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Abstract

Real-time systems have become indispensable for human life as they are used in numerous industries, such

as vehicles, medical devices, and satellite systems. These systems are very sensitive to violations of their

time constraints (deadlines), which can have catastrophic consequences. To verify whether the systems

meet their time constraints, engineers perform schedulability analysis from early stages and throughout

development. However, there are challenges in obtaining precise results from schedulability analysis due

to estimating the worst-case execution times (WCETs) and assigning optimal priorities to tasks.

Estimating WCET is an important activity at early design stages of real-time systems. Based on such

WCET estimates, engineers make design and implementation decisions to ensure that task executions

always complete before their specified deadlines. However, in practice, engineers often cannot provide a

precise point of WCET estimates and they prefer to provide plausible WCET ranges.

Task priority assignment is an important decision, as it determines the order of task executions and it

has a substantial impact on schedulability results. It thus requires finding optimal priority assignments so

that tasks not only complete their execution but also maximize the safety margins from their deadlines.

Optimal priority values increase the tolerance of real-time systems to unexpected overheads in task

executions so that they can still meet their deadlines. However, it is a hard problem to find optimal

priority assignments because their evaluation relies on uncertain WCET values and complex engineering

constraints must be accounted for.

This dissertation proposes three approaches to estimate WCET and assign optimal priorities at design

stages. Combining a genetic algorithm and logistic regression, we first suggest an automatic approach

to infer safe WCET ranges with a probabilistic guarantee based on the worst-case scheduling scenarios.

We then introduce an extended approach to account for weakly hard real-time systems with an industrial

schedule simulator. We evaluate our approaches by applying them to industrial systems from different

domains and several synthetic systems. The results suggest that they are possible to estimate probabilistic

safe WCET ranges efficiently and accurately so the deadline constraints are likely to be satisfied with a

high degree of confidence. Moreover, we propose an automated technique that aims to identify the best

possible priority assignments in real-time systems. The approach deals with multiple objectives regarding

safety margins and engineering constraints using a coevolutionary algorithm. Evaluation with synthetic

and industrial systems shows that the approach significantly outperforms both a baseline approach and

solutions defined by practitioners. All the solutions in this dissertation scale to complex industrial systems

for offline analysis within an acceptable time, i.e., at most 27 hours.
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Chapter 1

Introduction

1.1 Context and Motivation

Real-time systems have become indispensable for human life as they are being used in numerous industries

such as vehicles, medical devices, and satellite systems [119]. These systems generally interact with

the environment around them and exhibit dynamic behaviors according to environmental changes. For

example, a satellite system, which is required to keep its antenna in the direction of a ground station,

controls actuators based on specific information like the direction of the Sun or the magnetic field of

the Earth by using sensors. Such systems are developed into multiple tasks that run in parallel and are

repeatedly activated by time-triggers or event-triggers [72]. Unlike applications on personal computers,

these real-time systems need to satisfy not only their functionality but also time constraints (deadlines). If

time constraints are violated, even when functional requirements are met, systems can cause catastrophic

consequences for themselves and related services. In order to minimize the chance of accidents or

maximize the quality of service, systems need to be analyzed with respect to the schedulability of their

tasks.

Schedulability analysis is an important mechanism for verifying time constraints in real-time systems

during development. It verifies whether all tasks in a real-time system complete their execution before their

deadlines for worst-case scenarios. To accurately test schedulability, many engineers run their systems

with test cases that are expected to execute worst-case scenarios [3]. Such testing can be performed after

completing task implementations. However, developing real-time systems preferably requires determining

their schedulability earlier, especially when engineers develop software and hardware in parallel. To deal

with schedulability analysis, Liu and Layland [118] developed a task model as a set of properties such as

priority, deadline, inter-arrival time, and worst-case execution time (WCET). They then analyze the worst

response time based on the model. However, such an approach can only handle periodic tasks, where

activations (arrivals) regularly occur. There exist extensions [18, 22] with sporadic (irregularly activated)

tasks and multi-frame tasks, respectively. Although these approaches improved the schedulability bound

and relaxed assumptions on the task model, they are still hard to apply at early stages, due to the uncertainty
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in determining the properties in the task model. Especially, practitioners face challenges when estimating

WCET values and determining an effective priority assignment.

The problem of estimating WCET values is known as a hard problem in general [42]. Among

the properties of the task model, periods and deadlines can be captured from the system requirements.

However, estimating WCET is difficult and often practically impossible to accurately determine due to the

following reasons: (1) hardware complexity (such as pipelines, caches, and multiple cores) (2) software

architecture (such as structure and dependencies), and (3) finding worst-case inputs [103, 156]. Hence,

engineers estimate plausible WCET ranges rather than exact values. In addition, at the early stage of

development, it is more difficult as engineers do not even have (complete) implementations. However,

estimating WCET early on is necessary because they provide targets driving design and implementation

choices. For example, based on WCET estimates, engineers can make choices using either a relational

database or an in-memory data storage. Such a decision needs to be made at early stages to find optimal

configurations of hardware devices between the cost of the system development and its performance. It is

more critical for projects that develop software and hardware components in parallel, which is common in

the aerospace, automotive, and healthcare domains.

The most common approaches to estimating WCET are measurement-based [183, 51, 153]. They run

a large number of executions on the targeted hardware or an accurate simulator based on worst-case inputs

and measure maximum execution time. As they need executable source code, this is only applicable at

later stages of implementation. Analytical approaches attempt to alleviate this issue [73, 169, 133, 86].

They measure WCET based on code execution path analysis and hardware specifications. Some other

approaches also tried to measure WCET based on a timing model of machine instructions [84, 7, 33].

These analytical approaches enable WCET estimation at somewhat earlier stages of implementation, but

still rely on source code implementations. Therefore, engineers still require a novel approach to estimate

WCET values at early design stages.

Priority assignment is also an important activity since it determines the scheduling efficiency of real-

time tasks. Most real-time operating systems (RTOS) use priority-based preemptive scheduling policies

because they provide predictable schedulability [50]. In these policies, assigning optimal priorities can

lead to cost-effective hardware and improved reliability in real-time systems [61]. However, finding the

optimal priority assignment is known as a hard problem [20] as it entails schedulability testing for all

combinations of task priority assignments.

An optimal priority assignment (OPA) approach attempted to solve the problem using an exhaustive

search by pruning infeasible priority assignments [20]. Due to its efficiency, it is extended to allow

offsets [19], aperiodic tasks having arbitrary deadlines [170], non-preemptive scheduling policy [78],

and multi-core [59]. However, OPA only guarantees to find a feasible priority assignment. There are

more works to improve optimality [56] and include different types of systems [62, 46, 58, 55]. However,

the priority assignment problem is still challenging because of new, more complex hardware platforms

and industrial requirements [54]. In addition to their inherent complexity, these approaches rely on

schedulability tests, which is also a hard problem. Engineers, thus, want to assign priorities that lead to

more robust systems when their tasks face additional execution times due to unexpected situations. For

example, satellite systems can be exposed to uncertain environments, such as space radiations and solar

winds, which are difficult to test on the ground. Moreover, engineers may need to account for additional

constraints, such as assigning higher priorities to more critical tasks.
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1.2 Contributions

In this dissertation, we propose the following approaches to address the challenges for WCET estimation

and priority assignment. They mainly aim at early development stages, but can also be applied at later

development stages.

1. Estimating probabilistic safe WCET ranges at design stages: Estimating WCET values as a range at

early stages is the common practice of real-time system development. To specify more precise WCET

ranges, we provide an automated technique to determine for what WCET values the system is likely to

meet its deadlines, and hence operate safely with a probabilistic guarantee. The approach combines a

search algorithm for generating worst-case scheduling scenarios with polynomial logistic regression for

inferring probabilistic safe WCET ranges. We evaluated the approach by applying it to three industrial

systems from different domains and several synthetic systems. The approach efficiently and accurately

estimates probabilistic safe WCET ranges within which deadlines are likely to be satisfied with a high

degree of confidence.

This work has led to a research paper published in ACM Transactions on Software Engineering and

Methodology (TOSEM) [113].

2. Estimating probabilistic safe WCET ranges for weakly hard real-time systems at design stages: In

practice, real-time systems are commonly developed with complex scheduling policies, including task

partitioning on multi-core platforms. Many of them can tolerate some extent of deadline misses, i.e.,

weakly hard constraints. To properly support these systems, we improve the above approach to infer

safe WCET ranges with a probabilistic guarantee under complex systems. The approach applies a

multi-objective search algorithm for generating worst-case scheduling scenarios by maximizing the

violation of weakly hard constraints. To deal with industrial systems, the approach also accounts for

context-switching times and an industrial scheduling simulator, such as adaptive partitioning scheduler

(APS). We evaluated the approach by applying it to an industrial system in the satellite domain and

several synthetic systems. The results indicate that the approach estimates safe WCET ranges with a

probability of violating deadline constraints with a high degree of confidence in weakly hard real-time

systems with APS functions. The execution time of the approach is acceptable in practice according to

experiments with a large number of complex synthetic systems.

This work will be submitted to a conference in 2022.

3. Optimal priority assignment using a coevolution-based approach: In practice, priority assignments

result from an interactive process between the development and testing teams. Inspired by such

interaction, we propose an automated technique that finds optimal priority assignments using a multi-

objective and a competitive coevolutionary algorithm. The approach aims to identify the best possible

priority assignments in real-time systems, accounting for multiple objectives regarding safety margins

and engineering constraints. We evaluate this approach by applying it to six industrial systems from

different domains and several synthetic systems. The results indicate that this approach significantly

outperforms both a baseline approach and solutions defined by practitioners. The approach also scales

to complex industrial systems as an offline analysis method that attempts to find near-optimal solutions

within acceptable time, i.e., less than 16 hours.
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This work has led to a research paper published in the journal of Empirical Software Engineering

(EMSE) [110].

1.3 Outline

The rest of this dissertation is organized as follows. Chapter 2 describes the necessary background

information, including a real-time task model and algorithms that we use in our approaches. Chapter 3

and 4 introduce the approaches to estimate probabilistic safe WCET ranges at early stages. Chapter 5

presents a coevolution approach for optimal priority assignment. Chapter 6 concludes this dissertation

and discusses potential future works.
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Chapter 2

Background

This chapter provides details about the common concepts and techniques that are used throughout this

thesis. Section 2.1 defines the conceptual model for real-time systems. Section 2.2 explains the genetic

algorithms and coevolutionary algorithms. Section 2.3 describes supervised machine learning and logistic

regression.

2.1 Real-time systems

Real-time systems need to be developed to provide their own services that satisfy the required time

constraints. Such systems achieve these goals by decomposing multiple tasks that affect each other. To

properly guarantee whether the systems satisfy their time constraints, schedulability analysis is necessary.

In this section, we introduce a real-time task model and how real-time tasks are scheduled based on the

model.

2.1.1 Task model

We define the real-time task model following concepts commonly used in studies in the literature [20, 50,

177]. A real-time system consists of a set of 𝑛 tasks. Each task, denoted by 𝜏𝑖, is a unit of work that is

activated repeatedly and needs to complete its execution before its deadline. A task 𝜏𝑖 can be identified as

periodic or aperiodic depending on the frequency of its activation.

Figure 2.1 describes the temporal parameters for each (a) periodic task 𝜏𝑖 and (b) aperiodic task 𝜏𝑗 ,

where 𝑖, 𝑗 ∈ [1, 𝑛], as well as their behaviors. Periodic tasks are typically activated by a time-based trigger,

which occurs at regular intervals. To determine the time behavior of a periodic task 𝜏𝑖, 𝜏𝑖 is identified

following temporal parameters:

• Offset (𝑂𝑖): is the time for the first activation (arrival) of periodic task 𝜏𝑖. In the Figure 2.1a, 𝑎𝑖,1 for

the task 𝜏𝑖 is the same value as 𝑂𝑖. Engineers use this parameter to prevent all tasks from running at

the same time, which leads to the worst-case scenario.
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Figure 2.1: Scheduling for periodic and aperiodic tasks.

• Period (𝑇𝑖): is the time interval between each arrival of task 𝜏𝑖 after the first arrival. As task 𝜏𝑖 is

activated regularly, the 𝑘th arrival time (𝑎𝑖,𝑘) is determined by 𝑂𝑖 + (𝑘 − 1) × 𝑇𝑖 .

• Execution time (𝐶𝑖): is the amount of time required to execute the work of task 𝜏𝑖 without being

disturbed by other tasks. It is typically applied to the worst-case execution time (WCET) to consider the

worst-case scenario. After a task arrives at 𝑎𝑖,𝑘 , the task will get a resource, i.e., a processing core, and

start its work when the resource is available. In the Figure 2.1a, the first arrival started at 𝑠𝑖,1 and ended

at 𝑒𝑖,1. The difference between 𝑠𝑖,1 and 𝑒𝑖,1 becomes the 𝐶𝑖 . The task execution can be preempted by

the other tasks; when this occurs, then the completion time is delayed, e.g., 𝑒𝑖,2 as seen in Figure 2.1a.

• Deadline (𝐷𝑖): is the time constraint in which task 𝜏𝑖 must complete its execution. As 𝐷𝑖 is a relative

value, the absolute deadline value for each task arrival is determined by 𝑎𝑖,𝑘 + 𝐷𝑖 . If a task arrival has

completed its execution after the absolute deadline, the task arrival violates the time constraint. For

example, in Figure 2.1a, the first arrival of task 𝜏𝑖 meets its deadline while the second arrival misses it,

i.e., 𝑒𝑖,2 > 𝑎𝑖,2 + 𝐷𝑖 . This time constraint must be satisfied in the hard real-time tasks. However, some

tasks can tolerate occasional deadline misses depending on the operating context of a system, which

are called soft or weakly hard real-time tasks.

Aperiodic tasks have the same properties as periodic tasks except for their activation-related properties.

These tasks have irregular activation from external stimuli. Although they do not have limitations in the

task arrivals in general, for the sake of analysis, we introduce inter-arrival times [𝑇𝑚𝑖𝑛
𝑖

, 𝑇𝑚𝑎𝑥
𝑖

], which are

the minimum and maximum time interval between two consecutive arrivals of 𝜏𝑖 , instead of 𝑇𝑖 . Figure 2.1b

describes the behaviors of an aperiodic task 𝜏𝑗 according to the inter-arrival times. Based on the [𝑇𝑚𝑖𝑛
𝑗

,

𝑇𝑚𝑎𝑥
𝑗

], each task arrival time 𝑎 𝑗 ,𝑘 is determined by the 𝑘−1th arrival time of 𝜏𝑗 . Specifically, for 𝑘 > 1,

𝑎 𝑗 ,𝑘 ∈ [𝑎 𝑗 ,𝑘−1 + 𝑇𝑚𝑖𝑛
𝑗

, 𝑎 𝑗 ,𝑘−1 + 𝑇𝑚𝑎𝑥
𝑗
] and for 𝑘 = 1, 𝑎 𝑗 ,1 ∈ [𝑇𝑚𝑖𝑛

𝑗
, 𝑇𝑚𝑎𝑥

𝑗
], where 𝑎 𝑗 ,𝑘 ≤ t. Note that

aperiodic tasks also have the same parameters as periodic tasks, but they do not use offset, i.e., 𝑂 𝑗=0 as

the first arrival time of the task already varies.
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Figure 2.2: The lifecycle of a task state transition model.

In real-time analysis, sporadic tasks are often used for the tasks that have irregular task arrivals and

hard time constraints [119]. However, we do not introduce additional notations for the sporadic tasks

because we have enough properties to describe them.

2.1.2 Scheduling in real-time systems

A real-time operating system (RTOS) schedules a set of 𝑛 tasks in Γ using a priority-based scheduling

policy [31]. In this policy, each task 𝜏𝑖 is assigned a priority value to determine the execution order at

each time point. We denote task priority by 𝑃𝑖. Specifically, a task 𝜏𝑖 can preempt another task 𝜏𝑗 when

the priority value of 𝜏𝑗 is less than the value of 𝜏𝑖, i.e., 𝑃 𝑗 < 𝑃𝑖. According to the priority assignments,

RTOS manages their tasks using task states.

Task states. Figure 2.2 describes the task state transition model. While an RTOS usually defines more

task states, we only show some of them for the modeling: stopped, ready, running, and blocked. An

explanation of each state and the transition is provided below.

• stopped. When a system starts, each real-time task is set to the stopped state. A task can be in the ready

state due to (time-based or event-based).

• ready. When a task becomes the ready state, a scheduler in an RTOS puts it into the ReadyQueue

which keeps a list of tasks that are waiting so they can be assigned to the processing core. According

to its scheduling policy, the scheduler assigns a processing core to a task when the processing core is

available. With a fixed-priority assignment scheduling policy, the highest priority task among the tasks

in the ReadyQueue is assigned a processing core. Based on the first-in, first-out (FIFO) method, the

first arrived task in ReadyQueue is assigned first. A task that is assigned a processing core is in the

running state when it begins its execution.

• running. A task in the running state is actually executing its work on a processing core. The number

of running tasks is the same as the number of processing cores. During its execution, a task can be

preempted when a higher priority task has arrived in ReadyQueue. Then, a running task goes into the

ready state again and waits for the next available time. When all the task execution are completed, the

task moves to the stopped state to wait for the next activation.

• blocked. The task execution can be stopped temporarily for a temporal event or an external event. For

example, when a task calls for a sleep function in its routine, it puts itself into the blocked state. When
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the specified time for the sleep function has elapsed, the task goes into the ready state. When a task

requests a shared resource, it may need to be blocked until the resource becomes available. Tasks in the

blocked state are not managed by a scheduler until their requests are satisfied.

Schedulability analysis. Based on the task and state models, the schedulability of a real-time system is

determined by analyzing the schedule results. A schedulable system is defined as the scenario in which

the schedule results have no deadline violation (𝑒𝑖,𝑘 ≤ 𝑎𝑖,𝑘 + 𝐷𝑖) for all task arrivals of all the tasks in the

system. A theoretical schedulability analysis approach is suggested based on utilization [118]. Let Γ =

{𝜏1, 𝜏2, · · · , 𝜏𝑛} be a set of tasks to be scheduled. A utilization for a task 𝜏1, denoted by 𝑢𝑖, is calculated

by its WCET and period, i.e., 𝑢𝑖 = 𝐶𝑖/𝑇𝑖 . The total utilization of tasks for the given system Γ is calculated

as below:

𝑈 =

|Γ |∑︁
𝑖=1

𝐶𝑖/𝑇𝑖

For aperiodic tasks, the utilization is calculated by 𝐶𝑖/𝑇𝑚𝑖𝑛
𝑖

, assuming the task arrives at every 𝑇𝑚𝑖𝑛
𝑖

which

is the conservative scenario. If the tasks follow the rate monotonic priority assignment, the approach

recommends the total utilization𝑈 to be less than about 0.7, which is a sufficient condition [118]. However,

the theoretical approach is too conservative because of inaccuracies in estimating the timing parameters

and simplifying the assumptions regarding aperiodic tasks and task relationships. Hence, simulation-based

schedulability analysis has been applied [36, 5].

2.2 Genetic algorithm

A genetic algorithm (GA) is one of the meta-heuristic algorithms used to solve optimization problems.

GA is a population-based global optimization algorithm. Many software engineering problems, such

as software testing and design, have been formulated to solve optimization problems and have been

successfully applied [89]. Inspired by the principles of genetics and natural selection in biology, GA

builds an initial population and iterates evolving it by applying genetic operators, such as selection,

crossover, mutation, and replacing. This approach has the following advantages: it deals with a vast

number of and different types of variables, it provides alternative solutions instead of one best solution,

and it allows for working on parallel computers [94]. These are the reasons why GA is available to a vast

number of domains. In this section, we introduce the basic concepts of GA with single-objective. We then

explain some GA variants, such as multi-objective GA and coevolutionary algorithms.

2.2.1 Single-objective GA

GA was invented by John Holland in 1975 [97]. The GA searches for the best solution in a mul-

tidimensional search space by investigating the fitness values of the candidate solutions with a single

objective. Algorithm 2.1 describes a pseudo-code of the GA. The algorithm first randomly generates

an initial population 𝑃 equal to the population size 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 (lines 4-7). The algorithm then repeats the

evolution process by evaluating 𝑃 (lines 12-16), breeding a new population 𝑄 (lines 19-25), and replacing

the population 𝑃 with 𝑄 (line 28). The algorithm stops the evolution process when it finds the ideal

solution or reaches the assigned time budget.

To generate a population 𝑃, GA randomly creates each individual, which is considered to be a

candidate solution (line 6). An individual is also called a chromosome. A chromosome is usually
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Algorithm 2.1: A pseudo-code of single-objective genetic algorithm (GA)

1 popsize ← desired population size
2
3 // Build initial population
4 𝑃 ← {}
5 for popsize times do
6 𝑃 ← 𝑃 ∪ {CreateNewIndividual()}
7 end for
8
9 Best ← □

10 repeat
11 // Evaluate each individual
12 for each individual 𝑃𝑖 ∈ 𝑃 do
13 AssessFitness(𝑃𝑖)
14 if Best = □ or Fitness(𝑃𝑖) > Fitness(Best) then
15 Best ← 𝑃𝑖
16 end for
17
18 // Breed new population
19 𝑄 ← {}
20 for popsize/2 times do
21 Parent 𝑃𝑎 ← SelectParent(𝑃)
22 Parent 𝑃𝑏 ← SelectParent(𝑃)
23 Children 𝐶𝑎, 𝐶𝑏 ← Crossover(𝑃𝑎 , 𝑃𝑏)
24 𝑄 ← 𝑄 ∪ {Mutation(𝐶𝑎),Mutation(𝐶𝑎)}
25 end for
26
27 // replace the population with new population
28 𝑃 ← Replace(𝑃,𝑄)
29 until Best is the ideal solution or we have run out of time
30 return Best

represented by a fixed-length vector, which is also called genes. Each gene can be any type of variable

such as a boolean, an integer, a floating-point, and even another vector depending on the applications.

This representation is important because it also affects the breeding operators. The GA allows for a

flexible-length vector, but it requires careful design of the breeding operators. When GA creates an

individual, it combines the value of the genes that are randomly selected within their criteria, e.g., a

random value in [0,100] for an integer type of gene.

Given the population 𝑃, GA assesses a fitness value for each individual 𝑃𝑖 ∈ 𝑃 (line 13). The fitness

value represents how valuable the individual is as a solution. Thus, the fitness function of GA is the key

attribute needed to find the optimal solution. The function requires to provide a good guidance of the

search, by distinguishing the differences among the individuals as well as by covering all the available

individuals. Based on the fitness values, the GA selects the Best individual in the population based on the

fitness values (lines 14-15).

The breeding of the population 𝑃 generates a new population 𝐺 for the next generation using genetic

operators. To do this, GA selects two individuals 𝑃𝑎 and 𝑃𝑏 to be parents. Given two parents, GA

produces two children 𝐶𝑎 and 𝐶𝑏 using a crossover operator. The children are appended to the new

population after applying a mutation operator. This process produces the same number of new individuals

with the population 𝑃, since GA repeats it 𝑝𝑜𝑝𝑠𝑖𝑧𝑒/2 times (line 20).
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The selection operator determines which individual would be the parent among the given population

𝑃. Tournament selection is the most popular algorithm due to its simplicity [122]. It randomly selects two

individuals and chooses the one with the highest fitness. It repeats this process by selecting an individual

and comparing it with the last surviving individual. The more the tournament repeats, the more likely it

will choose an individual with the highest fitness value.

The crossover operator produces children by making them inherit the traits of their parents. A simple

algorithm is the one-point crossover. Assuming that a chromosome is a fixed-length vector, it selects the

same point from both parents and mixes genes from the point to the end of the vector. As the operator

selects the crossover point randomly, the criteria for each gene can be violated if the value of each gene

has related to the other genes. In this case, a repair process can be added. The operator is subject to a

crossover rate that determines whether the operator is applied. If the operator is not applied, the children

become a copy of their parents.

The mutation operator changes some genes in an individual based on the mutation rate. The operator

iterates each gene and changes when a random value is higher than the mutation rate. This operation

provides an opportunity to jump to the other search area so that the GA can be prevented from finding

a local optimal. However, the higher mutation rate makes GA to be a random search. Thus, it is

recommended to use a lower mutation rate. Depending on the application, the mutation operator may also

need to consider the repair process.

After breeding a new population 𝑄, replacing the population determines which individuals will be

delivered to the next iteration (generation). A simple way of replacing can be merging two populations

and selecting only the top fitness individuals. However, this can lead to a premature search due to the lack

of diversity in the population. To deal with this, some variants considering elitism are suggested, such as

the steady-state GA, which produces only one or two children and replaces some existing individuals in

each iteration [121].

2.2.2 Further variants of GA

GAs have been successfully applied in many applications, including software testing [180, 179, 30],

requirements [71], and design optimization [66, 88, 90]. Despite the success of GA, there are more

complex real-world problems that require complex structures. We introduce some of those variants:

multi-objective GA and coevolutionary GA.
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Figure 2.3: Pareto front

Multi-objective GA. In some applications, the

problem can have multiple objectives. For exam-

ple, when deciding on a system design, RTS en-

gineers may face a problem between cost and per-

formance efficiency. This kind of decision-making

problem needs to find a cost-effective solution by

considering the trade-offs.

Finding the Pareto optimal provides candidate

solutions that are considered equally viable for all

objectives [94]. Figure 2.3 shows the individuals

(black dots) and Pareto optimal (Pareto front) in

two-objective search spaces. The Pareto front is
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the group of individuals that are not dominated by any other individuals. Individual 𝐴 in Figure 2.3

dominates many other individuals, butcannot dominates individual 𝐵 as it is less optimal for Objective 1

while it is more optimal for Objective 2.

A non-dominated sorting GA II (NSGA-II) is one of the popular multi-objective GA algorithms that is

uesd to find the Pareto front [63]. Based on the fitness values for each objective, NSGA-II calculates Pareto

ranks, which are groups that have the same level of Pareto optimality. The first ranked group becomes

the Pareto front. NSGA-II uses the following techniques for its superiority: (1) keeping an archive of the

lower-ranked individuals to improve the diversity of the population and (2) introducing crowding-distance

between individuals to reduce computations and decrease user’s efforts to investigate the trade-off of the

large number of solutions. Similarity, other variants, such as SPEA2 [198], PAES [102], and PESA-II [49],

have also been developed to solve many complex problems.

Coevolutionary GA. This GA variant evolves multiple populations simultaneously. Coevolutionary

GA (coevolution) is also widely applied in bug fixing [15, 185], software design [162, 148], and software

planning (job assignment) [150]. The coevolution is usually applied to the problems that occur when the

fitness functions of each population interactively affect each other. Historically, coevolution has been

classified as competitive and cooperative [16].

Competitive coevolution is inspired by predators and preys in nature. For example, faster preys survive

more easily and generate offspring as they can avoid threats from predators. This impacts the evolution

of predators to improve them faster or more intelligently. In the competitive coevolution algorithm,

populations of candidates and conditions are formulated. The algorithm assesses the fitness values of

the candidate population against the condition population (and vice versa). The algorithm then breeds

each population. Finally, it calculates another type of fitness, called external fitness, to monitor the

improvement of the candidate population, which is an important step. Unfortunately, formulating external

fitness is still an challenging, which is an obstacle for increasing the popularity of the coevolution [146].

Based on the external fitness value, the algorithm produces the Best solution.

Cooperative coevolution is used to solve high-dimensional or enormous optimization problems by

decomposing the problem into small pieces [147]. Many optimization problems in the real-world are

too difficult when an attempt is made to search for the solution with a single population. Like a divide-

and-conquer strategy [161], if we can divide a complex problem into sub-problems, we can solve each

small problem and then merge the solutions to solve the original problem. Cooperative coevolution

separates a complex problem into multiple populations and evolves them with each fitness function. The

algorithm then formulates a joint fitness function to consider all the fitness values together so it can find

the optimal solution to the original problem. This approach is effective in reducing the computational cost

and complexity of the problem.

2.3 Supervised machine learning

Machine learning has played an essential role in many research and industrial domains recently [8].

Supervised machine learning is one category of machine learning techniques that infers a model based

on labeled datasets. This type of technique is used to solve classification or regression problems. The

classification technique is a method to predict the data to which it will belong. Many techniques are

used to achieve this, such as Naive Bayes [151], Support Vector Machine (SVM) [155], K-Nearest

Neighbor [104], and Random Forest [35]. The regression technique is a method to explicitly model the

11
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relationship between an outcome variable and independent variables. Representative techniques are Linear

regression [182] and Logistic regression [100].

Among these approaches, logistic regression is valuable because it is adaptable to not only regres-

sion problems but also classification problems [164]. Additionally, logistic regression provides an

interpretable model that can explain the probabilistic relationship between the dependent and indepen-

dent variables [100]. Therefore, many studies in the field of software engineering have been applied

it [37, 167, 160]. In this section, we provide a brief explanation of logistic regression.

Logistic regression. Logistic regression is a type of statistical tool that builds models for classification

and prediction. This model explains a categorical outcome variable. Categorical variables can easily be

found in many real-world contexts, such as living or dying, smoking or not, the presence or absence of

disease, and level of income [142]. These variables have extremely small levels of values, especially

binary variables, which only have a value of 0 or 1. To analyze these variables in relation to other factors

(independent variables), it is not possible to construct a model directly like linear regression. Therefore,

logistic regression overcomes the issue by taking advantage of the log transformation of odds (also called

logit).
Y

X

0
1

0.5

p

Figure 2.4: Logistic regression model

Logit enables a binary variable to be continu-

ous in a real number domain based on the proba-

bility that a specific value of the variable occurs.

Let an outcome variable 𝑌 be binary and let the in-

dependent variables be 𝑋={𝑋1, 𝑋2, · · · , 𝑋𝑛}. The

odds refer to the ratio of the probability that an

event 𝑌 will occur to the probability that it will not

occur, i.e., 𝑝/(1 − 𝑝), where 𝑝 is a value of a con-

ditional probability 𝑃(𝑌 = 1|𝑋). The results of the

odds are ranged [0,∞] and are 1 when the 𝑝 = 0.5.

To remove this asymmetric result, the natural log

function ln() applies to the odds. It allows its re-

sults to lie on [−∞,∞] in the real number domain

according to the probability 𝑝. Now, it is possible to build a model between the logit and independent

variables 𝑋 as follows, like linear regression:

ln
( 𝑝

1 − 𝑝

)
= 𝑐0 +

𝑛∑︁
𝑖=1

𝑐𝑖𝑋𝑖

where 𝑐0 is a constant and each 𝑐𝑖 is the coefficient corresponding to the independent variable 𝑋𝑖. If we

rearrange the equation with 𝑝 as a subject, which can explain the value of 𝑌 between 0 and 1 as continuous,

the equation becomes as follows:

𝑝 =
exp(𝑐0+

∑𝑛
𝑖=1 𝑐𝑖𝑋𝑖)

1 + exp(𝑐0+
∑𝑛

𝑖=1 𝑐𝑖𝑋𝑖)

Figure 2.4 shows the shape of the model on the independent variables 𝑋 and probability 𝑝 for the outcome

variable 𝑌 . Based on the model, logistic regression infers the coefficients 𝑐 (i.e., {𝑐0, 𝑐1, · · · , 𝑐𝑛}) using

maximum likelihood estimation (MLE) [136] based on labeled data.
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Chapter 3

Estimating Probabilistic Safe WCET
Ranges of Real-Time Systems at Design
Stages

3.1 Introduction

Safety-critical systems, e.g., those used in the aerospace, automotive and healthcare domains, require that

their executions always complete before their specified deadlines in all execution scenarios, including

the worst cases. The systems that must perform their operations in such a timely manner are known as

real-time systems (RTS) [39]. To ensure that a real-time system meets its deadlines, we need an accurate

estimation of the worst-case execution times (WCET) of software tasks that concurrently run in the system.

For instance, the Anti-lock Braking System (ABS) of a vehicle has to activate within milliseconds after

the driver brakes. However, an ABS taking more time for activation than the estimated WCET may result

in a vehicle skid due to the wheels locking up.

Accurately estimating WCET values of a real-time system is particularly important at early design

stages when real-time tasks are not yet fully implemented. Accurate WCET estimates greatly support

engineers during development as they provide targets driving design and implementation choices. Based

on the WCET estimates, engineers can make design and implementation decisions, e.g., using either

a relational database or an in-memory data storage. In addition, when engineers develop software and

hardware components in parallel, which is common in the aerospace, automotive, and healthcare domains,

accurately estimated WCET values at early design stages help engineers find optimal configurations of

hardware devices, e.g., CPUs, sensors, and actuators, by accounting for time constraints and performance

requirements of the system.

Real-time tasks have various parameters such as task priorities, deadlines, inter-arrival times, and

WCET values [163, 50]. Among the task parameters, WCET values are typically difficult to accurately

estimate at early design stages. The other parameters, however, can be specified or estimated with a high
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degree of precision even at early stages. For example, task priorities are typically determined by the

selected scheduling policy, e.g., rate monotonic [118], or based on the task criticality levels (i.e., more

critical tasks are prioritized over the less critical ones). Task deadlines are typically decided by system

requirements. Task inter-arrival times, i.e., the time interval between consecutive task executions, usually

depend on system environmental events triggering task executions. In contrast, the WCET values of some

tasks may depend on various factors such as implementation decisions, task durations, real-time operating

systems, and hardware components. However, these factors may not be fully known at early stages of

development, making it difficult to precisely estimate WCET values for real-time tasks [84, 7, 33]. As a

result, engineers tend to provide ranges for WCET values instead of point estimates.

The problem of estimating WCET values is, in general, a hard problem. WCET values of real-time

tasks impact every possible task schedules. WCET values depend on the content and implementation

of tasks and not the schedule. But they impact how the tasks are scheduled. The space of all possible

task schedules is very large. In our context, the problem becomes computationally more expensive

when WCET values are uncertain and are specified as value ranges instead of single values. Specifically,

provided with WCET value ranges, engineers need to have ways to determine for what WCET values,

within the given ranges, the system is likely to miss or satisfy its deadline constraints. If engineers know

that deadlines are likely met for all or most of the expected WCET ranges, they can consider a wider

choice of design and implementation options. Otherwise, in situations where only tight WCET sub-ranges

seem acceptable, developers may have to consider more expensive hardware, decreased functionality or

performance, or more restricted design and implementation choices.

The WCET estimation problem of real-time systems has been widely studied in the past [29, 84, 85, 7,

87, 33]. To our knowledge, however, most of the existing WCET estimation methods often fail to provide

WCET estimates at early design stages because they require inputs that can be defined only at a later point

in time such as task implementations and hardware devices. Some model-based approaches [47, 166, 10]

try to solve the WCET estimation problem exhaustively by applying a model checker to a real-time model,

e.g., parametric timed automata, of the system under analysis. These exhaustive methods are applicable

once real-time system models are available. However, such approaches tend to suffer from the state-space

explosion problem [48] as the number of software tasks and their different states increase. More recently,

stress testing and simulation-based approaches [36, 6] have been proposed to stress RTS and generate

test scenarios where their deadline constraints are violated. Such approaches cast the schedulability test

problem as an optimization problem to find worst-case task execution scenarios exhibiting deadline misses.

However, none of the existing simulation-based approaches account for uncertainties in WCET values and

therefore do not handle WCET value ranges. Our work complements the simulation-based stress testing

approach and extends it to account for uncertainties in WCET values.

Contributions. In this chapter, we propose a Safe WCET Analysis method For real-time task

schEdulability (SAFE) to estimate WCET ranges under which tasks are likely to be schedulable with

a probabilistic guarantee. Our approach is based on a stress testing approach [36] using meta-heuristic

search [122] in combination with polynomial logistic regression models. Specifically, we use a genetic

algorithm [122] to search for sequences of task arrivals which likely lead to deadline misses. Then,

logistic regression [100], a statistical classification technique, is applied to infer a safe WCET border in

the multidimensional WCET space with a probabilistic guarantee. This border aims to partition the given

WCET ranges into safe and unsafe sub-ranges for a selected deadline miss probability 𝑝, and thus enables
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engineers to investigate trade-offs among different tasks’ WCET values. WCET ranges are deemed to be

probabilistically safe if tasks, within such ranges, have a high probability to complete their executions

before their specified deadlines. In this chapter, for the sake of simplicity, we refer to probabilistically safe

WCET ranges as safe WCET ranges. We evaluated our approach by applying it to a complex, industrial

satellite system developed by our industry partner, LuxSpace, as well as two industrial systems from

different domains and several synthetic systems. Results show that our approach can efficiently and

accurately compute safe WCET ranges. SAFE scales to complex industrial systems as an offline analysis

method. Execution times of SAFE on our industrial systems are practically acceptable, i.e., at most 27h.

To our knowledge, SAFE is the first attempt to estimate safe WCET ranges within which real-time tasks

are likely to meet their deadlines for a given level of confidence, while enabling engineers to explore

trade-offs among tasks’ WCET values. Our full evaluation package is available online [112].

Organization. The remainder of this chapter is structured as follows: Section 3.2 motivates our

work. Section 3.3 defines our specific schedulability analysis problem in practical terms. Section 3.4

describes SAFE. Section 3.5 evaluates SAFE. Sections 3.6 compares SAFE with related work. Section 3.7

concludes this chapter.

3.2 Motivating case study

We motivate our work with a mission-critical real-time satellite system, named Attitude Determination and

Control System (ADCS), which LuxSpace, a leading system integrator for microsatellites and aerospace

systems, has been developing over the years. ADCS determines the satellite’s attitude and controls its

movements [69]. ADCS controls a satellite in either autonomous or passive mode. In the autonomous

mode, ADCS must orient a satellite in proper position on time to ensure that the satellite provides normal

service correctly. In the passive mode, operators are able to not only control satellite positions but also

maintain the satellite, e.g., upgrading software. Such a maintenance operation does not necessarily need

to be completed within a fixed hard deadline; instead, it should be completed within a reasonable amount

of time, i.e., soft deadlines. Hence, ADCS is composed of a set of tasks having real-time constraints with

hard and soft deadlines.

Engineers at LuxSpace conduct real-time schedulability analysis across different development stages.

At an early design stage, when task implementations and system hardware are not available, the engineers

use a theoretical schedulability analysis technique [118] which determines that a set of tasks is schedulable

if CPU utilization of the task set is less than a threshold, e.g., 69%. As mentioned earlier, at an early

design stage, engineers estimate task WCETs as ranges and often assign large values to the upper bounds

of such ranges. To be on the safe side, engineers tend indeed to be conservative in their analysis.

Engineers, however, are still faced with the following issues: (1) An analytical schedulability analysis

technique, e.g., utilization-based schedulability analysis [118], typically indicates whether or not tasks

are schedulable. However, engineers need additional information to understand how tasks miss their

deadlines. For instance, a set of tasks may not be schedulable for a few specific sequences of task arrivals.

(2) Engineers estimate WCETs without any systematic support; instead, they often rely on their experience

of developing tasks providing similar functions-to-develop. This practice typically results in imprecise

estimates of WCET ranges, which may cause serious problems, e.g., significantly changing tasks at later

development stages. To this end, LuxSpace is interested in SAFE as a way to address these issues in

analyzing schedulability.
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3.3 Problem description

This section first formalizes task, task relationship, scheduler, and schedulability concepts. We then

describe the problem of identifying safe WCET ranges under which tasks likely meet their deadline

constraints at a certain level of confidence; i.e., tasks are schedulable with a certain probability.

Task. A real-time system is composed of a set of 𝑛 tasks that should complete their executions within

specified deadlines after they are activated (or arrived). We denote by 𝜏𝑖 a real-time task indexed by 𝑖 in the

range from 1 to 𝑛. Every real-time task 𝜏𝑖 has the following properties: priority denoted by 𝑃𝑖, deadline

denoted by 𝐷𝑖 , and worst-case execution time (WCET) denoted by 𝐶𝑖 . Task priority 𝑃𝑖 determines if an

execution of a task is preempted by another task. Typically, a task 𝜏𝑖 preempts the execution of a task 𝜏𝑗 if

the priority of 𝜏𝑖 is higher than the priority of 𝜏𝑗 , i.e., 𝑃𝑖 > 𝑃 𝑗 .

The deadline of a task 𝜏𝑖 relative to its arrival time is denoted by 𝐷𝑖. A task deadline can be either

hard or soft. A hard deadline of a task 𝜏𝑖 specifies that 𝜏𝑖 must complete its execution within a deadline

𝐷𝑖 after 𝜏𝑖 is activated. While violations of hard deadlines are not acceptable, depending on the operating

context of a system, violating soft deadlines may be tolerated to some extent. Note that, for notational

simplicity, we do not introduce new notations to distinguish between hard and soft deadlines. In this

chapter, we refer to a hard deadline as a deadline. Section 3.4 further discusses how our approach manages

hard and soft deadlines.

We denote by 𝐶𝑚𝑖𝑛
𝑖

and 𝐶𝑚𝑎𝑥
𝑖

, respectively, the minimum and the maximum WCET values of a task

𝜏𝑖 . As discussed in the introduction, at an early development stage, it is difficult to provide exact WCET

values of real-time tasks. Hence, we assume that engineers specify WCETs using a range of values,

instead of single values, by indicating estimated minimum and maximum values that they think each

task’s WCET can realistically take.

In this chapter, real-time tasks are either periodic or aperiodic. Periodic tasks, which are typically

triggered by timed events, are invoked at regular intervals specified by their period. We denote by 𝑇𝑖 the

period of a periodic task 𝜏𝑖, i.e., a fixed time interval between subsequent activations (or arrivals) of 𝜏𝑖.

Aperiodic tasks have irregular arrival times and are activated by external stimuli which occur irregularly,

and hence, in general, there is no limit on the arrival times of an aperiodic task. However, in real-time

analysis, we typically specify a minimum inter-arrival time denoted by 𝑇𝑚𝑖𝑛
𝑖

and a maximum inter-arrival

time denoted by 𝑇𝑚𝑎𝑥
𝑖

indicating the minimum and maximum time intervals between two consecutive

arrivals of an aperiodic task 𝜏𝑖 . In real-time analysis, sporadic tasks are often separately defined as having

irregular arrival intervals and hard deadlines [119]. In our conceptual definitions, however, we do not

introduce new notations for sporadic tasks because the deadline and period concepts defined above are

sufficient to characterize sporadic tasks. Note that for a periodic task 𝜏𝑖, we have 𝑇𝑚𝑖𝑛
𝑖

= 𝑇𝑚𝑎𝑥
𝑖

= 𝑇𝑖.

Otherwise, for an aperiodic task 𝜏𝑗 , we have 𝑇𝑚𝑎𝑥
𝑗

> 𝑇𝑚𝑖𝑛
𝑗

.

Task relationship. The execution of a task 𝜏𝑖 depends not only on its own parameters described

above, e.g., priority 𝑃𝑖 and period 𝑇𝑖 , but also on its relationships with other tasks. Relationships between

tasks are typically determined by task interactions related to accessing shared resources [5], such as

memory, file, and IO devices. Specifically, if two tasks 𝜏𝑖 and 𝜏𝑗 access a shared resource in a mutually

exclusive way, 𝜏𝑖 may be blocked from executing for the period during which 𝜏𝑗 accesses the resource. We

denote by dp(𝜏𝑖 , 𝜏𝑗) the resource-dependency relation between tasks 𝜏𝑖 and 𝜏𝑗 that holds if 𝜏𝑖 and 𝜏𝑗 have

mutually exclusive access to a shared resource such that they cannot be executed in parallel or preempt

each other, but one can execute only after the other has completed its access to the resource. We note
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that resource-dependency relations are defined at the level of tasks, following prior works [120, 11, 64]

describing the industrial case study systems used in our experiments (see Section 3.5.2). The dp(𝜏𝑖 , 𝜏𝑗)
relation is symmetric, i.e., dp(𝜏𝑖 , 𝜏𝑗) = dp(𝜏𝑗 , 𝜏𝑖).

Scheduler. Let Γ be a set of tasks to be scheduled by a real-time scheduler. A scheduler then

dynamically schedules executions of tasks in Γ according to the tasks’ arrivals and the scheduler’s

scheduling policy over the scheduling period T = [0, t]. We denote by 𝑎𝑖,𝑘 the 𝑘th arrival time of a task

𝜏𝑖 ∈ Γ. The first arrival of a periodic task 𝜏𝑖 does not always occur immediately at the system start time

0. Such offset time from the system start time 0 to the first arrival time 𝑎𝑖,1 of 𝜏𝑖 is denoted by 𝑂𝑖. For

a periodic task 𝜏𝑖, the 𝑘th arrival of 𝜏𝑖 within T is 𝑎𝑖,𝑘 ≤ t and is computed by 𝑎𝑖,𝑘 = 𝑂𝑖 + (𝑘 − 1) · 𝑇𝑖.
For an aperiodic task 𝜏𝑗 , 𝑎 𝑗 ,𝑘 is determined based on the 𝑘−1th arrival time of 𝜏𝑗 and its minimum and

maximum arrival times. Specifically, for 𝑘 > 1, 𝑎 𝑗 ,𝑘 ∈ [𝑎 𝑗 ,𝑘−1 + 𝑇𝑚𝑖𝑛
𝑗

, 𝑎 𝑗 ,𝑘−1 + 𝑇𝑚𝑎𝑥
𝑗
] and, for 𝑘 = 1,

𝑎 𝑗 ,1 ∈ [𝑇𝑚𝑖𝑛
𝑗

, 𝑇𝑚𝑎𝑥
𝑗
] where 𝑎 𝑗 ,𝑘 ≤ t.

A scheduler reacts to a task arrival at 𝑎𝑖,𝑘 to schedule the execution of 𝜏𝑖 . Depending on a scheduling

policy (e.g., rate monotonic scheduling policy [118] and single-queue multi-core scheduling policy [17]),

an arrived task 𝜏𝑖 may not start its execution at the same time as it arrives when a higher priority task

is executing. Also, task executions may be interrupted due to preemption. We denote by 𝑒𝑖,𝑘 the end

execution time for the 𝑘th arrival of a task 𝜏𝑖. Depending on actual worst-case execution time of a task

𝜏𝑖, denoted by 𝐶𝑖, within its WCET range [𝐶𝑚𝑖𝑛
𝑖

, 𝐶𝑚𝑎𝑥
𝑖
], the 𝑒𝑖,𝑘 end execution time of 𝜏𝑖 satisfies the

following: 𝑒𝑖,𝑘 ≥ 𝑎𝑖,𝑘 + 𝐶𝑖 .

During the system operation, a scheduler generates a schedule scenario which describes a sequence of

task arrivals and their end time values. We define a schedule scenario as a set 𝑆 of tuples (𝜏𝑖 , 𝑎𝑖,𝑘 , 𝑒𝑖,𝑘)
indicating that a task 𝜏𝑖 has arrived at 𝑎𝑖,𝑘 and completed its execution at 𝑒𝑖,𝑘 . Due to the randomness of

task execution times and aperiodic task arrivals, a scheduler may generate a different schedule scenario in

different runs of a system.

Figure 3.1 shows two schedule scenarios produced by a scheduler over the [0, 23] time period of a

system run. Both Figure 3.1a and Figure 3.1b describe executions of three tasks, 𝜏1, 𝜏2, and 𝜏3 arrived at

the same time stamps (see 𝑎𝑖,𝑘 in the figures). In both scenarios, the aperiodic task 𝜏1 is characterised

by: 𝑇𝑚𝑖𝑛
1 = 5, 𝑇𝑚𝑎𝑥

1 = 10, 𝐷1 = 4, and 𝐶𝑚𝑖𝑛
1 = 𝐶𝑚𝑎𝑥

1 = 2. The periodic task 𝜏2 is characterised by:

𝑇2 = 8 and 𝐷2 = 6. The aperiodic task 𝜏3 is characterised by: 𝑇𝑚𝑖𝑛
3 = 3, 𝑇𝑚𝑎𝑥

3 = 20, 𝐷3 = 3, and

𝐶𝑚𝑖𝑛
3 = 𝐶𝑚𝑎𝑥

3 = 1. The priorities of the three tasks satisfy the following: 𝑃1 > 𝑃2 > 𝑃3. In both scenarios,

task executions can be preempted depending on their priorities. We note that a WCET range of the 𝜏2
task is set to 𝐶𝑚𝑖𝑛

2 = 1 and 𝐶𝑚𝑎𝑥
2 = 3 in Figure 3.1a, and 𝐶𝑚𝑖𝑛

2 = 1 and 𝐶𝑚𝑎𝑥
2 = 2 in Figure 3.1b. Then,

Figure 3.1a can be described by the 𝑆𝑎 = {(𝜏1, 5, 7), . . ., (𝜏2, 0, 3), . . ., (𝜏3, 9, 14), (𝜏3, 14, 15)} schedule

scenario; and Figure 3.1b by 𝑆𝑏 = {(𝜏1, 5, 7), . . ., (𝜏2, 0, 2), . . ., (𝜏3, 9, 11), (𝜏3, 14, 15)}.
Schedulability. Given a schedule scenario 𝑆, a task 𝜏𝑖 is schedulable if 𝜏𝑖 completes its execution

before its deadline, i.e., for all 𝑒𝑖,𝑘 observed in 𝑆, 𝑒𝑖,𝑘 ≤ 𝑎𝑖,𝑘 + 𝐷𝑖 . Let Γ be a set of tasks to be scheduled

by a scheduler. A set Γ of tasks is then schedulable if for every schedule 𝑆 of Γ, we have no task 𝜏𝑖 ∈ Γ
that misses its deadline.

As shown in Figure 3.1a, a deadline miss occurs after the second arrival of 𝜏3, i.e., 𝑒3,2 > 𝑎3,2 + 𝐷3.

During [𝑎3,2, 𝑎3,2 + 𝐷3] period, the 𝜏3 task cannot execute because the other tasks 𝜏1 and 𝜏2 with higher

priorities are executing. Thus, 𝜏3 is not schedulable in the schedule scenario of Figure 3.1a. This

scheduling problem can be solved by restricting tasks’ WCET ranges as discussed below.
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Figure 3.1: Example schedule scenarios of three tasks, 𝜏1, 𝜏2, and 𝜏3, running on a single core system.
(a) 𝜏3 is not schedulable, i.e., 𝑒3,2 > 𝑎3,2 + 𝐷3. (b) All the three tasks are schedulable. When 𝜏2 executes
over 3 (WCET) time units, it causes a deadline miss of 𝜏3. When the WCET is reduced to 2, the three
tasks are schedulable even for the same sequence of task arrivals.

Problem. Uncertainty in task WCET values at an early development stage is a critical issue preventing

the effective design and assessment of mission-critical real-time systems. Upper bounds of WCETs

correspond to worst-case WCET values and have a direct impact on deadline misses as larger WCET

values increase their probability. Lower bounds of WCETs are estimates of tasks’ best-case WCET

values, below which task implementations are likely not feasible. Our approach aims to determine the

maximum upper bounds for WCET under which tasks are likely to be schedulable, at a given level of risk,

and thus provides an objective to engineers implementing the tasks. Specifically, for every task 𝜏𝑖 ∈ Γ
to be analyzed, our approach computes a new upper bound value for the WCET range of 𝜏𝑖 (denoted

by 𝐶max∗
𝑖

) such that 𝐶max∗
𝑖

≤ 𝐶𝑚𝑎𝑥
𝑖

and by restricting the WCET range of 𝜏𝑖 to 𝐶max∗
𝑖

we should, at a

certain level of confidence, no longer have deadline misses. That is, tasks Γ become schedulable, with a

certain probability, after restricting the maximum WCET value of 𝜏𝑖 to 𝐶max∗
𝑖

. For instance, as shown

in Figure 3.1b, restricting the maximum WCET of 𝜏2 from 𝐶𝑚𝑎𝑥
2 = 3 to 𝐶𝑚𝑎𝑥∗

2 = 2 enables all the three

tasks to be schedulable.

We note that, in our context, both arrival time ranges for aperiodic tasks and WCET ranges for all

tasks are represented as continuous intervals. Since our approach works based on sampling values from

these continuous ranges, our approach cannot be exhaustive and cannot provide a guarantee that the

tasks can always be schedulable after restricting their WCET ranges. Our approach instead relies on

sampling values within the WCET and arrival time ranges, simulating the scheduler behavior using the

sampled values and observing whether, or not, a deadline miss occurs. In lieu of exhaustiveness, we rely

on statistical and machine learning techniques to provide probabilistic estimates indicating how confident

we are that a given set of tasks are schedulable.
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Phase 1. 
 Worst-case task arrivals analysis

Phase 2.  
Safe WCET computation

Task

descriptions

Search Learning

Worst-case 
task arrivals

Training dataset
Safe WCET


ranges

Unsafe

Safe

Figure 3.2: An overview of our Safe WCET Analysis method For real-time task schEdulability (SAFE).

3.4 Approach

Figure 3.2 shows an overview of our Safe WCET Analysis method For real-time task schEdulability

(SAFE). Phase 1 of SAFE aims at searching worst-case task-arrival sequences. A task-arrival sequence is

worst-case if deadline misses are maximized or, when this is not possible, tasks complete their executions

as close to their deadlines as possible. Building on existing work, we identify worst-case task-arrival

sequences using a search-based approach relying on genetic algorithms. Phase 2 of SAFE, which is the

main contribution of this chapter, aims at computing safe WCET ranges under which tasks are likely to

be schedulable. To do so, relying on logistic regression and an effective sampling strategy, we augment

the worst-case task-arrival sequences generated in Phase 1 to compute safe WCET ranges with a certain

deadline miss probability, indicating a degree of risk. We describe in detail these two phases next.

3.4.1 Phase 1: worst-case task arrivals

The first phase of SAFE finds worst-case sequences in the space of possible sequences of task arrivals,

defined by their inter-arrival time characteristics. As SAFE aims to provide conservative, safe WCET

ranges, we optimize task arrivals to maximize task completion times and deadline misses, and indirectly

minimize safe WCET ranges (see the safe area visually presented in Figure 3.2). We address this

optimization problem using a single-objective search algorithm. Following standard practice [74], we

describe our search-based approach for identifying worst-case task arrivals by defining the solution

representation, the scheduler, the fitness function, and the computational search algorithm. We then

describe the dataset of sequences generated by search and then used for training our logistic regression

model to compute safe WCET ranges in the second phase of SAFE.

Our approach in Phase 1 is based on past work [36], where a specific genetic algorithm configuration

was proposed to find worst-case task arrival sequences. One important modification though is that we

account for uncertainty in WCET values through simulations for evaluating the magnitude of deadline

misses.

Representation. Given a set Γ of tasks to be scheduled, a feasible solution is a set 𝐴 of tuples

(𝜏𝑖 , 𝑎𝑖,𝑘) where 𝜏𝑖 ∈ Γ and 𝑎𝑖,𝑘 is the 𝑘th arrival time of a task 𝜏𝑖. Thus, a solution 𝐴 represents a valid

sequence of task arrivals of Γ (see valid 𝑎𝑖,𝑘 computation in Section 3.3). Let T = [0, t] be the time period

during which a scheduler receives task arrivals. The size of 𝐴 is equal to the number of task arrivals over

the T time period. Due to the varying inter-arrival times of aperiodic tasks (Section 3.3), the size of 𝐴 will

vary across different solutions.
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Scheduler. SAFE uses a simulation technique for analyzing the schedulability of tasks to account for

the uncertainty in WCET values and scalability issues. For instance, an inter-arrival time of a software

update task in a satellite system is approximately at most three months. In such cases, conducting an

analysis based on an actual scheduler is prohibitively expensive. Instead, SAFE uses a real-time task

scheduling simulator, named SafeScheduler, which samples WCET values from their ranges for simulating

task executions and applies a scheduling policy, i.e., single-queue multi-core scheduling policy [17], based

on discrete simulation time events. Note that we chose the single-queue multi-core scheduling policy for

SafeScheduler since our case study systems (described in Section 3.5.2) rely on this policy.

SafeScheduler takes a feasible solution 𝐴 for scheduling a set Γ of tasks as an input. It then outputs

a schedule scenario as a set 𝑆 of tuples (𝜏𝑖 , 𝑎𝑖,𝑘 , 𝑒𝑖,𝑘) where 𝑎𝑖,𝑘 and 𝑒𝑖,𝑘 are the 𝑘th arrival and end

time values of a task 𝜏𝑖, respectively. Recall from Section 3.3 that SafeScheduler computes task arrivals

based on periodic tasks’ offsets and periods and aperiodic tasks’ inter-arrival times.For each task 𝜏𝑖,

SafeScheduler computes 𝑒𝑖,𝑘 based on its scheduling policy and a selected WCET value for 𝜏𝑖 within the

WCET range [𝐶𝑚𝑖𝑛
𝑖

, 𝐶𝑚𝑎𝑥
𝑖
], while accounting for resource-dependency relationships (see Section 3.3).

Hence, each run of SafeScheduler for the same input solution 𝐴 will likely produce a different schedule

scenario.

SafeScheduler implements a single-queue multi-core scheduling policy [17], which schedules a task

𝜏𝑖 with explicit priority 𝑃𝑖 and deadline 𝐷𝑖. When tasks arrive, SafeScheduler puts them into a single

queue that contains tasks to be scheduled. At any simulation time, if there are tasks in the queue and

multiple cores are available to execute tasks, SafeScheduler first fetches a task 𝜏𝑖 from the queue in which

𝜏𝑖 has the highest priority 𝑃𝑖. SafeScheduler then allocates task 𝜏𝑖 to any available core. Note that if

task 𝜏𝑖 shares a resource with a running task 𝜏𝑗 in another core, i.e., the dp(𝜏𝑖 , 𝜏𝑗) resource-dependency

relationship holds, SafeScheduler follows standard task-blocking rules [119], i.e., 𝜏𝑖 will be blocked until

𝜏𝑗 releases the shared resource.

SafeScheduler works under the assumption that context switching time is free, which is also a working

assumption in many scheduling analysis methods [118, 20, 64]. Note that the assumptions are practically

valid and useful at an early development step in the context of real-time analysis. For instance, our

collaborating partner accounts for the waiting time of tasks due to context switching between tasks

through adding some extra time to WCET ranges at the task design stage. Note that SAFE can be applied

with any scheduling policy, including those that account for context switching time and multiple queues.

Fitness. Given a feasible solution 𝐴 for a set Γ of tasks, we formulate a fitness function, 𝑓 (𝐴, Γ𝛿 , 𝑛𝑠),
to quantify the degree of deadline misses regarding a set Γ𝛿 ⊆ Γ of target tasks, where 𝑛𝑠 is a number of

SafeScheduler runs to account for the uncertainty in WCET. SAFE provides the capability of selecting

target tasks Γ𝛿 as practitioners often need to focus on the most critical tasks. We denote by dist(𝜏𝑖 , 𝑘)
the distance between the end time and the deadline of the 𝑘th arrival of task 𝜏𝑖 and define dist(𝜏𝑖 , 𝑘) =
𝑒𝑖,𝑘 − 𝑎𝑖,𝑘 + 𝐷𝑖 (see Section 3.3 for the notation end time 𝑒𝑖,𝑘 , arrival time 𝑎𝑖,𝑘 , and deadline 𝐷𝑖).

To compute the 𝑓 (𝐴, Γ𝛿 , 𝑛𝑠) fitness value, SAFE runs SafeScheduler 𝑛𝑠 times for 𝐴 and obtains 𝑛𝑠

schedule scenarios 𝑆1, 𝑆2, . . . , 𝑆𝑛𝑠. For each schedule scenario 𝑆ℎ, we denote by distℎ (𝜏𝑖 , 𝑘) the distance

between the end and deadline time values corresponding to the 𝑘th arrival of the task 𝜏𝑖 observed in 𝑆ℎ.

We denote by lk(𝜏𝑖) the last arrival index of a task 𝜏𝑖 in 𝐴. SAFE aims to maximize the 𝑓 (𝐴, Γ𝛿 , 𝑛𝑠)
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Table 3.1: An example operation of SafeCrossover. It swaps all task arrivals of task 𝜏1 and 𝜏2 between
two parent solutions 𝐴𝑝 and 𝐴𝑞 to produce offspring 𝐴′𝑝 and 𝐴′𝑞.

Task 𝜏1 Task 𝜏2 Task 𝜏3

Parent 𝐴𝑝 (𝜏1, 5), (𝜏1, 11) (𝜏2, 8), (𝜏2, 16) (𝜏3, 4), (𝜏3, 10)
Parent 𝐴𝑞 (𝜏1, 3), (𝜏1, 7), (𝜏1, 14) (𝜏2, 6), (𝜏2, 13) (𝜏3, 5), (𝜏3, 8), (𝜏3, 13)
Child 𝐴′𝑝 (𝜏1, 3), (𝜏1, 7), (𝜏1, 14) (𝜏2, 6), (𝜏2, 13) (𝜏3, 4), (𝜏3, 10)
Child 𝐴′𝑞 (𝜏1, 5), (𝜏1, 11) (𝜏2, 8), (𝜏2, 16) (𝜏3, 5), (𝜏3, 8), (𝜏3, 13)

fitness function defined as follows:

𝑓 (𝐴, Γ𝛿 , 𝑛𝑠) =
𝑛𝑠∑︁
ℎ=1

max
𝜏𝑖 ∈Γ𝛿 , 𝑘∈[1,lk(𝜏𝑖) ]

distℎ (𝜏𝑖 , 𝑘)/𝑛𝑠

We note that soft deadline tasks also require to execute within reasonable execution time ranges.

Hence, engineers also estimate safe WCET ranges for soft deadline tasks. As the above fitness function

returns a quantified degree of deadline misses, SAFE uses such function for both soft and hard deadline

tasks.

Computational search. SAFE employs a steady-state genetic algorithm [122]. The algorithm breeds

a new population for the next generation after computing the fitness of a population. The breeding for

generating the next population is done by using the following genetic operators: (1) Selection. SAFE

selects candidate solutions using a tournament selection technique, with the tournament size equal to two

which is the most common setting [77]. (2) Crossover. Selected candidate solutions serve as parents to

create offspring using a crossover operation. (3) Mutation. The offspring are then mutated. Below, we

describe our crossover and mutation operators.

Crossover. A crossover operator is used to produce offspring by mixing traits of parent solutions.

SAFE modifies the standard one-point crossover operator [122] as two parent solutions 𝐴𝑝 and 𝐴𝑞 may

have different sizes, i.e., |𝐴𝑝 | ≠ |𝐴𝑞 |. Let Γ = {𝜏1, 𝜏2, . . . , 𝜏𝑛} be a set of tasks to be scheduled. Our

crossover operator, named SafeCrossover, first randomly selects an aperiodic task 𝜏𝑖 ∈ Γ. For all 𝑗 ∈ [1, 𝑖]
and 𝜏𝑗 ∈ Γ, SafeCrossover then swaps all 𝜏𝑗 arrivals between two solutions 𝐴𝑝 and 𝐴𝑞. As the size of Γ

is fixed for all solutions, SafeCrossover can cross over two solutions that may have different sizes.

Table 3.1 shows an example operation of SafeCrossover using a system with three aperiodic tasks, 𝜏1,

𝜏2, and 𝜏3. Let two parent solutions 𝐴𝑝 and 𝐴𝑞 be as follows: 𝐴𝑝 = {(𝜏1, 5), . . ., (𝜏2, 8), . . ., (𝜏3, 10)}
and 𝐴𝑞 = {(𝜏1, 3), . . ., (𝜏2, 6), . . ., (𝜏3, 13)}, where (𝜏𝑖 , 𝑡) denotes task 𝜏𝑖 arrives at time 𝑡. Given the

two parents 𝐴𝑝 and 𝐴𝑞, SafeScheduler randomly selects a task, i.e., 𝜏2 in this example, then it swaps

all arrivals of 𝜏1 and 𝜏2 between 𝐴𝑝 and 𝐴𝑞. As shown in Table 3.1, SafeCrossover then generates the

offspring 𝐴′𝑝 and 𝐴′𝑞 as follows: 𝐴′𝑝 = {(𝜏1, 3), . . ., (𝜏2, 6), . . ., (𝜏3, 10)} and 𝐴′𝑞 = {(𝜏1, 5), . . ., (𝜏2, 8),
. . ., (𝜏3, 13)}. The shaded (resp. unshaded) cells in Table 3.1 indicate which task arrivals in child 𝐴′𝑞
(resp. 𝐴′𝑝) come from which parent.

Mutation operator SAFE uses a heuristic mutation algorithm, named SafeMutation. For a solution 𝐴,

SafeMutation mutates the 𝑘th task arrival time 𝑎𝑖,𝑘 of an aperiodic task 𝜏𝑖 with a mutation probability.

SafeMutation chooses a new arrival time value of 𝑎𝑖,𝑘 based on the [𝑇𝑚𝑖𝑛
𝑖

, 𝑇𝑚𝑎𝑥
𝑖
] inter-arrival time

range of 𝜏𝑖. If such a mutation of the 𝑘th arrival time of 𝜏𝑖 does not affect the validity of the 𝑘+1th

arrival time of 𝜏𝑖, the mutation operation ends. Specifically, let 𝑎∗
𝑖,𝑘

be a mutated value of 𝑎𝑖,𝑘 . In case

𝑎𝑖,𝑘+1 ∈ [𝑎∗𝑖,𝑘 + 𝑇
𝑚𝑖𝑛
𝑖

, 𝑎∗
𝑖,𝑘
+ 𝑇𝑚𝑎𝑥

𝑖
], SafeMutation returns the mutated 𝐴 solution.
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After mutating the 𝑘th arrival time 𝑎𝑖,𝑘 of a task 𝜏𝑖 in a solution 𝐴, if the 𝑘+1th arrival becomes

invalid, SafeMutation corrects the remaining arrivals of 𝜏𝑖 . We denote by 𝑎∗
𝑖,𝑘

the mutated 𝑘th arrival time

of 𝜏𝑖. For all the arrivals of 𝜏𝑖 after 𝑎∗
𝑖,𝑘

, SafeMutation first updates their original arrival time values by

adding the difference 𝑎∗
𝑖,𝑘
− 𝑎𝑖,𝑘 . Let T = [0, t] be the scheduling period. SafeMutation then removes

some arrivals of 𝜏𝑖 if they are mutated to arrive after t or adds new arrivals of 𝜏𝑖 while ensuring that all

tasks arrive within T.

Given the offspring presented in Table 3.1, SafeMutation, for example, mutates a child solution 𝐴′𝑝 =

{(𝜏1, 3), (𝜏1, 7), (𝜏1, 14), . . ., (𝜏3, 10)}. Let [𝑇𝑚𝑖𝑛
1 , 𝑇𝑚𝑎𝑥

1 ] = [2, 8] be the inter-arrival time range of task

𝜏1, T = [0, 18] be the time period during which SafeScheduler receives task arrivals, and SafeMutation

selects the second arrival of task 𝜏1, i.e., (𝜏1, 7) in Table 3.1, to mutate. Based on the inter-arrival time

range of 𝜏1, SafeMutation randomly chooses a new arrival time, e.g., 5, for the second arrival of 𝜏1. The

third arrival (𝜏1, 14) of 𝜏1 then became invalid due to the mutated second arrival (𝜏1, 5); i.e., 𝜏1 cannot

arrive at time 14 because 14 ∉ [5 + 2, 5 + 8], where [𝑇𝑚𝑖𝑛
1 , 𝑇𝑚𝑎𝑥

1 ] = [2, 8]. According to the correction

procedure described above, the third arrival of 𝜏1 is modified to (𝜏1, 12) as 12 = 14 + (5 − 7), where 14,

5, and 7 are, respectively, the original thrid arrival time of 𝜏1, the original second arrival time of 𝜏1, and

the mutated second arrival time of 𝜏1. As SafeScheduler can receive new arrivals of 𝜏1 after time 12,

SafeMutation may add new arrivals of 𝜏1 based on the inter-arrival time range of 𝜏1.

We note that when a system is only composed of periodic tasks, SAFE will skip searching for worst-

case arrival sequences as arrivals of periodic tasks are deterministic (see Section 3.3), but will nevertheless

generate the labeled dataset described below. When needed, SAFE can be easily extended to manipulate

varying offset (and period) values for periodic tasks, in a way identical to how we currently handle

inter-arrival times.

labeled dataset. SAFE infers safe WCET ranges using a supervised learning technique [152] which

requires a labeled dataset, namely logistic regression. In our context, a supervised learning technique

creates a model that correlates tasks’ WCET values with schedulability results indicating whether these

tasks meet their deadlines or not. Supervised learning is conducted based on pairs of tasks’ WCET values

and a schedulability result, i.e., a labeled dataset. Specifically, SAFE uses logistic regression because it

allows engineers to have probabilistic interpretation of safe WCET ranges and to investigate trade-off

relationships among different tasks’ WCETs. Section 3.4.2 describes this learning process in detail.

Recall from the fitness computation described above, SAFE runs SafeScheduler 𝑛𝑠 times to obtain

schedule scenarios 𝑆={𝑆1, 𝑆2, . . . , 𝑆𝑛𝑠}, and then computes a fitness value of a solution 𝐴 based on 𝑆. We

denote by𝑊ℎ a set of tuples (𝜏𝑖 , 𝐶𝑖) representing that a task 𝜏𝑖 has the 𝐶𝑖 WCET value in the 𝑆ℎ schedule

scenario. Let
#»
𝐿 be a labeled dataset to be created by the first phase of SAFE. We denote by ℓℎ a label

indicating whether or not a schedule scenario 𝑆ℎ has any deadline miss for any of the target tasks in Γ𝛿 ,

i.e., ℓℎ is either safe or unsafe which denotes, respectively, no deadline miss or deadline miss. For each

fitness computation, SAFE adds 𝑛𝑠 number of tuples (𝑊ℎ, ℓℎ) to
#»
𝐿 . Specifically, for a schedule scenario

𝑆ℎ, SAFE adds (𝑊ℎ, unsafe) to
#»
𝐿 if there are 𝜏𝑖∈Γ𝛿 and 𝑘∈[1, lk(𝑖)] such that distℎ (𝜏𝑖 , 𝑘)>0; otherwise

SAFE adds (𝑊ℎ, safe) to
#»
𝐿 .

3.4.2 Phase 2: safe ranges of WCET

In Phase 2, SAFE computes safe ranges of WCET values under which target tasks are likely to be

schedulable. To do so, SAFE applies a supervised machine learning technique to the labeled dataset
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Algorithm 3.1: SafeRefinement. An algorithm for computing safe WCET ranges under which
target tasks are schedulable. The algorithm consists of three steps as follows: “reduce complexity”,
“handle imbalanced dataset”, and “refine model” steps.

Input: -
#»
𝐿 : labeled dataset obtained from the SAFE search

- 𝐺: Worst solutions obtained from the SAFE search
- ns: Number of WCET samples per solution
- nl: Number of logistic regression models
- pt: Precision threshold

Output: - 𝑚: Safe WCET model
- 𝑝: Probability of deadline misses

1: //step 1. reduce complexity
2:

#»
𝐿 𝑟 ← ReduceDimension(

#»
𝐿) //feature reduction

3: 𝑚← StepwiseRegression(
#»
𝐿 𝑟) //term selection

4: 𝑝← Probability(𝑚,
#»
𝐿 𝑟)

5: //step 2. handle imbalanced dataset
6:

#»
𝐿 𝑏 ← HandleImbalance(

#»
𝐿 𝑟 , 𝑚)

7: //step 3. refine model
8: for nl times do
9: //step 3.1. add new data instances

10: for each solution 𝐴 ∈ 𝐺 do
11: {𝑆1, 𝑆2, . . . , 𝑆ns} ← RunSafeScheduler(𝐴, 𝑚, 𝑝, ns)
12: for each scenario 𝑆ℎ ∈ {𝑆1, 𝑆2, . . . , 𝑆ns} do
13: if 𝑆ℎ has any deadline miss then
14:

#»
𝐿 𝑏 ← Add(

#»
𝐿 𝑏, (WCET (𝑆ℎ), unsafe))

15: else
16:

#»
𝐿 𝑏 ← Add(

#»
𝐿 𝑏, (WCET (𝑆ℎ), safe))

17: end if
18: end for
19: end for
20: //step 3.2. learn regression model
21: 𝑚← Regression(𝑚,

#»
𝐿 𝑏)

22: 𝑝← Probability(𝑚,
#»
𝐿 𝑏)

23: if PrecisionByCrossValidation(𝑚,
#»
𝐿 𝑏) > pt then

24: break
25: end if
26: end for
27: return 𝑚, 𝑝

generated by Phase 1 (Section 3.4.1). Specifically, Phase 2 executes SafeRefinement (Algorithm 3.1)

which has following steps: complexity reduction, imbalance handling, and model refinement.

Complexity reduction. The “reduce complexity” step in Algorithm 3.1 reduces the dimensionality

of a labeled dataset
#»
𝐿 obtained from the first phase of SAFE (line 2). It predicts initial safe WCET

ranges based on the WCET variables for the tasks in Γ (line 3) that have the most significant effect on

deadline misses for target tasks. A labeled dataset
#»
𝐿 obtained from the first phase of SAFE contains tuples

(𝑊, ℓ) where𝑊 is a set of WCET values for tasks in Γ and ℓ is a label of𝑊 indicating either no deadline

miss (safe) or deadline miss (unsafe) (Section 3.4.1). Note that some WCET values in 𝑊 may not be

relevant to determine ℓ. Hence,
#»
𝐿 may contain irrelevant variables to predict ℓ. To decrease computational
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Figure 3.3: A safe border line of WCET values for the 𝜏1 and 𝜏2 tasks. The safe border is determined by a
deadline miss probability of 0.01. 𝐶1 and 𝐶2 determine safe WCET ranges of 𝜏1 and 𝜏2 under which they
likely satisfy their deadlines.

complexity for the remaining steps, SafeRefinement creates a reduced dataset
#»
𝐿 𝑟 which contains the same

number of data instances (tuples) as
#»
𝐿 while including only WCET values with a significant effect on

ℓ. To that end, SafeRefinement employs a standard feature reduction technique: random forest feature

reduction [35] which has been successfully applied to high-dimensional data [141, 96]. Given the labeled

dataset
#»
𝐿 , random forest creates a set of decision trees based on the parameter values such as the number

of trees and tree depth. Decision trees obtained by random forest allow us to rank features, i.e., task

WCETs, based on their importance as measured by Gini impurity [35]. Hence, by setting a particular

threshold for importance, we can select a subset of the features. Note that Section 3.5.6 describes the

parameter values for the feature reduction step in detail.

After reducing the dimensionality of the input dataset
#»
𝐿 in Algorithm 3.1, resulting in the reduced

dataset
#»
𝐿 𝑟 , SafeRefinement learns an initial model to predict safe WCET ranges. SafeRefinement uses

logistic regression [100] because it enables a probabilistic interpretation of safe WCET ranges and the

investigation of relationships among different tasks’ WCETs. For example, Figure 3.3 shows a safe border

determined by an inferred logistic regression model 𝑚 with a probability 𝑝 of deadline misses. Note that

a safe range, e.g., [𝐶𝑚𝑖𝑛
1 , 𝐶1] of task 𝜏1 in Figure 3.3, is determined by a point on the safe border in a

multidimensional WCET space. A safe border distinguishes safe and unsafe areas in the WCET space.

After inferring a logistic regression model 𝑚 from the input dataset, SafeRefinement selects a probability

𝑝 maximizing the safe area under the safe border determined by 𝑚 and 𝑝 while ensuring that all the data

instances, i.e., sets of WCET values, classified as safe using the safe border are actually observed to be

safe in the input dataset, i.e., no false positives (lines 3–4). We note that engineers can also select an

adequate probability, which may yield false positives or not maximize the area under the safe border,

depending on their needs.

SafeRefinement uses a second-order polynomial response surface model (RSM) [135] to build a

logistic regression model. RSM is known to be useful when the relationship between several explanatory

variables (e.g., WCET variables) and one or more response variables (e.g., safe or unsafe label) needs to be

investigated [135, 124]. RSM contains linear terms, quadratic terms, and 2-way interactions between linear

terms. Let 𝑉 be a set of WCET variables 𝑣𝑥 in
#»
𝐿 𝑟 . Then, the logistic regression model of SafeRefinement

is defined as follows:

log
𝑝

1 − 𝑝 = 𝑐0 +
|𝑉 |∑︁
𝑥=1

𝑐𝑥𝑣𝑥 +
|𝑉 |∑︁
𝑥=1

𝑐𝑥𝑥𝑣
2
𝑥 +

∑︁
𝑦>𝑥

𝑐𝑥𝑦𝑣𝑥𝑣𝑦
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Figure 3.4: Handling imbalanced dataset by excluding unsafe WCET values based on logistic regression
intercepts.

As shown in the above equation, an RSM equation, i.e., the right-hand side, built on the reduced dataset
#»
𝐿 𝑟 has a higher number of dimensions, i.e., the number of coefficients to be inferred, than |𝑉 | as RSM

additionally accounts for quadratic terms (𝑣2
𝑥) and 2-way interactions (𝑣𝑥𝑣𝑦) between linear terms. Hence,

SafeRefinement employs a stepwise regression technique (line 3), e.g., stepwise AIC (Akaike Information

Criterion) [191], in order to select significant explanatory terms from the RSM equation. This allows the

remaining “refine model” step of SafeRefinement to execute efficiently as it requires to run SafeScheduler

and logistic regression multiple times within a time budget (line 8), both operations being computationally

expensive.

Imbalance handling. Recall from Section 3.4.1 that SAFE searches for worst-case sequences of task

arrivals and is guided by maximizing the magnitude of deadline misses, when they are possible. Therefore,

the major portion of
#»
𝐿 , the dataset produced by the first phase of SAFE, is a set of task arrival sequences

leading to deadline misses. Supervised machine learning techniques (including logistic regression)

typically produce unsatisfactory results when faced with highly imbalanced datasets [24]. SafeRefinement

addresses this problem with the “handle imbalanced dataset” step in Algorithm 3.1 (lines 5–6) before

refining safe WCET ranges. SafeRefinement aims to identify WCET ranges under which tasks are likely to

be schedulable. This entails that WCET ranges under which tasks are highly unlikely to be schedulable can

be safely excluded from the remaining analysis. Specifically, SafeRefinement prunes out WCET ranges

with a high probability of deadline misses above a high threshold 𝑝𝑢 and thus creates a more balanced

dataset
#»
𝐿 𝑏 compared to the original imbalanced dataset

#»
𝐿 𝑟 (line 6). SafeRefinement automatically finds a

minimum probability 𝑝𝑢 which leads to a safe border classifying no false unsafe (negative) instances in
#»
𝐿 𝑟 .

SafeRefinement then updates the maximum WCET 𝐶𝑚𝑎𝑥
𝑖

of a task 𝜏𝑖 based on the intercept of the logistic

regression model 𝑚 (with a probability of 𝑝𝑢) on the WCET axis for 𝜏𝑖. Figure 3.4 shows an example

dataset
#»
𝐿 𝑟 with a safe border characterised by a high deadline miss probability, i.e., 𝑝𝑢 = 0.99, to create a

more balanced dataset
#»
𝐿 𝑏 within the restricted ranges [𝐶𝑚𝑖𝑛

1 , intercept(𝜏1)] and [𝐶𝑚𝑖𝑛
2 , intercept(𝜏2)].

Model refinement. The “refine model” step in Algorithm 3.1 refines an inferred logistic regression

model by sampling additional schedule scenarios selected according to a strategy that is expected to

improve the model. As described in Section 3.4.1, the SAFE search produces a set 𝐺 (population) of

worst-case arrival sequences of tasks Γ which likely violate deadline constraints of target tasks Γ𝛿 ⊆ Γ.

For each arrival sequence 𝐴 in 𝐺, SafeRefinement executes SafeScheduler ns times to add ns new data

instances to the dataset
#»
𝐿 𝑏 based on the generated schedule scenarios and their schedulability results

(lines 9–19). After adding ns · |𝐺 | new data instances to
#»
𝐿 𝑏, SafeRefinement runs logistic regression

again to infer a refined logistic regression model 𝑚 and computes a probability 𝑝 that ensures no false
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safe instances (positives) in
#»
𝐿 𝑏 and maximizes the safe area under the safe border defined by 𝑚 and 𝑝

(lines 20–25).

In the second phase of SAFE, SafeScheduler selects WCET values for tasks in Γ to compute a schedule

scenario based on a distance-based random number generator, which extends the standard uniform random

number generator. The distance-based WCET value sampling aims at minimizing the Euclidean distance

between the sampled WCET points and the safe border defined by the inferred model 𝑚 and the selected

probability 𝑝. SafeScheduler iteratively computes new WCET values using the following distance-based

sampling procedure: (1) generating 𝑛𝑟 random samples in the WCET space, (2) computing their distance

values from the safe border, and (3) selecting the closest point to the safe border.

SafeRefinement stops model refinements either by reaching an allotted analysis budget (line 8 of

Algorithm 3.1) or when a precision reaches an acceptable level pt, e.g., 0.99 (lines 23–25). SafeRefinement

uses the standard precision metric [187] as described in Section 3.5.5. In our context, practitioners need

to identify safe WCET ranges at a high level of precision to ensure that identified safe WCET ranges can

be trusted. To compute a precision value, SafeRefinement uses a standard k-fold cross-validation [187].

In k-fold cross-validation,
#»
𝐿 𝑏 is partitioned into k equal-size splits. One split is retained as a test dataset,

and the remaining k-1 splits are used as a training dataset. The cross-validation process is then repeated k

times to compute a precision of inferred safe borders which are determined by a logistic regression model

𝑚 and a probability 𝑝 (lines 21 and 22)

Selecting WCET ranges. A safe border defined by an inferred logistic regression model and a

deadline miss probability of 𝑝 represents a (possibly infinite) set of points, corresponding to safe WCET

ranges of tasks, e.g., [𝐶𝑚𝑖𝑛
1 , 𝐶1] and [𝐶𝑚𝑖𝑛

2 , 𝐶2] in Figure 3.3. In practice, however, engineers need

to choose a specific WCET range for each task to conduct further analysis and development. How to

choose optimal WCET ranges depends on the system context. At early stages, however, such contextual

information may not be available. Hence, SAFE proposes a best-size point, i.e., WCET ranges, on a safe

border which maximizes the volume of the hyperbox the point defines. In general, the larger hyperbox,

the greater flexibility the engineers have in selecting appropriate WCET values. Choosing the point with

the largest volume is helpful when no domain-specific information is available to define other selection

criteria. In general the inferred safe border enables engineers to investigate trade-off among different

tasks’ WCET values.

3.5 Evaluation

We evaluate SAFE using an industrial case study from the satellite domain. Our full evaluation package is

available online [112].

3.5.1 Research questions

RQ1 (baseline comparison): How does SAFE perform compared with a baseline approach? With RQ1,

we investigate whether SAFE can outperform WCET estimation based on random search. Note that such

RQ is an important sanity check for search-based solutions in general [89, 12]. Our conjecture is that

SAFE, although computationally expensive, will significantly outperform a random search solution with

respect to estimating safe WCET ranges with a higher degree of confidence.
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Table 3.2: Description of the three industrial subject systems: number of periodic and aperiodic tasks,
resource dependencies, and platform cores. The full task descriptions are available online [112].

System Periodic tasks Aperiodic tasks Dependencies Cores

ADCS 15 19 0 1
ICS 3 3 3 3
UAV 12 4 4 3

RQ2 (effectiveness of distance-based sampling): How does SAFE, based on distance-based sampling,

perform compared with random sampling? We compare our distance-based sampling procedure described

in Section 3.4.2 and used in the second phase of SAFE with a naive random sampling. Our conjecture

is that distance-based sampling, although expensive, is needed to improve the quality of the training

data used for logistic regression. RQ2 assesses this conjecture by comparing distance-based and random

sampling.

RQ3 (usefulness): Can SAFE identify WCET ranges within which tasks are highly likely to satisfy their

deadline constraints? In RQ3, we investigate whether SAFE identifies acceptably safe WCET ranges

in practical time. We further discuss our insights regarding the usefulness of SAFE from the feedback

obtained from engineers in LuxSpace.

RQ4 (scalability): Can SAFE find safe WCET ranges for large-scale systems with a practical time

budget? In this RQ, we study the relationship between the execution time of SAFE and the parameters

of study subjects. We use several synthetic subjects to be able to freely control key real-time systems’

parameters.

3.5.2 Industrial study subjects

We evaluated SAFE by applying it to our motivating case study subject, i.e., the satellite attitude deter-

mination and control system (ADCS) described in Section 3.2, as well as two industrial study subjects

from the literature [145, 171]. Table 3.2 summarizes the relevant attributes of these subjects, presenting

the number of periodic and aperiodic tasks, resource dependencies, and processing cores. The subjects

are characterized by real-time parameters, e.g., priorities, WCETs, periods, and deadlines, described in

Section 3.3. The full task descriptions of the subjects are available online [112]. The main missions of the

three subjects are described as follows:

• ADCS is a satellite system that aims at orienting a satellite in a proper position on time to ensure

that the satellite provides normal service correctly (see Section 3.2). LuxSpace, our industry partner,

developed ADCS for an ESA project.

• ICS is an ignition control system that checks the status of an automotive engine and corrects any errors

of the engine [145]. The system was developed by Bosch GmbH1.

1Bosch GmbH: https://www.bosch.com/
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• UAV is a mini unmanned air vehicle that follows dynamically defined way-points and communicates

with a ground station to receive instructions [171]. The system was developed in a collaboration with

the University of Poitiers France and ENSMA2.

LuxSpace is a leading system integrator of micro satellites and aerospace systems. ADCS includes

a set of 15 periodic and 19 aperiodic tasks. Eight tasks out of the 19 aperiodic tasks are constrained by

hard deadlines, i.e., sporadic tasks. Out of the 34 tasks, engineers provided single WCET values for eight

tasks. For the remaining 26 tasks, engineers estimated WCET ranges due to uncertain decisions, e.g.,

implementation choices and hardware specifications, made at later development stages (see Section 3.2).

The differences between the estimated WCET maximum and minimum values across the 26 tasks vary

from 0.1ms to 20000ms. Our collaboration with LuxSpace enabled us to discuss SAFE results with

engineers to draw important qualitative conclusions and to assess the benefits of SAFE (see Section 3.5.7).

For the experiments with ICS and UAV, we used the task descriptions reported in a previous study [64]

and modified their tasks’ WCETs from point values to ranges. Though the problem of schedulability

analysis of real-time tasks has been widely studied [64, 7, 87, 33, 175], none of the prior work addresses

the same problem (see Section 3.3) as that addressed by SAFE. Hence, the public study subjects in

the literature do not fit our study’s requirements. In particular, none of the public real-time system

case studies [64] contains estimated WCET ranges in their task descriptions. These ranges, however,

are necessary to apply SAFE and to evaluate its effectiveness. In order to evaluate SAFE in various

and realistic system contexts, we chose to apply SAFE to existing industrial subjects, i.e., ICS and

UAV, described in prior work [64] and made necessary changes only to task WCETs of the subjects as

described below. Compared to ADCS, ICS and UAV have different task characteristics, such as resource

dependencies and number of processing cores.

We note that estimating (practically valid) WCET ranges requires significant domain expertise. For

public domain case study systems such as ICS and UAV, however, we do not have any access to the

engineers who have developed those subjects. Hence, we chose to apply a simple and straightforward

method to convert a point WCET value to a WCET range as follows: (Step 1) We first check whether the

system under analysis is schedulable or not. For a task 𝜏𝑖 in the system, we denote by 𝐶𝑖 an original point

WCET value of 𝜏𝑖. (Step 2) If the system is evaluated to be schedulable, it indicates that the system’s

tasks may be able to handle higher execution times than their estimated WCETs. Hence, we simply define

the WCET range of 𝜏𝑖 by [𝐶𝑖 , 𝑟 ·𝐶𝑖], where 𝑟 > 1, as input WCET ranges for SAFE. This modification

enables SAFE to find more relaxed safe WCET ranges. (Step 2′) Otherwise, if the system is evaluated

to be unschedulable, we define the WCET range of 𝜏𝑖 by [𝑟 ′·𝐶𝑖 , 𝐶𝑖], where 𝑟 ′ < 1, as input for SAFE.

This modification allows SAFE to find appropriate WCET estimates, ensuring the system is likely to be

schedulable under the WCET ranges found by SAFE. As ICS and UAV are likely to be schedulable [64],

for all task 𝜏𝑖 in ICS and task 𝜏𝑗 in UAV, we created the modified task descriptions of ICS and UAV

based on Step 2. We conducted experiments using simulations to set the 𝑟 values for ICS and UAV by

configuring 𝑟 to 1.1, 1.2, . . ., 1.5 incrementally until we could find deadline misses in each system, i.e.,

unsafe WCET values. Recall from Section 3.4.2 that SAFE relies on logistic regression to partition the

given WCET ranges into safe and unsafe sub-ranges for a selected deadline miss probability. Hence, we

modified the estimated WCET ranges of ICS and UAV to include both safe and unsafe WCET ranges.

2ENSMA: https://www.ensma.fr/
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Algorithm 3.2: An algorithm for creating a synthetic subject while accounting for the task
characteristics described in Section 3.3.

Input: - 𝑛: number of tasks
- 𝑢𝑡 : target utilisation
- 𝑇min: minimum task period
- 𝑇max: maximum task period
- 𝑔: granularity of task periods
- 𝜃: maximum offset value
- 𝛾: ratio of aperiodic tasks
- 𝜇: range factor to determine inter-arrival times
- 𝜔: number of WCET ranges
- 𝜆: range factor to determine WCET ranges

Output: - Γ: set of tasks

1: Γ← {}, C← {}
2: //synthesise a set of periodic tasks
3: U← UUniFast_discard(𝑛, 𝑢𝑡)
4: T← generate_task_periods(𝑛, 𝑇min, 𝑇max, 𝑔) //task periods
5: for each 𝑖 ∈ [1, 𝑛] do
6: C← C ∪ {𝑈𝑖 ·𝑇𝑖}, where𝑈𝑖 ∈ U and 𝑇𝑖 ∈ T //WCETs
7: end for
8: Γ← generate_task_set(T,C, 𝜃, 𝑔)
9: //convert some periodic tasks to aperiodic tasks

10: Γ← convert_to_aperiodic_tasks(Γ, 𝛾, 𝜇)
11: //convert some WCET point values to WCET ranges
12: Γ← convert_to_WCET_ranges(Γ, 𝜔, 𝜆)
13: return Γ

Given the experiment results, we set the WCET ranges of ICS and UAV to [𝐶𝑖 , 1.2·𝐶𝑖] and [𝐶 𝑗 , 1.5·𝐶 𝑗],
respectively. The full original and modified task descriptions of ICS and UAV are available online [112].

3.5.3 Synthetic study subjects

We evaluated the scalability of SAFE using synthetic systems, following the common scalability

analysis practice applied in many real-time system studies [62, 195, 59, 82, 176, 68]. As shown in

Algorithm 3.2, we synthesise a set of real-time tasks by varying key task parameters as described below.

The algorithm first synthesises a set of periodic tasks (lines 2-8) and then converts some of these tasks to

aperiodic tasks (lines 9-10). Last, the algorithm configures some tasks with WCET ranges (lines 11-12).

As shown on line 3 of Algorithm 3.2, the algorithm first creates a set U of task utilisation values

by using the UUniFast-Discard algorithm [59] that is devised to give an unbiased distribution of task

utilisation values. The UUniFast-Discard algorithm takes as input the number of tasks to be synthesised,

𝑛, and a target utilisation value, 𝑢𝑡 . It then outputs 𝑛 utilization values,𝑈1 . . . 𝑈𝑛, where 0 < 𝑈𝑖 < 1 for

all𝑈𝑖 and
∑𝑛

𝑖=1𝑈𝑖 = 𝑢
𝑡 .

As for line 4 in Algorithm 3.2, the algorithm generates 𝑛 task periods, 𝑇1 . . . 𝑇𝑛 according to a

log-uniform distribution within a range [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥], i.e., given a task period (random variable) 𝑇𝑖 , log 𝑇𝑖
follows a uniform distribution. For example, when a period range [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] is [10ms, 1000ms], the

algorithm generates approximately an equal number of tasks in period ranges [10ms, 100ms] and [100ms,
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1000ms]. The parameter 𝑔 is used to determine the granularity of period values as multiples of 𝑔. Lines

5-7 of Algorithm 3.2 describe how the algorithm synthesises tasks’ WCET values. Specifically, for each

task 𝜏𝑖 , the algorithm computes the WCET value 𝐶𝑖 of 𝜏𝑖 as 𝐶𝑖 = 𝑈𝑖 · 𝑇𝑖 .
Given the task periods T and the WCET values C, line 8 of Algorithm 3.2 synthesizes a set Γ of

periodic tasks accounting for offsets, priorities, and deadlines. A periodic task 𝜏𝑖 is characterised by a

period 𝑇𝑖 , a WCET 𝐶𝑖 , an offset 𝑂𝑖 , a priority 𝑃𝑖 , and a deadline 𝐷𝑖 (see Section 3.3). A task offset 𝑂𝑖 is

randomly selected from an input range [0, 𝜃] of offset values. The algorithm relies on the rate-monotonic

scheduling policy [118] to decide task priorities and deadlines. Specifically, tasks with shorter periods are

given higher priorities and tasks’ deadlines are equal to their periods.

Line 10 of Algorithm 3.2 synthesises aperiodic tasks. The algorithm converts some periodic tasks into

aperiodic tasks according to a ratio 𝛾 of aperiodic tasks among all tasks. The algorithm then uses a range

factor 𝜇 to determine minimum and maximum inter-arrival times of aperiodic tasks. Specifically, for a task

𝜏𝑖 to be converted, the algorithm computes a range [𝑇𝑚𝑖𝑛
𝑖

, 𝑇𝑚𝑎𝑥
𝑖
] of inter-arrival times as [𝑇𝑚𝑖𝑛

𝑖
, 𝑇𝑚𝑎𝑥

𝑖
] =

[𝑇𝑖 × (1 − 𝜇), 𝑇𝑖 × (1 + 𝜇)], where 𝜇 ∈ (0, 1). For example, if 𝜇 = 0.45 and 𝑇𝑖 = 50 for a task 𝜏𝑖 to be

converted, [𝑇𝑚𝑖𝑛
𝑖

, 𝑇𝑚𝑎𝑥
𝑖
] = [27.5, 72.5].

To synthesise tasks’ WCET ranges, line 12 of Algorithm 3.2 randomly selects 𝜔 tasks in Γ to convert

their WCET point values to WCET ranges. For a selected task 𝜏𝑖 , the algorithm computes a WCET range

[𝐶𝑚𝑖𝑛
𝑖

, 𝐶𝑚𝑎𝑥
𝑖
] as [𝐶𝑚𝑖𝑛

𝑖
, 𝐶𝑚𝑎𝑥

𝑖
] = [𝐶𝑖 × (1 − 𝜆), 𝐶𝑖 × (1 + 𝜆)], where 𝜆 is a range factor to determine

the WCET ranges and 𝜆 ∈ (0, 1). For example, if 𝜆 = 0.25 and 𝐶𝑖 = 10 for a task 𝜏𝑖, [𝐶𝑚𝑖𝑛
𝑖

, 𝐶𝑚𝑎𝑥
𝑖
] =

[7.5, 12.5].

3.5.4 Experimental setup

To answer RQ1, RQ2, and RQ3 described in Section 3.5.1, we rely on case study data pertaining to ADCS,

provided by LuxSpace, as well as the ICS and UAV subjects described in Section 3.5.2. To answer RQ4,

we used 800 synthetic subjects (see Section 3.5.3). We conducted four experiments, EXP1, EXP2, EXP3,

and EXP4, as described below.

EXP1. To answer RQ1, we developed a baseline solution that estimates task WCETs based on random

search (RS). The baseline replaces the GA in Phase 1 with RS and does not infer a safe border using

logistic regression. Note that the baseline uses the same fitness function (see Section 3.4.1) and also

maintains the best population during search; however, it does not employ any genetic operators, i.e.,

crossover and mutation. The baseline solution also produces a labeled dataset
#»
𝐿 that contains tuples (𝑊, ℓ)

where𝑊 is a set of task WCETs and ℓ is a label of𝑊 indicating either safe or unsafe (see Section 3.4.1).

Given the labeled dataset, the baseline selects the best task WCETs that are safe and maximize the volume

of the hyperbox they define. Specifically, the baseline finds a particular tuple (𝑊𝑠, ℓ𝑠) in
#»
𝐿 that maximizes

the volume of the hyperbox defined by𝑊𝑠 while satisfying the following condition: For all tuples (𝑊𝑥 , ℓ𝑥)
in

#»
𝐿 , the hyperbox defined by𝑊𝑥 is contained in the hyperbox defined by𝑊𝑠, ℓ𝑥 = safe, and ℓ𝑠 = safe.

EXP1 compares the results obtained from executing SAFE and the baseline. For comparison, SAFE

selects a best-size point, i.e., WCET ranges, on a safe border that maximizes the volume of the hyperbox

the point defines (see Section 3.4.2). Given two solutions, i.e., estimated WCET ranges, obtained by

SAFE and the baseline, EXP1 checks the schedulability of the two solutions using simulations. To do so,

we ran simulations multiple times by varying task arrivals and task execution times within their estimated

WCET ranges and checked whether there was a deadline miss in each simulation result.
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EXP2. To answer RQ2, EXP2 compares our distance-based WCET sampling technique (described in

Section 3.4.2) with the naive random WCET sampling technique, for the second phase of SAFE. To this

end, EXP2 first creates an initial training dataset by running the first phase of SAFE. EXP2 then relies

on this initial training data for model refinement (Section 3.4.2) by using both distance-based and naive

random sampling. For comparison, EXP2 creates a test dataset by randomly sampling WCET values,

which is independently created from the second phase of SAFE, and then compares the accuracy of the

two sampling approaches in identifying safe WCET ranges for the test dataset.

EXP3. To answer RQ3, EXP3 computes precision values for SAFE, obtained from 10-fold cross-

validation (see Section 3.4.2), over each model refinement for the ADCS subject. We note that EXP3

focuses on ADCS to evaluate the practical usefulness of SAFE as we do not have any access to the

engineers who have developed the other study subjects, i.e., ICS and UAV. In our study context, i.e.,

developing safety-critical systems, engineers require very high precision, i.e., ideally no false positives,

(see Section 3.4). Hence, EXP3 measures precision over model refinements to align with such practice.

EXP3 then measures whether SAFE can compute safe WCET ranges within practical execution time and

at an acceptable level of precision.

EXP4. To answer RQ4, EXP4 measures the execution time of SAFE with 800 synthetic systems. We use

the task generation algorithm described in Section 3.5.3 to create synthetic systems. In order to conduct

controlled experiments to study correlations between the execution time of SAFE and a particular system

parameter (e.g., number of tasks), we first create a baseline synthetic system by setting the parameters of

Algorithm 3.2 as follows: (1) We set the number of tasks 𝑛 to 20, the ratio of aperiodic tasks 𝛾 to 0.45,

and the maximum offset 𝜃 to 0. Note that these parameter values are the average values of the parameters

in our industrial subjects. (2) With regard to task periods, we set the range [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] of minimum

and maximum periods to [10ms, 1s], which are common values in many real-time subjects [23]. The

granularity of task periods 𝑔 is set 10ms in order to increase realism as most of the task periods in our

industrial subjects are multiples of 10ms. (3) For the range factor to determine inter-arrival times for

aperiodic tasks 𝜇, the number of WCET ranges 𝜔, the range factor to determine WCET ranges 𝜆, and the

target utilisation per processing core 𝑢𝑡 , we assign 𝜇 = 0.25, 𝜔=2, 𝜆 = 0.25, and 𝑢𝑡 = 0.9, respectively.

We set these parameter values based on initial experiments to ensure that the executions of the synthetic

systems examined in EXP4 sometimes violate their deadlines. Recall from Section 3.4 that SAFE relies

on logistic regression and a labeled dataset, containing both safe (positive) and unsafe (negative) data

instances. (4) We set the number of processing cores 𝜖 to 1 as a baseline. (5) For the simulation time of

SafeScheduler (see Section 3.4.1), we assign 30s in order to ensure that any aperiodic task arrives at least

once and all possible arrivals of periodic tasks are analyzed during that time.

Given the baseline system, we create several synthetic systems to be examined in EXP4 by vary-

ing the parameters’ values as follows: (1) number of tasks, 𝑛 ∈ {5, 10, ..., 50}, (2) ratio of aperiodic

tasks, 𝛾 ∈ {0.05, 0.1, ..., 0.5}, (3) range factor to determine inter-arrival times for aperiodic tasks, 𝜇 ∈
{0.05, 0.1, ..., 0.5}, (4) number of WCET ranges, 𝜔 ∈ {1, 2, ..., 10}, (5) range factor to determine WCET

ranges, 𝜆 ∈ {0.05, 0.1, ..., 0.5}, (6) maximum offset value 𝜃 ∈ {200𝑚𝑠, 400𝑚𝑠, ..., 2000𝑚𝑠}, (7) number

of processing cores, 𝜖 ∈ {1, 2, ..., 10}, and (8) simulation time, t ∈ {30𝑠, 1𝑚, ..., 5𝑚}. Note that we chose

to study the effect of these parameters because they are controlled by engineers to design tasks in real-time

systems. Simulation time t obviously impacts the execution time of SAFE as well. Resource dependencies

are not controlled when generating synthetic systems as they do not impact SAFE’s searching and learning
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(see Section 3.4) but only simulations, which are investigated by varying simulation time. Due to the

degree of randomness in our approach to generating synthetic systems (see Section 3.5.3), we create ten

synthetic systems for each control parameter.

3.5.5 Metrics

We use the standard precision and recall metrics [187] to measure the accuracy in our experiments. To

compute precision and recall in our context, for EXP2, we created a synthetic test dataset for each study

subject containing tuples of WCET values and a flag indicating the presence or absence of deadline miss

obtained from running SafeScheduler. Note that creating a test dataset by running an actual study subject

with varying task WCETs is prohibitively expensive. We therefore used a set of task arrival sequences

obtained from the first phase of SAFE for each subject as we aim at testing sequences of task arrivals

which are more likely to violate their deadlines. We then ran SafeScheduler to simulate task executions

for the set of task arrival sequences with randomly sampled WCET values. We note that WCET values

were sampled within the restricted WCET ranges after the "handling imbalance" step in Algorithm 3.1.

Parts of the WCET ranges under which tasks are unlikely to be schedulable are therefore not considered

when sampling. For EXP3, we used 10-fold cross-validation based on the training dataset at each model

refinement step (phase 2).

We define the precision and recall metrics as follows: (1) precision 𝑃 = TP/(TP + FP) and (2) recall

𝑅 = TP/(TP + FN), where TP, FP, and FN denote the number of true positives, false positives, and

false negatives, respectively. A true positive is a test instance (a set of WCET values) labeled as safe and

correctly classified as such. A false positive is a test instance labeled as unsafe but incorrectly classified as

safe. A false negative is a test instance labeled as safe but incorrectly classified as unsafe. We prioritize

precision over recall as practitioners require (ideally) no false positives – an unsafe instance with deadline

misses is incorrectly classified as safe – in the context of mission-critical, real-time satellite systems. For

EXP2, precision and recall values are measured based on a synthetic test dataset. For EXP3, precision

values are computed using collective sets of true positives and false positives obtained from 10-fold

cross-validation at each model refinement.

Due to the inherent degree of randomness in SAFE, we repeat our experiments 50 times. For EXP1,

we ran 40000 simulations to check the schedulability of the solutions obtained by SAFE and the baseline.

To statistically compare our results, we use the non-parametric Mann-Whitney U-test [125] and Vargha

and Delaney’s �̂�12 effect size [172]. Mann-Whitney U-test determines whether two independent samples

are likely or not to belong to the same distribution. We set the level of significance, 𝛼, to 0.05. Vargha

and Delaney’s �̂�12 measures probabilistic superiority – effect size – between search algorithms. Two

algorithms are considered to be equivalent when the value of �̂�12 is 0.5.

3.5.6 Implementation and parameter tuning

To implement the feature reduction step of Algorithm 3.1, we used the random forest feature reduction [35]

as it has been successfully applied to high-dimensional data [141, 96]. For the stepwise regression step

of Algorithm 3.1, we used the stepwise AIC regression technique [191] which has been used in many

applications [196, 129]. Recall from Section 3.4.2 that our distance-based sampling and best-size region

recommendation require a numerical optimization technique to find the nearest WCET sample and a
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maximum safe region size based on an inferred safe border. For such optimizations, we applied a standard

numerical optimization method, i.e., the Nelder-Mead method [140].

To compute the GA fitness, we set the number of SafeScheduler runs (Section 3.4.1) for each solution

(𝐴 in Section 3.4.1) to 20. This number was chosen based on our initial experiments. We observed that 20

runs of SafeScheduler per solution 𝐴 keeps execution time under a reasonable threshold, i.e., <1.2m for

all the subjects, and is sufficient to compute the fitness of SAFE. SafeScheduler schedules 34 tasks in

ADCS for 1800s, 6 tasks in ICS for 150ms, and 16 tasks in UAV for 1500ms during which SafeScheduler

advances its simulation clock by 0.1ms, 0.01ms, 0.01ms, respectively, for adequate precision. We chose

the time periods to ensure that all the tasks in each subject can be executed at least once.

For the GA search parameters, we set the population size to 10, the crossover rate to 0.7, and the

mutation rate to 0.2, which are consistent with existing guidelines [93]. We ran GA for 1000 iterations

after which we observed that fitness reached a plateau in our initial experiments. Note that for the baseline

comparison to be fair, we ran RS for 1500 iterations to ensure that the generated dataset
#»
𝐿 contained

30000 data instances, which are the same number of data instances obtained by SAFE.

Regarding the feature reduction step of Algorithm 3.1, we set the random forest parameters as follows:

(1) the tree depth parameter is set to
√︁
|𝐹 |, where |𝐹 | denotes the number of features, i.e., 26 WCET

ranges in ADCS, 6 WCET ranges in ICS, and 16 WCET ranges in UAV, based on guidelines [91]. (2) The

number of trees is set to 100 based on our initial experiments. We observed that learning more than 100

trees does not provide additional gains in terms of reducing the number of features.

Note that all the parameters mentioned above can probably be further tuned to improve the performance

of SAFE. However, since with our current setting, we were able to convincingly and clearly support our

conclusions, we do not report further experiments on tuning those parameters.

We ran our experiments over the high-performance computing cluster [173] at the University of

Luxembourg. To account for randomness, we repeated each run of SAFE 50 times for all the experiments.

Each run of SAFE was executed on a different node of the cluster. It took around 35h for us to create a

synthetic test dataset with 50000 instances. When we set 1000 GA iterations for the first phase of SAFE

and 10000 new WCET samples (100 refinements × 100 new WCET samples per refinement) for the

second step of SAFE, each run of SAFE took at most 27.1h – phase 1: 16.361h and phase 2: 10.74h. The

running time is acceptable as SAFE can be executed offline in practice.

3.5.7 Experiment results

RQ1. Table 3.3 compares SAFE and our baseline method (Baseline) using the following three metrics:

(1) the volume of the hyperbox that is defined by the best-size point (see Sections 3.4.2 and 3.5.4)

computed by each method, i.e., SAFE and Baseline, (2) the number of simulation runs, out of 40000 runs,

that contain any deadline misses when tasks execute within their estimated WCET ranges defined by the

best-size points, and (3) the execution time of SAFE and Baseline to estimate WCET ranges. The results

presented in the table are the mean values obtained from 50 runs of SAFE and Baseline for each of the

three subjects. To enable accurate comparisons, we ran 40000 simulations of each execution of SAFE

and Baseline, aiming at evaluating their estimated WCET ranges as described in Section 3.5.4. Statistical

comparisons of the results obtained from 50 runs of SAFE and Baseline are summarized using p-values

and �̂�12 values as described in Section 3.5.5.
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Table 3.3: Comparing SAFE and our baseline method using (1) the volumes of the hyperboxes that are
defined by the best-size points computed by each method, (2) the number of simulation runs that contain
deadline misses out of total 40000 runs, and (3) the execution times of each method. The results are
obtained from 50 runs of Safe and Baseline.

SAFE Baseline p-value �̂�12

ADCS ICS UAV ADCS ICS UAV ADCS ICS UAV ADCS ICS UAV

Best-size
volumes

5.18e-11
ms26

9.55e-01
ms6

1.20e-02
ms16

5.78e-12
ms26

1.10e+00
ms6

2.33e-04
ms16 0.0000 0.0383 0.0000 1.0000 0.3796 1.0000

Deadline
misses 0.00 5.42 1.36 114.92 13.2 32.32 0.0005 0.0023 0.0439 0.3900 0.3394 0.04084
Execution
times

25.14
hours

1.37
hours

1.62
hours

24.29
hours

0.11
hours

0.31
hours 0.0000 0.0000 0.0000 0.8960 1.0000 1.0000

As shown in Table 3.3, compared to Baseline, SAFE provides more relaxed WCET ranges for

ADCS and UAV. Note that the larger the hyperbox, the greater flexibility the engineers have in selecting

appropriate WCET values. For ICS, however, Baseline finds a larger hyperbox than the best-size hyperbox

produced by SAFE. This is likely due to the fact that ICS has a small number of tasks and is therefore

much simpler than the other two subjects. Further, we recall that SAFE also provides engineers with a

probability of deadline misses and trade-off relations between task WCETs based on an inferred logistic

regression model (see Section 3.4.2). We further discuss these benefits from a practitioner’s perspective in

RQ3.

EXP1 evaluates the estimated WCET ranges that are defined by the best-size points obtained from

50 runs of SAFE and Baseline for each subject. The estimated WCET ranges are examined through

40000 simulation runs by varying task arrivals and their execution times within the estimated WCET

ranges. The “Deadline misses” row in Table 3.3 shows the mean number of simulation runs (out of

40000 runs) containing deadline misses. Across all the subjects, the differences between SAFE and

Baseline are statistically significant as the p-values are less than 0.05. The �̂�12 values show that SAFE is

probabilistically superior to Baseline with respect to minimizing the number of deadline misses.

Regarding the execution times of SAFE and Baseline, SAFE took more time than Baseline for all the

subjects as shown in Table 3.3. Estimating safe WCET ranges for ADCS requires the largest execution

time (on average, 25.14h) compared to the other subjects. We note that such execution time is acceptable

as SAFE can be executed offline in practice.

Figure 3.5 shows probability distributions obtained from 50 runs of SAFE and simulations for ADCS,

ICS, and UAV. As described in Section 3.4.2, SAFE partitions the given WCET ranges into safe and

unsafe sub-ranges using a safe WCET border that is defined by an inferred logistic regression model and a

selected probability of deadline misses. In EXP1, SAFE selects a deadline miss probability that maximizes

the safe area under the safe border while ensuring that all the WCET points, i.e., sets of WCETs, classified

as safe using the safe border are actually observed to be safe in the input dataset of logistic regression. The

estimated WCET ranges, i.e., 50 best-size WCET points obtained by SAFE, are then evaluated through

40000 simulation runs for each WCET point by varying task arrivals and their execution time within

their estimated WCET ranges. The empirical probability, i.e., relative frequency, of deadline misses

is computed by the ratio of the number of simulation runs containing any deadline misses to the total

number of simulation runs, i.e., 40000. The probability comparison depicted in Figure 3.5 shows that

the selected probability of deadline misses by SAFE is larger than the empirical probability computed
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Figure 3.5: Comparing probability values of deadline misses computed by SAFE and simulations for
ADCS, ICS and UAV. SAFE uses a logistic regression model and selects a deadline miss probability to
find the best-size WCET point. Empirical probability values of deadline misses are estimated based on
40000 simulations for each output, i.e., WCET ranges, of SAFE. The boxplots (20%-50%-75%) show
probability values obtained from 50 runs of SAFE (see Model) and 50 simulation-based evaluations (see
Empirical), i.e., 50 × 40000 simulation runs.

by simulation-based evaluations. SAFE infers a logistic regression model, providing a probabilistic

interpretation, based on a labeled dataset evaluated by worst-case task arrivals. The inferred logistic

regression model, therefore, likely fits the system executions when task arrivals are worst with respect

to maximizing the magnitude of deadline misses. However, the empirical probability estimated through

simulations is based on system executions when tasks randomly arrive within their inter-arrival time

ranges. Hence, a logistic regression model obtained by SAFE enables more conservative probabilistic

interpretations of the estimated WCET ranges than simulation-based evaluations for the WCET ranges.

This implies that actual deadline miss probabilities tend to be lower than SAFE probability estimates,

which is in practice a desirable property.

The answer to RQ1 is that SAFE significantly outperforms the baseline method with respect to

minimizing the number of deadline misses when using the estimated WCET ranges. Across our

experiments, SAFE takes at most 27.1h (while the baseline takes 26.4h) to estimate the best-size WCET

ranges. The execution time is acceptable as SAFE can be executed offline in practice.

RQ2. Figure 3.6 depicts distributions of precision (Figures 3.6a, 3.6c, and 3.6e) and recall (Figures 3.6b,

3.6d, and 3.6f) obtained from EXP2 with the ADCS, ICS, and UAV subjects. The boxplots in Figures 3.6a,

3.6c, and 3.6e (resp. Figures 3.6b, 3.6d, and 3.6f) show distributions (25%-50%-75% quantiles) of

precision (resp. recall) values obtained from 50 executions of SAFE with either distance-based sampling

(D) or simple random sampling (R). The solid lines represent the average trends of precision and recall

value changes over 100 regression model refinements.

As shown in Figures 3.6a, 3.6c, and 3.6e, across over 100 model refinements, SAFE with D achieves

higher precision values than those obtained by R for the three subjects. Also, Figures 3.6a, 3.6c, and 3.6e

show that the variance of precision with D tends to be smaller than that of R. On average, D’s precision

converges toward 1 with model refinements; however, precision with R shows a markedly different trend

that is not converging to 1, an important property in our context. Based on statistical comparisons, the
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Figure 3.6: Distributions of precision and recall over 100 model refinements when SAFE employs either
our distance-based sampling (D) or random sampling (R) for (a,b) ADCS, (c,d) ICS, and (e,f) UAV. The
boxplots (25%-50%-75%) show precision (a,c,e) and recall (b,d,f) values obtained from 50 runs of SAFE
with each sampling strategy. The lines represent average trends.

difference in precision values between D and R becomes statistically significant after only 10, 4, and 11

model refinements, respectively, for ADCS, ICS, and UAV.

Regarding recall comparisons between D and R for ADCS, as shown in Figure 3.6b, D produces

higher recall values over 100 model refinements than those of R. The difference in recall values between

D and R becomes statistically significant after 36 model refinements. Regarding ICS (Figure 3.6d) and

UAV (Figure 3.6f), their differences in recall values for D and R are not statistically significant even after

100 model refinements. This may be explained by their much smaller number of tasks compared with
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Figure 3.7: Precision values computed from 10-fold cross validation at each model refinement for ADCS.
The boxplots (25%-50%-75%) show precision values obtained from 50 runs of SAFE. The line represents
an average trend.

ADCS. Across our experiments, for 100 model refinements, SAFE took, at most, 10.86h and 10.54h with

D and R, respectively.

The answer to RQ2 is that SAFE with distance-based sampling significantly outperforms SAFE with

random sampling in achieving higher precision. Only distance-based sampling can achieve a precision

close to 1 within practical time, an important requirement in our context.

RQ3. Figure 3.7 shows precision values obtained from 10-fold cross-validation at each model refinement

for the ADCS subject. Recall from Section 3.4.2 that SAFE stops model refinements once a precision

value reaches a desired value. As shown in Figure 3.7, precision values tend to increase with additional

WCET samples. Hence, practitioners are able to stop the model refinement procedure once precision

reaches an acceptable level, e.g., >0.999. At 100 model refinement, SAFE reaches, on average, a precision

of 0.99986. For EXP3, SAFE took, at most, 16.36h for phase 1 and 10.74h for phase 2.

As described in Section 3.4.2, SAFE reduces the dimensionality of the WCET space through a feature

reduction technique based on random forest. The computed importance scores of each task’s WCET in

our dataset are as follows: 0.773 for T30, 0.093 for T33, 0.016 for T23, and ≤0.005 for the remaining 31

tasks. Based on a standard feature selection guideline [91], only the WCET values of two tasks, i.e., T30

and T33, are deemed to be important enough to retain as their score is higher than the average importance,
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Figure 3.8: An inferred safe border and best-size WCET regions for tasks T30 and T33. The safe border
determines WCET ranges within which tasks are likely to be schedulable with a deadline miss probability
of 1.97%.
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i.e., 0.0385. Hence, SAFE computes safe WCET ranges of these two tasks in the next steps described in

Algorithm 3.1.

Figure 3.8 shows the inferred safe border which identifies safe WCET ranges within which all 34

tasks are schedulable with an estimated deadline miss probability of 1.97%. Given the safe border,

we found a best-size point which restricts the WCET ranges of T30 and T33 as follows: T30 [0.1ms,

458.0ms] and T33 [0.1ms, 2138.1ms]. We note that the initial estimated WCET ranges of the two tasks

are as follows: T30 [0.1ms, 900.0ms] and T33 [0.1ms, 20000.0ms]. SAFE therefore resulted in safe

WCET ranges representing a significant decrease of 49.11% and 89.31% of initial maximum WCET

estimates, respectively. This information is therefore highly important and can be used to guide design

and development.

The answer to RQ3 is that SAFE helps compute safe WCET ranges that have a much lower maximum

than practitioners’ initial WCET estimates. Our case study showed that SAFE determined safe maximum

WCET values that were only 51% or less the original estimate. Further, these safe WCET ranges have a

deadline miss probability of 1.97% based on the inferred logistic regression model. More restricted

ranges can be selected to reduce this probability. SAFE took, on average, 25.14h to compute such safe

WCET regions, which is acceptable for offline analysis in practice.

RQ4. Figure 3.9 shows the distributions (25%-50%-75%) of execution times obtained from 10 × 10

runs of SAFE, i.e., 10 runs for each of the 10 synthetic systems with the same experimental setting (see

Section 3.5.4). The red solid lines in Figure 3.9 represent the mean value changes of the execution times

of SAFE over varying values of the following control parameters: (a) number of tasks 𝑛, (b) ratio of

aperiodic tasks 𝛾, (c) range factor for inter-arrival times 𝜇, (d) number of WCET ranges 𝜔, (e) range factor

for WCET ranges 𝜆, (f) maximum offset value 𝜃, (g) number of processing cores 𝜖 , and (h) simulation

time t. Note that all the experiments in EXP4 took at most 16.7h, which is acceptable as SAFE is an

offline analysis technique.

As shown in Figures 3.9a, 3.9g, and 3.9h, the execution time of SAFE is linear in the number of tasks

𝑛, the number of processing cores 𝜖 , and the simulation time t. However, regarding the ratio of aperiodic

tasks 𝛾 (Figure 3.9b), the range factor for inter-arrival times 𝜇 (Figure 3.9c), the range factor for WCET

ranges 𝜆 (Figure 3.9e), the maximum offset value 𝜃 (Figure 3.9f), the results indicate that they have no

correlations with the execution time of SAFE. Therefore, we expect SAFE to scale well as the number of

tasks, the number of processing cores, and the simulation time increase.

Figure 3.9d shows that the execution time of SAFE is quadratically correlated with the number of

WCET ranges 𝜔 in a system. Recall from Section 3.4 that the number of tasks characterizing their WCETs

as ranges (instead of point values) determines the size of a labeled dataset. Specifically, SAFE uses

a second-order polynomial response surface model (RSM) to build a logistic regression model. RSM

contains linear terms, quadratic terms, and 2-way interactions between linear terms (see Section 3.4.2).

Hence, the number of coefficients in an RSM to be inferred by logistic regression is the sum of the

numbers of constants, linear terms, quadratic terms, and 2-way interactions in an RSM, i.e., 1+𝜔+𝜔+
(𝜔

2
)

(see the RSM equation presented in Section 3.4.2), which impacts the execution time of logistic regression

dominating the execution time of SAFE. Note that the execution time of logistic regression is linear

in the number of coefficients of a regression model (e.g., RSM) [100]. Hence, the execution time of

logistic regression in SAFE is quadratically correlated with the number of WCET ranges as explained

above. In addition, the results presented in Figure 3.9d show that the magnitude of the execution time
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Figure 3.9: Execution times of SAFE when varying the values of the following parameters: (a) number
of tasks 𝑛, (b) ratio of aperiodic tasks 𝛾, (c) range factor for inter-arrival times 𝜇, (d) number of WCET
ranges 𝜔, (e) range factor for WCET ranges 𝜆, (f) maximum offset value 𝜃, (g) number of processing
cores 𝜖 , and (h) simulation time t. The boxplots (20%-50%-75%) show the distributions of execution time
values obtained from 100 runs of SAFE, i.e., 10 runs for each of the 10 synthetic systems with the same
configuration. The red line in each figure connects the mean values of the execution times of SAFE over
the parameter values.

variation increases when the number of WCET ranges in a system increases. As written in Section 3.4.2,

SAFE employs a feature reduction technique and a stepwise regression technique to efficiently infer

logistic regression models (see lines 1-4 of Algorithm 3.1). The outputs of the two techniques depend on
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the number of tasks whose WCETs significantly impact deadline misses. Such outputs then impact the

execution times of the following steps in Algorithm 3.1: imbalance handling, sampling, and regression.

Note that the synthetic systems generated by setting 𝜔 = 10 are more diverse in terms of WCET ranges

when compared to the systems created by setting 𝜔 = 1.

In EXP4, SAFE analyzes all tasks in a system. However, recall from Section 3.4 that SAFE provides

the capability of selecting target tasks as engineers often need to focus on the most critical ones. In such

cases, the execution time of SAFE can significantly decrease.

The answer to RQ4 is that the execution time of SAFE is linear in the number of tasks, the number

of processing cores, and the simulation time. However, the execution time of SAFE is quadratically

correlated with the number of tasks whose WCETs are given as ranges. Across our experiments, SAFE

took at most 17.1h, which is acceptable for offline analysis in practice.

Benefits from a practitioner’s perspective. Investigating practitioners’ perceptions of the benefits of

SAFE is necessary to adopt SAFE in practice. To do so, we draw on the qualitative reflections of three

software engineers at LuxSpace, with whom we have been collaborating on this research. The reflections

are based on the observations that the engineers made throughout their interactions with the researchers.

SAFE produces a set of worst-case sequences of task arrivals (see Section 3.4.1). Engineers deemed

them to be useful for further examinations by experts. The current practice is to use an analytical

schedulability test [118] which proves whether or not a set of tasks are schedulable. Such an analytical

technique typically does not provide additional information regarding possible deadline misses. In contrast,

worst-case task arrivals and safe WCET ranges produced by SAFE offer insights to engineers regarding

deadline miss scenarios and the conditions under which they happen.

Engineers noted that some tasks’ WCET are inherently uncertain and that such uncertainty is hard

to estimate based on expertise. Hence, their initial WCET estimates were very rough and conservative.

Further, estimating what WCET sub-ranges are safe is even more difficult. Since SAFE estimates safe

WCET ranges systematically with a probabilistic guarantee, the engineers deem SAFE to improve over

existing practice. Also, SAFE allows engineers to choose system-specific safe WCET ranges from the

(infinite) WCET ranges modeled by the safe border, rather than simply selecting the best-size WCET

range automatically suggested by SAFE (Figure 3.8). This flexibility allows engineers to perform domain

specific trade-off analysis among possible WCET ranges and is useful in practice to support decision

making with respect to their task design.

Given the fact that we have not yet undertaken rigorous user studies, the benefits highlighted above

are only suggestive but not conclusive. We believe the positive feedback obtained from LuxSpace and our

industrial case study shows that SAFE is promising and worthy of further empirical research with human

subjects.

3.5.8 Threats to validity

Internal validity. To ensure that our promising results cannot be attributed to the problem merely being

simple, we compared SAFE with an alternative baseline using random search under identical parameter

settings (see the RQ1 results in Section 3.5.7). Phase 1 of SAFE can indeed be replaced with a random

search, as we did, or even an exhaustive technique if the targeted system is small. However, there are no

alternatives for Phase 2 – our main contribution – which infers safe WCET ranges and enables trade-off

analysis. We present all the underlying parameters and provide our full evaluation package [112] to
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facilitate reproducibility. We mitigate potential biases and errors in our experiments by drawing on an

industrial case study in collaboration with engineers at LuxSpace.

Recall from Section 3.5.7 that we compared probability values of deadline misses computed by SAFE

and simulations. The results show that SAFE enables engineers to have more conservative probabilistic

interpretations of the estimated WCET ranges than simulation-based evaluations for the WCET ranges.

However, depending on the system’s characteristics, e.g., hard real-time systems, engineers may need

absolute guarantees for the WCET estimates. In such cases, once engineers find safe WCET ranges using

SAFE, they can, in theory, obtain an absolute guarantee using exhaustive verification techniques, e.g.,

UPPAAL [131], on whether tasks always meet their deadlines for the given WCET ranges or not. Note

that we performed an experiment using UPPAAL as it has often been used in the literature [132, 192, 190].

We applied UPPAAL to verify whether ADCS tasks are schedulable for the given WCET values. However,

our experiment results showed that UPPAAL was not able to complete the analysis task, even after five

days of execution. Hence, engineers should therefore consider such scalability issues when applying

exhaustive analysis techniques to complement SAFE. Since this UPPAAL evaluation is not the main focus

of this chapter, we point the reader to the UPPAAL specification of ADCS available online [112].

External validity. The main threat to external validity is that our results may not generalize to other

contexts. We evaluated SAFE using early-stage WCET ranges estimated by practitioners at LuxSpace.

However, SAFE can be applied at later development stages as well (1) to test the schedulability of the

underlying set of tasks of a system and (2) to develop tasks under more precise constraints regarding

safe WCETs. Future case studies covering the entire development process remain necessary for a more

conclusive evaluation of SAFE. In addition, while motivated by ADCS (see Section 3.5.2) in the satellite

domain, SAFE is designed to be generally applicable to other contexts. To evaluate the usefulness

of SAFE in other contexts, in addition to our motivating case study system, we applied SAFE to two

industrial systems from different domains, having very different system characteristics such as resource

dependencies and multiple processing cores. As we described in Section 3.5.2, however, none of the

public study subjects provide initial estimates of their task WCETs as ranges, which are required by SAFE

as input. Hence, we had to modify the study subjects to include WCET ranges in their task descriptions

but attempted to minimize any potential biases and errors in the experiments by converting a point

WCET value to a WCET range in a systematic and straightforward way. In Section 3.5.2, we described

the converting method in detail. Also, we made the modified task descriptions available online [112].

However, the general usefulness of SAFE needs to be further assessed in other contexts and domains.

3.6 Related Work

This section discusses and compares SAFE with related work in the areas of schedulability analysis, as

well as testing and verification of real-time systems.

Schedulability analysis has been widely studied for real-time systems [27, 29, 126, 21, 188, 32, 47, 84,

85, 134, 128, 166, 189, 7, 87, 33, 175, 10, 143, 138]. Among them, the most related research strands study

uncertain execution times [32, 188, 21, 134], probability of deadline misses [175, 128, 126], weakly hard

deadlines [27, 189, 143], schedulability regions [47, 166, 10], and WCET estimation [29, 84, 85, 7, 87, 33]

in the context of real-time task analysis.

Bini et al. [32] propose a theoretical sensitivity analysis method for real-time systems accounting

for a set of periodic tasks and their uncertain execution times. Brüggen et al. [175] present an analytical
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method to analyze a deadline miss probability of real-time tasks using probability density functions of

approximated task execution times. In contrast to SAFE, most of these analytical approaches do not

directly account for aperiodic tasks having variable arrival intervals; instead, they treat aperiodic tasks as

periodic tasks using their minimum inter-arrival times as periods [60]. However, SAFE takes various task

parameters, including irregular arrival times, into account without any unwarranted assumption. Also, our

simulation-based approach enables engineers to explore different scheduling policies provided by real

RTOS; however, these analytical methods are typically only valid for a specific conceptual scheduling

policy model.

Bernat et al. [27] introduce the concept of weakly hard real-time systems that can tolerate occasional

deadline misses. They precisely define weakly hard deadline constraints, specifying a maximum number of

deadlines that can be missed during a time window, and provide the theoretical analysis of the properties

and relationships between tasks with the temporal constraints. Xu et al. [189] develop an algorithm

that accounts for sporadic task overload when analyzing the number of deadlines a task can miss in

a given sequence of consecutive task arrivals. Pazzaglia et al. [143] present an extended weakly hard

analysis method by accounting for additional uncertainties such as task offsets and release jitters. SAFE

complements the above research strands on weakly hard real-time systems since, instead of analyzing the

number of deadlines a task can afford to miss over a time window, SAFE provides probabilistic guarantees

for deadline misses based on logistic regression models inferred from search and simulation outputs.

Cimatti et al. [47] develop an approach that computes the regions of the task parameter values

guaranteeing tasks are schedulable, i.e., schedulability regions. Their approach uses parametric timed

automata and an SMT solver, i.e., NuSMT [41], and is applied to a system that contains two periodic

tasks. Sun et al. [166] propose a method, named IMITATOR, that aims at computing schedulability

regions. IMITATOR is based on model checking of parametric timed automata with stopwatches. They

evaluate the method by applying it to two test-case systems that contain at most two free parameters, i.e.,

task execution times, that are defined as variables. Note that the other parameters, e.g., task periods and

deadlines, are defined as fixed values. The results show that IMITATOR covers the entire parameter space

but does not scale well with the size of the problem. André et al. [10] developed a tool that translates a

graphical specification of a real-time system to the input of IMITATOR such that it allows computation

of some schedulability regions using IMITATOR. However, these methods that exhaustively search the

problem space are often not amenable to analyze industrial systems in a scalable manner as they typically

contain many tasks, different task types, complex task relationships, and multiple processing cores.

Hansen et al. [85] present a measurement-based approach to estimate WCET and a probability of

estimation failure. The measurement-based WCET estimation technique collects actual execution time

samples and estimates WCETs using linear regression and a proposed analytical model. To our knowledge,

most of the research strands regarding WCET estimation are developed for later development stages at

which task implementations are available. Note that relatively few prior works aim at estimating WCET at

an early design stage; however, these work strands still require access to source code, hardware, compilers,

and program behavior specifications [84, 7, 33]. In contrast, SAFE uses as input estimated WCET ranges

and then precisely restricts the WCET ranges within which tasks are schedulable with a selected deadline

miss probability, by relying on a tailored genetic algorithm, simulation, feature reduction, a dedicated

sampling strategy, and logistic regression.
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Testing and verification are important to successfully develop safety-critical real-time systems [131, 193,

65, 5, 106, 36]. Some prior studies employ model-based testing to generate and execute tests for real-time

systems [131, 193, 65]. SAFE complements these prior studies by providing safe WCETs as objectives to

engineers implementing and testing real-time tasks. Constraint programming and model checking have

been applied to ensure that a system satisfies its time constraints [5, 106]. These techniques may be useful

to conclusively verify whether or not a WCET value is safe. However, such exhaustive techniques are not

amenable to address the analysis problem addressed in this chapter, which requires the inference of safe

WCET ranges. To our knowledge, SAFE is the first attempt to accurately estimate safe WCET ranges to

prevent deadline misses with a given level of confidence and offer ways to achieve different trade-offs

among tasks’ WCET values.

3.7 Conclusion

We developed SAFE, a two-phase approach applicable in early design stages, to precisely estimate safe

WCET ranges within which real-time tasks are likely meet their deadlines with a high-level of confidence.

SAFE uses a meta-heuristic search algorithm to generate worst-case sequences of task arrivals that

maximize the magnitude of deadline misses, when they are possible. Based on the search results, SAFE

uses a logistic regression model to infer safe WCET ranges within which tasks are highly likely to meet

their deadlines, given a selected probability. SAFE is developed to be scalable by using a combination of

techniques such as a genetic algorithm and simulation for the SAFE search (phase 1) and feature reduction,

an effective sampling strategy, and polynomial logistic regression for the SAFE model refinement (phase

2). We evaluated SAFE on a mission-critical, real-time satellite system in collaboration with a satellite

company as well as two industrial systems from different domains whose description was retrieved from

the literature. The results indicate that SAFE is able to precisely compute safe WCET ranges for which

deadline misses are highly unlikely, these ranges being much smaller than the WCET ranges initially

estimated by engineers. Further, we evaluated the scalability of SAFE using a number of synthetic systems.

The results indicate that SAFE scales to complex systems. Across the experiments on industrial and

synthetic systems, SAFE took at most 27h, which is acceptable in practice as an offline analysis method.

For future work, we plan to extend SAFE in the following directions: (1) developing a real-time task

modeling language to describe dependencies, constraints, behaviors of real-time tasks and to facilitate

schedulability analysis and (2) building a decision support system to recommend a schedulable solution if

a set of tasks are not schedulable, e.g., priority re-assignments. In the long term, we would like to more

conclusively validate the usefulness of SAFE by applying it to other case studies in different domains.
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Chapter 4

Estimating Probabilistic Safe WCET
Ranges for Weakly Hard Real-Time
Systems

4.1 Introduction

Weakly hard real-time systems can tolerate occasional deadline misses while hard real-time systems must

meet their deadlines in every task activation (or task arrival) [27]. Though weakly hard systems have

relaxed deadline constraints, this does not mean that schedulability in weakly hard real-time systems can

be ignored [40]. For instance, telecommunications and media streaming services do not cause catastrophic

events even if they miss some of the deadlines; however, they need to satisfy a desired performance

requirement to provide sufficiently reliable service. Therefore, many researchers [28, 4, 79, 165, 81, 143]

have investigated the schedulability of real-time systems with weakly hard constraints (thresholds of

consecutive deadline misses).

Schedulability analysis determines whether or not all tasks in a real-time system satisfy their deadline

constraints, even in worst-case scenarios. Schedulability is verified with abstract task properties, such as

task priorities, deadlines, inter-arrival times, and worst-case execution times (WCETs) [163, 50]. Task

priority, inter-arrival time, and deadline tend to be either specified or predicted in early development

stages and they are relatively accurate. More specifically, task priority can be determined by the selected

scheduling policy (e.g., rate monotonic [118]) or by the task criticality levels (e.g., more critical tasks are

prioritized over the less critical ones). Inter-arrival time, which is the amount of time between consecutive

task executions, and task deadline can be provided or analyzed by the system requirements. In contrast,

WCET is influenced by more intricate variables, such as implementation choices, task duration, and

hardware specifications. We rarely can determine such factors at early development stages, thus preventing

accurate WCET estimation [84, 7, 33]. Therefore, schedulability analysis is typically postponed to later

development stages.
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Estimating WCET at early stages, however, can help practitioners make important decisions regarding

their system design and implementation. When practitioners need to make decisions about data storage,

for example between a relational database or an in-memory storage, WCET can be a good selection

criterion. Additionally, early WCET estimates support practitioners in determining optimal configurations

of hardware devices, e.g., CPUs or sensors, especially in the context of parallel development of both

software and hardware, which is common in the aerospace, automotive, and healthcare domains.

The problem of estimating WCET has been widely studied based on measurements [183, 51, 153] and

static analysis [73, 169, 133, 86]. The measurement-based approaches estimate WCET through multiple

executions on the target hardware or an accurate simulator, using a set of inputs that are expected to

be worst-case. In contrast, the static analysis-based approaches estimate WCET by investigating the

longest path in the source code and the cache hit ratio based on hardware specifications. Since these

approaches work based on source code, they cannot be applied at early development stages. Moreover,

some approaches [84, 7, 33] aim to estimate WCET at early stages of implementation. They design a

timing model that predicts execution times of machine instructions. They then translate a given source

code to instructions for the timing model. The execution time of these instructions allows for approximate

WCET estimation. Although several studies have been conducted on this, accurate estimation of WCET

still remains a challenge due to increasing hardware and software complexities and finding worst-case

input data [156]. Hence, practitioners tend to estimate WCET as a range by adding a margin (e.g., 20%)

to the estimated WCET [40, 57]. Recently, SAFE [113] has been proposed to estimate WCET ranges that

satisfy deadline constraints with a probabilistic guarantee. SAFE utilizes a machine learning technique to

estimate WCET ranges based on the worst-case sequences of task arrivals that are found by using a meta-

heuristic technique. The approach provides safe WCET ranges at early stages by analyzing schedulability

from the estimated WCET ranges instead of analyzing or running source codes. This approach is effective

for hard real-time systems as it maximizes the degree of deadline misses. However, in practice, many

real-time systems allow weakly hard constraints that can tolerate a small number of consecutive deadline

misses, unless the sequence of deadline misses is too long [54]. For weakly hard constraints, finding

consecutive deadline misses with a short delay may be more important than finding a deadline miss with a

long delay. Therefore, maximizing the degree of deadline miss in SAFE is incompatible with weakly hard

real-time systems.

In this chapter, we propose the Safe Worst-case execution time (WCET) analysis method for wEAKly

hard real-time system (SWEAK). SWEAK searches for the worst test cases that likely cause violations

of weakly hard constraints based on a genetic algorithm [122] and estimates safe WCET ranges with

a probabilistic guarantee by using logistic regression [100]. SWEAK evaluates the schedulability of a

system with test cases by using an industrial adaptive partitioning scheduler (APS) that supports complex

scheduling policies with task partitioning and core assigning (affinity) in multi-core platforms. As APS

is widely used in many domains, such as automotive, transportation, medical devices, and various other

embedded systems, SWEAK can also be widely applied to such domains. SWEAK infers a safe WCET

border characterizing safe WCET ranges with a certain probability 𝑝 of violating deadline constraints

in the given multidimensional WCET space. Such border allows practitioners to investigate, for each

dimension, trade-offs among WCET ranges and to select suitable (implementable) WCET ranges. In

this chapter, we refer to probabilistically safe WCET ranges as safe WCET ranges for the purpose of

simplicity. We evaluated SWEAK with an industrial system from a satellite domain and synthetic systems
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that are generated following guidelines from our industry partner, Blackberry. The experimental results

demonstrate that SWEAK can infer satisfying safe WCET ranges under both hard and weakly hard

constraints in various systems. Regarding the execution time of SWEAK, it takes at most 22.1h across

a large number of synthetic systems, which implies that our approach is acceptable in practice. All the

details of the evaluation results are available online [111].

Organization. This chapter is organized as follows: Section 4.2 explains APS and the related issues

and Section 4.3 precisely defines a real-time task model and the problem we want to solve. Section 4.4

describes our approach based on the models. Section 4.5 empirically evaluates the approach. Section 4.6

contrasts our approach against related works. Section 4.7 concludes this chapter.

4.2 Motivation

This work was inspired by the collaboration with our partner company, Blackberry. The company has

developed a real-time operating system (RTOS), named QNX Neutrino1, which satisfies ISO-26262 with

the highest level of assurance (ASIL-D). Because of such high assurance, the RTOS has been used in many

industrial embedded systems in critical domains such as automotive, transportation, and medical devices.

To support the various system requirements, QNX Neutrino invented a sophisticated scheduler, named

adaptive partitioning scheduler (APS), supporting partitioning, multi-core platforms, and multi-partitions.

Overview of APS. The main objectives of APS are to provide enough resources for important tasks and

to prevent unimportant or untrusted tasks from monopolizing system resources, such as processing cores.

For example, when a task is under a Denial of Service (DOS) attack, the rest of the tasks are starving

since the system is too busy to provide service to the task under attack. APS solves such an issue by

introducing partitions that separate tasks into virtual containers. Each partition has its own budget, which

is the maximum ratio of used resources. Each task in APS needs to be assigned to a partition.

APS manages time budgets flexibly depending on system performance. When a scheduler uses fixed

budget management, it may result in inefficiencies when a partition needs additional budget while the

other partitions are not using their budgets. Instead, APS records the usage of processing cores for tasks

in each partition over the duration of a specified time window (e.g., 100ms by default). At every time

window passes, APS compares the records with the time budgets for each partition and redistributes

free time to the partitions that require more time. This adaptive partitioning ensures that APS achieves

efficiency in scheduling tasks not only in normal loads but also in abnormal loads.

APS basically follows a priority-driven preemptive scheduling policy. Tasks are thus allocated a

processing core according to their priority order for scheduling. Such policy ensures the highest priority

task can always use a processing core whenever required. When a lower priority task is using a processing

core, a higher priority task can take over. In some systems, engineers may assign some tasks the same

priority. For those tasks, APS provides three different scheduling policies: FIFO, round-robin, and

sporadic scheduling2. Note that depending on the scheduling policy, additional configurations may be

needed, e.g., timeslice for round-robin, which is an interval for rotating tasks.

1QNX Neutrino RTOS: https://blackberry.qnx.com/en/products/foundation-software/
qnx-rtos

2Sporadic scheduling policy: http://www.qnx.com/developers/docs/7.1/index.html#com.qnx.doc.
neutrino.prog/topic/overview_Sporadic_scheduling.html
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APS also supports multi-core platforms since many real-time systems have relied on multi-core

platforms in recent years [3]. APS schedules tasks by assigning them any idle processing cores according

to their priority. This allocation method is a good way to maximize the usage of processing cores. However,

it causes inefficiencies in some cases as it involves task migration across processing cores. To deal with

this, APS allows practitioners to define "core affinities", which specify manual assignment to one or more

processing cores for each task.

Issues on schedulability analysis. Based on the advantages of APS, QNX Neutrino can be widely used

in many applications. However, practitioners typically face difficulties with schedulability analysis due to

the complexity of the scheduler. Especially, a system that uses multi-partitions and core affinity can lead

to priority inversion. For example, let us assume that two tasks with different priorities are assigned to

different partitions. In some cases, a higher priority task may be preempted when the partition budget of

the task is exhausted. Without partitions, a higher priority task cannot be preempted by a lower priority

one. The issue also happens when tasks feature core affinity, i.e., a high-priority task that has core affinity,

is waiting for its processing core while a low-priority task can be executed by the other processing core.

Theoretical schedulability analysis methods [118, 57, 165, 81, 60] are not applicable for systems using

such complex scheduling strategies.

Additionally, practitioners face more schedulability analysis issues regarding uncertain WCET values

and weakly hard constraints. Practitioners commonly estimate WCET values of tasks based on multiple

runs of task executions or by analyzing the source code of the tasks. However, such estimation is

challenging due to uncertainty in hardware and software configurations. The estimated WCET values

are instead used as lower bounds, and upper bounds are determined by increasing lower bounds to

some pre-defined degree [54]. These WCET range estimates make schedulability analysis even more

challenging. It is, however, even harder when the source code is not fully available at early development

stages. Weakly hard constraints further increase the complexity of schedulability analysis. As the provider

of RTOS, to increase its usage, our partner company, Blackberry, wants to provide schedulability analysis

tools that are scalable and applicable to the many complex systems requiring such flexibility.

4.3 Problem definition

This section first introduces the task model and the notations we use in this chapter. We then, describe

the problem of identifying safe WCET ranges that satisfy the deadline constraints with a certain level of

confidence.

The task model. This work targets real-time systems that allow weakly hard constraints and run on

a multi-core platform. We define a real-time system Γ as a set of 𝑛 tasks. Since the tasks execute

repetitively and should meet their deadline constraints, we define the properties of the task 𝜏𝑖 as a tuple:

(𝑃𝑖 , 𝑂𝑖 , 𝑇𝑖 , 𝐶𝑖 , 𝐷𝑖 , (𝑚𝑖 , 𝐾𝑖)), where 𝑃𝑖 is the task priority, 𝑂𝑖 is the offset, 𝑇𝑖 is the task period, 𝐶𝑖 is

the worst-case execution time (WCET), 𝐷𝑖 is the relative deadline, and (𝑚𝑖 , 𝐾𝑖) is the deadline constraint.

See the detailed definitions in Section 2.1.

As discussed earlier, engineers face difficulties when estimating the exact value of WCET at early

stages of development because there are many uncertain factors related to hardware configuration, input

data, and source code. For those tasks, we assume that engineers can provide WCET ranges instead of a

single value. In such cases, we denote by [𝐶𝑚𝑖𝑛
𝑖

, 𝐶𝑚𝑎𝑥
𝑖

] the minimum and maximum WCET values for a

task 𝜏𝑖 .

48



4.3. PROBLEM DEFINITION

τ3

10 15 200 5

τ1
τ2

⋅ ⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅

(a) Schedule scenario without context switching times
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(b) Schedule scenario with context switching times

Figure 4.1: Examples of schedule scenarios that describes task executions for three tasks, 𝜏1, 𝜏2, and 𝜏3,
running on a single core system. Under the same sequence of task arrivals, (a) has no deadline misses
without considering context switching times, and (b) has deadline misses at the second and third arrivals
of 𝜏3 with considering context switching times.

A deadline 𝐷𝑖 is a time constraint for task 𝜏𝑖. We allow the deadline to be arbitrarily greater than

𝐶𝑖 [43], i.e., 𝐶𝑖 < 𝐷𝑖 . For a task 𝜏𝑗 that has a WCET range, the deadline value should be greater than the

maximum WCET value 𝐶𝑚𝑎𝑥
𝑗

. Depending on the task, the time constraint should be met when it is a hard

constraint and can be missed occasionally when it is a weakly hard constraint. To deal with the degree of

deadline constraint violations, we introduce a constraint (𝑚𝑖 , 𝐾𝑖) for a task 𝜏𝑖, which defines a tolerable

number 𝑚𝑖 of consecutive task arrivals that miss the deadline 𝐷𝑖 within a given time window 𝐾𝑖 (i.e., the

number of consecutive arrivals) for a task 𝜏𝑖 [27]. Note that 𝑚𝑖 = 0 if 𝜏𝑖 is a hard constraint while 𝑚𝑖 > 0

if 𝜏𝑖 is a weakly hard constraint.

Context switching times. In addition to the task model, we consider context switching times during

scheduling. The context switching time is the time that it takes when the state of a task changes according

to the task state transition model (see Section 2.1). Depending on the current state, we define three types

of context switching times as follows. Start-up time, denoted by 𝜆𝑠, is the time required to change the

state of a task from ready to running. Exit time, denoted by 𝜆𝑥 , is the time required to change the state of

a task from running to other states, ready or blocked, or to finalize its execution. Inter-processor interrupt

(IPI) time, denoted by 𝜆𝑝, is the time required to propagate a task execution from one core to another in a

multi-core platform. IPI can be invoked when the state of a task changes from ready to running.

Figure 4.1 compares schedule scenarios depending on the context switching times for the same

sequence of task arrivals on a single-core platform. The examples contains three tasks 𝜏1, 𝜏2, and 𝜏3.

The periodic task 𝜏1 is characterized by: 𝑂1 = 0, 𝑇1 = 4, 𝐶1 = 1, and 𝐷1 = 4. The aperiodic task

𝜏2 is characterized by: 𝑂2 = 0, [𝑇𝑚𝑖𝑛
2 , 𝑇𝑚𝑎𝑥

2 ] = [4, 12], 𝐶2 = 2, and 𝐷2 = 4. The periodic task 𝜏3 is

characterized by: 𝑂3 = 2, 𝑇3 = 5, 𝐶3 = 1, and 𝐷3 = 4. Priorities of the tasks are 𝑃1 > 𝑃2 > 𝑃3, i.e., 𝜏1
can preempt 𝜏2 and 𝜏3 and occupy the processing core at any time. Figure 4.1a shows an example of task
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executions leaving out context switching times. The example has no deadline misses in all the task arrivals.

In contrast, Figure 4.1b illustrates an example of task executions with context switching times assuming

𝜆𝑠 = 𝜆𝑥 = 0.1, which are the gray bars before and after each execution of tasks respectively. Note that IPI

time 𝜆𝑝 does not appear since the scenario is running on a single-core platform. The example shows that

𝜏2 and 𝜏3 are more preempted than in the example of Figure 4.1a. This happens because all task arrivals

are delayed by the context switching at starting up and exiting their execution. The task 𝜏3 thus misses its

deadline at the second arrival 𝑎3,2 and the third arrival 𝑎3,3. Though context switching times are shorter

than the task execution times, the more preemptions, the larger the impact of context switching.

These time delays are affected by hardware performance as well as scheduling overhead in a scheduler.

Therefore, these values cannot be accurately calculated, and we define them as ranges. For example, the

start-up time can be any value in the range [0.012ms, 0.022ms]. In our context, when performing schedule

simulation, we select values from the specified ranges. In our case studies, we specified these ranges

following guidelines from the partner company. Note that each selected context switching time is applied

to all task arrivals in one simulation.

Schedulability. Schedulability determines whether all task arrivals in a system are satisfying their

deadline constraints or not. Schedulability analysis is conducted with a schedule scenario, which

describes a schedule result from a specified schedule simulator. Recall the definition of schedule scenario

in Section 2.1. We formulate schedule scenario as a set of tuples: (𝜏𝑖 , 𝑎𝑖,𝑘 , 𝑒𝑖,𝑘), where 𝑎𝑖,𝑘 and 𝑒𝑖,𝑘
are, respectively, the arrival time and the end (or completion) time of the 𝑘th task arrival of the task 𝜏𝑖.

For example, assuming that the scheduling period is [0, 22], 𝑆𝑎 in Figure 4.1a becomes {(𝜏1, 0, 1), · · · ,
(𝜏2, 7, 8), · · · , (𝜏3, 12, 14), (𝜏3, 17, 18)} and 𝑆𝑏 in Figure 4.1b becomes {(𝜏1, 0, 1), · · · , (𝜏2, 7, 8.2), · · · ,
(𝜏3, 12, 18.2), (𝜏3, 17, 19.4)}. Due to randomness in task execution times, aperiodic task arrivals and

context switching times, a scheduler may generate a different schedule scenario for different runs. The

schedulability of a given a schedule scenario 𝑆 can vary regarding a (𝑚, 𝐾)-constraint. For example,

Figure 4.1b has two deadline misses for task 𝜏3. If the deadline constraint (𝑚3, 𝐾3) of 𝜏3 is (1,4), the

scenario 𝑆 is not schedulable as the deadline constraint of 𝜏3 only allows one deadline miss in four

consecutive arrivals. However, the scenario 𝑆 become schedulable when (𝑚3, 𝐾3) is equal to (2,4). This

scenario 𝑆 can also be schedulable when the execution time of 𝜏3 is reduced to 1, i.e., 𝐶2=1, even (𝑚3, 𝐾3)

is equal to (1,4).

Problem. The effective design and assessment of real-time systems rely on the accurate evaluation

of the properties of tasks. Among the values, WCET values are estimated as ranges, which is inevitable

given the high uncertainties at early stages of development. Under given WCET ranges, the upper WCET

bounds are the worst-case WCET values that are likely to have deadline misses, since larger WCET values

increase the probability of deadline constraint violations. Lower WCET bounds are tasks’ best-case WCET

values but are harder to implement in practice. We aim at determining the maximum upper bounds that

allow the tasks to be schedulable under weakly hard constraints at a certain level of probability of violating

deadline constraints. Practitioners can use these upper bounds as an objective when implementing the

tasks. Specifically, for every task 𝜏𝑖 ∈ Γ to be analysed, our approach computes a new upper bound value

for the WCET range of 𝜏𝑖 (denoted by 𝐶max∗
𝑖

) such that 𝐶max∗
𝑖
≤ 𝐶max

𝑖
and by restricting the WCET range

of 𝜏𝑖 to 𝐶max∗
𝑖

we should, at a certain level of confidence, no longer have deadline constraint violations.

That is, tasks Γ become schedulable, with a certain probability, after restricting the maximum WCET
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value of 𝜏𝑖 to 𝐶max∗
𝑖

. For instance, as shown in Figure 4.1b, restricting the maximum WCET of 𝜏3 from

𝐶𝑚𝑎𝑥
3 = 2 to 𝐶𝑚𝑎𝑥∗

3 = 1 enables all the three tasks to be schedulable.

4.4 Approach

Figure 4.2 shows an overview of our Safe Worst-case execution time (WCET) analysis method for

wEAKly hard real-time system (SWEAK). Given the task descriptions, the approach first finds the worst

test cases, which consist of sequences of task arrivals for given tasks and context switching times, using a

meta-heuristic search maximizing the violation of weakly hard constraints (Section 4.4.1). During search,

the approach works by relying on a simulation technique APSSimulator, a schedule simulator that mimics

the behavior of APS (Section 4.4.2), to evaluate the schedulability of test cases and produces training data.

The approach then builds a logistic regression model to distinguish between safe and unsafe areas in the

WCET space using the training data (Section 4.4.3). The model estimates WCET ranges under which

tasks are likely to be schedulable with a probabilistic guarantee. The approach refines the model with

additional training data simulated by the worst test cases. In the next section, we describe each step of the

approach in detail.

4.4.1 Searching for the worst test cases

The search step of our approach aims to provide the worst test cases that likely cause violations of deadline

constraints by extending the Chapter 3. Since we deal with weakly hard real-time systems, we apply a

multi-objective search algorithm for finding the worst test cases based on the following two objectives:

(1) maximizing the magnitude of deadline misses and (2) maximizing the consecutiveness degree of

deadline misses by weighing the interval of task arrivals that missed their deadlines. These two objectives

lead to test cases, which are task arrival sequences and context switching times, which cause larger

deadline misses and more consecutive deadline misses. To evaluate the test cases, we apply various sets

of WCET values that are randomly sampled within specified ranges, since such WCET values can lead to

different schedule results with the same test cases. We describe our search-based approach by defining the

solution representation, the fitness functions, and the computational search algorithm following standard

practice [74].

Representation. A feasible solution represents a test case for checking schedulability. Given a set Γ

of tasks to be scheduled, a solution 𝐼 consists of two parts, context switching times and sequences of task

arrivals for all tasks in Γ. The context switching times are three scalar values, start-up 𝜆𝑠, exit 𝜆𝑥 , and

Training data

Worst  
test cases

Task 
descriptions

Search 

Safe WCET area
Safe

Unsafe

Learning

Simulation
<use> <use>

Figure 4.2: An overview of our Safe WCET analysis method for wEAKly hard real-time system (SWEAK)
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IPI 𝜆𝑝 times, each of which is selected within their valid range (see Section 4.3). The sequences of task

arrivals are denoted by a set 𝐴 of tuples (𝜏𝑖 , 𝑎𝑖,𝑘), where 𝜏𝑖 ∈ Γ and 𝑎𝑖,𝑘 is the 𝑘th arrival time of a task

𝜏𝑖 . The number of arrivals for a task 𝜏𝑖 is decided by the scheduling time period T = [0, t]. For example,

if a task 𝜏𝑖 is periodic, the number of arrivals of 𝜏𝑖 is fixed as t/𝑇𝑖 with the offset 𝑂𝑖 = 0. In the case of

aperiodic tasks, the number of arrivals varies due to its inter-arrival times (see Section 4.3). Therefore, the

size of 𝐼 varies across different solutions along with the size of 𝐴.

Fitness. To evaluate the fitness of each solution, we define two objective functions, which calculate

the magnitude and consecutiveness degree of deadline misses in the given target tasks.

These objective functions are calculated with multiple simulation runs to account for uncertainty in

WCET. Specifically, given a solution 𝐼 for a set Γ of tasks, SWEAK runs APSSimulator 𝑛𝑠 times with

randomly selected WCET values in the given WCET ranges and obtains schedule scenarios S = {𝑆1, 𝑆2,

· · · , 𝑆𝑛𝑠} (see Section 4.4.2). Based on the scenarios, SWEAK calculates the fitness values for a solution

𝐼 according to the fitness functions.

Fitness for the magnitude of deadline misses. This fitness function, denoted by fd(𝐼, Γ𝛿 , 𝑛𝑠), quantifies

the maximum degree of deadline misses regarding a set Γ𝛿 ⊆ Γ of target tasks. SWEAK provides the

capability of selecting target tasks Γ𝛿 as practitioners often need to focus on a subset of critical tasks. To

this end, we first define a distance function dist(𝜏𝑖 , 𝑘) as follows:

dist(𝜏𝑖 , 𝑘) = 𝑒𝑖,𝑘 − 𝑎𝑖,𝑘 + 𝐷𝑖

It captures the difference between the end time and the deadline of the 𝑘th arrival of task 𝜏𝑖 in a schedule

scenario (see Section 4.3 for each notation). If an arrival 𝑎𝑖,𝑘 misses its absolute deadline 𝑎𝑖,𝑘 + 𝐷𝑖,

the value of dist(𝜏𝑖 , 𝑘) is larger than 0. Based on the distance function, SWEAK aims to maximize the

fd(𝐼, Γ𝛿 , 𝑛𝑠) fitness function defined as follows:

fd(𝐼, Γ𝛿 , 𝑛𝑠) =
𝑛𝑠∑︁
ℎ=1

max
𝜏𝑖 ∈Γ𝛿 , 𝑘∈[1,lk(𝜏𝑖) ]

distℎ (𝜏𝑖 , 𝑘)/𝑛𝑠

where lk(𝜏𝑖) is the maximum number of arrivals of a task 𝜏𝑖 in 𝐼. Note that distℎ (𝜏𝑖 , 𝑘) is the dist(𝜏𝑖 , 𝑘)
function for each schedule scenario 𝑆ℎ. Thus, the function 𝑓 𝑑 (𝐼, Γ𝛿 , ns) calculates the average maximum

size of deadline misses for the tasks in Γ𝛿 in each scenario 𝑆ℎ.

Fitness for the consecutiveness of deadline misses. This fitness function, denoted by fc(𝐼, Γ𝛿 , 𝑛𝑠),
quantifies the intervals between task arrivals that miss their deadlines for a set Γ𝛿 ⊆ Γ of target tasks. To

this end, we convert a schedule scenario into 𝜇-patterns [27] by capturing whether each task arrival meets

its deadline or not. Specifically, given a schedule scenario 𝑆, a 𝜇-pattern 𝜇𝑖 for a task 𝜏𝑖 is calculated as

follows:

𝜇i(𝑘) =


1 , 𝑑𝑖𝑠𝑡 (𝜏𝑖 , 𝑘) > 0

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For example, if a task 𝜏𝑖 has six task arrivals and the second and the fifth arrivals missed their deadlines, a

𝜇𝑖 is equal to {0,1,0,0,1,0}. Based on the 𝜇-pattern, we calculate the interval, denoted by interval(𝜏𝑖 , 𝑘),
between task arrivals that missed their deadlines (which are 1 of the 𝜇i(𝑘)). In the above example,

the interval(𝜏𝑖 , 2) is equal to 3 because the next deadline missed arrival is the fifth arrival (i.e., 5-2=3).

The interval(𝜏𝑖 , 5) is equal to ∞ because the next deadline missed arrival is unknown. Note that the

interval(𝜏𝑖 , 𝑘) returns to 0 when the 𝑘th 𝜇𝑖 is 0.
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Given the function interval(𝜏𝑖 , 𝑘), we denote by consec(𝜏𝑖 , 𝑘) the consecutiveness degree for the 𝑘th

arrival of a task 𝜏𝑖 as follows:

consec(𝜏𝑖 , 𝑘) =


10
1

interval(𝜏𝑖 ,𝑘) , 𝜇𝑖 (𝑘) = 1

0 , 𝜇𝑖 (𝑘) = 0

To reward a small interval and penalize a large interval, we invert interval(𝜏𝑖 , 𝑘) and take the exponential

function, i.e., a consecutiveness degree consec(𝜏𝑖 , 𝑘) exponentially decreases according to the increasing

value of interval(𝜏𝑖 , 𝑘). For example, with a pattern 𝜇𝑖 = {1,1,0,0,1,0,0,0,1,0}, consec(𝜏𝑖 , 1) = 1√10 = 10

as the interval(𝜏𝑖 , 1) = 1, consec(𝜏𝑖 , 2) = 3√10 = 2.15 as the interval(𝜏𝑖 , 2) = 3, consec(𝜏𝑖 , 5) = 4√10 = 1.58

as the interval(𝜏𝑖 , 5) = 4, and consec(𝜏𝑖 , 9) = ∞√10 = 1 as the interval(𝜏𝑖 , 9) =∞.

To compute the 𝑓 𝑐(𝐼, Γ𝛿 , 𝑛𝑠) fitness value, SWEAK runs APSSimulator 𝑛𝑠 times for 𝐼 and obtains

𝑛𝑠 schedule scenarios 𝑆1, 𝑆2, . . . , 𝑆𝑛𝑠. For each schedule scenario 𝑆ℎ, we denote by consecℎ (𝜏𝑖 , 𝑘) the

consecutiveness degree for the 𝑘th arrival of a task 𝜏𝑖 observed in 𝑆ℎ. SWEAK aims to maximize the

fc(𝐼, Γ𝛿 , 𝑛𝑠) fitness function defined as follows:

fc(𝐼, Γ𝛿 , 𝑛𝑠) =
𝑛𝑠∑︁
ℎ=1

(
max
𝜏𝑖 ∈Γ𝛿

lk(𝜏𝑖)∑︁
𝑘=1

consecℎ (𝜏𝑖 , 𝑘)
)/
𝑛𝑠

Computational search. SWEAK employs the NSGA-II algorithm [122]. The algorithm first generates

an initial population and evaluates it with the fitness functions defined above. The fitness values determine

Pareto front rankings and sparsities of the solutions in the population. The algorithm then breeds the new

population to produce the next generation’s population using the following genetic operators: (1) Selection

chooses candidate solutions as parents using a tournament selection technique, with the tournament size

equal to two which is the most common setting [77]. (2) Crossover creates offspring from the selected

parents using a modified version of the one-point crossover. (3) Mutation makes a random change in the

offspring according to a mutation rate. Our crossover and mutation operators are defined below. After

evaluating the new population, the algorithm produces the next population by considering the current

population and the new population by selecting superior solutions that have higher front rankings and

sparsity values. The algorithm continues to evolve the population until reaching the execution budget.

Crossover. A crossover operator produces offspring from two parent solutions by inheriting their

characteristics. Our crossover operator, named SWEAKCrossover, modifies the standard one-point

crossover operator [122], where it selects a random crossover point among all genes and swaps them

between parent solutions based on the crossover point. However, in our context, as the size of two parents

can differ, the random selection may produce invalid offspring. To prevent it, SWEAKCrossover selects a

crossover point among the context switching times, i.e., 𝜆𝑠, 𝜆𝑥 , and 𝜆𝑝, or the first arrival of the aperiodic

tasks in Γ. As the size of Γ and context switching times are fixed for all solutions, SWEAKCrossover can

crossover two solutions with different sizes.

Figure 4.3 shows an example of SWEAKCrossover operation using a system with three aperiodic

tasks, 𝜏1, 𝜏2, and 𝜏3. Let two parent solutions 𝐼𝑝 and 𝐼𝑞 be as follows: 𝐼𝑝 = {0.007, 0.011, 0.001, (𝜏1, 5),
. . ., (𝜏2, 10), . . ., (𝜏3, 6), (𝜏3, 15)} and 𝐼𝑞 = {0.008, 0.010, 0.001, (𝜏1, 4), . . ., (𝜏2, 8), . . ., (𝜏3, 4), . . .,
(𝜏3, 20)}, where (𝜏𝑖 , 𝑡) states that task 𝜏𝑖 arrives at time 𝑡. Given the two parents 𝐼𝑝 and 𝐼𝑞 , SWEAKCrossover

randomly selects a point— the first arrival of 𝜏2 in this example—and then it swaps the context switching

times and all the arrivals of 𝜏1 between 𝐼𝑝 and 𝐼𝑞. As shown in Figure 4.3, SWEAKCrossover then
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Context switching times Sequences of task arrivals

Parent Ip

Parent Iq

Child I′ p

Child I′ q

0.0110.007 0.001 (τ3, 6), (τ3, 15)(τ2, 10), (τ2, 20)
0.0100.008 0.001

(τ1, 5), (τ1, 12), (τ1, 18)
(τ1, 4), (τ1, 8), (τ1, 16) (τ3, 4), (τ3, 12), (τ3, 20)(τ2, 8), (τ2, 18)

(τ3, 6), (τ3, 15)(τ2, 10), (τ2, 20)
(τ1, 5), (τ1, 10)
(τ1, 5), (τ1, 12), (τ1, 18)

(τ3, 4), (τ3, 12), (τ3, 20)(τ2, 8), (τ2, 18)

Crossover point

Startup λs Exit λe IPI λp Task τ1 Task τ2 Task τ3

0.0110.007 0.001
0.0100.008 0.001

Figure 4.3: An example of a crossover operation for SWEAK. It swaps all context switching times and all
task arrivals of task 𝜏1 between two parent solutions 𝐼𝑝 and 𝐼𝑞 to produce offspring 𝐼 ′𝑝 and 𝐼 ′𝑞.

generates the offspring 𝐼 ′𝑝 and 𝐼 ′𝑞 as follows: 𝐼 ′𝑝 = {0.007, 0.011, 0.001, (𝜏1, 5), . . ., (𝜏2, 8), . . ., (𝜏3, 4),
. . ., (𝜏3, 20)} and 𝐼 ′𝑞 = {0.008, 0.010, 0.001, (𝜏1, 4), . . ., (𝜏2, 10), . . ., (𝜏3, 6), (𝜏3, 15)}. The shaded (resp.

unshaded) cells in Figure 4.3 indicate which task arrivals in child 𝐼 ′𝑞 (resp. 𝐼 ′𝑝) come from which parent.

Note that SWEAKCrossover only swaps context switching times when it selects the first aperiodic tasks

as a crossover point, which are before the first arrival of 𝜏1 in this example.

Mutation. SWEAK uses a heuristic mutation algorithm called SWEAKMutation. For a solution 𝐼,

SWEAKMutation mutates the context switching times or the 𝑘th task arrival time 𝑎𝑖,𝑘 of an aperiodic

task 𝜏𝑖 with a mutation probability. Regarding the context switching times, SWEAKMutation chooses

a new time value from the range of each context switching time, 𝜆𝑠, 𝜆𝑥 , and 𝜆𝑝. Regarding arrivals of

an aperiodic task 𝜏𝑖, SWEAKMutation chooses a new arrival time value 𝑎𝑖,𝑘 based on the [𝑇𝑚𝑖𝑛
𝑖

, 𝑇𝑚𝑎𝑥
𝑖
]

inter-arrival time range of 𝜏𝑖 . If a mutation of the 𝑘th arrival time of 𝜏𝑖 does not affect the validity of the

𝑘+1th arrival time, the mutation operation ends. Specifically, let 𝑎∗
𝑖,𝑘

be a mutated value of 𝑎𝑖,𝑘 . In case

𝑎𝑖,𝑘+1 ∈ [𝑎∗𝑖,𝑘 + 𝑇
𝑚𝑖𝑛
𝑖

, 𝑎∗
𝑖,𝑘
+ 𝑇𝑚𝑎𝑥

𝑖
], SWEAKMutation returns the mutated 𝐼 solution.

After mutating the 𝑘th arrival time 𝑎𝑖,𝑘 of a task 𝜏𝑖 in a solution 𝐼, if the 𝑘+1th arrival becomes invalid,

SWEAKMutation corrects the remaining arrivals of 𝜏𝑖 . We denote by 𝑎∗
𝑖,𝑘

the mutated 𝑘th arrival time of

𝜏𝑖 . For all the arrivals of 𝜏𝑖 after 𝑎∗
𝑖,𝑘

, SWEAKMutation first updates their original arrival time values by

adding the difference 𝑎∗
𝑖,𝑘
− 𝑎𝑖,𝑘 . Let T = [0, t] be the scheduling period. SWEAKMutation then removes

some arrivals of 𝜏𝑖 if they are mutated to arrive after t or adds new arrivals of 𝜏𝑖 while ensuring that all

tasks arrive within T.

Given the offspring presented in Figure 4.3, SWEAKMutation, for example, mutates a child solution

𝐼 ′𝑞 = {0.008, 0.010, 0.001, (𝜏1, 4), (𝜏1, 8), (𝜏1, 16), . . ., (𝜏3, 15)}. Let [𝑇𝑚𝑖𝑛
1 , 𝑇𝑚𝑎𝑥

1 ] = [2, 8] be the inter-

arrival time range of task 𝜏1, let T = [0, 22) be the time period during which APSSimulator receives task

arrivals, and let us assume SWEAKMutation selects the second arrival of task 𝜏1, i.e., (𝜏1, 8) in Figure 4.3,

to mutate. Based on the inter-arrival time range of 𝜏1, SWEAKMutation randomly chooses a new arrival

time, e.g., 6, for the second arrival of 𝜏1. The third arrival (𝜏1, 16) of 𝜏1 then becomes invalid due to

the mutated second arrival (𝜏1, 6); i.e., 𝜏1 cannot arrive at time 16 because 16 ∉ [6 + 2, 6 + 8], where

[𝑇𝑚𝑖𝑛
1 , 𝑇𝑚𝑎𝑥

1 ] = [2, 8]. According to the correction procedure described above, the third arrival of 𝜏1 is

modified to (𝜏1, 14) as 14 = 16+ (6−8), where 16, 6, and 8 are, respectively, the original third arrival time

of 𝜏1, the mutated second arrival time of 𝜏1, and the original second arrival time of 𝜏1. As APSSimulator

can receive new arrivals of 𝜏1 after time 14, SWEAKMutation may add new arrivals of 𝜏1 based on its

inter-arrival time range.
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Note that for a system that consists of only periodic tasks, SWEAK will search for the worst test cases

by varying context-switching times without changing sequences of task arrivals since the periodic tasks

will have the same patterns of the task arrivals (see Section 4.3).

4.4.2 Simulation

The objective of the simulation step is to produce schedule scenarios given the input and a labeled dataset

(training dataset) for the learning step. SWEAK uses a scheduling simulation technique to produce

schedule scenarios since such simulation can generate a large number of tests for a lower cost than the

actual scheduler an it can enable testing without the actual code for the tasks. Based on the simulation

results, we generate a labeled data set for the learning step.

APSSimulator. A schedule simulator, named APSSimulator, simulates the behavior of APS according to

the characteristics described in Section 4.2. As an input, the simulator takes a feasible solution 𝐼, which

contains sequences 𝐴 of task arrivals for a set Γ of tasks, context switching times (𝜆𝑠, 𝜆𝑥 , 𝜆𝑝), and a set

𝑊 of WCET values for the tasks. Given the sequences 𝐴 of task arrivals, the simulator calculates when

each task arrival will be completed with the given context switching times in a solution 𝐼 and a set𝑊 of

WCET values, as well as APS configurations, e.g., the window size for partitioning and the timeslice

for round-robin (see Section 4.2). We set the APS configuration values following the guideline from the

partner company. The simulation results are processed into a schedule scenario 𝑆.

Generating a labeled dataset. SWEAK requires a labeled dataset as it uses a supervised learning

technique [152] to find a model to predict safe WCET ranges. Importantly, engineers want to have a

certain level of confidence about safety. To achieve that, SWEAK applies logistic regression to obtain

such interpretable probability. In our context, based on a given labeled dataset, the model reveals the

relationship between WCET for all tasks and the schedulability of these tasks. The detailed learning step

is explained in Section 4.4.3.

The labeled dataset, denoted by
#»
𝐿 , is a list of tuples (𝑊, ℓ) where𝑊 is a set of WCET values and ℓ is

the label indicating the schedulability of a schedule scenario resulting from𝑊 . SWEAK generates a tuple

(𝑊, ℓ) for each APSSimulator run. For example, in the case of SWEAK calculates a fitness value for a

feasible solution 𝐼, it appends 𝑛𝑠 tuples of (𝑊, ℓ) to the labeled dataset
#»
𝐿 (see Section 4.4.1). To evaluate

a feasible solution 𝐼, SWEAK runs APSSimulator 𝑛𝑠 times with the sampled sets {𝑊1,𝑊2, ...𝑊𝑛𝑠}. Each

set𝑊ℎ consists of a set of tuples (𝜏𝑖 , 𝐶𝑖), where 𝐶𝑖 is a randomly selected WCET value within a range

[𝐶𝑚𝑖𝑛
𝑖

, 𝐶𝑚𝑎𝑥
𝑖

] for all tasks 𝜏𝑖 ∈ Γ. Note that 𝑊ℎ has the same WCET value for the tasks that have a

fixed WCET value. Given a feasible solution 𝐼 and a set𝑊ℎ of WCET values, APSSimulator produces

a schedule scenario 𝑆ℎ. SWEAK then labels ℓ as safe when the schedule scenario 𝑆ℎ satisfies all the

deadline constraints for the target tasks in Γ𝛿; otherwise it labels ℓ as unsafe. Since schedule scenarios

vary across the test cases, the labeled dataset
#»
𝐿 can contain instances that have different labels for the

same set𝑊 of WCET values.

4.4.3 Learning logistic regression model

The objective of the learning step is to estimate safe ranges of WCET values under which target tasks

are likely to be schedulable. To achieve the objective, SWEAK builds a model to predict safe WCET

ranges using logistic regression [100]. This technique provides probabilistic interpretation and flexibility

in selecting alternatives to predict safe WCET ranges. Figure 4.4 shows the overall process of the learning
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step. We summarize each procedure in the following order: feature reduction, imbalance handling, model

refinements (including sampling and simulation), and selecting WCET ranges. For more details on the

learning step, see Chapter 3.

Feature reduction. Given the training data
#»
𝐿 during the search step, this procedure generates an

equation 𝑓 for the logistic regression. Logistic regression builds a model by inferring coefficients from a

given equation. The equation 𝑓 is formulated with the input variables such as WCET variables for the

tasks in Γ of our dataset
#»
𝐿 . Some variables have significant effects on predicting whether the label is safe

or unsafe, while other variables do not. Since computational complexity increases when a large number of

variables in the dataset are given, we remove insignificant variables.

SWEAK applies a feature reduction technique, random forest, widely used for dimensionality re-

duction [96, 141]. Given the labeled dataset
#»
𝐿 , random forest builds a large number of decision trees

to predict the label, i.e., safe and unsafe in our case, using a randomly selected subset of variables. The

technique then derives the importance of each variable based on Gini impurity [35]. SWEAK selects

important variables 𝑉 that are above a particular threshold. Parameter values for feature reduction are

explained in Section 4.5.5. Given the important variables 𝑉 , SWEAK formulates an equation 𝑓 for

the logistic regression model using a second-order polynomial response surface model (RSM) [101] as

follows:

log
𝑝

1 − 𝑝 = 𝑐0 +
|𝑉 |∑︁
𝑖=1

𝑐𝑖𝑣𝑖 +
|𝑉 |∑︁
𝑖=1

𝑐𝑖𝑖𝑣
2
𝑖 +
|𝑉 |−1∑︁
𝑖=1

|𝑉 |∑︁
𝑗=𝑖+1

𝑐𝑖 𝑗𝑣𝑖𝑣 𝑗

where 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , 𝑝 is the probability of violating deadline constraints, and 𝑐0, 𝑐𝑖, 𝑐𝑖𝑖, and 𝑐𝑖 𝑗 are the

coefficients that will be inferred by logistic regression. SWEAK also applies stepwise AIC (Akaike

Information Criterion) [191] to the equation 𝑓 , as the equation may contain redundant terms that are not

related to predicting the label.

Imbalance handling. Supervised machine learning is highly dependent on the training dataset
#»
𝐿 . As

#»
𝐿 is generated by search that aims to find the worst test cases (see Section 4.4.1), it tends to be imbalanced

with more sets of WCET values violating deadline constraints. Imbalanced data may lead to unsatisfactory

results for supervised machine learning. SWEAK handles the imbalance using the logistic regression

model based on
#»
𝐿 .

Model refinements

Feature 
reduction

Imbalance 
handling

Sampling 
WCETs

WCET 
samples

Worst test cases

Labeled 
dataset

Training dataset

Balanced dataset

f = c0 + c1X1 + c2X2

Safe  
WCET ranges

Simulation

Model  
equation

Safe  
Border

Figure 4.4: An overview of the learning step
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SWEAK builds an initial model 𝑚 from the training dataset
#»
𝐿 and the equation 𝑓 . Figure 4.5 shows

a model 𝑚 on the WCET space for two tasks 𝜏1 and 𝜏2. The logistic regression technique estimates

probabilities for safe and unsafe. For example, the gray area in Figure 4.5 represents the model area

with the probability of violating deadline constraints in the range [0.0001, 0.9999]. SWEAK selects

a probability 𝑝𝑢 which is the minimum probability that classifies data instances as safe and which are

labeled as safe in the dataset
#»
𝐿 (no false unsafe). SWEAK then calculates reduced WCET ranges [𝐶𝑚𝑖𝑛

𝑖
,

𝐶 ′
𝑖
], where 𝐶 ′

𝑖
is the intercept between the WCET axis for 𝜏𝑖 and the initial model. The balanced dataset

#»
𝐿 𝑏 is produced by pruning the data instances out of the reduced WCET ranges. Note that 𝐶 ′

𝑖
is equal to

𝐶𝑚𝑎𝑥
𝑖

when there is no intercept for a task 𝜏𝑖 .

Model refinements. Given the balanced dataset
#»
𝐿 𝑏 and the equation 𝑓 , SWEAK rebuilds a logistic

regression model 𝑚. Then SWEAK finds a probability 𝑝𝑠 that maximizes the safe area, while ensuring

that all the data instances below the safe area are classified as safe, i.e., no false safe. We call this area,

which is defined by the model 𝑚 and the probability 𝑝𝑠, as safe border, e.g., 𝑝𝑠=0.01 in Figure 4.5. The

safe border may over-fit the current dataset
#»
𝐿 𝑏, which may lead to mis-classifications in different datasets.

To alleviate over-fitting, SWEAK refines the safe border using a distance-based sampling method (see

Section 3.4.2). The sampled WCET values are evaluated and labeled by the simulation step with the

worst test cases given from the search step, which results in the new labeled dataset
#»
𝐿 𝑛𝑒𝑤 . SWEAK then

rebuilds the safe border after merging
#»
𝐿 𝑏 with

#»
𝐿 𝑛𝑒𝑤 . This refinement is repeated until either reaching the

specified number of refinements (assigned analysis budget) or reaching an acceptable level of precision of

the safe border according to standard precision metric [187].

Selecting WCET ranges. Given the safe border, safe WCET ranges are determined by selecting one

point on that border. The safe border is a set of points that represents the upper bounds of safe WCET

ranges. Engineers thus can find safe WCET ranges by choosing one point on the safe border depending

on their system requirements. For example, assuming a black dot on the safe border in Figure 4.5 is

the selected point, i.e., [𝐶1, 𝐶2], the safe WCET ranges become [𝐶𝑚𝑖𝑛
1 , 𝐶1] and [𝐶𝑚𝑖𝑛

2 , 𝐶2]. However,

engineers may not have such contextual information at early design stages. As the result, SWEAK

suggests a point, named best-size point, on a safe border by maximizing the volume of the WCET ranges

using Nelder-Mead algorithm [140]. We assume that a larger volume of the WCET ranges can provide

safer WCET ranges as they provide wider space for tasks’ WCET values. Note that SWEAK also provides

the flexibility to select another point through trade-off analysis between tasks’ WCET values.

safe
unsafe

C
m

ax 2

Cmin1

C
m

in 2

Cmax1Safe border (  )ps = 0.01C1

C2 pu = 0.99

Figure 4.5: A logistic regression model on the WCET space for two tasks 𝜏1 and 𝜏2
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4.5 Evaluation

In this section, we evaluate SWEAK by answering three research questions below. In our experiments, we

apply SWEAK to an industrial study subject from the satellite domain and synthetic study subjects.

4.5.1 Research questions

RQ1. (baseline comparison): Can SWEAK provide better options for WCET ranges than a baseline? It

is a general concept that comparing against a baseline, such as a random search-based approach, is an

important for the sanity check [89, 12]. Hence, we compare SWEAK and a baseline to see if SWEAK can

infer better WCET options than the baseline. We believe that SWEAK can outperform the baseline with a

higher degree of confidence in estimating safe WCET ranges.

RQ2. (accuracy of probability): How accurately does SWEAK infer a probability of violating deadline

constraints? Accurate estimation of probability ensures the reliability of the estimated WCET ranges. We

compare probabilities computed by SWEAK with simulation-based ones that are calculated from a large

number of simulations with varying WCET values within the estimated WCET ranges. Our conjecture is

that SWEAK can infer conservative or similar probabilities to simulation-based probabilities, as SWEAK

is relying on fine-tuning of the logistic regression step.

RQ3. (scalability): Can SWEAK find safe WCET ranges for large-scale systems within a practical time

budget? It is challenging to estimate acceptable WCET ranges in large-scale systems because there exist

complex task interactions caused by combinations of arrival sequences, priorities, context switching times,

and WCET values. To assess the scalability of SWEAK in terms of execution time, we use a large number

of synthetic systems that are generated with various characteristics. We expect that the execution time of

SWEAK can be acceptable in practice.

4.5.2 Synthetic systems

A synthetic system is an artificially generated system accounting for the characteristics of real-time

tasks which reflect actual systems in the real world. Such systems are used in many studies [62, 195,

59, 82, 176, 68] to evaluate their approaches as they can be used to complement a number of evaluation

subjects. Algorithm 4.1 describes a procedure for generating a synthetic system by varying the key task

parameters. The algorithm synthesizes a set of periodic tasks (lines 18-23) and sets a certain number

of tasks of them to have weakly hard constraints (lines 24-25). The algorithm selects a set of tasks that

have fixed periods and single WCET values in a single partition. The algorithm then modifies the system

using the following functions: (1) converting some tasks to aperiodic tasks (lines 26-27), (2) transforming

some tasks to have WCET ranges (lines 28-29), and (3) configuring partitions and assigning tasks to each

partition (lines 30-31).

As shown in line 18 of Algorithm 4.1, the algorithm first creates a set U of task utilization values using

the UUniFast-Discard algorithm [59], which is devised to give an unbiased distribution of task utilization

values. The UUniFast-Discard algorithm takes as input the number of tasks to be synthesized, 𝑛, and a

target utilization value, 𝑢𝑡 . It then outputs 𝑛 utilization values, {𝑈1, . . .,𝑈𝑛}, where 0 < 𝑈𝑖 < 1 for all𝑈𝑖

and
∑𝑛

𝑖=1𝑈𝑖 = 𝑢
𝑡 . The maximum of target utilization 𝑢𝑡 relies on the number of processing cores, i.e., the

maximum target utilization is equal to the number of processing cores. For example, if a system uses two

processing cores, the maximum value of 𝑢𝑡 is 2.

58



4.5. EVALUATION

Algorithm 4.1: An algorithm for generating synthetic systems subjected to weakly hard con-
straints, including partitioning.

1 Input 𝑛: number of tasks
2 Input 𝑢𝑡: target utilization per processing core
3 Input 𝑇min: minimum task period
4 Input 𝑇max: maximum task period
5 Input 𝑔: granularity of task periods
6 Input 𝜃: maximum offset value
7 Input 𝛾: ratio of aperiodic tasks
8 Input 𝜇: range factor to determine inter-arrival times
9 Input 𝜔: number of WCET ranges

10 Input 𝜆: range factor to determine WCET ranges
11 Input 𝜌: number of partitions
12 Input (𝑚, 𝐾): weakly hard constraint
13 Input 𝑛𝑤: number of tasks that are subject to the weakly hard constraint
14 Output- Γ: set of tasks
15
16 Γ← {}, C← {}
17 // synthesize a set of periodic tasks
18 U← UUniFast_discard(𝑛, 𝑢𝑡 ) // task utilizations
19 T← generate_task_set(𝑛, 𝑇min, 𝑇max, 𝑔) //task periods
20 for each 𝑖 ∈ [1, 𝑛] do
21 C ← C ∪ {𝑈𝑖 ·𝑇𝑖}, where 𝑈𝑖 ∈ U and 𝑇𝑖 ∈ T // WCETs
22 end for
23 Γ← generate_task_periods(T,C, 𝜃, 𝑔)
24 // select weakly hard real-time tasks
25 Γ← set_weakly_hard_constraint(Γ, 𝑛𝑤, (𝑚, 𝐾))
26 // convert some periodic tasks to aperiodic tasks
27 Γ← convert_to_aperiodic_tasks(Γ, 𝛾, 𝜇)
28 // convert some WCET point values to WCET ranges
29 Γ← convert_to_WCET_ranges(Γ, 𝜔, 𝜆)
30 // assign partitions and partition budgets
31 Γ← assign_partitions(Γ, 𝜌)
32 return Γ

As for line 19 of Algorithm 4.1, the algorithm generates 𝑛 task periods, 𝑇1 . . . 𝑇𝑛 according to a

log-uniform distribution within a range [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥], i.e., given a task period (random variable) 𝑇𝑖 , log 𝑇𝑖
follows a uniform distribution. For example, when a period range [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] is [10ms, 1000ms], the

algorithm generates approximately an equal number of tasks in the period ranges [10ms, 100ms] and

[100ms, 1000ms]. The parameter 𝑔 is used to determine the granularity of period values as multiples of 𝑔.

Lines 20-22 of Algorithm 4.1 describe how the algorithm synthesizes tasks’ WCET values. Specifically,

for each task 𝜏𝑖 , the algorithm computes the WCET value 𝐶𝑖 of 𝜏𝑖 as 𝐶𝑖 = 𝑈𝑖 · 𝑇𝑖 .
Given the task periods T and the WCET values C, line 23 of Algorithm 4.1 synthesizes a set Γ of

periodic tasks accounting for offsets, priorities, and deadlines. A periodic task 𝜏𝑖 is characterized by a

period 𝑇𝑖 , a WCET 𝐶𝑖 , an offset 𝑂𝑖 , a priority 𝑃𝑖 , and a deadline 𝐷𝑖 (see Section 4.3). A task offset 𝑂𝑖 is

randomly selected from an input range [0, 𝜃] of offset values. The algorithm applies a rate-monotonic

scheduling policy [118] to assign task priorities, in which tasks that have longer periods are given lower

priorities. This policy assumes that task deadlines are equal to their periods.

Given the system Γ, line 25 of Algorithm 4.1 assigns the specified weakly hard constraints (𝑚, 𝐾) to

𝑛𝑤 tasks. Real-time tasks in a system can have different weakly hard constraints. However, for controlled

experiments, we assume that tasks subjected to weakly hard constraints have the same constraints (see
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Section 4.5.4). We select 𝑛𝑤 tasks from the lower priority tasks to associate them with the weakly hard

constraint. Since lower priority tasks have higher chances of missing deadlines, this assumption allows us

to know the effect of a weakly hard constraint.

Line 27 of Algorithm 4.1 selects some periodic tasks and converts them into aperiodic tasks according

to the ratio 𝛾 of aperiodic tasks. The algorithm then uses a range factor 𝜇 to determine the minimum

and maximum inter-arrival times of the aperiodic tasks. Specifically, for a task 𝜏𝑖 to be converted, the

algorithm computes a range [𝑇𝑚𝑖𝑛
𝑖

, 𝑇𝑚𝑎𝑥
𝑖
] of inter-arrival times as [𝑇𝑚𝑖𝑛

𝑖
, 𝑇𝑚𝑎𝑥

𝑖
] = [𝑇𝑖×(1−𝜇), 𝑇𝑖×(1+𝜇)],

where 𝜇 ∈ (0, 1). For example, if 𝜇 = 0.45 and 𝑇𝑖 = 50 for a task 𝜏𝑖 to be converted, [𝑇𝑚𝑖𝑛
𝑖

, 𝑇𝑚𝑎𝑥
𝑖
] =

[27.5, 72.5].
To synthesize tasks’ WCET ranges, line 29 of Algorithm 4.1 randomly selects 𝜔 tasks in Γ to convert

their WCET point values into WCET ranges. For a selected task 𝜏𝑖, the algorithm computes a WCET

range [𝐶𝑚𝑖𝑛
𝑖

, 𝐶𝑚𝑎𝑥
𝑖
] as [𝐶𝑚𝑖𝑛

𝑖
, 𝐶𝑚𝑎𝑥

𝑖
] = [𝐶𝑖 × (1−𝜆), 𝐶𝑖 × (1+𝜆)], where 𝜆 is a range factor to determine

the WCET ranges and 𝜆 ∈ (0, 1). For example, if 𝜆 = 0.25 and 𝐶𝑖 = 10 for a task 𝜏𝑖, [𝐶𝑚𝑖𝑛
𝑖

, 𝐶𝑚𝑎𝑥
𝑖
] =

[7.5, 12.5].
Regarding APS partitioning, line 31 of Algorithm 4.1 assigns tasks to partitions. The algorithm

generates 𝜌 partitions and assigns evenly distributed partition budgets. For example, when 𝜌=2, the budget

distribution is [50%, 50%]. If 𝜌=3, the budget distribution is [34%, 33%, 33%]. The algorithm then

randomly selects a partition to which a task will belong. Each partition has at least one task, and a task

can be assigned to only one partition.

4.5.3 Study subjects

To evaluate our approach through RQ1 and RQ2, we use four case study subjects: ESAIL [113] (an

industrial real-time system), and three synthetic systems that contain the APS characteristics described

in Section 4.2. ESAIL does not have APS characteristics such as multi-partition, multi-policy, and

multi-core. We thus generate a synthesized system (base) to build three different systems having the APS

characteristics. We further describe the details of the systems below.

ESAIL is a commercial microsatellite developed by LuxSpace that tracks ships by broadcasting radio

signals worldwide. The ESAIL management system is made up of 12 periodic tasks and 13 aperiodic

tasks on a single core platform. During the design stages, 23 tasks were analyzed to estimate their WCET

values as ranges that are varied from 0.1ms to 20s due to uncertain factors. Regarding deadline constraints,

five aperiodic tasks have weakly hard constraints while the other tasks have hard constraints.

A base system Γ is generated using Algorithm 4.1 by modifying the function that converts WCET

values to ranges. To synthesize the base system, we first generate a system with the following parameter

values: (1) the number of tasks 𝑛 = 25, the ratio of aperiodic tasks 𝛾 = 0.5, the range factor to determine

inter-arrival times 𝜇 = 0.25, and the maximum offset 𝜃 = 0. These settings are decided based on the

characteristics of the industrial system. (2) We set the minimum task period 𝑇𝑚𝑖𝑛 = 10ms, the maximum

task period 𝑇𝑚𝑎𝑥 = 1s, and the granularity 𝑔 = 10ms; these are commonly used in real-time systems [23].

(3) We set the target utilization 𝑢𝑡 = 0.9 for a single-core system. This parameter is decided to make the

system sometimes miss any deadline constraints [70]. (4) Regarding the number of APS partitions, we set

𝜌 = 1. This parameter is decided for the base system to be simple so that it can easily be converted to

other synthetic systems. (5) Regarding weakly hard constraints, we associate 10 low priority tasks with
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Table 4.1: An example of creating WCET ranges from a WCET value according to a randomly selected
ratio 𝑟 from the log-uniform distribution in the range [0, 0.5]. Each WCET range [𝐶𝑚𝑖𝑛

𝑖
, 𝐶𝑚𝑎𝑥

𝑖
] is

calculated by 𝐶𝑖 × (1 ± 𝑟𝑖).

Task 𝜏1 Task 𝜏2 Task 𝜏3 Task 𝜏4 Task 𝜏5

WCET value (𝐶𝑖) 1.5 2 5 10.5 3
Range ratio (𝑟𝑖) 0.03 0.15 0.01 0.45 0.02
WCET range ([𝐶𝑚𝑖𝑛

𝑖
, 𝐶𝑚𝑎𝑥

𝑖
]) [1.5, 1.5] [1.7, 2.3] [5.0, 5.1] [5.8, 15.2] [2.9, 3.1]

with a weakly hard constraint (𝑛𝑤 = 10). The weakly hard constraint is set to (0, 10), i.e., hard deadline

constraint, but it will be varied in our experiments.

With regard to converting WCET ranges, we use a different method of Algorithm 4.1 to make the

system have different WCET ranges. This method uses random ratios selected from the log-uniform

distribution for each WCET value of tasks in Γ. Table 4.1 shows an example of converting WCET values

to WCET ranges for five tasks. A range ratio 𝑟𝑖 for each task 𝜏𝑖 is randomly selected from log-uniform

distribution in the range [0, 0.5], which means that the probability of 𝑟𝑖 selected in the range [0, 0.1]

is twice that of 𝑟𝑖 selected in the range (0.1, 0.5]. Each WCET range [𝐶𝑚𝑖𝑛
𝑖

, 𝐶𝑚𝑎𝑥
𝑖

] is determined by

𝐶𝑖 × (1 ± 𝑟𝑖). This method makes a system have a small number of tasks with large WCET ranges and a

large number of tasks with small WCET ranges, e.g., 𝜏2, 𝜏3, and 𝜏5 have small WCET ranges while 𝜏4 has

a large WCET range as shown in Table 4.1. Note that some tasks can have no WCET ranges, such as 𝜏1 in

Table 4.1. For those tasks, we assign a single WCET value instead of a WCET range.

If a system is composed of only periodic tasks, the minimum simulation time can be the LCM of the

period values for all tasks [177]. However, the base system contains aperiodic tasks as well. To deal with

such a system, we calculate the LCM of the period values of the periodic tasks and find the maximum

value among the maximum inter-arrival times of the aperiodic tasks. We then set the minimum simulation

time as the maximum value between those two values. The simulation time allows us to simulate all

possible patterns of arrivals of periodic tasks including at least one arrival of aperiodic tasks. To reduce

the execution time of the experiment, we generate a base system Γ that requires a minimum simulation

time less than 5s.

Given the base system Γ, we synthesize the three systems described below by modifying Γ to account

for the characteristics of APS following the guidelines from the partner company, Blackberry.

• PARTITION: This system has two APS partitions with 60% and 40% budgets for each partition. For

efficient scheduling, a partition budget should be enough to execute all tasks in the partition and should

not have much wastage. We assign tasks to each partition so that each partition budget is close to the

total utilization of the tasks in the partition. In our evaluation, 19 tasks with higher priorities in Γ are

assigned to the first partition. The remaining six tasks are assigned to the second partition.

• POLICY: This system contains two pairs of duplicate priorities. To make a pair, we randomly select

two tasks from the given system Γ and assign the same priority and scheduling policy to the selected

tasks. Each pair applies a different scheduling policy, e.g., the first pair uses FIFO, the second pair uses

round-robin.

• MULTICORE: This system works on a two-core platform and assigns core affinities to some tasks. To

make this system, we multiply WCET values (as well as the WCET ranges) by two for all tasks in Γ to
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make the total utilization about 1.8. Recall that the maximum total utilization of a system is equal to

the number of cores. We then assign core affinity to tasks using a random selection. For this system,

we assign core 1 affinity to eight tasks, core 2 affinity to the other eight tasks, and no core affinity to

the remaining nine tasks.

4.5.4 Experimental design

To answer the three RQs described in Section 4.5.1, we design three experiments EXP1, EXP2, and EXP3,

respectively. We conduct EXP1 and EXP2 with the four case study subjects described in Section 4.5.3:

ESAIL, PARTITION, POLICY, and MULTICORE. For EXP3, we experiment with 600 synthetic systems

with different parameter settings. We describe each experiment in detail below.

EXP1. To answer RQ1, we implement a baseline that uses a random search (RS) without the learning step

in SWEAK. The RS is a variant of the search step in SWEAK that does not use genetic operators, such

as selection, crossover, and mutation, to breed offspring (see Section 4.4.1). Instead, the RS generates

offspring by randomly creating new solutions. The same fitness functions evaluate the solutions in

SWEAK. As the RS also uses the multi-objective functions, it employs the dominance and crowding

distances for selecting Pareto fronts as well. During the search, a labeled dataset
#»
𝐿 is produced by our

baseline, which contains tuples (𝑊, ℓ) where 𝑊 is a set of WCET values of tasks and ℓ is the label

that classifies the simulation result with𝑊 as safe or unsafe. Once our baseline has the labeled dataset,

it retrieves all tuples from the labeled dataset
#»
𝐿 to select a specific tuple (𝑊𝑠, ℓ𝑠) that is labeled safe,

ℓ𝑥 = safe, and maximizes the volume of the hyperbox defined by 𝑊𝑠. Note that 𝑊𝑠 should satisfy the

condition that any tuple (𝑊𝑥 , ℓ𝑥) contained in the hyperbox defined by𝑊𝑠 be safe, ℓ𝑥 = safe.

EXP1 compares the results obtained from SWEAK against the baseline. Recall Section 4.4.3 that

SWEAK suggests the safe WCET ranges on the safe border by selecting a best-size point that maximizes

its volume of the hyperbox. EXP1 compares the size of the volumes from the safe WCET ranges obtained

by both approaches, SWEAK and the baseline. To analyze the weakly hard constraints, we apply both

approaches to the subjects with different weakly hard constraints (𝑚𝑖 , 𝐾𝑖), where 𝑚𝑖 is the tolerable

number of deadline misses and 𝐾𝑖 is the window size to check the deadline constraint (see Section 4.3).

To do this, we vary 𝑚𝑖 with a fixed 𝐾𝑖 by assuming that all tasks having a weakly hard constraint are

subjected to the same constraint. For example, if we set (𝑚𝑖 , 𝐾𝑖) = (2,10), the deadline constraints of

every task 𝜏𝑖 in a subject Γ become (2,10). Note that we do not vary 𝐾𝑖 because it does not affect the

results since we are dealing with consecutive deadline misses.

EXP2. To answer RQ2, EXP2 calculates the empirical probability of the safe WCET ranges obtained from

SWEAK. To this end, we first randomly sample multiple test cases including task arrivals and context

switching times as well as the sample execution times within the estimated safe WCET ranges from each

approach. We then simulate all combinations of the test cases and WCET values using APSSimulator and

check for the presence of violating deadline constraints in each simulation result. The empirical probability

is calculated as the number of simulations that violate deadline constraints over all combinations. We

simulate 40000 times to obtain the probability of safe WCET ranges obtained by SAFE and the baseline.

We also conduct EXP2 varying the tolerable number 𝑚𝑖 of deadline misses to account for the effects of

weakly hard constraints.

EXP3. To answer RQ3, we conduct EXP3 to assess the execution time of SWEAK with parameters

that can affect the system characteristics. EXP3 is conducted by controlled experiments that vary each
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parameter value while fixing the values of the other parameters so that we can reveal the correlations

between the execution time and the parameters. We generate 600 synthetic systems based on Algorithm 4.1

with the six parameters and 10 variants for each as follows: (a) number of all tasks, 𝑛 ∈ {5, 10, · · · , 50},

(b) ratio of aperiodic tasks, 𝛾 ∈ {0.05, 0.10, · · · , 0.50}, (c) number of WCET ranges, 𝜔 ∈ {1, 2, · · · , 10},

(d) number of processing cores, 𝜖 ∈ {1, 2, · · · , 10}, (e) number of APS partitions, 𝜌 ∈ {1, 2, · · · , 10}, and

(f) simulation time, t ∈ {5s, 10s, 15s, · · · , 50s}. The number of all tasks 𝑛, the ratio of aperiodic tasks 𝛾,

and the number of WCET ranges 𝜔 are selected because they are necessary factors for executing SWEAK.

The number of processing cores and the number of APS partitions are selected as they are adjustable by

APS. We also include the simulation time as SWEAK relies on simulation.

To generate each synthetic system, we modify Algorithm 4.1 to account for APS partitions and

partition budgets. After generating a set of tasks, we select the number 𝜌 of APS partitions by evenly

distributing a partition budget. For example, the partition budgets for each partition would be 25% when

𝜌 = 4. We then randomly assign tasks to each partition, ensuring that one partition holds at least one

task. Note that the total utilization of a generated synthetic system changes according to the number of

processing cores. For example, when the input 𝑢𝑡 = 0.9 and 𝜖 = 2, the total utilization of the system

becomes 1.8 (see Section 4.5.2).

While varying a parameter’s value, we use fixed values for the other parameters including the

uncontrolled parameters below. (1) We set the number of all tasks 𝑛 = 25, the ratio of aperiodic tasks 𝛾 =

0.50, and the maximum offset 𝜃 = 0. We set these values according to our industrial subject. (2) Regarding

the task periods, we set the range [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] of minimum and maximum periods to [10ms, 1s] with

granularity 𝑔 = 10ms. These values are commonly used in many real-time subjects [23]. (3) We set the

range factor to determine inter-arrival times of aperiodic tasks 𝜇 = 0.25, the number of WCET ranges

𝜔=2, the range factor to determine WCET range 𝜆 = 0.25, and the target utilization per processing core

𝑢𝑡 = 0.9. The values of each parameter are based on our preliminary experiments. They ensure that the

executions of the synthetic systems examined in EXP3 can sometimes violate their deadline constraints,

i.e., they contain both safe (positive) and unsafe (negative) data instances (see Section 4.4.3). (4) We set

the number of processing cores 𝜖 and the number of APS partitions 𝜌 = 1. These values are determined as

a baseline to minimize their impact on the other parameters. (5) For the simulation time of APSSimulator

(see Section 4.4.2), we assign a minimum simulation time of 5s to guarantee that any aperiodic task arrives

at least once and that all possible arrivals of periodic tasks can be analyzed during that period.

Due to the randomness of our approach, we conduct our experiments multiple times, 50 times for

EXP1 and EXP2 and 10 times for each parameter configuration of EXP3. To compare the multiple results,

we perform a statistical comparison using the non-parametric Mann-Whitney U-test [125] and Vargha and

Delaney’s �̂�12 [172]. The Mann-Whitney U-test tests the equality of two independent samples without

assuming a distribution. If the test result is less than 0.05, we consider the two samples are significantly

different. Vargha and Delaney’s �̂�12 is a measure of effect size that calculates the degree of difference

between two samples, regardless of the size of the samples. If �̂�12 is equal to 0.5, we consider the two

samples are equivalent.

4.5.5 Implementation and parameter tuning

We set the following parameter values for running SWEAK and the baseline. For the NSGA-II search in

SWEAK, we set the population size to 10, the crossover rate to 0.7, and the mutation rate to 0.2 based on
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existing guidelines [93]. We set the number of iterations to 1000 since we observed that the fitness values

reached a plateau after the iterations in our preliminary experiment. To calculate the fitness values, we ran

APSSimulator 20 times (determined by the preliminary experiment) for each solution (𝐼 in Section 4.4.1).

We found that this number was cost-effective in computing reasonable fitness values. For a random search

in the baseline, we set the same population size and the number of APSSimulator runs but the number of

iterations to 1500 to ensure that the baseline produces the same size of dataset
#»
𝐿 with SWEAK. Recall

that our baseline only searches for the worst WCET ranges without the learning step (see Section 4.5.4).

To simulate study subjects, we set the simulation time to 60s for the ESAIL subject and 5s for other

synthetic subjects. Such values are determined by the rule we defined in Section 4.5.3. To execute

APSSimulator, we set the window size for partitioning to 100ms, which is the default value of APS. The

timeslice for the round-robin is set to 4ms assuming that the processor tick interval is 1ms. According to

the guidelines from our partner company, the timeslice is usually set to 4 times a processor tick interval.

SWEAK has some parameters in the learning step for tuning the feature reduction and the model

refinement. To reduce the features, we employed the random forest algorithm that includes the following

parameters: (1) The tree depth was set to
√︁
|𝐹 |, where |𝐹 | is the number of features, following the

guidelines [91]. For example, since the ESAIL subject contains 23 features (i.e., WCET ranges), we

assigned
√︁
|23| to the tree depth of the subject (see Section 4.4.3). (2) The number of trees was set to 100

as we found that learning more than 100 trees did not provide further benefits for reducing the number of

features in our preliminary experiments. Regarding the model refinement, we set the number of solutions

to 10 and the number of model updates to 100. We observed that the precision of the model reaches an

acceptable level with these parameters in our preliminary experiments.

Although the current parameter settings effectively support our conclusions, all the parameters can

be further tuned to improve the approach. Note that we do not report further experiments on varying the

parameters’ values.

4.5.6 Results

RQ1. Figure 4.6 shows the results of EXP1, which compare the volumes of the hyperboxes defined by the

WCET ranges estimated by SWEAK and Baseline. The comparisons are conducted with five different

numbers of tolerable deadline misses, given by 𝑚, in weakly hard constraints for the following four study

subjects: ESAIL (Figure 4.6a), PARTITION (Figure 4.6b), POLICY (Figure 4.6c), and MULTICORE

(Figure 4.6d). Each boxplot in the figures shows a distribution (25%-50%-75% quartiles) obtained from

50 runs of SWEAK (or Baseline). The figure also reports 𝑝-values and �̂�12 values of the results from 50

runs of SWEAK and Baseline.

As shown in Figure 4.6, SWEAK produces larger volumes of hyperboxes compared to Baseline for all

the subjects. A larger volume provides greater flexibility in selecting appropriate WCET values, as such a

hyperbox has wide WCET ranges. Regarding weakly hard constraints, SWEAK produces a larger volume

of the hyperbox than Baseline when more relaxed weakly hard constraints are applied to the following

subjects: PARTITION, POLICY, and MULTIFORE. Specifically, when the number of tolerable deadline

misses is 1, the hyperbox volume is significantly larger than the hyperbox volume obtained when 𝑚 is 0,

while the degree of increasing volume is reduced when 𝑚 is 2, 3, or 4. From this trend, it can be implied

that when a deadline miss occurs, the subjects are likely to have more deadline misses, i.e., the probability

of consecutive deadline misses is increased. Unlike the subjects discussed above, the hyperbox volumes
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(d) MULTICORE

Figure 4.6: Distributions of the volumes of the hyperboxes that are defined by the safe WCET ranges
obtained from SWEAK and Baseline for (a) ESAIL, (b) PARTITION, (c) POLICY, and (d) MULTICORE.
The boxplots (25%-50%-75%) show the volumes of the hyperboxes obtained from 50 runs of SWEAK
and Baseline.

of ESAIL are similar when the system is subjected to weakly hard constraints (𝑚 ≥ 1), but not when the

hard constraints (𝑚 = 0) is applied. This trend is caused by the characteristics of ESAIL that the lowest

priority task in the system can easily starve to the worst test cases. Across all the subjects and weakly

hard constraints, the experiment results obtained from SWEAK are statistically significant and superior to

those obtained from Baseline (i.e., 𝑝-value < 0.05 and large effect sizes of �̂�12 ≈ 1.0) with regard to the

recommendation of safe WCET ranges. The average execution times of SWEAK and Baseline are 9.37h

and 7.55h, respectively.

EXP1 also evaluates the estimated WCET ranges obtained from 50 runs of SWEAK and Baseline.

We investigated each safe WCET range using 40000 simulation runs by varying test cases and WCET

values within the estimated WCET ranges. Table 4.2 shows the number of simulation runs (out of 40000

runs) where any violation of deadline constraints occurred for the following subjects: ESAIL (4.2a),

PARTITION (4.2b), POLICY (4.2c), and MULTICORE (4.2d). The tables present the maximum, median,

minimum, or average values of the results obtained from 50 runs of SWEAK and Baseline. We vary

the number of tolerable deadline misses 𝑚 in the experiments. The 𝑝-values and �̂�12 values show the

differences between the results obtained from 50 runs of both approaches.
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Table 4.2: Statistics of the number of simulation runs that violate any deadline constraints among
the 40000 simulations with varying test cases and WCET values within the estimated WCET ranges
obtained from SWEAK and Baseline. Each table compares the statistic values under different numbers
of tolerable deadline misses in deadline constraints for (a) ESAIL (b) PARTITION, (c) POLICY, and
(d) MULTICORE.

Number of tolerable deadline misses
(𝑚)

0 1 2 3 4

SW
E

A
K

Max 19.00 0.00 0.00 0.00 0.00
Median 2.00 0.00 0.00 0.00 0.00

Min 0.00 0.00 0.00 0.00 0.00
Average 3.80 0.00 0.00 0.00 0.00

B
as

el
in

e Max 574.00 0.00 0.00 0.00 0.00
Median 0.00 0.00 0.00 0.00 0.00

Min 0.00 0.00 0.00 0.00 0.00
Average 19.24 0.00 0.00 0.00 0.00

𝑝-value 0.1269 1.0000 1.0000 1.0000 1.0000
�̂�12 0.5830 0.5000 0.5000 0.5000 0.5000

(a) ESAIL

Number of tolerable deadline misses
(𝑚)

0 1 2 3 4

SW
E

A
K

Max 17.00 13.00 2.00 2.00 3.00
Median 0.00 0.00 0.00 0.00 0.00

Min 0.00 0.00 0.00 0.00 0.00
Average 2.60 0.90 0.06 0.08 0.10

B
as

el
in

e Max 409.00 333.00 128.00 180.00 345.00
Median 76.00 10.50 7.00 2.00 1.50

Min 0.00 0.00 0.00 0.00 0.00
Average 111.36 42.00 15.68 13.68 15.94

𝑝-value 0.0000 0.0000 0.0000 0.0000 0.0000
�̂�12 0.0196 0.1604 0.1280 0.1840 0.2378

(b) PARTITION

Number of tolerable deadline misses
(𝑚)

0 1 2 3 4

SW
E

A
K

Max 29.00 20.00 1.00 1.00 0.00
Median 1.50 0.00 0.00 0.00 0.00

Min 0.00 0.00 0.00 0.00 0.00
Average 3.48 1.14 0.04 0.08 0.00

B
as

el
in

e Max 705.00 199.00 137.00 46.00 216.00
Median 56.00 7.00 2.50 1.00 0.00

Min 0.00 0.00 0.00 0.00 0.00
Average 125.70 18.46 15.44 7.18 15.16

𝑝-value 0.0000 0.0000 0.0000 0.0000 0.0000
�̂�12 0.1024 0.2130 0.1988 0.2316 0.3000

(c) POLICY

Number of tolerable deadline misses
(𝑚)

0 1 2 3 4

SW
E

A
K

Max 90.00 2.00 0.00 0.00 0.00
Median 0.00 0.00 0.00 0.00 0.00

Min 0.00 0.00 0.00 0.00 0.00
Average 2.60 0.08 0.00 0.00 0.00

B
as

el
in

e Max 720.00 385.00 216.00 108.00 411.00
Median 37.00 4.00 6.00 2.00 0.00

Min 0.00 0.00 0.00 0.00 0.00
Average 104.58 27.26 18.98 11.02 13.70

𝑝-value 0.0000 0.0000 0.0000 0.0000 0.0000
�̂�12 0.0934 0.1516 0.1500 0.2000 0.2600

(d) MULTICORE

As shown in Table 4.2, SWEAK is statistically better (𝑝-values are less than 0.05) than Baseline

across all the numbers of tolerable deadline misses 𝑚 in the PARTITION, POLICY, and MULTICORE

subjects. The �̂�12 values are also much lower than 0.5. Specifically, SWEAK has small variations in the

number of simulation runs that violate deadline constraints (i.e., the differences between maximum and

minimum values), while Baseline has large variations. Regarding the ESAIL subject, both SWEAK and

Baseline show similar results, with 𝑝-values are greater than 0.05. However, Baseline has a large variation

in the number of simulation runs that violate deadline constraints when 𝑚 = 0. Note that the 𝑝-values in

both SWEAK and Baseline with weakly hard constraints (i.e., 𝑚 ≥ 1) are 1.0 because both approaches
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(b) PARTITION
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(c) POLICY
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(d) MULTICORE

Figure 4.7: Distributions of empirical probabilities and model probabilities across different numbers of
tolerable deadline misses 𝑚 in (a) ESAIL, (b) PARTITION, (c) POLICY, and (d) MULTICORE. The
boxplots (25%-50%-75%) show distributions of probabilities obtained from 50 runs of SWEAK and
Baseline.

produce similar WCET ranges (see Figure 4.6). The results indicate that the estimated WCET ranges

computed by SWEAK are more reliable than those computed by Baseline.

The answer to RQ1 is that SWEAK significantly outperforms the baseline approach with respect to

maximizing the hyperbox volume of WCET ranges under weakly hard constraints. The estimated

WCET ranges that use SWEAK have a smaller chance of violating deadline constraints on average

than the baseline approach. SWEAK takes 9.37h on average to estimate the WCET ranges, while the

baseline takes 7.53h, which indicates that SWEAK is acceptable for use in practice as an offline analysis

tool.

RQ2. Figure 4.7 depicts the results of EXP2 for the following subjects: ESAIL (Figure 4.7a), PARTITION

(Figure 4.7b), POLICY (Figure 4.7c), and MULTICORE (Figure 4.7d). Each sub-figure compares the

model probability and empirical probability obtained from the 50 runs of SWEAK by varying the

number of tolerable deadline misses 𝑚. Each boxplot in the figures shows the distributions (25%-

50%-75% quartiles) of model probabilities or empirical probabilities. As shown in Figure 4.7, the

empirical probabilities for all values of 𝑚 and for all the subjects, are significantly smaller than the model
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Figure 4.8: Execution times of SWEAK when varying the values of the following parameters: (a) number
of all tasks 𝑛, (b) ratio of aperiodic tasks 𝛾, (c) number of WCET ranges 𝜔, (d) number of processing cores
𝜖 , (e) simulation time t, and (f) number of APS partitions 𝜌. Each boxplot (25%-50%-75%) shows the
distribution of 100 execution time values measured from 10 runs of SWEAK for 10 synthetic systems with
the same configuration. The red line in each figure represents the trend of mean values of the execution
times over each parameter value change.

probabilities, as all the 𝑝-values are 0 and all the �̂�12 values are approximately 1. SWEAK infers a

logistic regression model with a probability of violating deadline constraints based on the labeled dataset

evaluated by the worst test cases. Therefore, the inferred model can be sensitive to the worst test cases

when the model is too fit to it. However, the model probabilities are more conservative (higher) than

the empirical probabilities that are evaluated by random test cases and random WCET values within the

best-point WCET ranges from the models. The results indicate that we can expect the actual probability

of violating deadline constraints to be lower than the model probability determined by SWEAK.

The answer to RQ2 is that SWEAK estimates significantly conservative probabilities of violating

deadline constraints compared to the empirical probabilities computed using simulations.

68



4.5. EVALUATION

RQ3. Figure 4.8 shows the results of EXP3 that describe the distributions (boxplots) of execution times

obtained from 10 × 10 runs of SWEAK, i.e., 10 runs for each synthetic system with the same experimental

setting (see Section 4.5.4). The red solid lines represent the changes in mean values of the execution times

while varying the following control parameters: (a) number of all tasks 𝑛, (b) ratio of aperiodic tasks 𝛾,

(c) number of WCET ranges 𝜔, (d) number of processing cores 𝜖 , (e) simulation time t, and (f) number of

APS partitions 𝜌. The experiments in EXP3 took 22.1 hours at most, which is acceptable as an offline

analysis technique. As shown in Figures 4.8a, 4.8d, and 4.8e, there is a positive linear relationship between

its execution times and the parameters, 𝑛, 𝜖 , and t, in SWEAK. Thus, we expect SWEAK to scale well

as the number of tasks, the number of processing cores, and the simulation time increase. However, the

parameters such as 𝛾 (Figure 4.8b) and 𝑟ℎ𝑜 (Figure 4.8f), they have no correlation with execution time.

We note that the parameter 𝜔 (Figure 4.8c) is quadratically correlated with the execution time of SWEAK.

The quadratic correlation is mainly attributed to the number of terms in the model equation used in

logistic regression (see Section 4.4.3). To build the equation, we leverage the second-order polynomial

RSM that contains linear, quadratic, and two-way interaction terms. Given the number of WCET ranges

𝜔, the number of RSM terms is determined by 1+𝜔 +𝜔 +
(𝜔

2
)

including constants. The logistic regression

algorithm infers the coefficients for each term of RSM, and the algorithm is used during the execution of

SWEAK. As the execution time of logistic regression is linearly related to the number of coefficients [100],

the execution time of SWEAK is quadratically correlated with the number of WCET ranges. Moreover, as

the number of WCET ranges 𝜔 increases, the distribution of execution time becomes wider, as can be seen

in Figure 4.8c. We found that this phenomenon occurs due to feature reduction and stepwise regression in

the learning step (see Section 4.4.3). These techniques output an equation consisting of terms that are

considered highly related to the violation of deadline constraints. This output affects the execution time

for sampling WCET values (distance-based) and building logistic regression models. Depending on the

system characteristics, the synthetic systems generated by setting 𝜔 = 10 have a more diverse equations

than those generated by setting 𝜔 = 1.

The answer to RQ3 is that SWEAK’s execution time is linearly related to the number of tasks, the

number of processing cores, and the simulation time. However, the execution time has a quadratic

correlation with the number of tasks when the WCETs are defined as ranges. Overall, SWEAK is

applicable in practice since it took 22.1h at most, in our experiments, which is generally acceptable.

Usefulness of SWEAK from the perspective of practitioners. To understand the practical usefulness

of SWEAK, we discussed it with two actual practitioners in the institution (Blackberry) with whom we

are collaborating. The feedback from the practitioners is as follows: (1) practitioners perceived that the

worst test cases SWEAK produces help them conduct further analysis of their systems’ schedulability,

(2) practitioners agreed that SWEAK enables trade-off analysis by training a machine learning model, and

(3) practitioners observed that SWEAK can be applied to various systems since it utilizes a simulator that

mimics the behavior of an industrial scheduler and supports weakly hard constraints.

Existing studies on subjects such as analytical schedulability analysis techniques [118, 31, 128] have

focused only on determining whether a system is schedulable or not. In addition, they do not support

additional information about occurring deadline misses, such as test cases. SWEAK, on the other hand,

yields worst-case (e.g., unschedulable) test cases that help practitioners investigate possible ways to

improve their systems. Moreover, SWEAK’s safe WCET ranges can offer some insights into deadline

miss scenarios and the corresponding conditions.
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The practitioners explained that the WCET values of some tasks are inherently unpredictable and

are usually estimated in a rough and conservative way. They also mentioned that estimating safe WCET

ranges is very difficult. As SWEAK systematically estimates safe WCET ranges with a probabilistic

guarantee, the practitioners agreed that SWEAK can provide guidelines for improving their systems.

Practitioners are able to select safe system-specific WCET ranges from the (infinite) WCET ranges which

are modeled by the safe border, rather than the simple selection of the best-size WCET range which is

automatically suggested by SWEAK. This flexibility allows them to perform domain-specific trade-off

analysis among possible WCET ranges and helps them in decision-making for their task design.

As a company that develops an ROTS, Blackberry has a long-term goal of providing its customers with

a schedulability analysis tool for systems with heterogeneous characteristics. SWEAK can be selected

as one candidate solution, as it is not only an industrial simulation-based approach but it also deals with

tasks that have hard and weakly hard constraints. These characteristics allow engineers to adopt SWEAK

to analyze various systems. Although we have not conducted user studies, given the positive feedback

from Blackberry, we believe SWEAK can be practically applicable and is worthy of further research.

4.5.7 Threats to validity

Internal validity. The internal validity of our experiments can be raised from the randomness of our

approach. To mitigate this threat, we compared SWEAK against a baseline under identical parameter

settings (e.g., the same number of WCET samples). We also ran both approaches 50 times for each

experiment setting and provided the results with the statistical comparisons using the Mann-Whitney

U-test and Vargha and Delaney’s �̂�12.

Another internal validity that can be raised is related to the configuration of the experiment. As

SWEAK uses a multi-objective search algorithm, there are many parameters that need to be optimized to

find proper solutions. However, these values could be applied differently depending on the subjects. This

could also be a research topic for future study. With this in mind, we applied these parameters following

the values that are commonly used in software engineering [93] and conducted preliminary experiments

for some parameters, such as the number of iterations.

External validity. The main threat to external validity is that our results may not be generalizable to other

contexts. SWEAK is applied to the systems that the WCET ranges are estimated by practitioners at early

stages. However, as we discussed in Section 4.1, estimating WCET values is a hard-problem, even in

the later stage of development, and the values are resulted in ranges. Thus, SWEAK is also available for

use at later stage of development for testing schedulability of systems and for providing more precise

WCET ranges. In addition, SWEAK was evaluated with an industrial system from the satellite domain.

To support the lack of industrial subjects, we evaluated SWEAK by applying it to a large number of

synthetic systems that vary their characteristics, including those of the industrial scheduler according to

the industrial guidelines. We believe that these synthetic systems reflect real industrial systems. We have

made the synthetic systems available online [111].

4.6 Related works

This section discusses previous studies related to WCET estimation in real-time systems and schedulability

analysis with weakly hard constraints and systems under APS. To the best of our knowledge, there is no
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previous work that probabilistically estimates WCET ranges accounting for weakly hard constraints by

using industrial simulations.

WCET estimation in real-time systems. Measurement-based approaches are commonly used in prac-

tice [3]. The basic concept of this method is to run a large number of executions on the targeted hardware

or an accurate simulator based on some inputs [183]. To obtain the input data, the method analyzes source

code execution paths including sub-tasks and partition the execution paths. Owing to the difficulty of

finding the worst-case inputs and the WCET value, Burns and Edgar [38] proposed a probabilistic WCET

estimation approach that applies statistical analysis. Since after the initial study, measurement-based

approaches have shown significant progress [85, 51, 26, 2]. However, as they need an executable source

code and the target hardware, these approaches are only available for systems at later stages of develop-

ment. To remove the hardware dependencies, static analysis approaches [73, 169, 133, 86] have been

proposed. These approaches commonly estimate WCET values based on the abstract timing model of

the target hardware and the software structure analysis. The main research strands are modeling cache

behaviors [169, 133, 86] and building a timing model for hardware instructions [84, 7, 33]. However,

these approaches still requires source code implementation. By contrast, SWEAK is an approach for the

early stages of development. In contrast to the approaches reported in previous studies, SWEAK uses

roughly estimated WCET ranges as inputs. SWEAK restricts the WCET ranges, i.e., whether a task is

schedulable or not, with a selected probability of violating deadline constraints. This approach relies on

an adapted genetic algorithm, a simulation, feature reduction, a dedicated sampling strategy, and logistic

regression. Additionally, SWEAK supports the trade-off analysis of the WCET values of tasks and also

allows practitioners to choose their desired probability of violating deadline constraints.

Schedulability analysis with weakly hard constraints. To ensure the quality of service (QoS), schedula-

bility should be analyzed with weakly hard constraints [27]. There are approaches [189, 143] that analyze

schedulability of weakly hard real-time systems. Xu et al. [189] proposed a deadline miss model for

analyzing the number of deadline misses within consecutive task arrivals when a task is under unexpected

overload. Pazzaglia et al. [143] presented a generalized schedulability analysis tool for weakly hard

real-time systems by accounting for free offsets and release jitters based on a mixed integer linear pro-

gramming formulation. Instead of mathematical schedulability analysis, SWEAK provides probabilistic

guarantees of satisfying deadline constraints by inferring logistic regression models based on search and

simulation outputs; thus, it complements the aforementioned research strands on weakly hard real-time

systems.

Schedulability analysis of systems under APS. As the usage of QNX Neutrino has increased, a few

APS-related analysis have recently been started [53, 52]. Dasari et al. [53] found that APS has drawbacks

in partition configurations. Then, they provided some guidelines to help engineers properly configure

partitions. Dasari et al. [52] investigated the APS behavior in practice and proposed a technique that

verifies the end-to-end delay (i.e., schedulability) of event chains, which are the sequence of tasks activated

by an event, on a real-time system using APS. The model employs a response time analysis of the chains.

SWEAK complements APS-related research strand by providing analysis tools for schedulability at

early stages so that engineers can design their systems with safe WCET ranges under a certain level of

probabilistic guarantee.

71



CHAPTER 4. ESTIMATING PROBABILISTIC SAFE WCET RANGES FOR WEAKLY HARD
REAL-TIME SYSTEMS

4.7 Conclusion

This chapter introduced SWEAK, which estimates safe WCET ranges of tasks in a weakly hard real-time

system at early design stages. SWEAK employs a genetic algorithm to search for the worst test cases

that maximize the magnitude of deadline misses and the degree of consecutive deadline misses. Based

on the search results, SWEAK infers safe WCET ranges using a logistic regression model. The inferred

WCET ranges maximize the volume of the ranges with a conservative probability of violating deadline

constraints. Consequently, we evaluated SWEAK on a mission-critical real-time satellite system and

synthetic systems generated by following the guidelines provided by our industrial partner. The results

indicate that SWEAK infers conservative WCET ranges that provide high flexibility in selecting WCET

ranges for practitioners. We further evaluated SWEAK through 600 synthetic systems, varying their

degree of complexity. The results show that SWEAK scales to complex systems. SWEAK completed

all experiments within at most 22.1h. Hence, SWEAK is acceptable as an offline analysis technique in

practice for estimating WCET ranges with a conservative probability of violating deadline constraints.

For future directions of this research, we plan to develop a real-time task modeling language that

facilitates schedulability analysis and represents dependencies, constraints, and system behaviors. In

addition, the usefulness of SWEAK should be further validated with other case studies from different

domains.
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Chapter 5

Optimal Priority Assignment for Real-Time
Systems: A Coevolution-Based Approach

5.1 Introduction

Mission-critical systems are found in many different application domains, such as aerospace, automotive,

and healthcare domains. The success of such systems depends on both functional and temporal correct-

ness. For functional correctness, systems are required to provide appropriate outputs in response to the

corresponding stimuli. Regarding temporal correctness, systems are supposed to generate outputs within

specified time constraints, often referred to as deadlines. The systems that have to comply with such

deadlines are known as real-time systems [119]. Real-time systems typically run multiple tasks in parallel

and rely on a real-time scheduling policy to decide which tasks should have access to processing cores,

i.e., CPUs, at any given time.

While developing a real-time system, one of the most common problems that engineers face is the

assignment of priorities to real-time tasks in order for the system to meet its deadlines. Based on priorities

of real-time tasks, the system’s task scheduler determines a particular order for allocating real-time tasks

to processing cores. Hence, a priority assignment that is poorly designed by engineers makes the system

scheduler execute tasks in an order that is far from optimal. In addition, the system will likely violate its

performance and time constraints, i.e., deadlines, if a poor priority assignment is used.

In real-time systems, the problem of optimally assigning priorities to tasks is important not only

to avoid deadline misses but also to maximize safety margins from task deadlines and is subject to

engineering constraints. Tasks may exceed their expected execution times due to unexpected interrupts.

For example, it is infeasible to test an aerospace system exhaustively on the ground such that potential

environmental uncertainties, e.g., those related to space radiations, are accounted for. Hence, engineers

assign optimal priorities to tasks such that the remaining times from tasks’ completion times to their

deadlines, i.e., safety margins, are maximized to cope with potential uncertainties. Furthermore, engineers
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typically have to account for additional engineering constraints, e.g., they assign higher priorities to critical

tasks that must always meet their deadlines compared to the tasks that are less critical or non-critical.

A brute force approach to find an optimal priority assignment would have to examine all 𝑛! distinct

priority assignments, where 𝑛 denotes the number of tasks. Furthermore, for a given priority assignment,

schedulability analysis is, in general, known as a hard problem [20], which determines whether or not

tasks will always complete their executions within their specified deadlines. Thus, optimizing priority

assignments is also a hard problem because the space of all possible system states to explore in order to

find optimal priority assignments is very large. Most of the prior works on optimizing priority assignments

provide analytical methods [76, 115, 19, 56, 46, 58, 55], which rely on well-defined system models

and are very restrictive. For example, they assume that tasks are independent, i.e., tasks do not share

resources [61, 197]. Industrial systems, however, are typically not compatible with such (simple) system

models. In addition, none of the existing work addresses the problem of optimizing priority assignments

by simultaneously accounting for multiple objectives, such as safety margins and engineering constraints,

as discussed above.

Search-based software engineering (SBSE) has been successfully applied in many application domains,

including software testing [180, 179, 117, 14, 158], program repair [181, 168, 1], and self-adaptation [9,

44, 157], where the search spaces are very large. Despite the success of SBSE, engineering problems in

real-time systems have received much less attention in the SBSE community. In the context of real-time

systems, there exists limited work on finding stress test scenarios [36] and predicting worst-case execution

times [113], which complements our work.

In practice, priority assignments result from an interactive process between the development and

testing teams. While developing a real-time system, developers assign priorities to real-time tasks in the

system and then testers stress the system to check whether or not the system meets its specified deadlines.

If testers find a problematic condition under which any of the tasks violates its deadline, developers have

to modify the priority assignment to address the problem. The back-and-forth between the development

and testing teams continues until a priority assignment that does not lead to any deadline miss is found or

the one that yields the least critical deadline misses is identified. The process is, however, not automated.

In this chapter, we use metaheuristic search algorithms to automate the process of assigning priorities

to real-time tasks. To mimic the interactive back-and-forth between the development and testing teams,

we use competitive coevolutionary algorithms [122]. Coevolutionary algorithms are a specialized class

of evolutionary search algorithms. They simultaneously coevolve two populations (also called species)

of (candidate) solutions for a given problem. They can be cooperative or competitive. Such competitive

coevolution is similar to what happens in nature between predators and preys. For example, faster preys

escape predators more easily, and hence they have a higher probability of generating offspring. This

impacts the predators, because they need to evolve as well to become faster if they want to feed and

survive [130]. Hence, the two species, i.e., predators and preys, have coevolved competitively. We note

that no species has the competing traits of predators and preys simultaneously as such species could not

evolve to survive. In our context, priority assignments defined by developers can be seen as preys and

stress test scenarios as predators. The priority assignments need to evolve so that stress testing is not able

to push the system into breaking its real-time constraints. Dually, stress test scenarios should evolve to be

able to break the system when there is a chance to do so.
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Contributions. We propose an Optimal Priority Assignment Method for real-time systems (OPAM).

Specifically, we apply multi-objective, two-population competitive coevolution [146] to address the

problem of finding near-optimal priority assignments, aiming at maximizing the magnitude of safety

margins from deadlines and constraint satisfaction. In OPAM, two species relate to priority assignment and

stress testing coevolve synchronously, and compete against each other to find the best possible solutions.

We evaluated OPAM by applying it to six complex, industrial systems from different domains, including

the aerospace, automotive, and avionics domains, and several synthetic systems. Our results show that:

(1) OPAM finds significantly better priority assignments compared to our baselines, i.e., random search

and sequential search, (2) the execution time of OPAM scales linearly with the number of tasks in a

system and the time required to simulate task executions, and (3) OPAM priority assignments significantly

outperform those manually defined by engineers based on domain expertise.

We note that OPAM is the first attempt to apply coevolutionary algorithms to address the problem of

priority assignment. Further, it enables engineers to explore trade-offs among different priority assignments

with respect to two objectives: maximizing safety margins and satisfying engineering constraints. Our full

evaluation package is available online [109].

Organization. The remainder of this chapter is structured as follows: Section 5.2 motivates our work.

Section 5.3 defines our specific problem of priority assignment in practical terms. Section 5.4 discusses

related work. Sections 5.5 and 5.6 describe OPAM. Section 5.7 evaluates OPAM. Section 5.8 concludes

this chapter.

5.2 Motivating case study

We motivate our work using an industrial case study from the satellite domain. Our case study concerns

a mission-critical real-time satellite, named ESAIL [123], which has been developed by LuxSpace – a

leading system integrator for microsatellites and aerospace system. ESAIL tracks vessels’ movements

over the entire globe as the satellite orbits the earth. The vessel-tracking service provided by ESAIL

requires real-time processing of messages received from vessels in order to ensure that their voyages are

safe with the assistance of accurate, prompt route provisions. Also, as ESAIL orbits the planet, it must

be oriented in the proper position on time in order to provide services correctly. Hence, ESAIL’s key

operations, implemented as real-time tasks, need to be completed within acceptable times, i.e., deadlines.

Engineers at LuxSpace analyze the schedulability of ESAIL across different development stages. At

an early design stage, the engineers use a priority assignment method that extends the rate monotonic

scheduling policy [76], which is a theoretical priory assignment algorithm used in real-time systems. At

a later development stage, if the engineers found that any real-time task of ESAIL cannot complete its

execution within its deadline, the engineers, in our study context, reassign priorities to tasks in order to

address the problem of deadline violations.

The rate monotonic policy assigns priorities to tasks that arrive to be executed periodically and must be

completed within a certain amount of time, i.e., periodic tasks with hard deadlines. According to the policy,

periodic tasks that arrive frequently have higher priorities than those of other tasks that arrive rarely. In

ESAIL, for example, if the vessel-tracking task arrives every 100ms and the satellite-position control task

arrives every 150ms, the former has a higher priority than the latter. However, the rate monotonic policy

does not account for tasks that arrive irregularly and should be completed within a reasonable amount

of time, i.e., aperiodic tasks with soft deadlines. ESAIL contains aperiodic tasks with soft deadlines as
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well, such as a task for updating software. Hence, the engineers extend the rate monotonic policy to

assign priorities to all tasks of ESAIL. The extensions are as follows: First, the engineers assign priorities

to periodic tasks based on the rate monotonic policy. Second, the engineers assign lower priorities to

aperiodic tasks than those of periodic tasks. As aperiodic tasks with soft deadlines are typically considered

less critical than periodic tasks with hard deadlines, the engineers aim to ensure that periodic tasks

complete their executions within their deadlines by assigning lower priorities to aperiodic tasks while

periodic tasks have higher priority. Engineers use a heuristic to assign priorities to aperiodic tasks. They

treat aperiodic tasks as (pseudo-)periodic tasks by setting aperiodic tasks’ (expected) minimum arrival

rates as their fixed arrival periods, making the tasks frequently arrive. The engineers then apply the rate

monotonic policy for the aperiodic tasks with the synthetic periods while ensuring that aperiodic tasks

have lower priorities than those of periodic tasks.

A priority assignment made at an early design stage keeps changing while developing ESAIL due

to various reasons, such as changes in requirements and implementation constraints. At a development

stage, instead of relying on the extended rate monotonic policy, the engineers assign priorities based on

their domain expertise, manually inspecting schedulability analysis results. Hence, a priority assignment

at later development stages often does not follow the extended rate monotonic policy. For example, as

aperiodic tasks are also expected to be completed within a reasonable amount of time, some aperiodic

tasks may have higher priorities than some periodic tasks as long as they are schedulable.

Engineers at LuxSpace, however, are still faced with the following issues: (1) Their priority assignment

method, which extends the rate monotonic scheduling policy, assigns priorities to tasks in order to ensure

only that tasks are to be schedulable. However, engineers have a pressing need to understand the quality

of priority assignments in detail as they impact ESAIL operations differently. For example, once ESAIL

is launched into orbit, the satellite operates in the space environment, which is inherently impossible to be

fully tested on the ground. Unexpected space radiations may trigger unusual system interrupts, which

hasn’t been observed on the ground, resulting in overruns of ESAIL tasks’ executions. In such cases, a pri-

ority assignment assessed on the ground may not be able to tolerate such unexpected uncertainties. Hence,

engineers need a priority assignment that enables ESAIL tasks to tolerate unpredictable uncertainties as

much as possible and to be schedulable. (2) Engineers at LuxSpace assign priorities to tasks without any

systematic assistance. Instead, they rely on their expertise and the current practices described above to

manually assign priorities to ensure that tasks are to be schedulable. To this end, we are collaborating

with LuxSpace to develop a solution for addressing these issues in assigning task priority.

5.3 Problem description

This section defines the task, scheduler, and schedulability concepts, which extend the concepts defined

in Section 2.1 by augmenting our previous definitions with the notions of safety margins, constraints in

assigning priorities, and relationships between real-time tasks. We then describe the problem of optimizing

priority assignments such that we maximize the magnitude of safety margins and the degree of constraint

satisfaction. Figure 5.1 shows an overview of the conceptual model that represents the key abstractions

required to analyze optimal priority assignments for real-time systems. The entities in the conceptual

model are described below.

Task. We denote by 𝜏𝑖 a real-time task that should complete its execution within a specified deadline

after it is activated (or arrived). Every real-time task 𝜏𝑖 has the following properties: priority denoted
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Figure 5.1: A conceptual model representing the key abstractions to analyze optimal priority assignments.

by 𝑃𝑖, deadline denoted by 𝐷𝑖, and worst-case execution time (WCET) denoted by 𝐶𝑖. Task priority

𝑃𝑖 determines if an execution of a task 𝜏𝑖 is preempted by another task. Typically, a task 𝜏𝑖 preempts

the execution of a task 𝜏𝑗 if the priority of 𝜏𝑖 is higher than the priority of 𝜏𝑗 , i.e., 𝑃𝑖 > 𝑃 𝑗 . The 𝑃𝑖
priority is a fixed value assigned to task 𝜏𝑖. Such fixed priorities are determined offline; hence, they are

not changed online for any reason. Note that a real-time task scheduler that relies on fixed priorities is

applied in all the study subjects in this chapter (see Section 5.7.2) and is commonly used in industrial

systems [36, 83, 117, 11, 194, 64, 68, 108].

The 𝐷𝑖 function determines the deadline of a task 𝜏𝑖 relative to its arrival time. A task deadline can

be either hard or soft. A hard deadline of a task 𝜏𝑖 constrains that 𝜏𝑖 must complete its execution within

a deadline 𝐷𝑖 after 𝜏𝑖 is activated. While violations of hard deadlines are not acceptable, depending on

the operating context of a system, violating soft deadlines may be to some extent tolerated. Note that we

use a metaheuristic search relying on fitness functions quantifying the degrees of deadline misses, safety

margins, and constraint satisfaction. Such functions do not depend on the nature of the deadlines. Our

approach outputs a set of priority assignments that are Pareto optimal with respect to safety margins and

constraint satisfaction. Engineers then perform domain-specific trade-off analysis among Pareto solutions.

Hence, in this chapter, we handle hard and soft deadline tasks in the same manner.

Real-time tasks are either periodic or aperiodic. Periodic tasks, which are typically triggered by

timed events, are invoked at regular intervals specified by their period. We denote by 𝑇𝑖 the period of a

periodic task 𝜏𝑖, i.e., a fixed time interval between subsequent activations (or arrivals) of 𝜏𝑖. Any task

that is not periodic is called aperiodic. Aperiodic tasks have irregular arrival times and are activated by

external stimuli which occur irregularly. In real-time analysis, based on domain knowledge, we typically

specify a minimum inter-arrival time denoted by 𝑇𝑚𝑖𝑛
𝑖

and a maximum inter-arrival time denoted by 𝑇𝑚𝑎𝑥
𝑖

indicating the minimum and maximum time intervals between two consecutive arrivals of an aperiodic task

𝜏𝑖. In real-time analysis, sporadic tasks are often separately defined as having irregular arrival intervals

and hard deadlines [119]. In our conceptual definitions, however, we do not introduce new notations for

sporadic tasks because the deadline and period concepts defined above sufficiently characterize sporadic

tasks. Note that for periodic tasks 𝜏𝑖, we have 𝑇𝑚𝑖𝑛
𝑖

= 𝑇𝑚𝑎𝑥
𝑖

= 𝑇𝑖. Otherwise, for aperiodic tasks 𝜏𝑖, we

have 𝑇𝑚𝑎𝑥
𝑖

> 𝑇𝑚𝑖𝑛
𝑖

.
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Task relationships. The execution of a task 𝜏𝑖 depends not only on its own parameters described

above, e.g., priority 𝑃𝑖 and period 𝑇𝑖 , but also on its relationships with other tasks. Relationships between

tasks are typically determined by task interactions related to accessing shared resources and triggering

arrivals of other tasks [5]. Specifically, if two tasks 𝜏𝑖 and 𝜏𝑗 access a shared resource 𝑟 in a mutually

exclusive way, 𝜏𝑖 may be blocked from executing for the period during which 𝜏𝑗 accesses 𝑟 . We denote by

dp(𝜏𝑖 , 𝜏𝑗) the resource-dependency relation between tasks 𝜏𝑖 and 𝜏𝑗 that holds if 𝜏𝑖 and 𝜏𝑗 have mutually

exclusive access to a shared resource 𝑟 such that they cannot be executed in parallel or preempt each other,

but one can execute only after the other has completed accessing 𝑟 .

The other type of relationship between tasks is related to a task 𝜏𝑖 triggering the arrival of another

task 𝜏𝑗 . This is a common interaction between tasks [120, 11, 64]. For example, 𝜏𝑖 may hand over some

of its workload to 𝜏𝑖 due to performance or reliability reasons. We denote by tr(𝜏𝑖 , 𝜏𝑗) the triggering

relation between tasks 𝜏𝑖 and 𝜏𝑗 that holds if 𝜏𝑖 triggers the arrival of 𝜏𝑗 . We note that both relationships

are defined at the level of tasks, following prior works [120, 11, 64] describing the five industrial case

study systems used in our experiments (see Section 5.7.2).

Scheduler. Let Γ be a set of tasks to be scheduled by a real-time scheduler. A scheduler then

dynamically schedules executions of tasks in Γ according to the tasks’ arrivals and the scheduler’s

scheduling policy over the scheduling period T = [0, t]. We denote by 𝑎𝑖,𝑘 the 𝑘th arrival time of a task

𝜏𝑖 ∈ Γ. The first arrival of a periodic task 𝜏𝑖 does not always occur immediately at the system start time

(0). Such offset time from the system start time to the first arrival time 𝑎𝑖,1 of 𝜏𝑖 is denoted by offset( 𝑗).
For a periodic task 𝜏𝑖 , the 𝑘th arrival of 𝜏𝑖 within T is 𝑎𝑖,𝑘 ≤ t and is computed by 𝑎𝑖,𝑘 = 𝑂𝑖 + (𝑘 − 1) · 𝑇𝑖 .
For an aperiodic task 𝜏𝑗 , 𝑎 𝑗 ,𝑘 is determined based on the 𝑘−1th arrival time of 𝜏𝑗 and its minimum and

maximum arrival times. Specifically, for 𝑘 > 1, 𝑎 𝑗 ,𝑘 ∈ [𝑎 𝑗 ,𝑘−1 + 𝑇𝑚𝑖𝑛
𝑗

, 𝑎 𝑗 ,𝑘−1 + 𝑇𝑚𝑎𝑥
𝑗
] and, for 𝑘 = 1,

𝑎 𝑗 ,1 ∈ [𝑇𝑚𝑖𝑛
𝑗

, 𝑇𝑚𝑎𝑥
𝑗
], where 𝑎 𝑗 ,𝑘 < t.

A scheduler reacts to a task arrival at 𝑎𝑖,𝑘 by scheduling the execution of 𝜏𝑖 . Depending on a scheduling

policy (e.g., rate monotonic scheduling policy for single-core systems [76] and single-queue multi-core

scheduling policy [17]), an arrived task 𝜏𝑖 may not start its execution at the same time as it arrives when

higher priority tasks are executing on all processing cores. Also, task executions may be interrupted due

to preemption. We denote by 𝑒𝑖,𝑘 the completion time for the 𝑘th arrival of a task 𝜏𝑖. According to the

worst-case execution time of a task 𝜏𝑖 , we have: 𝑒𝑖,𝑘 ≥ 𝑎𝑖,𝑘 + 𝐶𝑖 .

During system operation, a scheduler generates a schedule scenario which describes a sequence

of task arrivals and their completion time values. We define a schedule scenario as a set 𝑆 of tuples

(𝜏𝑖 , 𝑎𝑖,𝑘 , 𝑒𝑖,𝑘) indicating that a task 𝜏𝑖 has arrived at 𝑎𝑖,𝑘 and completed its execution at 𝑒𝑖,𝑘 . Due to a

degree of randomness in task execution times and aperiodic task arrivals, a scheduler may generate a

different schedule scenario for different runs of a system.

Figure 5.2 shows two schedule scenarios 𝑆 (Figure 5.2a) and 𝑆′ (Figure 5.2b) produced by a scheduler

over the [0, 23] time period of a system run. Both 𝑆 and 𝑆′ describe executions of three tasks, 𝜏1, 𝜏2,

and 𝜏3 arrived at the same time stamps (see 𝑎𝑡𝑖 in the figures). In both scenarios, the aperiodic task 𝜏1
is characterized by: 𝑇𝑚𝑖𝑛

1 = 5, 𝑇𝑚𝑎𝑥
1 = 13, 𝐷1) = 4, and 𝐶1 = 2. The aperiodic task 𝜏2 is characterized

by: 𝑇𝑚𝑖𝑛
2 ) = 3, 𝑇𝑚𝑎𝑥

2 ) = 10, 𝐷2 = 4, and 𝐶2 = 1. The periodic task 𝜏3 is characterised by: 𝑇3 = 8,

𝐷3 = 7, and 𝐶3 = 3. The priorities of the three tasks in 𝑆 (resp. 𝑆′) satisfy the following: 𝑃1 > 𝑃2 > 𝑃3

(resp. 𝑃2 > 𝑃3 > 𝑃1). In both scenarios, task executions can be preempted depending on their priorities.
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Figure 5.2: Example schedule scenarios 𝑆 and 𝑆′ of three tasks: 𝜏1, 𝜏2, and 𝜏3. (a) The 𝑆 schedule scenario
is produced when 𝑃1 = 3, 𝑃2 = 2, and 𝑃3 = 1. (b) The 𝑆′ schedule scenario is produced when 𝑃1 = 1,
𝑃2 = 3, and 𝑃3 = 3.

Then, 𝑆 is defined by 𝑆 = {(𝜏1, 5, 7), . . ., (𝜏2, 4, 5), . . ., (𝜏3, 8, 14), (𝜏3, 16, 19))}; and 𝑆′ is defined by

𝑆′ = {(𝜏1, 5, 7), . . ., (𝜏2, 4, 5), . . ., (𝜏3, 8, 12), (𝜏3, 16, 19))}.
Schedulability. Given a schedule scenario 𝑆, a task 𝜏𝑖 is schedulable if 𝜏𝑖 completes its execution

before its deadline, i.e., for all 𝑒𝑖,𝑘 observed in 𝑆, 𝑒𝑖,𝑘 ≤ 𝑎𝑖,𝑘 +𝐷𝑖). Let Γ be a set of tasks to be scheduled

by a scheduler. A set Γ of tasks is then schedulable if for every schedule 𝑆 of Γ, we have no task 𝜏𝑖 ∈ Γ
that misses its deadline.

As shown in schedule scenarios 𝑆 and 𝑆′ presented in Figures 5.2a and 5.2b, respectively, all three

tasks, 𝜏1, 𝜏2, and 𝜏3, are schedulable. However, we note that the overall amounts of remaining time, i.e.,

safety margins, from the tasks’ completions to their deadlines observed in 𝑆 and 𝑆′ are different (see the

second completion times and deadlines of 𝜏1, 𝜏2, and 𝜏3 in 𝑆 and 𝑆′) because 𝑆 and 𝑆′ are produced by

using different priority assignments. Engineers typically desire to assign optimal priorities to real-time

tasks that aim at maximizing such safety margins, as discussed below.

Problem. In real-time systems, fixed priorities are typically assigned to tasks [61, 108]. Finding

an appropriate priority assignment is important not only for ensuring the schedulability of a system but

also for maximizing the safety margins within which a system can tolerate unexpected execution time

overheads. For example, if an unpredictable error occurs and triggers check-point mechanisms [56], which

re-execute part or all of a task 𝜏𝑖 , then the execution time of 𝜏𝑖 unexpectedly overruns. Hence, engineers
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need an optimal priority assignment that maximizes the overall remaining times from task completion

times to task deadlines, i.e., safety margins.

While assigning priorities to tasks, engineers also account for constraints, that are often but not always

domain-specific. For example, aperiodic tasks’ priorities should be lower than those of periodic tasks

because periodic tasks are often more critical than aperiodic tasks. Hence, engineers develop a system

that prioritizes executions of periodic tasks over aperiodic tasks. Recall from Section 5.2, this constraint

is desirable by engineers. When needed, however, engineers can violate the constraint to some extent in

order to ensure that aperiodic tasks complete within a reasonable amount of time while periodic tasks meet

their deadlines. Constraints can be either hard constraints, which must be satisfied, or soft constraints,

which are desired to be satisfied. In our study, hard constraints need to be assured while scheduling tasks,

e.g., a running task’s priority must be higher than a ready task’s priority, which are enforced by a scheduler.

In the context of optimizing priority assignments, we focus on maximizing the extent of satisfying soft

constraints. We refer to a soft constraint as a constraint in this chapter.

Our work aims at optimizing priority assignments that maximize the safety margins while satisfying

such constraints. Specifically, for a set Γ of tasks to be analyzed, we define three concepts as follows: (1) a

priority assignment for Γ denoted by
#»
𝑃 , (2) the magnitude of safety margins for a priority assignment

#»
𝑃 denoted by fs( #»

𝑃 ), and (3) the degree of constraint satisfaction denoted by fc( #»
𝑃 ). We note that

Section 5.6.3 describes how we optimize
#»
𝑃 , and compute fs( #»

𝑃 ) and fc( #»
𝑃 ) in detail. Our study aims

at finding a set B of best possible priory assignments that are Pareto optimal [102] such that a priority

assignment
#»
𝑃 ∈ B maximizes both fs( #»

𝑃 ) and fc( #»
𝑃 ), and any other priority assignments in B are equally

viable.

5.4 Related work

This section discusses related research strands in the areas of priority assignments, real-time analysis

using exhaustive techniques, search-based analysis in real-time systems, and coevolutionary analysis in

software engineering.

Priority assignment. The problem of optimally assigning priorities to real-time tasks has been widely

studied [76, 118, 115, 19, 170, 78, 20, 56, 46, 58, 59, 55, 61, 197, 92]. Fineberg and Serlin [76]

reported early work that relies on a simple system model, assuming, for example, that all tasks arrive

periodically, tasks run on a single processing core, tasks’ deadlines are equal to their periods, and task

executions are independent from one another. They proposed a priority assignment method, named

rate-monotonic priority ordering (RMPO), that assigns higher priorities to the tasks with shorter periods.

RMPO can find a feasible priority assignment that guarantees periodic tasks to be schedulable when

such priority assignments exist [118]. Leung and Whitehead [115] extended RMPO to relax one of

the underlying assumptions made in RMPO. Specifically, their priority assignment approach, known as

deadline-monotonic priority ordering (DMPO), accounts for task deadlines that can be less than or equal

to their periods. In contrast to our work, however, these methods are often not applicable to industrial

systems that are not compatible with their simplified system models. Recall from Section 5.3 that a

realistic system typically consists of both periodic and aperiodic tasks. Task executions depend on their

relationships, i.e., resource dependencies and triggering relationships, with other tasks.

Audsley [20] designed a priority assignment method, named optimal priority assignment (OPA),

that relies on an existing schedulability analysis method 𝑀. OPA guarantees to find a feasible priority
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Table 5.1: Comparing our work, OPAM, with existing priority assignment techniques with respect to the
properties captured in their underlying system models.

Properties OPAM RMPO DMPO OPA OPA-MLD RPA FNR-PA PRPA OPTA EPAF

Periodic
task

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Aperiodic
task

◦ ◦ ◦ ◦ ◦ ◦

Resource
dependency

◦

Triggering
relationship

◦

Multi-core
system

◦ ◦ ◦ ◦ ◦ ◦

Safety
margin

◦ ◦ ◦ ◦

Engineering
constraint

◦ ◦

assignment that is schedulable according to 𝑀 if such priority assignments exist. OPA is applicable to

more complex systems than those supported by the methods mentioned above, i.e., RMPO and DMPO.

Specifically, OPA can find a feasible priority assignment even in the following situations: (1) First arrivals

of periodic tasks occur after some offset time [19]. (2) Aperiodic tasks have arbitrary deadlines [170].

(3) Task executions are scheduled based on a non-preemptive scheduling policy [78]. (4) Tasks run on

multiple processing cores [59]. Unlike our approach that accounts for two objectives, safety margins

and engineering constraints (see Section 5.3), OPA attempts to find a feasible priority assignment whose

only objective is to make all tasks schedulable. Note that such a feasible priority assignment does not

necessarily maximize safety margins as discussed in Section 5.3. Hence, a feasible priority assignment

obtained by OPA is often fragile and sensitive any changes in task executions and unable to accommodate

unexpected overheads in task execution times, which are commonly observed in industrial systems [56].

OPA has been extended by several works [56, 46, 58, 55]. Davis and Burns [56] presented a robust

priority assignment method (RPA) with a degree of tolerance for unexpected overruns of task execution

times. Chu and Burns [46] introduced an extended OPA algorithm (OPA-MLD) that minimizes the

lexicographical distance between the desired priority assignment and the one obtained by the algorithm.

OPA-MLD enables important tasks to have higher priorities. Davis and Bertogna [55] proposed an RPA

extension (FNR-PA) to make RPA work when a system allows task preemption to be deferred for some

interval of time. Davis and Burns [58] developed a probabilistic robust priority assignment method (PRPA)

for a real-time system to be less likely to violate its deadlines. Even though the prior works mentioned

above improve OPA to some extent, they assume that task executions are independent of one another.

In contrast to these existing approaches, OPAM accounts for dependencies among task executions, i.e.,

resource dependencies and triggering relationships (see our problem description in Section 5.3).

Some recent priority assignment techniques address scalability. Hatvani et al. [92] presented an

optimal priority and preemption-threshold assignment algorithm (OPTA) that attempts to decrease the

81



CHAPTER 5. OPTIMAL PRIORITY ASSIGNMENT FOR REAL-TIME SYSTEMS: A
COEVOLUTION-BASED APPROACH

computation time for finding a feasible priority assignment. OPTA uses a heuristic to traverse a problem

space while pruning infeasible paths to efficiently and effectively explore the problem space. Zhao and

Zeng [197] introduced an effective priority assignment framework (EPAF) that combines a commercial

solver for integer linear programs and their problem-specific optimization algorithm. However, these

methods rely on simple system models that assume, for example, task executions to be independent

and running on a single processing core. Therefore, the applicability of these techniques is limited. In

contrast, recall from Sections 5.2 and 5.3 that our approach aims at scaling to complex industrial systems

while accounting for realistic system characteristics regarding task periods, inter-arrival times, resource

dependencies, triggering relationships, and multiple processing cores.

Table 5.1 compares our work, OPAM, with the other priority assignment techniques mentioned above.

As shown in the table, we note that prior works rely on system models that are very restrictive. In particular,

existing work assumes that task executions are independent of one another. However, task dependencies

such as resource dependencies and triggering relationships are commonly observed in industrial systems.

In addition, we note that no existing solution simultaneously accounts for safety margins and engineering

constraints. Hence, to our knowledge, OPAM is the first attempt to provide engineers with a set of equally

viable priority assignments, allowing trade-off analysis with respect to the two objectives: maximizing

safety margins and satisfying engineering constraints.

Real-time analysis using exhaustive techniques. Constraint programming and model checking have been

applied to conclusively and exhaustively verify whether or not a system meets its deadlines [106, 5, 138, 6].

Existing research on priority assignment based on OPA rely on such exhaustive techniques to prove the

schedulability of a set of tasks for a given priority assignment. We note that schedulability analysis is,

in general, an NP-hard problem [61] that cannot be solved in polynomial time. As a result, exhaustive

techniques based on model checking and constraint solving are often not amenable to analyze large

industrial systems such as ESAIL – our motivating case study system – described in Section 5.2. To assess

if exhaustive techniques could scale to ESAIL, as discussed in Section 5.7.8, we performed a preliminary

experiment using UPPAAL [25], a model checker for real-time systems. We observed that UPPAAL was

not able to verify schedulability of ESAIL tasks for a fixed priority assignment even after letting it run for

several days (see Section 5.7.8 for more details).

Search-based analysis in real-time systems. In real-time systems, most of the existing works that use

search-based techniques focus on testing [180, 179, 36, 117, 14]. Wegener et al. [180, 179] introduced

a testing approach based on a genetic algorithm that aims to check computation time, memory usage,

and task synchronization by analyzing the control flow of a program. Briand et al. [36] applied a genetic

algorithm to find stress test scenarios for real-time systems. Lin et al. [117] proposed a search-based

approach to check whether a real-time system meets its timing and security constraints. Arcuri et al. [14]

presented a black-box system testing approach based on a genetic algorithm. Beyond testing real-time

systems, Nejati et al. [137, 139] developed a search-based trade-off analysis technique that helps engineers

balance the satisfaction of temporal constraints and keeping the CPU time usage at an acceptable level.

Lee et al. [113] combined a search algorithm and machine learning to estimate safe ranges of worst-case

task execution times within which tasks likely meet their deadlines. In contrast to these prior works,

OPAM addresses the problem of optimally assigning priorities to real-time tasks while accounting for

multiple objectives regarding safety margins and engineering constraints, thus enabling Pareto (trade-off)

82



5.5. APPROACH OVERVIEW

analysis. Further, OPAM uses a multi-objective, competitive coevolutionary search algorithm, which has

been rarely applied to date in prior studies of real-time systems, as discussed next.

Coevolutionary analysis in software engineering. Despite the success of search-based software engi-

neering (SBSE) in many application domains including software testing [180, 179, 117, 14, 158], program

repair [181, 168, 1], and self-adaptation [9, 44, 157], coevolutionary algorithms have been applied in only

a few prior studies [185, 186, 34]. Wilkerson et al. [185, 186] present a coevolution-based approach to

automatically correct software. Their work introduced a program representation language to facilitate their

automated corrections. Boussaa et al. [34] developed a code-smells detection approach. The main idea

is to evolve two competing populations of code-smell detection rules and artificial code-smells. Unlike

these prior works, we study the problem of optimally assigning priorities to tasks in real-time systems.

To our knowledge, we are the first to address the priority assignment problem using a multi-objective,

competitive coevolutionary search algorithm.

5.5 Approach overview

Finding an optimal priority assignment is an inherently interactive process. In practice, once engineers

assign priorities to the real-time tasks in a system, testers then stress the system to find a condition, i.e.,

a particular sequence of task arrivals, in which a task execution violates its deadline. Testers typically

use a simulator or hardware equipment to stress the system by triggering plausible worst-case arrivals of

tasks that maximize the likelihood of deadline misses. If testers find task arrivals that induce deadline

misses, the task arrivals are reported to engineers in order to fix the problem by reassigning priorities.

This interactive process of assigning priorities and testing schedulability continues until both engineers

and testers ensure that the tasks meet their deadlines.

For such intrinsically interactive problem-solving domains, we conjecture that coevolutionary algo-

rithms are potentially suitable solutions. A coevolutionary algorithm is a search algorithm that mutually

adapts one of different species, e.g., in our study, two populations of priority assignments and task-arrival

sequences, acting as foils against one another. Specifically, we apply multi-objective, two-population

competitive coevolution [122] to address our problem of finding optimal priority assignments (see Sec-

tion 5.3). In our approach, the two populations of priority assignments and stress test scenarios, i.e.,

task-arrival sequences, evolve synchronously, competing with each other in order to search for optimal

priority assignments that maximize the magnitude of safety margins from deadlines and the extent of

constraint satisfaction. Note that better priority assignments enable a system to achieve larger safety

margins. Hence, those priority assignments have a higher chance to pass stress test scenarios. This impacts

the stress test scenarios because they need to evolve as well, aiming at inducing deadline misses in the

system.

Recall from Section 5.4 that most of the existing SBSE research relies on search algorithms using a

single population [44, 1, 157]. However, such algorithms do not fit the problem of priority assignments

targeted here. When (1) two competing traits between task arrivals and priority assignments are encoded

together in an individual of a single population and (2) two contradicting fitness functions regarding safety

margins and deadline misses, which are exact opposites, assess such individuals, the notion of Pareto

optimality is not applicable. In that case, maximizing the magnitude of safety margins necessarily entails

minimizing the magnitude of deadline misses. Hence, a single population-based search algorithm cannot

make Pareto improvements that maximize safety margins (resp. deadline misses) while not minimizing
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Figure 5.3: An overview of our Optimal Priority Assignment Method for real-time systems (OPAM).

deadline misses (resp. safety margins). Specifically, the dominance relation over such individuals does

not exist because if an individual 𝐼 is strictly better than another individual 𝐼 ′ in one fitness value, 𝐼 is

always worse than 𝐼 ′ in the other fitness value. Hence, we are not able to obtain equally viable solutions

with respect to the contradicting objectives using such a method.

Figure 5.3 shows an overview of our proposed solution: Optimal Priority Assignment Method for

real-time tasks (OPAM). OPAM requires as input task descriptions defined by engineers, which specify

task characteristics and their relationships (see Section 5.3). Given such input task descriptions, the “find

worst task arrivals’ and “find best priority assignments” steps aim at generating worst-case sequences of

task arrivals and best-case priority assignments, respectively. A worst-case sequence of task arrivals means

that the magnitude of deadline misses, i.e., the amounts of time from task deadlines to task completion

times, is maximized when tasks arrive as defined in the sequence. Note that if there is no deadline

miss, a task-arrival sequence is considered worst-case if tasks complete their executions as close to their

deadlines as possible. In contrast, a priority assignment is best-case when the magnitude of safety margins

is maximized. Beyond maximizing safety margins, the “find best priority assignments” step accounts

for satisfying engineering constraints in assigning priorities to tasks. OPAM evolves two competing

populations of task-arrival sequences and priority assignments synchronously generated from the two steps.

OPAM then outputs a set of priority assignments that are Pareto optimal with regards to the magnitude

of safety margins and the extent of satisfying constraints. Hence, OPAM allows engineers to perform

domain-specific trade-off analysis among Pareto solutions and is useful in practice to support decision

making with respect to their task design. For example, suppose engineers develop a weakly hard real-time

systems [27] that can tolerate occasional deadline misses. In that case, engineers may consider a few

deadline misses as less important (as long as their consequences are negligible) than the overall magnitude

of safety margins in their trade-off analysis. Section 5.6 describes OPAM in detail.

5.6 Competitive coevolution

Figure 5.4 describes the OPAM algorithm for finding optimal priority assignments, which employs

multi-objective, two-population competitive coevolution. The algorithm first randomly initializes two

populations A and P for task-arrival sequences and priority assignments, respectively (lines 13–15). For

A, OPAM randomly varies task arrivals of aperiodic tasks to create ps𝑎 task-arrival sequences, according

to the input task descriptions Γ. Regarding P, OPAM randomly creates ps𝑝 priority assignments that may

include one defined by engineers if available.

The two populations sequentially evolve during the allotted analysis budget (see line 17 in Figure 5.4).

The best priority assignment is the one that makes tasks schedulable and maximizes the magnitude

of safety margins, while satisfying engineering constraints for a given worst sequence of task arrivals.

Hence, searching for the best priority assignments involves searching for the worst sequences of task
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1 Algorithm Search optimal priority assignments
2 Input Γ: task descriptions
3 Input 𝑛𝑐: number of coevolution cycles //budget
4 Input ps𝑎: population size //task-arrival sequences
5 Input ps𝑝: population size //priority assignments
6 Input cp𝑎: crossover probability //task-arrival sequences
7 Input cp𝑝: crossover probability //priority assignments
8 Input mp𝑎: mutation probability //task-arrival sequences
9 Input mp𝑝: mutation probability //priority assignments

10 Input E: set of task-arrival sequences //external evaluation
11 Output B: best Pareto front
12
13 //initialize populations
14 A← randomize_arrivals(Γ, ps𝑎)
15 P← randomize_priorities(Γ, ps𝑝)
16
17 for 𝑛𝑐 times do
18 //evolution: find worst-case sequences of task arrivals
19 //objective: deadline misses
20 evaluate_internal_fitness_arrivals(A,P)
21 A← bread_arrivals(A,P, cp𝑎 ,mp𝑎) //GA
22
23 //evolution: find best-case priority assignments
24 //objectives: safety margins and constraints
25 evaluate_internal_fitness_priorities(P,A)
26 P← breed_priorities(P,A, cp𝑝 ,mp𝑝) //NSGAII
27
28 //external fitness evaluation
29 //objectives: safety margins and constraints
30 evaluate_external_fitness(P,E)
31 B← select_best(P ∪ B)
32
33 return B

Figure 5.4: Multi-objective two-population competitive coevolution for finding optimal priority assign-
ments.

arrivals. We create two populations A and P searching for the worst arrival sequences and the best priority

assignments, respectively. The fitness values of task-arrival sequences in A are computed based on how

well they challenge the priority assignments in P, i.e., maximizing the magnitude of deadline misses (line

20). Likewise, the priority assignments in P are evaluated based on how well they perform against the

task-arrival sequences in A, i.e., maximizing the magnitude of safety margins while satisfying constraints

(line 25). Once the two populations are assessed against each other, OPAM generates the next populations

based on the computed fitness values (lines 21 and 26). OPAM tailors the breading mechanisms of

steady-state genetic algorithms (GA) [184] for A and NSGAII [63] for P.

OPAM uses two types of fitness functions, namely internal and external fitness evaluations, which

play a different and complementary role as described below. The two internal fitness evaluations in lines

20 and 25 of the listing in Figure 5.4 aim at selecting individuals – task-arrival sequences and priority

assignments – for breeding the next A and P populations. OPAM evaluates the external fitness for the

P population of priority assignments to find a best Pareto front (lines 28–31). As shown in lines 20 and

25, the internal fitness values of individuals in A (resp. P) are computed based on how they perform

with respect to individuals in P (resp. A). Hence, an individual’s internal fitness is assessed through

interactions with competing individuals. For example, a priority assignment in the first generation may
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have acceptable fitness values regarding safety margins and constraint satisfaction with respect to the first

generation of task-arrival sequences, which are likely far from worst-case sequences. However, priority

assignment fitness may get worse in later generations as the task-arrival sequences evolve towards larger

deadline misses. Thus, if OPAM simply monitors internal fitness, it cannot reliably detect coevolutionary

progress as an individual’s internal fitness changes according to competing individuals. The problem of

monitoring progress in coevolution has been observed in many studies [75, 146]. To address it, OPAM

computes external fitness values of priority assignments in P based on a set E of task-arrival sequences

generated independently from the coevolution process. By doing so, OPAM can observe the monotonic

improvement of external fitness for priority assignments. We note that, in general, if interactions between

two competing populations are finite and any interaction can be examined with non-zero probability at

any time, monotonicity guarantees that a coevolutionary algorithm converges to a solution [146].

We note that our approach for evolving task-arrival sequences is based on past work [36], where a

specific genetic algorithm configuration was proposed to find worst-case task-arrival sequences. One

significant modification is that OPAM accounts for task relationships – resource-dependency and task trig-

gering relationships – and a multi-core scheduling policy based on simulations to evaluate the magnitude

of deadline misses.

Following standard practice [149], the next sections describe OPAM in detail by defining the represen-

tations, the scheduler, the fitness functions, and the evolutionary algorithms for coevolving the task-arrival

sequences and priority assignments. We then describe the external fitness evaluation of OPAM.

5.6.1 Representations

OPAM coevolves two populations of task-arrival sequences and priority assignments. A task-arrival

sequence is defined by their inter-arrival time characteristics (see Section 5.3). A priority assignment is

defined by a function that maps priorities to tasks.

Task-arrival sequences. Given a set Γ of tasks to be scheduled, a feasible sequence of task arrivals is

a set 𝐴 of tuples (𝜏𝑖 , 𝑎𝑖,𝑘) where 𝜏𝑖 ∈ Γ and 𝑎𝑖,𝑘 is the 𝑘th arrival time of a task 𝜏𝑖. Thus, a solution 𝐴

represents a valid sequence of task arrivals of Γ (see valid 𝑎𝑖,𝑘 computation in Section 5.3). Let T = [0, t]
be the time period during which a scheduler receives task arrivals. The size of 𝐴 is equal to the number of

task arrivals over the T time period. Due to the varying inter-arrival times of aperiodic tasks (Section 5.3),

the size of 𝐴 will vary across different sequences.

Priority assignments. Given a set Γ of tasks to be scheduled, a feasible priority assignment is a list
#»
𝑃

of priority 𝑃𝑖 for each task 𝜏𝑖 ∈ Γ. OPAM assigns a non-negative integer to a priority 𝑃𝑖 of 𝜏𝑖 such that

priorities are comparable to one another. The size of
#»
𝑃 is equal to the number of tasks in Γ. Each task in Γ

has a unique priority. Hence, a priority assignment
#»
𝑃 is a permutation of all tasks’ priorities. We note that

these characteristics of priority assignments are common in many real-time analysis methods [20, 56, 197]

and industrial systems (e.g., see our six industrial case study systems described in Section 5.7.2).

5.6.2 Simulation

OPAM relies on simulation for analyzing the schedulability of tasks in a scalable way. For instance, an

inter-arrival time of a software update task in a satellite system is approximately at most three months. In

such cases, conducting an analysis based on an actual scheduler is prohibitively expensive. Also, applying

an exhaustive technique for schedulability analysis typically doesn’t scale to an industrial system (e.g., see
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our experiment results using a model checker described in Section 5.7.8). Instead, OPAM uses a real-time

task scheduling simulator, named OPAMScheduler, which applies a scheduling policy, i.e., single-queue

multi-core scheduling policy [17], based on discrete simulation time events. Note that we chose the

single-queue multi-core scheduling policy for OPAMScheduler since our case study systems (described in

Section 5.7.2) rely on this policy.

OPAMScheduler takes as input a feasible task-arrival sequence 𝐴 and a priority assignment
#»
𝑃 for

scheduling a set Γ of tasks. It then outputs a schedule scenario as a set 𝑆 of tuples (𝜏𝑖 , 𝑎𝑖,𝑘 , 𝑒𝑖,𝑘) where

𝑎𝑖,𝑘 and 𝑒𝑖,𝑘 are the 𝑘th arrival and end time values of a task 𝜏𝑖, respectively (see Section 5.3). For each

task 𝜏𝑖, OPAMScheduler computes 𝑒𝑖,𝑘 based on its WCET and scheduling policy while accounting for

task relationships (see the dp(𝜏𝑖 , 𝜏𝑗) resource-dependency relationship and the tr(𝜏𝑖 , 𝜏𝑗) task triggering

relationship in Section 5.3). To simulate the worst-case executions of tasks, OPAMScheduler assigns

tasks’ WCETs to their execution times.

OPAMScheduler implements a single-queue multi-core scheduling policy [17], which schedules a

task 𝜏𝑖 with explicit priority 𝑃𝑖 and deadline 𝐷𝑖. When tasks arrive, OPAMScheduler puts them into a

single queue that contains tasks to be scheduled. At any simulation time, if there are tasks in the queue

and multiple cores are available to execute tasks, OPAMScheduler first fetches a task 𝜏𝑖 from the queue in

which 𝜏𝑖 has the highest priority 𝑃𝑖 . OPAMScheduler then allocates task 𝜏𝑖 to any available core. Note that

if task 𝜏𝑖 shares a resource with a running task 𝜏𝑗 in another core, i.e., the dp(𝜏𝑖 , 𝜏𝑗) resource-dependency

relationship holds, 𝜏𝑖 will be blocked until 𝜏𝑗 releases the shared resource.

OPAMScheduler works under the assumption that context switching time is negligible, which is also

a working assumption in many scheduling analysis methods [118, 20, 64]. Note that the assumption is

practically valid and useful at an early development step in the context of real-time analysis. For instance,

our collaborating partner, LuxSpace, accounts for the waiting time of tasks due to context switching

between tasks through adding some extra time to WCET estimates at the task design stage. Note that

OPAM can be applied with any scheduling policy, including those that account for context switching time

and multiple queues.

5.6.3 Fitness functions

Internal fitness: deadline misses. Given a feasible task-arrival sequence 𝐴 and a priority assignment
#»
𝑃 ,

we formulate a function, fd(𝐴, #»
𝑃 ), to quantify the degree of deadline misses regarding a set 𝐽 of tasks to

be scheduled. To compute fd(𝐴, #»
𝑃 ), OPAM runs OPAMScheduler for 𝐴 and

#»
𝑃 and obtains a schedule

scenario 𝑆. We denote by dist(𝜏𝑖 , 𝑘) the distance between the end time and the deadline of the 𝑘th arrival

of task 𝜏𝑖 observed in 𝑆 and define dist(𝜏𝑖 , 𝑘) = 𝑒𝑖,𝑘 − 𝑎𝑖,𝑘 + 𝐷𝑖 (see Section 5.3 for the notation end time

𝑒𝑖,𝑘 , arrival time 𝑎𝑖,𝑘 , and deadline 𝐷𝑖). We denote by lk(𝜏𝑖) the last arrival index of a task 𝜏𝑖 in 𝐴. Given

a set Γ of tasks to be scheduled, the fd(𝐴, #»
𝑃 ) function is defined as follows:

fd(𝐴, #»
𝑃 ) =

∑︁
𝜏𝑖 ∈Γ,𝑘∈[1,lk(𝜏𝑖) ]

2dist(𝜏𝑖 ,𝑘)

Note that fd(𝐴, #»
𝑃 ) is defined as an exponential equation. Hence, when all task executions observed in

a schedule scenario 𝑆 meet their deadlines, fd(𝐴, #»
𝑃 ) is a small value as any distance dist(𝜏𝑖 , 𝑘) between

the task end time and the deadline of the 𝑘th arrival of task 𝜏𝑖 is a negative value. In contrast, deadline

misses result in positive values for dist(𝜏𝑖 , 𝑘). In such cases, fd(𝐴, #»
𝑃 ) is a large value. The exponential
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form of fd(𝐴, #»
𝑃 ) was precisely selected for this reason, to assign large values for deadline misses but

small values when deadlines are met. By doing so, fd(𝐴, #»
𝑃 ) prevents an undesirable solution that would

result into many task executions meeting deadlines obfuscating a smaller number of deadline misses.

Following the principles of competitive coevolution, individuals in a population A of task-arrival

sequences need to be assessed by pitting them against individuals in the other population P of priority

assignments. We denote by fd(𝐴,P) the internal fitness function that quantifies the overall magnitude

of deadline misses across all priority assignment
#»
𝑃 ∈ P, regarding a set Γ of tasks to be scheduled.

The fd(𝐴,P) fitness is used for breeding the next population of task-arrival sequences. OPAM aims to

maximize fd(𝐴,P), defined as follows:

fd(𝐴,P) =
∑︁
#»
𝑃 ∈P

fd(𝐴, #»
𝑃 )/|P|

Internal fitness: safety margins. Given a feasible priority assignment
#»
𝑃 and a task-arrival sequence 𝐴,

we denote by fs( #»
𝑃, 𝐴) the magnitude of safety margins regarding a set 𝐽 of tasks to be scheduled. The

computation of fs( #»
𝑃, 𝐴) is similar to the computation of fd(𝐴, #»

𝑃 ) regarding the use of OPAMScheduler,

which outputs a schedule scenario 𝑆. The difference is that OPAM reverses the sign of fd(𝐴, #»
𝑃 ) as OPAM

aims at maximizing the magnitude of safety margins. Given a set 𝐽 of tasks to be scheduled, the fs( #»
𝑃, 𝐴)

function is defined as follows:

fs( #»
𝑃, 𝐴) =

∑︁
𝜏𝑖 ∈Γ,𝑘∈[1,lk(𝜏𝑖) ]

−2dist(𝜏𝑖 ,𝑘) (i.e,−fd(𝐴, #»
𝑃 ))

Given two populations P and A of priority assignments and task-arrival sequences, similar to internal

fitness fd(𝐴,P), priority assignments in P need to be assessed against task-arrival sequences in A. We

formulate an internal fitness function, fs( #»
𝑃,A), to quantify the overall magnitude of safety margins across

all task-arrival sequences 𝐴 ∈ A, regarding a set Γ of tasks to be scheduled and a priority assignment
#»
𝑃 .

OPAM relies on the fs( #»
𝑃,A) function to breed the next population of priority assignments. OPAM aims

to maximize fs( #»
𝑃,A), which is defined as follows:

fs( #»
𝑃,A) =

∑︁
𝐴∈A

fs( #»
𝑃, 𝐴)/|A|

Internal fitness: constraints. Given a priority assignment
#»
𝑃 , we formulate an internal fitness function,

fc( #»
𝑃 ), to quantify the degree of satisfaction of soft constraints set by engineers. Such function is required

as we recast the satisfaction of such constraints into an optimization problem, in order to minimize

constraint violations. Specifically, OPAM accounts for the following constraint: aperiodic tasks should

have lower priorities than those of periodic tasks. Recall from Section 5.2 that engineers consider this

constraint to be desirable. We denote by lp( #»
𝑃 ) the lowest priority of periodic tasks in

#»
𝑃 . For a set 𝐽 of

tasks to be scheduled, OPAM aims to maximize fc( #»
𝑃 ), which is defined as follows:

fc( #»
𝑃 ) =

∑︁
𝑗∈𝐽


lp( #»
𝑃 ) − 𝑃𝑖 , if 𝜏𝑖 is an aperiodic task

0, otherwise

Greater 𝑃𝑖 values denote higher priorities. Given a priority assignment
#»
𝑃 , if 𝑃𝑖 for an aperiodic task

𝜏𝑖 is lower than the priority of any of the periodic tasks, lp( #»
𝑃 ) − 𝑃𝑖 is a positive value. OPAM measures

the difference between priorities of aperiodic and periodic tasks. By doing so, fc( #»
𝑃 ) rewards aperiodic
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tasks that satisfy the above constraint and consistently penalizes those that violate it. Hence, OPAM aims

at maximizing fc( #»
𝑃 ).

External fitness: safety margins and constraints. To examine the quality of priority assignments

and monitor the progress of coevolution, OPAM takes as input a set E of task-arrival sequences created

independently from the coevolution process. Given a set E of task-arrival sequences and a priority

assignment
#»
𝑃 , OPAM utilizes fs( #»

𝑃,E) and fc( #»
𝑃 ) described above as external fitness functions for

quantifying the magnitude of safety margins and the extent of constraint satisfaction, respectively. As

E does not change over the coevolution process, fs( #»
𝑃,E) is used for evaluating a priority assignment

#»
𝑃 since it is not impacted by the evolution of task-arrival sequences. Hence, external fitness functions

ensure that OPAM monitors the progress of coevolution in a stable manner. Given two populations P and

A of priority assignments and task-arrival sequences, we recall that the fd(𝐴,P) internal fitness function

quantifies the overall magnitude of deadline misses across all priority assignments in P for the given

sequence of task arrivals 𝐴. The fs( #»
𝑃,A) internal fitness function quantifies the overall magnitude of

safety margins across all sequences of task arrivals in A for the given priority assignments
#»
𝑃 . Hence,

the internal fitness of 𝐴 (resp.
#»
𝑃 ) is assessed through interactions with competing individuals in P (resp.

A). Therefore, if OPAM relies only on the internal fitness functions, it cannot gauge the progress of

coevolution in a stable manner as an individual’s internal fitness depends on competing individuals.

We note that soft deadline tasks also require to execute within reasonable execution time, i.e., (soft)

deadline. As the above fitness functions return quantified degrees of deadline misses and safety margins,

OPAM uses the same fitness functions for both soft and hard deadline tasks.

5.6.4 Evolution: worst-case task arrivals

The algorithm in Figure 5.5 describes in detail the evolution of task-arrival sequences in lines 18–21

of the listing in Figure 5.4. OPAM adapts a steady-state Genetic Algorithm (GA) [122] for evolving

task-arrival sequences. As shown in lines 8–14, OPAM first evaluates each task-arrival sequence in the A
population against the P population of priority assignments. OPAM executes OPAMScheduler to obtain a

schedule scenario 𝑆 for a task-arrival sequence 𝐴𝑥 ∈ A and a priority assignment
#»
𝑃 𝑦 ∈ P (line 11). OPAM

then computes the internal fitness fd(𝐴𝑥 ,P) capturing the magnitude of deadline misses (lines 12–14).

We note that a steady-state GA iteratively breeds offspring, assess their fitness, and then reintroduce them

into a population. However, OPAM computes internal fitness of all task-arrival sequences in A at every

generation. This is because internal fitness is computed in relation to P, which is coevolving with A.

Breeding the next population is done by using the following genetic operators: (1) Selection: OPAM

selects candidate task-arrival sequences using a tournament selection technique, with the tournament size

equal to two which is the most common setting [77] (line 17 in Figure 5.5). (2) Crossover: Selected

candidate task-arrival sequences serve as parents to create offspring using a crossover operation (line 18).

(3) Mutation: The offspring are then mutated (line 19). Below, we describe our crossover and mutation

operators.

Crossover. A crossover operator is used to produce offspring by mixing traits of parent solutions.

OPAM modifies the standard one-point crossover operator [122] as two parent task-arrival sequences

𝐴𝑝 and 𝐴𝑞 may have different sizes, i.e., |𝐴𝑝 | ≠ |𝐴𝑞 |. Let Γ = {𝜏1, 𝜏2, . . . , 𝜏𝑛} be a set of tasks to be

scheduled. Our crossover operator first randomly selects an aperiodic task 𝜏𝑟 ∈ Γ. For all 𝑖 ∈ [1, 𝑟] and
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1 Algorithm Task-arrival sequences evolution
2 Input A: population of task-arrival sequences
3 Input P: population of priority assignments
4 Input cp𝑎: crossover probability //task-arrival sequences
5 Input mp𝑎: mutation probability //task-arrival sequences
6 Output A: population of task-arrival sequences
7
8 //evaluate internal fitness values for A
9 for each 𝐴𝑥 ∈ A

10 for each
#»
𝑃 𝑦 ∈ P

11 𝑆 ← simulate(𝐴𝑥 ,
#»
𝑃 𝑦) //OPAMScheduler

12 //dist(𝜏𝑖 , 𝑘) is computed based on 𝑆

13 fd(𝐴𝑥 ,
#»
𝑃 𝑦) =

∑
𝜏𝑖 ∈Γ,𝑘∈[1,lk(𝜏𝑖) ] 2

dist(𝜏𝑖 ,𝑘)

14 fd(𝐴𝑥 ,P) =
∑

#»
𝑃 𝑦 ∈P fd(𝐴𝑥 ,

#»
𝑃 𝑦)/|P|

15
16 //breed task-arrival sequences
17 parents← select_arrivals(A)
18 offspring← crossover_arrivals(parents, cp𝑎)
19 offspring← mutate_arrivals(offspring,mp𝑎)
20 //evaluate internal fitness values for offspring
21 for each 𝐴𝑥 ∈ offspring
22 for each

#»
𝑃 𝑦 ∈ P

23 𝑆 ← simulate(𝐴𝑥 ,
#»
𝑃 𝑦) //OPAMScheduler

24 //dist(𝜏𝑖 , 𝑘) is computed based on 𝑆

25 fd(𝐴𝑥 ,
#»
𝑃 𝑦) =

∑
𝜏𝑖 ∈Γ,𝑘∈[1,lk(𝜏𝑖) ] 2

dist(𝜏𝑖 ,𝑘)

26 fd(𝐴𝑥 ,P) =
∑

#»
𝑃 𝑦 ∈P fd(𝐴𝑥 ,

#»
𝑃 𝑦)/|P|

27 A← replace_arrivals(A, offspring)
28
29 return A

Figure 5.5: A steady-state GA-based algorithm for evolving task-arrival sequences.

𝜏𝑖 ∈ Γ, OPAM then swaps all 𝜏𝑖 arrivals between the two task-arrival sequences 𝐴𝑝 and 𝐴𝑞. Since Γ is

fixed for all solutions, OPAM can cross over two solutions that may have different sizes.

Mutation operator OPAM uses a heuristic mutation algorithm. For a task-arrival sequence 𝐴, OPAM

mutates the 𝑘th task arrival time 𝑎𝑖,𝑘 of an aperiodic task 𝜏𝑖 with a mutation probability. OPAM chooses a

new arrival time value of 𝑎𝑖,𝑘 based on the [𝑃𝑚𝑖𝑛
𝑖

, 𝑃𝑚𝑎𝑥
𝑖
] inter-arrival time range of 𝜏𝑖 . If such a mutation

of the 𝑘th arrival time of 𝜏𝑖 does not affect the validity of the 𝑘+1th arrival time of 𝜏𝑖, the mutation

operation ends. Specifically, let 𝑑 be a mutated value of 𝑎𝑖,𝑘 . In case 𝑎𝑖,𝑘+1 ∈ [𝑑 + 𝑃𝑚𝑖𝑛
𝑖

, 𝑑 + 𝑃𝑚𝑎𝑥
𝑖
],

OPAM returns the mutated 𝐴 task-arrival sequence.

After mutating the 𝑘th arrival time 𝑎𝑖,𝑘 of a task 𝜏𝑖 in a solution 𝐴, if the 𝑘+1th arrival becomes

invalid, OPAM corrects the remaining arrivals of 𝜏𝑖 . Let 𝑜 and 𝑑 be, respectively, the original and mutated

𝑘th arrival time of 𝜏𝑖. For all the arrivals of 𝜏𝑖 after 𝑑, OPAM first updates their original arrival time

values by adding the difference 𝑑 − 𝑜. Let T = [0, t] be the scheduling period. OPAM then removes some

arrivals of 𝜏𝑖 if they are mutated to arrive after t or adds new arrivals of 𝜏𝑖 while ensuring that all tasks

arrive within T.

As shown in lines 20–26 in Figure 5.5, the internal fitness of the generated offspring is computed

based on the P population. OPAM then updates the A population of task-arrival sequences by comparing

the offspring and individuals in A (line 27).

We note that when a system is only composed of periodic tasks, OPAM will skip evolving for worst-

case arrival sequences as arrivals of periodic tasks are deterministic (see Section 5.3). Nevertheless,
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1 Algorithm Priority assignments evolution
2 Input A: population of task-arrival sequences
3 Input P: population of priority assignments
4 Input ps𝑝: population size //priority assignments
5 Input cp𝑝: crossover probability //priority assignments
6 Input mp𝑝: mutation probability //priority assignments
7 Output P: population of priority assignments
8
9 //evaluate internal fitness values for P

10 for each
#»
𝑃 𝑥 ∈ P

11 for each 𝐴𝑦 ∈ A
12 𝑆 ← simulate(𝐴𝑦 ,

#»
𝑃 𝑥) //OPAMScheduler

13 //dist(𝜏𝑖 , 𝑘) is computed based on 𝑆

14 fs( #»
𝑃 𝑥 , 𝐴𝑦) =

∑
𝜏𝑖 ∈Γ,𝑘∈[1,lk(𝜏𝑖) ] −2dist(𝜏𝑖 ,𝑘)

15 fs( #»
𝑃 𝑥 ,A) =

∑
𝐴𝑦 ∈A fs( #»

𝑃 𝑥 , 𝐴𝑦)/|A|

16 fc( #»
𝑃 𝑥) =

∑
𝜏𝑖 ∈Γ

{
lp( #»
𝑃 𝑥) − 𝑃𝑖, if 𝜏𝑖 is an aperiodic task

0, otherwise

17
18 //breed priority assignments
19

#»
𝑅 ← sort_non_dominated_fronts(P)

20 assign_crowding_distance( #»
𝑅 )

21 P𝛼 ← NSGAII_breed( #»
𝑅, ps𝑝 , cp𝑝 ,mp𝑝)

22 //evaluate internal fitness values for P𝛼

23 for each
#»
𝑃 𝑥 ∈ P𝛼

24 for each 𝐴𝑦 ∈ A
25 𝑆 ← simulate(𝐴𝑦 ,

#»
𝑃 𝑥) //OPAMScheduler

26 //dist(𝜏𝑖 , 𝑘) is computed based on 𝑆

27 fs( #»
𝑃 𝑥 , 𝐴𝑦) =

∑
𝜏𝑖 ∈Γ,𝑘∈[1,lk(𝜏𝑖) ] −2dist(𝜏𝑖 ,𝑘)

28 fs( #»
𝑃 𝑥 ,A) =

∑
𝐴𝑦 ∈A fs( #»

𝑃 𝑥 , 𝐴𝑦)/|A|

29 fc( #»
𝑃 𝑥) =

∑
𝜏𝑖 ∈Γ

{
lp( #»
𝑃 𝑥) − 𝑃𝑖, if 𝜏𝑖 is an aperiodic task

0, otherwise

30
#»
𝑅 ← sort_non_dominated_fronts(P ∪ P𝛼)

31 assign_crowding_distance( #»
𝑅 )

32 P← select_archive( #»
𝑅, ps𝑝)

33
34 return P

Figure 5.6: An NSGAII-based algorithm for evolving priority assignments.

OPAM will optimize priority assignments based on given arrivals of periodic tasks. When needed, OPAM

can be easily extended to manipulate offset and period values for periodic tasks, in a way identical to how

we currently handle inter-arrival times for aperiodic tasks.

5.6.5 Evolution: best-case priority assignments

Figure 5.6 shows the evolution procedure of priority assignments, which refines lines 23–26 in

Figure 5.4. OPAM tailors the Non-dominated Sorting Genetic Algorithm version 2 (NSGAII) [63] to

generate a non-dominating (equally viable) set of priority assignments, representing the best trade-offs

found among the given internal fitness functions. This is referred to as a Pareto nondominated front [102],

where the dominance relation over priority assignments is defined as follows: A priority assignment
#»
𝑃

dominates another priority assignment
#»
𝑃 ′ if

#»
𝑃 is not worse than

#»
𝑃 ′ in all fitness values, and

#»
𝑃 is strictly

better than
#»
𝑃 ′ in at least one fitness value. NSGAII has been applied to many multi-objective optimization

problems [107, 158, 178].
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1 Algorithm Priority assignments evolution
2 Input E: set of task-arrival sequences //external evaluation
3 Input P: population of priority assignments
4 Input ps𝑝: population size //priority assignments
5 Input cp𝑝: crossover probability //priority assignments
6 Input mp𝑝: mutation probability //priority assignments
7 Output P: population of priority assignments
8
9 //evaluate external fitness values for P

10 for each
#»
𝑃 𝑥 ∈ P

11 for each 𝐸𝑦 ∈ E
12 𝑆 ← simulate(𝐸𝑦 ,

#»
𝑃 𝑥) //OPAMScheduler

13 //dist(𝜏𝑖 , 𝑘) is computed based on 𝑆

14 fs( #»
𝑃 𝑥 , 𝐸𝑦) =

∑
𝜏𝑖 ∈Γ,𝑘∈[1,lk(𝜏𝑖) ] −2dist(𝜏𝑖 ,𝑘)

15 fs( #»
𝑃 𝑥 ,E) =

∑
𝐸𝑦 ∈E fs( #»

𝑃 𝑥 , 𝐸𝑦)/|E|

16 fc( #»
𝑃 𝑥) =

∑
𝜏𝑖 ∈Γ

{
lp( #»
𝑃 𝑥) − 𝑃𝑖, if 𝜏𝑖 is an aperiodic task

0, otherwise

17
#»
𝑅 ← sort_non_dominated_fronts(P ∪ B)

18 assign_crowding_distance( #»
𝑅 )

19 B← select_best_front( #»
𝑅 ) //|B| ≤ |P|

20
21 return B

Figure 5.7: An algorithm for evaluating external fitness and finding the best Pareto front.

OPAM maintains a population P of priority assignments as an archive that contains the best priority

assignments discovered during coevolution. Unlike a standard application of NSGAII, in our study, we

need to reevaluate the internal fitness values for priority assignments in P at every generation as the

internal fitness values are computed based on the A population of task-arrival sequences, which coevolves.

As shown in lines 9–16 in Figure 5.6, OPAM first computes the internal fitness functions that measure the

magnitude of safety margins and the extent of constraint satisfaction. OPAM then sorts non-dominated

Pareto fronts (line 19) and assigns crowding distance (line 20) to introduce diversity among non-dominated

priority assignments [63].

For breeding the next population of priority assignments (line 21 in Figure 5.6, OPAM applies the

following standard genetic operators [159] that have been applied to many similar problems [99, 127, 158]:

(1) Selection. OPAM uses a binary tournament selection based on non-domination ranking and crowding

distance. The binary tournament selection has been used in the original implementation of NSGAII [63].

(2) Crossover. OPAM applies a partially mapped crossover (PMX) [80]. PMX ensures that the generated

offspring are valid permutations of priorities. (3) Mutation. OPAM uses a permutation swap method for

mutating a priority assignment. This mutation method interchanges two randomly-selected priorities in a

priority assignment according to a given mutation probability.

For the generated population P𝛼 of priority assignments, OPAM computes the two internal fitness

functions (lines 22–29 in Figure 5.6). OPAM then sorts non-dominated Pareto fronts for the union of the

current P and next P𝛼 populations (line 30), assign crowding distance (line 31), and select the best archive

by accounting for the computed non-domination ranking and crowding distance (line 32).

5.6.6 External fitness evaluation

Figure 5.7 shows an algorithm that computes the external fitness functions and finds the best Pareto

front, which refines lines 28–31 in Figure 5.4. To monitor the coevolution progress in a stable manner,
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OPAM takes as input a set E of task-arrival sequences that are generated independently from the coevolu-

tion process. We use an adaptive random search technique [45] to sample task-arrival sequences in order

to create E. The adaptive random search extends the naive random search by maximizing the Euclidean

distance between the sampled points such that it maximizes the diversity of task-arrival sequences in E.

As shown in lines 9–16 in Figure 5.7, OPAM computes the two external fitness values for each

priority assignment in the P population based on a given set E of task-arrival sequences. OPAM then

sorts non-dominated Pareto fronts for the union of the P population and the current best Pareto front (line

17), assigns crowding distance (line 18), and selects the best Pareto front by accounting for the computed

non-domination ranking and crowding distance (line 32). OPAM adopts NSGAII in order to maximize

the diversity of priority assignments in the best Pareto front.

5.7 Evaluation

This section describes our evaluation of OPAM through six industrial case studies from different domains

and several synthetic subjects. Our full evaluation package is available online [109].

5.7.1 Research questions

RQ1 (sanity check): How does OPAM perform compared with Random Search? For search-based

solutions, this RQ is an important sanity check to ensure that success is not due to the search problem

being easy [12]. Our conjecture is that a search-based algorithm, although expensive, will significantly

outperform naive random search (RS).

RQ2 (coevolution): Is competitive coevolution suitable to find best-case priority assignments? We

conjecture that a coevolutionary algorithm is a suitable solution to address the priority assignment problem

since it is solved, in practice, through a competing interactive process between the development and

testing teams. To answer this RQ, we compare OPAM with a sequential approach that first looks for

worst-case sequences of task arrivals and then tries to find best-case priority assignments.

RQ3 (scalability): Can OPAM find (near-)optimal solutions for large-scale systems in a reasonable time

budget? In this RQ, we investigate the scalability of OPAM by conducting some experiments with systems

of various sizes, including six industrial and several synthetic subjects. We study the relationship between

OPAM’s performance measures and the characteristics of study subjects.

RQ4 (usefulness): How do priority assignments generated by OPAM compare with priority assignments

defined by engineers? OPAM can be considered useful only when it finds priority assignments that

show benefits over those defined (manually) by engineers with domain expertise. This RQ therefore

compares the quality of priority assignments generated by OPAM with those defined by engineers. We

further discuss the usefulness of OPAM from a practical perspective, based on the feedback received from

engineers in LuxSpace.

5.7.2 Industrial study subjects

To evaluate RQs in realistic and diverse settings, we apply OPAM to six industrial study subjects from

different domains such as aerospace, automotive, and avionics domains. Specifically, we obtained one case

study subject from our industry partner, LuxSpace. We found the other five industrial study subjects in the

93



CHAPTER 5. OPTIMAL PRIORITY ASSIGNMENT FOR REAL-TIME SYSTEMS: A
COEVOLUTION-BASED APPROACH

Table 5.2: Description of the six industrial subject systems: number of periodic and aperiodic tasks,
resource dependencies, triggering relations, and platform cores.

Task types Relationships Platform

System Periodic Aperiodic Dependencies Triggering Cores

ICS 3 3 3 0 3
CCS 8 3 3 6 2
UAV 12 4 4 0 3
GAP 15 8 6 5 2
HPSS 23 9 5 0 1
ESAIL 11 14 0 0 1

literature [64], which, consistent with the LuxSpace system, all assume a single-queue, multi-core, fixed-

priority scheduling policy. Note that OPAM uses the same scheduling policy (described in Section 5.6.2)

as in Alesio’s work [64]. This policy uses fixed priorities that are determined offline and therefore do

not change dynamically. Table 5.2 summarizes the relevant attributes of these subjects, presenting the

number of periodic and aperiodic tasks, resource dependencies, triggering relations, and platform cores.

The subjects are characterized by real-time parameters, e.g., periods, deadlines, and priorities, described

in Section 5.3. We note that all the study subjects are deadlock-free systems as they do not have circular

resource dependencies. Regarding task priorities, all tasks in the six subjects have fixed priorities, which

are defined by experts in their domains. The full task descriptions (including WCET, inter-arrival times,

periods, deadlines, priorities, and relationship details) of the subjects are available online [109]. The main

missions of the six subjects are described as follows:

• ICS is an ignition control system that checks the status of an automotive engine and corrects any errors

of the engine [145]. The system was developed by Bosch GmbH1.

• CCS is a cruise control system that acquires data from vehicle sensors and maintains the specified

vehicle speed [11]. Continental AG2 developed the system.

• UAV is a mini unmanned air vehicle that follows dynamically defined way-points and communicates

with a ground station to receive instructions [171]. The system was developed in collaboration with the

University of Poitiers France and ENSMA3.

• GAP is a generic avionics platform for a military aircraft [120]. The system was designed in a joint

project with Carnegie Mellon University, the US Navy, and IBM4, aiming at supporting several missions

regarding air-to-surface attacks.

• HPSS is a satellite system for two satellites, named Herschel and Planck [132]. The two satellites share

the same computational architecture, although they have different scientific missions. Herschel aims at

1Bosch GmbH: https://www.bosch.com/
2Continental AG: https://www.continental.com
3ENSMA: https://www.ensma.fr/
4IBM: https://www.ibm.com/
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1 Algorithm Synthetic task generation
2 Input 𝑛: number of tasks
3 Input 𝑢𝑡: target utilization
4 Input 𝑇𝑚𝑖𝑛: minimum task period
5 Input 𝑇𝑚𝑎𝑥: maximum task period
6 Input 𝑔: granularity of task periods
7 Input 𝛾: ratio of aperiodic tasks
8 Input 𝜇: range factor to determine maximum inter-arrival times
9 Output 𝚪: set of tasks

10
11 𝚪← {}, C← {}
12 // synthesize a set of periodic tasks
13 U← UUniFast_discard(𝑛, 𝑢𝑡 ) // task utilizations
14 T← generate_task_periods(𝑛, 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 , 𝑔) // task periods
15 for each 𝑖 ∈ [1, 𝑛]
16 C ← C ∪ {𝑈𝑖 ·𝑇𝑖}, where 𝑈𝑖 ∈ U and 𝑇𝑖 ∈ T // WCETs
17 𝚪← generate_task_set(T,C) // set of tasks
18 // convert some periodic tasks to aperiodic tasks
19 𝚪← convert_aperiodic_tasks(𝚪, 𝛾, 𝜇)
20
21 return 𝚪

Figure 5.8: An algorithm for synthesizing a set of tasks.

studying the origin and evolution of stars and galaxies. Planck’s primary mission is the study of the

relic radiation from the Big Bang. ESA5 carried out the HPSS project.

• ESAIL is a microsatellite for tracking ships worldwide by detecting messages that ships radio-broadcast

(see Section 5.2). Luxspace, our industry partner, developed ESAIL in an ESA project.

5.7.3 Synthetic study subjects

To investigate RQ3, we use synthetic subjects in order to freely control key parameters in real-time

systems. We create a set of tasks by adopting a well-known procedure [70] for synthesizing real-time

tasks, which has been applied in many schedulability analysis studies [62, 195, 59, 82, 68].

Figure 5.8 describes a procedure that synthesizes a set of real-time tasks. For a given number 𝑛

of tasks and a target utilization 𝑢𝑡 , the procedure first generates a set U of task utilization values by

using the UUniFast-Discard algorithm [59] (line 13). The UUniFast-Discard algorithm is devised to

give an unbiased distribution of utilization values, where a utilization 𝑈𝑖 ∈ U is a positive value and∑
𝑈𝑖 ∈U𝑈𝑖 = 𝑢

𝑡 .

The procedure then generates a set T of 𝑛 task periods according to a log-uniform distribution within

a range [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥], i.e., given a task period (random variable) 𝑇𝑖 ∈ T, log𝑇𝑗 follows a uniform

distribution (line 14 in Figure 5.8). For example, when the minimum and maximum task periods are

𝑇𝑚𝑖𝑛 = 10ms and 𝑇𝑚𝑎𝑥 = 1000ms, respectively, the procedure generates (approximately) an equal

number of tasks in time intervals [10ms, 100ms] and [100ms, 1000ms]. The parameter 𝑔 is used to choose

the granularity of the periods, i.e., task periods are multiples of 𝑔. Such a distribution of task periods

provides a reasonable degree of realism with respect to what is usually observed in real systems [23].

5ESA: https://www.esa.int/
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As shown in lines 15–16 of the procedure in Figure 5.8, a set C of task WCETs are computed based

on the set U of task utilization values and the set T of task periods. Specifically, a task WCET 𝐶𝑖 ∈ C is

computed as 𝐶𝑖 = 𝑈𝑖 · 𝑇𝑖 .
As per line 17 of the listing in Figure 5.8, the procedure synthesizes a set 𝚪 of tasks. A task 𝜏𝑖 is

characterized by a period 𝑇𝑖 and a WCET 𝐶𝑖 and it is associated with a deadline 𝐷𝑖 and a priority 𝑃𝑖.

According to the rate-monotonic scheduling policy [118], tasks’ deadlines are equal to their periods and

tasks with shorter periods are given higher priorities.

To synthesize aperiodic tasks, the procedure converts some periodic tasks to aperiodic tasks according

to a given ratio 𝛾 of aperiodic tasks among all tasks (see line 19 in Figure 5.8). A range factor 𝜇 is used

to determine maximum inter-arrival times of aperiodic tasks. Specifically, for a task 𝜏𝑖 to be converted,

the procedure sets the minimum inter-arrival time 𝑇𝑚𝑖𝑛
𝑖

as 𝑇𝑚𝑖𝑛
𝑖

= 𝑇𝑖. The procedure then selects a

uniformly distributed value 𝑥 from the range (1, 𝜇] and computes the maximum inter-arrival time 𝑇𝑚𝑎𝑥
𝑖

as 𝑇𝑚𝑎𝑥
𝑖

= 𝑥 · 𝑇𝑖 .

5.7.4 Experimental design

This section describes how we design experiments to answer the RQs described in Section 5.7.1. We

conducted four experiments, EXP1, EXP2, EXP3, and EXP4, as described below.

EXP1. To answer RQ1, EXP1 compares OPAM with our baseline, which relies on random search, to

ensure that the effectiveness of OPAM is not due to the search problem being simple. Our baseline, named

RS, replaces GA with a random search for finding worst-case sequences of task arrivals and NSGAII

with a random search for finding best-case priority assignments. Note that RS uses the same internal

and external fitness functions (see Section 5.6.3) and also maintains the best populations during search;

however, it does not employ any genetic operators, i.e., crossover and mutation. In EXP1, we applied

OPAM and RS to the six industrial subjects described in Section 5.7.2.

Recall from Section 5.6.3 that OPAM uses a set E of task-arrival sequences that are generated

independently from the coevolution process in order to monitor the coevolution progress in a stable

manner. As OPAM and RS use the same set E of task-arrival sequences, EXP1 first compares OPAM and

RS based on E. In addition, EXP1 examines how well the solutions, i.e., priority assignments, found by

OPAM and RS perform with other sequences of task arrivals. To do so, we create six sets of sequences

of task arrivals for each study subject by varying the method to generate task-arrival sequences and the

number of task-arrival sequences. Note that task-arrival sequences generated by different methods are

valid with respect to the inter-arrival times defined in each study subject. Below we describe the six sets

of task-arrival sequences generated for each subject.

• T10
𝑎 : A set of task-arrival sequences generated by using an adaptive random search technique [45] that

aims at maximizing the diversity of task-arrival sequences. The T10
𝑎 set contains 10 sequences of task

arrivals.

• T10
𝑤 : A set of task-arrival sequences generated by using a stress test case generation method that aims at

maximizing the chances of deadline misses in task executions. The stress test case generation method

extends prior work [36]. The extended method uses the fitness function regarding deadline misses and

genetic operators that OPAM introduces for evolving worst-case task-arrival sequences (see Section 5.6).

The T10
𝑤 set contains 10 sequences of task arrivals.
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• T10
𝑟 : A set of task-arrival sequences generated randomly. The T10

𝑟 set has 10 sequences of task arrivals.

• T500
𝑎 : A set of task-arrival sequences generated by using the adaptive random search technique. The

T500
𝑎 set contains 500 sequences of task arrivals.

• T500
𝑤 : A set of task-arrival sequences generated by using the stress test case generation method. The

T500
𝑤 set contains 500 sequences of task arrivals.

• T500
𝑟 : A set of task-arrival sequences generated randomly. The T500

𝑟 set has 500 sequences of task

arrivals.

EXP2. To answer RQ2, EXP2 compares OPAM with a priority assignment method, named SEQ, that relies

on one-population search algorithms. SEQ first finds a set of worst-case sequences of task arrivals using

GA with the fitness function that measures the magnitude of deadline misses (see fd() in Section 5.6.3)

and the genetic operators described in Section 5.6.4. Given a set of worst-case task-arrival sequences

obtained from GA, SEQ then aims at finding best-case priority assignments using NSGAII with the fitness

functions that quantify the magnitude of safety margins and the degree of constraint satisfaction (see fs()
and fc(), respectively, in Section 5.6.3) and the genetic operators described in Section 5.6.5.

We note that SEQ does not use the external fitness functions as it does not coevolve task-arrival

sequences and priority assignments. Hence, the numbers of fitness evaluations of the two methods are

not comparable. To fairly compare OPAM and SEQ, we set the same time budget for the two methods.

Specifically, we first measure the execution time of OPAM for analyzing each subject. We then split the

execution time in half and set each half time as the execution budget of the GA and NSGAII steps in SEQ

for the corresponding subject. In order to assess the quality of priority assignments obtained from OPAM

and SEQ, we use the sets of task-arrival sequences described in EXP1, i.e., T10
𝑎 , T10

𝑤 , T10
𝑟 , T500

𝑎 , T500
𝑤 , and

T500
𝑟 , which are created independently from the two methods.

EXP3. To answer RQ3, EXP3 examines not only the six industrial subjects but also 370 synthetic subjects.

We create the synthetic subjects to study correlations between the execution time and memory usage

of OPAM and the following parameters: the number of tasks (𝑛), a (part-to-whole) ratio of aperiodic

tasks (𝛾), a range factor for maximum inter-arrival times (𝜇), and simulation time (t), as described in

Sections 5.7.3 and 5.6. We note that we chose to control parameters 𝑛, 𝛾, and 𝜇 because they are the

main parameters on which engineers have control to define tasks in real-time systems. Simulation time t
obviously impacts the execution time of OPAM as well. But EXP3 aims at modeling such correlations

precisely and providing experimental results. Regarding the other factors that define, for example, task

relationships and platform cores, we note significant diversity across the six industrial subjects.

Recall from Section 5.7.3 that we use the task generation procedure presented in Figure 5.8 to

synthesize tasks. For EXP3, we set some parameter values of the procedure as follows: (1) Target

utilization 𝑢𝑡 = 0.7, which is a common objective in the development of a real-time system in order to

guarantee the schedulability of tasks [76, 68]. (2) The range of task periods [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] = [10ms, 1s],
which are common values in many real-time systems [70, 23]. (3) The granularity of task periods 𝑔 = 10ms

in order to increase realism as most of the task periods in our industrial subjects are multiples of 10ms.

Because of some degree of randomness in the procedure of Figure 5.8, we create ten synthetic subjects

per configuration. Below we further describe how synthetic subjects are created for each controlled

experiment.
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EXP3.1. To study the correlations between the execution time and memory usage of OPAM with the

number of tasks 𝑛, we create nine sets of ten synthetic subjects such that no two sets have the same number

of tasks. Specifically, we create sets with 10, 15, ..., 50 tasks, respectively. Regarding the ratio of aperiodic

tasks, 𝛾 = 0.4 as, on average, the ratio of aperiodic tasks to periodic tasks in our industrial subjects is 2/3.

For the range factor, 𝜇 = 2, which is determined based on the inter-arrival times of aperiodic tasks in our

industry subjects. We set the simulation time t to 2s in order to ensure that any aperiodic task arrives at

least once during that time. We note that, given the maximum task period 𝑇𝑚𝑎𝑥 = 1s and the range factor

𝜇 = 2, the maximum inter-arrival time of an aperiodic task is at most 2s (see Section 5.7.3).

EXP3.2. To study the correlations between the execution time and memory usage of OPAM with the

ratio of aperiodic tasks 𝛾, we create ten sets of synthetic subjects by setting this ratio to the following

values: 0.05, 0.10, ..., 0.50. We set the number of tasks to 20 (𝑛 = 20), which is the average number of

tasks in our six industrial subjects. Regarding the other parameters, range factor and simulation time,

𝜇 = 2 and t = 2s are set as discussed in EXP3.1.

EXP3.3. To study the correlations between the execution time and memory usage of OPAM with the

range factor 𝜇 that is used to determine the maximum inter-arrival times, we create nine sets of synthetic

subjects by setting 𝜇 to 2, 3, ..., 10. We set the simulation time as follows: t = 10s. This ensures that any

aperiodic task arrives at least once during the simulation time when 𝜇 is at most 10 (see Section 5.7.3).

The other parameters, the number of tasks and ratio of aperiodic tasks, 𝑛 = 20 and 𝛾 = 0.4 are set as

discussed in EXP3.1 and EXP3.2.

EXP3.4. To study the correlations between the execution time and memory usage of OPAM with

the simulation time t, we create nine sets of synthetic subjects by setting t to 2s, 3s, ..., 10s. The other

parameters, e.g., the number of tasks, the ratio of aperiodic tasks, and the range factor, 𝑛 = 20, 𝛾 = 0.4,

and 𝜇 = 2, are set as discussed in EXP3.1 and EXP3.2.

EXP4. To answer RQ4, EXP4 compares priority assignments optimized by OPAM and those defined

by engineers. We apply OPAM to the six industrial subjects (see Section 5.7.2) which include priority

assignments defined by practitioners. Note that we focus here on the ESAIL subject in collaboration with

our industry partner, LuxSpace; The other five subjects are from the literature [64] and hence we can only

collect feedback from practitioners for ESAIL.

5.7.5 Evaluation metrics

Multi-objective evaluation metrics. In order to fairly compare the results of search algorithms, based

on existing guidelines [116] for assessing multi-objective search algorithms, we use complementary

quality indicators: Hypervolume (HV) [199], Pareto Compliant Generational Distance (GD+) [98], and

Spread (Δ) [63]. To compute the GD+ and Δ quality indicators, following the usual procedure [116], we

create a reference Pareto front as the union of all the non-dominated solutions obtained from all runs of

the algorithms being compared. Identifying the optimal (ideal) Pareto front is typically infeasible for a

complex optimization problem [116]. Key features of the three quality indicators are described below.

• HV is defined to measure the volume in the objective space that is covered by members of a Pareto front

generated by a search algorithm [199]. The higher the HV values, the more optimal the search outputs.

• GD+ is defined to measure the distance between the points on a Pareto front obtained from a search

algorithm and the nearest points on a reference Pareto front [98]. GD+ modifies General Distance
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(GD) [174] to account for the dominance relations when computing the distances. The lower the GD+

values, the more optimal the search outputs.

• Δ is defined to measure the extent of spread among the points on a Pareto front computed by a

search algorithm [63]. We note that OPAM aims at obtaining a wide variety of equally-viable priority

assignments on a Pareto front (see Section 5.6). The lower the Spread values, the more spread out the

search outputs.

Interpretable metrics. The two external fitness functions described in Section 5.6 mainly aim at

effectively guiding search. It is, however, difficult for practitioners to interpret the computed fitness

values. Since they are not intuitive to practitioners, to assess the usefulness of OPAM from a practitioner

perspective, we measure (1) the safety margins from tasks’ completion times to their deadlines across our

experiments and (2) the number of constraint violations in a priority assignment. In addition, we measure

the execution time and memory usage of OPAM.

Statistical comparison metrics. To statistically compare our experiment results, we use the Mann-

Whitney U-test [125] and Vargha and Delaney’s �̂�12 effect size [172], which have been frequently applied

for evaluating search-based algorithms [14, 95, 158]. Mann-Whitney U-test determines whether two

independent samples are likely or not to belong to the same distribution. We set the level of significance,

𝛼, to 0.05. Vargha and Delaney’s �̂�12 measures probabilistic superiority – effect size – between search

algorithms. Two algorithms are considered to be equivalent when the value of �̂�12 is 0.5.

5.7.6 Parameter tuning and implementation

Parameters for coevolutionary search. For the coevolutionary search parameters, we set the population

size to 10, the crossover rate to 0.8, and the mutation rate to 1/|Γ|, where |Γ | denotes the number of tasks.

We apply these parameter values for both the evolution of task-arrival sequences and priority assignments

(see Section 5.6). These values are determined based on existing guidelines [13, 154] and the Chapter 3.

We determine the number of coevolution cycles (see Section 5.6) based on an initial experiment.

We applied OPAM to the six industrial subjects and ran OPAM 50 times for each subject. From the

experiment results, we observed that there is no notable difference in Pareto fronts generated after 1000

cycles. Hence, we set the number of coevolution cycles to 1000 in our experiments, i.e., EXP1, EXP2,

and EXP3 described in Section 5.7.4.

Parameters for evaluating fitness functions. To evaluate external fitness functions, we use a set of

task-arrival sequences that are generated independently from the coevolution process (see Section 5.6.6).

We use an adaptive random search [45] to generate a set E of task-arrival sequences, which varies task

arrival times within the specified inter-arrival time ranges of aperiodic tasks. We set the size of E to 10.

From our initial experiment, we observed that this is sufficient to compute the external fitness functions

of OPAM under a reasonable time, i.e., less than 15s. We note that E contains two default sequences of

task arrivals as follows: (seq. 1) aperiodic tasks always arrive at their maximum inter-arrival times and

(seq. 2) aperiodic tasks always arrive at their minimum inter-arrival times. By having those two sequences

of task arrivals as initial elements in E, the adaptive random search finds other sequences of task arrivals

to maximize the diversity of elements in E.

If a system contains only periodic tasks, the simulation time is often set as the least common multiple

(LCM) of their periods to account for all possible arrivals [144]. However, as the six industrial subjects
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include aperiodic tasks, this is not applicable. For the experiments with the six industrial subjects, we set

the simulation time to the maximum time between the LCM of periodic tasks’ periods and the maximum

inter-arrival time among aperiodic tasks. By doing so, all possible arrival patterns of periodic tasks are

examined and any aperiodic task arrives at least once during simulation. Recall from Section 5.6.4 that

OPAM varies arrival times of aperiodic tasks to find worst-case sequences of task arrivals.

We note that the parameters mentioned above can probably be further tuned to improve the performance

of our approach. However, since with our current setting, we were able to convincingly and clearly support

our conclusions, we do not report further experiments on tuning those values.

Implementation. We implemented OPAM by extending jMetal [67], which is a metaheuristic

optimization framework supporting NSGAII and GA. We conducted our experiments using the high-

performance computing cluster [173] at the University of Luxembourg. To account for randomness, we

repeated each run of OPAM 50 times for all experiments. Each run of OPAM was executed on a different

node (equipped with five 2.5GHz cores and 20GB memory) of the cluster, and took less than 16 hours.

5.7.7 Results

RQ1. Figure 5.9 shows the best Pareto fronts obtained with 50 runs of OPAM and RS, for the six industrial

study subjects described in Section 5.7.2. The fitness values presented in the figures are computed based

on each subject’s set E of task-arrival sequences (see Section 5.7.6), which is created independently from

OPAM and RS. Figures 5.9a, 5.9c, 5.9d, 5.9e, and 5.9f indicate that OPAM finds significantly better

solutions than RS for ICS, UAV, GAP, HPSS, and ESAIL. Regarding CCS (see Figure 5.9b), it is difficult

to conclude anything based only on visual inspection. Hence, we compared Pareto fronts obtained by

OPAM and RS using the three quality indicators HV, GD+, and Δ, described in Section 5.7.5.

Figure 5.10 depicts distributions of HV (Figure 5.10a), GD+ (Figure 5.10b), and Δ (Figure 5.10c)

for the six industrial subjects. The boxplots in the figures present the distributions (25%-50%-75%)

of the quality values obtained from 50 runs of OPAM and RS. The quality values are computed based

on the Pareto fronts obtained by the algorithms and each subject’s set E of task-arrival sequences

(see Section 5.7.6). In the figures, statistical comparisons of the two corresponding distributions are

summarized using p-values and �̂�12 values, as described in Section 5.7.5, under each subject name.

As shown in Figures 5.10a and 5.10b, OPAM obtains better distributions of HV and GD+ compared

to RS for all six subjects. All the differences are statistically significant as the p-values are below 0.05.

Regarding Δ, as depicted in Figure 5.10c, OPAM yields higher diversity in Pareto front solutions than

RS for the following subjects: UAV, GAP, and HPSS. For ICS, CCS, and ESAIL, OPAM and RS obtain

similar Δ values. From Figures 5.10a and 5.10b, and Table 5.2, we also observe that the higher the number

of aperiodic tasks in a subject, the larger the differences in HV and GD+ between OPAM and RS. Hence,

for these two quality indicators, OPAM outperforms RS more significantly for more complex search

problems. Note that the number of aperiodic tasks is one of the main factors that drives the degree of

uncertainty in task arrivals.

Given the Pareto priority assignments obtained by OPAM and RS, we further assessed the quality

values of the solutions by evaluating them with different sets of task-arrival sequences. As described in

Section 5.7.4, we created six test sets of task-arrival sequences for each subject by varying the sequence

generation methods and the number of task-arrival sequences in a set (see T10
𝑎 , T10

𝑤 , T10
𝑟 , T500

𝑎 , T500
𝑤 , and

T500
𝑟 described in Section 5.7.4). Table 5.3 reports the average quality values measured by HV, GD+, and
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Table 5.3: Comparing OPAM and RS using the three quality indicators: HV, GD+, and Δ. Average quality
values computed based on 50 runs of OPAM and RS using the different sets of task-arrival sequences (see
Section 5.7.4).

ICS CCS UAV GAP HPSS ESAIL

T10 𝑎
(a

da
pt

iv
e,

si
ze

10
) HV OPAM 1.0000 0.7168 0.8923 0.8864 0.9629 0.9998

RS 0.9000 0.6633 0.7488 0.6278 0.5120 0.0000
𝑝 | �̂�12 0.02 |0.55 0.00 |0.80 0.00 |1.00 0.00 |1.00 0.00 |1.00 0.00 |1.00

GD+ OPAM 0.0000 0.0203 0.0068 0.0067 0.0073 0.0135
RS 0.0883 0.0472 0.0745 0.0780 0.1380 1.0000

𝑝 | �̂�12 0.02 |0.45 0.00 |0.04 0.00 |0.00 0.00 |0.00 0.00 |0.00 0.00 |0.00

Δ
OPAM 1.0000 0.7650 0.4256 0.3631 0.5355 0.9433

RS 0.9766 0.5879 0.6112 0.6605 0.7508 1.0000
𝑝 | �̂�12 0.16 |0.52 0.00 |0.76 0.00 |0.15 0.00 |0.03 0.00 |0.12 0.08 |0.47

T10 𝑤
(w

or
st

,s
iz

e
10

) HV OPAM 0.0000 0.7878 0.9152 0.9280 0.9652 0.9997
RS 0.0000 0.7591 0.7782 0.6743 0.5180 0.0000

𝑝 | �̂�12 1.00 |0.50 0.01 |0.65 0.00 |1.00 0.00 |1.00 0.00 |1.00 0.00 |1.00

GD+ OPAM 0.0000 0.0809 0.0053 0.0042 0.0108 0.0135
RS 0.0200 0.0866 0.0740 0.0760 0.1405 1.0000

𝑝 | �̂�12 0.16 |0.48 0.75 |0.52 0.00 |0.00 0.00 |0.00 0.00 |0.00 0.00 |0.00

Δ
OPAM 1.0000 0.7012 0.4508 0.4009 0.4872 0.9433

RS 0.9600 0.4764 0.6032 0.7002 0.7328 1.0000
𝑝 | �̂�12 0.16 |0.52 0.00 |0.79 0.00 |0.22 0.00 |0.03 0.00 |0.11 0.08 |0.47

T10 𝑟
(r

an
do

m
,s

iz
e

10
) HV OPAM 0.0000 0.8976 0.9792 0.9449 0.9837 0.9999

RS 0.0000 0.8517 0.8191 0.6879 0.5183 0.0000
𝑝 | �̂�12 1.00 |0.50 0.00 |0.90 0.00 |1.00 0.00 |1.00 0.00 |1.00 0.00 |1.00

GD+ OPAM 0.0000 0.0806 0.0035 0.0043 0.0211 0.0134
RS 0.0200 0.1252 0.0912 0.0789 0.1580 1.0000

𝑝 | �̂�12 0.16 |0.48 0.00 |0.09 0.00 |0.00 0.00 |0.00 0.00 |0.00 0.00 |0.00

Δ
OPAM 1.0000 0.8662 0.4603 0.3951 0.4728 0.9433

RS 0.9600 0.6579 0.6331 0.7035 0.7617 1.0000
𝑝 | �̂�12 0.16 |0.52 0.00 |0.73 0.00 |0.20 0.00 |0.02 0.00 |0.05 0.08 |0.47

T50
0

𝑎
(a

da
pt

iv
e,

si
ze

50
0) HV OPAM 1.0000 0.7032 0.9424 0.9089 0.9803 0.9999

RS 0.9000 0.6518 0.7893 0.6561 0.5167 0.0000
𝑝 | �̂�12 0.02 |0.55 0.00 |0.86 0.00 |1.00 0.00 |1.00 0.00 |1.00 0.00 |1.00

GD+ OPAM 0.0000 0.0159 0.0035 0.0051 0.0064 0.0134
RS 0.0883 0.0393 0.0850 0.0746 0.1422 1.0000

𝑝 | �̂�12 0.02 |0.45 0.00 |0.03 0.00 |0.00 0.00 |0.00 0.00 |0.00 0.00 |0.00

Δ
OPAM 1.0000 0.7842 0.4715 0.3680 0.4850 0.9433

RS 0.9766 0.5354 0.6357 0.6850 0.7565 1.0000
𝑝 | �̂�12 0.16 |0.52 0.00 |0.84 0.00 |0.21 0.00 |0.01 0.00 |0.09 0.08 |0.47

T50
0

𝑤
(w

or
st

,s
iz

e
50

0)

HV OPAM 1.0000 0.6535 0.9223 0.9307 0.9635 0.9997
RS 0.9000 0.6050 0.7791 0.6770 0.5032 0.0000

𝑝 | �̂�12 0.02 |0.55 0.00 |0.77 0.00 |1.00 0.00 |1.00 0.00 |1.00 0.00 |1.00

GD+ OPAM 0.0000 0.0302 0.0037 0.0040 0.0054 0.0136
RS 0.0883 0.0545 0.0768 0.0763 0.1408 1.0000

𝑝 | �̂�12 0.02 |0.45 0.00 |0.09 0.00 |0.00 0.00 |0.00 0.00 |0.00 0.00 |0.00

Δ
OPAM 1.0000 0.7899 0.4640 0.4077 0.5083 0.9433

RS 0.9766 0.5910 0.6114 0.7052 0.7448 1.0000
𝑝 | �̂�12 0.16 |0.52 0.00 |0.84 0.00 |0.22 0.00 |0.02 0.00 |0.11 0.08 |0.47

T50
0

𝑟
(r

an
do

m
,s

iz
e

50
0) HV OPAM 1.0000 0.6936 0.9742 0.9481 0.9810 0.9999

RS 0.9000 0.6401 0.8138 0.6904 0.5183 0.0000
𝑝 | �̂�12 0.02 |0.55 0.00 |0.85 0.00 |1.00 0.00 |1.00 0.00 |1.00 0.00 |1.00

GD+ OPAM 0.0000 0.0169 0.0031 0.0041 0.0062 0.0134
RS 0.0883 0.0394 0.0914 0.0794 0.1420 1.0000

𝑝 | �̂�12 0.02 |0.45 0.00 |0.03 0.00 |0.00 0.00 |0.00 0.00 |0.00 0.00 |0.00

Δ
OPAM 1.0000 0.7415 0.4637 0.4077 0.4854 0.9433

RS 0.9766 0.5251 0.6358 0.7042 0.7535 1.0000
𝑝 | �̂�12 0.16 |0.52 0.00 |0.80 0.00 |0.20 0.00 |0.03 0.00 |0.09 0.08 |0.47

n.nnnn : OPAM outperforms RS n.nnnn : RS outperforms OPAM
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Figure 5.9: Pareto fronts obtained by OPAM and RS for the six industrial subjects: (a) ICS, (b) CCS,
(c) UAV, (d) GAP, (e) HPSS, and (f) ESAIL. The fitness values are computed based on each subject’s set
E of task-arrival sequences (see Section 5.7.6). The points located closer to the bottom left of each plot
are considered to be better priority assignments when compared to points closer to the top right.

Δ based on 50 runs of OPAM and RS with the different test sets of task-arrival sequences. The results

indicate that OPAM significantly outperforms RS in most comparison cases. Specifically, out of a total

of 108 comparisons, OPAM outperforms RS 87 times (see the blue-colored cells related to OPAM in

Table 5.3). Regarding Δ, RS outperforms OPAM for the CCS subject (see the gray-colored cells related to

RS in Table 5.3). As shown in Table 5.2, CCS has only 3 aperiodic tasks and RS was therefore able to

find better solutions with respect to Δ for such a simple subject.

102



5.7. EVALUATION

0.00

0.25

0.50

0.75

1.00

ICS CCS UAV GAP HPSS ESAIL

RS OPAM

0.02
0.55

0.00
0.97

0.00
1.00

0.00
1.00

0.00
1.00

0.00
1.00

p−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−value
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Figure 5.10: Comparing OPAM and RS using the three quality indicators: (a) HV, (b) GD+, and (c) Δ.
The boxplots (25%-50%-75%) show the quality values obtained from 50 runs of OPAM and RS. The
quality values are computed based on the Pareto fronts obtained by the algorithms and each subject’s set
E of task-arrival sequences (see Section 5.7.6).

The answer to RQ1 is that OPAM significantly outperforms RS with respect to HV and GD+. In

particular, OPAM performs considerably better than RS when more aperiodic tasks are involved.

RQ2. To compare OPAM and SEQ, we first visually inspect the best Pareto fronts obtained from 50 runs of

OPAM and SEQ for the six study systems described in Section 5.7.2 by varying the test sets of task-arrival

sequences for each subject (see T10
𝑎 , T10

𝑤 , T10
𝑟 , T500

𝑎 , T500
𝑤 , and T500

𝑟 described in Section 5.7.4), which

are created independently from OPAM and SEQ. Overall, we observed that OPAM finds significantly

better priority assignments in most cases. For example, Figure 5.11 depicts the best Pareto fronts obtained

by OPAM and SEQ when the fitness values are computed based on each subject’s test set T500
𝑎 of 500
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Figure 5.11: Pareto fronts obtained by OPAM and SEQ for the six industrial subjects: (a) ICS, (b) CCS,
(c) UAV, (d) GAP, (e) HPSS, and (f) ESAIL. The fitness values are computed based on each subject’s set
T500
𝑎 of task-arrival sequences (see Section 5.7.4). The points located closer to the bottom left of each plot

are considered to be better priority assignments when compared to points closer to the top right.

task-arrival sequences, which are generated with adaptive random search. The results clearly show that

OPAM outperforms SEQ with respect to producing more optimal Pareto fronts for ICS, CCS, UAV, HPSS,

and ESAIL. For GAP, the visual inspection is not sufficient to provide any conclusions. Hence, we further

compare OPAM and SEQ based on the quality indicators described in Section 5.7.5.

Table 5.4 compares the quality values measured by HV, GD+, and Δ for the six study subjects. To

fairly compare the priority assignments obtained by OPAM and SEQ, we assess them with the test sets of

task-arrival sequences for each subject (see T10
𝑎 , T10

𝑤 , T10
𝑟 , T500

𝑎 , T500
𝑤 , and T500

𝑟 described in Section 5.7.4).
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Table 5.4: Comparing OPAM and SEQ using the three quality indicators: HV, GD+, and Δ. Average
quality values computed based on 50 runs of OPAM and SEQ using the different sets of task-arrival
sequences (see Section 5.7.4).

ICS CCS UAV GAP HPSS ESAIL

T10 𝑎
(a

da
pt

iv
e,

si
ze

10
) HV OPAM 0.0000 0.6052 0.6011 0.6088 0.6290 0.9808

SEQ 0.0000 0.4172 0.5354 0.5868 0.6086 0.4470
𝑝 | �̂�12 1.00 |0.50 0.00 |1.00 0.00 |0.95 0.00 |0.76 0.02 |0.63 0.00 |1.00

GD+ OPAM 0.0000 0.0244 0.0175 0.0148 0.0529 0.0249
SEQ 0.2191 0.0835 0.0350 0.0201 0.0625 0.1887

𝑝 | �̂�12 0.00 |0.01 0.00 |0.00 0.00 |0.01 0.00 |0.25 0.00 |0.26 0.00 |0.03

Δ
OPAM 1.0000 0.7653 0.4239 0.3343 0.5297 0.9444

SEQ 0.0200 0.5656 0.3628 0.2875 0.5706 0.8285
𝑝 | �̂�12 0.00 |0.99 0.00 |0.81 0.01 |0.64 0.01 |0.65 0.33 |0.44 0.00 |0.75

T10 𝑤
(w

or
st

,s
iz

e
10

) HV OPAM 0.0000 0.7345 0.6258 0.6290 0.7460 0.9059
SEQ 0.0000 0.6794 0.5933 0.5928 0.6856 0.5046

𝑝 | �̂�12 1.00 |0.50 0.00 |0.82 0.00 |0.82 0.00 |0.88 0.00 |0.87 0.00 |1.00

GD+ OPAM 0.0000 0.0912 0.0191 0.0131 0.0340 0.0724
SEQ 0.0000 0.0695 0.0272 0.0211 0.0667 0.1720

𝑝 | �̂�12 1.00 |0.50 0.00 |0.86 0.00 |0.12 0.00 |0.14 0.00 |0.03 0.00 |0.07

Δ
OPAM 1.0000 0.7009 0.4835 0.3616 0.4695 0.9470

SEQ 1.0000 0.5376 0.3111 0.3054 0.5453 0.7547
𝑝 | �̂�12 1.00 |0.50 0.00 |0.74 0.00 |0.83 0.01 |0.66 0.01 |0.35 0.00 |0.67

T10 𝑟
(r

an
do

m
,s

iz
e

10
) HV OPAM 0.0000 0.8720 0.8653 0.6340 0.7714 0.9055

SEQ 0.0000 0.5478 0.7246 0.5879 0.7935 0.1139
𝑝 | �̂�12 1.00 |0.50 0.00 |0.99 0.00 |1.00 0.00 |0.92 0.06 |0.39 0.00 |1.00

GD+ OPAM 0.0000 0.0911 0.0205 0.0160 0.0472 0.0718
SEQ 0.0000 0.1358 0.0882 0.0277 0.0646 0.2838

𝑝 | �̂�12 1.00 |0.50 0.00 |0.01 0.00 |0.00 0.00 |0.10 0.00 |0.19 0.00 |0.06

Δ
OPAM 1.0000 0.8605 0.4644 0.3825 0.4658 0.9456

SEQ 1.0000 0.5896 0.4072 0.3253 0.4620 0.9670
𝑝 | �̂�12 1.00 |0.50 0.00 |0.82 0.02 |0.64 0.01 |0.66 0.90 |0.49 0.00 |0.67

T50
0

𝑎
(a

da
pt

iv
e,

si
ze

50
0) HV OPAM 0.0000 0.6781 0.7134 0.6261 0.7332 0.9744

SEQ 0.0000 0.4854 0.6179 0.5981 0.7056 0.3571
𝑝 | �̂�12 1.00 |0.50 0.00 |1.00 0.00 |1.00 0.00 |0.83 0.00 |0.73 0.00 |1.00

GD+ OPAM 0.0000 0.0174 0.0140 0.0134 0.0320 0.0285
SEQ 0.2191 0.0727 0.0549 0.0197 0.0565 0.2153

𝑝 | �̂�12 0.00 |0.01 0.00 |0.00 0.00 |0.00 0.00 |0.20 0.00 |0.08 0.00 |0.04

Δ
OPAM 1.0000 0.7833 0.4964 0.3588 0.4564 0.9442

SEQ 0.0200 0.7319 0.4002 0.3315 0.5312 0.8554
𝑝 | �̂�12 0.00 |0.99 0.23 |0.57 0.00 |0.72 0.07 |0.60 0.02 |0.36 0.00 |0.75

T50
0

𝑤
(w

or
st

,s
iz

e
50

0)

HV OPAM 0.0000 0.4732 0.6330 0.6181 0.6990 0.8755
SEQ 0.0000 0.5564 0.5958 0.5792 0.6800 0.1183

𝑝 | �̂�12 1.00 |0.50 0.00 |0.04 0.00 |0.85 0.00 |0.90 0.00 |0.70 0.00 |1.00

GD+ OPAM 0.0000 0.0511 0.0141 0.0135 0.0258 0.0911
SEQ 0.2191 0.0343 0.0267 0.0226 0.0336 0.2849

𝑝 | �̂�12 0.00 |0.01 0.00 |0.96 0.00 |0.05 0.00 |0.11 0.00 |0.24 0.00 |0.06

Δ
OPAM 1.0000 0.7569 0.4950 0.3751 0.5379 0.9469

SEQ 0.0200 0.7259 0.3315 0.3139 0.5102 0.8957
𝑝 | �̂�12 0.00 |0.99 0.43 |0.55 0.00 |0.82 0.01 |0.66 0.20 |0.57 0.00 |0.67

T50
0

𝑟
(r

an
do

m
,s

iz
e

50
0) HV OPAM 0.0000 0.6646 0.8446 0.6321 0.7087 0.8782

SEQ 0.0000 0.4876 0.7242 0.5839 0.6786 0.1965
𝑝 | �̂�12 1.00 |0.50 0.00 |1.00 0.00 |1.00 0.00 |0.93 0.00 |0.72 0.00 |1.00

GD+ OPAM 0.0000 0.0184 0.0172 0.0165 0.0327 0.0900
SEQ 0.2191 0.0684 0.0791 0.0285 0.0580 0.2620

𝑝 | �̂�12 0.00 |0.01 0.00 |0.00 0.00 |0.00 0.00 |0.09 0.00 |0.06 0.00 |0.06

Δ
OPAM 1.0000 0.7449 0.5059 0.3960 0.4502 0.9472

SEQ 0.0200 0.6798 0.4156 0.3341 0.5148 0.8546
𝑝 | �̂�12 0.00 |0.99 0.19 |0.58 0.00 |0.71 0.01 |0.66 0.03 |0.38 0.00 |0.67

n.nnnn : OPAM outperforms SEQ n.nnnn : SEQ outperforms OPAM
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Table 5.5: Execution times and memory usage required to run OPAM for the six industrial subjects.
Average values computed based on 50 runs of OPAM are reported.

Subject Execution time (s) Memory usage (MB)

ICS 104.34 89.97
CCS 165.50 111.85
UAV 1455.35 312.85
GAP 2819.03 730.29
HPSS 226.98 127.77
ESAIL 55844.23 2879.79

Table 5.4 reports the average quality values computed based on 50 runs of OPAM and SEQ. In Table 5.4,

the statistical comparison of the two corresponding distributions are reported using p-values and �̂�12

values.

As shown in Table 5.4, we compared OPAM and SEQ 108 times by varying the study subjects, the

quality indicators, the number of task-arrival sequences, and the task-arrival sequence generation methods.

Out of 108 comparisons, OPAM significantly outperforms SEQ 63 times. Specifically, out of 36 HV

comparisons, OPAM obtains better HV values than SEQ 28 times. For ICS (6 HV comparisons), the

differences in HV values between OPAM and SEQ are not statistically significant. In only one HV

comparison for CCS, SEQ outperforms OPAM (see the gray-colored cell related to HV and CCS in

Table 5.4). To interpret these results, one must recall from Table 5.2 that ICS and CCS have only three

aperiodic tasks that impact the degree of uncertainty in task arrivals and therefore represent simple cases.

Out of 36 GD+ comparisons, OPAM outperforms SEQ 32 times. SEQ outperforms OPAM only two times

for CCS. Hence, overall, the results indicate that OPAM outperforms SEQ, in terms of generating more

optimal Pareto fronts, when the subjects feature a considerable degree of uncertainty in task arrivals and

therefore make our search problem more complex. Otherwise differences are not statistically or practically

significant. Regarding Δ, which focuses on the diversity of solutions on the Pareto front, SEQ outperforms

OPAM 24 times out of 36 comparisons (see the gray-colored cells related to Δ in Table 5.4). However,

since OPAM produces enough alternative priority assignments spreading across Pareto fronts (as visible

from the solutions obtained by OPAM in Figure 5.11), these differences in Δ have limited implications in

practice.

The answer to RQ2 is that OPAM significantly outperforms SEQ with respect to HV and GD+ when

in the presence of more than a few aperiodic tasks and therefore higher uncertainty in terms of task

arrivals. OPAM therefore generate solutions on a Pareto front that is closer to the unknown, optimal one.

In other words, coevolution is a suitable and successful strategy for finding better priority assignments

in complex systems.

RQ3. Table 5.5 reports the average execution times and memory usage required to run OPAM for the six

industrial subjects, over 50 runs. As shown in Table 5.5, finding optimal priority assignments for ESAIL

requires the largest execution time (≈15.5h) and memory usage (≈2.9GB), compared to the other subjects.

We note that such execution time and memory usage are acceptable as OPAM can be executed offline in

practice.
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Figure 5.12: Execution times of OPAM when varying the values of the following parameters: (a) number
of tasks 𝑛, (b) ratio of aperiodic tasks 𝛾, (c) range factor 𝜇, and (d) simulation time t. The boxplots
(25%-50%-75%) show the execution times obtained from 500 runs of OPAM, i.e., 50 runs for each of the
10 synthetic subjects with the same configuration.

Figures 5.12 and 5.13 show, respectively, the execution times and memory usage from EXP3.1

(a), EXP3.2 (b), EXP3.3 (c), and EXP3.4 (d), described in Section 5.7.4. The boxplots in the figures

show distributions (25%-50%-75%) obtained from 50 × 10 runs of OPAM for a set of 10 synthetic

subjects, which are created with the same experimental setting. Regarding the execution time of OPAM,

Figures 5.12a and 5.12d show that the execution time of OPAM is linear both in the number of tasks

and simulation time. As for the memory usage of OPAM, results in Figures 5.13a and 5.13d indicate

that memory usage is linear both in the number of tasks and in the simulation time. However, the results

depicted in Figures 5.12b, 5.12c, 5.13b, and 5.13c indicate that there are no correlations between OPAM

execution time and memory usage and the following two parameters: ratio of aperiodic tasks and range

factor. Therefore, we expect OPAM to scale well as the numbers of tasks and simulation time increase.

The answer to RQ3 is that the execution time and memory usage of OPAM are linear in the number of

tasks and simulation time, thus scaling to industrial systems. Further, across our experiments, OPAM

takes at most 15.5h using 2.9GB of memory to optimize priority assignments, an acceptable result since

this is done offline.
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Figure 5.13: Memory usage of OPAM when varying the values of the following parameters: (a) number
of tasks 𝑛, (b) ratio of aperiodic tasks 𝛾, (c) range factor 𝜇, and (d) simulation time t. The boxplots
(25%-50%-75%) show the memory usage obtained from 500 runs of OPAM, i.e., 50 runs for each of the
synthetic subjects with the same configuration.

RQ4. Figure 5.14 compares, with respect to external fitness (see the fs() and fc() fitness functions

and the set E of sequences of task arrivals described in Section 5.6.6), the Pareto solutions obtained

by OPAM against the priority assignments defined by engineers for the six industrial subjects: ICS

(Figure 5.14a), CCS (Figure 5.14b), UAV (Figure 5.14c), GAP (Figure 5.14d), HPSS (Figure 5.14e), and

ESAIL (Figure 5.14f).

As shown in the figure, the solutions obtained by OPAM clearly outperform the priority assignments

defined by engineers regarding the two external objectives: the magnitude of safety margins and the extent

to which constraints are satisfied.

Table 5.6 summarizes safety margins from the task executions of ESAIL when using one of our

priority assignments optimized by OPAM and the one defined by engineers at LuxSpace. Note that we

focus on ESAIL as it is not possible to access the engineers who developed the other five industrial

subjects reported in the literature [120, 171, 145, 132, 11]. For comparison, we chose the bottom-left

solution in Figure 5.14f since it is optimal for the constraint fitness, which is the same as the fitness value

of the priority assignment defined by engineers, and the differences in safety margin fitness among our

solutions are negligible.
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Figure 5.14: Comparing Pareto solutions obtained by OPAM and priority assignments defined by engineers
for the six industrial subjects: (a) ICS, (b) CCS, (c) UAV, (d) GAP, (e) HPSS, and (f) ESAIL. The points
located closer to the bottom left of each plot are considered to be better priority assignments when
compared to points closer to the top right.

As shown in Table 5.6, our optimized priority assignment significantly outperforms the one of

engineers. Our solution increases safety margins, on average, by 5.33% compared to the engineers’

solution. For aperiodic tasks, our solution decreases safety margins by 0.01% (4.2ms difference) when the

safety margins being compared are the maximum margins observed in both solutions (see the maximum

safety margins, 59710.3ms obtained by engineers’ solution and 59707.2ms obtained by OPAM, in

Table 5.6). Such a small decrease is however negligible in the context of ESAIL as the maximum safety

margin obtained by our solution is still large, i.e., ≈1m. For periodic tasks, we note that our solution
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Table 5.6: Comparing safety margins from the task executions of ESAIL when using our optimized
priority assignment and the one defined by engineers.

Periodic tasks Aperiodic tasks All tasks

Engineer

Min -44.5 9.4 -44.5
Max 1879.7 59710.3 59710.3
Avg. 126.6 52.6 78.1

Median 82.1 9.4 48.1

OPAM

Min 48.1 9.4 9.4
Max 1879.7 59707.2 59707.2
Avg. 129.8 57.2 82.3

Median 85.7 9.4 48.1

% Difference

Min 208.09% 0.00% 121.12%
Max 0.00% -0.01% -0.01%
Avg. 2.53% 8.89% 5.33%

Median 4.38% 0.00% 0.00%
∗ Unit of time: ms

increases safety margins by 208.09% when the safety margins being compared are the minimum margins

observed in both solutions (see the minimum safety margins, -44.5ms obtained by engineers’ solution

and 48.1ms obtained by OPAM, in Table 5.6). Note that the minimum safety margin of -44.5ms obtained

with the engineers’ solution indicates that a task violates its deadline. In the context of ESAIL, which

is a mission-critical system, such gain in safety margins in the executions of periodic tasks is important

because the hard deadlines of periodic tasks are more critical than the soft deadlines of aperiodic tasks.

Investigating practitioners’ perceptions of the benefits of OPAM is necessary to adopt OPAM in

practice. To do so, we draw on the qualitative reflections of three software engineers at LuxSpace, with

whom we have been collaborating on this research. They have had four to seven years of experience

developing satellite systems at LuxSpace, with more than 50 years of collective experience in companies.

All the reflections are based on observations made throughout our interactions. The engineers at LuxSpace

deemed OPAM to be an improvement over their current practice as it allows them to perform domain-

specific trade-off analysis among Pareto solutions and is useful in practice to support decision making

with respect to their task design. Encouraged by the promising results, we are now applying OPAM to

new systems in collaboration with LuxSpace.

The answer to RQ4 is that OPAM helps optimize priority assignments such that they outperform those

manually defined by engineers based on domain expertise. Our results show that OPAM, compared to

current practice, increases safety margins, on average, by 5.33%.

5.7.8 Threats to validity

To mitigate the main threats that arise from not accounting for random variation, we compared OPAM

against RS under identical parameter settings. We present all the underlying parameters and provide

the full package of our experiments to facilitate replication. Also, we ran OPAM 50 times for each
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study subject and compared results using statistical analysis, i.e., Mann-Whitney U-test and Vargha and

Delaney’s �̂�12.

We note that there are prior studies that aim at optimizing priority assignments such as OPA [19] and

RPA [56]. However, to our knowledge, none of the existing works offer ways to analyze trade-offs among

equally viable priority assignments with respect to safety margins and the satisfaction of constraints.

Nevertheless, we attempted to compare OPAM with an extension of an existing method, e.g., RPA [56].

To do so, we first applied an exhaustive schedulability analysis technique to the ESAIL subject – our

motivating case study – in order to verify whether the ESAIL tasks are schedulable for a given priority

assignment. Note that existing priority assignment techniques are built on such schedulability analysis

methods, which are therefore a prerequisite. We chose UPPAAL [25], a model checker, for schedulability

analysis as it has been used in real-time system studies [132, 192, 190]. However, our experiment results

using UPPAAL for ESAIL showed that it was not able to complete the analysis task, even after 5 days

of execution, for a single priority assignment. We were therefore not able to perform experimental

comparisons with existing priority assignment methods. Since this evaluation is not the main focus of this

chapter, we point the reader to the UPPAAL specification of ESAIL available online [109].

Recall from Section 5.6.2 that OPAM assigns tasks’ WCETs to their execution times when it simulates

the worst-case executions of tasks while varying task arrival times. In many real-time systems studies [36,

83, 117, 11, 194, 64, 68], static WCETs are often used instead of varying task execution times for the

purpose of real-time analysis. For example, practitioners typically use WCETs to estimate the lowest

bound of CPU utilization required to properly apply the rate monotonic scheduling policy [76] to their

systems. Similarly, OPAM assumes that near-worst-case schedule scenarios can be simulated by assigning

tasks’ WCETs to their execution times and varying tasks’ arrival times using search. A near-worst-case

schedule scenario entails that the magnitude of deadline misses is maximized when tasks execute as per

this scenario. Under this working assumption, we were able to empirically evaluate the sanity, coevolution,

scalability, and usefulness aspects of OPAM (see Section 5.7). The results indicate that OPAM is a

promising and useful tool. However, the formal proof of whether or not the WCET assumption holds in

the system model described in Section 5.3 requires complex analysis, accounting for varying task arrival

times, triggering relationships, resource dependencies, and multiple cores. When task execution times

need to be varied during simulation, engineers can adapt OPAM by utilizing Monte-Carlo simulation [105]

to account for such variations.

The main threat to external validity is that our results may not generalize to other systems. We mitigate

potential biases and errors in our experiments by drawing on real industrial subjects from different domains

and several synthetic subjects. Specifically, we selected two subjects from the aerospace domain, two

from the automotive domain, and two from the avionics domain. The positive feedback obtained from

LuxSpace and the encouraging results from our industrial case studies indicate that OPAM is a scalable

and practical solution. Furthermore, we believe OPAM introduces a promising avenue for addressing the

problem of priority assignment by applying coevolutionary algorithms, even for systems that use other

scheduling policies, e.g., priority inheritance. In order for OPAM to support different scheduling policies,

the main requirement is to replace the existing simulator (described in Section 5.6) with a new simulator

supporting the desired scheduling policy. In our approach, the coevolution part of OPAM is separated

from the scheduling policy, which is contained in the simulator. Hence, we deem the expected changes for

the coevolution part of OPAM to be minimal. Future studies are nevertheless necessary to investigate how
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OPAM can be adapted to find near-optimal priority assignments for other real-time systems in different

contexts.

5.8 Conclusion

We developed OPAM, a priority assignment method for real-time systems, that aims to find equally viable

priority assignments that maximize the magnitude of safety margins and the extent to which engineering

constraints are satisfied. OPAM uses a novel approach, based on multi-objective, competitive coevolu-

tionary search, that simultaneously evolves different species, i.e., populations of priority assignments

and stress test scenarios, that compete with one another with opposite objectives, the former trying to

minimize chances of deadline misses while the latter attempts to maximize them. We evaluated OPAM

on a number of synthetic systems as well as six industrial systems from different domains. The results

indicate that OPAM is able to find significantly better solutions than both those manually defined by

engineers based on expert knowledge and those obtained by our baselines: random search and sequential

search. Further, OPAM scales linearly with the number of tasks in a system and the time required to

simulate task executions. Execution times on our industrial systems are practically acceptable.

In the future, we will continue to study the problem of optimal priority assignment by accounting

for (1) priority assignments that change dynamically, (2) WCET value ranges that account for non-

deterministic computation times, (3) interrupt handling routines that execute differently compared to

real-time tasks, and (4) hybrid scheduling policies that combine multiple standard policies. We also plan to

develop a real-time task modeling language to specify task characteristics such as resource dependencies,

triggering relationships, engineering constraints, and behaviors of real-time tasks and to facilitate real-time

system analysis, e.g., optimal priority assignment and schedulability analysis. In addition, we would

like to incorporate additional analysis capabilities into OPAM in order to verify whether or not a system

satisfies the required properties, e.g., schedulability of tasks and absence of deadlocks, for a given priority

assignment. For example, statistical model checking [114] may allow us to verify whether tasks meet

their deadlines for a given priority assignment with a probabilistic guarantee. In the long term, we plan to

more conclusively validate the usefulness of OPAM by applying it to additional case studies in different

application domains.
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, we addressed the problems that arise in estimating safe WCET ranges and in finding

optimal priority assignments. To address these problems, we proposed three approaches.

With regard to estimating safe WCET ranges, we proposed SAFE aiming at precisely estimating safe

WCET ranges within which real-time tasks likely meet their deadlines with a high-level of confidence.

SAFE consists of two phases, i.e., searching worst-case task arrivals and learning safe WCET ranges,

which are applicable at early design stages. A meta-heuristic search algorithm is employed to generate

worst-case sequences of task arrivals that maximize the magnitude of deadline misses. The search results

are applied to learn a logistic regression model, which SAFE uses to determine safe WCET ranges with

a probability that tasks will likely meet their deadlines. Furthermore, as modern software systems have

become increasingly complicated over time, SAFE is designed to be scalable by leveraging scalable

techniques. In phase 1, SAFE relies on a genetic algorithm and simulation. To implement phase 2,

SAFE employs feature reduction, an effective sampling strategy, and polynomial logistic regression. We

evaluated SAFE on a real-time satellite system in collaboration with an industrial partner (LuxSpace) and

two other industrial systems in other domains. The experimental results show that SAFE is a successful

method for precisely estimating safe WCET ranges. The ranges computed by SAFE are more conservative

than the initial ranges estimated by practitioners. We generated 800 synthetic systems to evaluate the

scalability of SAFE. The results indicate that SAFE scales to complex systems. Overall, the execution

time of SAFE was at most 27h which is acceptable as an offline analysis method in practice.

Although SAFE can analyze hard real-time systems, it is also desirable to analyze weakly hard

real-time systems to assess their quality of service. Toward this end, we proposed SWEAK by extending

SAFE to analyze weakly hard real-time systems. SWEAK uses a multi-objective genetic algorithm

to search for the worst test cases that maximize the magnitude of deadline misses and the extent of

consecutive deadline misses. Once the results are obtained from the search, SWEAK infers safe WCET

ranges by leveraging a logistic regression model and selects a probability that minimizes the violations of

deadline constraints and that maximizes the WCET ranges. For more accurate WCET estimation in a wide
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range of industrial software, SWEAK accounts for the context switching times and leverages an industry

scheduler, i.e., APS, provided by our industrial partner, Blackberry. We evaluated SWEAK on a real-time

satellite system and on synthetic systems following the guidelines defined by our industrial partner. The

results indicate that SWEAK infers satisfying WCET ranges for weakly hard real-time systems with

high flexibility in selecting ranges by practitioners. In addition, we evaluated SWEAK by applying it to

600 synthetic systems with various degrees of complexity. The results indicate that SWEAK is scalable.

Overall, SWEAK completed all the experiments at most 22.1h. Practitioners confirmed that SWEAK is

acceptable for practical use as an offline analysis technique.

For finding the (near-)optimal priority assignments for real-time systems, we proposed OPAM. OPAM

aims at finding equally viable priority assignments that maximize the magnitude of safety margins and

the extent to which engineering constraints are satisfied. OPAM leverages a multi-objective, competitive

coevolutionary search algorithm that simultaneously evolves different species, i.e., populations of priority

assignments and stress test scenarios. In the coevolution algorithm, two populations compete with each

other to evolve themselves simultaneously. The former population aims to minimize chances of deadline

misses while the latter attempts to maximize them. We evaluated OPAM on six industrial systems from

different domains and 370 synthetic systems. The results show that OPAM finds notably better priority

assignments than both those manually defined by engineers based on expert knowledge and those obtained

by our baselines: random search and sequential search. Moreover, OPAM linearly scales with the number

of tasks in a system and the time required to simulate task executions. Based on the discussions with

practitioners, the execution times of OPAM on our industrial systems are practically acceptable.

6.2 Future work

This section describes future research directions that are related to this dissertation.

Generalization. Using simulation-based approaches, we were able to analyze realistic real-time systems

when estimating safe WCET ranges and predicting (near-)optimal priority assignments. However, our ap-

proaches for the WCET estimation are not applicable when they are applied to systems with the following

characteristics: (1) dynamic priority assignments and (2) hybrid scheduling policies. Additionally, OPAM

can be generally applicable to a wide range of real-time systems by considering weakly hard constraints

and by applying a proper and complex scheduler such as APS.

More solid validation of our work. We evaluated our approaches with a limited number of industrial

systems and a large number of synthetic systems to mitigate any potential biases in our experimental

results. Although we try our best to avoid potential biases in the results, better strategies may exist to

evaluate our approaches. In the long term, therefore, we plan to apply our approaches to many industrial

systems in different application domains.

Real-time task modeling language. Designing a modeling language for real-time systems is a potential

direction for future work. A language that is capable of describing various features, such as dependencies,

constraints, and behaviors of real-time systems, may facilitate schedulability analysis. We believe that if

practitioners describe the system and their needs with a language specifically designed for schedulability

analysis, the analysis approaches can be more precise in inferring safe WCET ranges and in finding (near-)

optimal priority assignments.
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