a strong lack of binding affinity and a large edge being a strong increase in binding
affinity. The color of the edges from TFs represents the log2FC with green being a decreased affinity

and red an increased one.
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Figure S3. Cell (sub)type specific regulatory impairment in EPI.

Network visualization of impaired regulatory interactions for (A) astrocytes, (B) excitatory neurons,
(C) inhibitory neurons, (D) microglia, (E) oligodendrocytes and (F) OPCs. TFs are represented as
diamond in light red, enhancers as yellow rectangles and genes in blue rectangles. Arrows represent
activations and T edges represent repressions. The weight of edges from TFs correspond to the
strength of the impairment, with the thinnest translating a strong lack of binding affinity and a large
edge being a strong increase in binding affinity. The color of the edges from TFs represents the
log2FC with green being a decreased affinity and red an increased one. Notably, the labels for edges
are not displayed in (A) Astrocytes due to the high number of interactions, but each edge mediated
by a TF represents an impairment due to a specific SNP.
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Figure S4. Cell type specific impairment in T1D.

Network visualization of impaired regulatory interactions for (A) alpha cells and (B) beta and delta
cells. TFs are represented as diamond in light red, enhancers as yellow rectangles and genes in blue
rectangles. Arrows represent activations. The weight of edges from TFs correspond to the strength
of the impairment, with the thinnest translating a strong lack of binding affinity and a large edge
being a strong increase in binding affinity. The color of the edges from TFs represents the log2FC
with green being a decreased affinity and red an increased one.
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Figure SS. Cell type specific impairment in T2D.

Network visualization of impaired regulatory interactions for (A) alpha cells, (B) beta cells, (C) delta
cells and (D) gamma cells. TFs are represented as diamond in light red, enhancers as yellow
rectangles and genes in blue rectangles. Arrows represent activations. The weight of edges from TFs
correspond to the strength of the impairment, with the thinnest translating a strong lack of binding
affinity and a large edge being a strong increase in binding affinity. The color of the edges from TFs
represents the log2FC with green being a decreased affinity and red an increased one.
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Figure S6. Threshold selection to define accessibility of promoter regions.
Delta probability between true positives and false positives. The peak of the distribution, equal to
0.48, corresponds to the highest probability to capture a true accessible promoter region in the cell
(sub)type.

Supplementary Tables
Table S1. Single cell datasets used for validation and comparison
. . Type of TF-Promoter  Enhancer-Promoter
Accession Number Cell line ﬁgta benchmarking bencl‘:marltin(g) ’
GSE100344 BJ scRNA-seq X X
GSE113415 BJ scRNA-seq X X
GSE160910 BJ scRNA-seq X X
GSE166935 BJ scRNA-seq X X
scOpen* BJ scATAC-seq X X
GSE99172 BJ scATAC-seq X X
GSES81861 GM12878 scRNA-seq X X
GSM3596321 GM12878 scRNA-seq X X
GSM4156602 GM12878 scRNA-seq X X
GSM4156603 GM12878 scRNA-seq X X
scOpen* GM12878 scATAC-seq X X
GSE99172 GM12878 scATAC-seq X X
GSE64016 HI-ESC scRNA-seq X X
GSE75748 H1-ESC scRNA-seq X X
GSE81861 HI-ESC scRNA-seq X X
GSM5534158 H1-ESC scRNA-seq X X
scOpen* HI-ESC scATAC-seq X X
GSE99172 H1-ESC scATAC-seq X X
GSE81861 A549 scRNA-seq X
GSM3271042 A549 scRNA-seq X
GSM3271043 A549 scATAC-seq X
GSM4224433 A549 scATAC-seq X
GSE105451 Jurkat scRNA-seq X
10x platform™** Jurkat scRNA-seq X
GSE107816 Jurkat scATAC-seq X
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GSE81861 K562 scRNA-seq X
GSE90063 K562 scRNA-seq X
GSE113415 K562 scRNA-seq X
GSM1599500 K562 scRNA-seq X
scOpen* K562 scATAC-seq X
GSE99172 K562 scATAC-seq X

*scOpen: https://github.com/Costal.ab/scopen-reproducibility
*%]0x platform: https://www.10xgenomics.com/resources/datasets/jurkat-cells-1-standard-1-1-0

Table S2. Collected datasets to generate healthy cell (sub)type GRNs.

System Accession Type of data
GSE85241 scRNA-seq
Pancreas
GSM558939 scATAC-seq
GSE157783 (Healthy) scRNA-seq
Brain GSE97942 scRNA-seq
GSE147672 scATAC-seq

Table S3. Matching of the scRNA-seq and scATAC-seq brain datasets.

scRNA-seq Brain Region

scATAC-seq Brain Regions Brain region abbreviation

Matched
Substantia Nigra Human Midbrain (GSE157783, Healthy) SUNI
Middle Frontal Gyrus Frontal Cortex (GSE97942) MDFG

Table S4. Literature-based validation of the predicted impaired regulatory
interactions.

PD
Cell type
GWAS specific e-
%*
Source (TF or Gene RSID Cell QTL
enhancer) (sub)pop SNP SNP Linked t
Linked | PMID mnked to
gene
to gene
chr22:32473200-32478044 TIMP3 rs11538371 Astro X
chr22:32473200-32478044 TIMP3 rs2072814 Astro X
chr22:32473200-32478044 TIMP3 rs8137714 Astro X
chr4:41255600-41259401 UCHLI1 rs5030732 DAn X X
28253266,
STAT3 UCHLI1 rs5030732 DAn X 25370916, X
22839974

chr4:41255600-41259401 UCHLI1 rs11556273 Ex X X
chr4:41255600-41259401 UCHLI1 rs5030732 Ex X X
chr4:41255600-41259401 UCHLI1 1s9321 Ex X X

CREBI1 UCHL1 rs11556273 Ex X X
chr22:32473200-32478044 FBXO7 rs2072814 Oligo X X
chr4:41255600-41259401 LIMCHI1 rs5030732 Oligo X
chr4:41255600-41259401 LIMCHI1 1s9321 Oligo X
chr22:32473200-32478044 FBXO7 rs11538371 OPCs X X

BCL6 FBXO7 rs11538371 OPCs X X
chr22:32473200-32478044 FBXO7 rs2072814 OPCs X X
chr22:32473200-32478044 FBXO7 rs8137714 OPCs X 18513678 X

BCL6 FBXO7 rs8137714 OPCs X X
chr12:40222200-40227694 LRRK2 rs112643657 OPCs X

AD
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Cell type
GWAS specific e-
Source Target RSID Pop QTL*
Linked | pryip Linked to gene
to gene
chr14:73135401-73138601 | PSENI ts1800839 Astro X X
STAT3 PSENI rs1800839 Astro x 28821390, X
11389157
chr21:26166164-26172001 APP 1545476095 Astro X 21654062

MXI1 APP 1545476095 Astro X
chr14:73135401-73138601 APP 15459543 Astro X

MXI1 APP 15459543 Astro X 21654062,

16685645
chr14:73135401-73138601 | PSENI rs1800839 Ex X X
28821390,

CREBI PSENI rs1800839 Ex X 11389157 X
chr21:26166164-26172001 APP 1545476095 Ex X 21654062
chr21:26166164-26172001 APP 15459543 Ex X 21654062,

16685645
chr14:73135401-73138601 | PSENI rs1800839 Inh X
CREBI, STAT3 PSENI rs1800839 Inh X 28821390,

; 11389157
chr21:26166164-26172001 APP 1545476095 Inh X 21654062
chr21:26166164-26172001 APP 15459543 Inh X 21654062,

16685645
chr21:26166164-26172001 APP rs1800839 Mic
chr21:26166164-26172001 APP 1545476095 Mic X 21654062
chr14:73135401-73138601 APP 15459543 Mic X 21654062,
16685645
CREBI PSENI rs1800839 Oligo X 28821390,
11389157
chr21:26166164-26172001 APP rs45476095 Oligo X 21654062
chr14:73135401-73138601 APP 15459543 Oligo 21654062,
16685645
chr14:73135401-73138601 | PSENI rs1800839 OPCs X X
CREBI PSENI rs1800839 OPCs x 28821390, X
11389157
chr21:26166164-26172001 APP 1545476095 OPCs X
chr21:26166164-26172001 APP 15459543 OPCs X
EPI
Cell type
GWAS specific e-
Source Target RSID Pop QTL*
Linked | pryip Linked to gene
to gene
cm1521625%56‘)22()2100- ALDH7A1 | rs144272515 | Astro x x
ZFX ALDH7A1 | 15144272515 | Astro x X
chr3:64223200-64226459 | PRICKLE2 | 5697287 Astro x X
chr3:64223200-64226459 | PRICKLE2 | rs900641 Astro
chr3:64223200-64226459 | PRICKLE2 | rs142388795 |  Astro x
STAT3 PRICKLE? | rs142388795 |  Astro x
cm1521625%56‘)22()2100- ALDH7A1 | 1146562077 |  Astro x

STAT3 ALDH7A1 | 1146562077 |  Astro x
chr3:64223200-64226459 | PRICKLE2 | rs150393747 |  Astro x

STAT3 PRICKLE2 | 15150393747 |  Astro x

Chrfg%?;fgn' EPM2A | 152235482 Astro x
BCL6, STAT3, ZFX EPM2A | 152235482 Astro x
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Chrf4g‘;53773,53;6917' EPM2A | rs374338349 |  Astro X 11735300
BCL6 EPM2A | 15374338349 |  Astro X
chr1521625695692%2100- ALDH7A1 | rs60720055 |  Astro X
Chrf21625695692%2100' ALDH7A1 | 1572857097 Astro
STAT3 KCTD7 | rs77341088 Astro X
Chrf21625695692%2100' ALDH7AL |  rs900640 Astro X
STAT3 ALDH7A1 | 1s900640 Astro X
ZFX ALDH7A1 | 1$900640 Astro X
chr3:64223200-64226459 | PRICKLE2 | rs697287 Ex X X
30074174,
CREBI GABRB3 rs20317 Ex X 24999380, X
25025424
CREBI KCTD7 | rs117194263 Ex X
chr3:64223200-64226459 | PRICKLE2 | rs142388795 Ex X
CREBI PRICKLE? | rs142388795 Ex X
chr7:66625550-66632156 | KCTD7 | rs35526611 Ex X
CREBI KCTD7 | rs35526611 Ex X
30074174,
CREBI GABRB3 1520317 Inh X 24999380, X
25025424
CREBI KCTD7 | rs117194263 Inh X
CREBI, STAT3 PRICKLE? | rs142388795 Inh X
STAT3 PRICKLE? | 5150393747 Inh X
MXI1 KCNC1 152229007 Inh X
chr7:66625550-66632156 | KCTD7 | rs35526611 Inh X
CREBI KCTD7 | rs35526611 Inh X
STAT3 CACNB4 | rs61736804 Inh X
STATI SCARB2 | 1572857097 Inh X
STAT3 KCTD7 | rs77341088 Inh X
chrX:47619001-47620600 SYNI1 rs187134574 Inh X No data on chrX
STAT3 SYNI1 rs187134574 Inh X No data on chrX
CREBI KCTD7 | rs117194263 Mic X
Chrf;zézzﬁ%zs 6- SPATAS | 1535430470 Mic X
chr7:66625550-66632156 | KCTD7 | rs35526611 Mic X
CREBI KCTD7 | rs35526611 Mic X
CREBI KCTD7 | rs117194263 |  Oligo X
. 30074174,
CREBI GABRB3 1520317 Oligo X 34999380,
25025424
chr7:66625550-66632156 | KCTD7 | rs35526611 Oligo X
CREBI KCTD7 | rs35526611 Oligo X
CREBI RBFOX1 | 157187508 Oligo X
chr3:64223200-64226459 | PRICKLE2 | rs697287 OPCs X X
CREBI KCTD7 | rs117194263 | OPCs X
chr3:64223200-64226459 | PRICKLE2 | rs142388795 |  OPCs X
CREBI PRICKLE? | rs142388795 |  OPCs X
chr7:66625550-66632156 | KCTD7 | rs35526611 OPCs X
CREBI KCTD7 | rs35526611 OPCs X
CREBI SCN9A 154369876 OPCs X 23292638,
21698661
CREBI RBFOX1 | 157187508 OPCs X
chr4:76205669-76215919 | SCARB2 | 1572857097 OPCs X
STATI SCARB2 | 1572857097 OPCs X
chr12:42468600-42471319 | PRICKLE1 | rs74081707 OPCs X
TID
Cell type
Source Target RSID Pop GWAS specific e-QTL
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Linked | pryip Linked to gene
to gene
chr20:44397802-44420654 TTPAL rs113308087 Alpha
chr20:44397802-44420654 TTPAL rs1800961 Alpha
chr20:44397802-44420654 TTPAL rs736823 Alpha
25733456,
CREBI, STAT3 KCNJ11 rs1800467 Beta X 26937418,
25247988
32930968,
STAT3 KCNJ11 1s2285676 Beta X 29903275,
27249660
25247988,
CREBI, STAT3 KCNJ11 rs41282930 Beta X 22289434,
15115830
32693412,
STAT3 KCNJ11 1s5210 Beta X 33101408, No data
30641791
25733456,
CREBI, STAT3 KCNJ11 rs1800467 Delta X 26937418,
25247988
32930968,
STAT3 KCNJ11 1s2285676 Delta X 29903275,
27249660
25247988,
CREBI, STAT3 KCNJ11 rs41282930 Delta X 22289434,
15115830
32693412,
STAT3 KCNJ11 1s5210 Delta X 33101408,
30641791
T2D
GWAS C.ell type
Source Target RSID Pop - specific e-QTL
Linked | pryip Linked to gene
to gene
chr20:44397802-44420654 TTPAL rs113308087 Alpha
chr20:44397802-44420654 TTPAL rs1169288 Alpha
Chr1122'5§§§3717275_ ANAPCS rs1169289 Alpha
chr20:45334860-45349300 PIGT rs147593522 Alpha
28587604,
STAT3 ABCC8 rs1799859 Alpha X 26740944
chr20:44397802-44420654 TTPAL rs1800961 Alpha
chr4:26318200-26324401 RBPJ rs186895314 Alpha X
chr20:44397802-44420654 TTPAL 1s2072792 Alpha No data
ATF2 RBPJ rs73245775 Alpha X
32660410,
STAT3 ABCC8 rs757110 Alpha X 32468916,
32930968
chr20:45334860-45349300 SYS1 rs147593522 Beta
28587604,
PDX1, STAT3 ABCC8 rs1799859 Beta X 26740944
chr4:26318200-26324401 RBPJ rs186895314 Beta X
chr20:45334860-45349300 SYS1 152072792 Beta

*https://zenodo.org/record/6104982#.Y q2eUyORryY
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5 Discussion

Multicellular organisms are composed of highly heterogeneous and functionally specialized
cells organized into different layers of complexity such as tissue or organs (Morris et al.,
2019; Arendt et al., 2016; Regev et al., 2017). Cells display specific expression patterns
governed by complex regulatory mechanisms that turn off and on transcriptomic programs
(Wray et al., 2003). Internal and external stimuli trigger cellular responses that lead cells to
a change of activity or state can enhance physiological processes but also pathological ones
in case of dysregulations (Miller-Jensen et al., 2007; Carson and Ribeiro, 1993; Bartsch and
Wulff, 2015). The increasing prevalence of single-cell OMICS data contributed to the
discovery of new or rare cell (sub)populations (e.g., subtypes, states) and to a better
understanding of disease heterogeneity and complexity (Strzelecka et al., 2018). Indeed,
single cell technologies led to the generation of organism-wide atlases at an unprecedented
resolution and allowed the implementation of computational approaches with more detailed
models to dissect the heterogeneity at the cellular and molecular levels (The Tabula Muris
Consortium et al., 2018; The Tabula Sapiens Consortium and Quake, 2021; Efremova and
Teichmann, 2020). The characterization of cells escaping the healthy cellular landscape to
go towards pathological states and the identification of candidate molecules to prevent or
treat diseases are part of the challenges addressed by computational systems biology
approaches (Morris, 2019; Moreau and Tranchevent, 2012). Over the past few years, several
computational methods were developed to analyze single-cell data and provide new
biological insights to pave the way towards new therapeutic and personalized medicine
approaches (Stuart et al., 2019; Oulas et al., 2019). Whereas the development of such
methods contributed to the advance of the field, they present several limitations that need to
be addressed (Ldhnemann et al., 2020; Morris, 2019). This thesis presents three
computational approaches to study different aspects of disease modelling to overcome
existing limitations and contribute to solving open challenges in systems biology. In
particular, the approaches developed focus on the characterization of cell identity, the
identification of functional cell states and candidate genes for cell state conversion, and the
inference of comprehensive GRNs to guide the identification of impaired regulatory

mechanisms in diseases.

5.1 Revising the characterization of cell identity
For years, cells were classified based on different features such as their anatomical location

or morphology which has been shown to be limited and inaccurate. Indeed, the emergence
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of single-cell based data provided an unprecedented resolution of cell features that uncovered
the molecular and cellular complexity of biological systems and refuted the previous
classification system (Morris, 2019). The accurate and extensive characterization of the
cellular identity landscape for different organisms would be valuable to better understand
physiological processes but also detect cells displaying non-physiological patterns
(Altschuler and Wu, 2010; Ikeda et al., 2018). However, the characterization of cell identity
and underlying genes defining it remains a central challenge. Indeed, the fact that cell
identity is acquired during the developmental process and shaped by the niche to perform
specific functions makes the identification of identity genes a non-trivial task (Morris, 2019).
The deciphering of identity genes highly relies on the biological context in which cells are
characterized, accordingly with their hierarchical classification as cell type, subtype or
phenotype. In addition, it has been shown that gene expression levels are involved in
different functional outcomes for the same cell (sub)type (Huang, Yang, George W Ye, et
al., 2021; Shats et al., 2017). In that regard, current computational methods present several
limitations when identifying identity genes. Indeed, they rely on the comparison of gene
expression profiles of a target cell population with other cell populations in given tissues that
are usually incomplete and composed of mixed cell types, subtypes and/or phenotypes.
Moreover, they categorize the gene expression as expressed or non-expressed which discard
any intermediate level of expression which could lead to different functions and hence be
part of the cell identity. The combination of these two limitations highly hinders the accurate
characterization of cell identity. To address these limitations, we developed HCellig, a
computational method relying on the hierarchical organization of cell identity (cell types,
subtypes and phenotypes) and accounting for intermediate levels of gene expression to

accurately capture identity genes (section 4.1).

5.1.1 Scope and utility

HCellig has been implemented as a general method to capture identity genes of any cell
(sub)population, including cell types, subtypes and phenotypes, in physiological and
pathological conditions. A priori, no annotation is required to use the method and identify
identity genes of an unknown target cell population. Indeed, to characterize the cell identity
of a cell type, the cell type background will be used to determine its identity genes. However,
for more precise levels of resolution such as cell subtype and phenotype, it is required to
gather additional information to select the most relevant background to use HCellig.

Therefore, in case of an unknown target cell subpopulation or phenotype, one strategy could
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first consist into the capture of identity genes by comparing with the cell type background.
These identity genes would help determining, based on expert knowledge and/or with the
help of well-defined cell type markers (X. Zhang et al., 2019), to which cell type belongs
the target cell subpopulation or phenotype. Then, to get a more refined characterization of
its identity, one could use this information to select the correct cell subtype background to
use for deciphering identity genes. Finally, to characterize the cell identify of an unknown
cell phenotype, one can use a similar strategy to first find to which cell subtype it belongs.
Then, the right cell phenotype background can be selected to define the cell identity at its
most refined level of resolution and obtain the list of identity genes for the target cell
phenotype. To illustrate the discussed strategy, let us assume that we obtained an unknown
cell (sub)population after clustering our scRNA-seq data. We would first identity its identity
genes compared to the cell type layer using HCellig. Then, based on expert knowledge and
well-defined markers we would determine that our unknown cell (sub)population belongs to
neurons. We can then select the neuron subtype background to refine the identity genes of
our cell (sub)population. Using the same strategy, we can either observe a mix of neuron
subtypes, in which case we can consider that our cell (sub)population correspond to neurons
or determine that our unknown cell subpopulation are dopaminergic neurons. Finally, we
can select the dopaminergic neurons phenotype background to obtain the identity genes of

the specific phenotype (e.g., dopaminergic neurons from midbrain).

The accurate identification of identity genes is required to characterize cell (sub)populations
of interest and is of great use to perform downstream analyses such as the discovery of
regulatory modules of cell identity or the characterization of core biological processes.
Indeed, the use of identity genes to perform downstream analyses could be seen as a feature
selection step to capture the most relevant and informative genes defining the target cell
(sub)population. These identity genes could then be used to guide the identification of key
TFs regulators of cell identity (Almeida et al., 2021) to guide cell conversion or get a better
understanding of identity destabilization or disruption in diseases (Ikeda et al., 2018;
Brumbaugh et al., 2019; Jung et al., 2021). For instance, HCellig could be used to capture
identity genes of a target cell (sub)population in healthy and disease condition. The
comparison between the two sets of identity genes would allow the identification of the ones
that might be lost in the disease condition. Moreover, the generation of identity cores, by
building the GRN around the identity genes, could provide a more comprehensive view of

the cell identity destabilization. Indeed, it would allow the identification of key regulator of
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identity that might be involved in the dysregulations. Notably, the GRN could be built based
on the transcriptomic data used with HCellig by using state-of-the-art approaches (Aibar et
al., 2017). In addition, the identity core could be used to identify functional modules of
genes, based on functional enrichment analyses (Wu et al., 2021), and provide additional
information into the functional impairment specific to the characterized cell

(sub)populations in diseases.

5.1.2 Strengths

HCellig relies on a hierarchical cell identity model to capture identity genes of any cell
(sub)population, accordingly with their hierarchical classification as cell type, subtype and
phenotype. For instance, HCellig would determine genes characterizing neurons by
comparing them to any cell type of the organism. Then, it would identify genes defining
dopaminergic neurons by comparing them to all subtype neurons of the organism and finally
it would capture identity genes of dopaminergic neurons specific to substantia nigra by
comparing them to all different locations in which this subtype can be found. We assume
that this hierarchical approach better reflects the biological reality than tissue-wise
comparisons. Indeed, whereas tissue-based comparison were reasonable approaches to
identify cell (sub)type markers used by experimentalists for cell extraction or sorting (X.
Zhang et al., 2019), this characterization of cell identity remains limited. The hierarchical
cell identity model used by our computational method considers the hierarchical
classification of cells organism-wide and hence allow for a more accurate characterization
of their identity. Moreover, HCellig uses a discretization of gene expression strategy
implemented in RefBool (Jung et al., 2017), that was adapted for single cell data to quantify
genes into three levels of expression including low, medium and high. The advantage of
these three levels is that, compared to traditional methods categorizing genes as expressed
or not (Stuart et al., 2019), it allows for the distinction between medium and high expression
which has been shown to be important for the functional outcomes (Huang, Yang, George
W Ye, et al., 2021; Shats et al., 2017). In that regard, this less stringent categorization of
gene expression into three levels leads to a more accurate capture of identity genes and hence
a better characterization of cell identity for which the functional features are critical (Morris,
2019). In summary, the two main advances implemented in HCellig address limitations of

current methods to provide an accurate characterization of cellular identity.
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We pre-compiled a large-scale repository of backgrounds at each hierarchical layer including
cell type, subtype and phenotype for mouse and human that can be used to characterize the
cell identity of any know or unknown cell (sub)population. Notably, HCellig is a user-
friendly R package that requires few parameters and computational resources to capture the
identity genes and their expression level for a query cell (sub)population. Our method could
be used to extend the current knowledge (X. Zhang et al., 2019) of the cellular landscape by
allowing the accurate characterization of cell (sub)populations in physiological and non-
physiological conditions. In that regard, we generated high-resolution cell identity atlases
for mouse and human that can complete the current knowledge available for these cellular
landscapes (Regev et al., 2017; The Tabula Muris Consortium et al., 2018; The Tabula
Sapiens Consortium and Quake, 2021; Morris, 2019). Indeed, we observed, as expected, that
markers described in literature for specific cell populations were captured by HCellig.
However, we also highlighted a high number of unreported and unknown identity genes,
especially the ones expressed at a medium level, and for the phenotypes. Therefore, we
expect our atlases to highlight the importance of medium identity genes that could lead to
different functional outcomes, physiological or pathological, in case their expression level

would be perturbed.

5.1.3 Limitations

The study performed in “Quantification of gene level to characterize hierarchical cell
identity” (section 4.1) has several advantages but some limitations remain. First, the
backgrounds for mouse were not as extensive as the ones built for human. Indeed, due to the
lack of data, low sequencing depth and limited annotations, very few cell subtype
backgrounds were generated, and no cell phenotype backgrounds were compiled. In
addition, the compilation of large backgrounds, especially the cell type layer, requires a lot
of computational resources. Therefore, it would be required to generate new backgrounds or
extend the current ones by using a High-Performance Computing structure to meet the
computational resources requirements. Nevertheless, we mitigated this limitation by
providing a repository containing several pre-compiled backgrounds for each hierarchical
layer. However, with the growing availability of organism-wide scRNA-seq data, it could
be interesting to extend the current cell type backgrounds or increase the list of available
subtype and phenotype ones. HCellig is adapted for UMI-based single cell data only, due to
the lack of state-of-the-art normalization approaches for non-UMI data. Indeed, it is well

accepted that the normalization and batch effect correction approaches differ between UMI
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and non-UMI data (Lytal et al., 2020; Chen et al., 2019). However, compared to scTransform
which is widely used for UMI data (Hafemeister and Satija, 2019), no consensus has been
found for non-UMI data. Finally, this study provides two main novelties with the hierarchical
model and the three levels of expression, but no experimental validations were performed.
Indeed, it would be interesting to perform functional assays to support the impact of
expression level changes for the medium identity genes on the cell (sub)population

functional outcome (section 5.5).

5.2 Identifying functional cell states and immunomodulators

Cellular identity is defined by a set of genes characterizing cells specific features such as
their functions. The functional specialization of cells is acquired during the development and
is further shaped by external signals. In response to stimuli, the same cell (sub)type can
exhibit different phenotypes, corresponding to different functional cell states that are
characterized by specific molecular features (Trapnell, 2015). Whereas stimuli are part of
physiological processes in place to maintain the integrity and homeostasis of the organism,
they can also trigger dysregulations that can lead to pathological states (Rué and Martinez
Arias, 2015; Lutshumba et al., 2021). Computational biology models aim at leveraging the
discovery of cell states to have a better understanding of the underlying heterogeneity in
physiological and pathological conditions. In addition, these models aim at identifying
potential candidate genes that could be used for cell states conversion, and for instance revert
a disease state towards a healthy one (Wei et al., 2022). Despite recent efforts to decipher
cellular states, there is room for improvement to accurately decipher them while identifying
the key functional genes and functional processes that characterize them. To tackle this
challenge, we developed FunPart, a computational method that decipher functional cell
states, capture the key genes and their related functional processes to characterize them
(section 4.2). FunPart was applied to the mouse immune system, widely studied over the
years (Chaplin, 2010; P. Fang et al., 2018; Iwasaki and Akashi, 2007), as the identification
of their functional states and transcriptional characterization would be pivotal for the
development of therapy strategies relying on immunomodulators. Notably, FunPart could be
applied to any type of cells to identify functional cell states and provide candidate modulators

for cellular conversion in different disease conditions.
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5.2.1 Scope and utility

FunPart has been developed as a general method to decipher functional cell states and
systematically capture the key genes that characterize them, in physiological and
pathological conditions. It allows the dissection of the functional heterogeneity by
accounting for subtle differences to identify groups of cells, named functional cell states,
that share similar transcriptomic profiles and functions. In addition, the method deciphers
functional module of genes and the key transcription factors characterizing these states. In
the study (section 4.2), we applied FunPart to decipher the functional heterogeneity of
immune cells across different types of infection but, it can be widely applied to any type of

cells in both pathological and physiological conditions.

Functional heterogeneity is a fundamental property of biological systems that needs to be
dissected and characterized to gather biological insights in physiological and pathological
conditions (Gough et al., 2017). Indeed, functional heterogeneity have been shown to play a
critical role in homeostasis and maintenance of tissue integrity (Krieger and Simons, 2015).
Moreover, functional heterogeneity have been shown to play a crucial role in non-
physiological conditions but, functional cell states identification and characterization
remains elusive (Clarke et al., 2021; Chan et al., 2022). Therefore, the study of functional
heterogeneity is pivotal to have a better understanding of both physiological and pathological
conditions and pave the way towards the development of novel therapies. FunPart can be
applied to discover novel functional states and their key genes. Depending on the research
question, the uncovered cell states can then be further analyzed to understand their functional
specialization or implication in diseases (Li and Boussiotis, 2011; Clarke et al., 2021).
Notably, the transcription factors provided by FunPart are candidate modulators for cell state
conversion, but the genes related to these TFs and functional enrichment, provided by the
method, can be used to get a better understanding of the functional specialization.
Nevertheless, FunPart provides the most relevant functional gene modules according to the
designed criteria including the strength of negative correlation between the modules and
their functional enrichment. Therefore, to get a more extensive view of the functional
specialization of the cell state, it would be required to perform enrichment analyses of other
set of genes. Notably, these set of genes could be identified using the same strategy
implemented in FunPart, by building a correlation network using the gene expression

information of the cell states and identifying modules of genes.
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5.2.2 Strengths

This study has several strengths regarding the implemented computational method and the
Catalogus Immune Muris resource generated. First of all, FunPart systematically detect
functional cell states in a semi-supervised manner, by relying on the data and the provided
functional annotations that can be specific to a subset of BPs, as we did in our study by
focusing on immune processes (Singhania et al., 2019). Indeed, our method relies on the
combination of a feature selection strategy based on the concept of functional gene modules,
and a recursive clustering approach which we showed is more accurate than the state-of-the-
art approach. In addition, FunPart provides for each identified cell states the set of genes,
including TFs, that characterize them as well as the biological processes in which these genes
are involved to provide insights into the functional differences between the functional cell
states identified. Moreover, the set of TFs identified as being characteristic and driver of the
functional cell state are usually small, which can be seen as a prioritization of candidates to
use for cellular conversion between functional states, as we demonstrated with Zfp597 in our
study. Finally, FunPart is a user-friendly R package that can be widely used by the scientific
community to decipher and characterize new functional states in physiological and
pathological conditions. This study generated a Catalogus Immune Muris, a large-scale
catalogue of immune functional cell states, identified in different types of infections, that
report all functional modules (TFs and co-expressed genes). Therefore, it contains a
molecular characterization of these immune functional states that can be leveraged to design
novel immunomodulatory strategies (Igbal Yatoo ef al., 2021). In that regard, we found
Zfp597 to be an immunomodulator of macrophages infected by Sa/monella and showed that
the knockout of this TF was reverting the macrophages towards a pro-inflammatory state.
Thus, Zfp597 could be used to modulate the response of macrophages infected by Sa/monella

to switch their states towards pro-inflammatory or anti-inflammatory functions.

5.2.3 Limitations

The main limitation of FunPart is that the method highly relies on the functional annotations
provided for the clustering approach to decipher the functional states. Indeed, to limit an
over-clustering of the algorithm, it is recommended to remove broad BPs categories such as
the default ones from the Gene Ontology annotations (Ashburner et al., 2000). Specific or
more specialized BPs categories should be provided to FunPart to ensure the functional
relevance of the identified cell states. Moreover, the presented strategy considers modules

composed of TFs that are potentially difficult to target or not preferred approaches for
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therapeutic uses, as they might give rise to mutagenesis or unexpected off-target effects
(Ben-David and Benvenisty, 2011; Yamanaka, 2020). Indeed, the development of
immunomodulatory therapies is typically based on the use of drugs or chemical compounds
to alter cellular functions, which has been shown safer than TFs perturbations for cellular
conversion (Kumar and Mali, 2020). However, chemical compounds or molecules to
specifically target the candidate TFs identified by FunPart could be identified to tackle this
limitation by making use of existing approaches (Zheng, 2021).

5.3 Gene regulatory network to decipher impaired regulatory mechanisms

Transcriptomics based GRN inference methods are a promising approach to study
dysregulation in diseases, but they partially model the regulatory machinery. Nevertheless,
due to data availability limitations, these methods are commonly used as single cell
transcriptomics data is widely available compared to other types of OMICS data (e.g.,
scATAC-seq) (Lee et al., 2020; Chen et al., 2019). Indeed, the exploitation of OMICS data
to characterize regulatory mechanisms of heterogeneous cell (sub)populations still remains
a challenge, mainly due to the lack of single cell sequencing techniques or data (Bravo
Gonzélez-Blas et al., 2020). Moreover, it has been shown that the majority of SNPs related
to diseases lie in intronic regions, especially enhancers, for which the regulatory mechanisms
remain unresolved (Claringbould and Zaugg, 2021; Boix et al., 2021; Nasser et al., 2021).
Therefore, it is required to have a comprehensive GRN describing the underlying regulatory
mechanisms mediated by TFs and enhancers of regulated genes to translate SNPs risk-
variants into mechanistic insights. Indeed, the exploitation of a comprehensive regulatory
landscape would help to have better mechanistic insights to understand diseases conditions,
and it would guide the dissection of cell (sub)type specific impairment. In that regard, we
propose RNetDys, a computational pipeline relying on multi-OMICs data to infer
comprehensive cell (sub)type and state specific GRNs and identify candidate regulations

impacted by leveraging the GRN information.

5.3.1 Scope and utility

RNetDys consists of a systematic pipeline that leverages multi-OMICS data to build
comprehensive cell (sub)type and state specific GRNs and identify regulatory interactions
that can be impaired in diseases due to SNPs. Our pipeline gives additional information to
better understand the regulatory dysregulations by leveraging the GRN information. Indeed,

it provides a comprehensive view of the regulatory interactions mediated by TFs and

129



enhancers of regulated genes for a specific cell (sub)population or state of interest. In
addition, it identifies impaired regulatory mechanisms due to SNPs in diseases, provides
information about impaired TFs binding sites, the type of regulatory mechanisms impacted
(activation and repression), and identifies the main TF regulators involved in the impairment.
RNetDys can be applied to study any disease of interest, under the condition that healthy
scRNA-seq and scATAC-seq are available to build the GRNSs, and that SNPs of interest can
be provided to the pipeline. Notably, scRNA-seq and scATAC-seq does not need to come
from the same cell measurement (unmatched data), but they need to belong to the same cell
(sub)type or state. In that regard, the confidence in the annotations is crucial to ensure the
accuracy of the predicted GRN. In case the scRNA-seq or scATAC-seq data is not annotated,
or if the degree of confidence in the annotations is low, one strategy consists of integrating
or mapping the two types of data (Stuart et al., 2020). This approach allows to either annotate
the dataset and extract the cell (sub)populations of interest, or to ensure that the cells share

similar profiles and validate that they most likely belong to the same cell (sub)type or state.

One central challenge in genomics is to find out how genetic variations such as SNPs can
lead to complex diseases (Shastry, 2007; Degtyareva et al., 2021). The development of NGS
technologies strengthened the development of functional genomics to better identify SNPs
and their involvement in gene expression dysregulations (Cano-Gamez and Trynka, 2020).
RNetDys can be used to complete the current knowledge provided by GWAS and eQTL
studies (Coetzee et al., 2016; Cano-Gamez and Trynka, 2020) by providing a comprehensive
view of the regulatory impairments due to SNPs. Indeed, the pipeline provides valuable
insights including the impaired binding affinity score of TFs, the impaired regulatory
mechanisms mediated by these TFs, the SNPs that could impair these regulatory mechanisms
and the main regulator TFs that are involved. In particular, for the research project presented
in section 4.3, few SNPs were analyzed as they were retrieved from a prior-knowledge
database (Landrum et al., 2018) for validation purposes. The use of genotyping data from
patients having a specific disease would allow for a larger-scale analysis of the potential
impact of SNPs on cell (sub)types or state specific regulatory mechanisms and provide a

better understanding of their differential impairment in the disease.

5.3.2 Strengths
RNetDys is a comprehensive computational pipeline that first infers the regulatory landscape

of a specific cell (sub)type or state and then systematically identify impaired interactions in
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disease conditions due to SNPs. The combination of scRNA-seq, scATAC-seq and prior-
knowledge, including ChIP-seq TF binding evidences (Oki et al., 2018) and GeneHancer
database (Fishilevich et al., 2017), allowed us to build comprehensive GRNs describing
regulatory relationships mediated by TFs and enhancers of regulated genes. In addition, we
showed that the use of multi-OMICS increased the overall accuracy to predict regulatory
interactions compared to existing methods. Moreover, RNetDys can be used to infer the
specific GRN of any cell type, subtype or state, under the condition that both sScRNA-seq
and scATAC-seq data are available. Therefore, it provides a valuable strategy to describe
regulatory mechanisms more accurately in physiological and pathological conditions.
Moreover, the network contextualization towards the disease condition only requires a list
of SNPs related to the disease of interest to identify candidate impaired regulatory
mechanisms specific to the cell (sub)type studied. Indeed, the pipeline provides valuable
information to guide our understanding into the cell (sub)type specific transcriptional
mechanisms impaired including the list of candidate impaired interactions, the TFs binding
affinity scores and the TF regulators involved in the impairments. In summary, compared to
existing strategies, RNetDys provides a systematic approach, that takes advantage of the
single cell to guide the study of regulatory mechanisms specific to cell (sub)types, up to cell
states, and provide insights into their differential impairment at the regulatory level in disease

conditions.

5.3.3 Limitations

RNetDys has two main limitations related to the GRN inference part. First, only reported
information in the prior-knowledge used can be predicted. Indeed, whereas the use of
experimental-based evidences increases the confidence into the regulatory mechanisms
predicted, it does not allow the prediction of novel interactions that have never been reported.
Nevertheless, we used the most extensive knowledge up-to-date to mitigate this limitation
by using all ChIP-seq TF binding evidence from ChIP-Atlas (Oki et al., 2018) and enhancer-
promoter connections reported in GeneHancer (Fishilevich et al,, 2017). Notably,
GeneHancer is a prior-knowledge database reporting enhancer for human only, and hence
the current implementation of RNetDys is limited to human studies. However, it could be
further extended to account for mouse by using other enhancer prior-knowledge resources
such as EnhancerDB (Kang et al., 2019). In addition, these resources are regularly updated
and hence the prior-knowledge used by RNetDys could be expanded to alleviate this

limitation. Second, we assume that an enhancer is active if it is accessible, at least one TF is
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expressed and binding to its region, and it regulates at least one promoter of an expressed
gene. However, we have no evidence that the enhancer is actually active, as we did not use
methylation and/or acetylation marks, that are still poorly available at the single cell level
(Clark et al., 2016). In addition, for the contextualization towards the disease state, RNetDys
relies on prior-knowledge TF motifs used by Perfectos-ape (E. Vorontsov et al., 2015) and
hence only the TFs for which this information is available can be predicted as involved in
the impairment of regulatory interactions. However, similarly as before, the prior-knowledge
used could be regularly updated to mitigate this limitation. Notably, the creation of potential
binding sites for TFs due to SNPs (Degtyareva et al., 2021) is not considered by RNetDys
that exclusively rely on binding sites reported in prior-knowledge ChIP-seq data (Oki ef al.,
2018).

5.4 Relationship between the computational methods implemented

5.4.1 Cell identity

Multicellular organisms are composed of highly heterogeneous cells displaying specific
expression patterns that define their identity (Morris, 2019). The identification of subtle
differences between group of cells, such as cell states, as well as the characterization of their
identity is an ongoing challenge that has given rise to different strategies and points of view
to attempt solving it (Trapnell, 2015; Morris, 2019). In this thesis, two computational
methods — HCellig (section 4.1) and FunPart (section 4.2) — were developed to help resolving
the identification and characterization of cell identity in physiological and pathological
conditions. HCellig is a general approach that captures identity genes and their expression
level for any cell type, subtype or phenotype provided as an input. FunPart does not require
the group of cells to be provided as an input to identity the different functional group of cells.
Both methods capture genes characterizing the cell (sub)populations, with HCellig providing
a more exhausting list than FunPart that rather focuses on a small set of TFs and genes to
prioritize potential candidates for cell states conversion. Notably, the identity genes captured
by HCellig could be prioritized and a strategy could be implemented to help guiding cellular
conversion protocols. Whereas HCellig is a general approach to capture identity genes for
any cell type, subtype and phenotype, FunPart is a more specialized method to identity
functional cell states, corresponding to the cell phenotypes for HCellig. In addition, FunPart
also captures set of genes which characterize the functional cell states identified, that could
be used to modulate these states, as demonstrated with Zfp597 found to be an unreported

immunomodulator of macrophages infected by Salmonella.
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5.4.2 Disease modelling

This thesis focused on the development of computational methods for disease modelling to
unravel cell identity, functional cell states and transcriptional regulatory mechanisms in
physiological and pathological conditions. In particular, this thesis addressed different
challenges of computational systems biology with the implementation of three
computational strategies. Each method focuses on different aspects, ranging from the cellular
identity to the regulatory mechanisms, to aid our understanding of systems complexity by
characterizing cell identity, dissecting functional heterogeneity and modelling
transcriptional regulatory mechanisms. These methods and related findings aim at providing
a better understanding of physiological and pathological processes to pave the way towards
the development of novel therapeutic strategies such as disease treatment. They could be
used in combination to identify functional cell states, characterize their identity and decipher
the regulatory mechanisms to study a specific disease from different angles. Indeed, used in
combination they would allow to decipher heterogeneous cells, that might be specific to the
disease, characterize them to identify candidates for cellular conversion, and study the
regulatory mechanisms that could be impaired to validate or expand the candidates for

therapeutic approaches (section 5.5.2).

5.5 Outlook

Several perspectives of optimization and extension for the research projects presented in this
thesis could be performed in the future. First, the optimization and further development of
the computational methods could be done to address the limitations previously mentioned.
Then, an extension or combination of these methods could be implemented to create a
general and widely applicable workflow for disease modelling including the guidance to
design cell conversion protocols, to revert disease phenotypes, and to systematically identify

target genes or molecules to pave the way towards new therapeutic strategies.

5.5.1 Address the limitations and gather experimental validations support

Some of the aforementioned limitations could be overcome by addressing the technical
limitations and performing experimental validations as a proof-of-concept or additional
support for the findings. In addition, the methods implemented could be further extended to

increase their accuracy and scope of applicability.
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Overcoming technical limitations and extending the methods

First of all, as previously mentioned, HCellig is limited to UMI data due to the lack of state-
of-the art normalization for non-UMI data (Lytal et al., 2020; Tran et al., 2020; Vallejos et
al., 2017). It would be needed to further extend the approach for non-UMI data (e.g. Smart-
seq2 technology) to cover all single cell transcriptomics sequencing techniques, and hence
extend the applicability of the method for any type of scRNA-seq datasets. However, it
would require a well-accepted approach to normalize and account for batch-effect correction
on non-UMI data. Once such state-of-the-art method will be available, HCellig could
account for UMI and non-UMI data by selecting the right normalization strategy depending
on the type of data provided as an input. In that regard, extensive pre-compiled backgrounds
datasets using non-UMI datasets could be generated. In addition, these data could be used to
extend the high-resolution atlases already generated. Moreover, the Tabula Muris atlas used
was highly limited to generate cell subtype backgrounds and no phenotype ones could be
produced (The Tabula Muris Consortium et al., 2018). It would be interesting to extend the
current background by collecting individual study datasets that usually provides a deeper

sequencing depth and hence a higher resolution of the cell groups that can be identified.

Then, it could be of interest to generate a Catalogus Immune Sapiens using FunPart to build
an atlas of human immune functional states and potential immunomodulators, as compiled
for mouse with the Catalogus Immune Muris. Indeed, with the large availability of immune
scRNA-seq data in disease conditions (Ner-Gaon et al., 2017), the use of FunPart on a
compendium of human datasets would be highly valuable to decipher unknown functional
states, extend the current knowledge of immunomodulators and pave the way towards the
development of new therapeutic strategies. This would allow the extension of the infection
and disease panel (Kuhn et al., 2019; Elsland and Neefjes, 2018; Jochems et al., 2018) but
also aid the identification of human immunomodulators, as the ones identified for mouse
models might not translate to human setups (Mestas and Hughes, 2004). Moreover, as
previously stated, candidate modulators identified by FunPart are TFs, which are not
preferred approaches in therapeutics setups as they might give rise to unexpected off-target
effects or tumorigenic (Ben-David and Benvenisty, 2011; Yamanaka, 2020). Indeed, the
development of immunotherapy strategies is usually based on drugs or chemical compounds
to indirectly perturb the specific TF(s) for cellular conversion (Kumar and Mali, 2020). It

would hence be interesting to implement or integrate an approach that would identify
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candidate compounds to perturb the candidate immunomodulator TFs identified by FunPart

and, hence benefit the drug discovery field (Moustaqil et al., 2020).

Finally, RNetDys currently relies on GeneHancer (Fishilevich et al., 2017), a prior-
knowledge database specific to human, for the cell (sub)type and state specific GRN
inference. It could be further extended for mouse by collecting enhancer-promoter prior-
information from the available extensive databases (Gao and Qian, 2019). However, as the
regulatory interaction inference is highly relying on the prior-knowledge used, it would be
necessary to ensure the quality of the collected information and perform a benchmarking to
verify the accuracy of the predicted GRNs. In addition, the integration of different regulatory
layers has been proposed as a promising strategy to gather better mechanistic insights in
physiological and pathological conditions (Hu et al., 2020). Currently, RNetDys uses a
multi-OMICS approach involving single cell transcriptomics and single cell chromatin
accessibility data. However, it could be further extended to make use of enhancer activity
marks, such as H3K4mel and H3K27ac (Kimura, 2013) at the single-cell level. Indeed,
currently RNetDys assumes that if an enhancer is accessible, regulating genes expressed in
the cell (sub)type/state and TFs are binding to its region, then this enhancer is considered to
be active. Whereas this assumption is reasonable with the lack of activity marks, the
integration of the histone modification would allow for a more accurate GRN. In the future,
more single-cell histone modification datasets should be generated (Bartosovic et al., 2021).
Therefore, it will be of interest to integrate this layer of information while keeping advantage

of the high-resolution provided by single cell technologies, already leveraged by the method.

Performing experimental validations

Experimental validations are usually required to support the computational model
implemented and validate or provide support for the in-silico predictions generated. Such
experiments were already performed in the “A Catalogus Immune Muris of the mouse
immune responses to diverse pathogens” study (section 4.2) but it would be of great interest
to have experimental support for the study entitled “Quantification of gene level to
characterize hierarchical cell identity” (section 4.1). It would be of high interest to perform
experimental validations for some identity genes identified in the high-resolution identity
atlases, especially the ones expressed at a medium level. Indeed, by modifying the level of
expression of such genes, we would expect to observe a different functional outcome as

previously reported in some studies (Huang, Yang, George W Ye, et al., 2021; Shats et al.,
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2017). The type of experiments to perform could include the perturbation of a medium
identity TF, by inducing its over-expression or knocking it down, to then observe the
differential functional outcome of the specific cell type, subtype or phenotype tested. For
instance, medium identity TFs identified for mouse dopaminergic neurons could be
perturbed as aforementioned and we could quantify the levels of dopamine release.
Moreover, immunostaining and/or electrophysiology analysis (Cui et al., 2016; Farassat et
al., 2019; Mahajani et al., 2019) could be performed to study the differential functional

outcome to support the impairment or destabilization of their identity.

5.5.2 Combine the developed methods in one framework

The three computational methods presented in this thesis could be expanded and used in
combination due to their close relationship. In the future, and with the described
perspectives, they could contribute to the development of novel cell-based and gene-based

therapeutic strategies.

HCellig and RNetDys could be used in combination to implement a computational
framework aiming at guiding cellular conversion protocols for cell-based therapies (Vasan
et al., 2021; Grath and Dai, 2019). The accurate characterization of cell identity combined
with the GRN approach provided by RNetDys would lead to the identification of master
regulator TFs (MRTFs) defining cellular identity. Indeed, the captured MRTFs would be
promising candidates to manipulate the cell fate (F. Fang ef al., 2018; Jung et al., 2021) and
hence guide more efficient cell conversion protocols to pave the way towards novel cell-
based therapies. HCellig could be first used to capture identity genes of the target cell
(sub)population at each hierarchical layer. For instance, assuming the target cells are
midbrain dopaminergic neurons, HCellig could be applied to first capture identity genes of
the neurons (cell type layer), then dopaminergic neurons (cell subtype layer) and then
dopaminergic neurons of the midbrain (cell phenotype layers). Then, the regulatory network
around the captured identity genes at each hierarchical layer could be generated using the
GRN inference part of RNetDys, hence resulting in three identity networks. The
identification of MRTFs and their prioritization by importance, which could be determined
using the graph properties (e.g., outdegree), at each hierarchical identity layer could then be
used to guide the generation of the target cells of interest. Finally, the described workflow
could be automatized towards the implementation a computational pipeline combining the

cell identity characterization (HCellig) and the capture of candidate MRTFs using the GRN
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inference part of RNetDys. Moreover, FunPart could be added to the strategy described
earlier. Indeed, HCellig requires group of cells to characterize their identity and hence is not
a strategy to identify cell (sub)types or states. Whereas existing clustering approaches were
shown to be promising for deciphering cell (sub)types (Kiselev, Tallulah S Andrews, et al.,
2019), they are limited for the capture of functional cell states. Therefore, the use of FunPart
for the identification of more subtle differences including functional cell states would be of
great interest. Notably, FunPart identifies functional genes characterizing these states and
hence, it would be expected to observe commonalities with the identity genes that would be

captured by HCellig.

The three computational tools could be combined to implement a workflow aiming at
providing a better understanding of non-physiological conditions and guide the development
of new disease treatments. Indeed, similarly as previously described, FunPart could be first
used to dissect the functional heterogeneity using scRNA-seq datasets from patients and
healthy controls. It would allow the identification of functional cell states and key genes
characterizing them. Then, HCellig could be applied to capture the identity genes of each
functional cell state. For each functional cell state, a functional enrichment of the identity
genes could be performed to identify all the BPs and pathways characterizing them. Notably,
FunPart already provides the main BP characterizing each functional cell state, but this step
would allow to extend the list of specific functions each state might perform. The comparison
between the functions of healthy and disease cell states would allow for a better
understanding of functional dysregulations. In addition, this comparison would guide the
identification of cell states that might be specific to the disease and thus be of particular
interest. Finally, the GRN inference part of RNetDys could be used to build the functional
cell states specific GRNs in both healthy and disease conditions. Notably, the scATAC-seq
data would need to be mapped (Stuart et al., 2020) to the cell (sub)type and states
characterized by HCellig with the sScRNA-seq data to extract the required datasets for the
GRN inference using RNetDys. Genes dysregulated or involved in the disease as well as
their main regulators could then be identified. Notably, DEG analyses mapped on the GRNs
would guide the identification of main regulators, that could be identity genes, involved in
the dysregulations. This approach would provide a better understanding of the heterogeneity
of cell (sub)populations in the disease and the regulatory mechanisms involved. Therefore,
it would be a valuable strategy to guide the identification of genes related to the pathological

conditions and help the development of therapies for disease treatments. Notably, another
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approach for the workflow could be to only focus on scRNA-seq from healthy controls, use
FunPart and HCellig as previously described, and then apply RNetDys to build the cell
(sub)types and states specific GRNs to identify impaired regulatory mechanisms due to
disease-related SNPs. In that regard, disease-related SNPs could be collected from GWAS
or eQTL studies specific to then identify cell (sub)type and state specific regulatory
mechanisms impaired. SNPs could also be obtained from genotyping data of patients having
the specific disease. In addition, if scRNA-seq data from these patients is available,
additional analyses could be performed. Indeed, by having SNPs and gene expression data
from the same patients, it would be possible to further refine the impaired regulatory
mechanisms predicted by RNetDys by mapping DEGs. Whereas not all genes predicted to
be impaired by RNetDys are expected to be significantly DEGs, the focus on impaired
regulatory mechanisms involving DEGs could guide the identification of genes, regulators

and SNPs most likely involved in the disease and its dysregulations.
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6 Conclusion

The characterization of cells escaping the physiological landscape, the understanding of
pathological mechanisms and the identification of candidate targets are critical to pave the
way towards new therapeutic strategies for disease treatment. Indeed, the accurate
characterization of cell identity and the capture of key TFs for cell state conversion holds
great promises to revert disease states towards healthy ones. In addition, the study of the
GRN is required to have a better understanding of the dysregulated regulatory mechanisms
and guide the identification of candidate targets for disease treatment. To date, several
computational methods focusing on cell identity and GRN inference have been
implemented, but they have several limitations that hinder their accuracy and contribution
to disease understanding. The aims of this thesis were to develop more accurate,
comprehensive and systematic computational methods that address the main limitations of
existing approaches, as well as extending the current knowledge in the field. In summary,

this thesis provided the following contributions:

- Implementation of a method to characterize cell identity: HCellig is a hierarchical cell
identity-based computational method that quantifies genes into three levels of expression
to accurately capture identity genes for any cell type, subtype and phenotype. Compared
to existing methods, it leverages the hierarchical classification of cells to not mix different
layer of complexity and account for an intermediate level of expression, shown to lead to
different functional outcomes. HCellig is a user-friendly R package available at:

https://github.com/BarlierC/HCellig, and all pre-compiled backgrounds for mouse and

human at the cell type, subtype and phenotype levels are publicly available at:
https://gitlab.com/C.Barlier/HCellig_backgrounds.

- Generation of two high-resolution identity atlases: Using HCellig, we generated high-
resolution identity atlases that reports identity genes and their level of expression for all
described cell types, subtypes and phenotypes in mouse and human. The atlases for both

organisms are available at: https://gitlab.com/C.Barlier/HCI.

- Development a method to decipher functional states and the key genes
characterizing them: FunPart is a computational method to decipher functional cell
states in physiological and pathological conditions. In addition, it captures the key genes
characterizing these states and provides insights for their function. FunPart is an R

package available at: https://github.com/BarlierC/FunPart.git.
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- Compilation of a Catalogus Immune Muris: This mouse atlas reports large-scale
immune functional cell states for different type of infections as well as the key functional
genes characterizing them. This resource contains potential candidate immunomodulators
and could be exploited to aid the development of immunotherapy strategies. Notably, its
potential was demonstrated with Zfp597, a functionally relevant gene of a macrophage
cell state for which its inhibition resulted in a significant decrease in surviving bacteria.
The Catalogus Immune Muris is available in Table S3 of the published paper:
https://www.nature.com/articles/s41419-021-04075-y. A shiny app is also available at:

https://gitlab.com/C.Barlier/immunofunmap.git.

- Comprehensive approach to infer cell (sub)types and states specific GRN: RNetDys
is a multi-OMICS pipeline, relying on single cell data and prior-knowledge to first infer
cell (sub)type or state specific regulatory interactions mediated by TFs and enhancers of
regulated genes. It requires as an input sScRNA-seq and scATAC-seq datasets of a specific
cell (sub)type or state of interest to infer the GRN. RNetDys is a user-friendly pipeline
available at: https://github.com/BarlierC/RNetDys, with its first part corresponding to the
GRN inference.

- Systematic identification of cell (sub)type candidate regulatory interactions
impaired due to SNPs in diseases: Based on the healthy GRN for a cell (sub)type or
state of interest, RNetDys then systematically identifies regulatory interactions
potentially impaired due to disease-related SNPs. It provides the list of regulatory
interactions impaired and leverage the GRN information to provide insights into the
dysregulated mechanisms. This corresponds to the second part of RNetDys pipeline
available at: https://github.com/BarlierC/RNetDys.

In conclusion, the three computational methods presented in this thesis are of great value to
contribute to the advance of computational disease modelling. These methods are widely
applicable to characterize cell identity, dissect functional heterogeneity, identify key genes
for cell state conversion, and identify impaired regulatory mechanisms in diseases. The
methods and findings of this thesis highly contribute to the systems biology field with a

strong potential to guide experimental strategies for disease treatment.
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