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General introduction

Market microstructure encompasses various fields developed by the researchers from different

disciplines like economics and finance, data science, mathematics and physics. The following is

an introduction to the topics relevant to this thesis.

Financial markets can be organized in different ways. The two stylized market structures

that are particularly relevant for the context of this thesis are an exchange or transparent market

and an over-the-counter market or a dark pool. An exchange is a venue that handles trading

via the electronic continuous double-sided auction. Various orders (to buy at the market/limit,

to sell, to modify the existing order) are collected by the exchange and displayed to all market

participants in the form of the limit order book (LOB). The LOB is fully transparent and any

participant can observe the available volume at any price at a certain moment in time. The

order flow brings changes to the LOB, and the state of the LOB is a crucial piece of information

for designing trading strategies.

On the other hand, over-the-counter markets, which are essentially based on bilateral nego-

tiations, vary in the degree of opacity. Dark pools represent one of the most popular structures

of over-the-counter markets. They collect buy and sell orders and match them based on volume,

but not the price. The price of the resulting transaction is determined from an external source,

for example, an exchange.

There is an ongoing debate in the industry and also in the academic world about the positive

and negative effects of the growing volume of dark trading. In the first and the second chapters,

I look into the implications of dark trading for market stability, liquidity, and welfare. The first

chapter is an empirical work that employs the quasi-natural experiment in order to understand

the influence of dark trading on the overall market quality and stability. The second chapter

presents a theoretical model of the limit order book and an attached dark pool where I observe

the changes in the market parameters as the availability of the dark pool changes.
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Another important aspect of the current markets is the speed arms race. In recent years,

with digitalization and the evolution of electronic commerce, it has become common for financial

market participants to process their transactions fully electronically. The high speed at which

the transactions could be processed and settled gave name to the new trading style known as

high-frequency trading (HFT). High-frequency traders (HFTs) usually try to locate as close to

the exchange matching engine as possible, as they value speed advantages up to nanoseconds.

They buy and sell quickly and do not hold a position for a long time.

In the current markets, the volume share traded by HFTs certainly makes them the key

players in equity markets. However, the activity of HFTs that can result in higher volatility

of intraday prices, variation of trading volumes, and evaporation of the liquidity in periods of

stress, has recently been under the radar of regulating authorities.

The HFT aspect of the modern market microstructure is addressed in the first and the third

chapters of the current thesis. The first chapter assesses the degree to which the speed bump

effect in a particular hidden order on Nasdaq influences market stability, volatility, and liquidity.

The third chapter describes the use of machine learning techniques in order to predict short-

term market stability, volatility and liquidity. The proxy for the HFT is one of the important

microstructure features used in models training.

The present doctoral thesis consists of three main chapters. The chapters of the thesis can

be considered independently. Each of the three chapters raises a research question, reviews

the related literature, proposes a method for the analysis, and, finally, reports results and

conclusions.

Chapter 1 is entitled Dark Trading and Financial Markets Stability and it is based on a

working paper co-authored with Prof. Dr. Jorge Gonçalves and Prof. Dr. Roman Kräussl.

This paper examines how the implementation of a new dark order – Midpoint Extended Life

Order (M-ELO) on Nasdaq – impacts financial markets stability in terms of occurrences of mini-

flash crashes in individual securities. We use high-frequency order book data and apply panel

regression analysis to estimate the effect of dark order trading activity on market stability and

liquidity provision. The results suggest a predominance of a speed bump effect of M-ELO rather

than a darkness effect. We find that the introduction of M-ELO increases market stability by

reducing the average number of mini-flash crashes, but its impact on market quality is mixed.

Chapter 2 is entitled Dark Pools and Price Discovery in Limit Order Markets and it is
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a single-authored work. This paper examines how the introduction of a dark pool impacts

price discovery, market quality, and aggregate welfare of traders. I use a four-period model

where rational and risk-neutral agents choose the order type and the venue and obtain the

equilibrium numerically. The comparative statics on the order submission probability suggests

a U-shaped order migration to the dark pool. The overall effect of dark trading on market

quality and aggregate welfare was found to be positive but limited in size and depended on

market conditions. I find mixed results for the process of price discovery. Depending on the

immediacy need of traders, price discovery may change due to the presence of the dark venue.

Chapter 3 is entitled Machine Learning and Market Microstructure Predictability and it is

another single-authored piece of work. This paper illustrates the application of machine learning

to market microstructure research. I outline the most insightful microstructure measures, that

possess the highest predictive power and are useful for the out-of-sample predictions of such

features of the market as liquidity volatility and general market stability. By comparing the

models’ performance during the normal time versus the crisis time, I come to the conclusion that

financial markets remain efficient during both periods. Additionally, I find that high-frequency

traders activity is not able to forecast accurately neither of the market features.
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Chapter 1

Dark Trading and Financial Markets

Stability

1.1 Introduction

For a couple of decades, market participants have been spending massive resources to obtain

quick access to the richest data and invested in technologies to execute trades as fast as possible.

According to Easley, López de Prado, and O’Hara (2012), for the period from 2009 to 2012, the

share of high-frequency trading (HFT) firms have risen to more than 70% in the U.S. equity

markets and approached 50% of the volume in futures markets. Since then, the percentage of

HFT firms had increased further. Generally, HFTs use computer algorithms to look at patterns

of prices, volumes, and past trading activity and react to any changes in those patterns in a

matter of micro- or even nanoseconds. Some of them would not consider themselves as investing

in fundamental information, but rather acquiring information about market dynamics and

liquidity. Because fast actions of one algorithm may trigger responses of many others, small

mispricing can rapidly self-reinforce itself and occasionally cause flash crashes in securities’

prices.

Golub et al. (2012) study the increase in the number of mini-flash crashes in individual

securities between 2006 and 2011 and suggest that HFT causes those crashes. Leal et al. (2016)

build an agent-based model to study how the interplay between low- and high-frequency trading

affects asset price dynamics. They find that the presence of HFT increases market volatility

and plays a fundamental role in the generation of flash crashes. On the other hand, Kirilenko
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et al. (2017) examine the structure of the E-mini S&P 500 stock index futures market on May

6, 2010, and observe that trading patterns of HFT did not change when prices fell during the

Flash Crash.

Biais and Foucault (2014) and Biais et al. (2015) propose to create a segment of slow-

friendly markets but to leave room for investment in fast trading technology. In the spirit

of this recommendation, exchanges started to introduce technology-based solutions to protect

the interests of long-term investors. Those solutions were implemented in the form of latency

delays and are commonly known as “speed bumps”. The Investors Exchange (IEX) applied

the first such measure by introducing a 350-microsecond delay to all incoming and outgoing

correspondences. Hu (2018) observes improvements in market functioning around the period

when IEX became a national securities exchange. Moreover, he documents a positive impact of

such speed bumps on market quality in terms of tighter spreads and improved liquidity. Several

other exchanges followed the example of IEX and applied for the introduction of such a delay

to the Securities and Exchange Commission (SEC).

Dark trading is an alternative approach to slow down markets. In addition, dark orders

also hide trading intentions. When trading large amounts of stock using visible market or limit

orders, one cannot prevent the price to be moved. To reduce price impact, a trader can submit

the order to the dark pool and often even receive a better execution price. The downside of

going to the dark pool is execution uncertainty since there is no guarantee that a trader will

find a counterparty.

Major exchanges nowadays run their own dark pools where the execution price is referenced

by the current mid-price (the average of the best bid and the best ask prices). It is difficult,

however, to hide dark orders from HFT firms. They use their speed advantage to submit hidden

orders inside the spread and quickly cancel them if they do not execute right away. If HFTs

identified hidden orders, they could easily manipulate the best quotes to transact with those

orders at comfortable prices.

In 2018, the Nasdaq exchange came up with a solution to improve dark orders and shield

them from HFTs. Introduced on March 12, 2018, the Midpoint Extended Life Order (M-

ELO) is targeted toward long-term investors. Anonymity and confidentiality of M-ELO are

the critical tools to prevent potentially predatory counterparties from determining intentions

and using that information to generate short-term profits at the expense of slow traders. This
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order becomes executable 500 milliseconds after submission and does not interact with other

Nasdaq dark orders that have not met the 500 milliseconds holding period requirement. On

May 11, 2020, Nasdaq revisited the design of the M-ELO order and decided to reduce the

holding period to 10 milliseconds. The exchange motivated this change by optimization in

M-ELO opportunities and execution. The decrease in the holding period was expected to open

up M-ELO to use cases that were previously unavailable1.

Despite increasing volumes traded in dark pools, there is still limited theoretical work dis-

cussing the effect of hidden orders on market quality, stability, and price discovery. Boulatov

and George (2013) build a model where the strategies of informed traders can be adjusted in

response to the visible and hidden liquidity on the market. They analyze venue and order

choices of traders and find that hidden liquidity has a beneficial impact on market quality due

to increased competition among informed market participants.

In contrast to Boulatov and George (2013), Zhu (2014) argues that adding a dark pool

alongside the exchange decreases its liquidity. His model suggests that, since informed orders

are much more correlated than uninformed ones, informed traders would rather choose the lit

venue to avoid low execution probabilities in the dark pool. This relatively high presence of

informed trading on the lit exchange naturally increases price discovery which, in turn, leads

to reduced liquidity. Buti et al. (2017) numerically solve a discrete model in which traders

decide to submit their order to either an exchange or a dark pool. The authors obtain a

set of equilibrium order submission probabilities and show that the introduction of a dark

pool alongside the exchange widens bid-ask spread and reduces the depth available around the

midquote. Those negative changes in market quality are partially mitigated when the initial

liquidity of the limit order book increases.

Overall, theoretical works propose mixed results about the effects of dark trading on market

quality and price discovery. It is still a challenge for regulators to decide on the degree of control

of dark trading. Moreover, the aspect of market stability received much less attention. However,

it remains a relevant topic in the current times of algorithmic trading proliferation since fragile

markets may undermine investors’ trust in the financial market system.

This paper adds to the existing literature on dark trading, speed bumps and also expands
1More information on the rule change may be found at https://www.nasdaq.com/articles/

the-midpoint-extended-life-order-m-elo%3A-m-elo-holding-period-2020-02-13
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on its relation to market stability. It aims to identify the degree to which M-ELO is used in

securities trading and its impact on the number of mini-flash crashes during a continuous trading

period. We also investigate the association between M-ELO trading and market liquidity. The

analysis employs high-frequency trades and quotes data from Nasdaq to identify mini-flash

crashes in individual securities and to relate crash occurrences to the intensity of dark M-

ELO trading through panel regression analysis. Recently implemented change in the order

design allows also to disentangle the darkness and the speed bump effects of the M-ELO. Our

results suggest a strong relationship between M-ELO volumes and measures of market quality

and stability. This relationship is more pronounced through the speed bump effect of M-ELO

rather than through the dark order effect. Overall, M-ELO is associated with fewer flash

crashes, greater visible volumes in the limit order book, but widened spreads.

The remainder of the paper is organized as follows. Section 1.2 describes the data sources

of intra-day trading and M-ELO volumes. It also presents measures of liquidity and sum-

mary statistics. Section 1.3 presents the methodology, empirical results, and describes various

robustness checks. Section 1.4 concludes.

1.2 Data and Descriptive Statistics

1.2.1 Data sources

The Order Book Message data come from Nasdaq’s historical ITCH. This data set contains

time-stamped in nanoseconds order submissions, executions, cancellations, and modifications

on the Nasdaq equity market. The data, however, do not identify market participants and

their activity in the dark. Submissions of hidden orders of any kind are not reported, while the

executions are visible for all order types.

The data allow us to directly observe liquidity provision on each depth level of the limit

order book at any time. The sample period covers almost 3 years of trading from January 2,

2018, to December 31, 2020. We consider only large-cap constituents of the set of firms traded

on Nasdaq, where the trading activity is considerably high. We, therefore, in line with similar

analyses of Andersen et al. (2001) and Brogaard et al. (2018), preserve the sufficiently large

number of observations by focusing our analysis on the largest firms.

The limitations of this data are straightforward and similar to those that previous research
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encountered (see, e.g., Carrion (2013); Brogaard et al. (2014); O’Hara et al. (2014); Brogaard

et al. (2018)). We do not observe individual HFT activity as well as trading activity on

other venues. Trades on Nasdaq account for, on average, 33% of trading activity for Nasdaq

listed stocks, about 12.5% for NYSE stocks, and 16% for ARCA stocks. Despite the high

fragmentation nature of financial markets, we share the reasoning of Brogaard et al. (2018)

that liquidity transfers to other venues are unlikely due to the short period of interest and

overall similar liquidity provision rules among exchanges. Thus, we argue that although the

results obtained could not readily expand to other exchanges, still they should be taken into

account in the matters of market design.

The M-ELO order became available on March 12, 2018, and quickly gained its share of

trading volume which averages to be around 1.82% of Nasdaq’s total matched volume for the

period from 2018 to 2020. Weakly volumes of M-ELO trades come from Nasdaq’s M-ELO

Transparency Statistics2. This is one of the biggest limitations of the present analysis. By

shifting to weekly observations one might lose statistical power in identifying the effect of M-

ELO trading. We resort to the fact, however, that the size of the sample is sufficient and the

panel structure of the data allows us to obtain robust estimates. Securities’ characteristics to

serve as covariates in our analysis were computed from trades data. As an instrument for the

potentially endogenous M-ELO trading, we use the daily average price computed from trades

data and the security’s price rank obtained from the SEC’s MIDAS Market Structure Metrics

database.

1.2.2 Mini-flash crash identification

We identify mini-flash crashes using an approach similar to Brogaard et al. (2018) for extreme

price movements (EPM) identification. In their methodology, the trading day is split into 10-

second intervals between 9:35 a.m. and 3:55 p.m. The intervals are then ranked by the midquote

return magnitude and those with returns exceeding the 99.99th percentile are identified as

EPMs.

However, our methodology differs from Brogaard et al. (2018) in several aspects. Firstly, we

account for cross-sectional heterogeneity in trading activities for different firms. This is done

by switching from a static time interval of 10 seconds to an interval between 0 and 300 seconds.
2 Available at https://www.nasdaqtrader.com
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Only intervals between 10:00 a.m. and 3:30 p.m. are considered, to abstain from the periods of

excessive volatility in the markets. The length of the interval depends directly on the number

of trades in the security for a day. It is chosen in a way that each time interval contains on

average 50 trades. To make sure the turnover is considerably high, we keep only those securities

for which the number of trades for the period from 10:00 a.m. to 3:30 p.m. is not less than

3,300. This way, we require each time interval for mini-flash crash identification to contain at

least 50 trades on average. As the sample period is quite long, it is challenging to obtain a set

of stocks of an appropriate size that satisfy this condition for the straight three years. That is

why, for this analysis, we require stocks to satisfy for at least one-third of the sample period.

Throughout the period from 2018 to 2020, we identified 196 firms, that satisfy the minimum

daily number of trades condition for at least 50 weeks throughout the 3-year period.

Secondly, as flash crashes are known for their subsequent reversals a simple calculation of

midquote returns has a flaw of missing those intervals within which the price suddenly jumps

and quickly retraces back. To overcome this problem, for each time interval we compute the

maximum possible midquote return. In such a way we obtain a series of intra-day extreme

returns for a security.

Lastly, for each firm, we identify the intervals containing mini-flash crashes as those where

the Z-score for the midquote extreme returns at day t exceeds the value 7. These are the

returns that satisfy rt,i > µt+7σt, where rt,i is the ith extreme return on day t, µt is the average

extreme return on day t, and σt is the standard deviation of extreme returns on day t for this

particular security.

The procedure gets a total of 10,113 mini-flash crashes with 56.94% of them being negative.

This identification technique is in line with previous works of Golub et al. (2012) and Johnson

et al. (2013) that do not make a sharp distinction between crashes and spikes and require the

price to move fast and severely. Similar to the approach of Bellia et al. (2020), we study only

those mini-flash crashes which possess transitory dynamics. The average price reversal in the

next 10 minutes following the end of the crash is 78.1%.

The first panel of Figure 1.1 shows the distribution of mini-flash crashes throughout the

sample period. There is no much visual evidence of M-ELO introduction having a significant

effect on the frequency of mini-flash crashes. We associate this fact with relatively low trading

volumes of M-ELO orders. However, as we show in this work, there is a statistically significant
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association between the degree of M-ELO trading and the expected number of mini-flash crashes

observed during a week.

The last two panels of Figure 1.1 show the time trends for the median values of the quoted

spread and the depth available 10 basis points around the midquote relative to the daily trading

volume. The dynamics of the depth suggests market quality is improving during times of active

M-ELO trading in the first half of 2018. In 2019, the relative depth is at its highest levels,

sometimes exceeding 2% of the daily trading volume, while the spread stays moderate at around

3 basis points. In early 2020 we can clearly see the impact of the COVID-19 crisis. Spreads

more than double while fewer shares are available close to the midquote.

Figure 1.1 around here

An example of a mini-flash crash, identified by our approach is presented in Figure 1.2. The

crash occurred in the price of Procter & Gamble (PG) on March 21, 2018. Panel A spans

the trading during the opening auction, continuous trading period, and closing auction. This

example illustrates the typical dynamics of midprice during a mini-flash crash. At 2 p.m.,

the price experienced a rapid, massive spike of about 1%. In the next five minutes, however,

the price dropped more than 1.4% and eventually returned to the region of previous daily

consolidation. The price became more volatile during the rest of the day.

Figure 1.2 around here

Panel B shows a zoomed representation of the crash event, where each dot represents a single

trade. We note that the crash did not trigger the circuit breaker, even though the return

associated with the initial spike had a Z-score of 7. The duration of this mini-flash crash in

the price of PG was 26.2 seconds (the initial spike), with a cumulative return of 0.98%, and a

trading volume that exceeded $633 thousand.

1.2.3 Midpoint Extended Life Order

Recent research on dark trading looks at the economics of liquidity provision in the dark.

Academics start to distinguish between two types of dark trading. The first, “one-sided” type,

reflects dark trading at a single price which, in most cases, is the midquote. It is usually not

regarded as a beneficial type of dark trading due to its low execution probability, absence of
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profitable market strategies of earning the spread, and limited abilities to hide trading intentions

because of susceptibility to probing orders. The other, “two-sided” dark trading, allows dark

buy and sell limit orders to exist simultaneously. This type of dark trading is believed to be

benign to price discovery and market quality.

Foley and Putninš (2016) and Comerton-Forde et al. (2018) analyze the effect of both types

of dark trading by exploiting natural experiments in Canadian and Australian markets. They

find that two-sided dark trading reduces quoted, effective, and realized spreads as well as market

illiquidity measured by the price impact. On the other hand, they find no evidence that one-

sided dark trading affects markets. The dark order studied in our paper can be mainly referred

to as one-sided dark trading. However, it possesses some features of the two-sided type as well.

On March 12, 2018, Nasdaq launched a new order type: Midpoint Extended Life Order (M-

ELO), which is designed to attract long-term investors to trade with each other at the midpoint

of the National Best Bid and Offer (NBBO). M-ELO is a hidden order which interacts only

with other M-ELO-type orders3. Because of this, M-ELO orders stay out of the way of the book

clearing orders, with the aim to reduce information leakage and to provide a better execution

price.

There is a 500 millisecond period called the “Holding Period” before an M-ELO order can

be executed. This restriction protects market participants from the negative price impact as

well as from adverse selection. If a bid or an ask price moves, M-ELO orders are automatically

tagged to the new midquotes but the 500 milliseconds timer does not restart. If that was not

the case, then one would expect to see fewer M-ELO orders executed during volatile markets,

since prices will move a lot and sometimes exhibit mini-crashes. As the waiting locked-in times

cannot be easily extended by the NBBO moves, the documented negative association between

the number of matched M-ELOs and the number of mini-flash crashes may not be simply

explained by the built-in “protective” features of M-ELOs.

Starting from May 11, 2020, the Nasdaq exchange reduced the holding period of M-ELO or-

ders from 500 to 10 milliseconds. Following the satisfactory M-ELO performance, the exchange

decided to increase the opportunity set for its clients. With a 98% reduction of the waiting

period, more trading strategies will be able to incorporate the benefits of the M-ELO. For the

current research, this rule change is crucial as it helps to disentangle the dark trading effects
3Specifications and more details of M-ELO order type can be found in the Appendix 1.A.1.
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and the speed bump effects of M-ELO orders.

Figure 1.3 shows that median M-ELO trading reaches 1% of the total matched by Nasdaq

volume in the middle of May 2018. In the second half of 2018, it starts to decline which can be

associated with the change in the submission fees for this order type. M-ELO was fees-free until

May 2018, with the possibility of a one-month extension, given that some trading activity-based

milestones were reached. Since June 2018, M-ELO order submission incurs a fee for all stocks.

This might be the reason for the gradual decline in relative M-ELO volumes already in the

early autumn of 2018.

In 2019, relative M-ELO trading reached its maximum levels. On average M-ELO executions

constituted 3.2% of the total amount matched by Nasdaq. The share of M-ELO executions

reduced significantly during the first months of 2020. We observe a spike in relative M-ELO

volumes right at the time of the design change. As the holding period became less restrictive,

more market participants opted for this order. In our analysis, we control for this change by

introducing a dummy variable that equals one if the current holding period is 10 milliseconds

and zero otherwise. Also, we include time effects into the regression to rule out end of the year

effects as well as the COVID-19 related financial crisis.

Figure 1.3 around here

Another remarkable feature of M-ELO is that the sizes of executed orders are usually bigger

than the sizes of visible limit orders, submitted to the book. Figure 1.4 plots density curves

of sizes of visible limit orders and M-ELO orders. It can be seen that the distribution of

sizes for M-ELO dominates the distribution of sizes of visible orders. The fact that M-ELO is

associated with bigger order sizes can be a potential channel through which M-ELO activity may

impact market stability. HFT would benefit from taking the opposite side relative to market

participants who submit large orders. This contrarian trading by HFT may create unreasonable

price pressure that can lead to crashes. It is possible that as more market participants opt for

non-displayed M-ELO orders, fewer flash crashes occur in the market. The validity of this

reasoning is, however, not investigated in this paper, so we remain cautious and do not claim

the causality.

Figure 1.4 around here
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1.2.4 Measures of liquidity and order imbalance

Liquidity is generally understood as the ability to quickly trade considerable volumes at a low

cost. It is a multi-dimensional concept that includes trading costs, depth available to customers

placing large orders, speed of execution, and protection against execution risks (Foucault et al.

(2013a)).

Our first empirical measure of liquidity is the quoted half spread. It represents a scaled by

the midpoint price difference between the lowest ask price (at) and the highest bid price (bt)

available at the moment:

QSt = at − bt
2mt

= at − bt
at + bt

, (1.1)

where mt = (at + bt)/2 is the midprice. The quoted spread for stock-day is time-weighted and

based on the local limit order book.

The other measures are the 5-minute realized spread and price impact. They are calculated

per trade and then averaged over the trading day. The 5-minute proportional realized spread

for the tth transaction is defined as

RSt = dt
pt −mt+5min

mt

, (1.2)

where pt is the trade price, dt is the buy-sell indicator that equals +1 if the trade is a buy and

−1 if the trade is a sell, and mt+5min is a quote midpoint 5 minutes after the tth trade.

A price impact measure is based on the extent to which a trade generates an adverse reaction

in the market price. The midprice tends to rise when buy orders arrive, to an extent that is

positively correlated with their size. Symmetrically, it tends to fall in the wake of sell orders.

The 5-minute price impact of a tth trade is defined as follows:

PIt = dt
mt+5min −mt

mt

. (1.3)

Our data set allows us to construct various depth measures and incorporate the limit orders

beyond the best price levels. Similar to the work of Degryse et al. (2015), we measure the

aggregate monetary value of shares offered within a fixed interval around the midpoint. We

keep the original notation and refer to this measure as Depth(X). Denote the price level
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j = {1, 2, . . . , J} on the pricing grid and the midpoint of the local limit order book as m, then

Depth Ask(X) =
J∑
j=1

paj · qaj · I{paj < m(1 +X)}, (1.4)

Depth Bid(X) =
J∑
j=1

pbj · qbj · I{pbj > m(1−X)}, (1.5)

Depth(X) = Depth Bid(X) + Depth Ask(X), (1.6)

where paj (pbj) is the price of the limit sell (buy) order at price level j and qaj (qbj) is the number

of shares available at this level. We use the indicator function I{} to determine if a limit order

of a certain price is within the required interval around the midquote. The depth measure is

expressed in U.S. dollars and calculated for X = 10 basis points.

We also expand on measures of order imbalance. Each transaction is labeled as buyer- or

seller-initiated based on the information of corresponding limit order submissions. Following

Chordia et al. (2002), we compute for each stock the OIBNUMt measure of order imbalance,

where OIBNUMt is the number of seller-initiated trades less the number of buyer-initiated

trades on the day t, scaled by the total number of trades.

Further, we calculate an imbalance measure similar to that of Belter (2007). This measure

allows us to compare the liquidity supplied to different sides of the book beyond the best

price levels. Having the interval of X basis points around the midquote and the price levels

j = {1, 2, . . . , J}, the depth imbalance is defined as follows:

DI(X) =

J∑
j=1

(
qa

j

(pa
j−m) · I{p

a
j < m(1 +X)} − qb

j

(m−pb
j) · I{p

b
j > m(1−X)}

)
J∑
j=1

(qaj + qbj) · I{1−X < pj/m < 1 +X}
. (1.7)

For each stock-day, we compute the average depth imbalance for X = 10 basis points. This

measure is scaled by the total number of shares available in the given interval X.

1.2.5 Measures of algorithmic trading

It is hard to discriminate between orders placed by humans and orders placed by computer

algorithms. A methodology to identify HFT depends heavily on the availability of data. If

the data include information on HFT firms, it can be used directly to account for algorithmic
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trading (AT) activity. Most financial markets, however, do not provide information on whether

an order comes from a human or an algorithm.

In case that HFT cannot be classified exactly, researchers use various proxies to quantify

levels of HFT. Those proxies are constructed from trade and order submission data. We use

the empirical measure developed in Hasbrouck and Saar (2013) as our major proxy for AT.

This measure calculates the intensity of “strategic runs”, which are series of linked messages.

The linking results from HFT dynamically submitting and canceling orders to incorporate the

latest information into prices.

Following their methodology, we connect a newly submitted limit order to a previously

deleted order if the time between the two events does not exceed 100 milliseconds. The newly

submitted order should have the same direction and size in shares as the previously deleted

one. Only sufficiently long runs of 10 and more linked orders are kept. We scale the sum of

durations of all runs, which are allowed to overlap, by the duration of the trading day without

the first and the last 30 minutes of trading. Our proxy for the AT activity on day t is defined

as follows:

ATt = 1
5.5 · 3,600

∑N

j=1 Tjt, (1.8)

where 5.5 · 3,600 is the total time in seconds from 10:00 a.m. to 3:30 p.m., N is the number of

strategic runs on day t, and Tjt is the duration in seconds of run j on day t.

1.2.6 Summary statistics

Table 1.1 presents descriptive statistics for the sample stocks. There is considerable variation in

average daily price and daily dollar volume traded. The average coefficient of variation of stock

extreme returns (σr/µr) is centered around 0.63 with a relatively small standard deviation. This

suggests the firms fall in pretty much the same volatility cohort. The Nasdaq’s share shows

what fraction of the consolidated volume in a particular security was matched by the Nasdaq

exchange. The mean and the median share of Nasdaq across all listing venues are around 21%.

Table 1.1 around here

Table 1.1 also reports descriptive statistics on liquidity measures and measures of AT. The

average daily quoted half spread throughout the sample period is about 4.6 basis points. Five-
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minute realized spread and price impact are centered around zero with the first (the third)

quartile being about minus (plus) one basis point.

There is a large variation in the dollar value of shares available 10 basis points around the

midquote. Its mean of $1.55 million is higher than the value of its 3rd quartile. The majority

of depth available is sell-side volume, as the positive mean value of depth imbalance suggests.

The trade-based measure of buy-sell imbalance, however, indicates that there is more buying

activity compared to the selling activity. These two observations do not contradict each other

since high-level buying activity stimulates liquidity providers to post sell limit orders due to

the reduced risk of non-execution.

The proxy of AT based on strategic runs suggests that somebody is engaging in dynamic

order submission about 1.8% of the time during the period from 10:00 a.m. to 3:30 p.m. The

message-to-trade ratio clearly illustrates the fact that quoting activity nowadays is superior to

trading activity. Its mean shows that there are about 40 times more quote update messages

than actual trades.

Table 1.2 shows summary statistics for 10,113 identified mini-flash crashes. The Z-score of

the return is the value ri−µr

σr
, where ri is the return during the mini-flash crash, µr and σr are

the mean and standard deviation of maximum interval returns during the day. The threshold

for the Z-score was chosen to be equal to 7, to identify extreme price movements. The table

reports the average Z-score for the extreme returns around 8.5.

The average duration of a crash of approximately 48 seconds. In fact, 99% of identified mini-

flash crashes do not last longer than 164 seconds. The mini-flash crash returns are distributed

around -0.08 basis points, which is explained by the fact that only 56.94% of crashes are

negative. The median absolute mini-flash crash return is about 58.3 basis points.

Table 1.2 around here

As Table 1.2 reports, mini-flash crashes are remarkable in subsequent price reversals. The 10-

minute price reversal after the crash is on average 78%. The number of trades during the crash

period is substantially higher than in normal times. With the mean number of trades of 305

and the mean crash duration, one obtains that the average number of trades per second to be

6.4 trades. This is a more than 7 times higher trading intensity compared to the average across

the whole sample. The number of shares traded and the dollar volume during a crash tell a
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similar story. Also, the size of the trade increases slightly during crash times. The average size

of the trade during normal times is around 124 shares, while it increases to 152.1 at the periods

where we identify mini-flash crashes.

Table 1.2 also reports summary statistics on the crash aftermath volatility. This is the

standard deviation of the extreme returns for the next 30 minutes following the end of the

mini-flash crash. It is scaled by the standard deviation of the extreme returns throughout the

day. The average volatility after the crash is approximately 16% higher than the volatility for

that particular day.

Finally, descriptive statistics on the relative amount of M-ELO trading are provided. The

average share of all M-ELO orders relative to all matched by Nasdaq orders is 1.98% for the

stocks with identified mini-flash crashes. Also, the size of M-ELO orders is usually larger than

the average size of visible orders on Nasdaq. These results suggest that M-ELO trading is

more active in less liquid stocks when the market participants wish to trade large orders. This

might seem unrealistic that such a small order type can impact any aspect of markets’ behavior.

However, in the next section, we show a steady coupling between the share of M-ELO trading

and mini-flash crashes’ intensity and liquidity provision quality.

1.3 Empirical Approach and Results

This section analyzes the effect of M-ELO trading on market stability which is approximated

by the number of mini-flash crashes in individual securities. We also study the effect on various

crash characteristics and liquidity measures. Our empirical approach involves relating market

stability and liquidity characteristics to the M-ELO trading via stock-week panel regressions.

For the panel regressions, we take two methods: (i) two-stage least squares (2SLS) instrumental

variable regressions, and (ii) two-stage GMM estimations, which are efficient in the presence

of heteroskedasticity of unknown type and apply heteroskedasticity and autocorrelation robust

standard errors.

1.3.1 Mini-flash crashes

This paper tries to identify the impact of M-ELO trading on the general number of mini-flash

crashes and their characteristics. To account properly for both the cross-section variation and
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time variation, we employ the panel structure of the data and estimate the following panel

regression with time and fixed effects:

yit = αt + β1 ·M-ELOit + β2 · dt ·M-ELOit + θ ·Xit + Ci + uit, (1.9)

where yit is one of the following: (i) weekly number of mini-flash crashes in security i on

week t, or (ii) one of the various crash characteristics like Z-score of the extreme crash return,

duration of the crash, subsequent price reversal, and others, or (iii) one of the liquidity measures.

M-ELOit is a fraction of M-ELO shares matched by Nasdaq to the total number of shares the

exchange matched for security i on week t, dt is the indicator that the holding period of M-ELO

orders has been reduced from 500 milliseconds to 10 milliseconds. It equals one for all the days

after May 11, 2020, and zero otherwise. Xit is a set of control variables that includes stock

trading activity characteristics like the average daily number of trades, shares, and volume. It

also includes the coefficient of variation as the standard deviation of extreme returns scaled

by the mean, the measure of low latency trading from Equation (1.8), and OIBNUM as the

measure of order imbalance.

Identifying the causal effect of dark M-ELO trading is generally problematic due to endo-

geneity. The possibility of reverse causality arises because M-ELO activity may affect market

stability, but, at the same time, less stable markets may push participants to the dark. Econo-

metrically, this means that endogenous regressors will make the estimates biased, inefficient,

and inconsistent.

One potential solution to the endogeneity problem is the instrumental variable approach

in the spirit of Hasbrouck and Saar (2013), Degryse et al. (2015), and Comerton-Forde and

Putninš (2015). We instrument M-ELO trading in stock i on week t with the average price of

this stock on week t computed from the trades records. To get a more efficient estimator, we

use one more instrument which is the price rank of the stock i on week t assigned by the SEC.

Thus, we extend the linear regression model (1.9) by the following first-stage regression:

M-ELOit = at + π1Z1,it + π2Z2,it + γXit + C ′i + vit, (1.10)

where Z1,it is the average daily price of stock i on week t, Z2,it is its price rank, and Xit is the

set of control variables included to weaken the instrument exogeneity assumption.
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We can estimate the causal effect of M-ELOit on yit in two steps. At the first stage, we regress

M-ELOit on Z1,it and Z2,it to obtain predicted values M̂-ELOit = ât + π̂1Z1,it + π̂2Z2,it + γ̂Xit.

Then, at the second stage, we regress yit on M̂-ELOit to obtain the Two Stage Least Squares

estimators β̂1, 2SLS and β̂2, 2SLS.

We believe the selected instruments for the level of M-ELO trading make economic sense

because high prices make M-ELO orders less attractive to traders. The higher the price of the

security is, the lower the relative bid-ask spread is which makes the price improvement of the

M-ELO lower. The same intuition can be applied to the price rank of the security. On the

other hand, the price of a security alone is not expected to affect its market stability so as to

invalidate exogeneity. The formal tests of instruments’ relevance and exogeneity can be found

in Table A.1 of the Appendix 1.A.3.

An additional way to handle the endogeneity problem is the construction of a weekly panel

of stocks and estimation of a dynamic model using the GMM system estimator developed by

Blundell and S. Bond (1998). The property of GMM of not relying on any specific assumption

of the distribution of the residuals makes it appropriate for our estimation. To mitigate the

bias caused by endogenous regressors, the GMM estimation allows using lagged explanatory

variables to eliminate correlations between explanatory variables and error terms. Under these

conditions, the resulting estimator consistently estimates the impact of an exogenous change

in M-ELO trading activity on the market stability of the stock.

The general form of our dynamic panel regression is as follows:

yit = αt + β1yi t−1 + β2M-ELOit + β3 · dt ·M-ELOit + θXit + Ci + uit. (1.11)

To construct the set of moment conditions we assume sequential exogeneity. As GMM

instruments for the lags of the dependent variable, we use its next three further lags. The

GMM estimates are robust but typically weakened if the number of instruments is large. This

is a common practice to either collapse the instruments to avoid the bias that arises as the

number of instruments becomes high or to just use the most recent lags of the dependent

variable as instruments.

The regression results for the models (1.9) and (1.11) are reported in Table 1.3. For the

panel GMM, we estimate the model (1.11) including the first lag of the dependent variable
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(Column 2). The estimation results for both models suggest that relative M-ELO trading effect

is highly significant and is negatively associated with mini-flash crash occurrences during the

week. Thus, in the linear panel specification (1), the loading on the M-ELO volume relative

to the total Nasdaq matched volume indicates that with a one percentage point increase in

the relative volume of M-ELO orders, the average number of mini-flash crashes for that week

decreases by about 0.14 in that specific security for the period from March 2018 to May 2020.

In contrast, the reduction of the holding period from 500 milliseconds to 10 milliseconds

resulted in a weakening of the initial market-stabilizing effect of M-ELO trading. After May 11,

2020, one percentage point increase in relative M-ELO volumes is associated with on average

0.04 decrease in the weakly number of mini-flash crashes. We observe, that the 98% reduction

in speed bump properties of M-ELO orders comes together with 71% reduction in the initial

stability improvements associated with the M-ELO trading.

Table 1.3 around here

Table 1.3 shows that for the specification (2) of the panel GMM, the first lag of the number

of mini-flash crashes turns out to be significant as well. Having all the parameters fixed, an

additional mini-flash crash on the previous week is associated with a 0.37 decrease in the average

number of crashes on a current week.

The estimation results from the panel GMM model suggests a bigger economic effect of

M-ELO trading. With one percentage point increase in relative M-ELO volume during the first

two years, the average number of crashes decreased by 0.28. After the design change in May

2020, this effect diminishes by 78.6% and equals 0.06 points of decrease.

We further investigate if M-ELO trading can explain the variation in different crash charac-

teristics. Table 1.4 reports the estimation results of the panel regression where the dependent

variables are the extreme return’s Z-score at the time of the crash, crash return in absolute

value, crash duration, number of trades during the crash, and the relative volatility of extreme

returns during the next 30 minutes.

Since we observe 10,113 mini-flash crashes throughout the sample period, and, more specif-

ically, only 5,297 stock-week observations with a non-zero number of crashes, we decide to
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proceed with 2SLS linear panel estimation4.

Table 1.4 around here

The effect of M-ELO volume relative to the total volume matched by Nasdaq is statistically

significant for the absolute value of the mini-flash crash return as well as for its Z-score. The

effect is contrasting, however. An increase of one percentage point in M-ELO activity is asso-

ciated with an increase of 22.7 basis points in the absolute return during the crash, but at the

same time with a 0.398 decrease in the Z-score of this return. This result may suggest that for

the securities with a higher degree of M-ELO trading flash crashes may stand out less in terms

of how volatile they are compared to usual periods. At the same time the size of the crash, in

terms of crash returns, tends to be bigger.

There is a significant positive effect of M-ELO on the number of trades that happen during

the crash. There are about 135 more trades happen during the mini-flash crash if the security’s

M-ELO share increases by one percentage point. The model finds no impact of M-ELO neither

on crash duration nor on the price reversal in the following 10 minutes.

All the impact of M-ELO trades on crash characteristics is mitigated by approximately

83.3% during the period when the holding time of M-ELO orders was reduced to 10 milliseconds.

Clearly, the speed bump effect of M-ELO is dominating in its impact on the characteristics of

the crashes.

Table 1.4 also reports the controls which are best in explaining various mini-flash crash

characteristics. Firstly, the coefficient of variation of the returns, or simply our measure of

stock return volatility, is significant at the 1% level in almost every model specification. The

estimates suggest that more volatile stocks have usually more explosive crash returns, shorter

crash duration with a greater number of trades. Secondly, the average daily turnover in terms

of trades is usually associated with less extreme crashes, after which the price recovers to a

larger extent. However, those effects are barely noticeable economically.
4 It is known that when the number of instruments in the GMM setting is increasing the bias in estimates

increases as well. That is why OLS regression is likely to have higher statistical power. As it was established

in Table 1.3, the effect of M-ELO trading is more sound for the panel GMM model specification. This means

that a static model just underestimates the effect at worst.
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1.3.2 Liquidity provision measures

We further analyze the impact of relative M-ELO trading on various measures of liquidity.

Table 1.5 reports the estimation results of model (1.9), where the dependent variable is the

quoted spread, the 5-minute realized spread, a fraction of depth available 10 basis points around

the midquote to the total daily volume, and the absolute depth imbalance 10 basis points around

the midquote. As spreads, depth, and price impact are high-frequency liquidity measures, we

do not expect to find a strong seasonality in those measures at weekly time frames. Therefore,

a static panel regression is preferable for the analysis since the estimates have higher statistical

power.

Table 1.5 around here

The relative M-ELO traded volume has a “positive” impact on the quoted half spread. Thus,

a one percentage point increase in M-ELO trading during the first two years of operation is

associated with an increase of 1.33 basis points in the quoted spread. This effect is sizeable

and significant at a 1% level. At the same time, more M-ELO activity is accompanied by the

increase in the depth available 10 basis points from the midquote. For each percentage point

increase in M-ELO trading, there is a 0.55 basis points increase in the fraction of the daily

volumes which are available close to the midquote during the trading day.

The positive effect from the increase in the available depth can be undermined by the fact

that the absolute depth imbalance also increased due to M-ELO. We observe a 4.2 points

increase in the absolute depth imbalance 10 basis points around the midquote for each percent-

age point increase in relative M-ELO volume. It is worth noting, that the increase in depth

imbalance by 4.2 doesn’t mean the selling pressure increases four times.

Similarly to the crash characteristics, after the holding period reduction, a big portion of the

impact of M-ELO on liquidity is gone. There is no significant effect of M-ELO on the 5-minute

realized spread measure. Table 1.5 also reports estimation results for control variables in each

model specification. We observe some significant variables that impact the liquidity provision,

but most of the effects are economically negligible.
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1.3.3 Robustness

In the following, we detail additional robustness tests to support previous results. As the first

robustness exercise, we estimate the model using alternative specifications of M-ELO trading.

Previously, we used to relate M-ELO volumes to Nasdaq’s total matched volumes for the main

analysis. But M-ELO activity can also be compared to the overall dark volume handled by

Nasdaq. This allows to distinguish M-ELO trading from other dark trading activity and to

determine any additional or specific impact of M-ELO on market stability measures.

Also, we relate M-ELO volumes to the consolidated volume traded in each particular se-

curity. This specification of M-ELO activity takes into account the fact that M-ELO orders

are available only to Nasdaq’s participants, while Nasdaq may not have the biggest share in

trading for some particular stock. Table 1.6 reports the results of the analysis for M-ELO

volume related to Nasdaq’s dark volume in columns 1 and 3, and total consolidated volume in

columns 2 and 4. The estimation results for both static and dynamic panels suggest the effect

of M-ELO stays highly significant and becomes more pronounced economically.

Table 1.6 around here

As an additional robustness test, we estimate the model separately for big and small stocks. We

define a stock as a big one if its daily dollar trading volume is above all stocks’ median trading

volume throughout the sample period. Columns 1 and 2 in Table 1.7 report the estimation

results for samples of big and small stocks separately. The estimates suggest that the results

are driven by the most actively traded securities. There is no significant effect of M-ELO orders

on the stability of small stocks, while the effect on the sample of big stocks is similar to what

we observe in the full sample.

Table 1.7 around here

Finally, in column 3 of Table 1.7, we report the estimation results of the linear panel model

in Equation (1.9) after we remove the outliers in the controls. The estimates indicate a very

similar effect of the M-ELO activity on the market stability. For the period from March 2018

to May 2020 a higher degree of M-ELO trading was associated with fewer number of mini-flash

crashes, while, after the holding period of M-ELO orders was decreased by 98%, this positive

effect reduced by 79.9%.
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1.4 Conclusion

This paper provides novel evidence on market stability and liquidity provision due to the

implementation of a non-displayed (dark) Midpoint Extended Life Order (M-ELO). M-ELO is

a dark order that cannot interact with lit (visible) orders. It also possesses the speed bump

effect due to the holding period prior to the execution. We use high-frequency order book

message data from the Nasdaq exchange for the three years of M-ELO existence. The rule

change applied on May 11, 2020, makes it possible to disentangle the dark and the speed bump

impacts of M-ELO orders on market stability and liquidity.

For the period from January 2018 to October 2020, the degree of M-ELO activity is asso-

ciated with a lower frequency of mini-flash crashes for Nasdaq traded securities. Results from

panel regressions suggest the presence of significant effects of the M-ELO trading on crash re-

turns, volatility, and trading activity. Higher relative volumes traded via M-ELO are associated

with less turbulent crashes, which is more desirable for long-term investors. The effect of the

M-ELO on the quality of the liquidity provision is mixed. We document the increase of both

quoted spread and depth close to the midquote due to the M-ELO trading. At the same time,

increased order imbalance may undermine the positive effect of the improved market depth.

Our analysis shows that trading activity in M-ELO impacts market stability and liquidity

mainly due to the speed bump effect. The reduction in the M-ELO’s holding period by 98%

decreases the influence of M-ELO on the market by 80% on average. The robustness of the

results to different specifications of the model strengthens the conclusion that only about 20%

of the M-ELO market stabilizing effect comes from its dark properties and 80% from the speed

bump properties.

As M-ELO volumes are relatively small, we are cautious about extrapolating the results

of this analysis. The main goal of our research is to identify the effects of M-ELO on market

stability during recent years. Our study delivers an important insight for market participants,

policymakers, and researchers. The trade-off between the execution speed and order trans-

parency is capable of impacting the general stability of financial markets.
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Comerton-Forde, Carole and Talis J. Putninš (2015). “Dark trading and price discovery”. Jour-

nal of Financial Economics 118.1, pp. 70–92.

Degryse, Hans, Frank De Jong, and Vincent van Kervel (2015). “The impact of dark trading

and visible fragmentation on market quality”. Review of Finance 19.4, pp. 1587–1622.
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Tables and Figures

Table 1.1. Descriptive statistics of the sample firms.
The data set covers observations for 196 firms and exchange traded funds (ETFs) for the period
from January 22, 2018 to October 2, 2020. The table shows the mean, standard deviation, and
quartiles of all variables. The coefficient of variation of the extreme returns (σr/µr) shows the
extent of return variability in relation to its mean, where extreme returns are maximum possible
returns during crash identification intervals. Nasdaq’s share denotes the share of consolidated
traded volume handled by Nasdaq. QS is quoted half spread, RS5min and PI5min are realized
spread and price impact in the following 5 minutes after the trade, respectively. Depth(10) is
the U.S. dollar value of shares available 10 basis points around the midquote. DI(10) shows
the imbalance of buy-sell orders 10 basis points around the midquote. OIBNUM represents the
order imbalance in terms of trades. The strategic runs variable shows the fraction of time, high-
frequency traders (HFTs) engage in strategical order submission during the day. Msg/Trades
represents the ratio of all order modification messages relative to executed trades. Msg/$100
shows how many order add messages are submitted for every $100 traded. The statistics are
equally weighted based on a daily observations per firm.

Mean StDev 25th 50th 75th

General Characteristics
Price 110.11 203.41 40.61 62.08 113.65
Trades ’000 16.05 24.40 6.29 9.25 15.74
Shares, ’M 1.99 3.10 0.58 0.99 2.05
Volume $’M 201.64 593.86 35.13 68.56 140.44
σr/µr 0.63 0.17 0.52 0.59 0.69
Nasdaq’s share 0.23 0.11 0.13 0.19 0.33

Liquidity Measures
QS, bps 4.59 6.17 2.08 2.99 4.73
RS5min, bps -0.19 6.11 -1.56 -0.22 1.09
PI5min, bps 0.07 6.27 -1.18 0.08 1.36
Depth(10), $’M 1.55 3.76 0.19 0.41 1.04
DI(10) 3.42 35.57 -0.38 2.66 7.26
OIBNUM, % -1.09 10.49 -7.30 -1.03 5.11

Algorithmic Trading (AT) Measures
Strategic Runs, % 1.83 7.03 0.13 0.36 1.02
Msg/Trades 39.96 25.88 23.82 33.46 48.27
Msg/$100 0.69 0.63 0.30 0.52 0.86
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Table 1.2. Descriptive statistics of the identified mini-flash crashes.
The data set covers observations for 196 firms and exchange traded funds (ETFs) for the period
from January 22, 2018 to October 2, 2020. The table shows the mean, standard deviation, and
quartiles of various crash characteristics for 10,113 identified mini-flash crashes. The Z-score
of the return is the value of ri−µr

σr
, where ri is the extreme return on the interval i, µr and

σr are the mean and standard deviation of extreme returns on that day. The reversal shows
what fraction of the initial jump did the price retrace 10 minutes after the crash. Number of
trades, shares traded, and dollar volume traded are counted during the period of the crash.
Aftermath volatility shows the size of the standard deviation of the extreme returns during the
next 30 minutes after the crash ends relative to the standard deviation of the extreme returns
throughout the day. M-ELO/Matched represents the relative amount of shares traded with
M-ELO orders compared to the total amount of shares matched by the Nasdaq exchange. The
statistics are equally weighted based on a daily observations per firm.

Mean StDev 25th 50th 75th
Return, bps -0.08 110.70 -60.15 -10.98 56.30
Abs. Return, bps 77.99 78.56 35.58 58.33 95.51
Return Z-score 8.53 1.55 7.48 8.07 9.04
Duration, s 47.91 37.43 19.00 38.00 68.00
Reversal 0.78 0.44 0.47 0.74 1.00
# of Trades 305.38 246.83 151.00 248.00 393.38
# of Shares, ’000 46.46 73.96 12.66 25.43 51.06
Volume, $’M 3.94 5.85 0.99 1.99 4.50
Aftermath Volatility 1.16 0.42 0.92 1.10 1.30
M-ELO/Matched, % 1.98 3.08 0.26 0.83 2.43
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Table 1.3. The effect of M-ELO trading on the average weekly number of mini-flash crashes.
The table reports the estimation results for the following regressions (with and without a lag
of yi,t):

yit = αt + β1yi t−1 + β2M-ELOit + β3 · dt ·M-ELOit + θXit + Ci + uit,

which is estimated on a sample of 196 liquid stocks traded on Nasdaq from January 22, 2018 to
October 2, 2020. The specification in column (1) is a linear static panel instrumental variables
model with time and fixed effects. The model specification in column (2) describes a dynamic
panel estimated using GMM with the three most recent lags of the dependent variable as
GMM instruments. The dependent variable is the average number of mini-flash crashes. The
set of control variables includes a coefficient of variation of extreme returns, daily number of
trades, number of shares, and U.S. dollar volume traded, the AT measure of Hasbrouck and
Saar (2013), and the OIBNUM measure of order imbalance. This is an unbalanced panel with
weekly observations. M-ELO is the share of the Midpoint Extended Life Order volume relative
to the total volume handled by Nasdaq for the particular stock, dt is a dummy variable that
equals one at the time when Nasdaq decreased the M-ELO holding period by 98%, and zero
otherwise. The value of M-ELO trading is instrumented by its daily average price and the price
rank assigned by the SEC. Heteroskedasticity corrected t-statistics are reported in parentheses.
∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:
Average weekly number of crashes

Panel Panel
linear GMM

(1) (2)
yi,t−1 −0.367∗∗∗

(−12.396)

M-ELO −14.356∗∗∗ −27.622∗∗
(−3.400) (−2.292)

dt ·M-ELO 10.754∗∗∗ 21.269∗∗
(3.117) (2.032)

Controls Yes Yes
Observations 16,116 12,199
F-statistic 5,598.2∗∗∗ 1,133.2∗∗∗
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Table 1.4. The effect of M-ELO trading on crash characteristics.
The table reports the estimation results for the following linear panel regression:

yit = αt + β1M-ELOit + β2 · dt ·M-ELOit + θXit + Ci + uit,

which is estimated on a sample of 196 liquid stocks traded on Nasdaq from January 22, 2018 to
October 2, 2020. The dependent variables are extreme return Z-score during a crash, the absolute
value of the crash return, crash duration in seconds, the number of trades executed during the crash
and the price reversal 10 minutes after the crash. M-ELO is the share of the Midpoint Extended Life
Order volume relative to the total volume handled by Nasdaq for the particular stock, dt is a dummy
variable that equals one at the time when Nasdaq decreased the M-ELO holding period by 98%, and
zero otherwise. The value of M-ELO trading is instrumented by the stock daily average price and the
price rank assigned by the SEC. The control variables are the daily number of trades, shares traded
and dollar volumes. σr/µr is the coefficient of variation for extreme returns during the day. AT is a
measure of algorithmic trading defined in Equation (1.8), OIBNUM is a measure of order imbalance
based on number of buy and sell transactions. This is an unbalanced panel with weekly observations.
Heteroskedasticity corrected t-statistics are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:
Z-score |Return| Duration # Trades Reversal

(1) (2) (3) (4) (5)
M-ELO −39.814∗∗ 0.227∗ 326.575 1.354 · 104∗ 0.478

(−2.164) (1.823) (0.684) (1.909) (0.056)
dt ·M-ELO 31.651∗∗ −0.185∗ −261.458 −1.2 · 104∗∗ −0.179

(2.134) (−1.803) (−0.680) (−2.076) (−0.026)
Trades ’000 0.004 −2.373 · 10−5∗∗ −0.185∗∗ 1.608∗∗ 0.003∗∗∗

(1.195) (−2.081) (−2.548) (2.265) (3.643)
Volumes ’$B −0.150 −3.476 · 10−4 6.806∗∗ −25.337 −0.032

(−1.297) (−1.112) (2.083) (−1.278) (−0.653)
Shares ’M −0.011 2.72 · 10−6 −0.925∗∗∗ −1.366 0.005

(−0.522) (0.035) (−2.808) (−0.241) (1.221)
σr/µr 3.514∗∗∗ 0.013∗∗∗ −22.417∗∗∗ 357.209∗∗∗ 0.057

(14.609) (8.241) (−5.106) (6.450) (0.870)
AT 0.507 −0.002 1.817 −325.483∗∗∗ 0.153

(1.589) (−1.020) (0.275) (−2.682) (1.502)
OIBNUM −0.239 −9.049 · 10−4 −3.520 −176.279∗∗ 0.085

(−0.972) (−0.893) (−0.620) (−2.443) (1.169)
Observations 5,297 5,297 5,297 5,297 5,297
R2 0.073 0.066 0.034 0.009 0.047
F-statistic 676.672∗∗∗ 792.883∗∗∗ 224.239∗∗∗ 368.361∗∗∗ 255.157∗∗∗
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Table 1.5. The effect of M-ELO trading on market liquidity.
The table reports the estimation results for the following linear panel regression:

yit = αt + β1M-ELOit + β2 · dt ·M-ELOit + θXit + Ci + uit,

which is estimated on a sample of 196 liquid stocks traded on Nasdaq from January 22, 2018 to
October 2, 2020. Dependent variables are quoted half-spread, 5-minute realized spread, dollar depth
available 10 basis points around the midquote relative to the average daily dollar trading volume, and
depth imbalance 10 basis points around the midquote. M-ELO is the share of the Midpoint Extended
Life Order volume relative to the total volume handled by Nasdaq for the particular stock, dt is a
dummy variable that equals one at the time when Nasdaq decreased the M-ELO holding period by
98%, and zero otherwise. The value of M-ELO trading is instrumented by the stock daily average
price and the price rank assigned by the SEC. Trades, volumes, and shares are daily averages, σr/µr is
the coefficient of variation for extreme returns during the day. AT is a measure of algorithmic trading
defined in Equation (1.8), OIBNUM is a measure of order imbalance based on number of buy and
sell transactions. This is an unbalanced panel with weekly observations. Heteroskedasticity corrected
t-statistics are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%,
and 10% levels, respectively.

Dependent variable:

QS RS5min
Depth(10)
$ Volumes |DI(10)|

(1) (2) (3) (4)
M-ELO 133.317∗∗ 34.570 0.554∗∗∗ 419.619∗∗∗

(2.281) (0.910) (2.881) (2.967)
dt ·M-ELO −111.088∗∗ −26.939 −0.496∗∗∗ −316.960∗∗∗

(−2.244) (−0.840) (−2.999) (−2.718)
Trades ’000 0.023∗ 0.029∗∗ 3.219 · 10−4∗∗ −0.023

(1.713) (2.457) (2.542) (−0.946)
Volumes ’$B −1.712∗∗ −0.775∗ −0.006 −3.953∗∗∗

(−1.970) (−1.779) (−1.416) (−3.134)
Shares ’M 0.414∗∗∗ −0.098 −0.003∗∗∗ 1.048∗∗∗

(4.012) (−1.612) (−3.370) (4.829)
σr/µr 2.727∗∗∗ 0.130 −0.016∗∗∗ 2.705∗∗

(4.314) (0.167) (−4.377) (2.216)
AT −8.201∗∗ 1.015 −0.004 −7.600∗∗

(−2.559) (0.518) (−0.569) (−2.157)
OIBNUM 0.615 −0.260 −8.253 · 10−5 2.447∗

(1.400) (−0.564) (−0.038) (1.902)
Observations 16,116 16,096 16,116 16,080
R2 0.008 4.196 · 10−4 0.030 0.006
F-statistic 544.890∗∗∗ 23.635∗∗∗ 786.298∗∗∗ 348.477∗∗∗
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Table 1.6. Alternative M-ELO activity specifications.
The table reports the estimation results for the following regressions (with and without a lag of yi,t):

yit = αt + β1yi t−1 + β2M-ELOit + β3 · dt ·M-ELOit + θXit + Ci + uit,

which are estimated on a sample of 196 liquid stocks traded on Nasdaq from January 22, 2018 to
October 2, 2020. The specification in columns (1) and (2) is a linear static panel instrumental variables
model with time and fixed effects. The specifications for columns (3) and (4) describe a dynamic panel
estimated using GMM with six most recent lags of the dependent variable as GMM instruments for
differenced equation. The dependent variable is the average number of mini-flash crashes. M-ELO
(Dark) and M-ELO (Cons) represent a share of M-ELO volume relative to, respectively, the volume
of dark trading on Nasdaq, and total consolidated volume across exchanges, dt is a dummy variable
that equals one at the time when Nasdaq decreased the M-ELO holding period by 98%, and zero
otherwise. The set of control variables includes a coefficient of variation of extreme returns, average
daily number of trades, number of shares, U.S. dollar volume traded, the AT measure of Hasbrouck
and Saar (2013), and the OIBNUM measure of order imbalance. This is an unbalanced panel with
weekly observations. The value of M-ELO trading is instrumented by its daily average price and the
price rank assigned by the SEC. Heteroskedasticity corrected t-statistics are reported in parentheses.
∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:
Average weekly number of crashes

Panel Panel
linear GMM

(1) (2) (3) (4)
yi,t−1 −0.323∗∗∗ −0.320∗∗∗

(−12.079) (−12.154)

M-ELO (Dark) −17.383∗∗∗ −36.608∗∗∗
(−2.693) (−2.941)

M-ELO (Cons) −89.692∗∗∗ −156.464∗∗∗
(−3.138) (−3.075)

dt ·M-ELO (Dark) 14.860∗∗∗ 31.597∗∗∗
(2.633) (2.793)

dt ·M-ELO (Cons) 71.634∗∗∗ −71.514
(2.901) (−1.092)

Controls Yes Yes Yes Yes
Observations 16,116 16,116 12,199 12,199
F-statistic 5,754.6∗∗∗ 5,650.7∗∗∗ 1,161.2∗∗∗ 1,192.6∗∗∗
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Table 1.7. The effect of M-ELO trading on the number of mini-flash crashes for big and small stocks
and outlier-robust effects.
This table reports the estimation results for the following linear panel regression:

yit = αt + β1M-ELOit + β2 · dt ·M-ELOit + θXit + Ci + uit,

which is estimated on a sample of 196 liquid stocks traded on Nasdaq from January 22, 2018 to
October 2, 2020. The dependent variable is the average number of mini-flash crashes. Column (1)
reports results for the sub-sample of small stocks, and column (2) for the sub-sample of big stocks in
terms of average daily volumes. Column (3) reports results for the full sample but after discarding the
highest and the lowest 5% values of the average daily number of trades, shares and U.S. dollar volume.
M-ELO is the share of the Midpoint Extended Life Order volume relative to the total volume handled
by Nasdaq for the particular stock, dt is a dummy variable that equals one at the time when Nasdaq
decreased the M-ELO holding period by 98%, and zero otherwise. The value of M-ELO trading is
instrumented by the stock daily average price and the price rank assigned by the SEC. The set of
control variables includes a coefficient of variation of extreme returns, average daily number of trades,
number of shares, U.S. dollar volume traded, the AT measure of Hasbrouck and Saar (2013), and
the OIBNUM measure of order imbalance. This is an unbalanced panel with weekly observations.
Heteroskedasticity corrected t-statistics are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

Dependent variable:
Average weekly number of crashes

(1) (2) (3)
M-ELO 4.584 −17.334∗∗∗ −12.813∗∗∗

(1.387) (−3.426) (−3.711)
dt ·M-ELO −4.443 11.303∗∗∗ 10.239∗∗∗

(−1.521) (2.971) (3.465)
Controls Yes Yes Yes
Sample Small Stocks Big Stocks Full
Outliers Removed No No Yes
Observations 7,507 8,609 11,932
R2 0.290 0.235 0.191
F-statistic 3.488 · 103∗∗∗ 2.823 · 103∗∗∗ 3.326 · 103∗∗∗
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Figure 1.1. Mini-flash crashes, quoted spread, and book depth throughout the sample.

The first panel of the figure plots the total amount of identified mini-flash crashes across the sample

of 196 liquid stocks traded on Nasdaq from January 22, 2018 to October 2, 2020. The second panel

shows the median quoted spread (in basis points) across securities. The last panel presents the median

aggregate monetary value (in thousands of dollars) of shares offered within 10 basis points around the

midquote.
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Figure 1.2. Example of the mini-flash crash.

Panel A plots the Procter&Gamble (P&G) share price on March 21, 2018. At 2 p.m., the price expe-

rienced a mini-flash crash. The pre-market price of P&G was at around $78.2, dropped to the region

$77.4 – $77.7, where it stayed fairly stable until 2 p.m., and experienced then a massive spike to the

levels of approximately $78.3. Within the next five minutes, the price dropped more than 1.4% to

$77.16, and eventually returned to the region of its previous daily consolidation. Panel B zooms in

around the time of the crash. Each dot represents a trade. The duration of the crash is 26.2 seconds,

the cumulative return of the first spike is 0.98%, the volume traded during the crash is $633 thousand.
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Figure 1.3. Share of M-ELO executions.

This figure plots time trends in M-ELO volumes relative to the total volumes matched by the Nasdaq

exchange. The 10th, 50th, and 90th percentiles are depicted. M-ELO orders became available on

March 12, 2018. The shaded area represents the period starting when Nasdaq decreased the M-ELO

“Holding period” from 500 milliseconds to 10 milliseconds.
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Figure 1.4. Densities of lit (visible) order sizes and M-ELO order sizes.

This figure plots densities of order sizes of two types of orders: (i) visible limit orders, and (ii)

non-displayed, M-ELO orders. For better representation, only order sizes less than 400 shares are

considered. All observations are stock-day averages.
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1.A Appendix

1.A.1 M-ELO order specifications

• Non-displayed order type: M-ELO executions are reported to the Securities Information

Processors and provided in Nasdaq’s proprietary data feed in the same manner as all

other transactions occurring on Nasdaq (i.e., without any new or special indication that

a transaction is an M-ELO execution).

• The M-ELO timer for 500 millisecond waiting period starts upon entry if the order is

marketable at the midpoint. If the order is not eligible to trade at the midpoint upon

the entry, the M-ELO timer will start when the price of the order is at or better than the

midpoint of the NBBO.

• Effective May 11, 2020, the holding period was reduced from 500 to 10 milliseconds.

• Any modification on a resting M-ELO order will result in a restart of the timer, except

in the case of reducing the order quantity.

• The timer does not reset if the NBBO moves.

• An M-ELO order is ranked in time priority among other M-ELO orders at the time it

becomes eligible to execute.

• Only round lots are accepted for the M-ELO submission.

• M-ELO orders may execute in a locked market but not in a crossed market5.

• The M-ELO order type will never route out.

5In a locked market, a stock’s bid price at one exchange and ask price at another exchange are identical,
that is, the bid-ask spread is zero. In a crossed market, the bid price exceeds the ask price.
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1.A.2 Stocks and ETFs selected for panel regressions

Below, we list Nasdaq tickers of companies and ETFs that meet the minimum liquidity require-

ment (in terms of trading activity) on every day throughout the sample period:

AABA, AAL, AAPL, ABBV, ABT, ADBE, ADI, ADSK, AMAT, AMD, AMGN, AMTD, AMZN, APA,

APC, ATVI, AVGO, AXP, BA, BABA, BAC, BHGE, BIDU, BIIB, BK, C, CAH, CAT, CELG, CHTR,

CMCSA, CME, COP, COST, CRM, CSCO, CSX, CTRP, CTSH, CVS, CVX, DAL, DHI, DIS, DISCA,

DISH, DLTR, DUK, DVN, DWDP, EA, EBAY, EEM, EFA, EOG, ETFC, EWZ, EXPE, FAST, FB,

FCX, FITB, FOXA, FXI, GDX, GE, GILD, GM, GOOG, GOOGL, GPS, GS, HAL, HD, HES, IBM,

IEMG, INTC, INTU, IWM, IYR, JD, JNJ, JPM, KHC, KO, KR, KRE, KSS, LB, LBTYK, LEN,

LOW, LRCX, LUV, M, MA, MCD, MCHI, MDLZ, MDT, MET, MGM, MNST, MO, MOMO, MPC, MRK,

MRO, MRVL, MS, MSFT, MTCH, MU, MXIM, MYL, NFLX, NKE, NKTR, NTAP, NVDA, ON, ORCL,

OXY, PCG, PEP, PFE, PG, PM, PTEN, PYPL, QCOM, QQQ, RIG, ROST, SBUX, SCHW, SLB, SMH,

SPLK, SPY, SQ, STLD, STX, SWKS, T, TGT, TJX, TLT, TMUS, TQQQ, TSLA, TSM, TTWO, TVIX,

TWTR, TXN, UAL, UNH, UNP, UPS, URBN, USB, UTX, UVXY, V, VALE, VLO, VXX, VZ, WB,

WBA, WDAY, WDC, WFC, WMB, WMT, WYNN, X, XBI, XEL, XLE, XLF, XLI, XLK, XLNX, XLP,

XLU, XLV, XLY, XOM, XOP, XRAY, XRT, YNDX, ZION.
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1.A.3 Tests for the instruments

Table A.1. Properties of the instrumental variables.
The table reports the results of instrument relevance and exogeneity tests. To explain the variation
in the relative volume of M-ELO orders in the equation (1.9) the following instruments are used: Z1,it
is the average price in dollars of the stock i on week t, and Z2,it is the price rank of the stock i on
week t assigned by the SEC. The instruments’ relevance (Cov(Z,M-ELO) 6= 0) is tested by estimating
the first-stage regression, and obtaining F -statistics resulting from the test H0 : π1 = π2 = 0 against
the the alternative H1 : π 6= 0 or π2 6= 0. The rule of thumb suggests that the F -statistics for
joint significance of the instruments in the first-stage should exceed 10. The instrument exogeneity
assumption is weakened by including the control variables Xit into the first-stage regression. The
overidentifying test is implemented by, first, obtaining the residuals of the 2SLS model:

û2SLS
it = yit − α̂t − β̂1M-ELOit − β̂2 · dt ·M-ELOit − θ̂Xit,

and then regressing these residuals on the instruments and control variables. The resulting J-statistic
of the test H0 : η1 = η2 = 0 versus H1 : η1 6= 0 or η2 6= 0 is distributed according to χ2

q where q is the
number of instruments minus the number of endogenous regressors.

Panel A: Instrument Relevance
Regression M-ELOit = at + π1Z1,it + π2Z2,it + γXit + Ci + vit,
Hypothesis H0 : π1 = π2 = 0
Statistics F(2, 15791) = 77.745
p-value < 2.2 · 10−16

Panel B: Instrument Exogeneity
Regression û2SLS

it = at + η1Z1,it + η2Z2,it + γXit + Ci + eit
Hypothesis H0 : η1 = η2 = 0
Statistics J = mF = 2 · 1.7878 ∼ χ2

1
p-value 0.0586
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Chapter 2

Dark Pools and Price Discovery in

Limit Order Markets

2.1 Introduction

Dark pools are trading venues where the transparency of trading is either low or absent. There

exists a variety of different types of dark venues from Alternative Trading Systems (in the USA)

and Multilateral Trading Facilities (in Europe) regulated as broker-dealers to exchange-based

pools. Figure 2.1 shows that the volume executed on such venues represents a significant share

of the consolidated equity volume both for the US and European markets.

Figure 2.1 around here

The proliferation of dark pools raises concerns about their impact on market quality and price

discovery. As no market participant is aware of what are others doing in the dark pool, such

venues serve as a place to go when a trader wants to disclose as little information as possible.

Also, when transacting in the dark, a trader often receives a price improvement but faces non-

execution risks. The trade-off between the two is crucial in determining the order flow to dark

pools.

Regulators and policymakers would like to know more about the implications of active dark

trading, but the current financial market design makes it challenging to model. The majority

of trading happens nowadays in limit order markets. In contrast to dealer markets where

participants trade only with a designated market maker, in limit order markets traders may
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transact with each other directly using limit and market orders. This highly complex and non-

linear nature of exchanges forces researchers to resort to numerical solutions. Only recently

there appeared models that account for the possibility of dark trading alongside the limit order

book based exchange.

The majority of the research that focuses on the question of price discovery is still employing

the dealer market structure of the exchange. Ye (2012) studies how an informed trader splits

orders between an exchange based on Kyle (1985) model and a dark pool as a crossing network.

He finds that the price discovery on the exchange reduces due to the dark trading. Zhu (2014),

in turn, assumes that both informed and uninformed traders may freely select venues and

concludes that under certain conditions there is an improvement in price discovery. He argues

that exchanges are more attractive to informed traders, while dark pools are more attractive

to uninformed ones.

Brolley (2020) develops a model where both a limit order book and a dark pool source

liquidity from a professional liquidity provider. He finds that investors with high (low) private

valuations of the asset migrate to high (low) relative price impact order types. This ranking of

traders (“immediacy hierarchy”) predicted by the price improvement plays an important role

in determining the market quality and welfare implications of dark pools. However, the dark

pool reference price in Brolley (2020) is set by the market maker, while it is worth exploring

the implications of dark trading in dynamic market conditions when the reference price is the

midpoint of the exchange.

Bayona et al. (2020) try to address this issue and construct a two-period model with asym-

metric information where a lit venue competes with a dark pool that derives the execution price

from the lit venue. They were able to show that the effects of competition depend on the stock

market and trader characteristics and the effects in different periods are not the same, despite

investors behaving similarly.

The present paper is closely related to Buti et al. (2017) who in a four-period model study

the implications of adding a continuous dark pool to the limit order book. Without considering

information asymmetry, the authors show that the introduction of a dark venue that competes

with the exchange is associated with on average wider spreads, lower depth, trade creation, and

welfare deterioration, especially when the limit order book is illiquid. I improve the model of

Buti et al. (2017) by enlarging the strategy space of the traders so they can submit limit orders
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at different prices. This allows distinguishing orders with different levels of aggressiveness: from

market orders (the most aggressive ones) to aggressive limit orders that undercut the present

limit orders, to non-aggressive limit orders. Traders can also refrain from trading or submit an

order to the dark pool in case they have an access to it. In contrast to Bayona et al. (2020), the

presence of a private valuation for the asset in my model allows for avoiding the introduction

of exogenous liquidity trading. All traders remain rational and the distribution of the private

valuations controls trading for liquidity needs.

The information asymmetry in the model is realized by the presence of traders who are

perfectly informed about the final pay-off of the risky asset. Every trader has a private valuation

for the asset that partially determines the optimal strategy of order submission. Nobody

observes the activity in the dark, but everybody can bayesian update their beliefs about the

current state of the dark pool as well as about the final pay-off of the risky asset.

The equilibrium for this model is determined numerically as the set of order submission

probabilities which depend on the asset fundamental volatility, the dispersion of the private

valuations for the asset, the relative tick size, dark pool availability, and the amount of informed

trading. I allow for fractional values of dark pool availability and informed trading which, in

contrast to the previous research, opens the way to identifying the optimal level of dark trading

and informed trading instead of just banning dark pools or allowing everybody to use them.

In general, there is more venue competition when dark trading becomes more available.

However, I find that there is a strong crowding-out effect in the dark pool. Uninformed investors

leave the dark pool rapidly when the fraction of informed trading starts to grow. Interestingly,

I find that dark pool trading is very limited in explaining variation in order aggressiveness as

well as in execution quality measures of market orders, like bid-ask spread and market depth.

On the other hand, I show a decrease in the price discovery due to more active dark trading

and better execution quality for limit orders measured by the average fill rates. The effect of

a dark pool on aggregate welfare is positive as it allows to realize gains from trade when the

limit order book is filled. The effect depends largely on the market and traders’ characteristics.

The remainder of this paper is organized as follows. Section 2.2 presents the model of

the limit order book and the dark pool. I discuss agents, their strategies, and optimal order

submission. In Section 2.3, I demonstrate the procedure of obtaining equilibrium, first, in a

single-venue market (dark pool is not available) and, second, in a multiple-venue market. I then
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study the venue competition phenomenon in Section 2.4. Section 2.5 discusses the empirical

implications of dark pool functioning for price discovery and market quality. Finally, Section

2.6 concludes.

2.2 Model

In this section, I present a model of a Limit Order Book (LOB) with the presence of information

asymmetry. Later, I introduce a Dark Pool (DP) to this model to which agents can submit

several order types. The orders get executed at the DP immediately, given that there is liquidity

available, otherwise they stay in the DP, awaiting execution. I also add the possibility for

the order to return to the LOB if the trader specifies her immediacy needs by submitting

an Immediate or Cancel (IOC) order. Thus, the DP can deliver price improvement without

increasing non-execution risks.

I consider a market with a single risky asset. There are four trading periods and four

traders, each trading at only one trading period. The final pay-off of the risky asset, paid at

the end of the last trading period, is a random variable V , which takes value “high” (vH) or

“low” (vL) with equal probabilities. Let µV = E(V ) be the expected value of the final payoff,

and σV =
√

Var(V ) its volatility.

2.2.1 Limit Order Book and Dark Pool

The asset is traded on an exchange that operates through a LOB. The LOB is represented by

the prices and quantities of the asset available at those prices. The prices are located on a grid

p = {p1, p2, p3, p4}, where the individual prices are defined as follows:

p1 = µV − 1.5τ (2.1)

p2 = µV − 0.5τ (2.2)

p3 = µV + 0.5τ (2.3)

p4 = µV + 1.5τ, (2.4)

where τ is the minimal price increment, also called the tick size.
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Traders are allowed to trade one share only. Every trader in the model is rational and might

either demand liquidity (through market orders) or provide liquidity (through limit orders) at

any available level on the price grid. To distinguish limit buy orders from limit sell orders, I

use negative values for buy quantities and positive values for sell quantities.

Figure 2.2 illustrates some possible states of the LOB. On Panel A, there are limit orders at

all levels of the grid (p1 and p2 are occupied by limit buy orders and p3, p4 by limit sell orders).

Nothing, however, stops traders from adding more liquidity to the LOB. For example, the next

trader can submit an additional limit buy order at price level p2.

Figure 2.2 around here

Panel B presents the situation when it is not possible to submit a sell limit order at price p2. As

there is already a buy limit order at price p3, placing a sell order at p2 will result in a negative

spread and so-called “crossed market”. I do not allow for the “crossed market” so, even if the

trader submits a sell limit order at p2, the order will become marketable and will result in

immediate execution at a better price (p3) and will not be any different from a simple market

order.

To further simplify the model, I assume the existence of a crowd that will absorb any

amount of shares submitted to the price levels far from µV . Thus, q1 = −∞ (quantity at the

price level p1) and q4 = ∞ (at price level p4). This will reduce the strategy space for traders

but still leave them the possibility to undercut their peers by submitting a more aggressive

limit order at a higher (lower) price in case they want to buy (sell) the asset. In the end, the

state of the LOB is characterized by quantities at price levels p2 and p3, bt = [q2,t, q3,t].

The dark pool (DP) is an alternative opaque marketplace. It is available to only a fraction

α of the traders in the model. No trader can observe neither which orders are submitted to the

DP nor how much liquidity is available there. The execution price in the DP is derived from

the LOB at each period. The common practice suggests that the execution price is the current

middle price on the visible exchange marketplace, defined as the average of the best bid and

the best ask prices:

pMid,t = 1
2
(
pask
t − pbid

t

)
(2.5)

For the current model, the best bid (ask) price is defined as the maximum (minimum) price
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level at which the negative (positive) number of shares is available.

DP executes orders continuously based on the time priority rule. Dark orders submitted to

the DP that were not executed may stay there until the opposite-sided dark order arrives. The

trading in the model starts with the empty dark pool in the first period (DP1 = 0). Therefore,

agents, after every trading period, update their expectations about the state of the dark pool

DPt ∈ {. . . ,−1, 0, 1, . . . } based on the observed activity of previous traders.

If the dark pool is not available, then DPt = 0, ∀t. The aggregate liquidity in the model

can be summarized by liquidity in the limit order book and the dark pool Ωt = [bt,DPt].

2.2.2 Agents and Strategies

Firstly, I distinguish traders based on whether they have access to the DP (with probability α),

or do not have access to the DP (with probability 1−α). Secondly, as I introduce information

asymmetry, the fraction of the traders π will know the realization of the asset’s pay-off, while

the fraction 1− π will know only the distribution of the pay-off (µV and σV ). Throughout the

paper, I will call the former “informed” and the latter – “uninformed” traders.

All traders in the model, regardless of their information set and the DP access, are risk-

neutral and fully rational. They trade if they can obtain a positive utility from trading. The

utility of trader i at period t is defined as follows:

Ui,t(ϕ) = (Πt(ϕ,Ωt) + βi) · Iexec, (2.6)

where Πt is a pay-off when implementing strategy ϕ given the state of the LOB and the

expected state of the DP, βi is the private valuation of the risky asset which can have an

arbitrary distribution, Iexec is an indicator function that is equal to one if the execution (trade)

happens and zero otherwise.

Only one of four agents trades at each period. The size of the order is limited to one share

only. A trader can submit market and limit orders or abstain from trading. If a trader has

access to the dark pool, he/she can submit dark orders.

The full list of orders is presented in Table 2.1. All orders can be either buy or sell orders

(excluding no trade option). Market orders are executed at the best available price depending

on the state of the LOB bt. Upon submitting a limit order, the trader should specify the limit
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price, which can be either p2 or p3 since at other price levels the crowd absorbs any amount of

shares.

Table 2.1 around here

The first order available for submitting to the DP is a regular dark order. This order is executed

at the prevailing midprice in the LOB if the DP contains some resting orders on the opposite

side. If there is no counterparty for the limit order at the moment, the order will stay in the DP

until it gets eventually executed, or until the trading day ends. During this time, the liquidity

profile in the LOB can change and this will affect the midprice. That is why the execution

price of the dark order ϕBD(p̃Mid,t) is a random variable (the same logic applies to ϕSD(p̃Mid,t)).

The other order that may be submitted to the DP is called Immediate or Cancel (IOC)

order. If this order cannot be immediately and fully executed on the DP, it will be canceled.

Furthermore, it will be routed to the LOB as a market order, where the execution is guaranteed.

The usage of routing technologies increases the attractiveness of the DP and thus increases the

competition between visible and hidden venues.

2.2.3 Optimal Order Submission

Traders solve the optimization problem and choose an order that maximizes their expected

utility of trading. The expected utility varies based on whether the trader is informed or not,

and can submit orders to the DP or only to the LOB. It also depends on the observed actions

from the previous traders because orders used by them contain information about the final

value of the asset. No trading delivers zero utility.

Let us consider utilities of buy orders (utilities of sell orders can be computed using the same

logic). The pay-off of a market order contains only final value uncertainty and no execution

risks because the trade happens instantly. For the trader i the expected utility from a market

order is:

EUi,t(ϕBM) = E[V |Ft]− pask
t + βi, (2.7)

where Ft is all the information available up to time t about the actions of previous traders.

In contrast to market orders, limit orders introduce non-execution risks. When submitting a

limit order, the trader doesn’t know whether it will be executed against a future market order.
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The trader can increase its execution probability by placing a more aggressive limit order but

that comes with a trade-off since the price improvement decreases with order aggressiveness.

EUi,t(ϕBL(pj)) = (E[V |Ft]− pj + βi) · E (Iexec|Ft,Ωt) (2.8)

where Iexec is the indicator function of the execution event. The expected value of this indicator

function is the probability of execution for a limit order.

Equation 2.8 shows that the execution probability is conditional on the actions of previous

traders as they change the distribution of the asset’s pay-off, and on the state of the LOB as it

influences the willingness of the next traders to submit market orders versus limit orders.

Dark order executes if there is opposite side liquidity in the DP, or if any next trader becomes

a counterparty in the dark:

EUi,t(ϕBD(p̃Mid,t)) = (E[V |Ft]− pMid,t + βi) · Pr(DPt > 0|Ft)+

+ Pr(DPt ≤ 0|Ft) ·
∑
t∗>t

E[V − p̃Mid,t∗ + βi|Ft∗]·

·E(ϕSD + ϕSIOC |Ft∗) ·
k<t∗∏
k>t

E(1− ϕSD − ϕSIOC |Fk)
,

(2.9)

where E(ϕSD + ϕSIOC |Ft∗) is the probability that at time t∗ a trader submits either sell dark

order or sell IOC order, and E(1− ϕSD − ϕSIOC |Fk) is the probability that at time k a trader

submits none of these orders, but some other order.

Equation 2.9 consists of two parts: the first one represents the fraction of the utility obtained

if the dark order executes immediately. The second part takes into account all possibilities of

the execution in the next periods. Here the trader forms expectations about the future middle

price p̃Mid,t∗ and the strategies of the next agents.

The utility from IOC orders is calculated as follows:

EUi,t(ϕBIOC(pMid,t)) = (E[V |Ft]− pMid,t + βi) · Pr(DPt > 0|Ft)

+ Ui,t(ϕBM) · Pr(DPt ≤ 0|Ft)
(2.10)

Equation 2.10 shows that, since pMid,t < pask
t then EUi,t(ϕBIOC(pMid,t)) ≥ EUi,t(ϕBM). If a

trader has access to the dark pool and believes there is a non-zero probability of having some

53



positive liquidity in the DP, then he/she would strictly prefer buy IOC order to buy market

order. Even if the realization of the DP liquidity does not allow for dark order execution, the

trader still accomplishes the execution in the LOB.

Given the utility that each order yields, every trader solves the optimization problem of

maximizing its expected utility:

max
ϕ∈Φ

EUi,t(ϕ) (2.11)

where Φ = {ϕBM , ϕSM , ϕBL, ϕSL, ϕBD, ϕSD, ϕBIOC , ϕSIOC , ϕNT}1 is the set of all strategies

available for the trader i at time t.

2.3 Equilibrium

In this section, I discuss the equilibrium in order submitting strategies of traders. Firstly, I

will present the single market equilibrium, where the dark pool is not available to any trader.

Informed traders, in this case, have no other choice but to submit orders to the LOB and

contribute to price discovery. Next, I am going to allow the share α of traders to use the DP

and examine the equilibrium in the multiple venue market.

2.3.1 Single-Venue Market Equilibrium

In case the DP is not available, the only venue where the trade may take place is the LOB.

Therefore, the set of strategies available for traders is Φ \ {ϕBD, ϕSD, ϕBIOC , ϕSIOC}. The

equilibrium is represented by order submission probabilities for each trader. Depending on the

realization of the private valuation of the asset, a trader may opt for either market order, limit

order, or refrain from trading. The equilibrium order submission probabilities depend largely

on the distribution of private valuation, as well as on the fundamental volatility of the risky

asset and on microstructure frictions like quoted spread.

I solve the model backwards by an iterative process. First of all, I assume that the trades

do not contain information about the final pay-off of the asset. This means Pr(V = vH |Ft) =
1
2 , ∀t. The informed traders continue knowing the realization of the asset’s pay-off, while the

uninformed cannot deduce anything from the observed trades.
1Buy Limit and Sell Limit orders require traders to specify the limit price. The midprice for dark orders is

derived from the LOB.
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Then, given all possible states of the LOB the last trader might encounter, I calculate the

utility of submitting each order. Based on the private value distribution (parameter β), the

asset’s final pay-off distribution (parameter σV ), the spacing of the price grid (parameter τ)

and the information set of the trader, I obtain, for each order, the probabilities that it yields

the highest utility.

Next, I proceed to the third trader. If the third trader is uninformed, his/her best guess of

the asset’s pay-off is EV = µV . Observing the current state of the LOB, and considering the

optimal response of the last trader, I can estimate non-execution risks for a limit order of the

third trader. This provides all necessary information to obtain the expected utilities of orders.

The same logic is used to unwind the strategies of the second and the first trader.

Finally, I bayesian update the probability that the final asset’s pay-off is high (V = vH),

given the actions of all traders. For example, after the first trader submitted a buy market

order the conditional probability can be computed as follows:

Pr(V = vH |ϕ(1)
BM) = Pr(ϕ(1)

BM |V = vH) · Pr(V = vH)
Pr(ϕ(1)

BM)

= Pr(ϕ(1)
BM |V = vH)

Pr(ϕ(1)
BM |V = vH) + Pr(ϕ(1)

BM |V = vL)
,

(2.12)

where

Pr(ϕ(1)
BM |V = vH) = π · Pr(ϕ(1)

BM |V = vH , inf) + (1− π) Pr(ϕ(1)
BM |V = vH , uninf), (2.13)

Pr(ϕ(1)
BM |V = vL) = π · Pr(ϕ(1)

BM |V = vL, inf) + (1− π) Pr(ϕ(1)
BM |V = vL, uninf), (2.14)

where ϕ(1)
BM is the indicator that the first trader opted for buy market order, inf/uninf is the

event of the first trader is informed/uninformed.

Similarly, if the second trader implemented a sell limit order at price p3 after observing a

buy market order from the first trader, the conditional probability that the final asset’s pay-off

is high is obtained as follows:

Pr(V = vH |ϕ(2)
SL(p3), ϕ(1)

BM) = Pr(ϕ(2)
SL(p3)|ϕ(1)

BM , V = vH) · Pr(ϕ(1)
BM |V = vH) · Pr(V = vH)

Pr(ϕ(2)
SL(p3), ϕ(1)

BM)
(2.15)
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If the conditional probabilities change considerably from those I have assumed in the begin-

ning, I update them and solve the model one more time. When the conditional probabilities

converge to some stable values, I stop the iterative procedure and declare the model is solved.

The algorithm is summarized in Figure 2.3. The value ε represents the threshold change

to the actual conditional probabilities, and Pr(V = vH |Ft) is the general indication of the

probability that the final pay-off of the asset is vH given the actions of previous traders. I

assume the global convergence of the algorithm but do not rigorously prove it. For the wide

range of parameters and considerably small value of ε, I obtain the convergence, on average,

after six iterations.

Figure 2.3 around here

Figure 2.4 represents part of the tree of the sequential game that the agents play during the

trading day2. Only strategies with non-zero probabilities in the equilibrium are presented.

Consider, for example, the second trader, who observes the empty LOB after the first trader

submitted a sell market order. It is not optimal for the second trader to submit aggressive

limit orders when the book is empty. At this stage, the trader is better off by submitting a

buy limit order at p2 (rather than at p3). The trader faces higher non-execution risks (as next

traders can undercut him/her by placing a buy limit order at the higher price) but will receive

the price improvement (of size τ) in case of execution.

Figure 2.4 around here

The third trader, observing the actions of the previous two as well as the state of the LOB

b3 = [−1, 0], can undercut the second trader by placing a buy limit order at price p3. This

order submission means the second trader will not receive execution of its buy limit order, as

there is just the last trader left before the end of the trading day. The last trader will never

opt for a limit order since no market orders may hit the LOB after him. Therefore the strategy

set of the last trader contains only market orders or no trading.
2The model was solved with the following parameters: β ∼ Unif[−1, 1], τ = 0.05, vH = 1.5, vL = 0.5, π =

0.2, α = 0, ε = 10−4.
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2.3.2 Multiple-Venue Market Equilibrium

In this section, I allow a fraction of traders α to have the access to DP. I show that the fact

that the dark pool is available for some traders will alter the equilibrium trading strategies

for all participants. The channel through which DP changes the equilibrium order submission

probabilities is in the changes it brings to the limit order execution uncertainty and the ability

not to reveal information about the pay-off.

Traders with no access to DP anticipate a shift in the order flow towards the dark market.

This plays a key role in their willingness to submit market orders instead of limit orders. On

the other hand, informed traders might choose to trade in the dark to reduce the information

leakage to the market, and thus maintain their competitive advantage.

In the multiple venue market, both dark orders and IOC type orders become available for

the fraction α of traders. The model is solved backwards, similarly to the procedure for the

single-venue market. Additionally, I assume that, in the beginning, upon observing some hidden

activity, traders assign equal probabilities to every possible state of DP. For example, if in the

first period in the model there was no visible activity (limit order or market order) from the

first trader, then the second trader’s belief about the state of the dark pool is as follows:

DPt =



0 with probability 1
3

−1 with probability 1
3

1 with probability 1
3

, (2.16)

where DPt = 0 indicates the state where the first trader did not trade, DPt = −1 the state

where the first trader submitted the dark buy order, and DPt = 1 the dark sell order. The

submission of the IOC order will result in a market order since the dark pool opens empty.

After solving the model with the above assumption, I obtain the equilibrium order sub-

mission probabilities for every trader. As these order submission probabilities are common

knowledge, some traders might find it optimal to choose a particular dark order to increase

their expected utility. This will result in an update of the belief about the state of DP by all

traders.

For example, in the state of the world where V = vH , after the third trader does not display

any visible activity (given that the first and the second trader’s actions were unambiguous),
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the last (informed) trader will update the initial belief in equation (2.16) as follows:

DP∗4 =



0 with probability ωNT

−1 with probability ωBD

1 with probability ωSD

, (2.17)

where

ωi =


π

0

1− π


T

·


Pr(ϕ(3)

i |vH ,WA) Pr(ϕ(3)
i |vH ,NA)

Pr(ϕ(3)
i |vL,WA) Pr(ϕ(3)

i |vL,NA)

Pr(ϕ(3)
i |E(V |F3),WA) Pr(ϕ(3)

i |E(V |F3),NA)

 ·
 α

1− α

 , (2.18)

and i ∈ {NT,BD, SD}. Here, the condition WA/NA indicated whether the third trader has or

does not have an access to the dark pool. However, if the last trader is uninformed about the

value of the final payoff, she will estimate the above probabilities as follows:

ωi =


π · Pr(V = vH |F3)

π · Pr(V = vL|F3)

1− π


T

·


Pr(ϕ(3)

i |vH ,WA) Pr(ϕ(3)
i |vH ,NA)

Pr(ϕ(3)
i |vL,WA) Pr(ϕ(3)

i |vL,NA)

Pr(ϕ(3)
i |E(V |F3),WA) Pr(ϕ(3)

i |E(V |F3),NA)

·
 α

1− α

 (2.19)

Since the third trader can follow the belief updates of the last trader, she can then alter

her order submission probabilities to get a higher expected utility. Eventually, there will be no

further way the third trader can change her order submission probabilities to be better off. At

this moment the belief of the last trader about the state of the dark pool is consistent with the

strategies of the previous trader. I call this situation a local equilibrium.

Once I reach the local equilibrium, I go further backward and obtain strategies and the

beliefs of the last two traders in the model, given that the second trader submitted a dark

order. After local equilibriums are reached for each trader, similarly to the single-venue market,

I re-examine the conditional probabilities that the final asset’s pay-off is high (V = vH). The

procedure is repeated with the updated conditional probabilities until the model reaches the

global equilibrium.

Figure 2.5 illustrates the algorithm to obtain the global equilibrium for the multiple-venue
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market. The global equilibrium in the multiple venue market is reached when both beliefs

about the DP state and conditional expectations of the final pay-off of the asset are consistent

with the strategies of traders at every period.

Figure 2.5 around here

Figure 2.6 represents a part of the tree of the sequential game that the agents play during trading

periods in the multiple-venue market3. Only actions of the last two traders are presented. In

this example, after the first trader submits a buy limit order at price p2 and the second trader

submits a sell limit order at price p3, the state of LOB is b3 = [−1, 1] and DP3 = 0.

Figure 2.6 around here

Observing F3, trader 3 can deduce that the dark pool is still empty and might submit a dark

order (for example, buy dark order) in case her private valuation of the asset is not high enough

to justify a market order. If the trader doesn’t have access to the dark pool and her private

valuation is not high enough, the trader does not trade. In both cases, the state of the LOB is

left intact but the state of the DP is different.

The last trader, however, cannot distinguish between the two states Ω4 and Ω′4, and has to

infer the state of the dark pool to assess the pay-offs of trading in the dark.

Figure 2.7 plots the equilibrium composition of the strategies the agents use during the

trading periods. The figure depicts the probability with which traders choose market orders

versus aggressive limit orders (those are placed to undercut the existing limit orders), non-

aggressive limit, and dark orders. The dark orders category also includes the no trading option,

which is by far dominating. Panel (a) presents the case for varying access to the DP while the

proportion of informed traders stays constant. There is no noticeable variation in the average

probabilities of choosing between market orders, limit orders, or dark ones as the dark pool

becomes more accessible.

Figure 2.7 around here

In contrast, Panel (b) of Figure 2.7 shows changes in strategies composition when only the share

of informed traders changes. With the increase in the share of the informed traders in the model,
3The model was solved with the following parameters: β ∼ Unif[−0.5, 0.5], τ = 0.05, vH = 1.25, vL =

0.75, π = 0.2, α = 0.5, ε = 10−4.
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the fraction of aggressive (both market and limit) orders increases. When the unconditional

probability to meet an informed trader surpasses 50%, the aggressiveness of orders reduces.

The same shape can be observed for the fraction of dark orders. Even though, the no trading

option is not better than any other dark order it is dominating the order submission probability.

2.4 Venue Competition

In this section, I discuss the competition between the limit order book and the dark pool. The

competition happens in the order flow. In the single-venue market, every trader stays in the

LOB while in the multiple-venue market traders can migrate to the DP.

To quantify the order flow to the dark pool, I follow Buti et al. (2017) and compute the

Order Migration metric as the average across time periods probability that an order migrates

to the DP:

OM = 1
T

T∑
t=1

E (ϕBD + ϕSD + ϕBIOC + ϕSIOC |Ft) , (2.20)

where T = 4 is the number of time periods (and traders) in the model, E(. . . |Ft) is the

probability that a trader submits an order to the DP, given all available information Ft.

Figure 2.8 illustrates how order migration changes with access to the dark pool. On Panel

(a), we can see that the order migration monotonically increases with a more accessible dark

venue. For π = 0.6, the order migration increases faster compared to lower levels of informed

traders’ presence. Interestingly, one might notice that for a moderate level of information

asymmetry (π = 0.3), traders use dark orders less often than for low or high levels.

This pattern is better visualized in Panel (b) of Figure 2.8. For a broad range of DP

availability, we observe the initial decline in orders’ migration to the dark. As the information

asymmetry grows further, traders come back to the dark pool, and the order migration increases.

This creates a “smile” pattern of order migration versus information asymmetry.

Figure 2.8 around here

It is insightful to know which traders send orders to the DP more often. Both traders can

benefit from using dark orders as there is no fee for submitting an order to the DP. Uninformed

traders can get the price improvement by executing at the current midquote. In addition to
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this, informed traders can maintain the informational advantage by hiding their activity in the

dark pool.

On the other hand, as pointed out by Zhu (2014), informed orders may cluster on one side of

the market. Therefore, the non-execution risks for these orders increase. The trade-off between

price improvement, information concealing, and low execution risks determines the degree to

which informed traders utilize the dark pool.

For this model, I calculate the probability that the order was submitted by an uninformed

trader, given that it was sent to the dark pool. Figure 2.9 shows the relationship between this

conditional probability and the share of the informed traders in the model. The dashed line rep-

resents the situation when there is no crowding-out effect. When 20% of traders possess insider

information and there is no discrimination in the access to the dark pool, one would expect to

observe 20% of dark orders being sent by informed investors and 80% by the uninformed.

Figure 2.9 around here

As the blue line shows, there is a crowding-out effect in this model. Uninformed traders send

their orders to the DP much rarely in the presence of information asymmetry. There is a steep

decrease in the conditional probability of an uninformed trader submitting a dark order at low

levels of π. It signals that the majority of the uninformed market participants take the risk of

trading with the informed in the DP very seriously. As a result, with about 90% of uninformed

traders in the model, we observe only 40% of all dark orders come from uninformed.

At higher levels of information asymmetry, there is a linear, less steep decline in the condi-

tional probability that the dark order was submitted by an uninformed trader. In this region,

uninformed traders face the trade-off between joining a long queue and trading with an informed

participant.

2.5 Empirical Implications

2.5.1 Price Discovery

The first set of empirical implications involves price discovery. Overall, price discovery is known

to be a process of determining the proper price of an asset. This process may depend on a
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variety of factors like supply and demand dynamics, risk attitudes of market participants, and

general economic environment.

An important factor in the price discovery process is the information flow. Market partic-

ipants with more precise, high-quality information have an advantage as they can act before

this information reaches others. By their trading, informed participants reveal part of their

private information to the market. By observing the order flow, uninformed traders update

their expectations about the future value of the asset.

In this model, only the information incorporation factor is considered when describing the

effectiveness of the price discovery process. Before the trading starts, uninformed traders are

aware of the unconditional volatility of the value of the final pay-off. After each trade or limit

order submission, uninformed participants can compute the volatility of the pay-off conditional

on the actions of previous traders. As σV |Ft ≤ σV , ∀t, the order flow incorporates private

information into prices.

I measure price discovery by a percentage decrease in conditional volatility relative to the

unconditional volatility (which is also the fundamental asset volatility) from the viewpoint

of the last trader in the model. Thus, price discovery of −50% means that the conditional

volatility of the final pay-off for the last trader is two times less than its fundamental volatility.

Price discovery for different degrees of dark pool accessibility is presented in Figure 2.10.

Panel (a) displays the average price discovery. We can observe that with a more accessible

dark pool, the conditional volatility of the final pay-off decreases less. This fact suggests a

less efficient price discovery process with easily available DP. However, in relative terms, the

average price discovery didn’t change much when the α parameter changes from zero to one.

This is an indication of a largely limited impact of the DP on the limit order markets in their

ability to determine the appropriate price.

Figure 2.10 around here

I also present the results for the best possible price discovery on panel (b) of Figure 2.10. For

all cases, the sequence of three consecutive market orders reveals most of the information and

delivers the best price discovery. Surprisingly, we may observe an increase in price discovery

for more easily accessible DP. In relative terms, this result is almost negligible.
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2.5.2 Market Quality

In this section, I report the results of the three most common measures of execution quality

employed in market microstructure literature. The quality of execution of market participants’

orders is crucial for financial regulation. In financial markets, execution quality is closely linked

to market liquidity. According to Foucault et al. (2013b), liquidity is the degree to which an

order can be executed within a short time at a consensus price. This price is, in most cases,

tied to the middle of the National Best Bid and Offer (NBBO). If the execution price is closer

to the midpoint of the NBBO and there are enough shares offered so that the market order

doesn’t push the price, the security is considered more liquid from the point of view of the

aggressive participant (liquidity demander).

On the other hand, sufficient depth of the market (number of shares offered at different

price levels) may cause long waiting times for those who decide to submit a limit order. This

would make the liquidity providers worse off as they have to wait until their offer is taken. That

is why taking into account different measures is crucial to obtain a broad view of execution

quality.

Spread

Bid-ask spread is the most common measure of execution quality. The quoted bid-ask spread

is the difference between the best ask and the best bid price, spreadt = pask
t − pbid

t . For this

model, I calculate the average across periods quoted bid-ask spread as follows:

avg. spread = 1
T − 1

T−1∑
t=1

∑
ϕ∈Φ

spreadt,ϕ · P(ϕ|Ft), (2.21)

where T = 4 is the number of time periods in the model, Φ = {ϕBM , ϕSM , . . . , ϕNT} is a set of

all strategies, spreadt,ϕ is the quoted bid-ask spread after implementing strategy ϕ by trader t,

and P(ϕ|Ft) is the probability that trader t uses this strategy ϕ given all available information

Ft.

In equation 2.21, I do not account for the last (fourth) trader because this trader only

submits market buy, sell, or an aggressive dark order. Therefore, the last trader is not capable

of providing liquidity in any market conditions and does not bring meaningful variation in the

average spread measure.
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Figure 2.11 around here

Figure 2.11 reports changes in the average spread in the model when (a) access to the dark

pool changes and (b) the share of informed traders changes. The figure shows that there is no

change in the average bid-ask spread when varying the access to the DP. This may be explained

by the equivalent migration of market orders to the dark as well as limit orders. In this case,

the dark venue does not impair the execution quality on the exchange.

On the other hand, panel (b) of Figure 2.11 shows that, at first, the bid-ask spread increases

with the increase in the share of informed traders. It reaches its maximum at π ≈ 0.5 and then

starts to decline with approximately the same but negative slope. These changes in the bid-ask

spread are aligned with the process of Order Migration, in Figure 2.8, panel (b). As informed

traders use DP relatively more often, in the times of low order migration, their aggressive

(market) orders widen the spread on the exchange. When the order migration increases again

(π > 0.5), the market orders’ pressure leaves the exchange and lets the spread recover.

Market Depth

A deep market is one where large market orders do not have a greater price impact than small

orders. The depth of the market is, therefore, measured by the price impact of trades. As in

this model, traders can only submit orders for one share, there is not much sense in calculating

price impacts. Instead, I compute the depth by directly assessing the average number of shares

outstanding in the LOB at every period. Thus, the measure of the market depth is the following:

avg. depth = 1
T − 1

T−1∑
t=1

∑
ϕ∈Φ

deptht,ϕ · P(ϕ|Ft), (2.22)

where T = 4 is the number of time periods in the model, Φ = {ϕBM , ϕSM , . . . , ϕNT} is a set

of all strategies, deptht,ϕ is the combined amount of shares outstanding on buy and sell sides

of the market after implementing strategy ϕ by trader t, and P(ϕ|Ft) is the probability that

trader t uses this strategy ϕ given all available information Ft.

Figure 2.12 reports the average across periods market depth when (a) varying the access to

the dark pool, and (b) varying the share of informed traders.

Figure 2.12 around here
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The figure shows that there is a strong correlation between the quoted bid-ask spread measure

and the market depth measure. Similar to the bid-ask spread, the average depth does not

change when DP becomes more easily available to traders. However, when the fraction of

informed traders increases, depth declines at first, and then, after the share of informed traders

surpasses 50%, recovers.

Fill Rate

Both bid-ask spread and market depth measures proxy for the execution quality of market

orders. Contrary to this, the analysis of the execution quality of limit orders is often skipped.

Dugast (2020) studies the relationship between the execution delay of limit orders and market

depth. He finds that despite both measures co-varies negatively with welfare, the execution

quality of limit orders may dominate in the welfare outcome. The conclusion is that the market

depth is inefficient, and cannot be the only measure to infer investor’s welfare variations. The

execution delay is crucial for the comprehensive assessment of the market quality.

To account for the execution quality of limit orders, I estimate the average across periods

fill rate of such orders. The fill rate is an alternative measure to the execution delay of limit

orders. Close to one value of the fill rate would imply a short waiting time for a limit order

while close to zero value of the fill rate means long waiting in the LOB.

For each but the last trader in the model, I compute the fill rate value as the probability

that a liquidity-providing order would receive execution in the next trading periods. I then

average the fill rates across those traders to obtain a general view of the fill rates in the model:

avg. FR = 1
T − 1

T−1∑
t=1


∑

ϕ∈ΦL

E(ϕ · Iexec|Ft)∑
ϕ∈ΦL

E(ϕ|Ft)

 , (2.23)

where T = 4 is the number of periods in the model, ΦL = {ϕBL, ϕSL, ϕBD, ϕSD} is a set of

liquidity providing strategies and Iexec is the indicator variable of the execution of order ϕ.

Figure 2.13 reports the average across traders fill rate when (a) varying the access to the

dark pool, and (b) varying the share of informed traders. Panel (a) suggests that the fill rate

increases monotonically when more traders have access to the dark pool. This is possible due

to the smart routing system of the IOC orders. Impatient traders can guarantee the execution

of their aggressive orders even when submitting those to the dark pool. Part of those orders
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will still be routed to the LOB and improve the execution quality of limit orders.

Figure 2.13 around here

Panel (b) shows that, at first, an increased share of informed traders improves the execution

quality by intensifying market orders’ flow. There is a point, however, where a further increase

in the share of informed traders will create a noticeable asymmetry in the order flow, reducing

the execution rate on one side of the market.

2.5.3 Welfare

Since all participants in the model have private valuations, a trade between two parties generates

welfare gains. Further, I study the impact of the DP on the realization of welfare gains of

traders.

Following the work of Goettler et al. (2005), Degryse et al. (2009), and Buti et al. (2017),

I compute the welfare of a trader of type j ∈ {vH , vL,E(V |Ft)}, and with DP access k ∈

{NA, WA} as follows:

Wt|j,k =
1∫
−1

U∗t (β) d β, (2.24)

where U∗t (β) is the utility of the optimal strategy at time t, obtained by solving the maximization

problem (2.11).

The total welfare aggregated for all traders is then calculated as:

W =
T∑
t=1




π/2

π/2

1− π


T

·


Wt|vH ,WA Wt|vH ,NA

Wt|vL,WA Wt|vL,NA

Wt|E(V |Ft),WA Wt|E(V |Ft),NA

 ·
 α

1− α


 . (2.25)

Figure 2.14 illustrates changes to the aggregate welfare in the model when (a) varying the

access to the dark pool, and (b) varying the share of informed traders. Panel (a) depicts the

fact that the total welfare of market participants is highly stable for all levels of dark pool

availability. We observe a slight increase in welfare, driven by the increase in order migration.

Figure 2.14 around here
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Panel (b) of Figure 2.14 shows a more sizeable increase in the aggregate welfare as the fraction

of informed traders in the model grows. A greater number of informed traders would imply

more market orders and, thus, faster realizations of the gains from trade.

As a matter of fact, Figure 2.15 shows that both informed and uninformed traders experience

a relative reduction in the gains from trade as the fraction of informed increases. This welfare

reduction is in line with an increase in the average fill rate, bid-ask spread, and a decrease in

the market depth. However, as the informed receive higher gains from trade, the overall welfare

in the model increases monotonically with π.

Figure 2.15 around here

2.6 Conclusion

This paper analyzes the impact of dark pool operating alongside a transparent limit order

exchange on market quality and price discovery. In the four-period model with asymmetric

information about the final pay-off of the risky asset, fully rational, risk-neutral traders can

choose order type and venue to send their orders to. I find that the order flow migrates to the

dark pool in the last periods, as the limit order book fills.

When orders are directed to the opaque venue, the process of price discovery slows down.

However, in relative terms, the effect is close to negligible and may vary in nature (benefiting

price discovery) depending on the immediacy demands of investors. As limit orders provide

a substitute for dark orders, venue competition plays a significant role in the impact of dark

trading on price discovery and market quality. When information asymmetry increases the

order migration forms a U-shape and the uninformed investors are quickly crowded out from

the dark pool.

The model suggests that a dark pool affects market quality mildly. The execution quality of

market orders measured by the average quoted bid-ask spread and the average depth is stable

in the wide range of the dark pool availability. Also, the quality of limit orders, measured by

the average fill rate, slightly increases with the more available dark venue. Overall, the total

welfare remains leveled for various degrees of dark pool availability.

The developed model is flexible and allows for a wide range of analyses that interest policy-

makers and regulators. However, future work can extend the model by addressing the following
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caveats. Firstly, since traders enter the model only once, I do not allow for price manipulation.

If a trader can submit an order several times during the trading day, she might choose to trade

first on the lit exchange to move the market and then execute later in the dark pool at a more

comfortable price.

Secondly, one might be interested in endogenizing private information acquisition and dark

pool participation. By introducing a cost of obtaining perfect information about the final pay-

off of the asset and a cost of accessing the dark pool it will be possible to identify an equilibrium

level of dark trading.

Finally, more types of orders can be added to the model to bring it closer to the current state

of financial markets where the competition between transparent and dark venues is more subtle.

Some exchanges allow traders to submit undisplayed orders that offer a price improvement and

execute against the visible order flow. The introduction of such order types to the present

model would be interesting future research.
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Tables and Figures

Table 2.1. Available order types.
This table presents the orders available to traders for submission to the limit order book (LOB)
and to the dark pool (DP). Only fraction α of traders has access to the dark pool. Market
sell/buy order executes immediately at the best available bid/ask price. Limit order should
specify the price, at which the trader wants to buy/sell the shares. The price is defined on a grid
p ∈ [p1, p2, p3,4 ]. Levels 1 and 4 of the grid are occupied by the crowd that immediately absorbs
any amount of the open interest. Dark orders execute at the midprice that is determined by
the available liquidity in the LOB. They require the counterparty for the trade to happen,
otherwise, the order will wait for the execution in the DP according to the time priority rule.
Dark Immediate or Cancel (IOC) orders are similar to the usual dark orders, but the execution
of such orders is guaranteed by the routing technology. If the dark IOC order cannot be
executed in the dark immediately at the midprice, it will be routed to the LOB and executed
there against the best offer available.

Description Notation
Orders sent to the LOB
Market order (buy or sell) ϕBM , ϕSM
Limit order (buy or sell) ϕBL(pj), ϕSL(pj), j = 2, 3
No trade ϕNT

Orders sent to the DP
Dark order (buy or sell) ϕBD(p̃Mid,t), ϕSD(p̃Mid,t)
Dark IOC order (followed by market order if cancelled) ϕBIOC(pMid,t), ϕSIOC(pMid,t)

70



Figure 2.1. Dark trading in USA and Europe (Source: Rosenblatt Securities).

The Figure plots dynamics in the dark pools’ trading volume share in Europe and the United States

for the period from February 2020 to March 2021. A rather stable trend around 13% and 16% of the

total volume traded in the dark can be observed for the US and Europe, respectively.
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Figure 2.2. Limit orders in the limit order book (LOB).

The graphs below, show the possible state of the LOB. The horizontal axis represents the price levels

that are available for order submission. The difference between the two neighboring price levels

constitutes the minimum increment of the price (tick size). The vertical axis represents the amount of

shares available at each price level. Negative (positive) quantity reflects available limit orders to buy

(sell). Panel A, shows the situation when all levels of the LOB are occupied with limit orders so the

next trader can either join the line of limit orders or choose to submit a market order. On Panel B,

there are no orders at price level p2, and only buy limit orders can take this place in the next periods

as “crossed market” is not allowed.
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Figure 2.3. Procedure to obtain an equilibrium in a single-venue market.

The Figure shows the steps taken to solve numerically the model of the Limit Order Book (LOB)

trading when the dark pool is not available. At the first step, each trader assumes that the value

of the security is high with some probability. Then the strategies of all traders are calculated by

backward induction. If the strategies of all traders are not aligned with their initial beliefs (up to a

certain small ε > 0), those beliefs are updated and the procedure is repeated.

Assume Pr∗(V = vH |Ft)

Solve the model backwards

Compute actual Pr(V = vH |Ft)

∣∣∣Pr∗(V = vH |Ft)− Pr(V = vH |Ft)
∣∣∣ ≤ ε

Pr∗(V = vH |Ft) := Pr(V = vH |Ft)Stop

Yes No
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Figure 2.4. The extensive form of the trading game in the single-venue market.

When only the limit order book (LOB) is available, the traders may choose between market orders,

limit orders, or no trading option. Thus, every trader can observe the actions of all previous traders

and update her beliefs. One possible realization of the strategic game is marked by blue lines. The

variable bi shows the state of the LOB at time period i where the first element shows the number of

shares available at price level p2 and the second element - at price level p3.

b1 = [0, 0]

b2 = [0, 0]

b2 = [−1, 0]

b2 = [0, 1]

b2 = [0, 0]

b3 = [0, 1]

b3 = [−1, 0]

b3 = [0, 0]

{· · · }

{· · · }
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b4 = [0, 0]

b4 = [−1, 0]

market buy

market sell

limit sell at p3

limit buy at p3

no trade

market buy
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market sell
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Figure 2.5. Procedure to obtain an equilibrium in a multiple-venue market.

The Figure shows the steps taken to solve numerically the model of the Limit Order Book (LOB)

trading when the dark pool (DP) is available for α share of the traders. As in the single-venue market

(see fig 2.3), the procedure starts with an assumption about all traders’ beliefs of the true value of the

asset. Next, the model is solved backwards in the following steps. Each trader aligns her strategies

with the fact that the next ones can have an access to the DP with probability α > 0. When the beliefs

that the next traders will opt for the DP are within a small distance ε1 > 0 of the actual probability

of the dark trading happening, the previous trader in line goes through the same calibration exercise.

After the beliefs of all traders are in line, the actual probability for the value of the asset being high

is computed and adjusted if too far from the initial assumption. The calibration continues until the

equilibrium is reached in both beliefs about the (i) true value of the asset and (ii) the probability of

dark trading.

Assume Pr∗(V = vH |Ft)

trader := 4

Assume DP∗trader+i

Get strategies of the trader

Compute actual DPtrader+i, ∀i∣∣∣DP∗trader+i−DPtrader+i

∣∣∣ ≤ ε1, ∀i

Update DP∗trader+itrader == 1

trader := trader− 1

Compute actual Pr(V = vH |Ft)

∣∣∣Pr∗(V = vH |Ft)− Pr(V = vH |Ft)
∣∣∣ ≤ ε2

Pr∗(V = vH |Ft) := Pr(V = vH |Ft)Stop

Solve the model backwards

Yes NoNo

Yes

Yes No
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Figure 2.6. The extensive form of the trading game in the multiple-venue market.

When both a limit order book (LOB) and a dark pool (DP) are available, traders cannot distinguish

dark orders and no trading option with certainty. The variable Ωt shows both the state of the LOB

and the true state of the DP that is not directly observable by any trader. The Figure below illustrates

how Trader 3 strategically decides to submit dark buy order, knowing that the next Trader 4 cannot

observe her actions and will be able to trade with her only if both of them have access to the DP. In

this case, Trader 3 faces a trade-off between the uncertainty of the execution and the more favorable

execution price.

Trader 3 Trader 4

Ω3 = {[−1, 1], 0}

with access

no access

{· · · }

Ω4 = {[−1, 1], −1}

Ω′4 = {[−1, 1], 0}

{· · · }

other

dark buy

no trade

other

same information set

no access

with access

market buy

market sell

no trade

dark buy

dark sell

ioc buy

ioc sell
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Figure 2.7. Equilibrium order submission strategies composition.

This Figure shows the probability of submitting different types of orders based on (a) availability

of the dark pool (DP), and (b) the share of informed traders among the market participants, π.

Panel (a) suggests that the strategies of traders do not change that much if the DP becomes more

widely available while the share of informed traders stays constant. On the other hand, panel (b)

shows that trading via dark orders and market orders first increases along with the increase in the

number of informed traders but as the share of those surpasses 50%, this effect reverts.

(a) Varying α, (π = 0.2)

(b) Varying π, (α = 0.5)
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Figure 2.8. Order Migration for (a) various dark pool (DP) availability α, and (b) information

asymmetry π.

Order Migration, defined by equation 2.20, is, essentially, an average across periods probability that

a dark order will be submitted. Naturally, if the DP becomes more available for trading, the level of

order migration goes up. It, however, does not reach high values as liquidity provision remains more

beneficial during most of the trading day. Pane (b) shows how the order migration changes when the

share of informed traders increases. For all levels of the DP availability, one can notice a ‘smile’ shaped

curve of the order migration. The initial decrease in the order migration may be associated with a

risk of matching with the informed trader who is trying to conceal her informational advantage. The

subsequent increase happens when π increases over 0.5 as the liquidity builds up in the LOB.
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Figure 2.9. The probability that the dark order came from an uninformed trader.

The Figure shows the conditional probability that the order was submitted by the uninformed trader

given that the order was sent to the dark pool (DP). As the graph lies below the −45◦ line, one can

deduce that uninformed traders are hesitant to use the DP even if they have an access to it. With the

increase of the share of informed traders in the model from 0 to around 0.15, a considerable crowding-

out effect of the uninformed traders from the DP is observed. As the uniformed ones are the majority,

this effect can explain the initial decrease in the order migration. With a further increase in the share

of the informed traders, the conditional probability decreases only linearly and reaches zero when all

the agents are informed about the true value of the asset.
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Figure 2.10. Price discovery for different levels of α.

The Figure below shows the dynamics in price discovery measure when the dark pool (DP) becomes

more available. Panel (a) depicts the average price discovery defined as an average percentage change

in conditional volatility of the asset’s price, relative to the unconditional volatility from the point of

view of the last trader in the model. The panel shows a less efficient price discovery mechanism for

the markets with easily available DPs. Panel (b) shows the best possible price discovery dynamics.

As the market order reveals the biggest amount of information, three consecutive market orders will

provide the best price discovery to the last trader. Unexpectedly, one can observe, an increase in price

discovery for more accessible DP. In absolute terms, the result is, however, negligible.

(a) The average price discovery

(b) The best price discovery
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Figure 2.11. Average quoted bid-ask spread.

The figure below presents the dynamics in the average quoted bid-ask spread when the dark pool (DP)

becomes more available (panel (a)), and when the fraction of informed traders in the model increases

(panel (b)). The spread is defined by the difference between the best bid and ask prices. Panel (a)

suggests that there is no effect of the availability of the DP on the average spread. This may be

explained by the equivalent migration of market orders and limit orders to the DP. Panel (b) suggests

a hump-shaped change in the average spread as the probability of informed trading increases. This

effect is aligned with the dynamics of order migration, as informed traders use the DP more often.

(a) Varying α, π = 0.3

(b) Varying π, α = 0.5
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Figure 2.12. Average market depth.

The Figure below shows the dynamics in the average market depth when the dark pool (DP) becomes

more available (panel (a)), and when the fraction of informed traders in the model increases (panel

(b)). The depth was computed as the average number of shares outstanding in the limit order book

(LOB) at every period. The figure shows that there is a strong correlation between the quoted bid-ask

spread measure and the market depth measure. Similar to the bid-ask spread, the average depth does

not change when DP becomes more easily available to traders. However, when the fraction of informed

traders increases, depth declines at first, and then, after the share of informed traders surpasses 50%,

recovers.

(a) Varying α, π = 0.3

(b) Varying π, α = 0.5
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Figure 2.13. Average fill rate.

The Figure below shows the dynamics in the average fill rate when the dark pool (DP) becomes more

available (panel (a)), and when the fraction of informed traders in the model increases (panel (b)).

The fill rate is the probability that a liquidity-providing order would receive an execution in the next

trading periods, before the end of the trading day. Panel (a) suggests that the fill rate increases

monotonically when more traders have access to the DP. Panel (b) shows that, at first, an increased

share of informed traders is associated with an improvement in the execution quality (possibly by

intensifying market orders’ flow). A further increase in π will be associated with a reduced execution

rate on one side of the market.

(a) Varying α, π = 0.3

(b) Varying π, α = 0.5
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Figure 2.14. Aggregate welfare.

The Figure below shows the dynamics in the aggregate welfare when the dark pool (DP) becomes

more available (panel (a)), and when the fraction of informed traders in the model increases (panel

(b)). Panel (a) suggests that the total welfare of market participants is highly stable for all levels of

dark pool availability. One can observe a slight increase in welfare mainly driven by the increase in

order migration. Panel (b) shows a more sizeable increase in the aggregate welfare as the fraction of

informed traders in the model grows. A greater number of informed traders would imply more market

orders, and, thus, faster realizations of the gains from trade.

(a) Varying α, π = 0.3

(b) Varying π, α = 0.5
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Figure 2.15. Aggregate welfare of traders with different information sets.

The Figure below shows the dynamics in the aggregate welfare of informed and uninformed traders

when the fraction of informed traders in the model increases. Both panels, for informed and uninformed

traders, suggest that all traders experience a relative reduction in the gains from trade as the fraction

of the informed ones increases. The uninformed traders suffer because they become an easy target of

the informed ones, while informed traders are worse off because their competitive advantage becomes

less unique. However, as the informed traders receive higher gains from trade, the overall welfare in

the model increases monotonically with π.

(a) Uninformed traders

(b) Informed traders
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Chapter 3

Machine Learning and Market

Microstructure Predictability

3.1 Introduction

Digitalization, which happened in the last decades, generated enormous piles of data that grow

faster every day. The impact of big data is starting to be noticed in academic research in

economics and finance. With the possible benefits of the abundance of data, emerge many

questions, that are related to computer science and engineering. What does big data in finance

really mean, and how can economists benefit from it?

In the finance literature, “big data” is usually associated with the following properties. First,

the data should be large in an absolute or relative sense to capture relevant economic activities

that are not present in the small dataset. Second, “big data” is often high-dimensional. It has

many variables relative to the sample size. Finally, the data has a complex structure relative

to the classical row-column format. It is the intricate structure of the data that allows for

capturing economic activities that can not be measured with traditional data.

Natural examples of big data span from pictures, and text to audio and video files. A

particular example, that is related to the current research, is an order-message level market

microstructure data. This data is usually large as the exchange receives millions of trade and

order submission messages every day, it is also high dimensional and complex as it is a source

for limit order book reconstruction. To use efficiently the order message data, one requires to

employ the “toolbox”, designed to account for the complexity of big data.
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Machine learning is currently a common solution to the challenges imposed by the com-

plex data, and it is used in economic and finance research more frequently. Machine learning

techniques are quite diverse but, in general, they work well when (i) the approach towards the

economic questions implies using a lot of variables, (ii) the variables are interconnected in a

highly non-linear way, and (iii) prediction is more valuable than the inference.

In this paper, I further stress the importance of machine learning techniques for market

microstructure research. Initially, it was not obvious that these methods can bring an im-

provement to the researchers’ ability to predict how interactions between market participants

affect price and liquidity dynamics. Economists believed that simple approaches can perform

reasonably well, but it is becoming more obvious that the ability of machine learning to treat

complex data using nonparametric algorithms can identify patterns that the traditional models

can never capture.

For the purpose of this study, I take several machine learning models like feed-forward neural

networks, long short term memory networks, gradient boosted machines, and fit them using

the high-frequency data from the Nasdaq exchange. The data allows for calculation of various

microstructure features that serve as predictors for the set of target variables that describe the

market in the following aspects.

First of all, I try to predict short-term returns. Returns prediction is a cornerstone of the

finance literature, that can also be an indication of market efficiency. Secondly, as a proxy of the

general market stability, I predict the occurrence of mini flash crashes. These events, also called

as “extreme price movements” or “price jumps”, emerged with the digitalization of trading and

the takeover of the markets by computer algorithms. Next, I check the performance of the

models’ forecasts for the quoted spread as the most widely used measure of market liquidity.

Finally, I try to predict the short period market volatility by targeting the realized volatility

measure.

In doing this, I leverage on the previous works1 that applied machine learning methods

for the purpose of predictions of microstructure variables. My addition to this previous work

resides in the fact that I not only test the forecasting performance based on a way of data

sampling, but also compare the accuracy of the models during normal times and crisis times

as the data covers the period of the COVID-19 outbreak. Moreover, contrary to Easley et al.
1For example, Mullainathan and Spiess (2017) and Easley et al. (2021).
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(2021), I pursue, to my view, a more challenging goal of a regression forecast rather than a

classification exercise.

To analyze the performance of machine learning methods, I use the out-of-sample R2 mea-

sure for the models’ output, and, to statistically compare models between each other, I employ

the modified Diebold-Mariano test.

I find that there exists an improvement in the forecast accuracy of machine learning models

over a linear regression. Out of all tested models, the Light Gradient Boosted Machine (LGBM)

model demonstrated superior performance most of the time for all targets. The dollar volume

bars sampling showed to yield a more accurate and stable out-of-sample model performance

than the time bars sampling. Overall, the market was found to be efficient both in normal

times and in crisis times.

These results suggest that machine learning techniques can lead to improvements in our

abilities to predict market microstructure variables. The ability of machine learning to process

complex data using non-parametric algorithms makes it easier to extract patterns from the

data, previously unrecognizable by the parametric models.

The remainder of the paper is organized as follows. In Section 3.2 I discuss the existing

literature on the topics of Machine learning for Big Data and forecasting, and its applications to

market microstructure. Section 3.3 outlines the methodology of the current paper, the machine

learning methods I use, while section 3.4 describes the data and the microstructure measures.

The empirical results are presented in section 3.5. Finally, section 3.6 concludes and discusses

the possibilities for future research.

3.2 Literature Review

This paper builds on the previous work from several strains of the literature: machine learning

and big data analysis for economic research, machine learning for market microstructure, and

market stability and price prediction during periods of stress. I outline the main findings and

methods within those topics in the following paragraphs.

The first strain of the literature, is the general application of machine learning and big data

analysis for economic and financial research. Machine learning and big data are used more

and more often for economic research due to the availability of the data and the promising
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results from the other fields2. Machine learning techniques can be successfully applied to

analyze economic problems that embed big data. For example, Cavallo and Rigobon (2016)

rely on social media to collect massive amounts of data on retail prices from more than 50

countries. They focus on measurement rather than prediction to study price stickiness and

to check whether the “one price law” concept of the international economics holds. The most

recent research that builds on the features of big data is summarized in Goldstein et al. (2021).

While machine learning techniques are relatively easy to use nowadays, it is worth noting

that to apply them correctly requires finding relevant tasks. Varian (2014) argues that con-

ventional econometric tools may not address the issues that are unique to big datasets, and

proposes to use machine learning to model complex relationships. As pointed out by Mul-

lainathan and Spiess (2017), machine learning is aimed mainly at the problem of prediction

rather than parameter estimation, which is more common in economics. Bajari et al. (2015) ap-

ply LASSO regression, support vector machines, and other techniques to improve out-of-sample

prediction accuracy in the problem of demand estimation. They show that predictions obtained

via the machine learning approach are more accurate than some commonly used alternatives.

The recent abundance of big data in economics and finance rises new questions and provides

the possibility of the future research in diverse directions like the adjustment of the corporations’

strategies by targeting the response from computers as decision-makers (P. Bond et al. (2012),

Cao et al. (2020)), positive and negative impacts of big data on financial markets (Chawla

et al. (2016), Shiller (2015)), possibility to measure previously unobserved economic activities

by processing more complex data (Gentzkow et al. (2019), Li et al. (2021), Gerken and Painter

(2019)), adjusting the financial market regulation due to the presence of computer algorithms

(O’hara et al. (2014), Spatt (2020)), and others.

This paper also relates to the literature on the applications of machine learning in market

microstructure. In the current age of fast markets, the structure of the markets’ functioning

plays a crucial role in explaining market behavior. As was shown by Philip (2020), due to the

complexity and non-linearity of microstructure of financial markets, commonly used techniques

that do not address these issues may produce conflicting and incorrect inferences. That is why

machine learning has gained recent popularity. For example, Rossi (2018) employs boosted
2For an overview of the ML techniques used in biology, physical sciences, biomedicine, and material sciences,

see respectively Tarca et al. (2007), Carleo et al. (2019), Wainberg et al. (2018), Wei et al. (2019)
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regression trees to predict monthly returns and volatility. This method delivers a greater out-

of-sample predictive accuracy, compared to the standard models, and suggests a non-linear

relation between the optimal portfolio allocation and the predictor variables. Krauss et al.

(2017) already use daily returns to train deep neural networks, gradient-boosted-trees, and

random forests in the context of statistical arbitrage on the S&P 500. The promising results

obtained by the authors allow them to challenge the semi-strong hypothesis for market efficiency.

This trend in market microstructure research that applies machine learning, to shift towards

higher frequency time frames is pursued further by Chinco et al. (2019), who use LASSO

regression to generate one-minute-ahead return forecasts that provide better fit out-of-sample

due to capturing unexpected, short-lived and sparse predictors. Bartlett et al. (2022) use

proprietary order book data to study the predictive power of the odd lot quotes submissions

on the future prices at one-minute intervals. They use XGBoost machine learning prediction

algorithm to create a profitable trading strategy that uses odd lot data.

As computers took over the dominant trading role, the high-frequency trading (HFT) impact

on financial markets was also studied theoretically. When developing a dynamic limit order

market model with asymmetric information and HFT, Arifovic et al. (2021) follow Chiarella

et al. (2015) and employ a classifier system based on a genetic algorithm (GA). They use GA as

an adaptive learning mechanism to study how changes in information and speed affects HFT.

The advantageous part of using machine learning for such a model is that the limit order book

is extremely high-dimensional, and the GA allows traders to learn from this state space.

Finally, the paper builds upon the literature on market quality and stability. In this context,

the microstructure of the market plays an important role due to the fact that high-frequency

trading (HFT) and algorithmic trading are now common market practices. Previous works

such as Hendershott et al. (2011), Easley, López de Prado, and O’Hara (2012), Brogaard et al.

(2018), and Gonçalves et al. (2021) study the impact of HFT on markets stability, quality, and

liquidity in the presence of HFT.

This paper will try to shed more light on whether microstructure information such as or-

der flows in the limit order book, short-run price movements, and other information, that is

usually used by HFT is available to predict future markets liquidity, volatility, and the prob-

ability for the markets to crash (experience an extreme price event). The predictive power of

microstructure metrics will be assessed by comparing the out-of-sample forecast performance
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of the standard linear model and highly non-linear models from the machine learning tool-

box. Moreover, the paper will try to improve the work of Easley et al. (2021) and assess the

performance of machine learning techniques in forecasting continuous variables.

3.3 Methodology

The main aim of the current paper is to assess predictability using diverse microstructure

variables.

I use machine learning models, to study the ability to forecast some important liquidity,

volatility, and market stability measures by using a collection of general market microstructure

variables. Additionally, I compare the forecasting accuracy of the models during normal time

versus crisis time by capturing the outbreak of the COVID-19 crisis in the data sample.

3.3.1 Linear model

The prediction accuracy of all models described below is compared to the most common bench-

mark, the simple linear predictive regression, estimated via ordinary least squares (OLS). Linear

regression is not expected to perform better for the current high-dimension forecasting exer-

cise, and is used mainly as a reference model to highlight the features of more complex and

non-linear methods.

Linear regression model requires that a linear function of a vector of parameters and the

set of predictor variables can approximate the set of conditional expectations g(·)

g(Xi,t; θ) = X ′i,tθ. (3.1)

Due to the quite simple specification, no nonlinearity is allowed in such a model. The interac-

tions between the regressors are not taken into account either.

The objective function, for the estimation of this model,

L(θ) = 1
NT

N∑
i=1

T∑
t=1

(yi, t+1 − g(Xi, t; θ))2 , (3.2)

gives the OLS estimator, when L(θ) is minimized. The advantage of this l2 objective function is
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that it offers a simple analytical form for the estimates without complex optimization algorithms

involved.

The objective function of a simple linear regression may be extended to improve the ro-

bustness of the model, or to account for the heavy tails in the distribution of the independent

variable (see Gu et al. (2020)). In case when the number of regressors approaches the sample

size, the linear model becomes at best inefficient. Various penalization methods, from LASSO

regression to the Elastic Net, are used to tackle the problem of efficient and consistent model

estimation when the signal-to-noise ratio is low. However, this is not the case in the current

paper, so the objective function of the model was not altered.

It is worth noting that the linear regression in general case is not a “subset” of machine

learning methods. For example, one can use a neural network with zero hidden layers and a

linear activation function to obtain an analog of the linear regression in the machine learning

context. However, any non-redundand architecture of a machine learning model would aim to

identify non-linear relationships in the data. When the size of the dataset is not sufficient to

train a complex model with a large number of parameters, the simple linear regression may

yield both more stable and accurate inference or predictions. That is why the most appropriate

model to use is often identified on a case by case basis and usually after an initial data analysis.

3.3.2 Light Gradient Boosted Machine (LGBM)

One alternative way to account for some complex interactions between predictors is to employ

regression trees. This is a popular approach that is fully nonparametric and is being used more

and more often in economic research. The trees form clusters of observations that are similar

to each other. The so-called “branches” of the tree are growing at each step of the algorithm,

that splits the predictors into groups by minimizing an error function built on the features and

targets in the training data set. In order to grow the tree, the algorithm has to find partitions

that best differentiate between the potential outcomes.

Previous research like Breiman et al. (2017) has developed several optimization techniques

that make the algorithm converge on an optimal tree. Nevertheless, regression trees can overfit

the data quite often. This drawback is usually solved by regularization. One can consider an

ensemble of trees and combine the forecasts from many trees into one.

For this paper, I use the method of “boosting” to combine many trees into a single one. The
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method is based on the idea that many poor performing individual trees, when combined, can

yield a more accurate and a more stable model than a single but complex tree. A simplified

algorithm of gradient boosting can be described as follows. In the first step, one simple tree

with a small depth (L) is created. This tree does not provide any good predicting accuracy,

and is biased. In the second step, another shallow tree is created, that is designed to fit the

forecasting residuals from the first tree. The predictions of both trees are combined into one

by shrinking the forecast from the second tree by a predefined factor ν ∈ (0, 1). At every

next step, the new shallow tree is designed to fit the residuals from the combined model at the

previous step, and its forecast is shrunk to prevent overfitting and added to the ensemble. The

parameters L, ν,N of the final model of N shallow trees are chosen based on a cross-validation

procedure.

XGBoost which stands for an extreme gradient boosting algorithm is a highly scalable and

flexible tool that is able to improve over other boosting techniques due to a faster and more

robust regularization method. A light gradient boosting machine (LGBM) is an implementation

of the XGBoost by Microsoft team with reduced convergence time. Also, LGBM is usually more

accurate than XGBoost, and is better suited for handling big data. The difference comes mainly

from the way the trees are grown in the model. In LGBM the trees are growing by increasing

the size of the current leaf first, instead of checking all of the previous leaves for each new leaf.

There are many hyperparameters in the LGBM one can tune to get a better forecasting

performance. I will focus on just one important parameter which is the number of decision

trees used in the ensemble. Decision trees are usually added to the model sequentially in order

to correct and improve the forecasts produced by previous trees. The simple intuition then

suggests, that the more trees the model has the better the forecast will be. I will fit LGBM

models with 50, 100, and 200 trees in the ensemble3. Therefore, I will study the performance

of the LGBM(50) through LGBM(200) models in forecasting microstructure variables during

normal and crisis times and compare the accuracy of the predictions coming from LGBM with

Neural Network models, as well as with the benchmark linear regression.
3LightGBM package in Python sets 100 trees as the default number of trees for LGBM models.
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3.3.3 Neural Networks

Another non-linear method I will use to analyze the forecasting performance of the microstruc-

ture measures is the artificial neural network. This method is currently the top choice for such

machine learning problems as natural language processing, computer vision, and others. Neural

Networks are extremely flexible due to employing a set of layers of nonlinear interactions be-

tween regressors. This set of entwined layers can vary from relatively small (shallow networks)

to quite large (deep networks). Due to potentially high complexity of neural networks, this

method is considered the least transparent, highly parameterized, and almost uninterpretable

among other machine learning tools.

Shallow Networks

For the shallow network, when the depth of the book is small, the analysis focuses on the

so-called “feed-forward” networks. As figure 3.1 illustrates, these networks consist usually of

an input layer, hidden layers, and an output layer.

Figure 3.1 around here

The input layer represents raw predictors that, together with some bias, are passed to the first

hidden layer. Hidden layer(s) transform the signal from the predictors in a non-linear way,

and the resulting outcome is aggregated at the output layer. The dimension of the input layer

equals the dimension of the predictors. A signal from every node (or neuron) is scaled according

to a parameter vector θ, that usually includes weight parameters, and propagated linearly to

the next layer. Then, every neuron applies a nonlinear function, which is also called “activation

function”, to the aggregated inputs. For example, the first neuron in the first hidden layer

transforms inputs from the predictors as h(1)
1 = f

(
x0 +∑3

i=1 xiθ
(0)
1,i

)
, where x0 is a bias term.

Finally, the outputs from the last hidden layer are aggregated linearly into an ultimate output:

ŷ1 = h
(2)
0 +

3∑
i=1

h
(2)
i θ

(2)
i . (3.3)

There are numerous options for choosing the nonlinear activation function for the neurons.

There exist sigmoid, softmax, hyperbolic, and many other functions. However, for this paper,

for the activation of hidden layers, I use another popular function called rectified linear unit,
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or ReLU for short. The ReLU function is defined as follows

ReLU(x) =


0 if x < 0,

x otherwise
, (3.4)

and a simple linear function for the output layer.

The neural network weight parameters are estimated by minimizing the objective function

of prediction errors. The gradients of the cost function are calculated by propagating the error

in the output back through the network. With the error at each node calculated, the amount

that each node contributes to the overall cost can be estimated, leading to the gradient.

Selecting a network architecture is a complicated task. There is an infinite number of

architectures to choose from, but only a finite amount of time to find the optimal one. Instead of

checking all of them, I consider architectures up to four hidden layers for forecast generation and

compare their performance. The shallowest network (NN1) will consist of just one hidden layer

of 16 neurons, and the network with four hidden layers (NN4) has the following configuration

of neurons in it: 16, 8, 4, and 2 neurons at levels one to four, respectively.

Deep & Recurrent networks

Eldan and Shamir (2016) show that an increase in the depth of the neural network can be

substantially more beneficial than increasing the number of neurons in each layer. Around

these times, deep and recurrent4 networks gained more popularity within the machine learning

community. It is difficult, however, to train recurrent or very deep networks due to the fact

that they are prone to the vanishing gradient problem. Long-short term memory (LSTM) was

introduced by Hochreiter and Schmidhuber (1997) as a powerful recurrent neural network that

was designed to be an efficient tool to overcome exploding or vanishing gradient issues.

The LSTM block architecture is shown in Figure 3.2. This figure shows the main components

of an LSTM, among which are a cell, an input gate (σ1), a forget gate(σ2), and an output gate

(σ3). The architecture also contains the input signal x(t), the output y(t), and the activation

functions g1 and g2 that are usually realized in the form of a hyperbolic tangent. The output

of the block is then connected to the next block’s input.
4In the recurrent network the outputs from some or all hidden layers become inputs for previous hidden

layers, thus creating the recurrent structure.
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Figure 3.2 around here

The cell remembers values over some time interval, and the gates regulate the flow of information

linked to the cell. The gates are represented by sigmoid activation functions. The input gate

combines the current input and the output of the LSTM unit in the last iteration. The forget

gate determines which information should be removed from the previous cell states of the LSTM

model. The output gate combines the current input and the output of the LSTM unit in order

to calculate the current output.

Even though there is research that tries to improve the performance of the model (see,

for example, Bayer et al. (2009), Bellec et al. (2018), and Su and Kuo (2019)), the vanilla

LSTM performs very well. Fischer and Krauss (2018) apply LSTM model to financial markets

prediction and show that LSTM outperforms logistic regression, standard deep neural network,

and the random forest approaches. This suggests that LSTM can perform well when the data

is non-linear, non-stationary, and sequence-correlated.

Therefore, I will study the performance of the LSTM in forecasting microstructure variables

during normal and crisis times and compare the accuracy of the predictions coming from LSTM

with other models. For comparison, I will estimate the parameters of the network where the

hidden layer has 2, 4, 8, and 16 LSTM blocks or neurons with the default sigmoid activation

function.

3.3.4 Accuracy metrics for performance comparison

Although the models are trained using the mean squared error loss function, to evaluate their

out-of-sample performance, I calculate the out-of-sample R2 as follows

R2
oos = 1− RSS

TSS = 1−
∑
t∈T test(yt − ŷt)2∑
t∈T test(yt − ȳ)2 , (3.5)

where RSS and TSS stand for, respectively, the residual and the total sum of squares out-of-

sample, T test is a set of out-of-sample observations, that were not exposed to the model during

the training procedure, yt is a target variable the model is aiming to predict, ȳ is its mean, and

ŷt is the model output at time t.

The out-of-sample R2 is also used for identifying the relative importance of individual fea-

tures for every model. The feature importance can be estimated by calculating the reduction
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in R2
oos from setting all values of the given feature to a constant within the training sample.

Obtained feature importance is then normalized within the model, to sum up to one, that

allows for interpreting it as relative importance for the model.

When comparing the performance of several models out-of-sample, selecting the model with

the highest R2
oos is not enough. One has to determine, whether the difference in their perfor-

mances is statistically significant or comes from the specific properties of the selected sample.

To analyze and compare the models, I use Diebold and Mariano (1995) test with modifications

suggested by Harvey et al. (1997) for differences in out-of-sample predictive accuracy.

The basic concept of the modified test can be summarized as follows. Suppose, that the

difference between the first set of predictions of size T and the true values is e1, and between the

second set of predictions of the same size T and the true values is e2. Then, the loss-differential

is given by

d = e2
1 − e2

2. (3.6)

The null hypothesis is E(d) = 0, and the test statistics follow the student-t distribution with

T − 1 degrees of freedom5. The obtained p-values from this statistic will be presented during

the model comparison.

3.4 Data

In this section, I describe data sources, construction of time and volume bars, and construction

of features that will serve as inputs to machine learning algorithms described in the previous

section.

The data for this study come from Nasdaq’s historical ITCH in the form of the order book

messages. Traditionally, market microstructure analysis employs the Trade and Quote (TAQ)

data. For the purpose of the study, the order book message data has a considerable advantage

relative to the TAQ data but also one limitation. The advantage is that the order book

message data are time-stamped in nanoseconds order submissions, executions, cancellations,

and modifications on the Nasdaq equity market. This type of data allows obtaining complete

order book information, whereas from TAQ data one can get only top-of-book quotes. Order

book message data, therefore, allow for a precise realized volatility computation as well as for
5For more information on how the statistic is derived and how it behaves, please refer to Harvey et al. (1997).
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direct observation of liquidity provision on each depth level of the limit order book at any time.

The limitation of the data, used for this research, is that it provides limit order book infor-

mation from Nasdaq exchange only. The order book activity on other venues may be different.

Trades on Nasdaq account for, on average, 33% of trading activity for Nasdaq listed stocks,

about 12.5% for NYSE stocks, and 16% for ARCA stocks. Despite the high fragmentation

nature of financial markets, we share the reasoning of Brogaard et al. (2018) that liquidity

transfers to other venues are unlikely due to the short period of interest and overall similar

liquidity provision rules among exchanges. Thus, we argue that although the results obtained

could not readily expand to other exchanges, still they should be taken into account.

The sample period encompasses two years of trading from January 2, 2019, to December

31, 2020. This period covers trading in the limit order markets as usual and also trading during

a crisis period6. I consider only large-cap constituents of the set of firms traded on Nasdaq,

where the trading activity is sufficiently high7. In total, the sample contains data on 524 liquid

stocks that are traded on Nasdaq during market hours.

As was mentioned previously, the data comes in a series of timestamped messages. There-

fore, before it is ready to be sampled into time and volume bars, it has to be processed. In

the first step, it is necessary to connect any initial order to the modified versions of this order,

as they have different order reference number. Then, the time series of prices and limit order

book properties such as spread, depth, and others can be produced at the required frequency.

3.4.1 Time and dollar-volume bars

For the current study, the nanosecond frequency data is aggregated into bars based on clock

time and dollar volume traded. Academic research employs extensively data aggregation based

on either clock time, trade time, or volume. Easley, M. M. L. De Prado, et al. (2012) argue that

low frequency traders are not completely defenseless against HFTs if they adopt volume-clock

paradigm, Easley et al. (2016) also find bulk volume classification to be a useful tool to discern

trading intentions from market data. Barardehi et al. (2019) propose to use trade time liquidity

measures for microstructure research in order to obtain more accurate proxies for trading costs

and to better explain the cross-section of returns. According to M. L. De Prado (2018), using
6The outbreak of COVID-19 crisis began in the end of February, 2020.
7A stock is considered to be sufficiently liquid if there are at least 3,000 trade messages for this stock during

the trading day.
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dollar-volume bars can achieve normalization of the dollar value transacted across time periods,

thus, providing more stability to the sampling frequency.

I follow Easley et al. (2021) and use both dollar-volume bars and clock time bars sampling

to compare the results of the machine learning exercise. The bars are formed as follows: the

n-th bar is filled at the earliest time tn that satisfies the condition

tn∑
t=tn−1

pt · Vt ≥ L, (3.7)

where pt is the price of the trade at time t, Vt is the number of shares traded at time t, tn−1

is the time when the previous bar was filled, L is the dollar amount of the volume bar. This

amount is chosen such that during the trading day one has around 195 dollar-volume bars 8.

It is different, for each stock, since the dollar trading volume is different across stocks in the

sample. However, the number of bars during the day is roughly the same for all stocks. If the

trading activity in some stock is highly above (below) average, the dollar-volume bars will fill

faster (slower) and there might be more (less) than 195 bars a day.

For the time bars, for each stock, I split the trading day into 2-minute intervals and then

compute the microstructure features to serve as inputs and output targets for the machine

learning models. The continuous trading period on Nasdaq lasts for 6.5 hours, from 9:30 a.m.

to 4 p.m., which results in 195 2-minute intervals. This number, for the ease of the results

comparison, is consistent with the average number of dollar-volume bars of the alternative

sampling.

3.4.2 Features and targets construction

To assess the predictability of financial markets through machine learning, I employ a wide

range of microstructure measures. These measures may serve as features (inputs) and also

as targets (outputs) for models interchangeably. Below, I discuss the measures in order of

increasing construction complexity.

One of the most intuitive measures is the volume-weighted average price during either the

2-minute interval or the dollar-volume bar. It is accompanied by the short and long horizon

returns. For the short horizon return I use a look-back window of 10 periods, and for the long
8The value of L, for each year, is chosen based on the average daily trading volume in the previous year.
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horizon a window of 50 periods. An additional feature, that is easily observed, is the total depth

of the market 50 basis points around the midquote at the end of each period or volume bar. It

is useful, to record the absolute values of the dollar amounts that are required to immediately

move the price 50 basis points up or down. This measure will combine both, the depth and

the width of the market around the midquote and can represent Up/Down market resistance.

I also employ, some naturally coming to mind microstructure features, like realized volatility

during the interval, quoted spread in the limit order book, and realized spread, for which the

look-back window of 10 periods is used.

The order book message data contains various messages that come from different market

participants. A message may instruct to add a new order or to delete, modify, execute, or

partially execute the existing one9. Easley, López de Prado, and O’Hara (2012) and Chiarella

et al. (2015) show that the order flow may be an important predictor in the current high-

frequency markets. That is why it is natural to measure the intensity flow of different orders

within each period/bar.

Also, some market participants may share their ID with the exchange when submitting an

order. There are several types of Nasdaq participants, among which are Market Maker (M),

Exchange (E), Order Entry Firm (O), Electronic Communication Network (E), and others.

The share of new order submissions, with market participant ID provided, is around 10% of

all orders. I, therefore, do not distinguish between different market participants, but simply

record (i) the fraction of orders within the interval that had a market participant ID provided,

(ii) the fraction of shares added to the limit order book by identified market participants, (iii)

the fraction of dollar volume, and (iv) the weighted (by distance from the midquote) presence

in the limit order book of the identified market participants

Weighted PresenceMPID, tn =
K∑
k=1

V MPID
k, tn(

k − 1
2

)
τ

/
K∑
k=1

Vk, tn(
k − 1

2

)
τ
, (3.8)

where Vk, tn is available shares volume, located
(
k − 1

2

)
price ticks τ away from the midquote,

at time tn, and K is some integer, big enough to cover all levels on the price grid with shares

available. For more details on the above measure, refer to the Appendix 3.A.2.

A more sophisticated measure, that is based on the limit order book shape, is the depth
9For a full list of message types, refer to the Appendix 3.A.1.
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imbalance. I distinguish two types of depth imbalances (i) unweighted imbalance, that is simply

the difference between available volume to buy and volume to sell within some distance around

the midquote 10, and (ii) weighted depth imbalance where the available volume, at every price

level, is scaled based on the distance from that price level to the midquote. I believe, it is

important to complement the unweighted depth imbalance with the weighted one, because the

shape of the limit order book is an important piece of information for generating profitable

trading strategies by HFTs.

As HFTs play an important role in the processes of price formation in the current high-

frequency markets, it is reasonable to measure the HFT activity during the day. The proxy

for the HFT activity is constructed similarly to a measure proposed by Hasbrouck and Saar

(2013) and later applied by Gonçalves et al. (2021). This measure calculates the intensity of

“strategic runs”, which are series of linked messages. The linking results from HFT dynamically

submitting and canceling orders to incorporate the latest information into prices.

Following their methodology, we connect a newly submitted limit order to a previously

deleted order if the time between the two events does not exceed 100 milliseconds. The newly

submitted order should have the same direction and size in shares as the previously deleted

one. Only sufficiently long runs of 10 and more linked orders are kept. We scale the sum of

durations of all runs, which are allowed to overlap, by the duration of the time or volume bar.

The proxy for the HFT presence for bar tn is defined as follows:

HFTtn = 1
tn − tn−1

∑N

j=1 Tj, (3.9)

where N is the number of strategic runs during the bar tn, and Tj is the duration in seconds of

run j.

Additionally, I identify whether a time (or dollar-volume) bar contains a mini-flash crash.

Following Gonçalves et al. (2021), I compute extreme returns for each bar and identify the

intervals containing mini-flash crashes as those where the Z-score for the midquote extreme

returns exceeds the critical value. The procedure gets a total of 32,681 mini-flash crashes

for sampling based on time bars, and 54,408 mini-flash crashes for the sampling based on

dollar-volume bars. This difference between the number of crashes identified depending on the
10The distance is chosen to be 50 basis points around the midquote.
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sampling type, may support the arguments for using dollar-volume bars sampling as it captures

more microstructure features of the data.

Lastly, I employ some well-known microstructure measures like Roll measure, Amihud illiq-

uidity measure, and volume synchronized probability of informed trading (VPIN) and the

Variance ratio (VR). However, according to Easley et al. (2021), these measures were initially

defined to be computed based on the low frequency data (daily frequency at the minimum). In

order to adapt those measures to the current high-frequency data, I apply the concept of time

periods and dollar-volume bars to the original definition.

In particular, Roll measure is defined as

Rtn = 2
√
|Cov(∆Ptn , ∆Ptn−1)|, (3.10)

where ∆Ptn is a vector of differences in the close price between bars tn−1 and tn.

Amihud measure is defined as

λtn = 1
W

∑tn

i=tn−W+1
|ri|
piVi

, (3.11)

where Vi, pi, ri are respectively volume, price, and return for the bar i, and W is the look-back

window.

Variance ratio, according to Lo and MacKinlay (1989), is estimated as

V R(5) = Var(r5·W )
5 · Var(rW ) , (3.12)

where r is the return, and W is the look-back window.

Finally, the volume-synchronized probability of the informed trading is computed as follows

VPINtn = 1
W

∑tn

i=tn−W+1

∣∣∣V B
i − V S

i

∣∣∣
Vi

, (3.13)

where V S is the volume of the trade that was initiated by a seller, and V B was initiated by a

buyer, and W is the look-back window.

The final list with more description of features and targets can be found in the Appendix

3.A.2. Tables 3.1 – 3.4 present some summary statistics of the distribution of different measures
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throughout the sample. The results are presented per year, per sampling method.

Tables 3.1 – 3.4 around here

When examining the summary statistics for both years, one can note that the crisis period is

characterized by higher quoted spreads but lower realized spreads, higher HFT participation,

lower participation from the identified market agents. When the markets become more volatile,

e.g. during periods of crisis, HFTs’ advantage in speed may make their trading strategies more

profitable, while the low-frequency traders are worse off and reduce their participation in the

market. The probability of a mini-flash crash stayed roughly the same. This fact suggests that

mini-flash crash occurrence is not directly linked to the economic situation in general.

The depth imbalance measure became much more volatile in 2020 with time bar approach

but the effect the opposite for the dollar-volume bars based approach. Also, sampling us-

ing dollar-volume bars identified more flash crashes, higher intensity of the order flow, and

higher participation of the HFTs. In general, dollar-volume bars provide us with more stable

microstructure features.

3.5 Empirical Results

In this section, I present the results of the model fitting and forecasting exercise carried out

for the set of different microstructure variables (or targets) such as (i) returns, (ii) mini-flash

crash occurrence, (iii) quoted spread in the limit order book, and (iv) realized volatility. The

analysis uses a standard open source software on machine learning, Scikit-learn (Pedregosa et

al. (2011)), Keras (Chollet et al. (2015)), and LightGBM packages in Python. The targets are

chosen in such a way, in order to cover the most intriguing aspects of the market microstructure.

Returns is the most common metric that is widely used in other areas of economic research

but also being the most desirable to forecast. The flash crashes occurrence is important as

it indicates the general market stability and the presence of inefficiencies in the market. The

quoted spread is the main liquidity measure that many trading strategies are built upon. It is

also important in the context of informed and insider trading as the spread and the presence

of informed traders tend to correlate. Finally, the realized volatility measure, that was shown

to best estimate market volatility in the high frequency environment, is used as a target for
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the forecast. In the following subsections, I discuss models’ performance for each target and

compare differences in forecast accuracies between (i) sampling methods and (ii) calm and crisis

times.

3.5.1 Returns

Returns prediction in a short term is generally considered a difficult task. The strong form of

the efficient markets hypothesis states that all information about the future direction of the

price is already incorporated into the current price, therefore nothing should give a positive edge

in forecasting the short-term returns. Clearly, the reality does not reflect the theory perfectly,

nevertheless, the results of the forecasting exercise show that financial markets, in aggregate,

were quite efficient in 2019 and 2020.

The first column in Table 3.5 presents the 2019 and 2020 out-of-sample R2 for the forecasts

of one-period returns for twelve models with time bars sampling of the data. With the length

of each time bar of two minutes, the data contain more than 15 (13) million observations in

the training set and more than 1.6 (1.5) million observations in the testing set in the year 2019

(2020). The results of the model fitting are based on the pooled data. In this setting, the

reference number of the stock is also employed by the models as a factor variable. The results

from the individual regressions for returns and all the other targets coincide with the pooled

one, but are, in general, more dispersed.

The out-of-sample R2 when predicting returns is remarkably low for all models. At the

best, machine learning algorithms perform as good as naive mean prediction where the mean

of returns fluctuates around zero. The situation is similar when I use the dollar volume bars to

sample the data. Table 3.6 in the first column shows the R2
oos for return forecast in the next

bar. Although LGBM models show higher R2 values, the economical effect of this improvement

is too low to be noticed.

To identify, if there are benefits of employing one model over another one in forecasting

returns, I use the modified Diebold-Mariano test. Tables 3.7 and 3.11 show the statistical

significance of differences among models at the time bars and dollar volume bars sampling.

These tables report the test statistics for the pairwise comparison of a column model versus a

row model. Modified Diebold-Mariano test statistics under the null hypothesis of no difference

between the models are distributed according to a student-t distribution with T − 1 degrees of
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freedom, where T is the length of the forecast series. The sign convention suggests that the

positive value of the statistics indicates that the column model outperforms the row model.

Bold numbers denote significance at a 5% level for each individual test.

Table 3.7 around here

The results of models comparison for the time bar sampling suggest that the simple linear

regression in 2019 is not outperformed by any model except the LGBM model with 50 decision

trees. The same statement can also be done about the set of LGBM and Neural network

models. Contrary to those, LSTM models show worse performance compared to almost every

model.

In 2020, however, the difficult choice of the best model resolves with LGBM model with 200

decision trees, LGBM(200) statistically outperforming every other model. At the same time,

the linear model is outperforming both LSTM and Neural Network models. LSTM models in

2020 are statistically the worst in forecasting returns as they lose to almost all other models.

Perhaps, a deeper LSTM would perform better, as it is possible to see from the comparison

between LSTM(1) through LSTM(4).

When we look at the similar comparison in Table 3.11 that is based on the dollar volume

bars sampling, we can see similar results. In 2019 it is uncertain, which models perform the

best as there is no significant difference between the linear model and the LGBM, and as for

the time bars sampling, the LSTM model is performing poorly. In 2020 we again observe a

clear dominance of LGBM models over the others. Notably, the NN(4) is statistically worse

than any other model, which can be a result of overfitting the training data.

Table 3.11 around here

3.5.2 Mini-flash crashes

As Gonçalves et al. (2021) suggest, the average duration of the mini-flash crashes identified

from January 2018 to October 2020 is 47.9 seconds. If one confronts this with the average

volume traded during the crash, it will be clear that time bars sampling may not be the best

choice of data treatment when the aim is to identify and forecast such rapid but detrimental to

the market events. The second column in Table 3.5 shows the out-of-sample R2 of the forecasts

of the flash crash events.
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As the target variable is binary, the forecasted value can be treated as the probability of

the mini-flash crash occurring in the next bar. In this case, linear probability regression is

not the most natural choice (since the probability can be potentially negative or greater than

one), but a very simple in implementation method. Naturally, we observe a much higher R2
oos

for machine learning methods compared to the linear regression who provides about 6%. The

highest R2 of 49.6% deliver the LGBM models in 2019, Neural network models provide around

26%, and LSTM models 13%. In 2020, the out-of-sample forecasting performance of all models

stayed relatively stable.

Table 3.6, column 2, confirms that dollar volume bars provide a better specification for the

data to predict, and possibly explain, mini-flash crashes. Even linear regression provides from

46% to 51% of the variability in the future values captured in the model output. Machine

learning methods provide a significant increase in the prediction accuracy with R2
oos improving

up to 84.7% for LGBM(50) in 2020. Other models deliver on average around 60% in R2 metric.

Tables 3.8 and 3.12 show the statistical significance of differences among models at the time

bars and dollar volume bars sampling.

Table 3.8 around here

The results of models comparison for the time bar sampling suggest that the simple linear

regression is statistically outperformed by every machine learning method both in 2019 and

2020. Unsurprisingly, LGBM models outperform other competitors by a lot. Also, from Table

3.8, we can observe a relatively poor performance of LSTM models. Most of the Neural network

architectures were able to outperform the LSTM, except for the Neural network with one hidden

layer. For the case of mini-flash crashes, we have stable results in the model comparison between

2019 and 2020, probably due to the similar amount of crashes detected within time bars in these

years.

When we look at the similar comparison in Table 3.12 that is based on the dollar volume

bars sampling, we can see similar results. LGBM models show the best performance compared

to all other models, LSTM models are getting better with the increased number of modules,

but still perform worse than all the other machine learning models, and Neural networks also

require a deeper structure to be competitive with the LGBM.

Table 3.12 around here
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3.5.3 Quoted spread

Quoted spread is defined as the difference between the best ask and the best bid prices in the

limit order book, measured in basis points. Prediction of the spread is valuable for the design

of trading and execution strategies, risk management, and for the general overview of market

liquidity.

Column 3 of Table 3.5 shows that the forecast accuracy of all models when predicting

quoted spread is considerably high. The average out-of-sample R2 in 2019 exceeds 60% while

the maximum value of 67% is delivered by the output of the LGBM(200) model. Interestingly,

the predictive power of all models reduces dramatically in 2020. During the period of crisis, all

models have difficulties providing a reliable forecast for the quoted spread since this measure

is highly volatile during market downturns. The average R2 delivered by all models drops to

around 13% in 2020. Still, the LGBM model provides the best forecast according to the R2

metric of 17.7%.

In contrast, the dollar volume bars provide a stable forecasting performance across the two

years of estimation. Table 3.6 shows that the R2 measure did not change drastically in 2020

compared to 2019. The overall performance of the models is slightly worse, however. The

average R2 is around 51% in 2019, and 45% in 2020. The best performing model based on the

R2 is LGBM(200).

When analyzing Diebold-Mariano test statistics for the pairwise comparisons of the models

in the time bar sampling, Table 3.9 also suggests that LGBM(100) and LGBM(200) are the best

performing models. In general, all LGBM models are superior, while the feed-forward Neural

network models do not lose only to the linear regression. Among themselves, NN models with

less number of hidden layers perform better. LSTM models strongly outperform the feed-

forward networks, and in contrast, demonstrate better performance with the increase of the

hidden LSTM modules.

Table 3.9 around here

In 2020, when the predictive accuracy of all models based on time bars falls, the linear regression

happens to outperform Neural networks and LSTM models according to Diebold-Mariano test

statistics. The LGBM models remain the best performing ones still. The other relations did

not change much, and LSTM still provided a better forecast compared to the feed-forward
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networks.

Table 3.13 provides pairwise comparison results of the models for the data sampled into

dollar volume bars. For both 2019 and 2020, we can see similar results that can be summarized

as follows: the linear regression shows poor performance compared to other models, LGBM

models being top-performing models, and LSTM with many hidden layers outperforming the

feed-forward neural networks.

Table 3.13 around here

3.5.4 Realized volatility

The realized volatility happened to be the easiest to predict microstructure measure in this

exercise. Columns 4 in tables 3.5 and 3.6 show the out-of-sample R2 measure for the forecast

performance of the twelve models that have been estimated. The average R2
oos is about 95%

for all modes, samplings, and years. There is however a couple of cases of quite low R2 value

in the Neural network models, but this is possibly due to the overfitting of the training data.

Table 3.10 suggests that LSTM models are the best-performing ones for the realized volatil-

ity when the data is sampled into time bars. LGBM models provide better forecasts in 2019

rather than in 2020 compared to the feed-forward neural networks, and the linear model some-

times can be as good as or even better choice than the sophisticated machine learning algo-

rithms.

Table 3.10 around here

Table 3.14 provides pairwise comparison results of the models for the data sampled into dollar

volume bars. In 2019, the difference between LGBM and LSTM models becomes most of the

time insignificant or mixed. That year, LGBM models performance was also comparable to

that one of the neural networks. LSTM model with three hidden modules is identified by the

Diebold-Mariano statistics as the one that is either better than the other models in terms of

the forecast accuracy or comparable to them. In 2020, LGBM models show again a very sound

performance, however, the LSTM(4) is proven to give the most accurate forecast of the realized

volatility in the next dollar volume bar.

Table 3.14 around here
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3.5.5 The most important features

Further, I show the results of determining the relative importance of individual features for the

forecasting performance for each target variable. This is done by calculating the reduction in

the R2
oos from removing a certain feature from the training sample. For each target, the best-

performing model was chosen to study the feature importance. Features importance within one

model is normalized to sum to one, allowing for relative feature importance interpretation.

Returns

Figure 3.3 shows the microstructure features that are among the top 10 features in terms of

relative importance for the returns forecasting. The four panels present feature importance

analysis for dollar volume versus time bars and year 2019 versus year 2020.

Figure 3.3 around here

By all means, we observe the difference in the allocation and the ranking from year to year, but

in general, the most important features for the dollar volume bars are the timestamp that is

just a time of the day, current one-period return, realized volatility, weighted depth imbalance,

roll measure, and the probability of the informed trading. These measures change rankings

sporadically as an indication that returns forecasting in a short period is a challenging task. It

seems reasonable, however, that liquidity and volatility features play a role in the future return

realization.

For the time bars sampling, we can see similar features being relevant, but also one can see

the influence of the order flow on the returns forecast. In particular, messages with an F flag

are quite important for the time bars sampling. Those messages to the exchange indicate a

new order submission by an identified market participant. The fact that this feature accounts

for about 7.5% predictability in the returns suggests that there might be a way in associating

the order submission intensity of the identified participants and future directions of the price.

Mini-flash crashes

Figure 3.4 shows the relative importance of the top 10 features for the prediction of the oc-

currence of the mini-flash crash in the next bar. As previously, the four panels present feature

importance analysis for dollar volume versus time bars and year 2019 versus year 2020.
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Figure 3.4 around here

For the dollar volume bars, the most important features remained at the top of the list through-

out the whole period. The most significant one is the variance ratio that is usually referred

to as a proxy for market efficiency. There might be the case that flash crashes occur when

market inefficiency needs to be resolved, and therefore this market efficiency proxy contributes

around 9% to the forecasting performance. Secondly, short- and long-term returns are relevant

features, which possibly indicates that returns momentum has something to do with flash crash

prediction. The realized volatility and the flash crash occurrence are meaningful because of the

momentum effects as well. Finally, the locate code of the stock plays a role in the forecasting

accuracy which might suggest that some stocks are more prone to flash crashes than others.

When examining feature importance for the time bars sampling, one can note the most

relevant (10%) time feature. Indeed, previous research on flash crashes finds that such events

tend to cluster in time. Market efficiency proxy is also an important feature. After the intuitive

features like realized volatility and long-term returns, one can notice that the order flow and

the number of executions and order submissions by the identified market participants also help

in predicting a crash. Interestingly, neither for time bars nor for the volume bars sampling the

HFT presence does not seem to help generate better forecasts for the flash crash occurrence.

This fact may further support the claim that HFTs do not initiate the crashes themselves but

mainly participate during the active phase of the crash by supplying liquidity.

Quoted spread

Feature importance for the quoted spread predictions is presented in Figure 3.5. One can note,

that this target is more autocorrelated than the previous ones as the current value of the quoted

spread helps predicting the future value. Price, however, is the most important predictor of the

spread measure. This might be unintuitive for someone since the price is measured in dollars,

but the spread is measured in basis points, but, at a second thought, it makes more sense

higher price is usually correlated with a higher market capitalization of a company and higher

capitalization brings more trading for the stock, and, therefore, more competition in the limit

order book, that usually reduces the spread.

Figure 3.5 around here
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Available depth in the limit order book, as well as the current realized volatility, naturally make

good predictors for the spread liquidity measure. Also, in 2020, for both dollar volume and time

bars, the order flow becomes an important indicator for the future spread, as at times of crisis,

understanding the origination of the liquidity coming to the book is crucial. This is further

strengthened by fact that the probability of informed trading becomes particularly important

in 2020 for the volume bars. As informed trading is connected to the overall market liquidity,

the fact that the level of informed trading helps predicting quoted spread in the next volume

bar is not surprising.

Realized volatility

Finally, Figure 3.6 presents the most important features for the realized volatility predictions.

It is evident that the realized volatility is highly persistent as the main predictive power of all

models comes from including the previous period’s realized volatility as a feature. On average,

realized volatility accounts for more than 16% of the prediction accuracy.

Figure 3.6 around here

The timestamp is also an important feature as it is common knowledge that the volatility is

usually higher during market opening and closing hours. For the dollar volume bars sampling,

the illiquidity measures such as the Roll measure and the Amihud measure are relevant for the

volatility prediction, while for the time bars sampling the intensity of order submission by the

identified traders ends up being more important.

3.6 Conclusions and further directions

To conclude, I will summarize the results discussed above and outline the directions of further

research.

Several machine learning approaches with different architectures were tested against each

other and against the simple linear regression to find out which one provides more accurate

forecasts of the market microstructure variables. Different targets for the forecasting were used

that describe proxies for market volatility, stability, and liquidity. Out of all tested models,

the Light Gradient Boosted Machine (LGBM) model demonstrated superior performance most
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of the time for all targets. Long Short Term Memory (LSTM) neural network proved to be

the best for the autocorrelated targets such as realized volatility, while a simple feed-forward

neural network showed mixed results due to frequent overfitting training data.

The advantages of dollar volume bars sampling against time bars were also examined. The

results show that dollar volume bars might work better for the prediction of variables for

which the trading volume is an important component as the mini-flash crash example suggests.

Moreover, dollar volume bars appear to be a more stable way of data sampling for the prediction

of microstructure measures during times of market turbulence. The prediction accuracy of the

quoted spread reduced dramatically in 2020 for the time bars but stayed stable for volume bars.

The question, of whether it is easier to predict the microstructure variables during crisis

times is currently answered in the negative. The out-of-sample R2 for the forecasts does not

suggest worse performance in 2020 compared to 2019 for almost all models. For the quoted

spread, the reduction in the prediction accuracy may be mitigated by using dollar volume bars

sampling.

As this research is quite recent, there are still a lot of possibilities for improvement and

directions to go further. One of the first ways to extend the current research, naturally coming

to mind, is examining the cross-asset effects and examining the possible interconnections with

the other markets like futures markets and options markets. The power of machine learning

techniques is in the ease with which they handle complex nonlinearities between numerous

elements in the global network. The financial market is an extremely complex system the

network structure of which should be taken into account for forecasting exercises, but also for

the purpose of inference.

Secondly, it would be beneficial to obtain a more granular view of market participants

to possibly identify HFTs, market makers, informed, and other types of traders. This will

potentially not only improve the forecasts but also will allow employing various agent-based

models to further boost the prediction methodology that is supported by the theory.

Finally, one can go to even higher frequencies or study a longer period if the hardware

allows.
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Tables and Figures

Table 3.1. Descriptive statistics of the microstructure features in 2019, time bars sampling.
The table presents mean, standard deviation, 25th, 50th and 75th percentile for the market
microstructure measures calculated from time bars sampled data in 2019. The total number of
observations is 17,176,544. The number of missing observations for each feature is also provided
in the table. For the detailed description of the features, refer to the section 3.4.2.

Measure Missing Mean StDev 25th 50th 75th

Price 0 112.212 211.837 38.950 65.165 126.130
Return (1) 86,011 1.46 · 10−6 1.10 · 10−3 −3.42 ·10−4 0.000 3.48 · 10−4

Return (5) 430,055 5.09 · 10−6 2.40 · 10−3 −8.52 ·10−4 0.000 8.76 · 10−4

Depth ($M) 25,810 3.221 11.749 0.304 0.749 1.923
Up Resist. ($M) 13,379 1.604 6.473 0.144 0.362 0.948
Down Resist. ($M) 13,052 1.617 6.675 0.145 0.365 0.939
Realized Volatility 0 2.43 · 10−3 2.31 · 10−3 1.24 · 10−3 1.87 · 10−3 2.89 · 10−3

Quoted Spread 8,944 12.157 122.724 2.084 3.848 7.910
Realized Spread 544,652 −0.288 30.106 −12.898 −0.000 12.517
Intensity msg A 0 4.300 6.754 0.792 2.027 5.243
Intensity msg C 0 0.004 0.011 0.000 0.001 0.003
Intensity msg D 0 4.109 6.475 0.733 1.910 5.027
Intensity msg E 0 0.212 0.368 0.043 0.117 0.247
Intensity msg F 0 0.010 0.050 0.000 0.000 0.004
Intensity msg P 0 0.033 0.073 0.006 0.016 0.037
Intensity msg U 0 0.583 0.989 0.107 0.298 0.665
Intensity msg X 0 0.080 0.345 0.000 0.003 0.031
MPID orders 735 0.170 0.151 0.059 0.126 0.235
MPID shares 30,549 0.284 0.208 0.096 0.262 0.435
MPID $ volume 30,549 0.715 0.279 0.526 0.833 0.946
MPID presence 30,930 0.055 0.086 0.011 0.027 0.062
Depth Imb. 184,196 −0.154 77.118 −2.725 −0.021 2.588
Depth Imb. (Wght.) 184,196 −0.002 0.276 −0.171 −0.001 0.167
HFT presence 0 0.024 0.058 0.003 0.008 0.021
Flash Crash 0 9.61 · 10−4 3.10 · 10−2 0.000 0.000 0.000
Roll 591,514 0.078 0.231 0.013 0.032 0.074
Amihud 211,886 2.78 · 10−8 1.11 · 10−6 1.62 · 10−9 4.81 · 10−9 1.34 · 10−8

Variance Ratio 806,902 0.816 143.480 0.328 0.549 0.903
VPIN 347,585 0.561 0.242 0.358 0.532 0.750
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Table 3.2. Descriptive statistics of the microstructure features in 2020, time bars sampling.
The table presents mean, standard deviation, 25th, 50th and 75th percentile for the market
microstructure measures calculated from time bars sampled data in 2020. The total number of
observations is 17,315,487. The number of missing observations for each feature is also provided
in the table. For the detailed description of the features, refer to the section 3.4.2.

Measure Missing Mean StDev 25th 50th 75th

Price 0 124.520 262.950 33.130 62.780 135.100
Return (1) 85,729 −3.72·10−6 2.02 · 10−3 −5.38·10−4 0.000 5.34 · 10−4

Return (5) 428,645 −1.72·10−5 4.42 · 10−3 −1.34·10−3 0.000 1.33 · 10−3

Depth 21,848 3.143 17.629 0.205 0.526 1.379
Up Resistance 11,621 1.544 9.618 0.097 0.255 0.674
Down Resistance 10,727 1.605 10.544 0.097 0.256 0.673
Realized Volatility 0 4.18 · 10−3 4.67 · 10−3 1.82 · 10−3 2.97 · 10−3 5.02 · 10−3

Quoted Spread 4,750 15.887 109.164 2.514 5.392 11.593
Realized Spread 376,663 −0.404 53.037 −19.878 −0.000 19.279
Intensity: msg A 0 6.332 12.515 0.969 2.541 6.916
Intensity: msg C 0 0.006 0.019 0.000 0.001 0.005
Intensity: msg D 0 6.060 12.028 0.900 2.407 6.630
Intensity: msg E 0 0.294 0.670 0.051 0.138 0.309
Intensity: msg F 0 0.017 0.161 0.000 0.001 0.006
Intensity: msg P 0 0.067 0.247 0.009 0.026 0.061
Intensity: msg U 0 0.523 1.187 0.072 0.193 0.518
Intensity: msg X 0 0.103 0.571 0.000 0.003 0.018
MPID orders 692 0.146 0.136 0.046 0.107 0.203
MPID shares 25,030 0.251 0.199 0.072 0.217 0.391
MPID $ volume 25,030 0.664 0.298 0.421 0.765 0.933
MPID presence 25,051 0.056 0.086 0.010 0.029 0.066
Depth Imb. 305,161 0.034 15.134 −2.558 0.000 2.517
Depth Imb. (Wght.) 305,161 −0.001 0.289 −0.168 −0.001 0.166
HFT presence 0 0.042 0.125 0.004 0.010 0.032
Flash Crash 0 9.34 · 10−4 3.05 · 10−2 0.000 0.000 0.000
Roll 402,352 0.144 0.503 0.017 0.047 0.123
Amihud 181,301 6.49 · 10−8 1.73 · 10−6 2.16 · 10−9 7.47 · 10−9 2.48 · 10−8

Variance Ratio 839,517 0.862 238.983 0.322 0.537 0.883
VPIN 328,599 0.545 0.251 0.333 0.512 0.744

118



Table 3.3. Descriptive statistics of the microstructure features in 2019, dollar volume bars
sampling.
The table presents mean, standard deviation, 25th, 50th and 75th percentile for the market
microstructure measures calculated from the dollar volume bars sampled data in 2019. The
total number of observations is 15,862,849. The number of missing observations for each feature
is also provided in the table. For the detailed description of the features, refer to the section
3.4.2.

Measure Missing Mean StDev 25th 50th 75th

Price 0 114.195 209.173 41.080 67.910 129.510
Return (1) 86,011 2.26 · 10−6 1.09 · 10−3 −3.84·10−4 0.000 3.89 · 10−4

Return (5) 414,563 1.09 · 10−5 2.37 · 10−3 −9.03·10−4 0.000 9.35 · 10−4

Depth 184,679 3.241 11.412 0.355 0.813 2.018
Up Resistance 163,882 1.633 6.445 0.167 0.393 0.996
Down Resistance 163,678 1.606 6.368 0.168 0.395 0.982
Realized Volatility 139,494 2.50 · 10−3 2.10 · 10−3 1.30 · 10−3 1.98 · 10−3 3.05 · 10−3

Quoted Spread 139,494 6.305 9.171 2.182 3.818 6.969
Realized Spread 158,217 −0.563 30.398 −13.958 −0.000 12.976
Intensity: msg A 139,494 19.295 884.480 1.173 2.938 7.093
Intensity: msg C 139,494 0.523 122.456 0.000 0.001 0.006
Intensity: msg D 139,494 13.202 592.975 1.082 2.758 6.734
Intensity: msg E 139,494 33.369 7,722.438 0.083 0.184 0.395
Intensity: msg F 139,494 0.075 19.048 0.000 0.000 0.004
Intensity: msg P 139,494 8.240 2,625.163 0.010 0.025 0.059
Intensity: msg U 139,494 2.647 232.615 0.172 0.419 0.928
Intensity: msg X 139,494 0.244 31.115 0.000 0.005 0.045
MPID orders 139,494 0.163 0.139 0.061 0.124 0.224
MPID shares 188,395 0.281 0.197 0.102 0.265 0.425
MPID $ volume 188,395 0.722 0.269 0.537 0.836 0.944
MPID presence 188,395 0.045 0.061 0.010 0.025 0.055
Depth Imb. 154,161 −0.229 65.369 −2.901 −0.007 2.805
Depth Imb. (Wght.) 154,161 0.000 0.277 −0.175 0.000 0.175
HFT presence 139,494 0.043 0.241 0.005 0.012 0.033
Flash Crash 0 1.67 · 10−3 4.08 · 10−2 0.000 0.000 0.000
Roll 292,888 0.085 0.246 0.016 0.036 0.081
Amihud 139,494 1.20 · 10−8 5.07 · 10−8 1.35 · 10−9 3.62 · 10−9 9.52 · 10−9

Variance Ratio 772,587 0.905 296.944 0.335 0.564 0.939
VPIN 150,249 0.509 0.226 0.330 0.466 0.664
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Table 3.4. Descriptive statistics of the microstructure features in 2020, dollar volume bars
sampling.
The table presents mean, standard deviation, 25th, 50th and 75th percentile for the market
microstructure measures calculated from the dollar volume bars sampled data in 2020. The
total number of observations is 15,949,459. The number of missing observations for each feature
is also provided in the table. For the detailed description of the features, refer to the section
3.4.2.

Measure Missing Mean StDev 25th 50th 75th

Price 0 127.015 262.025 35.050 64.865 138.240
Return (1) 85,729 −1.78·10−6 2.01 · 10−3 −5.94·10−4 0.000 5.93 · 10−4

Return (5) 413,363 −2.44·10−6 4.36 · 10−3 −1.41·10−3 0.000 1.41 · 10−3

Depth 198,413 3.121 17.272 0.244 0.578 1.462
Up Resistance 183,973 1.552 9.599 0.115 0.280 0.713
Down Resistance 182,902 1.572 10.199 0.115 0.280 0.712
Realized Volatility 166,238 4.32 · 10−3 4.40 · 10−3 1.96 · 10−3 3.17 · 10−3 5.25 · 10−3

Quoted Spread 166,238 9.159 21.477 2.573 4.949 10.137
Realized Spread 180,159 −0.734 53.668 −21.399 −0.000 20.136
Intensity: msg A 166,238 18.790 763.685 1.455 3.741 9.501
Intensity: msg C 166,238 9.791 5,279.774 0.000 0.001 0.008
Intensity: msg D 166,238 13.930 448.271 1.349 3.522 8.998
Intensity: msg E 166,238 24.509 5,172.335 0.097 0.221 0.510
Intensity: msg F 166,238 0.134 32.958 0.000 0.001 0.007
Intensity: msg P 166,238 6.434 2,092.550 0.016 0.042 0.103
Intensity: msg U 166,238 2.128 218.578 0.112 0.282 0.740
Intensity: msg X 166,238 0.208 17.246 0.000 0.004 0.026
MPID orders 166,238 0.142 0.126 0.050 0.108 0.195
MPID shares 201,004 0.248 0.187 0.082 0.220 0.383
MPID $ volume 201,004 0.670 0.290 0.429 0.771 0.930
MPID presence 201,004 0.048 0.065 0.011 0.027 0.060
Depth Imb. 220,440 −0.044 14.912 −2.778 0.000 2.700
Depth Imb. (Wght.) 220,440 −0.000 0.287 −0.174 0.000 0.173
HFT presence 166,238 0.065 0.267 0.006 0.015 0.049
Flash Crash 0 1.75 · 10−3 4.19 · 10−2 0.000 0.000 0.000
Roll 303,640 0.153 0.512 0.021 0.053 0.133
Amihud 166,238 2.68 · 10−8 5.07 · 10−7 1.71 · 10−9 5.03 · 10−9 1.49 · 10−8

Variance Ratio 781,022 1.531 1693.859 0.331 0.556 0.927
VPIN 187,593 0.490 0.230 0.307 0.443 0.645
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Table 3.5. R2
oos for pooled regressions in 2019 and 2020, based on time bars.

The table presents the out-of-sample R2 of the one-period forecast of such variables as the prob-
ability of a flash crash return one period ahead, the quoted spread, and the realized volatility.
Lengths of the training and the testing periods for each year are presented as well.

Return Flash Crash Spread Realized
Volatility

Year 2019
Train Size, (000) 15,029.36 15,035.82 15,028.03 15,030.13
Test Size, (000) 1,670.49 1,672.16 1,668.82 1,670.05

Model R2
oos, %

Linear 0.11 6.48 58.61 91.37
LGBM(50) 0.29 49.54 65.73 95.51
LGBM(100) 0.16 49.60 66.59 95.93
LGBM(200) 0.26 49.59 67.06 96.38
NN(1) -99.99 16.32 60.27 84.55
NN(2) -2.04 26.40 60.09 93.28
NN(3) -3.58 25.35 59.93 92.44
NN(4) -0.05 23.45 58.83 -0.01
LSTM(1) -27.13 15.80 60.56 97.25
LSTM(2) -12.63 13.13 60.44 95.39
LSTM(3) -9.55 13.56 61.08 97.18
LSTM(4) -9.56 15.96 61.43 97.45

Year 2020
Train Size, (000) 13,776.35 13,782.62 13,776.54 13,777.33
Test Size, (000) 1,531.23 1,532.72 1,531.04 1,530.25

Model R2
oos, %

Linear 0.15 6.73 13.92 97.83
LGBM(50) 0.72 47.44 17.20 95.11
LGBM(100) 0.87 47.65 17.63 95.86
LGBM(200) 1.21 47.65 17.71 96.56
NN(1) -21.68 13.09 12.01 92.62
NN(2) 0.03 27.23 13.88 97.21
NN(3) 0.04 26.59 -11.01 96.32
NN(4) 0.00 23.53 -11.01 0.00
LSTM(1) -9.9 10.05 13.49 96.65
LSTM(2) -15.26 13.85 13.53 97.66
LSTM(3) -15.38 13.97 12.62 97.71
LSTM(4) -6.30 13.23 13.29 97.91
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Table 3.6. R2
oos for pooled regressions in 2019 and 2020, based on dollar volume bars.

The table presents the out-of-sample R2 of the one-period forecast of such variables as the prob-
ability of a flash crash return one period ahead, the quoted spread, and the realized volatility.
Lengths of the training and the testing periods for each year are presented as well.

Return Flash Crash Spread Realized
Volatility

Year 2019
Train Size, (000) 14,086.52 14,093.62 14,086.68 14,086.79
Test Size, (000) 1,565.77 1,568.21 1,565.61 1,565.5

Model R2
oos, %

Linear 0.04 46.41 47.37 88.10
LGBM(50) 0.08 81.79 57.11 94.31
LGBM(100) 0.10 81.71 57.87 94.85
LGBM(200) 0.03 81.57 58.26 95.51
NN(1) -678.88 51.19 46.50 66.49
NN(2) -0.12 65.15 49.26 94.65
NN(3) 0.00 65.29 49.79 95.39
NN(4) -0.01 62.36 48.16 0.00
LSTM(1) -7.58 50.10 50.60 96.05
LSTM(2) -1.11 63.50 50.19 91.75
LSTM(3) -1.87 63.01 51.58 96.86
LSTM(4) -3.29 63.24 51.48 96.65

Year 2020
Train Size, (000) 12,891.25 12,900.10 12,890.97 12,891.29
Test Size, (000) 1,431.97 1,436.09 1,432.25 1,431.93

Model R2
oos, %

Linear 0.07 51.68 43.14 96.52
LGBM(50) 0.42 84.77 53.17 96.91
LGBM(100) 0.54 84.68 53.86 97.25
LGBM(200) 0.60 84.63 54.34 97.50
NN(1) -38.77 60.31 39.37 0.73
NN(2) -0.35 69.35 44.54 94.95
NN(3) -0.01 68.82 44.88 93.78
NN(4) 0.00 0.00 43.57 93.55
LSTM(1) -28.39 57.56 37.76 96.30
LSTM(2) -26.04 58.56 42.73 97.34
LSTM(3) -20.55 58.08 46.38 97.75
LSTM(4) -12.16 66.05 46.09 97.97
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Table 3.7. Comparison of the one-period return out-of-sample prediction using Diebold-
Mariano tests (time bars sampling).
The table shows pairwise Diebold-Mariano test statistics comparing the out-of-sample predic-
tion of the pooled regressions on the return in the next time bar. The comparison is among
twelve models (simple linear regression, LGBM, Neural Network, LSTM with various architec-
tures). Positive numbers indicate the column model outperforms the row model. Bold font
indicates the pairwise test difference is significant at 5% level or better.

Year
2019

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 2.18 0.34 0.96 −1.53 −1.29 −1.31 −3.59 −15.79 −34.26 −6.35 −16.05

LGBM(50) −1.31 −0.28 −1.53 −1.39 −1.37 −3.57 −15.87 −33.18 −6.45 −16.19

LGBM(100) 0.73 −1.53 −1.31 −1.32 −1.42 −15.66 −33.76 −6.41 −15.95

LGBM(200) −1.53 −1.37 −1.36 −1.98 −15.87 −30.41 −6.37 −15.67

NN (1) 1.53 1.54 1.52 1.14 1.34 1.41 1.38

NN (2) −1.34 1.22 −75.54 −7.59 −16.02 −4.83

NN (3) 1.27 −19.96 −3.57 −4.22 −2.25

NN (4) −16.04 −36.63 −6.39 −16.16

LSTM(1) 9.89 26.84 10.91

LSTM(2) 2.55 5.63

LSTM(3) −0.01

Year
2020

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 3.43 3.79 4.55 −51.49 −5.73 −4.13 −4.71 −97.58 −62.81 −81.15 −38.87

LGBM(50) 2.80 4.68 −53.46 −3.95 −3.80 −3.99 −58.85 −65.14 −73.69 −31.01

LGBM(100) 4.87 −54.59 −4.23 −4.09 −4.27 −55.49 −67.83 −73.51 −29.49

LGBM(200) −55.19 −4.88 −4.74 −4.90 −48.10 −65.95 −67.98 −27.07

NN (1) 50.65 50.24 50.10 28.11 15.17 14.75 33.54

NN (2) 0.93 −1.48 −94.34 −61.23 −79.91 −38.16

NN (3) −2.35 −92.29 −60.45 −78.96 −38.79

NN (4) −90.82 −60.36 −79.37 −37.61

LSTM(1) −26.88 −35.37 22.85

LSTM(2) −0.75 38.54

LSTM(3) 50.55
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Table 3.8. Comparison of the mini-flash crash out-of-sample prediction using Diebold-Mariano
tests (time bars sampling).
The table shows pairwise Diebold-Mariano test statistics comparing the out-of-sample predic-
tion of the pooled regressions on the mini-flash crash occurrence probability in the next time
bar. The comparison is among twelve models (simple linear regression, LGBM, Neural Network,
LSTM with various architectures). Positive numbers indicate the column model outperforms
the row model. Bold font indicates the pairwise test difference is significant at 5% level or
better.

Year
2019

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 20.84 20.79 20.73 14.24 17.01 16.37 16.03 13.49 13.89 14.15 12.89

LGBM(50) 0.9 0.46 −19.32 −15.78 −16.36 −16.34 −19.48 −20.23 −20.18 −19.68

LGBM(100) −0.11 −19.26 −15.71 −16.28 −16.27 −19.42 −20.17 −20.11 −19.61

LGBM(200) −19.18 −15.62 −16.19 −16.19 −19.33 −20.09 −20.03 −19.52

NN(1) 13.63 12.48 10.73 −1.17 −7.13 −6.49 −0.74

NN(2) −4.32 −9.75 −14.96 −16.2 −15.8 −15.04

NN(3) −6.68 −14.22 −15.55 −15.12 −14.22

NN(4) −12.85 −14.61 −14.09 −12.78

LSTM(1) −10.17 −9.53 1.26

LSTM(2) 5.79 8.73

LSTM(3) 8.24

Year
2020

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 19.79 19.8 19.74 13.20 14.82 14.58 14.54 5.61 8.07 9.82 8.43

LGBM(50) 2.61 1.48 −19.66 −14.11 −14.45 −15.4 −20.01 −19.41 −19.92 −19.86

LGBM(100) −0.04 −19.66 −14.12 −14.45 −15.41 −20.01 −19.41 −19.92 −19.86

LGBM(200) −19.58 −14.02 −14.35 −15.32 −19.94 −19.33 −19.83 −19.77

NN(1) 13.87 13.51 13.94 −5.33 1.22 1.93 0.31

NN(2) −4.76 −7.13 −14.91 −13.65 −14.37 −14.21

NN(3) −6.13 −14.56 −13.18 −13.9 −13.78

NN(4) −12.61 −11.54 −12.28 −14.45

LSTM(1) 7.45 9.83 5.24

LSTM(2) 0.48 −2.00

LSTM(3) −2.44
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Table 3.9. Comparison of the quoted spread out-of-sample prediction using Diebold-Mariano
tests (time bars sampling).
The table shows pairwise Diebold-Mariano test statistics comparing the out-of-sample predic-
tion of the pooled regressions on the quoted spread in the next time bar. The comparison is
among twelve models (simple linear regression, LGBM, Neural Network, LSTM with various
architectures). Positive numbers indicate the column model outperforms the row model. Bold
font indicates the pairwise test difference is significant at 5% level or better.

Year
2019

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 36.25 34.87 34.14 10.59 19.94 18.10 2.91 34.09 33.86 36.09 39.33

LGBM(50) 15.57 16.30 −22.98 −27.90 −28.45 −33.34 −27.80 −28.3 −25.31 −23.77

LGBM(100) 12.10 −24.00 −27.96 −28.34 −32.42 −27.52 −27.95 −25.61 −24.35

LGBM(200) −24.36 −27.86 −28.18 −31.87 −27.26 −27.67 −25.62 −24.46

NN (1) −1.98 −3.65 −12.45 1.9 1.11 6.02 7.92

NN (2) −10.13 −25.13 6.15 4.86 14.73 17.34

NN (3) −29.84 8.54 7.51 17.28 19.33

NN (4) 24.81 25.87 32.10 32.41

LSTM(1) −4.37 14.15 22.76

LSTM(2) 18.05 26.34

LSTM(3) 15.22

Year
2020

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 4.49 4.00 4.34 −43.39 −0.86 −101.75 −101.75 −17.78 −8.21 −26.80 −11.13

LGBM(50) 2.09 2.66 −7.13 −4.57 −30.12 −30.12 −4.99 −5.33 −6.27 −5.63

LGBM(100) 0.64 −6.08 −4.07 −25.32 −25.32 −4.40 −4.63 −5.41 −4.87

LGBM(200) −6.56 −4.42 −26.64 −26.64 −4.76 −5.02 −5.85 −5.28

NN (1) 45.62 −96.83 −96.83 27.47 26.04 10.64 19.06

NN (2) −98.22 −98.22 −7.38 −5.74 −33.94 −11.17

NN (3) 290.26 102.72 88.50 92.64 86.43

NN (4) 102.72 88.50 92.64 86.43

LSTM(1) 0.60 −15.42 −3.02

LSTM(2) −13.13 −4.63

LSTM(3) 12.58
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Table 3.10. Comparison of the realized volatility out-of-sample prediction using Diebold-
Mariano tests (time bars sampling).
The table shows pairwise Diebold-Mariano test statistics comparing the out-of-sample predic-
tion of the pooled regressions on the realized volatility in the next time bar. The comparison
is among twelve models (simple linear regression, LGBM, Neural Network, LSTM with various
architectures). Positive numbers indicate the column model outperforms the row model. Bold
font indicates the pairwise test difference is significant at 5% level or better.

Year
2019

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 17.24 20.39 26.21 −40.63 16.42 7.88 −68.63 152.66 94.86 152.97 162.74

LGBM(50) 6.18 7.38 −40.05 −12.83 −18.89 −81.31 7.56 −0.55 6.87 8.10

LGBM(100) 7.33 −43.22 −15.81 −22.46 −80.02 6.17 −2.59 5.53 6.83

LGBM(200) −48.95 −20.7 −28.15 −77.96 4.77 −5.58 4.15 5.66

NN (1) 46.57 39.79 −64.30 76.74 64.88 74.97 76.88

NN (2) −27.15 −74.84 37.88 22.53 33.79 38.11

NN (3) −75.52 38.31 25.64 34.9 38.41

NN (4) 73.43 72.21 72.85 73.02

LSTM(1) −95.04 −3.27 9.87

LSTM(2) 59.7 85.66

LSTM(3) 18.83

Year
2020

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear −2.34 −2.18 −1.97 −83.54 −9.44 −17.47 −32.82 −1.47 −0.62 −0.96 1.74

LGBM(50) 2.79 2.77 −2.25 1.90 1.11 −48.06 3.29 2.84 2.50 2.50

LGBM(100) 2.67 −3.79 1.59 0.55 −43.65 3.28 2.77 2.37 2.37

LGBM(200) −6.60 1.09 −0.43 −39.83 0.37 2.75 2.20 2.22

NN (1) 117.10 75.03 −31.60 5.34 22.4 57.11 132.96

NN (2) −37.69 −33.28 −0.74 2.10 6.13 18.05

NN (3) −33.21 0.46 6.69 19.82 28.43

NN (4) 41.13 35.59 34.06 33.25

LSTM(1) 1.76 1.56 1.65

LSTM(2) 0.27 1.05

LSTM(3) 2.19
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Table 3.11. Comparison of the one-period return out-of-sample prediction using Diebold-
Mariano tests (dollar volume bars sampling).
The table shows pairwise Diebold-Mariano test statistics comparing the out-of-sample predic-
tion of the pooled regressions on the return in the next volume bar. The comparison is among
twelve models (simple linear regression, LGBM, Neural Network, LSTM with various architec-
tures). Positive numbers indicate the column model outperforms the row model. Bold font
indicates the pairwise test difference is significant at 5% level or better.

Year
2019

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 0.69 0.70 −0.04 −1.65 −3.10 −2.60 −3.90 −3.33 −28.94 −15.95 −10.67

LGBM(50) 0.33 −0.55 −1.65 −2.50 −1.22 −1.43 −3.34 −16.60 −14.54 −10.54

LGBM(100) −1.16 −1.65 −2.23 −1.10 −1.26 −3.35 −13.30 −13.70 −10.42

LGBM(200) −1.65 −1.18 −0.24 −0.35 −3.32 −9.04 −11.36 −9.86

NN (1) 1.65 1.65 1.65 1.63 1.65 1.64 1.64

NN (2) 2.38 2.19 −3.26 −15.49 −13.81 −10.12

NN (3) −0.93 −3.31 −26.46 −15.24 −10.52

NN (4) −3.31 −28.47 −16.32 −10.75

LSTM(1) 2.84 2.61 2.15

LSTM(2) −7.10 −7.19

LSTM(3) −6.59

Year
2020

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 5.21 5.21 4.25 −14.73 −3.33 −3.77 −2.58 −55.14 −94.47 −57.95 −28.04

LGBM(50) 3.07 2.27 −14.87 −5.16 −5.51 −5.07 −54.33 −94.27 −57.66 −27.90

LGBM(100) 0.91 −14.91 −5.50 −5.53 −5.16 −55.08 −96.42 −58.67 −28.35

LGBM(200) −14.93 −5.16 −4.58 −4.39 −54.37 −92.94 −57.35 −27.87

NN (1) 14.60 14.69 14.69 3.82 4.80 6.81 9.86

NN (2) 2.76 2.82 −53.86 −84.93 −54.73 −26.77

NN (3) 0.30 −55.75 −94.79 −58.51 −28.40

NN (4) −56.04 −93.73 −58.76 −28.61

LSTM(1) 6.24 26.15 69.65

LSTM(2) 24.55 42.94

LSTM(3) 41.37
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Table 3.12. Comparison of the mini-flash crash out-of-sample prediction using Diebold-
Mariano tests (dollar volume bars sampling).
The table shows pairwise Diebold-Mariano test statistics comparing the out-of-sample predic-
tion of the pooled regressions on the mini-flash crash occurrence probability in the next volume
bar. The comparison is among twelve models (simple linear regression, LGBM, Neural Network,
LSTM with various architectures). Positive numbers indicate the column model outperforms
the row model. Bold font indicates the pairwise test difference is significant at 5% level or
better.

Year
2019

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 10.02 12.20 14.92 6.22 6.52 6.47 4.61 4.17 5.57 3.32 4.85

LGBM(50) −1.45 −2.44 −19.13 −14.09 −13.67 −15.74 −19.24 −13.88 −14.44 −14.43

LGBM(100) −2.24 −19.07 −14.00 −13.60 −15.64 −19.18 −13.82 −14.37 −14.36

LGBM(200) −18.95 −13.83 −13.43 −15.47 −19.06 −13.68 −14.22 −14.21

NN(1) 13.37 14.17 11.48 −5.27 12.85 12.81 12.74

NN(2) 0.54 −11.46 −13.89 −3.28 −4.60 −4.35

NN(3) −9.78 −14.39 −3.99 −5.47 −5.36

NN(4) −12.18 2.21 1.37 2.04

LSTM(1) 13.09 13.23 13.21

LSTM(2) −4.24 −1.51

LSTM(3) 2.30

Year
2020

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 23.74 23.62 23.56 21.25 20.42 20.1 −25.05 19.09 20.75 18.64 18.28

LGBM(50) −1.98 −2.26 −20.08 −16.9 −17.59 −32.15 −19.37 −19.91 −19.7 −19.17

LGBM(100) −1.4 −19.96 −16.73 −17.42 −32.11 −19.28 −19.8 −19.61 −19.02

LGBM(200) −19.88 −16.62 −17.31 −32.11 −19.21 −19.73 −19.54 −18.91

NN(1) 15.23 13.62 −26.17 −10.06 −9.88 −10.57 11.17

NN(2) −3.7 −29.1 −14.29 −15.16 −14.73 −14.55

NN(3) −29.82 −13.29 −13.92 −13.49 −9.78

NN(4) 25.21 25.62 25.15 27.75

LSTM(1) 7.69 5.06 11.71

LSTM(2) −5.83 12.29

LSTM(3) 12.09
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Table 3.13. Comparison of the quoted spread out-of-sample prediction using Diebold-Mariano
tests (dollar volume bars sampling).
The table shows pairwise Diebold-Mariano test statistics comparing the out-of-sample predic-
tion of the pooled regressions on the quoted spread in the next volume bar. The comparison
is among twelve models (simple linear regression, LGBM, Neural Network, LSTM with various
architectures). Positive numbers indicate the column model outperforms the row model. Bold
font indicates the pairwise test difference is significant at 5% level or better.

Year
2019

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 51.00 46.19 43.79 −3.85 9.16 16.60 4.35 36.77 29.12 40.70 36.01

LGBM(50) 12.38 12.47 −40.90 −31.23 −34.62 −36.99 −38.44 −39.81 −34.26 −35.37

LGBM(100) 8.99 −39.17 −30.66 −32.78 −35.11 −35.03 −36.16 −31.49 −32.70

LGBM(200) −38.19 −30.17 −31.76 −34.11 −33.43 −34.44 −30.2 −31.26

NN (1) 27.64 36.41 18.78 24.36 23.21 30.25 31.46

NN (2) 5.84 −17.34 8.45 6.22 14.94 14.59

NN (3) −25.30 8.35 4.50 17.47 17.78

NN (4) 17.75 15.92 24.95 24.04

LSTM(1) −10.02 22.20 15.95

LSTM(2) 28.24 23.95

LSTM(3) −2.20

Year
2020

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 29.82 27.44 26.71 −17.30 7.60 11.89 2.91 −31.48 −2.72 21.55 18.20

LGBM(50) 7.40 7.69 −41.50 −27.37 −26.91 −30.15 −43.99 −33.40 −25.20 −28.00

LGBM(100) 5.94 −38.31 −25.92 −25.20 −27.99 −39.58 −30.33 −23.34 −25.61

LGBM(200) −36.91 −25.51 −24.72 −27.27 −37.82 −29.20 −22.7 −24.76

NN (1) 65.25 55.72 50.26 −7.63 25.25 45.13 39.95

NN (2) 7.50 −17.10 −34.03 −16.33 15.90 12.36

NN (3) −36.43 −40.22 −23.61 15.81 11.07

NN (4) −32.48 −8.66 25.86 19.55

LSTM(1) 39.07 45.37 42.95

LSTM(2) 32.73 27.16

LSTM(3) −5.64
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Table 3.14. Comparison of the realized volatility out-of-sample prediction using Diebold-
Mariano tests (dollar volume bars sampling).
The table shows pairwise Diebold-Mariano test statistics comparing the out-of-sample predic-
tion of the pooled regressions on the realized volatility in the next volume bar. The comparison
is among twelve models (simple linear regression, LGBM, Neural Network, LSTM with various
architectures). Positive numbers indicate the column model outperforms the row model. Bold
font indicates the pairwise test difference is significant at 5% level or better.

Year
2019

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 85.34 96.62 87.30 3.16 39.11 38.99 −22.22 85.34 63.44 36.70 40.44

LGBM(50) 2.09 1.93 −3.06 0.21 0.64 −60.75 2.75 −2.80 1.40 1.42

LGBM(100) 1.81 −3.13 −0.14 0.38 −53.14 3.05 −4.68 1.27 1.29

LGBM(200) −3.22 −0.83 −0.11 −45.08 2.96 −12.10 1.08 1.10

NN (1) 3.13 3.21 −7.07 3.32 2.81 3.53 3.40

NN (2) 15.49 −30.57 1.32 −3.95 4.01 10.13

NN (3) −30.57 0.61 −4.78 2.69 6.29

NN (4) 45.24 38.24 29.88 31.17

LSTM(1) −12.8 0.67 0.58

LSTM(2) 5.16 6.52

LSTM(3) −0.58

Year
2020

LGBM
(50)

LGBM
(100)

LGBM
(200)

NN(1) NN(2) NN(3) NN(4) LSTM
(1)

LSTM
(2)

LSTM
(3)

LSTM
(4)

Linear 1.89 4.14 6.51 −1.13 −18.39 −32.52 −50.42 −3.48 26.61 40.47 49.87

LGBM(50) 8.25 8.12 −1.14 −10.20 −18.20 −18.75 −3.38 2.17 4.07 5.21

LGBM(100) 6.77 −1.14 −13.61 −23.17 −24.06 −6.13 0.50 2.75 4.04

LGBM(200) −1.15 −17.42 −29.29 −30.87 −9.08 −1.11 1.59 3.09

NN (1) 1.12 1.10 1.10 1.13 1.14 1.15 1.15

NN (2) −28.08 −19.01 14.74 25.08 27.29 30.98

NN (3) −4.77 33.98 39.40 39.71 44.96

NN (4) 50.25 65.51 61.48 74.89

LSTM(1) 15.22 20.51 25.11

LSTM(2) 17.43 31.22

LSTM(3) 14.88
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Figure 3.1. Feed-forward Neural Network.

The figure presents a diagrams of a simple neural networks with two hidden layers. Green circles

denote the input layer, blue circles denote the hidden layers, and red circle denotes an output layer.

Also, bias nodes all hidden layers and the output layer are represented by the yellow circles. Each

arrow is associated with a weight parameter. In the network with a hidden layer, a nonlinear activation

function transforms the inputs before passing them on to the output.
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Figure 3.2. LSTM Neural Network.

The figure shows the architecture of a typical LSTM block that contains the gates σ1 through σ3, the

input signal x(t), the output y(t), and the activation functions g1 and g2 that are usually realized in the

form of hyperbolic tangent. The output of the block is then connected to the next block’s input. The

input gate is represented by the sigmoid activation function σ1. This gate combines the current input

and the output the LSTM unit in the last iteration. The forget gate σ2, determines which information

should be removed from the previous cell states of the LSTM model. The output gate σ3, combines

the current input and the output of the LSTM unit in order to calculate the current output.

σ2 σ1 g1 : Tanh σ3

× +

× ×

+

g2 : Tanh
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Figure 3.3. Feature importance for one-period return forecasts by sampling and year.

The Figure presents the relative feature importance for the out-of-sample forecast of one-period return.

The calculation of the importance is based on a reduction in the out-of-sample R2 when the feature

was removed. Features importance is calculated for the best model and in each case is normalized to

sum to 100%.
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Figure 3.4. Feature importance for mini-flash crash occurrence forecasts by sampling and year.

The Figure presents the relative feature importance for the out-of-sample forecast of the mini-flash

crash occurrence. The calculation of the importance is based on a reduction in the out-of-sample R2

when the feature was removed. Features importance is calculated for the best model and in each case

is normalized to sum to 100%.
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Figure 3.5. Feature importance for quoted spread forecasts by sampling and year.

The Figure presents the relative feature importance for the out-of-sample forecast of the quoted spread.

The calculation of the importance is based on a reduction in the out-of-sample R2 when the feature

was removed. Features importance is calculated for the best model and in each case is normalized to

sum to 100%.
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Figure 3.6. Feature importance for realized volatility forecasts by sampling and year.

The Figure presents the relative feature importance for the out-of-sample forecast of the realized

volatility. The calculation of the importance is based on a reduction in the out-of-sample R2 when

the feature was removed. Features importance is calculated for the best model and in each case is

normalized to sum to 100%.
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3.A Appendix

3.A.1 Nasdaq order book messages

Table A.1. Nasdaq order book messages.
The table shows the types of messages disseminated by the exchange and their description
provided by Nasdaq.

Message
Type

Name Description

A Add Order – No MPID
Attribution

A new order has been accepted by the Nasdaq system
and was added to the displayable book. No market
participant identification (MPID) was provided.

F Add Order with MPID
Attribution

A new order with market participant identifier was
added to the book.

E Order Executed Message An order on the book is executed in whole or in part.
The multiple Order Executed Messages on the same
order are cumulative.

C Order Executed with
Price Message

An order on the book is executed in whole or in part
at a price different from the initial display price. It
is possible to receive multiple Order Executed and
Order Executed With Price messages for the same
order if that order is executed in several parts.

X Order Cancel Message An order on the book is modified as a result of a
partial cancellation.

D Order Delete Message An order on the book is being cancelled. All remain-
ing shares are no longer accessible so the order must
be removed from the book.

U Order Replace Message An order on the book has been canceled and replaced.
All remaining shares from the original order are no
longer accessible, and must be removed. The new
order details are provided for the replacement.

P Trade Message A non-displayable (hidden) order was executed in
whole or in part. It is possible to receive multiple
Trade Messages for the same order if that order is
executed in several parts.
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3.A.2 Details on Microstructure Measures employed

Short Name Full Name and Description

price Price. The last price from the trade within a bar (time or dollar volume).

qspread Quoted spread. The difference, in basis points, between the best bid and

the best ask price in the limit order book.

realized vol Realized volatility within a bar.

rspread One bar realized spread.

locate code Locate Code. A unique reference code provided by Nasdaq to each stock.

timestamp Timestamp. Time (in nanoseconds) passed from the midnight.

DownResist Down Resistance. The amount in dollars required to move the price down

by 50 basis points.

UpResist Up Resistance. The amount in dollars required to move the price up by 50

basis points.

msgA The intensity of A messages arrival to the exchange.

msgC The intensity of C messages arrival to the exchange.

msgE The intensity of E messages arrival to the exchange.

msgP The intensity of P messages arrival to the exchange.

msgU The intensity of U messages arrival to the exchange.

mpid shares The fraction of volume added to the limit order book by identified market

participants within a bar.

mpid doll The fraction of dollar volume added to the limit order book by identified

market participants within a bar.

mpid wght Weighted presence of the identified market participants in the limit order

book.

mpid orders The fraction of limit orders submitted by identified market participants

within a bar.

msgF The intensity of F messages arrival to the exchange.

amihud Amihud measure of illiquidity withing a bar.

roll Roll measure within a bar.

r1 One-period return.
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r5 Five-periods return.

VR5 Variance ratio.

vpin Volume synchronized probability of the informed trading within a bar.

depth Depth. Available market depth in dollars 50 basis points around the

midquote.

di w Weighted depth imbalance. Weighted by the distance to the midquote dif-

ference of volumes available on bid and ask sides of the limit order book.

di uw unweighted depth imbalance. Simple difference between the dollar volume

on ask and bid sides of the book.

hft HFT presence within a bar.

fcrash Mini-flash crash indicator.
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General Conclusion

The three chapters of the present thesis address some of the crucial economic questions related

to financial markets stability in the context of market microstructure. The first chapter provides

novel evidence on market stability and liquidity provision due to the implementation of a non-

displayed (dark) Midpoint Extended Life Order (M-ELO). M-ELO is a dark order that cannot

interact with lit (visible) orders. It also possesses the speed bump effect due to the holding

period prior to the execution. We use high-frequency order book message data from the Nasdaq

exchange for the three years of M-ELO existence. The rule change applied on May 11, 2020,

makes it possible to disentangle the dark and the speed bump impacts of M-ELO orders on

market stability and liquidity.

For the period from January 2018 to October 2020, the degree of M-ELO activity is asso-

ciated with a lower frequency of mini-flash crashes for Nasdaq traded securities. Results from

panel regressions suggest the presence of significant effects of the M-ELO trading on crash re-

turns, volatility, and trading activity. Higher relative volumes traded via M-ELO are associated

with less turbulent crashes, which is more desirable for long-term investors. The effect of the

M-ELO on the quality of the liquidity provision is mixed. We document the increase of both

quoted spread and depth close to the midquote due to the M-ELO trading. At the same time,

increased order imbalance may undermine the positive effect of the improved market depth.

The analysis shows that trading activity in M-ELO impacts market stability and liquidity

mainly due to the speed bump effect. The reduction in the M-ELO’s holding period by 98%

decreases the influence of M-ELO on the market by 80% on average. The robustness of the

results to different specifications of the model strengthens the conclusion that only about 20%

of the M-ELO market stabilizing effect comes from its dark properties and 80% from the speed

bump properties.

As M-ELO volumes are relatively small, we are cautious about extrapolating the results
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of this analysis. The main goal of our research is to identify the effects of M-ELO on market

stability during recent years. Our study delivers an important insight for market participants,

policymakers, and researchers. The trade-off between the execution speed and order trans-

parency is capable of impacting the general stability of financial markets.

The second chapter analyzes the impact of dark pool operating alongside a transparent

limit order exchange on market quality and price discovery. In the four-period model with

asymmetric information about the final pay-off of the risky asset, fully rational, risk-neutral

traders can choose order type and venue to send their orders to. I find that the order flow

migrates to the dark pool in the last periods, as the limit order book fills.

When orders are directed to the opaque venue, the process of price discovery slows down.

However, in relative terms, the effect is close to negligible and may vary in nature (benefiting

price discovery) depending on the immediacy demands of investors. As limit orders provide

a substitute for dark orders, venue competition plays a significant role in the impact of dark

trading on price discovery and market quality. When information asymmetry increases the

order migration forms a U-shape and the uninformed investors are quickly crowded out from

the dark pool.

The model suggests that a dark pool affects market quality mildly. The execution quality of

market orders measured by the average quoted bid-ask spread and the average depth is stable

in the wide range of the dark pool availability. Also, the quality of limit orders, measured by

the average fill rate, slightly increases with the more available dark venue. Overall, the total

welfare remains leveled for various degrees of dark pool availability.

The developed model is flexible and allows for a wide range of analyses that interest policy-

makers and regulators. However, future work can extend the model by addressing the following

caveats. Firstly, since traders enter the model only once, I do not allow for price manipulation.

If a trader can submit an order several times during the trading day, she might choose to trade

first on the lit exchange to move the market and then execute later in the dark pool at a more

comfortable price.

Secondly, one might be interested in endogenizing private information acquisition and dark

pool participation. By introducing a cost of obtaining perfect information about the final pay-

off of the asset and a cost of accessing the dark pool it will be possible to identify an equilibrium

level of dark trading.
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Finally, more types of orders can be added to the model to bring it closer to the current state

of financial markets where the competition between transparent and dark venues is more subtle.

Some exchanges allow traders to submit undisplayed orders that offer a price improvement and

execute against the visible order flow. The introduction of such order types to the present

model would be interesting future research.

In the third chapter, several machine learning approaches with different architectures were

tested against each other and against the simple linear regression to find out which one pro-

vides more accurate forecasts of the market microstructure variables. Different targets for the

forecasting were used that describe proxies for market volatility, stability, and liquidity. Out of

all tested models, the Light Gradient Boosted Machine (LGBM) model demonstrated superior

performance most of the time for all targets. Long Short Term Memory (LSTM) neural network

proved to be the best for the autocorrelated targets such as realized volatility, while a simple

feed-forward neural network showed mixed results due to frequent overfitting training data.

The advantages of dollar volume bars sampling against time bars were also examined. The

results show that dollar volume bars might work better for the prediction of variables for

which the trading volume is an important component as the mini-flash crash example suggests.

Moreover, dollar volume bars appear to be a more stable way of data sampling for the prediction

of microstructure measures during times of market turbulence. The prediction accuracy of the

quoted spread reduced dramatically in 2020 for the time bars but stayed stable for volume bars.

The question, of whether it is easier to predict the microstructure variables during crisis

times is currently answered in the negative. The out-of-sample R2 for the forecasts does not

suggest worse performance in 2020 compared to 2019 for almost all models. For the quoted

spread, the reduction in the prediction accuracy may be mitigated by using dollar volume bars

sampling.

In conclusion, the above chapters describe both the theoretical and empirical research work

that has been done on dark trading and high frequency trading impact on financial markets.

I hope, the analysis and the conclusions derived from the models employed are shedding more

light on the important questions of market stability and liquidity, and are contributing to

making financial markets safer.
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