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Summary 
 
The characterization of cells escaping the physiological landscape, the understanding of 

pathological mechanisms, and the identification of novel targets for new therapeutic 

strategies are part of the main aims of computational disease modelling. The accurate 

characterization of cell identity and identification of key transcription factors (TFs) for cell 

conversion holds great promises to revert disease states towards healthy ones. Moreover, the 

characterization of the Gene Regulatory Network (GRN) is crucial to better understand 

impaired regulatory mechanisms and identify potential targets for disease treatment. To date, 

several computational methods have been implemented to tackle the aforementioned aims. 

First, some methods were developed to characterize cell identity, including the identification 

of cell identity genes. However, these computational methods solely rely on tissue samples, 

usually composed of a mixture of cell classification (e.g., cell types, subtypes) which hinders 

the accurate capture of identity genes. Moreover, they categorize genes as being expressed 

or non-expressed, and hence discard intermediate levels of expression which have been 

shown to be involved in the functional outcome of the cells. Further, current methods rely 

on genome-wide or highly variable genes to identify subtle differences such as cell states. 

However, these approaches do not accurately decipher functional cell states neither the genes 

that characterize them. Finally, several GRN inference methods based on single cell 

transcriptomics have been developed over the years. However, few of them exploit the single 

cell multi-OMICS data to infer more comprehensive GRNs, including the interaction 

between TFs and the enhancers of regulated genes, to provide a better understanding of 

impaired regulatory mechanisms in disease conditions. 
 

In this thesis, three computational strategies were developed to overcome the limitations of 

current methods and tackle main challenges of systems biology and disease modelling. First, 

HCellig was implemented to accurately characterize cellular identity. HCellig is based on a 

hierarchical cell identity composed of three layers including cell type, subtype and 

phenotype to overcome the mixture of different cell classification that can hinder the capture 

of identity genes. In addition, HCellig quantifies gene into three levels of expression to 

provide a more refined functional characterization of the cell identity. The use of HCellig on 

mouse and human large-scale datasets allowed us to generate two high-resolution cell 

identity atlases for both organisms. Second, FunPart was developed to decipher functional 

cell states while capturing the key genes characterizing them by using a feature selection 

strategy combined with a clustering approach. The application of FunPart on a large 
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compendium of mouse infection datasets generated a Catalogus Immune Muris comprising 

all the functional cell states identified and the key genes defining their state. In particular, 

these genes could be candidate immunomodulator as we demonstrated for Zfp591, a 

previously unknown transcription factor modulating macrophages response to Salmonella 

infection. Lastly, we designed RNetDys, a systematic multi-OMICS pipeline to infer 

regulatory interactions mediated by TFs and enhancers of regulated genes for specific cell 

(sub)types or states and identify candidate impaired regulatory interactions in diseases due 

to single nucleotide polymorphisms (SNPs). We showed that RNetDys overcome current 

approaches to infer cell (sub)type specific GRN and validated the relevance of captured 

impaired interactions across five diseases.  

 

In summary, the three computational methods proposed in this thesis cover the cell identity 

and gene regulatory mechanisms aspects, in physiological and pathological conditions. 

Together, they will contribute to a better understanding of cells escaping the physiological 

landscape, a more accurate characterization of pathological cells states and dysregulated 

regulatory mechanisms, and the identification of candidate genes to design novel therapeutic 

strategies to treat diseases. 
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1 Introduction 
 
1.1 Disease modelling to guide new therapeutic approaches 
 
1.1.1 Diseases and systems biology 

Diseases result from abnormal modifications in the function or structure of a tissue, organ 

or group of organs. They can be roughly grouped as those resulting from genetic factors or 

environmental factors (Antony et al., 2012). In particular, diseases resulting from genetic 

factors can range from single causal factors (monogenic disease) to polygenic or 

multifactorial diseases (Weatherall, 2000; Antonarakis and Beckmann, 2006; Visscher et al., 

2021). Nevertheless, the combination of both genetic and environmental factors has been 

reported to impact the onset and progression of most diseases (Knip et al., 2005; Antony et 

al., 2012). In that regard, multifactorial or complex diseases, such as Parkinson’s disease 

(PD) and epilepsy, are those for which the interplay of environmental factors and several 

genes is believed to influence their progression (Ottman et al., 1996; Warner and Schapira, 

2003). For instance, the multifactorial nature of PD has been demonstrated by the 

identification of several PD-related genes (e.g. SCNA, LRRK2, DJ-1), the characterization 

of diverse genetic risk factors and the study of some environmental factors such as cigarette 

smoking and caffeine consumption that could alter the risk of PD development (Pérez-Tur, 

2006; Kouli et al., 2018).  

 

The prevalence of many complex diseases, such as diabetes and cardiovascular diseases, has 

dramatically increased in the last few years (Mardinoglu and Nielsen, 2016). Moreover, a 

considerable number of diseases still lack of effective medical treatments to prevent, treat 

and cure them (Kiser and Pronovost, 2009; Cummings et al., 2021; Hansson, 2021). 

Therefore, there is a need for new therapeutic approaches that would allow the detection, 

prevention and treatment of diseases. However, the development of new therapeutic 

strategies requires a deep understanding of the cellular heterogeneity and underlying 

molecular mechanisms involved (Gitler et al., 2017; Schett et al., 2021; Mortada et al., 

2021). In that regard, systems biology is an active and evolving multidisciplinary field of 

research that includes computational modelling and wet-lab expertise, to pave the way 

towards new therapeutic approaches and personalized medicine (Wolkenhauer et al., 2013; 

Gabhann et al., 2010; van Kampen and Moerland, 2016). In particular, disease modelling 

using computational approaches is an active research field of systems biology that aims at 
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developing computational models to study different aspects of diseases. These models aspire 

at providing a valuable guidance for experimental and clinical setups to develop strategies 

that detect, prevent and/or treat diseases.  

 

1.1.2 Computational approaches to guide treatments and personalized medicine  

Computational modelling methods aim at developing models based on assumptions and data 

evidences to provide explanations and insights into a scientific problem that can then tested 

or refined using further investigations involving experimental validations (Barh et al., 2020). 

In particular, models can be categorized in two main categories depending on their general 

aim, with descriptive models intending at providing explanations for an observation, and 

predictive models aiming at predicting the result of novel observations (Motta and 

Pappalardo, 2013). The development of a model is an iterative process in which it is common 

to use additional observations for refinement purposes. In addition, a descriptive model or 

the predictions obtained from a predictive model can be validated using in vitro or in vivo 

experimental strategies (Kitano, 2002). Over the years, several computational models have 

been implemented to study a wide spectrum of diseases and get a better understanding of 

their cellular and molecular complexity. For instance, methods have been developed to study 

the characteristics of diseases and identify candidate genes involved in diseases using 

different models and approaches (Gill et al., 2014). Notably, computational modelling 

methods contributed to the discovery of heterogeneity and complexity of Alzheimer’s 

disease (AD) and PD for which the notion that they are fundamentally governed by amyloid-

β, tau, and α-synuclein proteins has been challenged (Lam et al., 2020).  
 

The findings and insights provided by computational methods help the development of novel 

therapeutic approaches and personalized medicine strategies (Figure 1). In particular, models 

at the cellular and molecular levels such as Gene Regulatory Network (GRN) based methods 

holds great promise to predict key transcription factors (TFs) for cellular conversion that can 

be applied for cell-based therapies (del Sol and Jung, 2021). In that regard, one main goal of 

regenerative medicine is the replacement of damaged cells by healthy and functional ones 

using cell transplantation strategies (Edgar et al., 2020). The guidance provided by 

computational methods greatly contributed to the stem cell engineering, allowing the 

reprogramming or differentiation of cells toward the target cells of interest (Cahan et al., 

2021). For instance, induced pluripotent stem cells (iPSCs) are used to produce functionally 

mature dopaminergic neurons to treat PD, characterized by the loss of dopaminergic neurons 
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in the substantia nigra. Notably, the first clinical trial to treat PD using iPSCs has been 

initiated by Shinya Yamanka in 2018 (Aly, 2020). In addition, computational models are 

powerful tools to advance personalized medicine by optimizing outcomes of patients based 

on their unique disease features and biological properties (Figure 1). The generation of 

patient-specific models held great promises to monitor diseases and open new venues for 

personalized healthcare (Chen and Snyder, 2012). 

 

 
Figure 1. Computational disease modelling contribution for personalized medicine. 
Figure modified from (Wang et al., 2020), from (Gu et al., 2012) for the GRN and (Niewiadomska 
et al., 2011) for the signalling pathway. It shows the interplay of disease modelling to contribute to 
the development of novel therapeutic strategies applied to personalized medicine. 
 

Over the years, several studies have been focusing on different aspects of diseases using 

computational biology approaches to dissect cellular heterogeneity and shed the light 

towards the composition of biological systems (Satija et al., 2015; Butler et al., 2018). 

Moreover, many approaches focused on deciphering their molecular complexity to provide 

mechanistic insights on the processes involved in diseases progression or to identify 

candidate genes that could be used as therapeutic targets for disease treatment (Szabo et al., 

2019; De Luca et al., 2020). Notably, efforts have been made to develop computational 

methods driving the discovery of cellular heterogeneity, identifying molecules for cell 

phenotype conversion and providing insights of the underlying mechanisms leading to a 

disease state (Figure 2) (Hassan et al., 2018; Jenner et al., 2020; Collin et al., 2022; 

Pappalardo et al., 2016; Ford Versypt, 2021). However, despite recent efforts and valuable 

contributions to develop computational systems biology strategies aiming for therapeutic or 
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clinical applications, several challenges remain to be solved (Ma and Lim, 2021; Cha and 

Lee, 2020; Zhao et al., 2020).  

 
Figure 2. Computational models for disease modelling. 
This figure summarizes some aspects tackled by research projects exploiting computational models 
to study diseases. The development of computational systems biology approaches focused on 
different aspects such as the comprehensive characterization of cell identity, the dissection of cellular 
heterogeneity and identification of candidate genes for cell phenotype conversion, and the study of 
dysregulated regulatory mechanisms. 

 
1.1.3 Development of single cell-based technologies 

For years, research studies have been relying on bulk-sequencing technologies allowing the 

measurement of features such as genes quantification across pool of cell populations (Li and 

Wang, 2021). However, these averaged measurements obscured the discovery of tissues 

composition, cell-to-cell variability and rare cell (sub)populations that could be involved in 

diseases (Wang and Navin, 2015). The emergence and fast development of single-cell based 

technologies led to the generation of different types of omics data, such as single cell RNA-

seq and single cell ATAC-seq, that allowed large-scale and refined measurements at the cell 

level. The high-resolution of this data enhanced the dissection of cells heterogeneity and 

molecular complexity of mechanisms involved at different biological scales (Wang and 

Bodovitz, 2010; Trapnell, 2015; Papalexi and Satija, 2017; Lähnemann et al., 2020).  
 

Single-cell technologies uncovered a considerable number of previously unknown cell 

(sub)types throughout the generation of organism-wide cell atlases (Rozenblatt-Rosen et al., 
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2017; The Tabula Muris Consortium et al., 2018; Zhang et al., 2021; The Tabula Sapiens 

Consortium et al., 2022). In addition, this high-resolution data enhanced the discovery and 

characterization of novel cellular states (Trapnell, 2015). The creation of a comprehensive 

landscape of cell phenotypes would contribute to the systematic identification of cells that 

cross physiological bounds towards pathological states (Morris et al., 2019; Szabo et al., 

2019). Moreover, single-cell data contributed to our understanding of cell fates and gene 

regulatory mechanisms by providing an unprecedent molecular resolution at the cell level 

(Perkel, 2021). The development of single cell OMICS data allowed to link different features 

to decipher the complexity of multicellular organisms and the underlying mechanisms 

driving physiological and pathological processes. In particular, the combination of 

epigenomics and transcriptomics helped the study of lineage determination and mechanisms 

involved in the development of diseases (Ogbeide et al., 2022). However, the precision in 

features measurement provided by single cell technologies raised several challenges (Potter, 

2018; Cha and Lee, 2020; Lähnemann et al., 2020). Notably, the sparsity and important 

variability of single cell data hinders the accurate detection of relevant features, complex 

gene patterns and discovery of new cell (sub)types or states (Kiselev, Tallulah S. Andrews, 

et al., 2019; Lähnemann et al., 2020). 
 

1.2 Characterization of cell identity 
 
1.2.1 Cellular identity and destabilization in disease state 

Multicellular organisms are composed of highly heterogeneous cells organized in different 

layers to form complex entities such as tissues and organs. For a long time, cells were 

classified based on diverse features including their location, morphology or interactions with 

other cells (Arendt et al., 2016; Morris et al., 2019). However, the emergence of single-cell 

based technologies allowed for a more precise and refined measurement of cell features that 

uncovered the wide complexity of biological systems and showed the limitation of the 

previous classification system. Indeed, the generation of organism-wide cell atlases provided 

more insights into the cellular heterogeneity (The Tabula Muris Consortium et al., 2018; 

Zhang et al., 2021; The Tabula Sapiens Consortium et al., 2022). For instance, the Tabula 

Sapiens is a single cell transcriptomics atlas reporting the gene expression profiles for 475 

cell (sub)types across 24 human tissues. This atlas allowed for the discovery of shared and 

tissue-specific properties across cell types such as the macrophages, a cell type shared across 

tissues but displaying subtle differences in genes expression that are tissue-specific (The 

Tabula Sapiens Consortium et al., 2022).  
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Cells originate from different lineages and acquire part of their identity during the 

developmental process, guided by cell fate determinants, in which pluripotent cells 

differentiate to give rise to more specialized cells such as cell types or cell subtypes (Mayor, 

2019; Belmonte-Mateos and Pujades, 2022). In addition, cells express different sets of genes 

depending on their micro-environment and the functions they have to perform, leading to 

different phenotypes. Indeed, the most refined level of resolution for cellular heterogeneity 

is the cell state level for which the same cell (sub)type could respond differently to 

perturbations and hence display a variety of phenotypes (Dueck et al., 2016; Nimmo et al., 

2015). Single cell RNA-seq technologies greatly contributed to the dissection of cellular 

heterogeneity by leveraging the high-resolution of gene expression patterns displayed by 

individual cells (Choi and Kim, 2019). The hematopoietic system has been widely studied 

to better understand hematopoiesis and uncover the wide diversity of cell types and subtypes 

differentiating from hematopoietic stem cells (Watcham et al., 2019; Dolgalev and 

Tikhonova, 2021). Indeed, the study of the hematopoietic cell landscape using single-cell 

technologies shaped, modified and extended the hematopoietic development tree (Watcham 

et al., 2019). Notably, hematopoietic progenitor cells were found to be in a continuous 

transcriptional landscape branching into seven fates including erythroid, basophilic, 

megakaryocytic, lymphocytic, dendritic, monocytic and granulocytic neutrophil lineages 

(Tusi et al., 2018). In addition, immune cells have been shown to display a wide diversity of 

phenotypes during immune responses, highlighting their dynamic and plasticity (Satija and 

Shalek, 2014; Gause et al., 2020). In particular, the binary classification of M1 and M2 

macrophages, with M1 macrophages displaying pro-inflammatory properties and M2 

macrophages displaying anti-inflammatory properties, has been questioned by the discovery 

of the wide spectrum of macrophages polarization states (Kim and Nair, 2019; Liu et al., 

2020). Therefore, the identification and molecular characterization of more subtle 

differences such as rare cell (sub)populations or cell states still remains elusive (Nguyen et 

al., 2018; Andreatta et al., 2021).  
 

The comprehensive characterization of cells identities in the organism cellular landscape 

(e.g., human) would allow the identification of cells displaying non-physiological features 

and potentially going toward disease-related states (Morris et al., 2019). Indeed, the 

maintenance of cellular identity is crucial to conserve the homeostasis and integrity of the 

organism. Cell identity is maintained by a set of genes, named identity genes, that ensure the 
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physiological properties of the cells such as their functions (Xia et al., 2020; Kim et al., 

2021). In that regard, identity genes are defined as a combination of unique genes specifically 

expressed to characterize and maintain cell identity. The loss or perturbation of identity 

genes can lead to the destabilization or disruption of cell identity, which has been shown to 

be associated with pathological processes and involved in several diseases (Ikeda et al., 

2018; Brumbaugh et al., 2019; Budday et al., 2015). For instance, the identity of human 

dopaminergic neurons was shown to be destabilized in response to diverse PD related stress 

factors (Fernandes et al., 2020). Another example is the loss of b-cell identity which has 

been shown to be involved in diabetic phenotypes (Mostafa et al., 2020). Therefore, it is 

required to accurately characterize cell identity by deciphering identity genes to have a 

comprehensive understanding of the cellular landscape heterogeneity and distinguish 

physiological features from pathological ones. 

 

1.2.2 Deciphering identity genes and its limitations 

The accurate identification of identity genes to characterize cell identity remains a central 

challenge in biology (Morris et al., 2019). Several efforts have been made in this direction 

and diverse computational methods aiming at identifying such genes based on single-cell 

transcriptomics data have been developed and used in the past few years (Stuart et al., 2019; 

Wang et al., 2019; Delaney et al., 2019). Notably, Seurat is a well-established pipeline for 

single cell RNA-seq datasets analysis composed of several features such as the quality 

control of the data, normalization, dimensionality reduction, visualization and identification 

of identity genes based on differential expression (DE) using a Wilcoxon test by default 

(Satija et al., 2015). The use of DE analysis methods allows to discover differentially 

expressed genes (DEGs) that have a significant quantitative change in their expression 

between different conditions or group of cells (Mou et al., 2020). DEGs found to be uniquely 

up-regulated in one condition or one cell (sub)type have been used as markers as this 

property reflects their specificity to characterize the condition or cell (sub)type (Cliff et al., 

2004; Squair et al., 2021). In addition, other computational methods relying on different 

strategies have been implemented such as scMarker that uses information theory principles 

to identify markers for cell types (Wang et al., 2019).  

 

Existing computational methods have several limitations that hinders the accurate capture of 

identity genes to characterize cell identity (Figure 3). First, they do not account for the 

underlying biological complexity of cells classified in a hierarchy composed of cell types, 



 8 
 
 

 

subtypes and phenotypes. Indeed, the identity genes identification highly relies on the 

biological environment in which cells are studied accordingly with their hierarchical 

classification. Nevertheless, these methods identify such genes by performing comparison 

of gene expression profiles between a target cell population with other cell populations in 

given tissues (Figure 3). Whereas these tissues do not necessarily contain all representative 

cell populations, they are also usually composed of a mixture of different cell types, subtypes 

and phenotypes, which hinders the accurate identification of the target cell population 

identity genes. 

 
Figure 3. Limitations of current methods to characterize cellular identity.  
The t-SNE was modified from (Butler et al., 2018). This figure shows the concept behind current 
computational method to identify identity genes of a target cell (sub)population. For instance, the 
identity genes of TCD8+ cells are identified by performing pairwise comparisons with all other group 
of cells or by performing a comparison against all of them grouped together as a background. From 
this comparison based on differential expression, identify genes are captured as up-regulated in the 
target cell (sub)population. Of note, down-regulated genes that could correspond to negative markers 
can also be identified but are not shown in the figure. NK: natural killer, DC: dendritic cell, eryth: 
erythrocyte, MK: megakaryocyte, pDC: plasmacytoid DC, mono: monocyte. 

Moreover, current methods rely on a Boolean approach of gene expression that identifies 

whether a gene is expressed or not expressed in a specific cell population. However, it has 

been shown that the same gene with different levels of expression can lead to different 

functional outcomes (Bigas and Espinosa, 2012; Shats et al., 2017; Huang, Yang, George W 

Ye, et al., 2021) and, hence their approach is too stringent to capture such subtle differences. 

For instance, E2F1 expression levels were shown to be critical in the control of cell fates, 

with a low level promoting cell proliferation, an intermediate level driving the mitotic cell 

cycle arrest and a high one promoting apoptosis (Shats et al., 2017). In addition, it have been 
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shown that Notch targets and receptors are found at different levels of expression in 

hematopoietic cell types and impact on their lineages fate (Sandy and Maillard, 2009; Huang, 

Yang, George W. Ye, et al., 2021).   

 

1.3 Identification of disease-related functional states and genes 
 
1.3.1 Functional cell states identification and its limitations 

Cell identity is defined by a set of genes that characterize the specific features, such as 

specific functions, displayed by the cell. Whereas the functional specialization of cell 

(sub)types arose during the developmental process, it is further shaped by external signals. 

Indeed, in response to various stimuli, the same cell (sub)type can exhibit diverse phenotypes 

defined by specific molecular and functional features, hence corresponding to different 

functional cell states (Morris et al., 2019; Masuda et al., 2020). A compendium of 

computational methods based on single-cell transcriptomics data have been implemented in 

the past few years to identify cell (sub)populations using clustering-based approaches 

(Andrews and Hemberg, 2018). Clustering methods aim at grouping cells that share similar 

expression patterns to identify cell (sub)populations that could correspond to cell types, 

subtypes and/or states. They can be divided into two major categories comprising 

unsupervised clustering approaches that solely rely on the data and supervised clustering 

ones that use prior-knowledge to guide de grouping of cells (Abdelaal et al., 2019; Kiselev, 

Tallulah S Andrews, et al., 2019; Sun et al., 2022). Firstly, a wide range of unsupervised 

clustering methods have been implement and commonly used such as K-means (Kiselev et 

al., 2017), hierarchical clustering (Guo et al., 2015), density based clustering (Januzaj et al., 

2004) or graph-based clustering (Satija et al., 2015). In that regard, the standard method is 

the k-means algorithm which identifies k centroids, corresponding to cluster centers, and 

assign each cell to the closest centroid. In addition, the hierarchical clustering is another 

widely used algorithm that combines cells into larger groups (agglomerative) or divides 

group of cells into smaller ones. In particular, Seurat, a state-of-the-art pipeline to analyze 

single-cell data (Satija et al., 2015), builds a shared-nearest-neighbors graph to connect cells 

and applies the Louvain community detection algorithm to detect strongly connected 

communities that corresponds to cluster of cells. These clustering approaches are widely 

used for the discovery of novel cell (sub)populations, but they often miss cell states 

displaying subtle changes and require additional analyses to annotate and characterize them. 

Identified clusters corresponding to cell (sub)types can be manually annotated based on 
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expert knowledge well-defined markers (X. Zhang et al., 2019) or with the use of 

computational methods providing systematic approaches (Sun et al., 2022). Notably, 

iterative clustering approaches have been developed to identify sub-clusters, aiming at a 

better identification of rare cell subpopulations or states but prone to over-clustering (Miao 

et al., 2020). Secondly, supervised clustering approaches have been developed to overcome 

the manual annotation of cells by identifying group of cells based on reference datasets or 

set of defined markers (A. W. Zhang et al., 2019; Pliner et al., 2019; Lee and Hemberg, 

2019). However, supervised approaches are limited to the prior-knowledge provided and are 

then unable to discover new cell (sub)populations.  

 

1.3.2 Identification of relevant features to characterize cell states 

Current computational methods to resolve cellular heterogeneity primarily focus on genome-

wide gene expression patterns to identify cluster of cells (Andrews and Hemberg, 2018). 

However, the use of genome-wide gene expression patterns usually obscured the detection 

of cell clusters distinguished by subtle differences. To overcome this limitation, diverse 

approaches were implemented to pre-select the most relevant features to improve the cell 

partitioning (Xie et al., 2019; Yang et al., 2021). In that regard, one standard feature selection 

strategy has been the detection of highly variable genes (HVGs), implemented in Seurat 

(Satija et al., 2015), consisting of genes having the highest variability across cells to leverage 

the capacity of clustering methods to better account for subtle differences (Yip et al., 2019). 

Once the cell (sub)clusters are identified, it is usually required to characterize them and 

interpret their biological meaning (Figure 4) (Kiselev, Tallulah S. Andrews, et al., 2019). 

One standard strategy consists of the identification of DEGs between the cell 

(sub)populations identified, followed by functional enrichment analyses to find biological 

processes and/or pathways over-represented to guide the biological interpretation (Figure 4) 

(Luecken and Theis, 2019). In particular, gene set enrichment analysis (GSEA) aims at 

identifying genes significantly enriched in specific annotations of interest to guide the 

functional interpretation (Reimand et al., 2019). Of note, widely used annotations are the 

Gene Ontology (Ashburner et al., 2000), composed of biological processes, molecular 

functions and cellular component, as well as pathways such as KEGG pathways (Wixon, 

2001; Kanehisa et al., 2017). Nevertheless, the functional characterization of identified cell 

(sub)populations, such as cell states, highly relies on the obtained clusters which has been 

shown to not be always reliable (Andrews and Hemberg, 2018). Therefore, existing 
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computational methods lack functional relevance when aiming at detecting distinct 

functional cell states.  

 

Figure 4. General workflow to identify and characterize cell (sub)populations. 
Figure modified from (Luecken and Theis, 2019) and (Kiselev, Tallulah S. Andrews, et al., 2019). 
The general workflow to identify cluster of cells consists of the feature selection to select the most 
informative genes to then perform the clustering to identify cell (sub)populations. Then, the 
characterization of these cell (sub)populations is usually performed by manual or automatic 
annotation, the identification of differentially expressed genes and functional enrichment analysis. 
 

1.3.3 Cell states conversion 

The cell states conversion or transition is a biological process happening in physiological 

conditions to maintain the organism integrity in response to different stimuli. For instance, 

neurogenic niches are composed of neuronal stem cells in active or quiescent state to ensure 

tissue maintenance (Codega et al., 2014). Another example is the transitioning states of 

immune cells, such as quiescent or active T cells, in response to inflammatory signals 

(Andreatta et al., 2021; Hua and Thompson, 2001). However, cells can display non-

physiological expression patterns in response to stimuli and potentially undergo toward 

pathologic states due to important dysregulations (Schwartz et al., 2013; Prinz and Priller, 
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2017). The accurate characterization of cellular states is required to allow the accurate 

identification of candidate genes that could be used to induce conversion between cell states. 

Especially, some cell conversion strategies aim at inducing the transition between cell states 

to promote changes under different conditions, as for instance the conversion of a disease 

state towards a healthy one. In that regard, several studies aimed at identifying candidate 

genes that could be used to modulate or convert cellular states to pave the way towards new 

therapeutic approaches applied to diseases treatment (Kwon and Koh, 2020; Gyun Jee Song, 

2017). For instance, it has been shown that the conversion between pancreatic endocrine cell 

states was a promising strategy to recover the β cell mass for diabetes (Wei et al., 2022). In 

addition, immunomodulator candidates were identified using a single-cell based approach in 

the case of acute myeloid leukemia (Guo et al., 2021). Indeed, single-cell transcriptomics 

based analyses are a valuable strategy to identify candidate genes that could be targeted using 

a variety of experimental techniques such as viral vectors (Miyamoto et al., 2018) or guide 

RNA (Liu et al., 2018) to overexpress or repress the specific candidate genes(s). In addition, 

chemical compounds specifically targeting candidate gene(s) can contribute to the drug 

discovery and development field (Ebrahimi, 2016; Liu et al., 2016; Li and Ding, 2010). 

Whereas computational-based predictions are not directly applicable for clinical setups, they 

provide a valuable guidance for experimental investigation and contribute to the 

development of novel therapies aiming at preventing or treating diseases. 
 

1.4 Deciphering impaired regulatory mechanisms in diseases 
 
1.4.1 Gene Regulatory Networks inference and limitations 

Gene regulation constitutes a fundamental biological process involving mechanisms that 

activate and repress genes to specify the gene expression profile of cells and hence their 

identity (Almeida et al., 2021). This process generates diverse gene expression patterns 

leading to a high cellular heterogeneity for which cells have different sets of proteins to 

ensure their identity and functionality. It is composed of complex mechanisms in which 

molecular regulators interact following internal and external signals sent by the 

(micro)environment (Bahrami and Drabløs, 2016). The gene expression in eukaryotes 

involves several steps that can be regulated from the DNA availability to the translation in 

proteins (Wray et al., 2003; Cooper, 2000) (Figure 5). Indeed, a gene can be regulated at 

each step of the regulatory process. First, the chromatin accessibility can be modulated from 

a compact to an open structure in order to make enhancer and/or promoter regions of genes 
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accessible (Klemm et al., 2019). Then, the transcriptional process, a key point of the 

regulatory process, in which TFs bind to specific parts of the DNA such as enhancer and/or 

promoter regions to initiate or repress the transcription of a gene (Spitz and Furlong, 2012). 

Finally, the transcribed RNAs are processed via splicing for which the same pre-mRNA 

produced can lead to different mRNAs (Nilsen and Graveley, 2010). Then these mRNAs are 

translated into proteins that can undergo several post-translational modifications that may 

affect their activity including ubiquitylation, methylation, phosphorylation or acetylation 

(Wang et al., 2013). 

 

 
Figure 5. Gene regulation mechanisms in eukaryotes. 
Figure modified from (Buchberger et al., 2019), the post-translational modifications picture was 
taken from (Wang et al., 2013). This figure summarizes the main regulatory mechanisms covering 
the gene regulation to the set of proteins expressed in the cell. The transcriptional regulation takes 
place in the nucleus, once the chromatin is open TF binding sites are accessible and TFs can bind to 
enhancer or promoter regions to enhance or repress the transcription of a specific gene. Once the 
mRNA is transcribed, it is exported in the cytoplasm to be translated into amino acids and form the 
protein. Several post-translational modifications such as acetylation or methylation can then modify 
the protein structure and/or its function. 
 

Reliable and fast inference of large-scale GRNs from transcriptomics data is a long-standing 

challenge and is crucial for understanding key biological processes such as differentiation 

and reprogramming (Marbach et al., 2010). Over the years, diverse computational methods 

have been proposed to infer GRNs from transcriptomics data, especially during the DREAM 
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challenges (Meyer and Saez-Rodriguez, 2021). These methods aim at reconstructing the 

GRN that reflects the underlying mechanisms regulating cell expression patterns. Early 

methods for bulk gene expression data were based on capturing changes in average gene 

expression profiles as a function of time or perturbations (Sima et al., 2009; Huynh-Thu et 

al., 2010; Margolin et al., 2006). However, bulk gene expression data can often obscure true 

biological signals due to averaging of expression over all cells in a given sample (Pratapa et 

al., 2020; Chen et al., 2019). In this regard, advances in single cell RNA-sequencing has led 

to development of different kinds of computational methods that leverage the high-resolution 

gene expression profiling of individual cells and overcomes the major limitations of bulk 

sequencing (Efremova and Teichmann, 2020). One of the key challenges in GRN inference 

involves the accurate prediction of regulatory relationships between TFs and their target 

genes from their expression patterns. Putative regulatory relationships between genes can be 

detected by simple correlation analysis, or through more advanced measures like mutual 

information or partial information decomposition that detect statistical dependency between 

pairs of genes (Chan et al., 2017; Aibar et al., 2017; Nguyen et al., 2021). Notably, SCENIC 

uses a two steps approach by first using GENIE3, a method using random forests that detects 

regulatory relationships based on covariation (Huynh-Thu et al., 2010), to infer the 

regulatory interactions between genes based on scRNA-seq data. It then performs a TF-motif 

enrichment analysis using RcisTarget to refine the predictions and identify putative TF-

targets regulatory interactions (Aibar et al., 2017). In particular, most of the existing GRN 

inference methods exclusively relies on scRNA-seq data, widely available and rapidly 

expanding (Chen et al., 2019; Mercatelli et al., 2020).  
 

Computational methods inferring networks from single cell gene expression data still poorly 

perform (Chen and Mar, 2018; Pratapa et al., 2020). The increasing generation of chromatin 

immunoprecipitation sequencing (ChIP-seq) data greatly contributed to the understanding 

of the transcriptional regulatory landscape by providing TF-binding evidence supporting TF-

genes regulatory interactions (Mei et al., 2017; Oki et al., 2018). In that regard, GRN 

inference methods that solely rely on scRNA-seq can predict regulatory interactions among 

TFs and genes (Wray et al., 2003). However, these methods are not designed to model the 

direct regulatory interactions involving enhancers, and hence the regulatory mechanistic 

insights provided remains limited. Indeed, it is well described that genes are regulated in 

time and space by the interplay between enhancers and promoters to define specific 

expression patterns (Dao and Spicuglia, 2018). Therefore, another key challenge to model 
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genes regulation is the prediction of enhancer-promoter regulatory interactions. Particularly, 

some methods have been implemented to predict regulatory interactions between enhancers 

and promoters using chromatin physical interactions bulk data such as Hi-C or CTCF ChIP-

seq (Hariprakash and Ferrari, 2019; Belokopytova et al., 2020). In addition, valuable 

resources have been created such as GeneHancer, a comprehensive database reporting 

known human enhancers and their connected genes (Fishilevich et al., 2017). Notably, 

computational approaches relying on bulk data are strongly limited regarding their 

applicability to uncover cell (sub)type or state specific enhancer-promoter regulatory 

interactions that would require the high-resolution of single cell technologies. In that regard, 

Cicero, a single-cell cis-regulatory network method relying on scATAC-seq data was 

developed to exploit the high-resolution of single cell data by identifying co-accessible pairs 

of DNA elements, and hence connect regulatory elements such as enhancers to their putative 

target genes (Pliner et al., 2018). Whereas the described methods are valuable to uncover 

regulatory relationships involving enhancers and key elements impacted in disease 

conditions (Claringbould and Zaugg, 2021), they partially model the regulatory machinery 

as the interplay with TFs remains missing. Therefore, GRN inference methods based on 

single-OMICS data remain limited to model comprehensive regulatory interactions between 

the key elements involved in gene regulation. 

 
1.4.2 Multi-OMICS approaches for better mechanistic insights 

In order to address the mechanistic limitations of GRN inference methods based on single-

OMICS approaches, such as scRNA-seq only, strategies based on multi-OMICS data were 

implemented (Hu et al., 2020). In that regard, combinative or integrative approaches have 

been developed based on multi-OMICS data over the past few years to account for gene 

expression and genomics information, such as chromatin accessibility and/or histone 

modifications (Zarayeneh et al., 2017; Jung et al., 2021). For instance, IRENE, a systematic 

GRN inference method that integrates diverse OMICS data including gene expression, 

chromatin accessibility, histone modification, ChIP-seq, and protein–protein interaction data 

was developed to predict cell-type specific core GRNs (Jung et al., 2021). Whereas efforts 

have been made in integrating bulk-based multi-OMICS data to predict more comprehensive 

GRNs that cover a larger part of the complex regulatory machinery, future direction of 

development should integrate different single-cell layers to more accurately depict 

regulatory mechanisms underlying disease and biological processes (Figure 6) (Hu et al., 

2020). In that regard, scGRNom, a computational pipeline combining bulk and single cell 



 16 
 
 

 

multi-OMICs, was developed to infer tissue and cell type specific regulatory interactions 

involving TFs, genes and enhancers using Hi-C data, single cell transcriptomics and/or 

chromatin accessibility data (Jin et al., 2021).  

 

 
Figure 6. Multi-OMICS integration for more accurate GRNs prediction.  
Figure from (Hu et al., 2020). It shows the different single-cell technologies ranging from the DNA 
to the mRNA that could be used for single cell-based multi-OMICS GRN inference approaches to 
investigate gene regulatory mechanisms.  
 
Furthermore, the exploitation of single cell modalities to decipher regulatory mechanisms of 

heterogeneous cell (sub)populations still remains a challenge, mainly due to the lack of 

single cell sequencing techniques or datasets (Bravo González-Blas et al., 2020). Recently, 

efforts have been made to integrate single cell layers and provide a more comprehensive 

understanding of the regulatory mechanisms landscape (Kartha et al., 2021; Boix et al., 

2021; Lyu et al., 2021). Notably, EpiMap, a map of the human epigenome has been 

generated and used to compile a comprehensive view of the human genes regulation across 

tissues and cell lines that describe gene regulatory regions, their upstream regulators and 

specific targets (Boix et al., 2021). In addition, the integration of scRNA-seq and scATAC-

seq data allowed for the generation of a comprehensive cis-regulatory landscape for immune 

responses across cell types, time and different stimuli (Kartha et al., 2021). Recently, 

DIRECT-NET, a GRN inference method based on matched scRNA-seq and scATAC-seq 

has been developed to model the regulatory relationships between key elements involved in 
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genes regulation including TFs, genes and enhancers (Zhang et al., 2022). Therefore, the 

future direction to uncover cell heterogeneity at the transcriptional regulatory level will be 

based on the integration or combination of different single cell layers (Hu et al., 2020) 

(Figure 6). 

 
 

1.4.3 Exploiting the gene regulatory network information 

GRN models are powerful tools to unveil the fundamentals of cells heterogeneity and 

functionality (Liu et al., 2019). They provide a guidance for the resolution of several 

biological and biomedical questions (Emmert-Streib et al., 2014). Indeed, GRNs provide a 

molecular map that can be used to derive novel hypotheses about these mechanisms and their 

implications. Standard GRNs are weighted and directed graphs in which source nodes (e.g., 

TFs) are regulating target nodes (e.g., genes) with a certain degree of confidence or strength 

(weight) (Aibar et al., 2017). In addition, these graphs can be signed to provide information 

about the type of interaction which could be an activation or a repression. Graph theory 

approaches can then be applied to exploit the structure and topology of the graph to identify 

particularities or features of interest (Koutrouli et al., 2020) (Figure 7).  

 
Figure 7. Overview of graph theory to exploit GRNs. 
Gene regulatory networks in which TFs are sources (red) and genes are targets (blue). A non-
extensive representation of the main graph properties is presented: hubs in which a TF has a high 
outdegree and modules that contains highly connected nodes. 
 

In particular, highly connected genes, named hubs, have been of particular interest to identify 

main regulators of a network. They can be identified based on the indegree of a node, 

corresponding to the number of other nodes regulating it, and its outdegree, corresponding 
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to the number of targets (Figure 7). Indeed, the main regulators are usually hubs with a high 

outdegree compared to the other nodes of the network (Wolf et al., 2021). Moreover, 

regulatory modules can be detected based on the network topology by identifying clusters 

of nodes highly connected (Song et al., 2017) (Figure 7). These regulatory modules have 

been shown to provide functional insights into the biological processes involved (Manners 

et al., 2016). In addition, other topological properties such as specific motifs are of specific 

interest to understand the regulatory mechanisms involved (Zhang and Zhang, 2013). 
 

GRNs have been widely exploited to identify optimal TFs candidate based on the network 

topology for cell conversion strategies such as reprogramming into a cell type of interest 

(Hartmann et al., 2019). Master regulator TFs (MRTFs) can be captured by identifying TFs 

acting like hubs in the GRN, and hence are the main regulators of a group of genes. These 

MRTFs have most likely an important effect on the gene regulation if their expression is 

perturbed, which has been shown as a promising strategy for cell conversions (Wild and 

Tosh, 2021). Moreover, GRNs have been used to study diseases and provide transcriptional 

mechanisms insights into the dysregulations involved (Iacono et al., 2019). One standard 

strategy consists of performing a comparative analysis between the GRN in healthy 

condition and in disease one (Singh et al., 2018). Such comparison unveils the changes in 

regulatory interactions and allows to identify the regulations involved in the disease, the 

genes dysregulated and potential targets for disease treatment (Weighill et al., 2021). For 

instance, the generation of a GRN around LRRK2 in PD guided the discovery of RGS2 as a 

modulator of LRRK2 activity that could be used as a therapeutic target to interfere with 

neurodegeneration in PD patients having the LRKK2 mutations (Dusonchet et al., 2014). 

 

1.4.4 Identification of dysregulated mechanisms in diseases 

The disruption of gene regulation is an important contributor to diseases (Tong Ihn Lee, 

2013). Indeed, the impairment in gene expression levels above or below certain thresholds 

can lead to significant impacts on the phenotype of cells and lead to a wide diversity of 

diseases (Matharu and Ahituv, 2020). It has been shown that mutations in cis-regulatory 

elements such as enhancers are key drivers of the alteration of gene regulation in diseases 

(Epstein, 2009; Claringbould and Zaugg, 2021). In addition, genome-wide association 

studies (GWAS) have been widely used to discover genomic loci containing SNPs 

associated with disease-related phenotypes and systematically investigate disease-related 

molecular mechanisms (Visscher et al., 2017). In particular, the majority of SNPs have been 
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shown to lie in non-coding regions such as enhancers, for which the regulatory mechanisms 

remain unresolved (Ward and Kellis, 2012; Claringbould and Zaugg, 2021). Nevertheless, 

the identification and study of expression quantitative trait loci (eQTLs) uncovered the effect 

of variants on gene expression to provide a better understanding of their implication in 

diseases (Nica and Dermitzakis, 2013). Recent efforts were made to provide more insights 

into the functions of disease variants by building enhancer-gene landscapes for cell types 

and studying their relationships with SNPs (Kikuchi et al., 2019; Chen et al., 2021; Võsa et 

al., 2021; Nasser et al., 2021). For instance, genome-wide maps containing millions of 

enhancer-gene connections were generated to highlight the function of variants related to 

inflammatory bowel disease (Nasser et al., 2021). Notably, future directions for a more 

comprehensive view of the complexity of dysregulated mechanisms involved in diseases lie 

into the use of single cell strategies to dissect the heterogeneity of eQTLs effects across cells, 

such cell state-dependent eQTLs effects (Nathan et al., 2022). 
 

Data-driven computational methods to infer regulatory interactions in healthy and disease 

conditions provided a valuable approach to study dysregulations of transcriptional regulatory 

mechanisms (Emmert-Streib et al., 2014). Indeed, the detailed GRN of disease-relevant cell 

(sub)types or states is required to translate risk-variants into mechanistic insights (Chiou et 

al., 2021). Moreover, the fine-mapping of SNPs to regulatory networks has been used to aid 

the discovery of core disease genes and downstream impacts to provide cell type and disease 

specific insights (Broekema et al., 2020). In addition, the prioritization of SNPs falling into 

regulatory regions has been widely performed using computational analysis of the TF 

binding sites or motifs (Maurano et al., 2015; Broekema et al., 2020). Whereas cell-type 

specific impairment has been widely studied over the years (Watanabe et al., 2019; 

Doostparast Torshizi et al., 2020; Bryois et al., 2021; Wong et al., 2021), the specificity of 

cell subtype and state impairment as well as their implication in diseases remains 

undetermined (Figure 8). In that regard, a recent study uncovered for the first time a specific 

subpopulation of dopaminergic neurons that selectively degenerate in PD, demonstrating the 

importance of dissecting cell (sub)populations heterogeneity to discover specific impairment 

in diseases (Kamath et al., 2022). In addition, a method to characterize complex trait and 

disease relevant genetic associations has been implemented to study cell (sub)types, states 

and trajectories, hence putting emphasis on the importance to leverage the single-cell 

resolution to unveil the complexity of diseases (Yu et al., 2022). 
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Figure 8. Perspectives to uncover cell (sub)populations specific impairment in diseases. 
Bottom left picture was taken from (Factor et al., 2020). This figure summarizes the current studies 
focusing on uncovering cell-type specific impairment or involvement in specific diseases (left panel) 
and recent studies that started to focus on the characterization of cell subtypes or states specific 
impairment (right panel).  
 

mRNA

mRNA

Present Perspectives

Impaired cell type

Cell subtypes or states

Legend

Transcription factor

Enhancer region

Promoter region

SNP

Binding site

Impaired cell subtype

mRNA

Regulatory interaction



 21 
 
 

 

2 Scope and aims of thesis 
 
2.1 Scope  
This PhD thesis is focused on disease modelling using single cell-based computational 

approaches to pave the way towards the development of new therapeutic strategies. 

Computational biology applied to disease modelling is an active research field of systems 

biology aiming at developing computational methods to study and understand diseases. In 

that regard, the aspects presented in this thesis include the characterization of cell identity, 

the dissection of cellular heterogeneity, the identification of potential candidate molecules 

for cellular conversion, and the capture of impaired regulatory mechanisms in diseases. The 

emergence and fast development of single-cell based technologies allowed an unprecedented 

resolution of the cell features measurement and highly contributed to the development of 

novel computational methods that tackle different aspects of disease modelling. However, 

despites several efforts that have been made in the past few years, several challenges remain 

to be solved and many limitations need to be overcome. 

 

2.2 Aims 
 

This PhD project aimed at developing three computational methods to address different 

aspects of disease modelling to guide the development of novel therapeutic strategies. Taken 

together, these methods aim at contributing to a better understanding and characterization of 

cellular heterogeneity in physiological and pathological conditions, and at providing 

additional insights into impaired regulatory mechanisms in diseases. 
 

Aim 1: Development of a computational method to characterize cell identity and 

accurately capture identity genes. In this study, we focused on the characterization of cell 

identity by capturing identity genes for any cell type, subtype and phenotype. We aimed at 

overcoming the main limitations of current methods that do not account for the underlying 

biological complexity of cells (e.g., mixture of cell types, subtypes and phenotypes) and also 

drastically categorize genes as being expressed or not, hence discarding genes at medium 

level of expression. Moreover, several studies have shown that the levels of expression of 

genes can lead to different functional outcome of the cells. Therefore, we sought at 

developing a computational method that can be applied to accurately characterize the identity 

of any cell type, subtype or phenotype. In addition, we aimed at generating high-resolution 

cell identity atlases to complete the existent knowledge and provide a comprehensive 

identity landscape that could be used to uncover cells displaying non-physiological features. 
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Aim 2: Implementation of a computational method to dissect functional heterogeneity 

and decipher the key genes characterizing the functional cell states identified. In this 

research study, we focused on the development of a systematic approach to dissect functional 

heterogeneity across cells in physiological and non-physiological conditions. We aimed to 

overcome the current limitations of computational methods that do not put emphasis on the 

subtle differences between cell states and do not provide an accurate functional 

characterization. Therefore, we sought at developing a method to accurately decipher 

functional cell states, the genes characterizing them as well as providing insights into the 

biological processes in which they are involved. In addition, we aimed at dissecting the 

functional heterogeneity of mouse immune cells in different type of infections to generate a 

large-scale catalog of candidate immunomodulators to pave the way towards the 

development of novel immunotherapies strategies. 
 

Aim 3: Development of a computational pipeline to infer comprehensive cell (sub)types 

specific GRNs and identify impaired regulatory mechanisms due to SNPs in diseases. 

With this study, we sought at developing a multi-OMICS pipeline to infer comprehensive 

cell (sub)type or state specific GRNs and systematically identify impaired regulatory 

mechanisms due to disease-related SNPs. Notably, we focused on the inference of GRNs 

describing the regulatory interactions mediated by TFs and enhancers of regulated genes by 

combining scRNA-seq, scATAC-seq, ChIP-seq and prior-knowledge data. We aimed at 

providing the scientific community with a user-friendly pipeline that exploit the GRN 

information to identify cell (sub)type or state specific regulatory interactions impaired by 

disease-related SNPs to provide better regulatory mechanistic insights for the disease. 

 

2.3 Originality 
The three computational methods presented in this thesis are addressing different challenges 

of disease modelling. They were developed to overcome the main limitations of existing 

approaches to characterize cell identity, decipher functional cell states, and infer 

comprehensive cell (sub)type or state GRNs to identify impaired regulatory interactions due 

to SNPs in diseases. Therefore, these methods and the findings of this PhD thesis are a 

valuable resource to have a better understanding of the cellular heterogeneity and complexity 

in physiological and pathological conditions. Furthermore, these outcomes provide a 

guidance for the development of novel therapeutic strategies.  
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3 Materials and methods 
 
Materials and methods details are presented in the results section of this thesis for the three 

manuscripts (sections 4.1 to 4.3). A brief summary is described below for each of them. 

 

3.1 Characterization of cell identity 
In “Quantification of gene level to characterize hierarchical cell identity” (section 4.1), we 

developed HCellig, a hierarchical cell identity-based computational method that quantifies 

gene expression into three levels, including low, medium and high, to capture identity genes 

of any cell type, subtype and phenotype. The implemented hierarchical cell identity model 

was composed of three hierarchical layers including cell type, subtype and phenotype. These 

three layers were used as a reference background to quantify the gene expression levels and 

capture identity genes of a target cell (sub)population. Notably, the gene expression 

quantification strategy was a single-cell based implementation of RefBool that uses a 

reference background dataset to quantify genes in three levels of expression including low, 

medium and high, using bulk RNA-seq data (Jung et al., 2017). Briefly, the reference 

background datasets were generated by first cleaning and normalizing the data using 

scTransform (Hafemeister and Satija, 2019), and then scaling each gene using its maximum 

value. Then, a bootstrapping approach was used to sample the background so that each cell 

population was equally represented to derive lower and upper thresholds distributions for 

each gene by solving an optimization problem. Finally, we identified genes displaying a 

bimodal pattern by using kernel density to compute the number of modes of the distributions 

(Statisticat, LLC., 2021) and selected genes having a distribution with two modes. Using a 

query cell (sub)population and the appropriate background dataset (e.g., cell type, subtype 

or phenotype), genes from the query were first normalized and scaled using the background 

information to make them comparable. Then, gene expression levels were quantified into a 

discretized matrix by computing p-values and q-values for each gene using the background 

thresholds distribution to categorize them as significantly low, medium or high. Notably, 

genes for which no significance could be determined were classified as non-significant, as 

the quantification level could not be determined with confidence. The general expression 

level of each gene in the query (sub)population was determined by first identifying genes 

significantly not expressed, and then distinguishing medium and high level of expression by 

computing their frequency across cells. Finally, identity genes of the query cell 

(sub)population were identified as genes being expressed with a high level and medium 
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level, under the condition that the gene was displaying a bimodal pattern in the background. 

Indeed, a gene expressed at a medium level in the query cell (sub)population and having a 

bimodal pattern in the background reflects a unique medium pattern for the cell 

(sub)population. 

 

We compiled reference background datasets for each hierarchical layer using the Tabula 

Muris (The Tabula Muris Consortium et al., 2018) and Tabula Sapiens datasets (The Tabula 

Sapiens Consortium and Quake, 2021) by manually curating the annotations and classifying 

them as cell type, subtype and phenotype. We then applied HCellig to all available cell types, 

subtypes and phenotypes to generate a high-resolution cell identity atlas for mouse and 

human independently. In addition, we applied our method to the mouse neuronal landscape 

(La Manno et al., 2021) to characterize the identity of neurons, neuron subtypes and neuron 

phenotypes, corresponding to neuron subtypes located in different brain regions. Finally, we 

performed functional enrichment analyses (Wu et al., 2021) and found extensive literature-

based evidences to showcase the functional relevance of the captured identity genes. 

 

3.2 Identification of disease-related functional states and genes 

In “A Catalogus Immune Muris of the mouse immune responses to diverse pathogens” 

(section 4.2), we developed FunPart, a network-based method combined with a recursive 

hierarchical clustering approach to decipher functional cell states and capture the functional 

gene modules characterizing them. Briefly, FunPart was based on a recursive feature 

selecting strategy combined with a hierarchical clustering approach to first select the most 

relevant set of genes and then perform the binary clustering of the cells. The identification 

of the functional gene modules was done by first building a correlation network between 

genes while keeping significant edges. Then, cliques of genes positively correlated together 

were identified and, pairs of cliques negatively correlated were selected. Finally, a functional 

enrichment (Wu et al., 2021) for each pair of cliques was performed and candidate pairs of 

cliques were selected if both cliques, named modules of genes, were found enriched in 

specialized biological processes. The best candidate was then identified by ranking the 

modules of genes by their enrichment score, and it was then used to perform the binary 

splitting of the cells using the hierarchical clustering approach. This strategy was performed 

recursively over the groups of cells until no more module of functional genes was identified, 

in which case the algorithm stopped as it had reached to functional homogeneity of the 

identified cell states. The output of the method was composed of all the functional cell states 
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identified, the module of genes characterizing each of them, and the biological processes in 

which these gene modules were enriched. 

 

FunPart was applied to a large compendium of mouse single-cell RNA-seq datasets 

composed of six immune cell types in the context of twelve different pathogens including 

virus, bacteria, fungi and parasites. A large atlas of immune functional states and key 

functional genes was generated from this analysis. Moreover, we compared FunPart 

performances to Seurat (Stuart et al., 2019), using the default parameters, and assessed their 

ability to identify homogeneous functional cell states. Finally, we performed an experimental 

validation of two TFs (Stat1 and Zfp597) belonging to gene modules negatively correlated 

and characterizing two distinct functional states of macrophages under Salmonella infection. 

The experiments were performed using shRNAs (Moore et al., 2010) to silence the two TFs 

independently, and the survival of Salmonella in each condition was assessed based on the 

hypothesis made from the analysis of the two macrophage states. 

 

3.3 Deciphering impaired regulatory mechanisms in diseases 
In “RNetDys: regulatory network inference to identify impaired interactions in diseases” 

(section 4.3), we developed RNetDys, a multi-OMICS pipeline to infer comprehensive cell 

(sub)type or state specific GRNs and systematically identify impaired regulatory 

mechanisms due to SNPs in diseases. Notably, the combination of scRNA-seq, scATAC-

seq, ChIP-seq and prior-knowledge data allowed the inference of GRNs describing the 

regulatory interactions mediated by TFs and enhancers of regulated genes. The pipeline was 

divided into two main parts composed of (i) the cell (sub)type or state specific GRN 

inference in healthy condition and (ii) the contextualization towards the disease state to 

identify impaired regulatory interactions due to SNPs. First, the GRN inference was 

performed by inferring TF-gene regulatory interactions using scRNA-seq data to select 

genes conserved at least in 50% of the cells from the cell (sub)type, and open promoter 

regions as well as binding TFs were identified by intersecting scATAC-seq and ChIP-seq 

data (Oki et al., 2018). Then, we inferred the enhancer-promoter interactions by computing 

a scATAC-seq peak correlation analysis to identify significant correlations between 

promoter and enhancer regions that were then intersected with the GeneHancer database 

(Fishilevich et al., 2017). We then predicted TF-enhancers interactions by intersecting the 

ChIP-seq and scATAC-seq data. Finally, each regulatory interaction of the GRN was signed 

based on correlation to distinguish activation from repression. Second, using the cell 
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(sub)type specific GRN, we contextualized the network towards the disease state and 

identified candidate impaired interactions by mapping the SNPs to TF binding sites of 

enhancer and promoter regions. We then performed a TF binding affinity analysis for TFs 

involved in the impaired interactions. The list of impaired regulatory interactions was then 

refined by selecting the ones involving at least one TF with impaired affinity. Finally, we 

ranked the TF regulators mediating the regulatory impairment by their degree of importance 

using the network topology, their impaired binding affinity score and the MAF score of each 

SNP involved. 
 

We assessed the performances of RNetDys in inferring cell (sub)type specific GRNs by 

benchmarking two types of interactions. First, we benchmarked the capacity of our approach 

to accurately predict cell (sub)type specific TF-gene regulatory interactions, and compared 

its performances to state-of-the-art methods including ppcor (Kim, 2015), CLR (Faith et al., 

2007), GENIE3 (Huynh-Thu et al., 2010), PIDC (Chan et al., 2017) and SCENIC (Aibar et 

al., 2017). Then, we assessed the accuracy of RNetDys to accurately predict cell (sub)type 

specific enhancer-promoter regulatory interactions compared to Cicero (Pliner et al., 2018). 

Of note, state-of-the-art GRN inference methods solely relying on scRNA-seq did not infer 

such interactions and hence were not included in this comparison. The precision (PPV) and 

F1-score were used to assess the performances of each method, using human cell line 

specific ChIP-seq GS for the TF-gene interactions and pcHi-C GS for the enhancer-promoter 

ones. Finally, we applied RNetDys to infer cell (sub)type specific GRNs from human brain 

and pancreas tissues and identify impaired regulatory interactions due to disease-related 

SNPs. We collected disease-related SNPs from ClinVar (Landrum et al., 2018) for five 

diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), Epilepsy (EPI), 

Diabetes Type I (T1D) and Type II (T2D). We validated the relevance of the predicted 

impaired regulatory interactions using GWAS, eQTL and literature-based evidences. 
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4 Results 
 
4.1 Characterization of cell identity 

4.1.1 Preface 

In this study entitled “Quantifying gene expression to characterize hierarchical cell 

identity”, we tackled one of the main challenges in systems biology consisting of the accurate 

characterization of cell identity. Current methods can identify identity genes by comparing 

gene expression of mixed cell (sub)populations, usually composed of different cell types, 

subtypes and phenotypes, which hinders the accurate characterization of the target cell 

(sub)population identity. Moreover, they do not distinguish between genes expressed at high 

or medium levels, important to accurately determine the cell functional identity as shown in 

several studies. To overcome these limitations, we present HCellig, a computational method 

that relies on the hierarchical organization of cell identity in three hierarchical layers 

including cell type, subtype and phenotype, to quantify gene expression levels into low, 

medium or high and capture identity genes.  

 

We made two novel contributions with this study. First, we developed a computational 

method to accurately capture identity genes and pre-compiled large-scale hierarchical 

background datasets to allow the identification of identity genes for any cell type, subtype 

or phenotype. Second, using HCellig we generated a high-resolution identity atlas composed 

of several cell types, subtypes and phenotypes for mouse and human. Furthermore, we 

showed the functional relevance of the captured identity genes and their importance for the 

cell identity. Finally, we applied HCellig to study the mouse neuronal landscape identity and 

highlighted the brain-region dependence of some identity genes, especially the ones 

expressed at a medium level. In summary, this study generated a high-resolution 

characterization of cell identity, while putting emphasis on the importance of the identity 

genes expressed at a medium level, which have been poorly studied so far. Moreover, 

HCellig will be of great use to pave the way towards a more accurate characterization of cell 

identity, especially with the ongoing generation of new organism-wide scRNA-seq data.  

 

Contribution: I implemented the computational method, performed the stability analysis of 

the algorithm, collected and pre-processed the human data, manually curated the annotations 

for the mouse, human and brain datasets, compiled the hierarchical backgrounds, generated 

the hierarchical cell identity atlases for mouse and human, and wrote the manuscript. 
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Abstract 

Cellular identity, which reflects functional specialization of cells, depends on the biological 

context. In this regard, we present a hierarchical cell identity-based method which considers 

three hierarchical layers (cell types, subtypes and phenotypes), that quantifies different levels 

of gene expression to accurately identify cell identity genes (HCellig). We generated a high-

resolution cell identity atlas for human and mouse, and showed the functional relevance of 

identity genes expressed at different levels. 
 

Main text 

Multicellular organisms are composed of diverse cells which display different morphologies 

and specialized functions depending on their hierarchical classification of cell type, subtype 

or phenotype. The characterization of cellular identity, including the identity genes remains 

to be a central challenge in biology. Indeed, cell identity is initially acquired during 

development and then shaped by the micro-environment to perform specific functions1,2. 

The identification of identity genes remains a challenge as it highly relies on the biological 

context in which cells are characterized according to their hierarchical classification as cell 

types, subtypes or phenotypes3. Current computational methods are able to identify identity 

genes by comparing gene expression profiles of the target cell population with other cell 

populations in given tissues4,5. Nevertheless, these tissue samples do not always contain all 

representative cell populations and are usually composed of a mixture of different cell types, 

subtypes and phenotypes, which hinders the accurate identification of the target cell 

population identity genes. For example, in order to identify the cell subtype identity genes 

of a dopaminergic neuron the proper comparison should be carried out with respect to the 

complete set of other neuronal subtypes (e.g., glutamatergic, serotoninergic) without 

including non-neuronal (sub)types. In addition, these methods categorize genes as expressed 
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or non-expressed and hence discard genes displaying medium expression level. However, it 

has been shown that varying expression levels can lead to diverse cellular functions6,7.  
 

Here, we present HCellig, a hierarchical cell identity-based method, which considers three 

hierarchical layers (cell types, subtypes and phenotypes), to quantify gene expression levels 

for the detection of the identity genes at each of these hierarchical layers (Fig. 1A, 

Supplementary Fig. S1).  In particular, the quantification of gene expression considers three 

levels (low, medium and high) to characterize cell identity genes. Moreover, the cell type 

level is composed of all cell types of the organism, whereas the subtype level comprises 

every subtype of a cell type, and the phenotype level considers the tissue type or condition 

specificity for a particular cell subtype (Fig. 1A). For this purpose, we built an extensive 

background database for each hierarchical layer by compiling scRNA-seq data for both 

mouse8 and human9 cell atlases (Supplementary Tables S1, S2). In order to extend the current 

knowledge of cell identity, we applied HCellig on a large-scale repository of cell types, 

subtypes, and phenotypes to generate a high-resolution cell identity atlas for each organism 

(Fig. 1B, Supplementary Fig. S3 and Tables S3, S4). Clustering cell types based on their 

identity genes showed that cell types which belong to the same broad categories were 

grouped together, reflecting their functional similarity (Fig. 1B, Supplementary Fig. S2). 

Furthermore, HCellig identified known markers for specific cell types and cell subtypes. For 

example, as expected the high expression of CD3 was able to identify T cells in both human 

and mouse (Supplementary Table S5). Moreover, CD8 expressing T cells were 

distinguishable as either cytotoxic or memory based on the medium expression of identity 

genes for these subtypes including TBX21, STK10 and ZBTB7A, which have not yet been 

fully elucidated (Fig. 1C, Supplementary Table S4). We then showed the functional 

relevance of detected identity genes, particularly those expressed at a medium level. In this 

regard, an enrichment analysis indicated that these identity genes participate in biological 

processes which are consistent with the cell (sub)type function. For instance, identity genes 

of monocytes were enriched for immune-related processes, such as phagocytosis and 

regulation of effector immune processes10 (Supplementary Fig. S4 and Table S6). In 

addition, we observed that T cell identity genes expressed at the medium level were enriched 

in functions involved in immune responses such as cytokine production and response to 

stimulus, supporting their functional relevance11 (Fig. 1C). In particular, we found that the 

identity gene FYN is typically expressed at the medium level amongst T cells, however 

amongst specific subtypes the expression level is high (Supplementary Tables S4, S7). 
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Indeed, some studies have shown that the expression levels of FYN have an impact on T cell 

activation signals12,13, supporting the accuracy of our method to find functionally relevant 

cell identity genes. However, we noticed that most of the genes expressed at the medium 

level were poorly studied for the cell subtype-specific context (Supplementary Table S7).  
 

Finally, we applied HCellig to perform a case study of the mouse neuronal landscape (Fig. 

2A, Supplementary Table S8).  At the cell type level, we identified neuron identity genes 

expressed at a medium level known to be involved in neuronal functions (Supplementary 

Table S9). Moreover, we found that some identity genes ought to be expressed at the medium 

level, and changes in their expression have been shown to lead to dysregulation of the 

neuronal functionality (Supplementary Table S9). For instance, low and high expression 

levels of the gene Clasp2 dysregulate the neuronal polarity and synaptic function, suggesting 

its importance as an identity gene expressed at the medium level for neurons14. Similarly, 

Dscaml1 low and high expression levels lead to impaired migration or self-avoidance defects 

in neurons15 (Supplementary Table S9). Moreover, we studied the variation of gene levels 

across the different neuronal subtypes (Fig. 2B, Supplementary Fig. S4). Interestingly, we 

found Pbx1 to be an identity gene highly expressed in dopaminergic neurons, while it was 

not an identity gene for other neurotransmitter neurons but found at a medium level (Fig. 

2B, Supplementary Fig. S4). Indeed, Pbx1 is known to be involved in maturation of 

dopaminergic neurons from neuroblasts and represses other cell fates, supporting its high 

level in dopaminergic neurons16. Finally, we observed variation of identity genes expressed 

at the medium level specific for subtypes across brain regions. This shows the region-

specificity of these medium expressed genes for the neuronal subtypes (Fig. 2C, 

Supplementary Fig. S5).  
  
In conclusion, we developed HCellig, a hierarchical cell identity-based method, that 

quantifies gene expression in low, medium and high levels, to capture cell identity genes for 

any cell type, subtype and phenotype. We generated a cell identity atlas for mouse and 

human, the latter being more complete due to the extensiveness of the data. Moreover, we 

provided background datasets that can be used to quantify gene expression levels to detect 

identity genes of any new cell type, subtype or phenotype. Furthermore, we showed the 

functional relevance of deciphered identity genes, highlighting the lack of knowledge for 

those medium identity genes. Indeed, studies cataloging cells have been only focusing on 

highly or lowly expressed genes1,5, hence missing valuable data when it comes to genes 
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expressed at a medium level that could lead to important functional differences6,7.  In 

summary, we expect the cell identity atlases, as well as the implemented method HCellig, to 

be of great use to pave the way towards a more accurate characterization of functional 

cellular identity. 
 

Online Method 
 

HCellig workflow 

We developed HCellig, a hierarchical cell identity-based method, that quantifies gene 

expression in low, medium and high levels, to capture cell identity genes for any cell type, 

subtype and phenotype at each hierarchical level. The quantification strategy is based on 

RefBool17 and was adapted for single-cell UMI data. HCellig takes as an input the single cell 

UMI matrix of a cell type, subtype or phenotype and the background data based on the 

hierarchical level. The quantification strategy is composed of two main parts: (1) the 

construction of a background at one of the three hierarchical levels, (2) the gene 

quantification of a query cell type, cell subtype or phenotype. In fact, the background 

construction is optional as we built pre-compiled backgrounds for mouse and human, 

generated in this study, to quantify gene expression levels and identify identity genes of a 

query cell population.  
 

Background construction 

The compilation of a background was the first step of the method and was later used to 

quantify gene expression of a query cell population, including cell type, cell subtype and 

phenotype. The strategy to build the background at the cell type level was different from the 

one at the cell subtype and phenotype level as it included two layers of information to process 

the thresholds. Regardless of the level of hierarchy considered, the first step was to clean the 

data. We removed all genes expressed in less than 10 cells, cells with no gene expression, as 

well as low quality cells using the strategy provided in the Scuttle R package. In addition, 

cell populations with less than 50 cells were removed from further analyses to assess the 

threshold distribution properly. Then, the single cell matrix was normalized using 

scTransform18, which considers the batch correction which is a necessary step especially for 

cell type backgrounds that might contain different datasets. In fact, normalization factors 

used for each gene were saved as a component of the background that were used for gene 

quantification. After normalization, the general scaling factors were retrieved and saved for 

each gene as being the maximum gene expression value found in the normalized data. Then, 
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the next step consisted into the generation of lower and upper-threshold distributions using 

optimization functions combined with a bootstrapping approach: 
 

1. Sampling of the data: this step differed between the different hierarchical levels. In the 

case of a cell type background, two layers of information composed by the tissue and 

cell type were used, whereas for the subtype or phenotype level, only the cell population 

was used to sample the data. For each gene, cells with non-zero values were kept under 

the condition that at least 10 cells are found. If less than 10 cells with non-zero value 

are identified, the gene was removed from the analysis. This step aimed to represent 

equally each cell population in the background. Therefore, 100 cells from each 

population were sampled with replacement from the normalized data. 
 

2. Scaling of the sampled data: each gene was scaled using its maximum expression value 

to have a range from 0 to 1, required for the threshold computation. 
 

3. Lower and upper-thresholds identification: for each gene, thresholds were derived using 

two step functions by solving the optimization problem of maximizing the area over the 

step function for the left tail and maximizing the area under the step function for the 

right tail of the empirical cumulative distribution function17 (Supplementary Fig. S1). 
 

The computation of 1000 bootstraps of the three previous steps resulted into the background 

threshold distributions, composed of upper and lower thresholds for each gene. Finally, 

genes with bimodal expression pattern were identified by calculating the number of modes 

of the distribution based on kernel density using the LaplacesDemon R package as follow:  
 

1. We performed 100 bootstraps of background sampling and scaling to obtain the 

background distribution of each gene. 

2. The number of modes was computed. If the gene distribution had 2 modes, it was 

considered to be bimodal (is.bimodal() function of the R package). 
 

These two steps were repeated three times and bimodal genes consistently identified were 

considered as being truly bimodal in the background. In summary, the background 

construction provided for each gene the following outputs that are used for the gene level 

quantification and gene identity identification including: (1) the normalization factor, (2) the 

scaling factor, (3) the thresholds distribution and (4) if the gene was bimodal. 
 

Gene level quantification 

HCellig quantified the gene expression of a query cell population (cell type, cell subtype or 

phenotype) into three levels of expression: low, medium and high compared to a specific 
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background. As for the background construction, data was cleaned using the same strategy, 

each gene was normalized and scaled using the corresponding factors from the background. 

Then, based on the derived threshold distribution described previously and the genes 

expression of the query cell population, the method computed p-values for each gene to 

determine if the gene was significantly high or not by performing a one-sided test against 

the null hypothesis for which the gene is not significantly high. In addition, q-values were 

derived and a Benjamini Hochberg multiple testing correction was performed. Furthermore, 

HCellig identified an intermediate level of expression defined as values significantly greater 

than the lower-thresholds and significantly lower than the higher thresholds. The output was 

a discretized matrix of quantified gene levels consisting of low, medium, high expression 

levels (Supplementary Fig. S1). Genes with non-significant p-values (default to p < 0.05) 

were assigned as non-significant, as the quantification level cannot be determined with 

confidence. Finally, HCellig identified the overall level of expression of each gene in the 

query cell population. Based on the generated discretized matrix, for each gene we calculated 

the frequency of the three levels. Then, we computed a Z2-score threshold based on a 

binomial distribution to distinguish significantly expressed genes (high or medium) from the 

ones lowly expressed. Finally, high and medium levels of expression were distinguished 

based on their maximum frequency in the query cell population. 
 

Identification of identity genes 

HCellig identified the identity genes of the cell population (cell type, cell subtype or 

phenotype). We defined as identity genes those highly expressed genes as well as genes 

expressed at a medium level with a bimodal pattern in the background. Indeed, if a gene was 

found to be at a medium expression level in the cell population while it displayed a bimodal 

pattern in the background, we considered this gene to be part of the identity.  
 

Pre-compiled backgrounds construction 

We collected organism-wide UMI data for Human, from the Tabula Sapiens study9, and 

Mouse, from the Tabula Muris study8. We performed a manual curation of the original 

metadata to classify cell types and cell subtypes accordingly for each tissue provided. In 

addition, due to the large size of the Tabula Sapiens data, we performed a downsampling 

while limiting the loss of information as follows: each cell subtype of each cell type of each 

tissue was downsampled to 200 cells. In case the number of cells was smaller than 200 cells, 

we kept the original number of cells for the specific cell subtype. The downsampling of the 



 34 
 
 

 

Tabula Sapiens allowed us to have about 62 200 cells compared to about 450 000 cells from 

the original data, while conserving all the cell (sub)types across tissues. For each dataset, a 

quality control was performed: all non-expressed genes were removed and cells containing 

less than 2500 UMIs were removed from further analyses. We applied HCellig to pre-

compile backgrounds for both organisms at each hierarchical level: cell type, cell subtype 

and phenotype. In fact, we could not build phenotype backgrounds for Mouse as no subtypes 

with at least 50 cells could be found in at least two different tissues. The different 

backgrounds were processed as follow for each organism: 
 

- Cell type backgrounds: the tissue and cell type information were provided to the 

algorithm, hence allowing a sampling based on two layers of information to build the 

background thresholds. 
 

- Cell subtype backgrounds: for each cell type independently, the cell subtypes were 

provided to the algorithm to build the background thresholds. 
 

- Phenotype backgrounds: for each cell subtype independently, the specific tissues in 

which the cell subtype could be found were used in order to compile the background 

thresholds.  
 

Large-scale repository of hierarchical cell identity for mouse and human 

We built a large-scale identity atlas for mouse and human by quantifying gene expression 

and identifying key identity genes for each cell population available including cell types, cell 

subtypes and phenotypes. Indeed, few subtypes and no phenotypes for Mouse could be 

included due to the limited annotations and number of cells in the dataset. The gene 

quantification and key identity genes identification was performed for each cell population 

with at least 10 cells accordingly with the hierarchical cell identity model: (1) the cell type 

background was used for every cell types, (2) cell subtype backgrounds were used 

accordingly with the subtype considered (e.g., the T cell background was used for T 

regulatory cells) and (3) human phenotype backgrounds were selected in accordance with 

the phenotype to analyze (e.g., the classical monocyte background was used for the classical 

monocytes of the spleen). Furthermore, as the original Human data provides Ensembl IDs, 

we identified their corresponding Gene Symbol using the AnnotationDbi R package with the 

org.Hs.eg.db database version 3.12.0 and reported them accordingly in Supplementary Table 

S4. The hierarchical UMAPs were generated by computing for each corresponding level a 

discrete matrix with all identity genes identified in rows, the corresponding cell populations 
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in columns and the gene expression levels as value. In the discretized matrix, high level was 

equal to 1, medium level to 0.5, low level to 0 and non-significant or not found in the cell 

population to -0.5. For the cell type level UMAP visualization, cell types were grouped by 

broad categories displayed with different shapes whereas the different cell types were shown 

with gradient of colors. 
 

Stability assessment of HCellig 

We validated the stability of HCellig when different backgrounds were created using the 

same dataset as input (Supplementary Fig. S6). Indeed, as the method relies on a 

bootstrapping approach, we ensured its stability across runs and performed 10 runs using 

available mouse and human data at the subtype level (Supplementary Tables S1, S2). First, 

we assessed the stability of the background thresholds using a Kolmogorov-Smirnov test 

between the threshold distributions of each run across all genes for each subtype level 

background, by considering the thresholds to be stable if p-value < 0.05. Then, we computed 

the stability of the p-values, used to quantify the gene expression, using a Wilcoxon test 

between the p-values of each run for each cell subtype across all genes. The p-values 

thresholds were considered stable if p-value < 0.05. Finally, we verified the stability of the 

gene quantification into three expression levels by comparing for each cell subtype across 

each run (1) the significant genes identified and (2) their level of expression. The stability 

was measured by computing a ratio of common predictions versus all predictions, between 

pairwise runs, with a ratio of 1 reflecting a stability of 100%. Finally, we assessed the 

average stability of bimodal genes identified across the 10 runs for each subtype background 

by computing the ratio of common bimodal genes versus all bimodal genes between pairwise 

runs and computed the average by calculating the median value for each subtype 

background. 
 

Literature-based validation of the generated repository of identity genes 

We ensured that in our large-scale cell identity atlases, HCellig captured experimentally 

reported cell type and cell subtypes markers. Of note, phenotypes were discarded due to the 

lack of cell subtype tissue specific available information in literature. We used the Cell 

Marker database19 as a reference to collect experimentally validated markers in normal 

conditions and reported the ones matching with HCellig identity genes identified for each 

cell type and cell subtype, for mouse and human. In addition, we performed a literature 

search of medium identity genes, guided by the functional enrichment, for human T-cells 
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and four well studied subtypes (Treg, TCD4+ memory, TCD8+ memory, T cytotoxic) to 

support their functional relevance. 
 

Functional enrichment of large-scale cell identity genes 

We validated that the cell identity genes captured at each hierarchical level reflected the 

functional features of the specific cell types, cell subtypes and phenotypes analyzed. In order 

to validate the relevance of the captured identity genes, we performed a functional 

enrichment for every cell population on all identity genes and independently only on 

mediumly expressed identity genes. We used the ClusterProfiler R package20 to carry out 

an over-representation analysis of biological processes (BP). The universe was respectively 

set to all sequenced genes for mouse or human, BP categories tested were limited to 

categories containing 5 to 500 genes hence removing broad processes, a Benjamini-

Hochberg multiple correction was performed and enriched BP with a p adjusted value < 0.05 

were selected. Of note, gene symbols were used to perform the functional enrichment of the 

human cell population. For both organisms and each hierarchical level, we removed shared 

BPs between cell populations of the same level, hence keeping the specific ones, and selected 

the top 10 most enriched unique BPs, based on the GeneRatio provided by ClusterProfiler, 

for each cell population.  
 

Application on the mouse brain 

We utilized a comprehensive mouse brain atlas data21 to perform a deep case study. A quality 

control as well as a down-sampling was performed on the raw data, using the same strategy 

as the one used for the Tabula Sapiens to conserve as much information as possible. In 

addition, a manual curation of the neuron annotation was performed to fit the hierarchical 

identity concept. We applied HCellig to quantify gene expression of neuronal cells at each 

hierarchical level including cell type, cell subtypes and phenotype. For the cell type level, 

we used the background constructed from Tabula Muris to quantify the neuronal gene 

expression. Then, based on the curated metadata, we selected neuronal subtypes including 

dopaminergic, GABAergic, glutamatergic, serotonergic, glycinergic, sensory and motor 

neurons to build cell subtype level backgrounds to accordingly quantify the gene expression 

of these neuronal subtypes and capture identity genes for each one of them. Finally, the 

neuronal subtypes were further divided based on the major brain region including Forebrain, 

Midbrain and Hindbrain. The region based neuronal subtypes data was used to construct the 

phenotype level background for five of the neuronal subtypes. Indeed, phenotype 
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backgrounds for dopaminergic and motor neurons were not generated due to the lack of data.  

We then performed pairwise comparisons of gene expression levels across the neuron 

subtypes to identify genes displaying different levels depending on the neuron subtype. 

Finally, we performed an analysis at the phenotype level by merging medium identity genes 

of the neuronal subtypes across the three major brain regions. Genes with strong variation 

were ranked based on the Euclidean distance between the distribution of gene level 

quantification values.  
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Figure 1. Hierarchical cell identity concept, repository and validation. 
(A) Hierarchical cell identity concept to capture refined identity genes. (B) Hierarchical cell identity 
landscape for Human cell types, T cell subtypes and Treg phenotypes. (C) Functional relevance of 
medium identity genes for human T cells and four related subtypes. 
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Figure 2. Characterization of hierarchical brain cell identity. 
(A) Hierarchical identity concept applied to the mouse brain. (B) GABAergic and Dopaminergic 
neurons gene quantification comparison. (C) Brain region variation of gene expression levels for 
Serotoninergic neurons. 
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4.1.3 Supplementary Information 
 
The supplementary tables S3, S4, S6 and S8 can be found in the GitHub repository of the project, 

due to their size and complexity: https://gitlab.com/C.Barlier/HCellig_analyses. 

 

Supplementary Tables legends: 
Table S1. Composition of the hierarchical layers for Mouse. 

Table S2. Composition of the hierarchical layers for Human. 

Table S3. Cell identity genes for mouse cell types and cell subtypes. 

Table S4. Cell identity genes for human cell types, cell subtypes and phenotypes. 

Table S5. Literature based validation of known markers. 

Table S6. Functional enrichment of identity genes for each hierarchical level. 

Table S7. Literature support for medium identity genes of T cells and related subtypes. 

Table S8. Hierarchical cell identity genes for the brain application. 

Table S9. Literature support for medium identity genes in the brain study case. 

 

Supplementary Figures: 
Figure S1. General workflow of HCellig. 

Figure S2. Landscape of mouse cell types. 

Figure S3. Functional enrichment of hierarchical identity for human monocytes. 

Figure S4. Genes level of dopaminergic neurons compared to other neuronal subtypes. 

Figure S5. Glycinergic and Sensory medium identity genes across brain regions. 

Figure S6. HCellig stability of thresholds and predictions.
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Table S1. Composition of the hierarchical layers for Mouse. 

Mouse Cell Type Background 
Cell types 

basal epithelial cell 
basophil 

B cell 
chondrocyte 

endothelial cell 
epithelial cell 
erythroblast 
fibroblast 

granulocyte 
hematopoietic precursor cell 

hepatocyte 
keratinocyte 

luminal epithelial cell 
luminal progenitor 

macrophage 
mesangial cell 

mesenchymal stem cell 
monocyte 
NK cell 

podocyte 
skeletal muscle satellite cell 

stromal cell 
T cell 

Thymocyte 
umbrella cell 

2 Mouse Cell Subtype Backgrounds 
Cell types Cell subtypes 

mesenchymal stem 
cell 

mesenchymal cell Car3+ 
mesenchymal cell Scara5+ 

T cell T cell CD4+ 
T cell CD8+ 

 
Table S2. Composition of the hierarchical layers for Human. 

Human Cell Type Background 
Cell types 
acinar cell 

adventitial cell 
aerocyte 

B cell 
basal cell 
basophil 
beta cell 

cardiomyocyte 
ciliated cell 

club cell 
common myeloid progenitor 

dendritic cell 
ductal cell 

endothelial cell 
enterocyte 

enteroendocrine cell 
epithelial cell 
erythrocyte 

erythroid progenitor cell 
eye photoreceptor cell 

fibroblast 
goblet cell 

granulocyte 
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hematopoietic stem cell 
hepatocyte 

intestinal crypt stem cell 
ionocyte 

keratinocyte 
lacrimal gland functional unit cell 

limbal stem cell 
luminal epithelial cell 

macrophage 
mast cell 

melanocyte 
mesenchymal stem cell 

microglial cell 
monocyte 

mucus secreting cell 
Muller cell 
muscle cell 

myoepithelial cell 
myometrial cell 

natural killer cell 
neutrophil 

pancreatic stellate cell 
paneth cell 

pericyte 
platelet 

pneumocyte 
radial glial cell 

skeletal muscle satellite stem cell 
smooth muscle cell 

stromal cell 
surface ectodermal cell 

T cell 
tendon cell 
thymocyte 

transit amplifying cell 
tuft cell 

urothelial cell 
9 Human Cell Subtype Backgrounds 

Cell types Cell subtypes 
B cell memory b cell 

plasma cell 

dendritic cell 
CD141 myeloid dendritic cell 
CD1C myeloid dendritic cell 
plasmacytoid dendritic cell 

endothelial cell 

capillary endothelial cell 
endothelial cell of artery 

lymphatic endothelial 
vein endothelial cell 

fibroblast keratocyte 
myofibroblast cell 

monocyte 
classical monocyte 

intermediate monocyte 
non-classical monocyte 

muscle cell fast muscle cell 
slow muscle cell 

pneumocyte type i pneumocyte 
type ii pneumocyte 

T cell 

mature NK T cell 
regulatory t cell 

TCD4 alpha/beta memory 
TCD4 helper 

TCD8 alpha/beta cytotoxic 
TCD8 alpha/beta memory 

DN1 thymic pro-T cell 
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thymocyte DN3 thymocyte 
24 Human Cell Phenotype Backgrounds 

Cell subtypes Tissues 

capillary endothelial cell 

bladder organ 
lung 

muscle tissue 
thymus 
tongue 

CD1C myeloid dendritic 
cell 

lymph node 
skin of body 

classical monocyte 
blood 
lung 

lymph node 
spleen 

endothelial cell of artery 

lung 
mammary gland 

muscle tissue 
thymus 

vasculature 

fast muscle cell muscle tissue 
thymus 

immature enterocyte large intestine 
small intestine 

intermediate monocyte 
lung 

lymph node 
spleen 

lymphatic endothelial 

bladder organ 
muscle tissue 

saliva-secreting gland 
thymus 
uterus 

mature enterocyte large intestine 
small intestine 

mature NK T cell 

adipose tissue 
bladder organ 

blood 
bone marrow 

kidney 
liver 
lung 

lymph node 
prostate gland 

saliva-secreting gland 
skin of body 

spleen 
thymus 

vasculature 

memory b cell 

blood 
bone marrow 
lymph node 

saliva-secreting gland 
spleen 
thymus 

myofibroblast cell adipose tissue 
bladder organ 

naive b cell 

blood 
bone marrow 
lymph node 

saliva-secreting gland 
spleen 
thymus 

plasma cell bladder organ 
blood 
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bone marrow 
large intestine 

lung 
lymph node 

mammary gland 
pancreas 

saliva-secreting gland 
small intestine 

spleen 
thymus 
trachea 

regulatory t cell 
lymph node 
skin of body 

spleen 

TCD4 alpha/beta 

bone marrow 
large intestine 

lung 
lymph node 

muscle tissue 
skin of body 

small intestine 
spleen 
trachea 

TCD4 alpha/beta memory 

blood 
lymph node 
skin of body 

spleen 

TCD4 alpha/beta naive blood 
lymph node 

TCD4 helper 

kidney 
saliva-secreting gland 

skin of body 
thymus 

TCD8 alpha/beta 

blood 
bone marrow 

kidney 
large intestine 

lung 
lymph node 

prostate gland 
saliva-secreting gland 

skin of body 
small intestine 

spleen 
thymus 
trachea 

TCD8 alpha/beta cytotoxic skin of body 
thymus 

TCD8 alpha/beta memory lymph node 
spleen 

type I NKT cell 
blood 

lymph node 
spleen 

vein endothelial cell 

bladder organ 
lung 

mammary gland 
thymus 
tongue 
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Table S5. Literature based validation of known markers. 
HUMAN 

Hierarchical 
Level Cell (sub)population Identity genes found in CellMarker 

CELL TYPE 

Hepatocyte CPS1,ABCC2,HNF4A,ARG1,CYP3A4,ALB 
Limbal stem cell TP63,SOD2,KRT15,KRT14 

Endothelial cell ICAM1,FLT1,ENG,ICAM2,VWF,PTPRB,NECTIN2,PLVAP,EMCN
,THBD,CDH5,AQP1,ECSCR,PECAM1 

Hematopoietic stem cell CD38,PROM1,PTPRC 
Fibroblast VIM,PDGFRB,PDGFRA 
Pericyte MCAM,ACTA2,PDGFRB,CSPG4,PECAM1 

Mesenchymal stem cell VIM,CD44,ZBTB16,CD81,PDGFRA,ITGB1,VCAM1,BSG,MME 
Smooth muscle cell MCAM,ACTA2,DES 
Myoepithelial cell ACTN1,CNN1,ACTN4,BHLHE40,ITGB1,S100A1,KRT14 

Cardiomyocyte ACTN1,TNNT2,TNNI3,VCAM1,MYH6 

Macrophage 

TFRC,FCGR2B,PTPRC,ICAM1,LYZ,CD83,IL1RN,FCGR2A,ITGB
2,CD14,CD163,HLA-DQB1,CSF1R,HLA-DRB1,HLA-DQA1,HLA-
DRB5,FCGR3A,HLA-DMA,HLA-DRA,AIF1,HLA-DPB1,HLA-
DPA1,MRC1 

B cell CD74,POU2F2,PTPRC,CD79A,MS4A1,HLA-DRB1,HLA-
DRA,IGHM 

Microglial cell AIF1 
Stromal cell VIM,CD44,NT5E,ITGB1,ANPEP,GREM1,CD34 

Epithelial cell VIM,CDH1,KLF6,TJP1,KRT18,EPCAM,KRT7,PIP,CLDN1,CTNN
B1,KRT8,KRT19,KRT13,MUC16,MUC1,KRT3 

Intestinal crypt stem cell CD24 

Keratinocyte CD44,ALDH3A2,ITGA6,ALDH3A1,ALDH2,ALDH3B2,ALDH9A1,
ALDH7A1,ALDH1A1,KRT5,KRT14,SPRR2A 

Erythrocyte GYPA 

Neutrophil PTPRC,CEACAM8,LCN2,FCGR3B,MNDA,CXCL8,ITGAM,CD14,
FPR1,FCGR3A,CD24 

Neuron MAP2 

Monocyte 
TNFRSF1B,PTPRC,LYZ,CD36,FCGR2A,S100A8,ITGB2,MNDA,C
D52,CD14,CD163,SELL,HLA-DRB1,FCGR3A,HLA-
DRA,PECAM1 

T cell PTPRC,CD69,CD2,CD3G,CD3D,IL7R,CD7,CD3E 
Granulocyte PTPRC,FUT4,HLA-DRA 

Basophil CD69,HLA-DRA 

Dendritic cell 
CD83,CD86,CD1A,CD1C,CD14,THBD,HLA-DQB1,HLA-
DRB1,HLA-DQA1,CLEC9A,HLA-DMA,HLA-DRA,HLA-
DPB1,HLA-DPA1,HLA-DQA2,HLA-DMB 

Platelet ITGA2B,SELP,PECAM1 
Basal cell CD151,KRT5,KRT14,S100A6 

Natural killer cell PTPRC,KLRD1 
Mast cell KIT,SLC18A2,FCER1A 
Beta cell FXYD2,NKX6-1,HEPACAM2,INS 

Mesothelial cell UPK3B 
Eye photoreceptor cell CRX,RCVRN,RHO 

Urothelial cell DHRS2,UPK1B,NECTIN4,S100P 
Transit amplifying cell FABP5 
Luminal epithelial cell KRT18,KRT19,MUC1 

Alpha cell GCG 
Muller cell GLUL 
Club cell SCGB1A1 

Erythroid progenitor cell TFRC 

CELL 
SUBTYPE  

Myofibroblast cell VIM,ACTA2,FN1 
Type II pneumocyte CD44,PGC 

TCD4 alpha/beta naive CCR7,SELL,CD3E 
T helper follicular CCR7,ICOS,SELL,CD3E 

Regulatory T cell IKZF2,FOXP3,IL2RA,ENTPD1,CTLA4,CD3D,TIGIT,TNFRSF18,
CD3E 

TCD4 alpha/beta CD3E,LTB 
Intermediate monocyte CEACAM8,CD14,FCGR3A 
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Classical monocyte CD14 
Non-classical monocyte FCGR3A 

Plasmablast CD38 
Plasma cell CD38,TNFRSF17,SDC1,CD27 

CD1C myeloid dendritic 
cell ITGAX,CD1C 

CD141 myeloid dendritic 
cell ITGAX,CD1C 

Lymphatic endothelial FLT4,PROX1,PDPN 
Mature NKT cell GZMB,KLRD1,FCGR3A 
TCD8 alpha/beta NKG7,CD8A,CD3E 

TCD8 alpha/beta cytotoxic CD8A,CD3E 
Plasmacytoid dendritic cell THBD,CLEC4C 

MOUSE 
Hierarchical 

Level Cell (sub)population Identity genes found in CellMarker 

CELL TYPE 

Basal epithelial cell Cd24a,Itga6 
Basophil Mcpt8 

B cell Cd79a,Ms4a1,Cd24a,Ptprc 
Cardiomyocyte Tnnt2,Ryr2,Actc1,Nppa,Tnnc1,Myh6,Atp2a2,Actn2 
Dendritic cell Cd74,H2-Ab1 

Endothelial cell Egfl7,Fabp4,Cdh5,Pecam1,Eng,Emcn,Epas1,Plvap,Tie1,Cd34,Edn
rb,Lyve1 

Epithelial cell Ly6a,Cd24a,Epcam 
Erythroblast Tfrc 
Fibroblast Gsn,Sparc,Vim,Fstl1,Mmp2,Fbln2,Col3a1,Col1a2 

Granulocyte Itgam 
Hematopoietic precursor 

cell Cd47,Cd48,Kit,Cd34 

Hepatocyte Alb 
Luminal epithelial cell Cd24a 

Macrophage Cd74,H2-
Ab1,Lyz1,Lgals3,S100a4,Csf1r,S100a10,Fcgr3,S100a9,S100a8 

Mesenchymal stem cell Ly6a,Cd34,Thy1,Itgb1,Pdgfra,Vcam1 
Monocyte Cd48,Itgam 

Skeletal muscle satellite cell Cav1,Cdh15 
Smooth muscle cell Rgs5 

Stromal cell Cd34 
T cell Cd3d,Thy1,Cd2,Cd3e,Cd5,Cd8a 

Thymocyte Cd8a,Cd4,Cd5 

CELL 
SUBTYPE 

TCD4 cell Ptprc 
Mesenchymal cell Car3+ Car3 

Mesenchymal cell Scara5+ Scara5 
 
Table S7. Literature support for medium identity genes of T cells and related subtypes. 

Hierarchical 
Level 

Cell 
(sub)population 

Gene 
Symbol PMID Comment 

CELL TYPE T cells 

MYL6 25770220  

TPM3 https://www.jimmunol.org/content/20
6/1_Supplement/14.05  

 

RPS19 28228558 Antitumor immune 
reponses 

PSME1 9189757  

PTGER4 
22544928 PA28 subunit 

22544928 Support for level 
variation 

FYN 

15489916  

7594580 
Support for the 
medium level 

identity 
HCLS1 30537294  
GAPDH   
IQGAP1 22573807  
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CELL 
SUBTYPE 

TCD4+ memory 
ISCU 34880854 T cells in general 

(cell type) 

ENO1 32709897 T cells in general 
(cell type) 

Treg 

PARP1 23977081  
ATP5F1B 

20686167 Importance of 
Adenosine for Treg 

ATP5F1A 
ATP6 
APRT 

ENO1 32709897 T cells in general 
(cell type) 

PRKAR1A 24007532  

FERMT3 30187863 T cells in general 
(cell type) 

SIRPG 18524990 
T-cell 

transendothelial 
migration 

CSK 26302204 T cells in general 
(cell type) 

NCK2 20709959 T cells in general 
(cell type) 

TNIP1 20181891  

DUSP10 22387553 
Described for 

TCD8+ supressor T 
cells 

WNK1 27400149 T cells in general 
(cell type) 

TCD8+ cytotoxic 

TMED2   
TMED9   
CTSC   

RAB1B 31375559 
Indirect validation: 

response to viral 
infection 

GABARAP 31632966 T cells in general 
(cell type) 

GABARAPL2   

ENO1 32709897 T cells in general 
(cell type) 

ATP6AP2   
HOOK2   
PTK2B 20688918  
ZAP70 24596147  
STK10   

WNK1 27400149 T cells in general 
(cell type) 

TBX21 29488879 

T cells (cell type) 
general program, 

involvement toward 
TCD8+ (memory) 

RC3H1 34879274  

PHB 18086671 T cells in general 
(cell type) 

TCD8+ memory 

WNK1 27400149 T cells in general 
(cell type) 

MBP 12067310 Study in disease 
case (MS) 

MYADM   
CYRIB   

RPL13A 32005148 T cells in general 
(cell type) 

CRBN 
https://ashpublications.org/blood/articl

e/126/23/3440/90809/Genetic-
Ablation-of-Cereblon-CRBN-

Increases-Long  

 

ARFGEF1   
TMEM59   
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DHX36   
XRCC5   

CCT7 33268369 T cells in general 
(cell type) 

CNOT1 34349771 Thymocyte to T cell 
transition 

ZBTB7A 34349770 T cells development 
program 

PHB 18086671 T cells in general 
(cell type) 

 
Table S9. Literature support for medium identity genes in the brain study case. 

CELL TYPE 
Medium Identity Gene PMID Comment 

Ncam1 32632143 
 

Ulk2 29099309 
 

Nf1 31234911 
 

Camk2d 22612808 
 

Klf7 15964824 Required at medium level for neurons 
Klf7 11336497 Required at medium level for neurons 

Clasp2 28285824 Required at medium level for neurons 
Clasp2 23035100 Required at medium level for neurons 
Epha7 24707048 Required at medium level for neurons 

Dscaml1 33585465 Required at medium level for neurons 
Dscaml1 30745319 Required at medium level for neurons 

Fzd3 34414184 Required at medium level for neurons 
Fzd3 26939553 Required at medium level for neurons 

CELL SUBTYPE 
Medium Identity Gene PMID Comment 

Tubb3 22159867  
Chl1 23949217  
Stk11 30333724  
Id4 15882580  
Id4 31552825  

Cux2 20510857  
Sema6a 22685427  

Ache 15136152  
Ache 31031601  
Ndel1 22114287  
Nr3c1 33715314  
Nr3c1 32547368  
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Figure S1. General workflow of HCellig.  
This figure presents the workflow of HCellig using the subtype level of hierarchy as an example. The method first builds a background data using an UMI 
matrix and cell annotations to identify for each gene the normalization and scaling factors, the upper-bound threshold distribution and if the gene is bimodal or 
not. Using the generated background and the UMI matrix of a specific cell subtype (e.g. T cell CD4+), it quantifies gene expression accordingly with the 
background threshold distribution into three levels of expression: low, medium and high. Finally, identity genes for the subtype are identified by selecting genes 
expressed at a high or medium level, under the condition the gene is bimodal in the background for the medium level. 
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Figure S2. Landscape of mouse cell types.  
UMAP of cell types generated using high and medium identity genes identified with HCellig. 
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Figure S3. Functional enrichment of hierarchical identity for human monocytes.  
Top 10 unique BPs for (A) all identity genes and (B) only medium ones of human monocytes, (C) 
all identity genes and (D) only medium ones of human classical monocytes, (E) all identity genes 
and (F) only medium ones of human classical monocytes from lymph nodes. 
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Figure S4. Genes level of dopaminergic neurons compared to other neuronal subtypes. 
Dopaminergic neurons compared to (A) sensory neurons, (B) motor neurons, (C) serotoninergic 
neurons, (D) glutamatergic neurons and (E) glycinergic neurons. Heatmaps display the pairwise 
comparison of neuronal subtypes of their gene expression levels.  
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Figure S5. Glycinergic and Sensory medium identity genes across brain regions. 
Barplots for the functionally relevant genes of (A) glycinergic and (B) sensory neurons. This figure 
shows the variation of gene levels across the three major brain regions studied. 
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Figure S6. HCellig stability of thresholds and predictions.  
(A) Background thresholds average stability across 10 runs using all human and mouse subtype 
backgrounds. (B)  p-value thresholds average stability across 10 runs for all cell subtypes discretized 
using its corresponding subtype background. (C) Stability of the gene quantification for each cell 
subtype. (D) Average stability of the bimodal genes identified across 10 runs for all human and 
mouse subtype backgrounds.
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4.2 Identification of disease-related functional states and genes 
 
4.2.1 Preface 
 
This manuscript entitled “A Catalogus Immune Muris of the mouse immune responses to 

diverse pathogens” has been published in Cell Death and Disease in August 2021 and is 

accessible with the DOI: 10.1038/s41419-021-04075-y. The paper is under a CC BY license 

and the accepted version of the manuscript is presented in this thesis. The supplementary 

methods and figures are shown in this thesis, but supplementary tables are accessible online. 
 

In this study, we present a Catalogus Immune Muris, a valuable resource of functional 

immune cell states for designing novel immunomodulatory strategies. Indeed, discerning the 

functional states of immune cells and their transcriptional characterization is pivotal for the 

development of immunomodulatory therapeutic strategies. However, the development of 

such therapies based on the reprogramming of functional states is significantly impeded by 

the incomplete knowledge about the functional cell states established in response to 

pathogens and their characterization. We made two novel contributions with this study. First, 

we developed FunPart, a computational method to decipher functional cell states in diverse 

conditions and identify the genes characterizing their states. We showed that genes identified 

are functionally relevant for the deciphered cell state by manually collecting literature 

evidence. Moreover, we showed that our method accurately detects functional cell states 

compared to current state-of-the-art methods. Second, we built a Catalogus Immune Muris 

by applying FunPart to 114 single-cell datasets composed of six immune cell types in the 

context of twelve viral, bacterial, fungal and parasite infections. We demonstrated how the 

resource can be exploited to modulate the cellular response to pathogens in the context of 

macrophages infected by Salmonella enterica Serovar Typhimurium. Indeed, we identified 

a previously unreported TF, Zfp597, as a functionally relevant gene of a macrophage cell 

state and showed that its inhibition significantly increases their phagocytic activity, and 

hence results in a significant decrease in surviving bacteria.  

 

Contribution: I implemented the computational method, collected and processed the data, 

performed the analyses, and wrote the manuscript.
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4.2.2 Published paper 
 
Title: A Catalogus Immune Muris of the mouse immune responses to diverse pathogens 

Running title: An atlas of the mouse immune response to pathogens 
  

Celine Barlier1, Diego Barriales2, Alexey Samosyuk3, Sascha Jung4, Srikanth Ravichandran1, Yulia A. 
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Abstract 

Immunomodulation strategies are crucial for several biomedical applications. However, the 

immune system is highly heterogeneous and its functional responses to infections remains 

elusive. Indeed, the characterization of immune response particularities to different 

pathogens is needed to identify immunomodulatory candidates. To address this issue, we 

compiled a comprehensive map of functional immune cell states of mouse in response to 12 

pathogens. To create this atlas, we developed a single-cell-based computational method that 

partitions heterogeneous cell types into functionally distinct states and simultaneously 

identifies modules of functionally relevant genes characterizing them. We identified 295 

functional states using 114 datasets of six immune cell types, creating a Catalogus Immune 

Muris. As a result, we found common as well as pathogen-specific functional states and 

experimentally characterized the function of an unknown macrophage cell state that 

modulates the response to Salmonella Typhimurium infection. Thus, we expect our 

Catalogus Immune Muris to be an important resource for studies aiming at discovering new 

immunomodulatory candidates. 

Introduction 

The immune response to pathogens, such as viruses, bacteria, or fungi, is a complex process 

involving multiple immune and nonimmune cell types1,2. Although transcriptional changes 

of these cells in response to pathogens have been studied for decades, the development of 

sensitive analytical techniques such as single-cell RNA sequencing (scRNAseq) only now 
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enables the identification and functional characterization of cellular subpopulations in 

response to different stimuli. Thus, heterogeneous subpopulations can be identified by 

specialized transcriptional profiles that determine their identity and govern their interactions 

with invading pathogens3-6. Recent studies utilizing various pathogens have shown that 

complex transcriptional variability in macrophages govern their divergent response against 

individual invasive agents7,8. For instance, in the case of Salmonella enterica Serovar 

Typhimurium, the interplay between the bacteria and macrophages triggers two different 

scenarios in which some cells are polarized to anti-inflammatory response whereas others 

display an inflammatory output9. Moreover, a subsequent study was able to identify two 

distinct cellular states that are responsible for a bimodal type I interferon response10. 

However, most of these studies focus on a single pathogen, making them unable to decipher 

common and distinct cellular states established in response to different infections. To date, 

only a few meta-analyses exist that aim at identifying common and unique patterns of the 

immune response to pathogens11. Nevertheless, these studies are based on the average 

response across a population of cells or tissues, making them unable to detect functionally 

distinct subpopulations. Moreover, the number of pathogens considered in these studies 

remains limited, which impedes more general conclusions regarding the cellular response to 

different types of infectious agents. 
 

To date, several functional states of immune cells, such as macrophages, natural killer, and 

T cells, have been identified and characterized12-15. In general, discerning the functional 

states of immune cells and their transcriptional characterization is pivotal for the 

development of immunomodulatory therapeutic strategies. For instance, previous studies 

demonstrated the beneficial effect of reprogramming the macrophage polarization state to 

promote tumor suppression or alleviate autoimmunity in encephalomyelitis16,17. However, 

the development of new immunomodulatory therapies based on the reprogramming of 

functional states is significantly impeded by the incomplete knowledge about the functional 

cell states established in response to pathogens and their characterization. 
 

To address this challenge, we collected 114 single-cell datasets of six immune cell types in 

the context of 12 viral, bacterial, fungal, and parasite infections, and developed a 

computational method for identifying functional immune cell states in response to these 

pathogens, creating a Catalogus Immune Muris. We believe it will serve as a valuable 

resource of functional immune cell states to devise novel immunomodulatory strategies. 
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Materials and Methods 
 

Data collection, processing and annotation 

We collected 114 single-cell datasets composed of 6 immune cell types and 12 pathogens 

(Table S1). Raw data (accession numbers: PRJEB14043, E-MTAB-3857, and E-MTAB-

4388) were processed using state-of-the-art pipelines18. Smart-seq data were subjected to a 

quality control step using fastqc, reads were mapped to the mm10 genome using STAR 

aligner and the count matrix were obtained using featureCounts tool. A similar workflow 

was applied for UMI-based data, adding the demultiplexing step and replacing the counting 

tool by umi-tool. 
 

Datasets composed of several cell types were clustered using Seurat pipeline with default 

parameters, manually annotated and extracted. Cells were annotated using prior knowledge 

and CIPR web tool with default parameters19. Only the cells annotated with a good 

confidence were extracted and used to build the resource. 
 

Functional partitioning algorithm 

In order to reliably identify and characterize functionally relevant cell states, we developed 

a network-based approach combined with a recursive hierarchical clustering named FunPart. 

The algorithm is composed of four main parts: (1) cleaning and normalization of the data, 

(2) network-based approach to identify set of genes strongly correlated, (3) functional 

characterization of the set of genes using manually annotated immune modules by Singhania 

et al.11, and (4) recursive unsupervised hierarchical clustering to perform the splits. Each step 

is detailed in the Supplementary Information. A dataset for which no module is found is 

considered to be functionally homogenous and corresponds to one functional cell state. 
 

Validations and comparison with the state-of-the-art 

We first aimed at validating our method at two levels: (1) the relevance of genes belonging 

to the detected functional modules, and (2) the relevance of the predicted cell states. We 

collected literature evidences for some of the main TFs identified in each module focusing 

on evidences of the immune process identified for macrophages. Next, we aimed at 

comparing our method with Seurat, a state-of-the-art method20. Seurat and FunPart were 

used with default parameters for the 17 macrophages datasets. We assessed the functional 

relevance of predicted clusters by both methods and computed a score reflecting the 
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precision of each method in identifying real or artificial functional heterogeneity per dataset 

(Supplementary Information). 
 

Characterization of functional cell states  

FunPart provides gene modules characterizing the predicted functional cell states as well as 

the specific immune process in which they are enriched. In order to have an additional layer 

of information, we aimed at identifying known markers to further characterize these cell 

states. Immune cell type markers were collected from the CellMarker database by 

considering experimentally validated evidences only21. We performed feature selection 

using the Boruta algorithm22, a wrapper built around the random forest classification 

algorithm, to determine the importance of markers in classifying each cell states. Boruta was 

used in classification mode with default parameters for each cell state, details are provided 

in Supplementary Information. Fold changes and cell expression ratios were then computed 

for each cell states markers extracted by the algorithm (Supplementary Information). 
 

Metadata analysis 

Data integration was performed for each dataset using the standard workflow of Seurat 

(Supplementary Information). Cell states were then aggregated across datasets for each cell 

type by following a hierarchical clustering approach: (1) Each dataset was first normalized 

individually by the third quantile to overcome the different types of expression values 

present in the different datasets (TPM, CPM, UMI and counts), (2) The median expression 

of each gene in each cell state was calculated, (3) Euclidean distance was then used to build 

the dendrogram reflecting the similarity between states, and (4) the dendrogram was splitted 

at a height corresponding to the seventh quantile of the heights distribution. The aggregated 

states were then embedded into the computed UMAP for visualization and analyses. 
 

Mice and bacteria 

C57Bl/6 (B6) mice were purchased from Charles River Laboratories and bred in the Animal 

Facility at CIC bioGUNE. All the assays performed were approved by the competent 

authority (Diputación de Bizkaia) under European and Spanish directives. CIC bioGUNE is 

accredited by AAALAC Intl. 

Salmonella enterica subsp. enterica serovar Typhimurium SL1344 (German Collection of 

Microorganisms and Cell Cultures, Leibniz, DE) was grown in Luria Bertani medium 

(Sigma–Aldrich) without antibiotics. 
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Cell culture and gene silencing 

Bone-marrow-derived macrophages (BMMs) were generated from 6–12-week-old B6 mice, 

as previously described23. Low-passaged HEK293FT cells were cultured in DMEM 

containing 10% FBS and 1% penicillin-streptomycin. 

Lentiviral particles containing shRNA targeting Zfp597 (TRCN0000215620, 

TRCN0000179758, TRCN0000245367, Sigma–Aldrich) and Stat1 (TRCN0000235839) 

were generated using a third-generation lentivirus vector with a conditional packaging 

system24,25. Zfp597-silencing in BMMs was conducted by co-infection with lentiviral 

particles containing the three silencing constructs whereas for Stat1 one single construct was 

used. Lentiviral particles were added at days 3 and 5 of the differentiation process in the 

presence of 8 μg/ml protamine sulfate (Sigma–Aldrich). Controls were infected with 

lentiviral particles containing the empty vector, PLKO.1. BMMs derived from three 

independent mice were used in each silencing assay. 
  
Salmonella survival in murine macrophages 

S. typhimurium was grown from a diluted (1:50) overnight inoculum until they reached an 

O.D. = 0.6. BMMs were infected following the protocol by Avraham et al.10 at an m.o.i. of 

10. In the experiments using shSTAT1 cells, 100 ng/ml of recombinant murine IFNg was 

added at the same time than the bacteria. The mixture was centrifuged, incubated for 30 min, 

washed twice, and further incubated in the presence of 50 µg/ml gentamicin for 1 h. 

Macrophages were then washed and lysed in medium containing 0.1% Triton X-100. Cell 

lysates were centrifuged and resuspended in 1 ml of LB broth. Serial 1:10 dilutions were 

plated on LB-agar plates to determine the number of live intracellular bacteria per condition.  
  
Real time PCR 

Total RNA was isolated using the NucleoSpin® RNA kit (Macherey-Nagel) and reverse 

transcribed with M-MLV reverse transcriptase (Thermo Fisher Scientific). Real-time PCR 

was performed using the PerfeCTa SYBR Green SuperMix low ROX (Quantabio) on a ViiA 

7TM Real-Time PCR System (Thermo Fisher Scientific). Fold induction of Zfp597 was 

calculated relative to Rpl19 whereas Stat1 was compared to Actb by using the 2-ΔΔCt method. 

Standard curves of all primers were performed by testing serial dilutions of cDNA-

experimental samples obtaining an average of 100% ±5% efficiency. Correlation between 

target and housekeeping genes was assessed by standard curve comparisons (Zfp597-Rpl19 
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slope 0.0194 / Stat1-Actin slope 0.0188). Details about the primers used can be found as 

Supplementary Information. 
 

Statistics 

Three independent mice were used in each silencing assay. Data normality assumption was 

first validated using the Shapiro-Wilk test and variances between groups were analyzed 

using an F-test. Statistical difference between the two groups (control versus silenced assay) 

was then computed using a paired Student t-test. Results with a p value less than 0.05 were 

considered as being significant. 
 

Results  

Identification and characterization of functional immune cell states 

In order to create an atlas of functional immune cell states, we developed FunPart, a single-

cell-based computational method that partitions heterogeneous cell types into functionally 

distinct states and simultaneously identifies modules of functionally relevant genes that 

characterize them. Starting from a population of cells belonging to the same cell type, the 

method partitions them into two subpopulations by searching for modules that are (i) 

exclusively expressed in one subpopulation and (ii) composed of co-expressed TFs 

belonging to the same immunological process. This procedure is recursively repeated until 

no functionally relevant modules, associated to new subpopulations, can be found (Fig.1A). 
 

To demonstrate the ability of this method to detect functional immune cell states, we 

collected 17 macrophage datasets corresponding to the infection with eight different 

pathogens profiled at different timepoints (Table S1). Application of our proposed method 

to these datasets revealed the presence of 9 M1-like, 13 M2-like cell states, and 14 middle 

range states expressing simultaneously some M1-like and M2-like markers12 (Fig. S1). 

Moreover, literature evidences were found for every immune process and pathway reported 

by FunPart for the 12 intermediate genes modules, used to distinguish groups of functional 

states and 26 terminal gene modules, characterizing each individual state (Fig. 1B, C, Table 

S2). Next, we aimed at demonstrating that current clustering tools are unable to identify 

subtle functional differences and applied Seurat20,26, a widely used state-of-the-art clustering 

method, to each of the datasets. As expected, the subpopulations obtained are vastly 

different, with FunPart identifying 46% of functionally enriched ones compared to 33% for 

Seurat across the 17 datasets (Fig. S2A,B). Furthermore, FunPart distinguishes more 

accurately functional homogeneity and heterogeneity with 67% and 43% of true positives, 
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respectively, compared to 25% and 22% for Seurat (Fig. S2C). In summary, FunPart 

identifies immune cell states more reliably and with an increased resolution compared to 

state-of-the-art methods. 
 

295 functional immune cell states create a Catalogus Immune Muris 

After validating our approach for detecting functional cell states, we collected 114 single-

cell RNA-seq datasets of B cells, T cells, natural killer (NK) cells, macrophages, monocytes, 

and dendritic cells (DCs) in the context of 12 viral, bacterial, fungal, and parasitic pathogens 

(Table S1). For each cell type we obtained data for six to nine pathogens across three to six 

tissues (Fig. 2A, B). Application of our method to these datasets resulted in the detection of 

295 functional cell states in total, thus, creating a Catalogus Immune Muris (Fig.2C, Table 

S3). On average, we identified 2.26 cell states per dataset and cell type, with NK cells and 

B cells having the lowest (average:1.06 and 1.07, respectively) and T cells having the highest 

(average: 4.45) functional heterogeneity. The low levels of functional heterogeneity in B 

cells are expected as their primary function is antibody secretion. Only in the context of 

lymphocytic choriomeningitis (LCMV), B cells exist in two distinct states characterized by 

two TFs modules composed of Irf2, Rere, Sp140 for the first and Irf5, Tcf25, Tcf4 for the 

second state, respectively (Fig. 3A, B, C). Moreover, Irf5 is known to play a role in B cell 

differentiation27 whereas Irf2 is known to regulate B cell proliferation and antibody 

production28, suggesting differences in the maturation stage of these cells. On the contrary, 

T cells exist in multiple cell states upon infection with various pathogens, such as LCMV, 

Influenza, and Salmonella Typhimurium. These are characterized by a marked difference in 

processes linked to stress response, inflammation and oxidative phosphorylation (Fig. S3). 

Interestingly, these processes are known to be involved in the functional diversity of T cells, 

more specifically by playing a role in their differentiation, activation, and function29,30. 

Finally, we extracted known cell markers to further characterize the identified functional cell 

states (Fig.3D, Table S4, S5). We found that combination of broad markers (e.g., CD3 for T 

cells) and specific markers (e.g., Tlr9 for DCs) was important to classify the functional cell 

states, regardless of their relative expression (Table S4, Fig. S4). Finally, we further 

characterized functional states by identifying the expression of the extracted known cell 

markers for each functional state (Fig.3D, Table S5). Interestingly, we observed few 

diversity in markers signatures for B and NK cell states whereas specific signature patterns 

were found for macrophages and T cells (Fig.3D). 
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Exploiting TF modules for modulating the inflammatory response 

Due to the enrichment of TF modules distinguishing different cell states in immune cell 

processes, we hypothesized that the Catalogus Immune Muris can be exploited to modulate 

the inflammatory response to pathogens by perturbing the TFs characteristic of different 

states. In order to provide support to this hypothesis, we selected the macrophage response 

to Salmonella enterica Serovar Typhimurium10 due to a characteristic temporal change in 

macrophage states during the infection. In particular, while only a single macrophage state 

can be detected 2.5 h after the infection, heterogeneity rapidly increases after 4 h (three 

states) and diminishes again after 8 h (two states) (Fig. 4A). By focusing on the two 

macrophage states detected 8 h after the infection, we found the first state to be characterized 

by the module containing Irf7, Hmga1, Zfp275, and Stat1 (Fig. 4B) that has been previously 

shown to initiate the inflammatory response to pathogens in an interferon gamma dependent 

manner10. In contrast, the second state is characterized by a module composed of Zfp597, 

Zbtb38, and Zfp180 (Fig. 4C), but lacks a functional characterization. Enrichment of these 

TFs and their co-expressed targets showed their involvement in RNA and DNA processes 

as well as pathways such as janus kinase (JNK) signal transduction (Table S2). Indeed, 

previous studies highlighted the importance of kinase activity in response to bacterial 

infection and the interference of pathogens with kinase-mediated phosphorylation as a 

beneficial strategy for bacterial survival, replication and dissemination31,32. Thus, we 

hypothesized that macrophages exhibiting the second cell state are not responding to 

Salmonella infection due to kinase-mediated phosphorylation of proviral signaling 

pathways. We sought to validate this hypothesis by knockdown of Zfp597 as this TF had the 

strongest co-expression pattern with its targets in the cell state characterized by the gene 

module. Therefore, we assessed the survival of Salmonella in primary murine bone-marrow-

derived macrophages after silencing Zpf597 with shRNA lentiviral constructs during the 

differentiation process23 (Fig. 4D). The results in three independent mice showed that 

silencing of Zpf597 resulted in a decreased ability to recover viable bacteria upon 90 min 

incubation periods demonstrating that Zpf597 is responsible for preventing the macrophage 

response to Salmonella infection (Fig. 4E). Thus, the subpopulation characterized by the 

module involving Zfp597 is indeed not responding to the pathogen due to the propathogenic 

effects of Zfp597 and its inhibition induced a change in cell state. To further support the 

induced macrophage state change, we employed the same experimental setup to silence Stat1 

and hypothesized that bacterial survival is increased. Indeed, recovery of viable bacteria 

upon 90 min incubation periods in the presence of IFNγ demonstrated that Stat1 is a driver 
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of bacterial clearance (Fig.  4F), which is consistent with previous reports33,34. Moreover, we 

analyzed the expression of both silenced TFs on their respective TF module counterparts in 

order to determine regulatory relationship between the two modules (Fig. 4G, H). We 

observed that silencing of Zfp597 induced a significant increase in Stat1 expression whereas 

Stat1 silencing did not significantly alter Zfp597 expression (Fig. 4G, H). This suggests a 

regulatory relationship between the two modules, with Zfp597 inhibiting the expression of 

Stat1, which belongs to the opposite module. 

In summary, the TFs characteristic of the detected cell states could be harnessed to modulate 

the immune response to pathogens by inducing a transition of cell states. 
 

Integration across pathogens identifies common and unique cell states in time and 

space 

As previously described, a major bottleneck of previous studies is the inability to compare 

the immune response across pathogens and timepoints. To address this issue, we set out to 

unify the previously detected cell states across different datasets by combining similar states. 

As a result, we obtained between 5 and 45 unique states for each cell type. We observed that 

the majority of functional states is homogeneous although some states display heterogeneous 

functionalities shared by other states (Fig. S5). Similar to the analysis conducted for 

individual datasets, NK and B cells have the lowest number of unique states whereas T cells 

have the highest. Next, we leveraged this integrated collection to identify functional states 

common and unique in the response to different pathogens. Interestingly, we observed 

largely distinct responses to different types of pathogens for most of the cell types, 

underscoring the previously reported predominance of pathogen-specific immune 

responses35 (Fig.  5A). Finally, we set out to interrogate the changes in cell states at different 

timepoints of an infection. We analyzed the Mycobacterium smegmatis infection for the six 

cell types and observed a conserved functional state for T cells, NK cells, and monocytes 

across the three timepoints, respectively (Fig. 5B). Indeed, no functional diversity is 

observed for T cells, which are in one conserved state across the 7 days. However, B cells 

and DCs have conserved and unique states, with the functional diversity of DCs increasing 

at day 7. We noticed a shift of functional B cell states between the first and second day, 

mainly characterized by the differential expression of IgD (Fig. (Fig.5C)5C) [36]. 

Furthermore, we observed that the functional diversity of DCs at day 7 is characterized by 

three functional states (Fig. 5D) and could reflect differential DCs maturation during the 

inflammatory response, as reported in previous reports37. In addition, the functional state 
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CS3 is the most different with the expression of Cd86, Cd4, and especially Ccl22, suggesting 

this state to be actively recruiting other cells, such as invariant NKT or regulatory T cells, in 

response to the infection38-41. 
 

Discussion 

In this study, we developed FunPart, a single-cell-based computational method to dissect the 

heterogeneous cellular response of immune cells to pathogens. In particular, this method is 

conceptually different from traditional clustering methods42 as it accounts for functional 

aspects by identifying specific set of genes required to belong to the same immune process. 

Moreover, the striking difference between our approach and current clustering 

methodologies can be exemplified in the context of B cell states. Although traditional 

clustering methods detected 11 memory B cell states in a recent study, only a few states 

exhibited significant differences43. This is in accordance with our observation that B cells do 

not exhibit a high functional diversity with respect to immune processes. Furthermore, it was 

not unexpected to identify the largest number of functional states for T cells44,45. The 

differential diversity between B and T cells was observed at the marker expression level, 

initially used to distinguish cells (sub)types21, but not fully explanatory of the functional 

diversity captured. Thus, the main advantage of our approach is that it mainly captures 

functional rather than transcriptional heterogeneity. Moreover, FunPart provides modules of 

genes used to identify the functional cell states and the immune processes11 to which they 

belong. As a result, we were able to compile a Catalogus Immune Muris, the most 

comprehensive atlas of immune cell states currently available to the research community. 
 

In addition, the Catalogus Immune Muris contains a molecular characterization of each state 

that can be leveraged to design novel immunomodulatory strategies. Here, we showed that 

the cellular response to Salmonella infection can be modulated by inhibiting TFs from 

identified gene modules by FunPart to enhance or inhibit pathogen clearance. Indeed, as 

reported in previous studies, we found Stat1 to be a driver of bacterial clearance33,34, whereas 

we identified Zfp597, a previously unreported TF, to have propathogenic effects. We showed 

that perturbation of TFs predicted to be characteristic of two macrophage cell states allows 

the modulation of their response to the infection by a switch between functional cell states. 

Moreover, our analysis suggests a regulatory relationship between the two modules where 

Zfp597 inhibits the expression of Stat1. Therefore, targeting the identified TFs provides a 

rationale strategy for immunomodulatory therapies46,47. Nevertheless, the development of 
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novel immunomodulatory therapies typically relies on the utilization of drugs and 

compounds to alter cellular functions48,49. In this regard, a limitation of the presented strategy 

is that it solely considers modules composed of transcription factors that are potentially 

difficult to target. 
 

Finally, the strategy implemented in FunPart could be of use for deciphering and 

characterizing functional heterogeneity within cell populations in diverse pathological and 

physiological conditions. Indeed, our method is not biased by the cell type it analyzes and 

thus could be applied to any cell type in any tissue or condition. Although FunPart currently 

identifies modules enriched in immune cell processes, it can be easily adapted to other 

genesets characteristic of any biological process. For instance, it could be applied to study 

the functional impairment of cell (sub)types in liver-related diseases50,51. Indeed, it is known 

that the cellular location around the lobule plays an important role for their function52, 

however the dysregulations imparing the hepatocytes functions is not well defined51,53. The 

identification and characterization of such functional subtypes could help improving 

regenerative medicine strategies54. 
 

In summary, we presented a computational strategy for resolving functional cell states in the 

context of infections and identifying TFs involved in the maintenance of these states. We 

expect our approach to be of great utility for deciphering and characterizing functionally 

distinct cell states in physiological and pathological conditions. Moreover, application of our 

method to 114 datasets created a Catalogus Immune Muris, which we believe to be of great 

utility in the development of novel immunomodulatory therapies. 
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The functional states identification algorithm is an R package named FunPart available at: 

https://github.com/BarlierC/FunPart.git. 
 

Figures 

 
Figure 1. FunPart general workflow and validation. 
(A) General workflow of the functional states identification and characterization. The computational 
method we developed, named FunPart, takes single cell RNA-seq data of one cell type as an input, 
to identify functional states based on functional modules of genes. The method searches for modules 
exclusively expressed in one group of cells and belonging to the same immune process. Cells are 
recursively splitted in two groups until no more functionally relevant modules associated to new 
states can be found. (B) Binary heatmap of the 26 terminal genes modules identified by FunPart for 
the macrophages functional cell states CS. Only TFs are displayed. (C) Functional enrichment of 
these 26 terminal gene modules. Each immune process has a different color, the size of the dots 
represents the number of gene modules enriched in the specific process. Intermediate gene modules 
are not displayed. 
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Figure 2. Overview of the Catalogus Immune Muris content. 
(A,B) Composition of the Catalogus Immune Muris. Repartition by immune cell type of the (A) nine 
pathogens and (B) seven tissues across the 114 datasets. (C) Binary heatmap displaying the terminal 
gene modules identified by FunPart for each functional cell states belonging to one of the six broad 
immune cell type. Shared genes, colored in grey, correspond to transcription factors found in more 
than one terminal gene modules. Only TFs of terminal gene modules are displayed.  
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Figure 3. Functional cell states analysis and characterization. 
(A) Correlation plot and (B) dotplot of the functional TFs characterizing two B cells functional states 
in LCMV infection at time point 72h. Colored boxes in (A) indicate correlations considered by the 
algorithm with green boxes indicating cliques of genes and red boxes the negative correlation 
considered as significant. (C) Network representation of the significant edges retained by the 
algorithm for the six TFs shown in (A). Each module consists of a clique of three transcription factors 
positively correlated together. The negative correlation between the two modules is supported by the 
interaction between Tcf4 and Rere. (D) Heatmaps showing the expression ratio of the cell markers, 
extracted using Boruta, for each functional cell state. Identified cell states are in columns and markers 
in rows. A ratio of one corresponds to the marker being expressed in all cells of the functional cell 
state whereas a ratio of zero translates to the absence of its expression in the cell state. 
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Figure 4. Immunomodulation of macrophage responses and functional states analysis. 
(A) t-SNE displaying functional states identified by FunPart across three time points for macrophages 
infected by Salmonella typhimurium. (B,C) Violin plots showing the expression levels for the two 
functional states identified at time point 8h of (B) the first module composed of Irf7, Zfp275, Hmga1, 
Stat1 and (C) the second module composed of Zp597, Zfp180, Zbtb38. (D) Summary of the 
experimental design used to validate Zfp597 and Stat1 as immunomodulators. (E,F,G,H) Differential 
survival of S. enterica typhimurium in Zfp597-silenced and Stat1-silenced macrophages compared 
to their respective pLKO controls. (E,F) Colony-forming units recovered from silenced and control-
transfected BMMs infected with Salmonella at an m.o.i of 10 for (E) Zfp597 and (F) Stat1. (G,H) 
Zfp597 and Stat1 gene expression levels in macrophages lentivirally infected with shRNAs targeting 
the gene or controls (plKO). The results are represented as average ± SE of 3 independent mice per 
silencing. The p values were calculated by paired Student’s t test. A result is considered as significant 
if its p-value is less than 0.05. 
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Figure 5. Metadata analysis of functional cell states. 
(A) Chord diagram representing the common and unique cell states across pathogen types infections. 
(B) Alluvial plot of the functional states identified for the six immune cell types infected by 
Mycobacterium smegmatis across three time points. CS: functional Cell State, DCs: dendritic cells, 
Mac: macrophages, Mono: monocytes, NKs: Natural Killer cells. (C,D) Markers expression for (C) 
the two B cells and (D) the three DCs functional cell states shown in (B). Distributions displayed 
include all applicable time points. 
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4.2.3 Supplementary Information 
 
Supplementary Methods 
 
Functional partitioning algorithm 

In order to reliably identify and characterize functionally relevant cell states, we developed 

a network-based approach combined with a recursive hierarchical clustering named FunPart. 

The algorithm is composed of four main parts:  
 

(1)  Cleaning and normalization of the data: The algorithm accepts any type of data (counts, 

UMI or normalized). In case raw data are provided, a normalization procedure will be 

performed using Seurat. Outliers cells will be removed using a Rosner test on the number 

of genes expressed in each cell. Finally, two last quality control steps are performed on 

the genes: (1) any gene expressed in less than 5% of the cells will not be considered and 

(2) genes that are too lowly expressed are removed, with a gene too lowly expressed 

falling below the 5% of genes expression sum distribution. 
 

(2)  Network-based set of genes identification: To identify functional sets of genes, a 

correlation network is constructed around all the genes. Based on the correlation scores 

distribution, the 2.5% of each tail are considered to be the strongest interactions and are 

kept for the following steps: (1) identification of cliques of transcription factors (TFs) that 

are positively correlated together, (2) filtering of cliques that are not unique, with a unique 

clique defined as a clique with less than 70% of common TFs, (3) an expression score 

reflecting the average expression of the clique is calculated and only the top 30% is kept, 

(4) in order to identify antagonistic pairs of cliques, a negative score is calculated between 

each pair of positive clique identified in 3., (5) if less than ten antagonistic pairs are found, 

all of them are used in step 6., however if more than ten are found, only the top 5% most 

negatives are kept, (6) the top target genes are identified for each TF of the two modules. 
 

(3)  Functional characterization of the set of genes: An enrichment analysis is then performed 

on the candidate pairs of modules, using manually annotated immune modules by 

Singhania et al. The functional enrichment is performed using the clusterProfiler R 

package as the following: (1) all the genes profiled in the dataset are used as the universe 

and genes of the module considered are used to perform the comparison, (2) a multiple 

test correction (Bonferroni) is performed and only the enriched annotations with an 

adjusted p-value less than 5% are kept, (3) enriched categories mapped to only one gene 

of the set are not considered, (4) a score consisting in the sum of all the resulting gene 
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ratio for the module is computed, (5) the two negatively connected modules need to be 

both enriched to be considered, (6) each pair of negatively connected modules is ranked 

according to the computed score. The top one enriched set, consisting of two gene 

modules, is then used for the hierarchical clustering. 
 

(4)  Recursive unsupervised hierarchical clustering: In order to investigate each level of 

resolution, a recursive binary splitting is used (unsupervised hierarchical clustering). For 

each level, a bi-clustering is performed by building a heatmap using the cells of the 

corresponding level as well as the identified genes of the two gene modules. The general 

workflow is the following: (1) at each level, a hierarchical tree is constructed using the 

single cell expression data, the best set of genes and the Pearson correlation measure using 

the complete aggregation approach, (2) the first level of the cells dendrogram is used to 

perform the binary cutting with k = 2, (3) the two distinct groups of cells identified will 

then be splitted separately as explained in steps 1 to 2. The algorithm stops once the 

groups of cells are homogeneous and no more functional gene modules are found. 
 

FunPart deciphers functional diversity by identifying and using set of gene modules to 

pinpoint and characterize functional cell states. Each gene module identified is composed of 

TFs, forming a clique of positively co-expressed edges only, and their direct neighbor genes 

for which they have a strong positive interaction. Furthermore, these genes modules can be 

classified as intermediate modules or terminal modules. A genes module is intermediate if 

the group of cells identified is further splitted whereas a genes module is terminal if the 

group of cells identified is not further splitted (corresponds to a functional cell state and leaf 

in the hierarchical tree). Indeed, an intermediate gene module characterize a group of 

functional cell states whereas a terminal gene module characterizes a specific functional cell 

state. 
 

The module attribution to a group of functional cell states or one functional cell state is 

performed for each binary splitting. Indeed, each binary splitting is performed using two 

gene modules, with each of them belonging to one of the two groups resulting from the split, 

according to FunPart rationale. Thus, the module attribution is performed based on the 

average number of cells expressing the TFs of the clique in the module. Each gene module 

is then assigned to the group (branch 0 or 1) in which it is expressed the most and classified 

as characterizing this group. This step allows the assignment of intermediate gene modules 

to group of functional cell states and terminal gene modules to specific functional cell states.  
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Validations and comparison with the state-of-the-art 

The functional relevance of the predicted subpopulations by FunPart and Seurat was 

assessed as follow: for each dataset, a ROC test, using FindAllMarkers function from Seurat 

R package, has been applied to each predicted cluster; genes with an AUC greater or equal 

to 0.7 were considered as good candidates to classify the group of cells; genes were 

submitted to an enrichment analysis using annotated immune modules, a Benjamini-

Hochberg correction and a p-adjusted value less than 5%. We then defined four classes to 

assess the functional relevance of the predictions based on each dataset:  
 

- “True homogeneous”: dataset for which one method do not identify subpopulations and 

the other one identifies some from which more than 50% are non-functional;  

- “False homogeneous”: dataset for which one method do not identify subpopulations but 

the other one identifies some from which more than 50% are functionally relevant; 

- “True heterogeneous”: dataset for which more than 50% of the cell states identified are 

functionally relevant; 

- “False heterogeneous”: dataset for which less than 50% of the cell states identified are 

functionally relevant. 
 

The four non splitted datasets by both methods were discarded from this analysis. We 

computed a precision score such as precision = True / (True + False). 
 

Characterization of functional cell states  

The feature extractions were done using the R version of Boruta’s algorithm, a wrapper built 

around the random forest classification algorithm, for each functional cell state. Boruta was 

used with default parameters and the following predictors and response vector: 
 

- Predictors: matrix with features in columns and cells in rows. The features used 

consisted of the collected markers for the broad cell type of the functional cell state. 

- Response vector: vector with two classes (binary classification), with class 1 for the 

cell state under consideration and class 0 for all the other cell states (background). 
 

For each functional cell state, we kept markers classified as an important feature and then 

computed a fold change (FC) such as: 

𝐹𝐶 =
𝑚𝑒𝑎𝑛(𝑥!"#)
𝑚𝑒𝑎𝑛(𝑥!$ )

 

With m: marker, cs: functional cell state, b: background, x: gene expression. 
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A positive FC represents an overexpression of the marker in the functional cell states 

whereas a negative one represents a down-expression of the marker.  

In order to compile markers profile for each functional cell states we identified, we computed 

cell expression ratios for each functional cell state and each extracted feature of the immune 

cell types. The ratios were computed for each functional cell states such as: 
 

𝑅!"# =	
∑𝑥$#

𝑛!"
 

With 𝑅	the ratio, m the marker, cs the functional cell state, x the binary expression (0 or 1, 

with 1 = expressed) of the marker m in the cell i and n the total number of cells. 
 

Metadata analysis 

Data were integrated using the standard Seurat pipeline. Due to the high disparity between 

the number of cells, the integrations were performed in three steps with the biggest datasets 

(>1000 cells) being integrated together and then, integrated with the medium ones (>100 and 

<1000 cells) to finally be integrated with the smallest ones. The UMAP is computed, for 

each cell type, on the integrated data using Seurat and the functional set of genes 

characterizing the functional cell states identified using the functional splitting algorithm. 
 

Real time PCR 

The primers used corresponded to the genes Rpl19 (5’-GAC CAA GGA AGC ACG AAA 

GC-3’ and 5’-CAG GCC GCT ATG TAC AGA CA-3’), Zfp597 (5’-ATC GGA TGA GCA 

GAG ACC AC-3’ and 5’-TGA ACA ACG GGT GCA GCA AT-3’), Stat1 (5’ -TCT GAA 

TAT TTC CCT CCT GGG- 3’ and 5’ -CGG AAA AGC AAG CGT AAT CT- 3’) and Actb 

(5´-GAC GAT GCT CCC CGG GCT GTA TTC-3´ and 5´-TCT CTT GCT CTG GGC CTC 

GTC ACC-3´). 

 

Supplementary figures 
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Fig. S1. M1-like and M2-like markers used to classify macrophages functional states. 
Representation of the M1-like (Cclx9, Nos2, Cxcl11) and M2-like (Arg1, Mrc1, Tgm2) markers 
distribution used to classify macrophages functional cell states (CS) as M1-like, M2-like and 
intermediate. CS underlined in red are classified as M1-like, CS underlined in purple are classified 
as M2-like and CS underlined in blue are classified as intermediate states. 
 

 
Fig. S2. FunPart validation and comparison to state-of-the-art.  
(A) Predicted states by FunPart and Seurat for the 17 macrophages datasets. (B) Ratio of enriched 
and non-enriched predicted subpopulations for the 14 datasets for which FunPart and Seurat were 
not in agreement. Datasets D12, D13, D16 and D17 have been excluded from this analysis. (C) 
Assessment of the accuracy of both methods in distinguishing functional homogeneous datasets and 
identify functionally relevant subpopulations (True Heterogeneous).  The computation of the 
different classifications is described in the Methods section. 
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Fig. S3. Enrichment of the terminal and intermediate gene modules identified for T 
cells.  
FunPart identified 132 terminal and 102 intermediate gene modules across the 30 T cells datasets 
analyzed that were enriched in diverse immune processes. Most of the modules are enriched in 
processes involved in broad processes such as oxidative phosphorylation, stress response and 
inflammation metabolism whereas fewer are enriched in more specific ones such as type I IFN and 
cytotoxic T cells processes. 

 
Fig. S4.  Extracted features for each functional cell state.  
Feature extraction was performed to identify important markers to classify the identified functional 
cell states. Stacked boxplots represent the frequency of each marker being found as important for the 
classification. Light blue parts represent markers found down-expressed in the specific functional 
cell considered and red parts represent over-expressed markers.  We can observe that broad markers 
such as CD3 for T cells are more frequent than specific markers such as Tlr9 for dendritic cells, 
regardless of their expression level.  
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Fig. S5. UMAPs of the integrated data for the six immune cell types.  
UMAP were computed for integrated data of the (A)macrophages, (B) monocytes, (C) natural killer 
(NK) cells, (D) Dendritic cells (DCs), (E) B cells and (F) T cells. They were built using all 
functionally relevant genes reported by FunPart for the non-integrated analysis for each cell type as 
features. Functional states identified after the integration analysis are displayed with some of them 
in intermediate states and not distinct. NK cells and B cells have the lowest number with 5 and 6 
respectively compared to the T cells composed of 45 functional states
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4.3 Deciphering impaired regulatory mechanisms in diseases 
 
4.3.1 Preface 
 
In this study entitled “RNetDys: regulatory network inference to identify impaired 

interactions in diseases” we present a multi-OMICS pipeline to infer comprehensive cell 

(sub)type and state specific GRNs and systematically identify transcriptional regulatory 

interactions impaired due to SNPs in diseases. RNetDys is a pipeline that aims at providing 

a better understanding of cell (sub)type and state specific regulatory mechanisms impaired 

in diseases due to SNPs. Indeed, the comprehensive view of cell (sub)type or state specific 

regulatory landscape impaired due to disease-related SNPs is a promising approach to have 

better transcriptomic regulatory mechanistic insights and guide the development of strategies 

for therapeutic intervention. Thus far, several strategies and methods have been developed 

to study the effect of SNPs and their involvement in diseases, but there is still a lack for a 

comprehensive view of the regulatory mechanisms that could be impaired.  
 

In that regard, we propose RNetDys, a computational pipeline to infer comprehensive cell 

(sub)type or state specific GRNs and identify regulatory interactions impaired due to 

disease-related SNPs. We showed the better accuracy of RNetDys to infer cell (sub)types 

specific regulatory interactions including TF-genes and enhancer-promoters compared to 

state-of-the-art methods. Moreover, we applied our pipeline in five disease case studies and 

validated the relevance of the predicted impaired interactions using literature, GWAS and 

eQTL evidences. In summary, we provide a user-friendly pipeline to generate 

comprehensive cell (sub)type or state specific GRNs and identify transcriptional regulatory 

mechanisms impaired in diseases due to SNPs by leveraging the GRN information.  

 
Contribution: I implemented the computational method, collected and processed the data, 

performed the benchmarking analysis, generated the cell (sub)type specific GRNs, collected 

the disease-related SNPs, performed the data analysis, and wrote the manuscript.
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Abstract 

Gene regulation is a fundamental process largely controlled by transcription factors to 

activate or repress genes. The dysregulation of regulatory mechanisms due to SNPs can lead 

to non-physiological conditions such as disease development. However, regulatory 

dysregulations do not affect all cell types and subtypes equally. Therefore, having a 

comprehensive view of the cell (sub)type specific regulatory landscape is required to 

accurately decipher specific regulatory interactions impaired in diseases. Here, we present 

RNetDys, a pipeline that leverages multi-OMICS data to infer regulatory interactions 

mediated by TFs and enhancers of regulated genes for cell (sub)types or states, and to 

identify specific regulatory interactions impaired due to SNPs in diseases. We showed that 

the cell (sub)type specific GRNs inferred by RNetDys were more accurate compared to state-

of-the-art methods. Moreover, we validated the ability of RNetDys to accurately identify 

impaired regulatory interactions due to SNPs in five disease case studies by leveraging the 

GRN information. 

 

Introduction 

Gene regulation is a complex and fundamental process that gives rise to highly 

heterogeneous gene expression signatures which define cell identity (Cooper, 2000). Indeed, 

transcription is largely controlled by transcription factors that bind to specific DNA loci such 

as promoter and enhancer regions to either express or repress gene expression (Latchman, 

2011). This regulatory process is triggered in response to stimuli, and the cell (sub)type 

specific regulatory mechanisms are largely conferred by enhancers (Andersson et al., 2014). 

Therefore, it plays a critical role to maintain the homeostasis, integrity and physiology of an 

organism (Wray et al., 2003). The impairment of these regulatory interactions can lead to 

dysregulations that trigger pathological gene expression changes and contribute to disease 
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development (Lee and Young, 2013). In that regard, single nucleotide polymorphisms 

(SNPs) have been shown to be associated with regulatory dysregulations driving complex 

diseases such as diabetes and heart diseases (Hiramoto et al., 2015; Akhlaghipour et al., 

2022). Notably, genome-wide association studies (GWAS) showed that the majority of 

disease-related genetic variants such as SNPs were found in enhancer regions (Claringbould 

and Zaugg, 2021). Thus, characterizing the gene regulatory network (GRN) describing the 

interactions mediated by TFs and enhancers of regulated genes is critical to understand the 

underlying mechanisms of gene regulation in both physiological and pathological 

conditions. Indeed, the characterization of the regulatory landscape impaired due to SNPs in 

diseases would provide better mechanistic insights and aid the development of strategies for 

therapeutic intervention (Uddin et al., 2020). 
  

Over the years, several GRN inference methods were developed to predict the interactions 

between genes using bulk transcriptomics data (Margolin et al., 2006; Huynh-Thu et al., 

2010; Guo et al., 2016). The emergence and fast development of single-cell based 

technologies enhanced the development of more refined computational methods to predict 

cell (sub)type specific genes regulatory interactions using scRNA-seq data, such as PIDC 

(Chan et al., 2017) and SCENIC (Aibar et al., 2017). However, although these methods take 

advantage of the high-resolution offered by scRNA-seq data, they are not designed to infer 

direct regulatory interactions involving enhancers. Therefore, these methods remain limited 

for the inference of cell (sub)type specific regulatory mechanisms, mainly driven by 

enhancers, that are required to provide cell (sub)type specific mechanistic insights in 

diseases (Andersson et al., 2014; Claringbould and Zaugg, 2021). In that regard, the 

combination of different type of OMICS data has been shown to be a promising approach to 

build comprehensive GRNs by taking advantage of the high-resolution provided by single 

cell technologies (Zhang et al., 2022). However, the applicability of such method remains 

limited as it requires matched data between cells, which remains poorly available (Bravo 

González‐Blas et al., 2020). 
  

GRNs have been widely used to gain insights into diseases (Emmert-Streib et al., 2014; 

Ament et al., 2018; Bakker et al., 2021) but the characterization of underlying regulatory 

mechanisms dysregulated due to SNPs in diseases and the cell (sub)types specifically 

impaired remains elusive. The resolution of cell (sub)type specific regulatory mechanisms 

impaired due to SNPs in disease would provide additional mechanistic insights and pave the 
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way towards the development of gene-based therapies for disease prevention and treatment 

(Uddin et al., 2020). Here we present RNetDys, a multi-OMICs pipeline combining scRNA-

seq, scATAC-seq, ChIP-seq and prior-knowledge to decipher cell (sub)type specific 

impaired regulatory interactions due to SNPs in diseases. This pipeline exploits the GRN 

information, obtained from the GRN inference of RNetDys, to identify impaired regulatory 

mechanisms due to SNPs. In particular, RNetDys provides the binding affinity score of TFs, 

the sign of interactions to distinguish activation from repression and, a list of ranked TFs 

based on their involvement in the regulatory impairments. Notably, compared to existing 

strategies to study SNPs (Yu et al., 2022; Nathan et al., 2022), our pipeline provides a 

comprehensive view of the impaired regulatory landscape to provide better mechanistic 

insights. In addition, RNetDys does not require matched datasets hence allowing for a wider 

applicability. We first showed that RNetDys predicts cell (sub)type specific GRNs more 

accurately than existing methods. We then applied our pipeline to five diseases to study the 

differential cell (sub)type specific impairment and validate the relevance of the predicted 

impaired regulatory interactions.  
 

Material and methods 

General workflow of RNetDys 

We implemented a systematic pipeline that leverages multi-OMICS data to decipher 

impaired regulatory mechanisms due to SNPs in disease by leveraging the GRN information. 

The pipeline was divided in two main parts composed of (i) the cell (sub)type specific GRN 

inference, and (ii) the capture of impaired regulatory interactions due to SNPs to gain 

regulatory mechanistic insights for the disease condition. 
 

Cell (sub)type specific regulatory interactions inference 

The cell (sub)type specific regulatory network inference was based on a multi-OMICS 

approach that relied on single cell transcriptomics and single cell chromatin accessibility, 

not necessarily matched, as well as prior-knowledge, including ChIP-seq data and reported 

enhancers interactions. First, using the scRNA-seq we selected genes that were conserved at 

least in 50% of the cells for further analyses. Then, we ensured the accessibility of the 

corresponding promoter regions using scATAC-seq data and predicted TF-promoter 

interactions by intersecting the ChIP-seq TF-binding evidence with the open promoter 

regions using BEDTools (Quinlan and Hall, 2010). Then, we performed a peak correlation 

using the scATAC-seq data and carried out a statistical test, as well as a BH multiple 
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correction, to select the significant interactions such as p-adjusted value < 0.05. The 

identified enhancer-promoter interactions were then intersected with GeneHancer 

(Fishilevich et al., 2017), used as a backbone and, interactions involving active promoters 

were kept. Then, TF-enhancers interactions were inferred by intersecting the ChIP-seq and 

scATAC-seq data. Finally, the regulatory interactions were signed to distinguish activations 

from repressions by computing the Pearson correlation between TFs and genes using the 

scRNA-seq dataset (Figure S1). Correlation scores for enhancer-promoter interactions were 

computed such as: 

𝑐𝑜𝑟𝑉%!→'" =	,𝑐𝑜𝑟𝑉()#→'"
*

 

With corV: correlation value, TF: transcription factor, E: enhancer, G: gene 
 

And correlation scores for TF-enhancer were computed such as: 

𝑐𝑜𝑟𝑉()!→%" =	,𝑐𝑜𝑟𝑉()!→'#
*

	
  

With corV: correlation value, TF: transcription factor, E: enhancer, G: gene 
  

Then, positive correlation scores were considered to be activations whereas negative ones 

were considered to be repressions. Further details are provided in Supplementary 

Information. 
 

Identify candidate impaired regulatory interactions 

Using the cell (sub)type specific GRN inferred in healthy condition, we then contextualized 

the GRN towards the disease condition. The contextualization required a list of SNPs for the 

disease studied and the cell (sub)type GRN of interest. The SNPs were mapped to the GRN 

by using their coordinates and interactions for which a SNP was falling into a TF binding 

region of an enhancer or promoter were considered as candidates to be impaired in the 

disease. We then performed a TF binding analysis using PERFECTOS-APE (E. Vorontsov 

et al., 2015) to refine the candidate interactions by selecting the ones having at least one 

binding site significantly impaired by the SNP (Supplementary Information). Finally, we 

ranked TFs by their involvement in the regulatory impairments based on the network 

topology and the MAF score of SNPs such as: 
 

𝑅𝑎𝑛𝑘() = 𝑅𝐸 ×
𝑁𝐺
𝑅𝐸 	×	3,|𝐴𝐼|$+ ×	7𝑀𝐴𝐹$+ ×,𝑀𝐴𝐹+ 	:;	

 

With RE: number of regulatory elements regulated by the TF, NG: number of downstream 
genes across RE, AI: binding affinity impairment log2FC, i: SNPs, r: regulatory element. 
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Prior-knowledge collection and processing 

RNetDys relied on prior-knowledge data that were collected and processed to be integrated 

in the pipeline. The ChIP-seq bed files were downloaded from ChIP Atlas (Oki et al., 2018) 

for human hg19 and hg38 assemblies. Bed files were annotated using HOMER (Heinz et al., 

2010) with the latest GTF file for each assembly. Enhancer regions and their connected genes 

were obtained from the GeneHancer database (Fishilevich et al., 2017). Of note, GeneHancer 

database provided information for hg38 coordinates and hence, we used LiftOver 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver) to convert these coordinates for hg19 to 

provide more flexibility to our pipeline. 
  

Data collection and processing 

First, to perform the benchmarking analysis, we collected 20 publicly available scRNA-seq 

and 11 scATAC-seq datasets from six human cell lines including BJ, GM12878, H1-ESC, 

A549, Jurkat and K562 (Table S1). Then, we collected scRNA-seq and scATAC-seq healthy 

data from pancreas and brain tissues to extract cell (sub)types using Seurat (Hao et al., 2021) 

and Signac (Stuart et al., 2020), and then generated the GRNs (Supplementary information). 

Finally, we collected SNPs from ClinVar (Landrum et al., 2018) for five diseases including 

Alzheimer’s disease (AD), Parkinson’s disease (PD), Epilepsy (EPI), Diabetes type I (T1D) 

and type II (T2D) to perform the network contextualization towards the disease condition. 

Notably, SNPs were defined as being single nucleotide variants found at least in 1% of the 

global population such as MAF >= 0.01 (Supplementary Information). 
  
Validation and comparison to state-of-the-art 

We assessed the performances of RNetDys in identifying cell (sub)type specific regulatory 

interactions and compared them to state-of-the-art GRN inference methods (Aibar et al., 

2017; Chan et al., 2017; Kim, 2015; Huynh-Thu et al., 2010) (Supplementary Information). 

First, we benchmarked the performances of each method to infer cell (sub)type specific TF-

gene interactions. The gold standards (GS) were compiled using cell line specific ChIP-seq 

from Cistrome (Mei et al., 2017) by selecting only the highest quality data. Then, we 

assessed the performances of RNetDys for capturing cell (sub)type specific enhancer-

promoter regulatory interactions compared to Cicero, a widely used method to identify cis-

interactions based on scATAC-seq data (Pliner et al., 2018). The GS networks were built 

using promoter capture Hi-C data from 3DIV (Yang et al., 2018) for three of the human cell 

lines. Of note, cell lines should be homogeneous and thus we assume that the performances 

obtained using cell line specific GS can be extrapolated for more specialized cell 
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(sub)populations such as cell subtypes. For both benchmarking analyses, we computed the 

precision (PPV) and F1-score (F1) to assess the performances such as: 
 

 𝑃𝑃𝑉 = $%
($%'(%)

 and 𝐹, =	
-×(/

-×(/0)/0)1
 

  

With TP = True Positive (predicted and found in the GS), FP = False Positive (predicted but 
not found in the GS) and FN = False Negative (not predicted but found in the GS). 
  

Results 
RNetDys, a multi-OMICS pipeline to decipher impaired regulatory mechanisms 

We implemented RNetDys, a systematic pipeline based on multi-OMICS data that 

systematically decipher impaired regulatory interactions due to SNPs in diseases by 

leveraging the information of cell (sub)type specific GRNs. RNetDys is an integrative 

approach relying on single cell transcriptomics and single cell chromatin accessibility from 

a specific cell (sub)type, as well as prior-knowledge information including extensive ChIP-

seq data (Oki et al., 2018) and reported enhancer-promoter relationships (Fishilevich et al., 

2017). The pipeline is composed of two main parts: (i) the cell (sub)type specific GRN 

inference and (ii) the identification of impaired regulatory mechanisms due to SNPs in 

diseases (Figure 1, Material and methods, Figure S1). The first part consists of the GRN 

inference for a healthy cell (sub)type based on scRNA-seq and scATAC-seq data as an input. 

Notably, the two single cell datasets do not need to be matched but they need to contain the 

same cell (sub)type. Moreover, RNetDys could be applied for any cell (sub)populations, 

including cell states, as it exploits the high resolution of single cell data. The second part 

takes as an input a cell (sub)type or state specific GRN and a list of SNPs of particular interest 

for the disease studied (Visscher et al., 2017; Landrum et al., 2018). In particular, the SNPs 

provided could have been described as related to the disease of interest in prior-knowledge 

databases (Landrum et al., 2018) or identified by genotyping analyses (Nielsen et al., 2011). 

As a result, RNetDys provides the impaired regulatory mechanisms, the corresponding 

SNPs, the affinity scores of TF having their binding site impaired, and a list of ranked TF 

regulators based on their involvement in the observed impairments (Figure 1). 
 

RNetDys is more accurate to infer cell (sub)type specific GRNs  

RNetDys highly relies on the cell (sub)type specific regulatory landscape to identify 

impaired regulatory interactions due to SNPs in diseases. Therefore, we assessed the 

performance of RNetDys in predicting cell (sub)type specific GRNs (Figure 2). We 
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performed the benchmarking of both TF-gene and enhancer-promoter interactions, 

compared to state-of-the-art methods. We showed that our approach overcame the state-of-

the-art GRN inference methods for predicting cell (sub)type specific TF-gene interactions 

with an average precision of 0.20 and average accuracy of 0.28 (Figure 2A, B). This 

assessment highlighted the strength of combining different regulatory layers with prior-

knowledge to provide predictions with a higher confidence. Moreover, we showed that 

RNetDys outperformed Cicero in capturing cell (sub)type specific enhancer-promoter 

interactions with a median precision of 0.76 and median accuracy of 0.72, supporting the 

confidence provided by the prior-knowledge leveraged by our approach (Figure 2C, D). In 

summary, we showed the better performances of RNetDys to predict cell (sub)type specific 

regulatory interactions between TF-genes and enhancer-promoters. Therefore, we 

demonstrated that the cell (sub)type specific GRN information leveraged by our pipeline to 

capture impaired transcriptional regulatory mechanisms due to SNPs in diseases is accurate. 
  
Cell (sub)type differential dysregulation in diseases 

We applied RNetDys to five diseases, including AD, PD, EPI, T1D and T2D, by collecting 

disease-related SNPs from ClinVar (Landrum et al., 2018) and cell (sub)type specific GRNs 

generated from human pancreas and brain tissues. First, we validated the impact of the 

mapped SNPs in each of the predicted impaired interactions. Across the five diseases, we 

were able to validate the relation SNP-target gene in 90% of our results using GWAS from 

ClinVar database. Furthermore, by using cell type specific eQTL data, we were able to 

validate the occurrence of certain SNPs and their impact on the predicted target genes in 

specific cell types. Notably, by using the same data in PD, we were able to validate novel 

SNP-target genes interactions such as rs11538371, rs2072814 and rs8137714 found to be 

linked to TIMP3 in astrocytes (Table S4). In fact, TIMP3 is an inhibitor of 

metalloproteinases, enzymes secreted by astrocytes (Yin et al., 2006), that are implicated in 

several PD-associated processes such as dopaminergic neuron degeneration, 

neuroinflammation, and proteolysis of α-synuclein (Sung et al., 2005; Choi et al., 2008; 

Annese et al., 2015). Furthermore, TIMP3 has been shown to inhibit β-amyloid precursor 

(APP) proteolysis and hence increase β-amyloid aggregates, a major hallmark of PD 

dementia (Hoe et al., 2007). Then, we studied the differential impairment across cell 

(sub)types in the five diseases as it has been reported that some cell (sub)types were more 

prone to be dysregulated in diseases (Muratore et al., 2017; Kamath et al., 2022). We 

observed that cell (sub)types shared few impaired interactions in the studied diseases, 
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especially in EPI and PD (Figure 3). Interestingly, in EPI, astrocytes and OPCs seem to be 

the most impaired cell types. This is consistent with literature evidence that shows that 

modifications in GABA receptors, which are expressed in inhibitory neurons, are closely 

linked to epilepsy (Tanaka et al., 2012). Furthermore, impairment of antiquin expression, 

encoded by the gene ALDH7A1, in astrocytes has been described to be linked with 

dysregulation of neurotransmitter shuttling and recycling, one of the major causes of 

neurological deficits (David et al., 2009; Jansen et al., 2014).  
 

Cell (sub)type specific disease-related regulatory impairment 

We finally aimed at exploiting the GRN information provided by RNetDys to further analyze 

the regulatory impairments of cell (sub)types (Figure 4, Figure S2-S5). We observed that in 

AD (Figure 4), the same enhancers were involved in every cell (sub)type specific networks 

with an impact on the expression of APP and presenilin 1 (PSEN1). Indeed, alterations in 

the expression of these genes are primarily linked to the development of AD (Dewachter et 

al., 2002; Matsui et al., 2007). Furthermore, recent studies have shown that not only neurons, 

but also astrocytes and microglia to be involved in the accumulation of β-amyloid plaques 

(Palop and Mucke, 2010; Frost and Li, 2017). However, the impairment of the TFs and 

enhancers regulating these two genes seems to be different across cell (sub)types (Figure 4). 

Indeed, most of the SNPs in astrocytes and microglia would induce a repression of APP 

whereas this gene seems to be activated in other cell (sub)types (Figure 4). It has been 

described that these two cell types provide protective effects, with microglia facilitating the 

clearance of β-amyloid, overproduced by neurons in AD (Fakhoury, 2018). Interestingly, 

CREB1 was found to be the main TF regulator involved in AD and EPI in every cell 

(sub)types apart from astrocytes (Table 1, Figure 4, Figure S3). CREB is a TF responsible 

for regulating the major pathways that mediate neurotrophin-associated gene expression, a 

group of proteins that promotes survival and neuronal development (Shaywitz and 

Greenberg, 1999). Indeed, increased CREB activity promotes hyperexcitability, one of the 

main triggers of seizures, while reduced levels seem to prevent epilepsy (Zhu et al., 2012; 

Wang et al., 2020) (Figure S3). In AD, PSEN1 has been shown to be a downstream target of 

CREB1, which further supports the results obtained by our pipeline as CREB1 was predicted 

to regulate PSEN1 (Cui et al., 2016) (Table 1). Moreover, MXI1 was found to be one of the 

main regulators involved in impaired regulatory interactions for PD, apart from 

dopaminergic neurons (Table 1, Figure S2). MXI1 has been described to be involved in the 

mitochondrial homeostasis, dysregulated in PD and known to be involved with 
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neurodegeneration (Lestón Pinilla et al., 2021; Malpartida et al., 2021). Finally, STAT3 was 

overall found to be the main regulator involved in impaired interactions of T1D and T2D 

(Table 1, Figures S4 and S5). In the pancreas, STAT3 has been shown to regulate insulin 

secretion and islet development (Saarimäki-Vire et al., 2017). In addition, in T2D, 

exacerbated STAT3 signalling has been shown to lead to insulin resistance in skeletal muscle 

of diabetic (Mashili et al., 2013), supporting its importance as a regulator of the 

dysregulations involved in the disease.  
  
Discussion 
The study of cell (sub)type specific regulatory interactions impaired due to SNPs in diseases 

is required to pave the way towards the development of novel gene-based therapies to treat 

diseases (Rao et al., 2021). In addition, the comprehensive view of the regulatory landscape 

is critical to study dysregulated mechanisms in diseases (Emmert-Streib et al., 2014; Chiou 

et al., 2021). In that regard, existing strategies to study the impact of SNPs do not exploit the 

GRN information to get a better understanding of the disease-related dysregulations (Rao et 

al., 2021; Bryois et al., 2021). In addition, current approaches have been mainly focused on 

cell types, but it has been recently shown that more specialized group of cells, such as cell 

subtypes, are not equally involved in diseases (Nathan et al., 2022; Kamath et al., 2022). 

Here we present RNetDys, a systematic multi-OMICS pipeline to decipher cell (sub)type 

specific regulatory interactions impaired due to SNPs in diseases. This pipeline exploits the 

high-resolution of single cell to infer a comprehensive regulatory landscape used to identify 

impairment due to SNPs. Notably, RNetDys can be applied to more specialized cell 

(sub)populations such as cell states due to its design. We first ensured that the multi-OMICS 

approach used by RNetDys was outperforming existing methods for inferring cell (sub)type 

specific regulatory interactions. Notably, the main limitation of the GRN inference part of 

RNetDys was the use of prior-knowledge. Indeed, it strongly increases the confidence in the 

predicted edges but also discard the discovery of unreported ones. Nevertheless, we 

alleviated this limitation by using GeneHancer, the most complete prior-knowledge available 

to date (Fishilevich et al., 2017; Oki et al., 2018). We applied RNetDys to five disease cases 

and observed that cell (sub)type specific regulatory mechanisms were not equally impaired, 

suggesting their differential involvement in the studied diseases. Moreover, we validated the 

relevance of the impaired regulatory mechanisms and provided additional insights into the 

main regulators involved. In particular, the presented analysis was performed using SNPs 

retrieved from ClinVar, but RNetDys could be of great use to provide valuable regulatory 
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mechanistic insights while leveraging the GRN information from genotyping studies. In the 

present study, we were able to predict known and unreported cell (sub)type specific SNP-

gene interactions, hence showing how RNetDys could facilitate the discovery of regulatory 

impairments. To conclude, we foresee our pipeline to be a valuable tool to comprehensively 

identify cell (sub)type specific regulatory mechanisms impaired due to SNPs and aid the 

development of strategies for therapeutic intervention in diseases. 
  

References 
Aibar,S. et al. (2017) SCENIC: single-cell regulatory network inference and clustering. Nat 

Methods, 14, 1083–1086. 
Akhlaghipour,I. et al. (2022) Single-nucleotide polymorphisms as important risk factors of 

diabetes among Middle East population. Hum Genomics, 16, 11. 
Ament,S.A. et al. (2018) Transcriptional regulatory networks underlying gene expression 

changes in Huntington’s disease. Mol Syst Biol, 14. 
Andersson,R. et al. (2014) An atlas of active enhancers across human cell types and tissues. 

Nature, 507, 455–461. 
Annese,V. et al. (2015) Metalloproteinase-9 contributes to inflammatory glia activation and 

nigro-striatal pathway degeneration in both mouse and monkey models of 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Brain Struct 
Funct, 220, 703–727. 

Bakker,O.B. et al. (2021) Linking common and rare disease genetics through gene 
regulatory networks Genetic and Genomic Medicine. 

Bravo González-Blas,C. et al. (2020) Identification of genomic enhancers through spatial 
integration of single-cell transcriptomics and epigenomics. Mol Syst Biol, 16. 

Bryois,J. et al. (2021) Cell-type specific cis-eQTLs in eight brain cell-types identifies novel 
risk genes for human brain disorders Neurology. 

Chan,T.E. et al. (2017) Gene Regulatory Network Inference from Single-Cell Data Using 
Multivariate Information Measures. Cell Systems, 5, 251-267.e3. 

Chiou,J. et al. (2021) Interpreting type 1 diabetes risk with genetics and single-cell 
epigenomics. Nature, 594, 398–402. 

Choi,D.H. et al. (2008) A novel intracellular role of matrix metalloproteinase-3 during 
apoptosis of dopaminergic cells. J Neurochem, 106, 405–415. 

Claringbould,A. and Zaugg,J.B. (2021) Enhancers in disease: molecular basis and emerging 
treatment strategies. Trends in Molecular Medicine, 27, 1060–1073. 

Cui,J. et al. (2016) Quantification of dopaminergic neuron differentiation and neurotoxicity 
via a genetic reporter. Sci Rep, 6, 25181. 

David,Y. et al. (2009) Astrocytic dysfunction in epileptogenesis: consequence of altered 
potassium and glutamate homeostasis? J Neurosci, 29, 10588–10599. 

Dewachter,I. et al. (2002) Neuronal deficiency of presenilin 1 inhibits amyloid plaque 
formation and corrects hippocampal long-term potentiation but not a cognitive defect 
of amyloid precursor protein [V717I] transgenic mice. J Neurosci, 22, 3445–3453. 

E. Vorontsov,I. et al. (2015) PERFECTOS-APE - Predicting Regulatory Functional Effect 
of SNPs by Approximate P-value Estimation: In, Proceedings of the International 
Conference on Bioinformatics Models, Methods and Algorithms. SCITEPRESS - 
Science and and Technology Publications, Lisbon, Portugal, pp. 102–108. 

Emmert-Streib,F. et al. (2014) Gene regulatory networks and their applications: 
understanding biological and medical problems in terms of networks. Front. Cell 
Dev. Biol., 2. 



 96 
 
 

 

Fakhoury,M. (2018) Microglia and Astrocytes in Alzheimer’s Disease: Implications for 
Therapy. Curr Neuropharmacol, 16, 508–518. 

Fishilevich,S. et al. (2017) GeneHancer: genome-wide integration of enhancers and target 
genes in GeneCards. Database, 2017. 

Frost,G.R. and Li,Y.-M. (2017) The role of astrocytes in amyloid production and 
Alzheimer’s disease. Open Biol, 7, 170228. 

Guo,S. et al. (2016) Gene regulatory network inference using PLS-based methods. BMC 
Bioinformatics, 17, 545. 

Hao,Y. et al. (2021) Integrated analysis of multimodal single-cell data. Cell, 184, 3573-
3587.e29. 

Heinz,S. et al. (2010) Simple Combinations of Lineage-Determining Transcription Factors 
Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. 
Molecular Cell, 38, 576–589. 

Hiramoto,M. et al. (2015) Comparative analysis of type 2 diabetes-associated SNP alleles 
identifies allele-specific DNA-binding proteins for the KCNQ1 locus. International 
Journal of Molecular Medicine, 36, 222–230. 

Hoe,H.-S. et al. (2007) The metalloprotease inhibitor TIMP-3 regulates amyloid precursor 
protein and apolipoprotein E receptor proteolysis. J Neurosci, 27, 10895–10905. 

Huynh-Thu,V.A. et al. (2010) Inferring Regulatory Networks from Expression Data Using 
Tree-Based Methods. PLoS ONE, 5, e12776. 

Jansen,L.A. et al. (2014) Glial localization of antiquitin: implications for pyridoxine-
dependent epilepsy. Ann Neurol, 75, 22–32. 

Kamath,T. et al. (2022) Single-cell genomic profiling of human dopamine neurons identifies 
a population that selectively degenerates in Parkinson’s disease. Nat Neurosci, 25, 
588–595. 

Kim,S. (2015) ppcor: An R Package for a Fast Calculation to Semi-partial Correlation 
Coefficients. Communications for Statistical Applications and Methods, 22, 665–
674. 

Landrum,M.J. et al. (2018) ClinVar: improving access to variant interpretations and 
supporting evidence. Nucleic Acids Res, 46, D1062–D1067. 

Lestón Pinilla,L. et al. (2021) Hypoxia Signaling in Parkinson’s Disease: There Is Use in 
Asking “What HIF?” Biology, 10, 723. 

Malpartida,A.B. et al. (2021) Mitochondrial Dysfunction and Mitophagy in Parkinson’s 
Disease: From Mechanism to Therapy. Trends Biochem Sci, 46, 329–343. 

Margolin,A.A. et al. (2006) ARACNE: An Algorithm for the Reconstruction of Gene 
Regulatory Networks in a Mammalian Cellular Context. BMC Bioinformatics, 7, S7. 

Mashili,F. et al. (2013) Constitutive STAT3 phosphorylation contributes to skeletal muscle 
insulin resistance in type 2 diabetes. Diabetes, 62, 457–465. 

Matsui,T. et al. (2007) Expression of APP pathway mRNAs and proteins in Alzheimer’s 
disease. Brain Res, 1161, 116–123. 

Mei,S. et al. (2017) Cistrome Data Browser: a data portal for ChIP-Seq and chromatin 
accessibility data in human and mouse. Nucleic Acids Res., 45, D658–D662. 

Muratore,C.R. et al. (2017) Cell-type Dependent Alzheimer’s Disease Phenotypes: Probing 
the Biology of Selective Neuronal Vulnerability. Stem Cell Reports, 9, 1868–1884. 

Nathan,A. et al. (2022) Single-cell eQTL models reveal dynamic T cell state dependence of 
disease loci. Nature. 

Oki,S. et al. (2018) Ch IP -Atlas: a data-mining suite powered by full integration of public 
Ch IP -seq data. EMBO Rep, 19. 

Palop,J.J. and Mucke,L. (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s 
disease: from synapses toward neural networks. Nat Neurosci, 13, 812–818. 



 97 
 
 

 

Pliner,H.A. et al. (2018) Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell 
Chromatin Accessibility Data. Mol Cell, 71, 858-871.e8. 

Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics, 26, 841–842. 

Rao,S. et al. (2021) Editing GWAS: experimental approaches to dissect and exploit disease-
associated genetic variation. Genome Med, 13, 41. 

Saarimäki-Vire,J. et al. (2017) An Activating STAT3 Mutation Causes Neonatal Diabetes 
through Premature Induction of Pancreatic Differentiation. Cell Rep, 19, 281–294. 

Shaywitz,A.J. and Greenberg,M.E. (1999) CREB: a stimulus-induced transcription factor 
activated by a diverse array of extracellular signals. Annu Rev Biochem, 68, 821–
861. 

Stuart,T. et al. (2020) Multimodal single-cell chromatin analysis with Signac Genomics. 
Sung,J.Y. et al. (2005) Proteolytic cleavage of extracellular secreted {alpha}-synuclein via 

matrix metalloproteinases. J Biol Chem, 280, 25216–25224. 
Tanaka,M. et al. (2012) GABRB3, Epilepsy, and Neurodevelopment. In, Noebels,J.L. et al. 

(eds), Jasper’s Basic Mechanisms of the Epilepsies. National Center for 
Biotechnology Information (US), Bethesda (MD). 

Uddin,F. et al. (2020) CRISPR Gene Therapy: Applications, Limitations, and Implications 
for the Future. Front Oncol, 10, 1387. 

Wang,G. et al. (2020) Advances in Understanding CREB Signaling-Mediated Regulation of 
the Pathogenesis and Progression of Epilepsy. Clinical Neurology and 
Neurosurgery, 196, 106018. 

Yang,D. et al. (2018) 3DIV: A 3D-genome Interaction Viewer and database. Nucleic Acids 
Research, 46, D52–D57. 

Yin,K.-J. et al. (2006) Matrix metalloproteinases expressed by astrocytes mediate 
extracellular amyloid-beta peptide catabolism. J Neurosci, 26, 10939–10948. 

Yu,F. et al. (2022) Variant to function mapping at single-cell resolution through network 
propagation. Nature Biotechnology. 

Zhang,L. et al. (2022) DIRECT-NET: An efficient method to discover cis-regulatory 
elements and construct regulatory networks from single-cell multiomics data. Sci. 
Adv., 8, eabl7393. 

Zhu,X. et al. (2012) Decreased CREB levels suppress epilepsy. Neurobiol Dis, 45, 253–263. 
 
  

Data and Material availability 

RNetDys is a pipeline publicly available at https://github.com/BarlierC/RNetDys.git. 

The repository of generated regulatory networks, results and scripts used in this study are 

available at https://gitlab.com/C.Barlier/RNetDys_analyses. 
  

Funding 

C.B. is supported by funding from the Luxembourg National Research Fund (FNR) within 

PARK-QC DTU (PRIDE17/12244779/PARK-QC). M.R. is supported by Fonds National de 

la Recherche Luxembourg (C17/BM/11662681). 
  

Acknowledgements 



 98 
 
 

 

The authors thank Dr. Patrick May for the valuable feedback and insights provided for this 

project. The benchmarking of the state-of-the-art GRNs method and data processing was 

performed using the HPC facilities of the University of Luxembourg (https://hpc.uni.lu). 
  

Authors contribution 

C.B. implemented RNetDys, collected and processed the data, performed the benchmarking, 

generated the cell (sub)type specific GRNs, collected the disease-related SNPs, performed 

the data analysis and wrote the manuscript, M.R. collected and processed the data, extracted 

the healthy cell (sub)type datasets, performed the data analysis and wrote the manuscript, 

S.J. supervised the computational work, A.d.S supervised the project. 
  

Competing Interests 

The authors declare no competing interests.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 99 
 
 

 

Tables 

Table 1. TF regulators involved in impaired regulatory mechanisms. 

DISEASE CELL (SUB)TYPE RANKED TFS* 

AD 

Astrocyte MXI1, STAT3 

Excitatory neuron CREB1, USF2, MXI1 

Inhibitory neuron CREB1, MXI1, STAT3 

Microglia CREB1, USF2, MXI1, IKZF1 

Oligodendrocyte CREB1, MXI1 

OPCs CREB1, MXI1, ETV1 

EPI 

Astrocyte MXI1, STAT3, BCL6, ZFX, RXRA 

Excitatory neuron CREB1, MXI1 

Inhibitory neuron CREB1, STAT3, STAT1, MXI1 

Microglia CREB1, MXI1 

Oligodendrocyte CREB1 

OPCs CREB1, BCL6, MXI1, STAT1, ETV1 

PD 

Astrocyte MXI1, BCL6 

Dopaminergic neuron STAT3 

Excitatory neuron MXI1, CREB1 

Oligodendrocyte MXI1 

OPCs BCL6, MXI1, ETV1 

T1D 

Alpha cell STAT3, STAT1, RXRA 

Beta cell STAT3, CREB1 

Delta cell STAT3, CREB1 

T2D 

Alpha cell STAT3, RXRA, STAT1, CREB1, ATF2, EHF 

Beta cell CREB1, STAT1, STAT3, PDX1, ETS1, ATF2, RXRA, MXI1 

Delta cell CREB1, STAT1, STAT3, PDX1, ETV1, EHF, ATF2 

Gamma cell STAT3, CREB1, STAT1, ETV1, EHF, ATF2 

* TFs are ranked by their order of importance in the detected impaired regulatory mechanisms. 
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Figures 

 
Figure 1. General workflow of RNetDys to decipher regulatory dysregulation in 
diseases. 
RNetDys is composed of two main parts including (1) the GRN inference using scRNA-seq, 
scATAC-seq and prior-knowledge, and (2) the identification of candidates impaired 
regulatory interactions using the GRN and a list of SNPs. The first part provides the cell 
(sub)type or state specific GRN describing the regulatory interactions mediated by TFs and 
enhancers of regulated genes. The second part provides the list of candidate impaired 
regulatory interactions in the cell (sub)type, the SNPs that were mapped to these interactions, 
the TFs for which the binding affinity is impaired, and the regulatory TFs ranked based on 
their importance in the impairments. 
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Figure 2. Performances of RNetDys and comparison to other methods. 
(A, B) TF-gene regulatory interactions performances assessed using (A) the PPV and (B) 
the F1-score metrics. Performances were assessed for RNetDys and state-of-the-art methods 
on 20 datasets from six human cell lines. (C, D) Enhancer-promoter regulatory interactions 
performance assessment using (C) the PPV and (D) the F1-score metrics. Performances were 
assessed for RNetDys and Cicero on 6 scATAC-seq datasets from three human cell lines. 
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Figure 3. Cell (sub)type differential regulatory impairment in diseases. 
Heatmaps showing the distribution of impaired interactions due to disease-related SNPs 
across cell (sub)types for Alzheimer’s disease (AD), Parkinson’s disease (PD), Epilepsy 
(EPI), Diabetes type I (T1D) and type II (T2D). The colors of the heatmap represent the 
number of SNPs impacting the regulatory interactions. Astro: astrocytes, Ex: excitatory 
neurons, Inh: inhibitory neurons, Mic: microglia, Oligo: oligodendrocytes, OPCs: 
oligodendrocyte progenitors, DAn: dopaminergic neurons. 
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Figure 4. Cell (sub)type specific regulatory impairment in AD. 
Network visualization of impaired regulatory interactions for (A) astrocytes, (B) excitatory 
neurons, (C) inhibitory neurons, (D) microglia, (E) oligodendrocytes and (F) OPCs. TFs are 
represented as diamond in light red, enhancers as yellow rectangles and genes in blue 
rectangles. Arrows represent activations and T edges represent repressions. The weight of 
edges from TFs correspond to the strength of the impairment, with the thinnest translating a 
strong lack of binding affinity and a large edge being a strong increase in binding affinity. 
The color of the edges from TFs represents the log2FC with green being a decreased affinity 
and red an increased one. 
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4.3.3 Supplementary Information 
 
Supplementary Methods 

Supplementary References 

Supplementary Figures: 

Figure S1. Strategy to compute the sign of the regulatory interactions. 

Figure S2. Cell (sub)type specific regulatory impairment in PD. 

Figure S3. Cell (sub)type specific regulatory impairment in EPI. 

Figure S4. Cell type specific impairment in T1D. 

Figure S5. Cell type specific impairment in T2D. 

Figure S6. Threshold selection to define accessibility of promoter regions. 

Supplementary Tables: 

Table S1. Single cell datasets used for validation and comparison. 

Table S2. Collected datasets to generate healthy cell (sub)type GRNs. 

Table S3. Matching of the scRNA-seq and scATAC-seq brain datasets. 

Table S4. Literature-based validation of the predicted impaired regulatory interactions. 

 

Supplementary Methods 
RNetDys workflow 

Cell (sub)type specific GRN inference  

The GRN inference part of RNetDys relies on the combination of multi-OMICS data 

including single cell datasets (scRNA-seq and scATAC-seq) and prior-knowledge (ChIP-

seq and GeneHancer).  First, a quality control was performed on the scRNA-seq and 

scATAC-seq in which any rows (gene or peaks) or columns (cells) having a sum of zero 

were removed from further analyses. Then, the following steps were computed to infer the 

cell (sub)type specific regulatory interactions: 

(1) TF-Genes interactions. First, using the scRNA-seq data, we pre-selected genes 

conserved at least in 50% of the cells for candidate interactions. Indeed, we considered 

genes expressed in the majority of the cells to be representative in the specific cell 

(sub)type. In addition, from the scATAC-seq peaks matrix, coordinates were extracted 

to identify accessible promoter regions. Notably, a gene promoter region was identified 

from the ChIP-seq collected from ChIP-Atlas (Oki et al., 2018), using HOMER (Heinz 

et al., 2010) annotations by filtering peaks related to gene types annotated as protein 

coding, and defined as a region between 1500bp upstream and 500bp downstream. A 
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promoter was considered to be accessible if its gene was expressed (conserved at least 

in 50% of the cells) and at least one ATAC peak was overlapping. The overlap between 

promoter regions and the peaks coordinates was performed using BEDTools (Quinlan 

and Hall, 2010) with the parameter -f = 0.48 in reciprocal mode (-r). We identified the 

overlap parameter f = 0.48 as being the one with the highest probability to capture a real 

cell (sub)type accessible promoter region. The procedure used to select 0.48 is described 

in “Identification of accessible gene promoter regions” of the Supplementary Methods. 

Finally, the resulting overlapping between promoter regions and chromatin accessibility 

allowed us to predict the cell (sub)type specific TF-gene interactions.  
 

(2) Enhancer-Promoters interactions. First, we identified open enhancer regions by 

intersecting the ChIP-seq data and the scATAC peaks coordinates using BEDTools with 

the parameter -F 1.0 selecting open enhancer if 100% of the region was accessible. Then, 

we splitted the scATAC peaks matrix such that one matrix contained accessible 

promoter regions, obtained previously, and the other one accessible enhancer regions. 

We then computed the correlation between the two matrices, using the Pearson metric 

with the propagate R package (Andrej-Nikolai Spiess, 2018) that requires few 

computational resources to perform correlation of large matrices. Z-scores and 

corresponding p-values using a one-sided test on a normal distribution were computed 

for each pairwise correlation. Then, a Benjamini-Hochberg multiple test correction was 

applied on the computed p-values. The network was generated by selecting enhancer 

regions as sources, and promoter regions as targets, filtering the edges such as p-adjusted 

value < 0.05, and keeping promoters for which genes were found in the TF-genes 

network. Notably, only positive correlation could be found as being significant as a 

negative correlation between accessibility peaks translate an absence of interaction 

between enhancers and promoters. We then retrieved the genes corresponding to the 

promoter regions using the ChIP-seq data used by RNetDys. Finally, the enhancer-

promoter correlation network was intersected with all GeneHancer (Fishilevich et al., 

2017) reported connections. 
 

(3) TF-Enhancers interactions. First, enhancers present in the Enhancer-Promoter network 

were selected. They are then intersected with the ChIP-seq data, using BEDTools and -

F 1.0. Therefore, if 100% of the ChIP-seq TF peak felt inside an enhancer region, then 

this TF was a regulator of the enhancer. 
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All the interactions of the comprehensive network were then signed based on the scRNA-

seq dataset using the Pearson correlation metric between TFs and genes. For TF-genes 

interactions, the correlation value defined the sign of the interactions such as positive 

correlations were most likely activation whereas negative ones were most likely repression. 

The signs for enhancer-promoter interactions were determined by computing the sum of 

correlation values for the TFs binding to the enhancer regulating the specific gene. Notably, 

the correlation values were corresponding to the TF-gene relationship. The correlation score 

to determine the sign was computed such as (Figure S1) such as: 
 

𝑐𝑜𝑟𝑉%!→'" =	,𝑐𝑜𝑟𝑉()#→'"
*

 

With corV: correlation value, TF: transcription factor, E: enhancer, G: gene 
 

 

Finally, signs for TF-Enhancers were computed by summing, for each TF binding of the 

enhancer, the TF-genes relationship correlation values for each gene regulated by the 

enhancer (Figure S1) such as: 

𝑐𝑜𝑟𝑉()!→%" =	,𝑐𝑜𝑟𝑉()!→'#
*

 

With corV: correlation value, TF: transcription factor, E: enhancer, G: gene 
 

 

Contextualization towards the disease state to identify candidate impaired interactions  

Based on a GRN from a healthy cell (sub)type, the regulatory network was contextualized 

towards the disease condition based on a list of SNPs. First, promoter regions coordinate for 

which a TF binding site has been identified were retrieved from the ChIP-seq data used by 

RNetDys. Then, the SNPs were mapped to these regions and enhancer regions of the GRN 

using BEDTools, under the condition that the SNP mapped exactly inside one of the regions 

(parameter -F 1). This step allowed for the identification of candidate impaired regulatory 

interactions, including TF-genes and enhancer-promoters, for the specific cell (sub)type. 

Finally, a TF binding affinity analysis was performed on the candidate impaired binding 

sites. The fasta sequences for impacted enhancer and promoter regions were retrieved from 

genome.ucsc.edu accordingly with the genome assembly, 50bp upstream and downstream 

were selected from the SNP position and the SNP [ref/alt] alleles were added to the sequence. 

Then, we used PERFECTOS-APE (E. Vorontsov et al., 2015) to perform the TF motif 

binding affinity analysis for each SNP on each candidate impaired binding region. Then, we 

refined the impaired regulatory interactions by selecting the ones having at least one TF 
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binding site significantly impacted. Notably, we used PERFECTOS-APE with the following 

modified parameters: --pvalue-cutoff 0.05 --fold-change-cutoff 2. Finally, we ranked the TFs 

to prioritize the regulators involved in the impairments due to SNPs, and hence were most 

likely to play a role in the dysregulations observed in the disease condition. The rank of each 

TF regulator was computed as follow: 
 

𝑅𝑎𝑛𝑘() = 𝑅𝐸 ×
𝑁𝐺
𝑅𝐸 	×	7,|𝐴𝐼|$+ ×	7𝑀𝐴𝐹$+ ×	,𝑀𝐴𝐹+:: 

With RE: number of regulatory elements regulated by the TF, NG: number of downstream genes 
across RE, AI: binding affinity impairment log2FC, i: SNPs, r: regulatory element. 

 
 

Identification of accessible gene promoter regions 

We intersected ChIP-seq peaks related to gene promoter regions with ATAC peaks from 

scATAC-seq data to identify accessible cell (sub)type promoter regions using bedtool. In 

order to define the best threshold to use for the overlapping between the ChIP and ATAC 

peaks, we collected ChIP-seq from ChIP-ATLAS and compiled four human cell line specific 

ChIP-seq gold standards (BJ, GM12878, H1 ESC and K-562). We then used all the ChIP-

seq collected from ChIP-ATLAS (aspecific) and considered a ChIP peak to be a true positive 

(TP) if it was found in the cell line specific GS and a false positive (FP) if it was not found 

in the GS. We computed the percentage of overlaps between ATAC peaks and TPs or FPs 

ChIP-peaks independently. Then, we computed the delta probability distribution such as: 

ecdf(TPs overlap) - ecdf(FPs overlap), and selected the highest point = 0.48. Indeed, 0.48 

corresponded to the reciprocal threshold for which the probability to capture a TP (cell 

(sub)type specific ChIP peak) was the highest and was used as default by the RNetDys 

(Figure S6). 

 
Generation of the cell (sub)type specific GRNs in healthy condition 

We collected scRNA-seq and scATAC-seq data from human pancreas and brain tissues 

(Table S2). The scRNA-seq datasets were processed using Seurat v4 (Hao et al., 2021) and 

annotations were used from their original studies. Similarly, the scATAC-seq datasets were 

processed using Signac (Stuart et al., 2020) and annotations were kept from their respective 

studies. The gene expression and peaks matrices for each cell (sub)type were extracted for 

each tissue as follow: 

- Pancreas: We performed the peak calling with Signac using MACS2 (-q 0.05 --call-

summits) for each cell (sub)type, and the peak matrices were extracted for the cell 
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(sub)types having a corresponding scRNA-seq matrix by using the FeatureMatrix 

function. We then used Seurat to extract all the cell (sub)type scRNA-seq matrices. 

- Brain: several datasets were collected to match scRNA-seq and scATAC-seq data in order 

to extract cell (sub)types for two different brain regions (Table S3). The scATAC-seq 

fragment files were obtained after request to the authors, and the general peaks matrix as 

well as metadata were retrieved from the public repository of their study (Corces et al., 

2020). We performed the peak calling with MACS2 (-q 0.05 --call-summits) for each cell 

(sub)type in each brain region. The peak matrices were extracted for the cell (sub)types 

having a corresponding scRNA-seq matrix by using the FeatureMatrix function provided 

by Signac. We then used Seurat to extract all the cell (sub)type scRNA-seq matrices. First, 

we processed the frontal cortex data, imputed the dropouts using MAGIC due to the high 

rate of zeros (van Dijk et al., 2018) and used the annotations provided by the authors to 

extract the cell (sub)types (Lake et al., 2018). Of note, excitatory subtypes were merged 

as excitatory neurons and inhibitory ones as inhibitory neurons to match with the 

scATAC-seq. Then, we extracted the cell (sub)types of the substantia nigra for healthy 

patients while keeping the annotations provided by the authors (Smajić et al., 2022).  

Each cell (sub)type GRN was generated using the extracted scRNA-seq and scATAC-seq 

datasets with the GRN inference part of RNetDys using the default parameters.  
 

GRN inference benchmarking and comparison to state-of-the-art 

We first assessed the performances of RNetDys to capture cell (sub)type specific TF-Gene 

interactions and performed a comparison with state-of-the-art methods including CLR 

(Zhang et al., 2016), GENIE3 (Huynh-Thu et al., 2010), SCENIC (Aibar et al., 2017), PIDC 

(Chan et al., 2017) and ppcor (Kim, 2015). All methods were used with default parameters 

to infer the TF-Genes networks and applied to 20 single cell RNA-seq datasets collected 

from six human cell lines (A549, Jurkat, K-562, GM12878, H1 ESC, BJ). Of note, only 

genes expressed at least in 50% of the cells for each scRNA-seq dataset were provided to 

the methods to be consistent for the comparison with RNetDys. In addition, predicted 

(un)directed GRNs were formatted to obtain TF-gene networks by filtering the Source 

(regulator) such that it contains any human TFs or co-TFs reported in Animal TFDB 

(accessed on the 08/04/2022) (Hu et al., 2019). Notably, due to large computational 

resources or a running time higher than two days, five networks could not be generated, 

including scRNA-seq datasets of one K562, one GM12878 and three H1-ESCs. RNetDys 

was used with default parameters on the 20 scRNA-seq datasets and scATAC-seq datasets 
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retrieved for each of the six human cell lines (Table S1). We benchmarked the inferred 

networks against cell line specific GS standard networks compiled from the Cistrome 

database and computed the precision (PPV) and accuracy (F1-score). Of note, more than one 

network was generated by RNetDys for each scRNA-seq dataset used for other methods, 

depending on the number of scATAC-seq datasets. We hence computed the median PPV 

and F1 score over the networks to have one metric by scRNA-seq, as we had for each state-

of-the-art method. We then assessed the performances of RNetDys in capturing cell 

(sub)type specific enhancer-promoter regulatory interactions. State-of-the-art methods used 

for the TF-gene benchmarking did not account for enhancers, as they solely relied on 

scRNA-seq, and hence we performed a comparison using Cicero (Pliner et al., 2018), a 

widely used strategy to identify co-accessibility between regulatory regions based on 

scATAC-seq. We applied RNetDys on twelve combinations of scRNA-seq and scATAC-

seq datasets for three human cell lines (Table S1) for which we could compile reliable cell 

line specific gold standard networks from 3DIV database (GM12878, H1 ESC, BJ/IMR90). 

We used Cicero on the scATAC-seq datasets using default parameters and annotated the 

enhancer and promoter regions using the ChIP-seq leveraged by RNetDys. Notably, no 

significance score was provided on the interactions and hence, accordingly with Cicero 

guideline, we selected interactions with a co-accessibility score greater than zero. Finally, 

we benchmarked the predicted networks against the human cell line specific GS networks to 

compute the PPV and F1-score. Notably, cell line specific GS were used to assess the 

performances for inferring cell (sub)type specific GRNs. Indeed, cell lines are well studied 

and hence data is available to compile GS with confidence. In addition, we assume that the 

performances obtained using cell line specific GS can be extrapolated for more specialized 

cell (sub)populations such as subtypes due to their homogeneity. 

 
Compilation of the gold standard networks 

We compiled two types of GS networks, both directed, to assess the performances and 

validate the specificity in identifying cell (sub)type specific regulatory interactions:  

(1) TF-Genes GS networks: for each human cell line, we collected high quality ChIP-seq 

data specific to the cell line from Cistrome (Mei et al., 2017). The highest quality was 

defined as peak data passing all the quality control available in Cistrome. 

(2) Enhancer-promoter GS networks: for each human cell line, we collected Promoter 

Capture Hi-C data from 3DIV (Yang et al., 2018) database. We then filtered the GS networks 
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to retain enhancers found in GeneHancer and gene promoter regions defined in the ChIP-

seq data retrieved from ChIP-Atlas using BEDTools (Quinlan and Hall, 2010). 
 

Cell (sub)type specific regulatory mechanisms impaired in diseases 

We performed a general study of cell (sub)type specific impairment in diseases by using 

prior-knowledge SNPs to validate the relevance of the captured interactions. We first 

collected single nucleotide variants (SNVs) from ClinVar (Landrum et al., 2018) and 

extracted SNPs such as SNVs found at least in 1% of the global population (MAF >= 0.01). 

Of note, MAF scores were retrieved for each SNV using BioMart R package and the 

‘hsapiens_snp’ dataset. Then, we extracted the SNPs for each disease by selecting the ones 

that have been reported as disease-related in ClinVar, and we performed a systematic 

extraction using regex in R with the disease name as pattern. Finally, for each cell (sub)type 

and each disease, we applied RNetDys using the cell (sub)type GRN and the list of SNPs to 

capture candidate impaired regulatory interactions, TF binding impairment information and 

the ranked regulators. Notably, SNPs related to AD were mapped to the brain cortex 

networks whereas SNPs related to PD were mapped to the midbrain networks.  
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Supplementary Figures 
 

 
Figure S1. Strategy to compute the sign of the regulatory interactions. 
The scRNA-seq dataset is used to compute the correlation between the TFs and genes of the GRN. 
TF-gene interactions are directly signed using the correlation values. Enhancer-promoter interactions 
are signed by summing the correlation values between the TFs binding to the enhancer and the 
regulated gene. TF-enhancer interactions are signed by computing for each TF the sum of the 
correlation values between the TF and the genes regulated by the enhancer. 
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Figure S2. Cell (sub)type specific regulatory impairment in PD. 
Network visualization of impaired regulatory interactions for (A) astrocytes, (B) excitatory neurons, 
(C) dopaminergic neurons, (D) oligodendrocytes and (E) OPCs. TFs are represented as diamond in 
light red, enhancers as yellow rectangles and genes in blue rectangles. Arrows represent activations. 
The weight of edges from TFs correspond to the strength of the impairment, with the thinnest 
translating a strong lack of binding affinity and a large edge being a strong increase in binding 
affinity. The color of the edges from TFs represents the log2FC with green being a decreased affinity 
and red an increased one. 
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Figure S3. Cell (sub)type specific regulatory impairment in EPI. 
Network visualization of impaired regulatory interactions for (A) astrocytes, (B) excitatory neurons, 
(C) inhibitory neurons, (D) microglia, (E) oligodendrocytes and (F) OPCs. TFs are represented as 
diamond in light red, enhancers as yellow rectangles and genes in blue rectangles. Arrows represent 
activations and T edges represent repressions. The weight of edges from TFs correspond to the 
strength of the impairment, with the thinnest translating a strong lack of binding affinity and a large 
edge being a strong increase in binding affinity. The color of the edges from TFs represents the 
log2FC with green being a decreased affinity and red an increased one. Notably, the labels for edges 
are not displayed in (A) Astrocytes due to the high number of interactions, but each edge mediated 
by a TF represents an impairment due to a specific SNP.   
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Figure S4. Cell type specific impairment in T1D. 
Network visualization of impaired regulatory interactions for (A) alpha cells and (B) beta and delta 
cells. TFs are represented as diamond in light red, enhancers as yellow rectangles and genes in blue 
rectangles. Arrows represent activations. The weight of edges from TFs correspond to the strength 
of the impairment, with the thinnest translating a strong lack of binding affinity and a large edge 
being a strong increase in binding affinity. The color of the edges from TFs represents the log2FC 
with green being a decreased affinity and red an increased one. 
 
 
 

 
Figure S5. Cell type specific impairment in T2D. 
Network visualization of impaired regulatory interactions for (A) alpha cells, (B) beta cells, (C) delta 
cells and (D) gamma cells. TFs are represented as diamond in light red, enhancers as yellow 
rectangles and genes in blue rectangles. Arrows represent activations. The weight of edges from TFs 
correspond to the strength of the impairment, with the thinnest translating a strong lack of binding 
affinity and a large edge being a strong increase in binding affinity. The color of the edges from TFs 
represents the log2FC with green being a decreased affinity and red an increased one.  
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Figure S6. Threshold selection to define accessibility of promoter regions.  
Delta probability between true positives and false positives. The peak of the distribution, equal to 
0.48, corresponds to the highest probability to capture a true accessible promoter region in the cell 
(sub)type. 
 
Supplementary Tables 

Table S1. Single cell datasets used for validation and comparison 

Accession Number Cell line Type of 
data 

TF-Promoter 
benchmarking 

Enhancer-Promoter 
benchmarking 

GSE100344 BJ scRNA-seq  X X 
GSE113415 BJ scRNA-seq  X X 
GSE160910 BJ scRNA-seq  X X 
GSE166935 BJ scRNA-seq  X X 

scOpen* BJ scATAC-seq X X 
GSE99172 BJ scATAC-seq X X 
GSE81861 GM12878 scRNA-seq  X X 

GSM3596321 GM12878 scRNA-seq  X X 
GSM4156602 GM12878 scRNA-seq  X X 
GSM4156603 GM12878 scRNA-seq  X X 

scOpen* GM12878 scATAC-seq X X 
GSE99172 GM12878 scATAC-seq X X 
GSE64016 H1-ESC scRNA-seq  X X 
GSE75748 H1-ESC scRNA-seq  X X 
GSE81861 H1-ESC scRNA-seq  X X 

GSM5534158 H1-ESC scRNA-seq  X X 
scOpen* H1-ESC scATAC-seq X X 

GSE99172 H1-ESC scATAC-seq X X 
GSE81861 A549 scRNA-seq  X  

GSM3271042 A549 scRNA-seq  X  
GSM3271043 A549 scATAC-seq X  
GSM4224433 A549 scATAC-seq X  
GSE105451 Jurkat scRNA-seq  X  

10x platform** Jurkat scRNA-seq  X  
GSE107816 Jurkat scATAC-seq X  
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GSE81861 K562 scRNA-seq  X  
GSE90063 K562 scRNA-seq  X  
GSE113415 K562 scRNA-seq  X  

GSM1599500 K562 scRNA-seq  X  
scOpen* K562 scATAC-seq X  

GSE99172 K562 scATAC-seq X  
*scOpen: https://github.com/CostaLab/scopen-reproducibility 
**10x platform: https://www.10xgenomics.com/resources/datasets/jurkat-cells-1-standard-1-1-0 
 
 
Table S2. Collected datasets to generate healthy cell (sub)type GRNs. 
 

System Accession Type of data 

Pancreas 
GSE85241 scRNA-seq 

GSM558939 scATAC-seq 

Brain 
GSE157783 (Healthy) scRNA-seq 

GSE97942 scRNA-seq 
GSE147672 scATAC-seq 

 
 
Table S3. Matching of the scRNA-seq and scATAC-seq brain datasets. 
 

scATAC-seq Brain Regions scRNA-seq Brain Region 
Matched Brain region abbreviation 

Substantia Nigra Human Midbrain (GSE157783, Healthy) SUNI 
Middle Frontal Gyrus Frontal Cortex (GSE97942) MDFG 

 
 
Table S4. Literature-based validation of the predicted impaired regulatory 
interactions. 
 

PD 

Source (TF or 
enhancer) Gene RSID Cell 

(sub)pop 

GWAS 
Cell type 
specific e-

QTL* 
SNP 

Linked 
to gene 

PMID SNP Linked to 
gene 

chr22:32473200-32478044 TIMP3 rs11538371 Astro    x 
chr22:32473200-32478044 TIMP3 rs2072814 Astro    x 
chr22:32473200-32478044 TIMP3 rs8137714 Astro    x 
chr4:41255600-41259401 UCHL1 rs5030732 DAn x  

28253266, 
25370916, 
22839974 

x 

STAT3 UCHL1 rs5030732 DAn x x 

chr4:41255600-41259401 UCHL1 rs11556273 Ex x   x 
chr4:41255600-41259401 UCHL1 rs5030732 Ex x   x 
chr4:41255600-41259401 UCHL1 rs9321 Ex x   x 

CREB1 UCHL1 rs11556273 Ex x   x 
chr22:32473200-32478044 FBXO7 rs2072814 Oligo x   x 
chr4:41255600-41259401 LIMCH1 rs5030732 Oligo    x 
chr4:41255600-41259401 LIMCH1 rs9321 Oligo    x 
chr22:32473200-32478044 FBXO7 rs11538371 OPCs x   x 

BCL6 FBXO7 rs11538371 OPCs x   x 
chr22:32473200-32478044 FBXO7 rs2072814 OPCs x   x 
chr22:32473200-32478044 FBXO7 rs8137714 OPCs x 18513678 x 

BCL6 FBXO7 rs8137714 OPCs x x 
chr12:40222200-40227694 LRRK2 rs112643657 OPCs x     

AD 
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Source Target RSID Pop 
GWAS 

Cell type 
specific e-

QTL* 
Linked 
to gene PMID Linked to gene 

chr14:73135401-73138601 PSEN1 rs1800839 Astro x  
28821390, 
11389157 

x 

STAT3 PSEN1 rs1800839 Astro x x 

chr21:26166164-26172001 APP rs45476095 Astro x 21654062   
MXI1 APP rs45476095 Astro x   

chr14:73135401-73138601 APP rs459543 Astro x     

MXI1 APP rs459543 Astro x 
 

21654062, 
16685645 

  

chr14:73135401-73138601 PSEN1 rs1800839 Ex x  
28821390, 
11389157 

x 

CREB1 PSEN1 rs1800839 Ex x x 

chr21:26166164-26172001 APP rs45476095 Ex x 21654062   

chr21:26166164-26172001 APP rs459543 Ex x 
 

21654062, 
16685645 

  

chr14:73135401-73138601 PSEN1 rs1800839 Inh x  
28821390, 
11389157 

  

CREB1, STAT3 PSEN1 rs1800839 Inh x   

chr21:26166164-26172001 APP rs45476095 Inh x 21654062   

chr21:26166164-26172001 APP rs459543 Inh x 
 

21654062, 
16685645 

  

chr21:26166164-26172001 APP rs1800839 Mic      
chr21:26166164-26172001 APP rs45476095 Mic x 21654062   

chr14:73135401-73138601 APP rs459543 Mic x 
 

21654062, 
16685645 

  

CREB1 PSEN1 rs1800839 Oligo x 
 

28821390, 
11389157 

  

chr21:26166164-26172001 APP rs45476095 Oligo x 21654062   

chr14:73135401-73138601 APP rs459543 Oligo  
 

21654062, 
16685645 

  

chr14:73135401-73138601 PSEN1 rs1800839 OPCs x  
28821390, 
11389157 

x 

CREB1 PSEN1 rs1800839 OPCs x x 

chr21:26166164-26172001 APP rs45476095 OPCs x     
chr21:26166164-26172001 APP rs459543 OPCs x     

EPI 

Source Target RSID Pop 
GWAS 

Cell type 
specific e-

QTL* 
Linked 
to gene PMID Linked to gene 

chr5:126592200-
126596201 ALDH7A1 rs144272515 Astro x   x 

ZFX ALDH7A1 rs144272515 Astro x   x 
chr3:64223200-64226459 PRICKLE2 rs697287 Astro x   x 
chr3:64223200-64226459 PRICKLE2 rs900641 Astro       
chr3:64223200-64226459 PRICKLE2 rs142388795 Astro x     

STAT3 PRICKLE2 rs142388795 Astro x     
chr5:126592200-

126596201 ALDH7A1 rs146562077 Astro x     

STAT3 ALDH7A1 rs146562077 Astro x     
chr3:64223200-64226459 PRICKLE2 rs150393747 Astro x     

STAT3 PRICKLE2 rs150393747 Astro x     
chr6:145733617-

145737579 EPM2A rs2235482 Astro x     

BCL6, STAT3, ZFX EPM2A rs2235482 Astro x     
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chr6:145733617-
145737579 EPM2A rs374338349 Astro x 11735300   

BCL6 EPM2A rs374338349 Astro x   
chr5:126592200-

126596201 ALDH7A1 rs60720055 Astro x     

chr5:126592200-
126596201 ALDH7A1 rs72857097 Astro       

STAT3 KCTD7 rs77341088 Astro x     
chr5:126592200-

126596201 ALDH7A1 rs900640 Astro x     

STAT3 ALDH7A1 rs900640 Astro x     
ZFX ALDH7A1 rs900640 Astro x     

chr3:64223200-64226459 PRICKLE2 rs697287 Ex x   x 

CREB1 GABRB3 rs20317 Ex x 

 
30074174, 
24999380, 
25025424 

x 

CREB1 KCTD7 rs117194263 Ex x     
chr3:64223200-64226459 PRICKLE2 rs142388795 Ex x     

CREB1 PRICKLE2 rs142388795 Ex x     
chr7:66625550-66632156 KCTD7 rs35526611 Ex x     

CREB1 KCTD7 rs35526611 Ex x     

CREB1 GABRB3 rs20317 Inh x 

 
30074174, 
24999380, 
25025424 

x 

CREB1 KCTD7 rs117194263 Inh x     
CREB1, STAT3 PRICKLE2 rs142388795 Inh x     

STAT3 PRICKLE2 rs150393747 Inh x     
MXI1 KCNC1 rs2229007 Inh x     

chr7:66625550-66632156 KCTD7 rs35526611 Inh x     
CREB1 KCTD7 rs35526611 Inh x     
STAT3 CACNB4 rs61736804 Inh x     
STAT1 SCARB2 rs72857097 Inh x     
STAT3 KCTD7 rs77341088 Inh x     

chrX:47619001-47620600 SYN1 rs187134574 Inh x   No data on chrX 
STAT3 SYN1 rs187134574 Inh x   No data on chrX 
CREB1 KCTD7 rs117194263 Mic x     

chr4:122920756-
122924601 SPATA5 rs35430470 Mic x     

chr7:66625550-66632156 KCTD7 rs35526611 Mic x     
CREB1 KCTD7 rs35526611 Mic x     
CREB1 KCTD7 rs117194263 Oligo x     

CREB1 GABRB3 rs20317 Oligo x 

 
30074174, 
24999380, 
25025424 

  

chr7:66625550-66632156 KCTD7 rs35526611 Oligo x     
CREB1 KCTD7 rs35526611 Oligo x     
CREB1 RBFOX1 rs7187508 Oligo x     

chr3:64223200-64226459 PRICKLE2 rs697287 OPCs x   x 
CREB1 KCTD7 rs117194263 OPCs x     

chr3:64223200-64226459 PRICKLE2 rs142388795 OPCs x     
CREB1 PRICKLE2 rs142388795 OPCs x     

chr7:66625550-66632156 KCTD7 rs35526611 OPCs x     
CREB1 KCTD7 rs35526611 OPCs x     

CREB1 SCN9A rs4369876 OPCs x 
 

23292638, 
21698661 

  

CREB1 RBFOX1 rs7187508 OPCs x     
chr4:76205669-76215919 SCARB2 rs72857097 OPCs x     

STAT1 SCARB2 rs72857097 OPCs x     
chr12:42468600-42471319 PRICKLE1 rs74081707 OPCs x     

T1D 

Source Target RSID Pop GWAS Cell type 
specific e-QTL 
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Linked 
to gene PMID Linked to gene 

chr20:44397802-44420654 TTPAL rs113308087 Alpha     

No data 

chr20:44397802-44420654 TTPAL rs1800961 Alpha     
chr20:44397802-44420654 TTPAL rs736823 Alpha     

CREB1, STAT3 KCNJ11 rs1800467 Beta x 
25733456, 
26937418, 
25247988 

STAT3 KCNJ11 rs2285676 Beta x 
32930968, 
29903275, 
27249660 

CREB1, STAT3 KCNJ11 rs41282930 Beta x 
25247988, 
22289434, 
15115830 

STAT3 KCNJ11 rs5210 Beta x 
32693412, 
33101408, 
30641791 

CREB1, STAT3 KCNJ11 rs1800467 Delta x 
25733456, 
26937418, 
25247988 

STAT3 KCNJ11 rs2285676 Delta x 
32930968, 
29903275, 
27249660 

CREB1, STAT3 KCNJ11 rs41282930 Delta x 
25247988, 
22289434, 
15115830 

STAT3 KCNJ11 rs5210 Delta x 
32693412, 
33101408, 
30641791 

T2D 

Source Target RSID Pop 
GWAS Cell type 

specific e-QTL 
Linked 
to gene PMID Linked to gene 

chr20:44397802-44420654 TTPAL rs113308087 Alpha     

No data 

chr20:44397802-44420654 TTPAL rs1169288 Alpha     
chr12:120977075-

120985314 ANAPC5 rs1169289 Alpha     

chr20:45334860-45349300 PIGT rs147593522 Alpha     

STAT3 ABCC8 rs1799859 Alpha x 28587604, 
26740944 

chr20:44397802-44420654 TTPAL rs1800961 Alpha     
chr4:26318200-26324401 RBPJ rs186895314 Alpha x   
chr20:44397802-44420654 TTPAL rs2072792 Alpha     

ATF2 RBPJ rs73245775 Alpha x   

STAT3 ABCC8 rs757110 Alpha x 
32660410, 
32468916, 
32930968 

chr20:45334860-45349300 SYS1 rs147593522 Beta     

PDX1, STAT3 ABCC8 rs1799859 Beta x 28587604, 
26740944 

chr4:26318200-26324401 RBPJ rs186895314 Beta x   
chr20:45334860-45349300 SYS1 rs2072792 Beta     

*https://zenodo.org/record/6104982#.Yq2eUy0RryY 
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5 Discussion 
Multicellular organisms are composed of highly heterogeneous and functionally specialized 

cells organized into different layers of complexity such as tissue or organs (Morris et al., 

2019; Arendt et al., 2016; Regev et al., 2017). Cells display specific expression patterns 

governed by complex regulatory mechanisms that turn off and on transcriptomic programs 

(Wray et al., 2003). Internal and external stimuli trigger cellular responses that lead cells to 

a change of activity or state can enhance physiological processes but also pathological ones 

in case of dysregulations (Miller-Jensen et al., 2007; Carson and Ribeiro, 1993; Bartsch and 

Wulff, 2015). The increasing prevalence of single-cell OMICS data contributed to the 

discovery of new or rare cell (sub)populations (e.g., subtypes, states) and to a better 

understanding of disease heterogeneity and complexity (Strzelecka et al., 2018). Indeed, 

single cell technologies led to the generation of organism-wide atlases at an unprecedented 

resolution and allowed the implementation of computational approaches with more detailed 

models to dissect the heterogeneity at the cellular and molecular levels (The Tabula Muris 

Consortium et al., 2018; The Tabula Sapiens Consortium and Quake, 2021; Efremova and 

Teichmann, 2020). The characterization of cells escaping the healthy cellular landscape to 

go towards pathological states and the identification of candidate molecules to prevent or 

treat diseases are part of the challenges addressed by computational systems biology 

approaches (Morris, 2019; Moreau and Tranchevent, 2012). Over the past few years, several 

computational methods were developed to analyze single-cell data and provide new 

biological insights to pave the way towards new therapeutic and personalized medicine 

approaches (Stuart et al., 2019; Oulas et al., 2019). Whereas the development of such 

methods contributed to the advance of the field, they present several limitations that need to 

be addressed (Lähnemann et al., 2020; Morris, 2019). This thesis presents three 

computational approaches to study different aspects of disease modelling to overcome 

existing limitations and contribute to solving open challenges in systems biology. In 

particular, the approaches developed focus on the characterization of cell identity, the 

identification of functional cell states and candidate genes for cell state conversion, and the 

inference of comprehensive GRNs to guide the identification of impaired regulatory 

mechanisms in diseases.  
 
5.1 Revising the characterization of cell identity 
For years, cells were classified based on different features such as their anatomical location 

or morphology which has been shown to be limited and inaccurate. Indeed, the emergence 
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of single-cell based data provided an unprecedented resolution of cell features that uncovered 

the molecular and cellular complexity of biological systems and refuted the previous 

classification system (Morris, 2019). The accurate and extensive characterization of the 

cellular identity landscape for different organisms would be valuable to better understand 

physiological processes but also detect cells displaying non-physiological patterns 

(Altschuler and Wu, 2010; Ikeda et al., 2018). However, the characterization of cell identity 

and underlying genes defining it remains a central challenge. Indeed, the fact that cell 

identity is acquired during the developmental process and shaped by the niche to perform 

specific functions makes the identification of identity genes a non-trivial task (Morris, 2019). 

The deciphering of identity genes highly relies on the biological context in which cells are 

characterized, accordingly with their hierarchical classification as cell type, subtype or 

phenotype. In addition, it has been shown that gene expression levels are involved in 

different functional outcomes for the same cell (sub)type (Huang, Yang, George W Ye, et 

al., 2021; Shats et al., 2017). In that regard, current computational methods present several 

limitations when identifying identity genes. Indeed, they rely on the comparison of gene 

expression profiles of a target cell population with other cell populations in given tissues that 

are usually incomplete and composed of mixed cell types, subtypes and/or phenotypes. 

Moreover, they categorize the gene expression as expressed or non-expressed which discard 

any intermediate level of expression which could lead to different functions and hence be 

part of the cell identity. The combination of these two limitations highly hinders the accurate 

characterization of cell identity. To address these limitations, we developed HCellig, a 

computational method relying on the hierarchical organization of cell identity (cell types, 

subtypes and phenotypes) and accounting for intermediate levels of gene expression to 

accurately capture identity genes (section 4.1). 
 
5.1.1 Scope and utility 

HCellig has been implemented as a general method to capture identity genes of any cell 

(sub)population, including cell types, subtypes and phenotypes, in physiological and 

pathological conditions. A priori, no annotation is required to use the method and identify 

identity genes of an unknown target cell population. Indeed, to characterize the cell identity 

of a cell type, the cell type background will be used to determine its identity genes. However, 

for more precise levels of resolution such as cell subtype and phenotype, it is required to 

gather additional information to select the most relevant background to use HCellig. 

Therefore, in case of an unknown target cell subpopulation or phenotype, one strategy could 
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first consist into the capture of identity genes by comparing with the cell type background. 

These identity genes would help determining, based on expert knowledge and/or with the 

help of well-defined cell type markers (X. Zhang et al., 2019), to which cell type belongs 

the target cell subpopulation or phenotype. Then, to get a more refined characterization of 

its identity, one could use this information to select the correct cell subtype background to 

use for deciphering identity genes. Finally, to characterize the cell identify of an unknown 

cell phenotype, one can use a similar strategy to first find to which cell subtype it belongs. 

Then, the right cell phenotype background can be selected to define the cell identity at its 

most refined level of resolution and obtain the list of identity genes for the target cell 

phenotype. To illustrate the discussed strategy, let us assume that we obtained an unknown 

cell (sub)population after clustering our scRNA-seq data. We would first identity its identity 

genes compared to the cell type layer using HCellig. Then, based on expert knowledge and 

well-defined markers we would determine that our unknown cell (sub)population belongs to 

neurons. We can then select the neuron subtype background to refine the identity genes of 

our cell (sub)population. Using the same strategy, we can either observe a mix of neuron 

subtypes, in which case we can consider that our cell (sub)population correspond to neurons 

or determine that our unknown cell subpopulation are dopaminergic neurons. Finally, we 

can select the dopaminergic neurons phenotype background to obtain the identity genes of 

the specific phenotype (e.g., dopaminergic neurons from midbrain). 

 

The accurate identification of identity genes is required to characterize cell (sub)populations 

of interest and is of great use to perform downstream analyses such as the discovery of 

regulatory modules of cell identity or the characterization of core biological processes. 

Indeed, the use of identity genes to perform downstream analyses could be seen as a feature 

selection step to capture the most relevant and informative genes defining the target cell 

(sub)population. These identity genes could then be used to guide the identification of key 

TFs regulators of cell identity (Almeida et al., 2021) to guide cell conversion or get a better 

understanding of identity destabilization or disruption in diseases (Ikeda et al., 2018; 

Brumbaugh et al., 2019; Jung et al., 2021). For instance, HCellig could be used to capture 

identity genes of a target cell (sub)population in healthy and disease condition. The 

comparison between the two sets of identity genes would allow the identification of the ones 

that might be lost in the disease condition. Moreover, the generation of identity cores, by 

building the GRN around the identity genes, could provide a more comprehensive view of 

the cell identity destabilization. Indeed, it would allow the identification of key regulator of 
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identity that might be involved in the dysregulations. Notably, the GRN could be built based 

on the transcriptomic data used with HCellig by using state-of-the-art approaches (Aibar et 

al., 2017). In addition, the identity core could be used to identify functional modules of 

genes, based on functional enrichment analyses (Wu et al., 2021), and provide additional 

information into the functional impairment specific to the characterized cell 

(sub)populations in diseases. 

 
5.1.2 Strengths 

HCellig relies on a hierarchical cell identity model to capture identity genes of any cell 

(sub)population, accordingly with their hierarchical classification as cell type, subtype and 

phenotype. For instance, HCellig would determine genes characterizing neurons by 

comparing them to any cell type of the organism. Then, it would identify genes defining 

dopaminergic neurons by comparing them to all subtype neurons of the organism and finally 

it would capture identity genes of dopaminergic neurons specific to substantia nigra by 

comparing them to all different locations in which this subtype can be found. We assume 

that this hierarchical approach better reflects the biological reality than tissue-wise 

comparisons. Indeed, whereas tissue-based comparison were reasonable approaches to 

identify cell (sub)type markers used by experimentalists for cell extraction or sorting (X. 

Zhang et al., 2019), this characterization of cell identity remains limited. The hierarchical 

cell identity model used by our computational method considers the hierarchical 

classification of cells organism-wide and hence allow for a more accurate characterization 

of their identity. Moreover, HCellig uses a discretization of gene expression strategy 

implemented in RefBool (Jung et al., 2017), that was adapted for single cell data to quantify 

genes into three levels of expression including low, medium and high. The advantage of 

these three levels is that, compared to traditional methods categorizing genes as expressed 

or not (Stuart et al., 2019), it allows for the distinction between medium and high expression 

which has been shown to be important for the functional outcomes (Huang, Yang, George 

W Ye, et al., 2021; Shats et al., 2017). In that regard, this less stringent categorization of 

gene expression into three levels leads to a more accurate capture of identity genes and hence 

a better characterization of cell identity for which the functional features are critical (Morris, 

2019). In summary, the two main advances implemented in HCellig address limitations of 

current methods to provide an accurate characterization of cellular identity.  
 



 125 
 
 

 

We pre-compiled a large-scale repository of backgrounds at each hierarchical layer including 

cell type, subtype and phenotype for mouse and human that can be used to characterize the 

cell identity of any know or unknown cell (sub)population. Notably, HCellig is a user-

friendly R package that requires few parameters and computational resources to capture the 

identity genes and their expression level for a query cell (sub)population. Our method could 

be used to extend the current knowledge (X. Zhang et al., 2019) of the cellular landscape by 

allowing the accurate characterization of cell (sub)populations in physiological and non-

physiological conditions. In that regard, we generated high-resolution cell identity atlases 

for mouse and human that can complete the current knowledge available for these cellular 

landscapes (Regev et al., 2017; The Tabula Muris Consortium et al., 2018; The Tabula 

Sapiens Consortium and Quake, 2021; Morris, 2019). Indeed, we observed, as expected, that 

markers described in literature for specific cell populations were captured by HCellig. 

However, we also highlighted a high number of unreported and unknown identity genes, 

especially the ones expressed at a medium level, and for the phenotypes. Therefore, we 

expect our atlases to highlight the importance of medium identity genes that could lead to 

different functional outcomes, physiological or pathological, in case their expression level 

would be perturbed. 

 
5.1.3 Limitations 

The study performed in “Quantification of gene level to characterize hierarchical cell 

identity” (section 4.1) has several advantages but some limitations remain. First, the 

backgrounds for mouse were not as extensive as the ones built for human. Indeed, due to the 

lack of data, low sequencing depth and limited annotations, very few cell subtype 

backgrounds were generated, and no cell phenotype backgrounds were compiled. In 

addition, the compilation of large backgrounds, especially the cell type layer, requires a lot 

of computational resources. Therefore, it would be required to generate new backgrounds or 

extend the current ones by using a High-Performance Computing structure to meet the 

computational resources requirements. Nevertheless, we mitigated this limitation by 

providing a repository containing several pre-compiled backgrounds for each hierarchical 

layer. However, with the growing availability of organism-wide scRNA-seq data, it could 

be interesting to extend the current cell type backgrounds or increase the list of available 

subtype and phenotype ones. HCellig is adapted for UMI-based single cell data only, due to 

the lack of state-of-the-art normalization approaches for non-UMI data. Indeed, it is well 

accepted that the normalization and batch effect correction approaches differ between UMI 
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and non-UMI data (Lytal et al., 2020; Chen et al., 2019). However, compared to scTransform 

which is widely used for UMI data (Hafemeister and Satija, 2019), no consensus has been 

found for non-UMI data. Finally, this study provides two main novelties with the hierarchical 

model and the three levels of expression, but no experimental validations were performed. 

Indeed, it would be interesting to perform functional assays to support the impact of 

expression level changes for the medium identity genes on the cell (sub)population 

functional outcome (section 5.5). 

 
5.2 Identifying functional cell states and immunomodulators 
Cellular identity is defined by a set of genes characterizing cells specific features such as 

their functions. The functional specialization of cells is acquired during the development and 

is further shaped by external signals. In response to stimuli, the same cell (sub)type can 

exhibit different phenotypes, corresponding to different functional cell states that are 

characterized by specific molecular features (Trapnell, 2015). Whereas stimuli are part of 

physiological processes in place to maintain the integrity and homeostasis of the organism, 

they can also trigger dysregulations that can lead to pathological states (Rué and Martinez 

Arias, 2015; Lutshumba et al., 2021). Computational biology models aim at leveraging the 

discovery of cell states to have a better understanding of the underlying heterogeneity in 

physiological and pathological conditions. In addition, these models aim at identifying 

potential candidate genes that could be used for cell states conversion, and for instance revert 

a disease state towards a healthy one (Wei et al., 2022). Despite recent efforts to decipher 

cellular states, there is room for improvement to accurately decipher them while identifying 

the key functional genes and functional processes that characterize them. To tackle this 

challenge, we developed FunPart, a computational method that decipher functional cell 

states, capture the key genes and their related functional processes to characterize them 

(section 4.2). FunPart was applied to the mouse immune system, widely studied over the 

years (Chaplin, 2010; P. Fang et al., 2018; Iwasaki and Akashi, 2007), as the identification 

of their functional states and transcriptional characterization would be pivotal for the 

development of therapy strategies relying on immunomodulators. Notably, FunPart could be 

applied to any type of cells to identify functional cell states and provide candidate modulators 

for cellular conversion in different disease conditions. 
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5.2.1 Scope and utility 

FunPart has been developed as a general method to decipher functional cell states and 

systematically capture the key genes that characterize them, in physiological and 

pathological conditions. It allows the dissection of the functional heterogeneity by 

accounting for subtle differences to identify groups of cells, named functional cell states, 

that share similar transcriptomic profiles and functions. In addition, the method deciphers 

functional module of genes and the key transcription factors characterizing these states. In 

the study (section 4.2), we applied FunPart to decipher the functional heterogeneity of 

immune cells across different types of infection but, it can be widely applied to any type of 

cells in both pathological and physiological conditions.  

 

Functional heterogeneity is a fundamental property of biological systems that needs to be 

dissected and characterized to gather biological insights in physiological and pathological 

conditions (Gough et al., 2017). Indeed, functional heterogeneity have been shown to play a 

critical role in homeostasis and maintenance of tissue integrity (Krieger and Simons, 2015). 

Moreover, functional heterogeneity have been shown to play a crucial role in non-

physiological conditions but, functional cell states identification and characterization 

remains elusive (Clarke et al., 2021; Chan et al., 2022). Therefore, the study of functional 

heterogeneity is pivotal to have a better understanding of both physiological and pathological 

conditions and pave the way towards the development of novel therapies. FunPart can be 

applied to discover novel functional states and their key genes. Depending on the research 

question, the uncovered cell states can then be further analyzed to understand their functional 

specialization or implication in diseases (Li and Boussiotis, 2011; Clarke et al., 2021). 

Notably, the transcription factors provided by FunPart are candidate modulators for cell state 

conversion, but the genes related to these TFs and functional enrichment, provided by the 

method, can be used to get a better understanding of the functional specialization. 

Nevertheless, FunPart provides the most relevant functional gene modules according to the 

designed criteria including the strength of negative correlation between the modules and 

their functional enrichment. Therefore, to get a more extensive view of the functional 

specialization of the cell state, it would be required to perform enrichment analyses of other 

set of genes. Notably, these set of genes could be identified using the same strategy 

implemented in FunPart, by building a correlation network using the gene expression 

information of the cell states and identifying modules of genes.  
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5.2.2 Strengths 

This study has several strengths regarding the implemented computational method and the 

Catalogus Immune Muris resource generated. First of all, FunPart systematically detect 

functional cell states in a semi-supervised manner, by relying on the data and the provided 

functional annotations that can be specific to a subset of BPs, as we did in our study by 

focusing on immune processes (Singhania et al., 2019). Indeed, our method relies on the 

combination of a feature selection strategy based on the concept of functional gene modules, 

and a recursive clustering approach which we showed is more accurate than the state-of-the-

art approach. In addition, FunPart provides for each identified cell states the set of genes, 

including TFs, that characterize them as well as the biological processes in which these genes 

are involved to provide insights into the functional differences between the functional cell 

states identified. Moreover, the set of TFs identified as being characteristic and driver of the 

functional cell state are usually small, which can be seen as a prioritization of candidates to 

use for cellular conversion between functional states, as we demonstrated with Zfp597 in our 

study. Finally, FunPart is a user-friendly R package that can be widely used by the scientific 

community to decipher and characterize new functional states in physiological and 

pathological conditions. This study generated a Catalogus Immune Muris, a large-scale 

catalogue of immune functional cell states, identified in different types of infections, that 

report all functional modules (TFs and co-expressed genes). Therefore, it contains a 

molecular characterization of these immune functional states that can be leveraged to design 

novel immunomodulatory strategies (Iqbal Yatoo et al., 2021). In that regard, we found 

Zfp597 to be an immunomodulator of macrophages infected by Salmonella and showed that 

the knockout of this TF was reverting the macrophages towards a pro-inflammatory state. 

Thus, Zfp597 could be used to modulate the response of macrophages infected by Salmonella 

to switch their states towards pro-inflammatory or anti-inflammatory functions. 

 
5.2.3 Limitations 

The main limitation of FunPart is that the method highly relies on the functional annotations 

provided for the clustering approach to decipher the functional states. Indeed, to limit an 

over-clustering of the algorithm, it is recommended to remove broad BPs categories such as 

the default ones from the Gene Ontology annotations (Ashburner et al., 2000). Specific or 

more specialized BPs categories should be provided to FunPart to ensure the functional 

relevance of the identified cell states. Moreover, the presented strategy considers modules 

composed of TFs that are potentially difficult to target or not preferred approaches for 



 129 
 
 

 

therapeutic uses, as they might give rise to mutagenesis or unexpected off-target effects 

(Ben-David and Benvenisty, 2011; Yamanaka, 2020). Indeed, the development of 

immunomodulatory therapies is typically based on the use of drugs or chemical compounds 

to alter cellular functions, which has been shown safer than TFs perturbations for cellular 

conversion (Kumar and Mali, 2020). However, chemical compounds or molecules to 

specifically target the candidate TFs identified by FunPart could be identified to tackle this 

limitation by making use of existing approaches (Zheng, 2021).  

 
5.3 Gene regulatory network to decipher impaired regulatory mechanisms 
Transcriptomics based GRN inference methods are a promising approach to study 

dysregulation in diseases, but they partially model the regulatory machinery. Nevertheless, 

due to data availability limitations, these methods are commonly used as single cell 

transcriptomics data is widely available compared to other types of OMICS data (e.g., 

scATAC-seq) (Lee et al., 2020; Chen et al., 2019). Indeed, the exploitation of OMICS data 

to characterize regulatory mechanisms of heterogeneous cell (sub)populations still remains 

a challenge, mainly due to the lack of single cell sequencing techniques or data (Bravo 

González-Blas et al., 2020). Moreover, it has been shown that the majority of SNPs related 

to diseases lie in intronic regions, especially enhancers, for which the regulatory mechanisms 

remain unresolved (Claringbould and Zaugg, 2021; Boix et al., 2021; Nasser et al., 2021). 

Therefore, it is required to have a comprehensive GRN describing the underlying regulatory 

mechanisms mediated by TFs and enhancers of regulated genes to translate SNPs risk-

variants into mechanistic insights. Indeed, the exploitation of a comprehensive regulatory 

landscape would help to have better mechanistic insights to understand diseases conditions, 

and it would guide the dissection of cell (sub)type specific impairment. In that regard, we 

propose RNetDys, a computational pipeline relying on multi-OMICs data to infer 

comprehensive cell (sub)type and state specific GRNs and identify candidate regulations 

impacted by leveraging the GRN information.  

 
5.3.1 Scope and utility 

RNetDys consists of a systematic pipeline that leverages multi-OMICS data to build 

comprehensive cell (sub)type and state specific GRNs and identify regulatory interactions 

that can be impaired in diseases due to SNPs. Our pipeline gives additional information to 

better understand the regulatory dysregulations by leveraging the GRN information. Indeed, 

it provides a comprehensive view of the regulatory interactions mediated by TFs and 
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enhancers of regulated genes for a specific cell (sub)population or state of interest. In 

addition, it identifies impaired regulatory mechanisms due to SNPs in diseases, provides 

information about impaired TFs binding sites, the type of regulatory mechanisms impacted 

(activation and repression), and identifies the main TF regulators involved in the impairment. 

RNetDys can be applied to study any disease of interest, under the condition that healthy 

scRNA-seq and scATAC-seq are available to build the GRNs, and that SNPs of interest can 

be provided to the pipeline. Notably, scRNA-seq and scATAC-seq does not need to come 

from the same cell measurement (unmatched data), but they need to belong to the same cell 

(sub)type or state. In that regard, the confidence in the annotations is crucial to ensure the 

accuracy of the predicted GRN. In case the scRNA-seq or scATAC-seq data is not annotated, 

or if the degree of confidence in the annotations is low, one strategy consists of integrating 

or mapping the two types of data (Stuart et al., 2020). This approach allows to either annotate 

the dataset and extract the cell (sub)populations of interest, or to ensure that the cells share 

similar profiles and validate that they most likely belong to the same cell (sub)type or state. 

 
One central challenge in genomics is to find out how genetic variations such as SNPs can 

lead to complex diseases (Shastry, 2007; Degtyareva et al., 2021). The development of NGS 

technologies strengthened the development of functional genomics to better identify SNPs 

and their involvement in gene expression dysregulations (Cano-Gamez and Trynka, 2020). 

RNetDys can be used to complete the current knowledge provided by GWAS and eQTL 

studies (Coetzee et al., 2016; Cano-Gamez and Trynka, 2020) by providing a comprehensive 

view of the regulatory impairments due to SNPs.  Indeed, the pipeline provides valuable 

insights including the impaired binding affinity score of TFs, the impaired regulatory 

mechanisms mediated by these TFs, the SNPs that could impair these regulatory mechanisms 

and the main regulator TFs that are involved. In particular, for the research project presented 

in section 4.3, few SNPs were analyzed as they were retrieved from a prior-knowledge 

database (Landrum et al., 2018) for validation purposes. The use of genotyping data from 

patients having a specific disease would allow for a larger-scale analysis of the potential 

impact of SNPs on cell (sub)types or state specific regulatory mechanisms and provide a 

better understanding of their differential impairment in the disease. 

 
5.3.2 Strengths 

RNetDys is a comprehensive computational pipeline that first infers the regulatory landscape 

of a specific cell (sub)type or state and then systematically identify impaired interactions in 
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disease conditions due to SNPs. The combination of scRNA-seq, scATAC-seq and prior-

knowledge, including ChIP-seq TF binding evidences (Oki et al., 2018) and GeneHancer 

database (Fishilevich et al., 2017), allowed us to build comprehensive GRNs describing 

regulatory relationships mediated by TFs and enhancers of regulated genes. In addition, we 

showed that the use of multi-OMICS increased the overall accuracy to predict regulatory 

interactions compared to existing methods. Moreover, RNetDys can be used to infer the 

specific GRN of any cell type, subtype or state, under the condition that both scRNA-seq 

and scATAC-seq data are available. Therefore, it provides a valuable strategy to describe 

regulatory mechanisms more accurately in physiological and pathological conditions. 

Moreover, the network contextualization towards the disease condition only requires a list 

of SNPs related to the disease of interest to identify candidate impaired regulatory 

mechanisms specific to the cell (sub)type studied. Indeed, the pipeline provides valuable 

information to guide our understanding into the cell (sub)type specific transcriptional 

mechanisms impaired including the list of candidate impaired interactions, the TFs binding 

affinity scores and the TF regulators involved in the impairments. In summary, compared to 

existing strategies, RNetDys provides a systematic approach, that takes advantage of the 

single cell to guide the study of regulatory mechanisms specific to cell (sub)types, up to cell 

states, and provide insights into their differential impairment at the regulatory level in disease 

conditions.  
 
5.3.3 Limitations 

RNetDys has two main limitations related to the GRN inference part. First, only reported 

information in the prior-knowledge used can be predicted. Indeed, whereas the use of 

experimental-based evidences increases the confidence into the regulatory mechanisms 

predicted, it does not allow the prediction of novel interactions that have never been reported. 

Nevertheless, we used the most extensive knowledge up-to-date to mitigate this limitation 

by using all ChIP-seq TF binding evidence from ChIP-Atlas (Oki et al., 2018) and enhancer-

promoter connections reported in GeneHancer (Fishilevich et al., 2017). Notably, 

GeneHancer is a prior-knowledge database reporting enhancer for human only, and hence 

the current implementation of RNetDys is limited to human studies. However, it could be 

further extended to account for mouse by using other enhancer prior-knowledge resources 

such as EnhancerDB (Kang et al., 2019). In addition, these resources are regularly updated 

and hence the prior-knowledge used by RNetDys could be expanded to alleviate this 

limitation. Second, we assume that an enhancer is active if it is accessible, at least one TF is 
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expressed and binding to its region, and it regulates at least one promoter of an expressed 

gene. However, we have no evidence that the enhancer is actually active, as we did not use 

methylation and/or acetylation marks, that are still poorly available at the single cell level 

(Clark et al., 2016). In addition, for the contextualization towards the disease state, RNetDys 

relies on prior-knowledge TF motifs used by Perfectos-ape (E. Vorontsov et al., 2015) and 

hence only the TFs for which this information is available can be predicted as involved in 

the impairment of regulatory interactions. However, similarly as before, the prior-knowledge 

used could be regularly updated to mitigate this limitation. Notably, the creation of potential 

binding sites for TFs due to SNPs (Degtyareva et al., 2021) is not considered by RNetDys 

that exclusively rely on binding sites reported in prior-knowledge ChIP-seq data (Oki et al., 

2018).  

 

5.4 Relationship between the computational methods implemented 

5.4.1 Cell identity 

Multicellular organisms are composed of highly heterogeneous cells displaying specific 

expression patterns that define their identity (Morris, 2019). The identification of subtle 

differences between group of cells, such as cell states, as well as the characterization of their 

identity is an ongoing challenge that has given rise to different strategies and points of view 

to attempt solving it (Trapnell, 2015; Morris, 2019). In this thesis, two computational 

methods – HCellig (section 4.1) and FunPart (section 4.2) – were developed to help resolving 

the identification and characterization of cell identity in physiological and pathological 

conditions. HCellig is a general approach that captures identity genes and their expression 

level for any cell type, subtype or phenotype provided as an input. FunPart does not require 

the group of cells to be provided as an input to identity the different functional group of cells. 

Both methods capture genes characterizing the cell (sub)populations, with HCellig providing 

a more exhausting list than FunPart that rather focuses on a small set of TFs and genes to 

prioritize potential candidates for cell states conversion. Notably, the identity genes captured 

by HCellig could be prioritized and a strategy could be implemented to help guiding cellular 

conversion protocols. Whereas HCellig is a general approach to capture identity genes for 

any cell type, subtype and phenotype, FunPart is a more specialized method to identity 

functional cell states, corresponding to the cell phenotypes for HCellig. In addition, FunPart 

also captures set of genes which characterize the functional cell states identified, that could 

be used to modulate these states, as demonstrated with Zfp597 found to be an unreported 

immunomodulator of macrophages infected by Salmonella. 
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5.4.2 Disease modelling 

This thesis focused on the development of computational methods for disease modelling to 

unravel cell identity, functional cell states and transcriptional regulatory mechanisms in 

physiological and pathological conditions. In particular, this thesis addressed different 

challenges of computational systems biology with the implementation of three 

computational strategies. Each method focuses on different aspects, ranging from the cellular 

identity to the regulatory mechanisms, to aid our understanding of systems complexity by 

characterizing cell identity, dissecting functional heterogeneity and modelling 

transcriptional regulatory mechanisms. These methods and related findings aim at providing 

a better understanding of physiological and pathological processes to pave the way towards 

the development of novel therapeutic strategies such as disease treatment. They could be 

used in combination to identify functional cell states, characterize their identity and decipher 

the regulatory mechanisms to study a specific disease from different angles. Indeed, used in 

combination they would allow to decipher heterogeneous cells, that might be specific to the 

disease, characterize them to identify candidates for cellular conversion, and study the 

regulatory mechanisms that could be impaired to validate or expand the candidates for 

therapeutic approaches (section 5.5.2).  

 

5.5 Outlook 
Several perspectives of optimization and extension for the research projects presented in this 

thesis could be performed in the future. First, the optimization and further development of 

the computational methods could be done to address the limitations previously mentioned. 

Then, an extension or combination of these methods could be implemented to create a 

general and widely applicable workflow for disease modelling including the guidance to 

design cell conversion protocols, to revert disease phenotypes, and to systematically identify 

target genes or molecules to pave the way towards new therapeutic strategies. 

 
5.5.1 Address the limitations and gather experimental validations support 

Some of the aforementioned limitations could be overcome by addressing the technical 

limitations and performing experimental validations as a proof-of-concept or additional 

support for the findings. In addition, the methods implemented could be further extended to 

increase their accuracy and scope of applicability.  
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Overcoming technical limitations and extending the methods 

First of all, as previously mentioned, HCellig is limited to UMI data due to the lack of state-

of-the art normalization for non-UMI data (Lytal et al., 2020; Tran et al., 2020; Vallejos et 

al., 2017). It would be needed to further extend the approach for non-UMI data (e.g. Smart-

seq2 technology) to cover all single cell transcriptomics sequencing techniques, and hence 

extend the applicability of the method for any type of scRNA-seq datasets. However, it 

would require a well-accepted approach to normalize and account for batch-effect correction 

on non-UMI data. Once such state-of-the-art method will be available, HCellig could 

account for UMI and non-UMI data by selecting the right normalization strategy depending 

on the type of data provided as an input. In that regard, extensive pre-compiled backgrounds 

datasets using non-UMI datasets could be generated. In addition, these data could be used to 

extend the high-resolution atlases already generated. Moreover, the Tabula Muris atlas used 

was highly limited to generate cell subtype backgrounds and no phenotype ones could be 

produced (The Tabula Muris Consortium et al., 2018). It would be interesting to extend the 

current background by collecting individual study datasets that usually provides a deeper 

sequencing depth and hence a higher resolution of the cell groups that can be identified.  
 

Then, it could be of interest to generate a Catalogus Immune Sapiens using FunPart to build 

an atlas of human immune functional states and potential immunomodulators, as compiled 

for mouse with the Catalogus Immune Muris. Indeed, with the large availability of immune 

scRNA-seq data in disease conditions (Ner-Gaon et al., 2017), the use of FunPart on a 

compendium of human datasets would be highly valuable to decipher unknown functional 

states, extend the current knowledge of immunomodulators and pave the way towards the 

development of new therapeutic strategies. This would allow the extension of the infection 

and disease panel (Kuhn et al., 2019; Elsland and Neefjes, 2018; Jochems et al., 2018) but 

also aid the identification of human immunomodulators, as the ones identified for mouse 

models might not translate to human setups (Mestas and Hughes, 2004). Moreover, as 

previously stated, candidate modulators identified by FunPart are TFs, which are not 

preferred approaches in therapeutics setups as they might give rise to unexpected off-target 

effects or tumorigenic (Ben-David and Benvenisty, 2011; Yamanaka, 2020). Indeed, the 

development of immunotherapy strategies is usually based on drugs or chemical compounds 

to indirectly perturb the specific TF(s) for cellular conversion (Kumar and Mali, 2020). It 

would hence be interesting to implement or integrate an approach that would identify 
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candidate compounds to perturb the candidate immunomodulator TFs identified by FunPart 

and, hence benefit the drug discovery field (Moustaqil et al., 2020).  
 

Finally, RNetDys currently relies on GeneHancer (Fishilevich et al., 2017), a prior-

knowledge database specific to human, for the cell (sub)type and state specific GRN 

inference. It could be further extended for mouse by collecting enhancer-promoter prior-

information from the available extensive databases (Gao and Qian, 2019). However, as the 

regulatory interaction inference is highly relying on the prior-knowledge used, it would be 

necessary to ensure the quality of the collected information and perform a benchmarking to 

verify the accuracy of the predicted GRNs. In addition, the integration of different regulatory 

layers has been proposed as a promising strategy to gather better mechanistic insights in 

physiological and pathological conditions (Hu et al., 2020). Currently, RNetDys uses a 

multi-OMICS approach involving single cell transcriptomics and single cell chromatin 

accessibility data. However, it could be further extended to make use of enhancer activity 

marks, such as H3K4me1 and H3K27ac (Kimura, 2013) at the single-cell level. Indeed, 

currently RNetDys assumes that if an enhancer is accessible, regulating genes expressed in 

the cell (sub)type/state and TFs are binding to its region, then this enhancer is considered to 

be active. Whereas this assumption is reasonable with the lack of activity marks, the 

integration of the histone modification would allow for a more accurate GRN. In the future, 

more single-cell histone modification datasets should be generated (Bartosovic et al., 2021). 

Therefore, it will be of interest to integrate this layer of information while keeping advantage 

of the high-resolution provided by single cell technologies, already leveraged by the method.  

 
Performing experimental validations 

Experimental validations are usually required to support the computational model 

implemented and validate or provide support for the in-silico predictions generated. Such 

experiments were already performed in the “A Catalogus Immune Muris of the mouse 

immune responses to diverse pathogens” study (section 4.2) but it would be of great interest 

to have experimental support for the study entitled “Quantification of gene level to 

characterize hierarchical cell identity” (section 4.1). It would be of high interest to perform 

experimental validations for some identity genes identified in the high-resolution identity 

atlases, especially the ones expressed at a medium level. Indeed, by modifying the level of 

expression of such genes, we would expect to observe a different functional outcome as 

previously reported in some studies (Huang, Yang, George W Ye, et al., 2021; Shats et al., 
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2017). The type of experiments to perform could include the perturbation of a medium 

identity TF, by inducing its over-expression or knocking it down, to then observe the 

differential functional outcome of the specific cell type, subtype or phenotype tested. For 

instance, medium identity TFs identified for mouse dopaminergic neurons could be 

perturbed as aforementioned and we could quantify the levels of dopamine release. 

Moreover, immunostaining and/or electrophysiology analysis (Cui et al., 2016; Farassat et 

al., 2019; Mahajani et al., 2019) could be performed to study the differential functional 

outcome to support the impairment or destabilization of their identity.  

 
5.5.2 Combine the developed methods in one framework 

The three computational methods presented in this thesis could be expanded and used in 

combination due to their close relationship. In the future, and with the described 

perspectives, they could contribute to the development of novel cell-based and gene-based 

therapeutic strategies.  

 

HCellig and RNetDys could be used in combination to implement a computational 

framework aiming at guiding cellular conversion protocols for cell-based therapies (Vasan 

et al., 2021; Grath and Dai, 2019). The accurate characterization of cell identity combined 

with the GRN approach provided by RNetDys would lead to the identification of master 

regulator TFs (MRTFs) defining cellular identity. Indeed, the captured MRTFs would be 

promising candidates to manipulate the cell fate (F. Fang et al., 2018; Jung et al., 2021) and 

hence guide more efficient cell conversion protocols to pave the way towards novel cell-

based therapies. HCellig could be first used to capture identity genes of the target cell 

(sub)population at each hierarchical layer. For instance, assuming the target cells are 

midbrain dopaminergic neurons, HCellig could be applied to first capture identity genes of 

the neurons (cell type layer), then dopaminergic neurons (cell subtype layer) and then 

dopaminergic neurons of the midbrain (cell phenotype layers). Then, the regulatory network 

around the captured identity genes at each hierarchical layer could be generated using the 

GRN inference part of RNetDys, hence resulting in three identity networks. The 

identification of MRTFs and their prioritization by importance, which could be determined 

using the graph properties (e.g., outdegree), at each hierarchical identity layer could then be 

used to guide the generation of the target cells of interest. Finally, the described workflow 

could be automatized towards the implementation a computational pipeline combining the 

cell identity characterization (HCellig) and the capture of candidate MRTFs using the GRN 
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inference part of RNetDys. Moreover, FunPart could be added to the strategy described 

earlier. Indeed, HCellig requires group of cells to characterize their identity and hence is not 

a strategy to identify cell (sub)types or states. Whereas existing clustering approaches were 

shown to be promising for deciphering cell (sub)types (Kiselev, Tallulah S Andrews, et al., 

2019), they are limited for the capture of functional cell states. Therefore, the use of FunPart 

for the identification of more subtle differences including functional cell states would be of 

great interest. Notably, FunPart identifies functional genes characterizing these states and 

hence, it would be expected to observe commonalities with the identity genes that would be 

captured by HCellig. 

 
The three computational tools could be combined to implement a workflow aiming at 

providing a better understanding of non-physiological conditions and guide the development 

of new disease treatments. Indeed, similarly as previously described, FunPart could be first 

used to dissect the functional heterogeneity using scRNA-seq datasets from patients and 

healthy controls. It would allow the identification of functional cell states and key genes 

characterizing them. Then, HCellig could be applied to capture the identity genes of each 

functional cell state. For each functional cell state, a functional enrichment of the identity 

genes could be performed to identify all the BPs and pathways characterizing them. Notably, 

FunPart already provides the main BP characterizing each functional cell state, but this step 

would allow to extend the list of specific functions each state might perform. The comparison 

between the functions of healthy and disease cell states would allow for a better 

understanding of functional dysregulations. In addition, this comparison would guide the 

identification of cell states that might be specific to the disease and thus be of particular 

interest. Finally, the GRN inference part of RNetDys could be used to build the functional 

cell states specific GRNs in both healthy and disease conditions. Notably, the scATAC-seq 

data would need to be mapped (Stuart et al., 2020) to the cell (sub)type and states 

characterized by HCellig with the scRNA-seq data to extract the required datasets for the 

GRN inference using RNetDys. Genes dysregulated or involved in the disease as well as 

their main regulators could then be identified. Notably, DEG analyses mapped on the GRNs 

would guide the identification of main regulators, that could be identity genes, involved in 

the dysregulations. This approach would provide a better understanding of the heterogeneity 

of cell (sub)populations in the disease and the regulatory mechanisms involved. Therefore, 

it would be a valuable strategy to guide the identification of genes related to the pathological 

conditions and help the development of therapies for disease treatments.  Notably, another 
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approach for the workflow could be to only focus on scRNA-seq from healthy controls, use 

FunPart and HCellig as previously described, and then apply RNetDys to build the cell 

(sub)types and states specific GRNs to identify impaired regulatory mechanisms due to 

disease-related SNPs. In that regard, disease-related SNPs could be collected from GWAS 

or eQTL studies specific to then identify cell (sub)type and state specific regulatory 

mechanisms impaired. SNPs could also be obtained from genotyping data of patients having 

the specific disease. In addition, if scRNA-seq data from these patients is available, 

additional analyses could be performed. Indeed, by having SNPs and gene expression data 

from the same patients, it would be possible to further refine the impaired regulatory 

mechanisms predicted by RNetDys by mapping DEGs. Whereas not all genes predicted to 

be impaired by RNetDys are expected to be significantly DEGs, the focus on impaired 

regulatory mechanisms involving DEGs could guide the identification of genes, regulators 

and SNPs most likely involved in the disease and its dysregulations.  
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6 Conclusion 
The characterization of cells escaping the physiological landscape, the understanding of 

pathological mechanisms and the identification of candidate targets are critical to pave the 

way towards new therapeutic strategies for disease treatment. Indeed, the accurate 

characterization of cell identity and the capture of key TFs for cell state conversion holds 

great promises to revert disease states towards healthy ones. In addition, the study of the 

GRN is required to have a better understanding of the dysregulated regulatory mechanisms 

and guide the identification of candidate targets for disease treatment. To date, several 

computational methods focusing on cell identity and GRN inference have been 

implemented, but they have several limitations that hinder their accuracy and contribution 

to disease understanding. The aims of this thesis were to develop more accurate, 

comprehensive and systematic computational methods that address the main limitations of 

existing approaches, as well as extending the current knowledge in the field. In summary, 

this thesis provided the following contributions: 
 

- Implementation of a method to characterize cell identity: HCellig is a hierarchical cell 

identity-based computational method that quantifies genes into three levels of expression 

to accurately capture identity genes for any cell type, subtype and phenotype. Compared 

to existing methods, it leverages the hierarchical classification of cells to not mix different 

layer of complexity and account for an intermediate level of expression, shown to lead to 

different functional outcomes. HCellig is a user-friendly R package available at: 

https://github.com/BarlierC/HCellig, and all pre-compiled backgrounds for mouse and 

human at the cell type, subtype and phenotype levels are publicly available at: 

https://gitlab.com/C.Barlier/HCellig_backgrounds. 
 

- Generation of two high-resolution identity atlases: Using HCellig, we generated high-

resolution identity atlases that reports identity genes and their level of expression for all 

described cell types, subtypes and phenotypes in mouse and human. The atlases for both 

organisms are available at: https://gitlab.com/C.Barlier/HCI. 
 

- Development a method to decipher functional states and the key genes 

characterizing them: FunPart is a computational method to decipher functional cell 

states in physiological and pathological conditions. In addition, it captures the key genes 

characterizing these states and provides insights for their function. FunPart is an R 

package available at: https://github.com/BarlierC/FunPart.git. 
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- Compilation of a Catalogus Immune Muris: This mouse atlas reports large-scale 

immune functional cell states for different type of infections as well as the key functional 

genes characterizing them. This resource contains potential candidate immunomodulators 

and could be exploited to aid the development of immunotherapy strategies. Notably, its 

potential was demonstrated with Zfp597, a functionally relevant gene of a macrophage 

cell state for which its inhibition resulted in a significant decrease in surviving bacteria. 

The Catalogus Immune Muris is available in Table S3 of the published paper: 

https://www.nature.com/articles/s41419-021-04075-y. A shiny app is also available at: 

https://gitlab.com/C.Barlier/immunofunmap.git. 
 

- Comprehensive approach to infer cell (sub)types and states specific GRN: RNetDys 

is a multi-OMICS pipeline, relying on single cell data and prior-knowledge to first infer 

cell (sub)type or state specific regulatory interactions mediated by TFs and enhancers of 

regulated genes. It requires as an input scRNA-seq and scATAC-seq datasets of a specific 

cell (sub)type or state of interest to infer the GRN. RNetDys is a user-friendly pipeline 

available at: https://github.com/BarlierC/RNetDys, with its first part corresponding to the 

GRN inference. 
 

- Systematic identification of cell (sub)type candidate regulatory interactions 

impaired due to SNPs in diseases: Based on the healthy GRN for a cell (sub)type or 

state of interest, RNetDys then systematically identifies regulatory interactions 

potentially impaired due to disease-related SNPs. It provides the list of regulatory 

interactions impaired and leverage the GRN information to provide insights into the 

dysregulated mechanisms. This corresponds to the second part of RNetDys pipeline 

available at: https://github.com/BarlierC/RNetDys.  
 

In conclusion, the three computational methods presented in this thesis are of great value to 

contribute to the advance of computational disease modelling. These methods are widely 

applicable to characterize cell identity, dissect functional heterogeneity, identify key genes 

for cell state conversion, and identify impaired regulatory mechanisms in diseases. The 

methods and findings of this thesis highly contribute to the systems biology field with a 

strong potential to guide experimental strategies for disease treatment. 
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