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Abstract 

The technique of receiver functions is used to identifY converted phases of 

seismic waves from teleseismic events. These phases are then used to study 

the variations of crustal thickness and upper mantle discontinuities beneath 

southern Africa. 

The seismic data used in the study comes from the 82 broadband stations 

that comprise the regional array deployed in southern Africa from April 

1997 to April 1999, as well as from a dense array of 32 stations near 

Kimberley. The latter was in operation for 7 months, starting in December 

1998. 

Arrival times for phases converted at the Moho are used to determine crustal 

thickness. The Moho depth in the south-western section of the craton was 

found to vary between 37 and 40km, except for one station that recorded a 

depth of 43km (SA23). Further north along the western block of the craton 

(into Botswana) the depth increases up to 43km. The depth increases even 

further in the north-eastern section of the craton, where results vary from 40 

to 52km. Just north of the Kaapvaal craton, in the neighbouring Zimbabwe 

craton, the crustal thickness drops significantly. The results obtained there 

varied from 36 to 40km. 

For the Kimberley area, using the dense array, the Moho depth was found to 

be 37.3 ± 1.5 km. Following that, arrivals of the Ps and Ppps phases were 

used to determine the Poisson's ratio in the region. This was found to have a 
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value of 0.264 ± 0.007, slightly larger than 0.25 expected for a perfectly 

elastic so lid. 

Arrivals of phases from the 410- and the 660 .. km mantle discontinuities are 

used to interpret the relative positions of these discontinuities, as well for 

comparison of the mantle temperatures and seismic velocities in the region 

to the global averages. 

In the Kimberley area the 410- and 660-km discontinuities were found at 

their expected depths, and this implied the mantle temperature in the region 

is close to the global average. The seismic velocities in the region were 

found up to 5% faster than the averages from the global IASP91 model, 

which is fast even by Precambrian standards. 

In other sections of the Kaapvaal craton the velocities remain faster than 

global averages, but not as fast as beneath Kimberley. In these sections the 

'410' is also slightly elevated, while the '660' is depressed, which implies a 

slightly low mantle temperature relative to the global average. 

The technique of beamforming, used to study surface waves, is introduced 

using the Kimberley array. Two Rayleigh waves were identified in the 

signal, and their directions of propagation and particle motions were 

analyzed. These could be used for studies of anisotropy or surface wave 

tomography_ 
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Chapter 1 

The Kaapvaal Craton Project 

1.1 Introduction to Southern Africa's geolO&:f 

Southern Africa is blessed with a rich geologic record of the Early Earth. 

Clues to the origin of Earth's earliest continents are stored in the Kaapvaal 

craton (discussed in detail in Chapter 2), the foundations of which were 

constructed before 3500 million years ago (Tankard et al. 1982). By the end 

of th~ Archean (2500 Ma) this continental fragment covered an area of at 

least 1.2 million km2
, and was underlain by a cratonic mantle root of unusual 

geochemistry down to at least 250 km. By all accounts,. the Kaapvaal craton 

is a small remnant of one of Earth's oldest continents. 

The surface geology of the Kaapvaal craton is well known. Unfortunately 

the same cannot be said for the geology at depth. Kimberlites and their 

entrained mineral, crustal and mantle xenoliths have provided exciting 

glimpses of the craton's deep secrets. But ultimately seismic probing is 

needed to unravel the third dimension; and extensive modem geochronology 

is necessary to track the fourth, its development through deep time. 

1.2 The Kaapvaal craton project 

In 1996, a major interdisciplinary, multi-institutional project was started to 

investigate the origin and evolution of the Kaapvaal craton (Carlson et ale 

1996, 2000). The central goal of this project is to produce a tomographic 

image of the deep lithospheric roots of the craton. The major institutions 
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participating in the project are Carnegie Institution of Washington, 

Massachusetts Institute of Technology, Cambridge, University of Cape 

Town, University of Witwatersrand, University of Botswana and University 

of Zimbabwe. 

To help achieve the objectives of the project, in April 1997, portable 

broadband seismometers were deployed and placed in an array of 82 

recording sites along a SW-NE axis from Cape Town to Harare. Over the 

next 2 years natural teleseismic events and local mine-induced seismic 

activity were monitored. In addition a closely spaced array of 32 stations 

was deployed around Kimberley in December 1998 for a period of 7 months. 

Both these arrays are discussed in detail in Chapter 3. 

A large number of crustal and mantle geology, geochemistry and 

geophysical projects are linked to this project. 

Geoscientists involved in these projects meet every year to discuss their 

results. These meetings were held in Cape Town (1996), Pretoria (1997), 

Kimberley (1998), Vredefort (1999) and Gaborone (2000). For 2001 a 

meeting in Boston is planned. Further information about the project can be 

found on the internet, either on the Carnegie Institution website 

(www.ciw.edulkaapvaal), or on that of the UCT Centre for Interactive and 

Graphical Computing of Earth Systems (www.uct.ac.za/deptslcigces). 

1.3 This thesis and the Kaapvaal project 

Along with the projects mentioned in the preceding sections, a number of 

postgraduate theses at South African universities are being funded by the 

National Research Foundation. 

This thesis is one of them, and is connected to one of the geophysical 

projects I have been involved with since 1997. It aims to examine geological 
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discontinuities in the Earth's crust and upper mantle beneath the craton by 

studying the seismic waves that pass through or are deflected from these 

discontinuities. 

1.4 The African supersweU 

Southern Africa is abnormally elevated (Nyblade & Robinson 1994). 

Average elevation of most cratons worldwide is between 400 and 500 meters 

above sea level, yet the craton of southern Africa lies more than 1 km above 

sea level. This region of elevated topography, termed locally the South 

African Highveld, extends to the surrounding oceans, which possess residual 

bathymetry in excess of 500 meters. 

The origin of continental and oceanic swells has received considerable 

attention over the past 2 decades. There are many possible causes for the 

uplift. A number of isostatic mechanisms, some related to the unique 

chemistry of the craton, have been reviewed (McGetchin et ale 1980) and the 

dynamic support of uplifted regions has been investigated (e.g. McNutt & 

Judge 1990). It is difficult to argue convincingly for any of the possible 

interpretations for the supersweU - indeed, it could be a result of a 

combination of different mechanisms. However, several observations in the 

Tanzania craton region suggest that such superswell may be connected to the 

heating of the lithosphere (Nyblade et ale 1990; Nyblade & Pollack 1993). 

From a comparison of heat flow in southern Africa to the global averages 

from similarly aged terrains (table 1.1) it is clear that there exists a positive 

heat flow anomaly. Heat flow observations from the southeastern Atlantic 

Ocean also suggest thermal perturbations beneath this area of the superswell 

(Stein & Stein 1992). 
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Table 1.1 

Heat flow in southern Afiica oompared to global averages 

Archean terrains 
.,...,.. 

t Flow (mW/ml) Reference 

Global average 41 +1- 1 Nyblade & Pollack 1993 

Southern Africa 47 +1- 2 Nyblade et al. 1990 

Proterozoic terrains 

Global average 55 +1- 1 Nyblade & Pollack 1993 

Southern Africa 64 +1- 3 Nyblade et al. 1990 

The high values for heat flow do not necessarily imply a heated lithosphere, 

although this has sometimes been assumed in the past. Morgan (1982) 

combined this with the fact that Southern Africa moved across several 

hotspots during the Mesozoic to suggest that the supersweU is connected to 

the supposedly heated lithosphere. 

A breakthrough in understanding the anomalous heat flow came from the 

studies of the flow in the Witwatersrand Basin and the Vredefort structure 

(e.g. Hart 1978; Nicolaysen et ale 1981; Welke & Nicolaysen 1981, Jones 

1988). These studies found that the excessive heat production comes from 

the crust, and not from the asthenosphere. Nicolaysen et ale (1981) computed 

the average heat generation in the crust as a function of depth, and found that 

at 30 km the value is about 0.1 Jl W 1m3
, which is a very significant drop from 

the 1.5 JlW/m3 produced just in the upper crust «20km). Jones & Bottomley 

(1986) studied the rock temperatures in the Witwatersrand mining arc, and 

found these much higher than expected. AU this suggests that the high heat 

flow across the Kaapvaal craton is due to the properties of the crust, and not 

necessarily the asthenosphere. In fact, if the upper mantle temperatures were 

unusually high, the conditions would not be conducive to preservation of old 
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diamonds in the mantle keel of the Kaapvaal craton (Jones 1988). The 

excess heat flow is now attributed to the radioactivity of the high uranium 

content of the upper crust (Nicolaysen et a1. 1981). 

There also exists deep mantle support for the African Superswell. It has 

been suggested that the excess elevation is due to an active upwelling of hot 

mantle material in the lower mantle, originating from the core-mantle 

boundary (Lithgow-BerteUoni & Silver 1998). This flow would extend all 

the way to the base of the African plate, where it would elevate the southern 

part of the continent. This upwelling can be inferred from the low velocity 

anomalies imaged by seismic topography. To test this suggestion an 

'instantaneous flow' calcula~ion has been performed to predict both the 

mantle flow that would develop from the buoyant lower-mantle feature, and 

the resulting dynamic topography of the Earth's surface (Lithgow-Bertelloni 

& Silver 1998). The calculated pattern of surface topography resembled very 

closely the actual topography of southern Africa. 

Further testing of these hypotheses is one of the main objectives of the 

Kaapvaal craton project. A closer understanding of the composition and 

structure of the upper mantle below South Africa is a prerequisite for such 

tests. This thesis examines some of the internal structure of this upper 

(lithospheric) mantle. 

5 



Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 2 

The KaapvaaJ Craton 

2.1 Archean ale rocks 

Granite-greenstone assemblages of Archean age have been found on all 

continents. They are usually subdivided according to their age into Late 

Archean (2.5 - 3.0 Ga) and Early Archean (3.0 - 4.0 Ga) and represent 

remnants of Earth's earliest preserved continents (de Wit 1998). 

Globally, well preserved Late Archean crust accounts for just 7% of the 

exposed continental surface area, while the corresponding value for Early 

Archean rocks is just about 0.5% (the actual areas are 11.106 lan2 and 

0.8.106 km2 respectively). This means there is relatively little rock record 

from which to reconstruct the workings of the early Earth (de Wit 1998), and 

none from the frrst 500.106 years of its evolution (no terrestrial rock older 

than 4.1 Ga has ever been found on Earth). 

2.2 Archean cratons 

The Archean rocks described above exist in only about 10 small kernels 

embedded within the lithosphere of the present continents. These kernels are 

known as Archean cratons. Many of the cratons consist predominantly of 

granite-greenstone sequences formed in the Late Archean (de Wit et ale 

1992). The areas with older history (the Early Archean) have generally been 

deformed and metamorphosed, losing much of their original character. The 

only regions that have retained substantial portions of pristine Early Archean 
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rocks are the Kaapvaal craton in Southern Africa and the much smaller 

Pilbara craton of northwest Australia. 

The table below shows a summary of the data from selected Archean 

cratons (from de Wit 1998; Kopylova et a11999; Bostock & Cassidy 1997): 

Table 2.1 

Summarized data fur selected Archean cratons 

Craton Location Area Age (%) (peak in Ga) 

[*10~2] Early Arch. Late Arch. 

Kaapvaal South Africa 1.20 60(3.6-3.2); 40(2.6-3.0) 

Pilbara Australia 0.06 90(3. 

Superior Canada 1.57 10(3. 

YHgam Australia 1.00 10(3.7-3.3); 70(2.6-2.8); 

20(2.8-3.0) 

Sao Francisco Brazil 0.82 30(3.0 .. 3.5); 50(2.7-2.9); 

20(1.9-2.1) 

Zimbabwe Zimbabwe 0.27 10(3. 

Slave Canada 0.15 Dominated by 2.6-2.7Ga rocks, 

but contains oldest terrestrial 

rocks found (- 4.108) 

It is clear that the Kaapvaal craton is the oldest reasonably sized piece of 

Archean continental crust that has been well preserved. 

2.3 Regional framework of the Kaapvaal craton 

The Kaapvaal craton covers an area of about 1.2.106 km2 (Figure 2.1). 

While the limits have been largely defined by geological mapping, 
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geophysics and image processing have further helped in locating the exact 

boundaries of the craton (e.g. Comer 1991). To the north it is bounded by 

the Limpopo belt, which separates the Kaapvaal and Zimbabwe cratons. To 

the west and south it borders with the mobile Mesoproterozoic Natal­

Namaqua belts; and to the east with the Lebombo monocline of Jurassic 

volcanics associated with the break-up of Gondwana (de Wit et ale 1992). 

Seismologists have made contributions to defIning the framework of the 

craton by studying waveforms passing through the craton in order to 

determine its 3-D structure (tomography studies). The aim of this thesis is to 

perform a similar study, and therefore only a quick overview of the depth 

phenomena will be given in this section. 

Cratons have a crust of granitic composition, which is underlain by a 

relatively stiff mantle component. Together the two layers are referred to as 

the continental lithosphere; the mantle component is referred to as the 

lithospheric mantle, in contrast to the more mobile asthenospheric mantle 

beneath it (Jordan 1975). 

Results obtained so far suggest that the depth to the base of the crust of the 

surrounding Natal .. Namaqua Proterozoic belt is greater than that of the 

craton, and also contains a substantially higher portion of the intermediate 

velocity crustal rocks (Green & Durheim 1990). 

Velocity inversions show that the seismic velocities beneath the Kaapvaal 

craton in the depth range from 50 up to 300-350km are substantially greater 

than the global average - from this it can be concluded that this is in fact the 

maximum depth of the lithospheric mantle of the craton (Vinnik et ale 

1996a, 1996b). This is consistent with the association of other cratons with 

high-velocity anomalies extending to the depth of 300-400km (the 

tecto sphere of Jordan 1975, 1988). Recent seismic data give reasons to 
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believe that the root of the Kaapvaal craton may actually come closer to 

400km (Vinnik et ale 1996a, 1996b ). The limited seismological data, 

together with mantle xenoliths brought to the surface by kimberlites, 

provides a glimpse of what appears to be a very complex lithospheric keel 

with an extended evolutionary history (Boyd 1989; de Wit 1998; Carlson et 

al. 2000). Figure 2.2 shows a schematic cross section of the craton with the 

above .. mentioned features, constructed from the data prior to the Kaapvaal 

Craton seismic experiment. 

Below the craton velocity "jumps" across the 410- and the 660-km 

discontinuities in the asthenospheric upper mantle are expected. These two 

discontinuities are found (at slightly varying depths) under the continents 

throughout the Earth, and are believed to be caused primarily by phase 

changes in olivine (from a to f3 spinel) and other minerals, that result from 

the increasing pressure and temperature with increasing depth (e.g. Katsura 

& Ito 1989; Ito & Takahashi 1989). These changes will be discussed in 

greater detail in chapter 6. Detection of these discontinuities and determining 

their precise depths underneath the craton are also the aims of this project. 

The craton can be subdivided geologically into a number of Archean 

subdomains. The oldest of these occur in the eastern region of the craton: the 

Ancient Gneiss terrain and the southern Barberton terrain (see Figure 2.1). 

The comagmatic mafic and ultramafic rocks of the southern Barberton 

region represent a remnant of very early oceanic lithosphere (-3.5Ga), while 

the Ancient Gneiss terrain contains continental tonalitic rocks up to the age 

of3.65 Ga (de Wit et ale 1992). 
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2.4 Formation of the craton 

Then: UTe essenti~lIy three competing models for the fonn,ltion of Archeiln 

cratons, and they are illustrated in Figure 2.3. The first views the peridotitic 

component forming as high-preswre residues after extraction of komatiilic 

and hilS,lltic lava~ irom the primitive Archean mantle (e.g. Boyd 1989). This 

process is thought to have tnken place above rising mnntle plumes thnt 

compressed the eclogites, leaving the extrusive rocks exposed in greenstone 

belts. Basalts that have been sunk below the surface hnve undergone the 

phase tmnsition to eclogites at depth through this burial (sec model I if Fig. 

2.3 ). 

The second model (de Wit r:I ul. 1992) proposes that cratons were 

constructed during the suhduction of Archean oceanic crust. This ancient 

crust contained a large l~ltmmafie component, which was intensely hydrated, 

hence relatively huoyant. This Mg-rich lithosphere would have resisted a 

sulxluetion-like process, leading instead to obduetion-dominnted tectonics. 

The nucleus of the Archean continent would therefore have formed through 

regionnl intmoeennie obduction, giving rise to stneking, tectonic loading, 

wbsidellce and secondary modification of the hydruted oceanic thrust slacks 

(see model:! in Fig. 2.3). 

The third model (e.g. Pannan e1 al. :WOJ) views the craton lithosphere 

forming ns low pressure residues above subduction zones similar to present 

day ones. [t suggests that the accretion of eclogites and peridotites also 

occurred during Proterozoic accretion of subdueted oceanic lithosphere 

(hasalt), which metamorphoseu to form the eclogites (see model 3 in Fig. 

2.3 ). 
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2.5 Tectonic framework of the region 

Since the stabilization of the Kaapvaal craton about 2.6 Ga ago, crustal 

blocks have accreted to and surrounded it during successive orogenic events. 

The Namaqua-Natal mobile belt formed in the early to middle Proterozoic 

during a series of tectonic events (Tankard et al. 1982). During these events 

oceanic crust was thrust across the Kaapv~l Craton as a series of nappe 

sheets (Matthews 1990). Tectonism ceased by 1.0 Ga when the Namaqua­

Natal belt finally accreted to the craton forming the "Kalahari Shield" 

(Tankard et al. 1982). 

Dwing the late Precambrian, the blocks that assembled Gondwana were 

accreted together along Pan African mobile belts, such as the Saldanian 

rocks of the Cape region. Thereafter, the Cape Fold Belt and its adjacent 

geology formed over a period of ...... 250 Ma. The early Paleozoic was a period 

of extension which resulted in a rift which was covered by up to 81an of 

clastic sediments of the Cape Supergroup (Tankard et al. 1982). 

Compression occurred in Hercynian times ( .... 250Ma) during a series of 

tectonic events that caused extensive folding, faulting and thrusting of the 

Cape sediments and the formation of the Cape fold mountains. 

Extension process occurred again circa 200 - 120 Ma resulting in the fmal 

break up of Gondwana and the formation of southern oceans (Dingle et al. 

1983). Relaxation of the southern margin of southern Africa is continuing 

today - the evidence for it can be seen in the numerous listric normal faults 

found striking east-west (e.g. Kango and Worcester faults) along the 

southern margins of South Africa (Harvey 1999)~ These faults are weak 

zones from previous tectonism and the formation of the Cretaceous basins in 

the area, and some are still active today, as evidenced by the Tulbach 

earthquake (6.8 on the Richter scale) in 1949 (Brown et a/1995). 
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Other areas where Mesozoic to Quaternary extension has occurred are the 

offshore Agulhas Ridge and Falklands Fracture Zones. These are both areas 

of enormous relief on the Indian Ocean. Recent experiments showed that on 

the Agulhas Ridge up to 1200m of sediments have deposited on a 

hummocky basement which itself is erosional. The nature of this basement 

is related to voluminous flood basalts attributed to mantle plumes in 

extensional regimes (Nyblade & Robinson 1994). 

AU this evidence suggests a long history of tectonic inversions along the 

southern margins of Southern Africa - this had a significant effect on the 

variation of the depth to the Moho discontinuity in this region (Harvey 

1999). 
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Chapter 3 

Distribution of Seismic Stations 

3.1 The regional array of stations 

When the Kaapvaal Seismic Project was initiated in April 1997, 55 broad 

band seismic stations were deployed across southern Africa in an 

approximately 1000kIn wide and 2000lan long SW -NE axis from Cape 

Town to Harare. After one year, about two-thirds of the western-most 

stations were moved to the eastern part of the area and left for another year. 

This gave a total of 82 recording sites, separated from each other by about 

lOOlan, each of them being given a specific number. Throughout the project 

these stations are referred to as SAO 1 to SA82. The location of each site is 

given in table 3.1, and their distribution can be seen in figure 3.1. In this 

thesis these stations are used to determine the crustal thickness throughout 

southern Africa. 

Stations SA06, SA21 and SA41 never recorded any activity due to technical 

problems. 

3.2 The Kimberley array 

In December 1998 an additional, detailed array of 32 stations was deployed 

around the Kimberley area for a period of 7 months. These stations are 

referred to as BBOI to BB32. They were placed much closer together (see 

Figure 3.2) than in the regional array (a few kilometers from each other), and 
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in this thesis are used to study details of the structure of the crust, as wen as 

the upper mantle. Their arrangement is illustrated in Figure 3.2, while Table 

3.2 shows the locations of each station. This array will be referred to as the 

Kimberley array. 

3.3 Stations used in the Kaapvaal Craton Project 

Each recording station has a fixed location and consists of three geophones 

orthogonal to each other. They record seismic events in the three basic 

directions: north-south, east-west and vertical. Thus the record of any 

seismic event win consist of three seismograms; labeled n, e and z after the 

direction of each. 

The stations were designed, developed and produced by the STS-2 factory 

in Switzerland. The system was then standardized by Incorporated Research 

Institutions for Seismology (IRIS). The stations were operated on a 

continuous recording mode at 20sps. The data were archived at the IRIS 

DMC (Data Management Center), and event data were extracted from the 

continuous records using software developed by the DMC. These data were 

then converted to SAC format at Carnegie. The frequency band for the 

records was very broad - frequencies from as low as O.008Hz up to 10Hz 

were recorded. This made it possible to analyze both high and low frequency 

signals by using high pass or low pass filters (filters are discussed in detail in 

section 4.6.1). The very low frequency records also enabled us to study 

surface waves (see chapter 8). 

The technical design and the electronics involved are beyond the scope of 

this thesis, but the interested reader can consult the Carnegie Institution 

website on www.ciw.edulkaapvaal, or that of IRIS on www.iris.edu. 
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Table 3.1 

Station coordinates of the regional array 

Station Lat. S Lon.E Station Lat. S Lon.E Station Lat. S Lon.E 

SAO I 34.294 19.246 SA30 27.072 24.165 SAS8 23.518 31.397 

SA02 33.735 2~~ 26.995 25.021 SAS9 24.837 24.464 

SA03 33.632 21 26.865 26.285 SA60 23.852 24.959 

SA04 32.851 19.621 26.899 27.179 SA6l 23.948 24.022 

SA05 32.605 21.535 ~ 26.814 28.099 SA62 24.851 25.135 

SA07 31.978 20.226 SA35 27.018 29.088 SA63 23.658 26.082 

SA08 31.910 22.073 SA36 26.877 30.125 SA64 22.969 26.202 

SA09 30.922 22.986 SA37 25.971 23.721 SA65 22.818 27.222 

SAW 30.972 23.914 SA38 25.933 25.085 SA66 21.900 26.373 

SAIl 29.965 20.947 SA39 25.895 26.151 SA67 21.886 27.274 

SA12 29.849 22.253 SA40 25.898 27.149 SA68 21.950 28.188 

SA13 29.979 23.140 SA42 25.665 29.222 SA69 22.305 29.266 

SA14 29.868 24.023 SA43 25.787 30.067 SA70 21.088 26.335 

SA15 ~25.031 SA44 26.032 30.902 SA71 20.926 27.141 

SA16 28.950 122.195 1 SA45 24.879 26.164 SA72 20.143 28.611 

SA17 24.838 27.109 SA73 21.854 30.278 

SA18 28.633 24.306 SA47 24.847 28.162 SA74 21.923 30.936 

SA19 28.906 24.833 SA48 24.895 29.216 SA75 20.860 28.999 

SA20 29.022 26.195 SA49 24.960 30.309 SA76 20.636 29.846 

SA22 27.966 22.009 SASO 23.872 27.166 SA77 20.756 30.919 

SA23 27.930 23.405 SASI 23.863 28.157 SA78 19.467 30.772 

SA24 27.883 24.236 SM2 23.798 28.897 SA79 20J)21 30.517 

SA25 27.846 25.126 SAS3 24.113 29.333 SA80 19.959 31.318 

SA26 23.729 30.668 SA8! 30.925 21.268 

SA27 ""21.i62f 27.294 22.980 28.298 SA82 30.977 22.247 

SA28 27.898 28.066 23.006 29.074 

SA29 22.981 30.020 
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Table 3.2 

_._ ... 
S\,JllOn I.,~t. S I.on. F Sl~lion I .~t. S Inn. F ! S!~!ion j I .~l. S , I.or\. F j 
BB!)I 28.307 24.754 8U1 2 28.528 24.7 11 ' il823 28.645 24.823 

~ ~ -
131302 28.382 24.591 BBl., 28.5.>9 24.7.15 1l1l24 28.625 24.67 1 , 

-
; BB03 28.407 24.625 8U14 ~ 2U40 2'1.677 8825 28.671 24.883 

- -~ 

B1304 28.404 I ' BBI5 28.6()() 24.897 ; 1l1l26 28.672 24.%8 . 24.589 
~ 

, 
8il05 28,440 ! 24.580 13816 r 28.579 24.538 I RJU7 28.676 24.521 

f-~--' nU06 28.451 24.623 Rill 7 i 28.559 ! 24.707 ' BJU8 28.690 24.568 , 
~ -

HH07 ! 28,416 24.691 illll8 28.669 ' 24,936 ilil29 28.705 24.843 
, , 

~, -~- ~ ._ .... - .... --~ 

i RR08 28.428 24.628 HHI9 28.602 24.83.'1 HH30 28.795 24.865 
~ 

HH09 28.449 24.638 il820 28.632 I 24.684 8U31 28.793 24.925 
~ 

-_ .. --
RR10 ' 28,449 24.754 , BB21 28.642 ; 24.63.'1 HH32 28.81 5 24.977 

: RB22 
. . _- ---j 

ilill! ; 28,466 24.547 28,629 24.787 I 
--- , 
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Chapter 4 

Receiver Functions as a Method of Studying Upper 
Mantle Discontinuities 

4.1 I ntraduction 

A conllJ111niy used technique to estimulc the ~ tnlclllre urlhe Earth's cru.~l ~nd upper 

mantic from ~ single three-component seismogram is to deconvolve these 

compotll.:nts to pruducc source equalised radial and transeerse records (e.g. 

Lmg~lon 1977; Owen~ el a1. 19R7; Chevrut & Girardin 2{)00). rhc~c 'receiver 

functirlTls' C<tn be used to display the relative response o1'lhe Earth's structure ncar 

tile receiver. The horizontal L'omponcnts In: deconvolved b) the vertical component 

\(> produce a Irace dominated by /'S conversions and CllIlVl'rtcu S-wavc 

reverberations (Gurrola et a/. 1994). Figure 4.1 SllOWS raypaths of synthetic 

cOIlverted waves and the corresponding receiver function (taken from Ammon 

1990). The amplitudes orthe diITerent phases in the receiver function are dependent 

on the angle of incidence of the impinging P-wave and the velocity contrast 

generdting the Ps conversion (as well as the reflected multiples; sec figure 4.1).111.:: 

arrival times of the converted pha~cs (and the multiples) depend on the depth at 

which the conversion occurs due to the velocity contrast; the P- and S-wave 

velocities behNeen the contrast and the surface; and the P~wave angle of incidence. 

known as the rdY parameter, p. The amplitud"s of tile aniving phases d"pend on the 

nature or the vdocity transition, i.e. on how sharp the velocity boundary is. The 

earthquake generating tile waves needs to be sufflciently far from the recording 

station so that Ih" waves arriv" at a high angle to the surface. 
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The earliest receiver function studies were computed by Phinney (1964) who used 

spectral rotation. The first true receiver functions were computed by Langston (e.g. 

1917, 1919). Since then these functions have been used by many scientists to study 

the Earth's structure in different parts of the world (e.g. Owens et ale 1988; Given 

& Helmberger 1980; Ryabov 1989). 

4.2 Theory 

Langston (1919) developed the source equalization procedure to isolate the near­

receiver structure, the receiver function, from the effects of near-source structure 

and the source functions. 

The procedure assumes that three components of the response at a station due to 

a t~leseismic P-wave, D(t), can be theoretically represented by: 

DV<t) = I(t)*S(t)*Ev<t) 

DJt) = I(t)*S(t)*EJt) 

DJt) = I(t)*S(t)*EJt) (4.1) 

where V,f,t are respectively the vertical, radial and tangential components, I(t) is the 

impulse response of the recording instrument, S(t) the seismic source function, E(t) 

the impulse response of the earth's structure and * the convolution operator. 

E(t) is of the form: 

(4.2) 

where <Ii and Pi are constants related to the product of reflection-transmission 

coefficients, O(t) is the Dirac delta function, 'ti the travel time of the ith of the n rays 

and H[] the Hilbert transform operator. 

From observations of the vertical component of ground motion of deep teleseismic 
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earthquakes, it can be assumed that £V(t) behaves approximately like a Dirac delta 

function, hence 

£V(t) ~ O(t) 

This implies that 

Dy{t) ~ I(t)*S(t) 

(4.3) 

(4.4) 

Therefore by deconvolving DV<t) from D,(t) and DJ:t) respectively, and transfonning 

into frequency domain, it is possible to isolate E,(t) and Et(t), with the following 

result: 

Er( ro) = Dr( ro )/[I( ro )S( ro )] = Dr( ro )/Dy ( ro ) 

Et( ro) = DJ: ro )/[I( ro )S( ro )] = D~ ro )/Dy ( ro ) 

where ro is the frequency. 

(4.5) 

While we used the convolution operator in equation (4.1) here we have simple 

arithmetic division, as the convolution operator in the time domain corresponds to 

multiplication in the frequency domain. 

This deconvo\ution can be performed by dividing the Fourier transform of the 

horizontal components by that of the vertical component~ after introducing a 

minimum allowable level for the amplitude spectrum of the vertical component. 

The procedme in (4.5) (Langston, 1979) is numerically unstable, as the signals are 

band-limited and contain random noise, so the method of Helm berger and Wiggins 

(1971) is used to estimate the deconvolution. The result is smoothed out by a 

Gaussian function to exclude high-frequency noise, giving the following expression 

for the radial receiver function: 

(4.6) 
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where 

cp(ro) = max{Dv(ro)D\(ro), c max[Dv(ro)D+v(ro)]) (4.7) 

and 

G( ro) - e -(0Y2a)"2 (4.8) 

where c is the allowable spectral amplitude of the vertical component (known as the 

water level, which will be discussed in detail later), expressed as a fraction of the 

maximum amplitude; a. controls the width of the Gaussian pulse and D\ represents 

the complex conjugate ofDv• Transfonnation back into equation (4.6) will produce 

an estimate ofEr<t). 

G(ro) is the low-pass Gaussian fiher used to 'clean-up' high-frequency noise in the 

receiver fimction. The frequency content is controlled by the Gaussian filter-width 

parameter, a.. The Fowier transform of a Gaussian is a Gaussian, so the filter is 

gentle. To quantify the filter by the frequency at which it has a value of 0.1, the 

following table can be constructed (Ammon, 1990): 

Table 4.1 

Dependence of frequency on the filter-width parameter 

Value of 'a.' Frequency (Hz) for 

which G(f) = 0.1 

10 4.8 

5 2.4 

2.5 1.2 

1.25 0.6 

0.625 0.3 

0.5 0.24 

0.4 0.2 

0.2 0.1 
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4.3 Water-level deconvolution 

In the spectra that we are dealing with, very small spectral amplitudes can be 

encountered. This may lead to singularities (as the denominator in equation (4.6) 

tends toward zero), possibly causing disturbance in the final result (Ammon 1990). 

In water-level deconvolution, division in the spectra by the sman values discussed 

above during the computation of receiver functions can be avoided by introducing 

the trough filler, c, which was mentioned above. It is a fraction of the maximum 

value of the denominator. An small numbers of amplitude are then replaced with that 

fraction. Figure 4.2 illustrates the water-level deconvolution in graphic terms. The 

value of c, which can act as a high-pass, low-pass or a notch filter, is chosen by 

trial and error. This value should be as small as possible. Ideally it should be equal 

to zero for theoretically purest results, but then we will encounter the same problems 

we would have had without using the trough filler at aU. However, if the chosen 

value is too high, the water level can cover up significant features of the spectrum, 

causing distortions in the receiver function. 

4.4 The averaging function 

The averaging function is computed by deconvolving the vertical component :from 

itself using a chosen water-level filler, c. If c is zero, the averaging function is a 

perfect Gaussian. As c increases, the averaging function broadens, and often distorts 

for the large values. This assumption of the averaging function is valid if the data are 

not noisy and aU the underlying assumptions in the deconvolution procedure hold. 

4.5 Values of a and c for computing the receiver functions 

The values of (1, (the Gaussian width), and c, (the trough filler), used to create 

individual receiver functions were chosen by trial and error - receiver functions 
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were computed using different sets of parameters, and then the best resulting 

fundion was chosen. 

Figure 4.3 shows dit1i.:rent receiver functions computed (radial components only) 

using different v~lues for a and c from a single event (Iran earthquake from the 1O~1 

of May 1997) recorded by a particular station (sa32). Figure 4.3(a) shows receiver 

functions that ",,'ere obtained using the Gaussian width of I, while the trough filler 

was varied: .0003 for the top function, ~nd increasillg to .003 , .03 ~nd .3 for the 

other three. For figure 4.3(b) and (c) Gaussian widths 00 and 5 respectively were 

used, while the v~lue ofc was v~ried in the same way as for figure 4.3(a). 

It can be observed from figurc 4.3 that using a Gaussian width of 1 produces 

receiver functions of quite low frequency - they are very smooth and possibly 

smooth out imporl~nt features of the fi.mction. Larger G~ussian width v~lues will 

create higher frequency receiver functions. An optimum choice for this parameter 

is a ~ 3, where important features are clearly visihle. [}nless otherwise stated, the 

value of a = 3 is used for the computation of the receiver functions in the next 

sections. 

The other p~mmeter we need to choose is the trough filler, c. Looking at figure 

4.3(h} we c~n see that that the two hottom receiver fW"lctions (with c - 0.03 and 0.3 

respectively) arc very hroad, and lose potentially important features. The top 

function, with c = 0.0003, has, on the other hand, too many sharp features that 

would make interpretation ditlicul1. The v~lue of c ~ 0.003 produces a good 

balance, so this will be the value used to make receiver functions in the later 

chapters. 

Figure 4.4 shows all 3 components of the receiver function c~lcul~ted USlng a 

Gaussi~n width on and a trough filler of 0.003. 
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4.(i nata preparation and processing 

The data were manipulated using the Seismic Analysis Code (SAC). developed at 

Lawrence Livermore National Laboratory (Tapley & Tull, 1992). 

The raw data were read in as single events ll~ing SAC. Noisy events (Le the ones 

where seismic noise overrode the signal oflhe actual event) were discarded. From 

the remainin" nenls the offset (mean noise level)" and trend were removed IlSU1() o ' 0 

the R TR procedure in SAC This procedure is hllscd on a least squares curve fit to 

the data. The seismograms were then tiltered if necessary (this is described in detail 

in section 4.6.1)_ 

Afier picking the P~wave arrival time and setting the lime window to a required 

length, receiver functions were computed from the data using the program 

PWA VEQN (Ammon, 1990), which performs the source equalization (Langston, 

1979). Thc standard time window length to identify crust:ll structure is 35 seconds 

- 5 seconds hefore and 30 seconds after the P-wave arrival. For the analysis of 

upper mantle discontinuities, windows oflength up to 2 minutes were used. 

Program PWA VEQN rotates the components to their theoretical radial and 

tangential components, deconvolves the vertical component from the horizontal, and 

the averaging function is nonnalized to unity :lmplitude. The output of PW A V EQN 

is 3 files (in SAC format), i.e. the radial and tangential components of the receiver 

function and the averaging function. 

4.6.1 riltcrinl.! dat:l 

Different events rel]llire different filters. Some can produce good results without 

using filters. Most events, however, need to have noise filtered out of them before 

they can he processed. 

When a noisy even! is re:ld in, the filter to he used is nonnally chosen hy trial and 

error - trying different ones until a elc:lf seismogrmn is obtained. When the noise is 
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in the low frequencies, a high-pass Butterworth filter is used to reject frequencies 

below the given limit. This limit should be as low as possible, as while all noise 

should be eliminated, the actual signal will be affected by the filter as well, and this 

will in turn affect the analysis. Usually the limit used is 0.2 or 0.3 Hz, but in some 

cases values as high as 0.6 Hz must be used. The most gentle (2 pole) filters will be 

used here. 

On the other hand when the frequency of the seismic noise is higher than that of the 

actual event signal, a Butterworth low-pass filter can be used. In this case the cut-off 

limit is usually under 0.1 Hz. 

It is also possible to use band-pass filters that eliminate all signals except the ones 

between two specified frequencies. This is normally used for very noisy data, in 

attempt to isolate the frequency of the event signal from the noise. Band rejections 

can also be done - here all signal with the frequency between the two specified 

limits is eliminated from the record. This is used when the frequency of the noise 

can be identified precisely, which is very rarely the case. 

4.6.2 Stacking 

Stacking is a specific property of receiver fimctions, as all the signal, no matter how 

complicated, is compressed to a spike series. Stacking is a very powerful tool for 

improving the signal-to-noise ratio. For a given station one can stack together 

receiver functions from similar distances. If the distances of the incoming events are 

significantly different, one has to take this into account, and the stacking procedure 

becomes more difficult, and special computer programs need to be used. 

Stacking is always used instead of all single seismograms seperarely because of the 

ever-present noise. As the noise is fairly random and incoherent, for a sufficiently 

large set of signals it will largely average out towards a predicted signal. The real 

features, on the other hand, that appear consistantly in the same place on all the 
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seismograms, will all be clearly seen after averaging the signals. Thus after 

completing a stack, the features should be more prominent, as they will no longer 

be obscured by noise. Also after cleaning out the noise from the waveforms, weak 

but coherent signals will become visible (Schimmel and Pauls sen, 1997). 

SAC is equipped with a stacking programme called ROSTACK. Unless otherwise 

stated, this programme will be used to stack wavefonns in this thesis. 

4.7 Basic features of receiver functions 

Observations of the radial components of receiver functions reveal several 

significant features. The function is dominated by the direct P-wave arrival, by far 

the most prominent peak. A few seconds after this peak is a much smaller, but still 

clearly visible (in most cases) peak that corresponds to the anival of the P-wave that 

has been converted to an S-wave at the Mohorovicic boundary (the Moho), the first 

significant discontinuity, which seperates the Earth's crust from the mantle. This 

wave is referred to as the Ps wave. 

The next visible phase of the receiver function is the arrivals of waves reflected 

once off the Earth's surface and once off the Moho, and being converted from P­

wave to S-wave at either the Moho or the slJ.l'filce (see figure 4.1 b). The near vertical 

reverberations ending as an S-wave (e.g. PPps) contribute much more energy to the 

horizontal components than those arriving as a P-wave, like Pspp (Gurrola et al. 

1994). For this reason the Pppp wave is not visible, and the first clear multiple 

arrival is the sum of all reverberations with 2 P-wave legs and an S-wave leg, for 

convenience collectively labened P2p 1 s or ppps. 

The next arrival, shortly after the P2pls is the Plp2s (also refered to as ppss), i.e. 

sum of the reverberations with 2 S-wave legs and a P-wave leg. This has reversed 

poJarity, and therefore appears in the receiver function as a trough instead of a peak 

- this property makes the PI p2s easily distinguishable. Unfortunately the muhiples 
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require ideal conditions to be detected, and are not always visible, even though the 

Moho converted phase may be clear. 

Looking further down in the time window are the converted Ps signals from deeper 

discontinuities. For those, only the direct Ps is studied, as the multiples would be too 

far away in the time window. 

4.8 Estimating the depth of the discontinuity 

By measuring the difference between the arrival times of the direct P .. wave and the 

converted Ps reverberation we are able to estimate the depth of the discontinuity at 

which the conversion took place. 

Figure 4.5 shows the geometry of the conversion. Part of the incoming wave 

refracts at the boundary, but remains a P-wave - this arrives at the seismic station 

as the direct P-signal after time tp from the point of refraction. The part of the wave 

front that converts into an S-wave reaches the station after time ts from the 

discontinuity. 

If the planar wave front is parallel to the surface, then the distance traveled by the 

P- and S .. waves between the discontinuity and the surface is the same, and is equal 

to the depth, h, at which the conversion took place. Then 

tp= h/vp 

ts = hI Vs (4.9) 

where vp and Vs are the velocities ofP- and S .. wave above the discontinuity. The 

time difference between the arrivals is then 

~t = ts - tp = h· (vp - vs) I (vp· vs) 

and solving for h gives 

h = ~t . (vp . vs) I (vp - vs) 

(4.10) 

(4.11) 

It can be seen that h is directly proportional to At. The constant of proportionality 
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can be determined if the velocities of the waves are known. Taking vp = 6.0 kmls 

and Vs = 3.5 kmls (typical values for crustal velocities used to determine the crustal 

thickness, i.e. with the Moho as the discontinuity) makes the equation read 

h = 8.4 . At (4.118) 

if At is in seconds and h in kIn. 

However, the planar wave front cannot be assumed to be parallel to the surface. 

From figure 4.5 it can be seen that in reality the angle of incidence of the incoming 

P-wave, or the corresponding ray parameter, is a significant factor. Also the 

refracted P-wave and the converted S-wave travel different distances, and the short 

traveltime labelled it. is present. 

Considering all the above mentioned factors, the time delay of the Ps reverberation 

is going to be 

At (p, h, vp' vs) = is + it. - tp (4.12) 

The dependence on the 4 parameters can be made explicit through manipu1ation of 

equation (4.12), similar to the development of the reflection moveout (Sheriff & 

Geldart 1982; Yilmaz 1987): 

At (p, 11, vp' vs) = h . [ (V;2 - p2)lfl - (vp·2 - p2)lfl ] (4.13) 

where p is the ray parameter. 

Solving for h gives 

h = At I [ (vs•
2 - p2)In. - (vp•2 _ p2ifl ] (4.14) 

It is clear that h is still directly proportional to At, (i.e. h = a . At) and for p = 0 

eqation (4.14) simpifies to equation (4.11). Table 4.2 below shows how the constant 

of proportionality, a, behaves as the ray parameter changes for vp = 6.0 and Vs = 3.5 

kmls. 
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Table 4.2 

Effect of the ray parameter on the arrival time of converted pbases 

p(slkm) a p(slkm) a p(slkm) a 

0.000 8.400 0.030 8.320 0.060 8.074 

0.005 8.398 0.035 8.291 0.065 8.016 

0.010 8.391 0.040 8.257 0.070 7.952 

0.015 8.380 0.045 8.219 0.075 7.883 

0.020 8.365 0.050 8.176 0.080 7.808 

0.025 8.345 0.055 8.127 0.085 7.727 

We see that the constant of proportionality decreases as the ray parameter increases, 

so assuming h is constant the time delay is going to increase with p. In terms of the 

delay ofPs relative to the direct P-wave arrival at vertical incidence, and using the 

velocity ratio r = vr/vs (usually assumed to be ~3 - see section 7.3.5) we have 

(Gurrola et ala 1994), in terms of slightly new parametres, 

where Ato is the time delay of the Ps reverberation for the case of a vertical 

incidence (p = 0), i.e. again in terms of p, 11, vp and Vs 

(4.138) 

4.9 Reeeiver funetioDS in this study 

As mentioned before, the aim of this paper is to investigate discontinuities in the 

crust and the upper mantle under Southern Africa. Receiver functions will be U$ed 

to identifY the discontinuities. 
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Records of seismic events will be converted to SAC format, and afterwards 

receiver functions will be computed from them. 

For the regional array of stations these functions from different events will be 

stacked for each station. From the stacks produced it will be possible to identify the 

existence and depth of any discontinuities under a particular station. These results 

will then be· mapped to show how the crustal and upper mantle structure varies over 

the whole area. 

For the dense array in the Kimberley area a similar procedure will be used. 

However, since the stations are very close to each other it will be feasible to stack 

receiver functions obtained at different stations. This would present a problem if the 

structure under the stations was significantly different, which is very unlikely as they 

are closely packed - usually only a few kilometers apart. We will be able to check 

that by examining records for individual stations, or groups of few stations. If all the 

receiver functions are stacked together, the noise to signal ratio will be substantially 

reduced, and features oftbe receiver function more clearly visible. 

After obtaining the depths of discontinuities we will then be able to use them to 

create a seismic wave velocity model as a function of depth. The procedure for this 

will be discussed later. 
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Chapter 5 

Crustal Thickness Beneath Southern Africa 

S.1 Introduction 

The thickness and structure of the crust of Southern Africa has been the 

subject of a number of studies in the recent past (Harvey 1999; N guuri, 

2000). In this thesis measuring crustal thickness is used as an example to 

illustrate how receiver functions can be used to study discontinuities deep 

underneath the Earth's surface. 

The crustal thickness is determined by fmding the depth of the Moho, which 

is the most shallow world-wide discontinuity of the solid Earth, separating 

the Earth's crust from the mantle. 

5.2 Seismic events used 

Data from 10 seismic events from different parts of Asia have been used in 

this study. The details of these events are given in the table below, and the 

locations of their epicentres are illustrated in Figure 5.1. 

These events have ray parameters varying from 0.015 to 0.050, so stacking 

them was far from ideal, but with data availability being a major problem 

there was no real alternative. The events with the lowest ray parameters 

(97168, 98123 and 98245) possibly contained core phases, which are rarely 

used for receiver functions due to a complicated signal in a narrow window. 

They were, however, used anyway with no other data available. 
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Fig 5. 1 

L=allOflS of the 10 eon-rquakes used i:l this stLdy 
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Table 5.1 

Time and locations of tile seismic events used in this study 

Date Latitude Longitude Location Magnitude 

97130 33.825N 59.809E Iran 6.4 

97133 36.411N 70.945E Afghanistan 6.1 

97141 23.083N 80.041E India 6.0 

97168 51.347N 179.332W North Pacific 6.4 

97329 1.241N 122.536E Indonesia 6.1 

98091 0.544S 99.261E Indonesia 6.2 

98123 22.306N 125.308E Chinese Sea 6.4 

98245 5.410N 126.764E Philippines 6.6 

98271 8.194S 112.413E Indonesia 6.4 

98333 2.071S 124.891E Indonesia 6.5 
. . ,til .tIl The dates used are m numerIcal format, I.C. 97130 refers to the 130 day of 1997, or the 10 of 

May 1997. The date in that format will be used as the index for referring to individual events. 

5.3 nata processing 

The seismograms from the above events were recorded by 42 of the stations 

in the regional array described in section 3.2. Receiver functions were then 

computed using the procedures discussed in chapter 4. The functions from 

different events were stacked for each of the individual stations, and the 

arrivals of the Ps waves produced at the Moho discontinuity were picked on 

these 42 individual stacks. 

Using seismic velocities ofvp = 6.5 kmls and Vs = 3.8 kmls, appropriate for 

an Archean craton (e.g. Drummond & Collins 1986), and an average 

parameter of 0.030 s/km, equation (4.14) becomes: 

h= 9.0· At (5.1) 
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5.4 Results 

The stacks produced for the 42 stations are included in Appendix A. In each 

case the P-wave coherence peak can be seen clearly as the most prominent 

peak. The time windows were set to have this peak 5 seconds from the start. 

For stations SA27, SA36, SA56, SA60, SA66 and SA8! this value is not 

exactly 5 seconds, and this was taken into account for aU calculation. 

The arrivals of the Ps .. wave produced at the Moho were also marked on 

each of the stacks, and the difference between the two arrivals was 

calculated for each station. 

In most cases picking the Ps arrival was straight forward, but for some of 

the stations it was not obvious. For SA24, for example, there were 2 peaks of 

equal height next to each other, the earlier of the two being at the same time 

as the clear Ps arrival for SA25, and just before the one for SA23 - both of 

these stations are next to SA24. For aU 3 of the above mentioned stations the 

P2pls (which was discussed in detail in chapter 4) arrival can be seen at 

times between 20 and 21 seconds - the position of these peaks confirms that 

the earlier of the two possible Ps arrivals is the real one. Similar checks have 

been made for SA38 and SA66. 

For some stations, prominent peaks were ignored as they were far too early 

to be candidates for the Moho discontinuity Ps arrivals. These included 

SA45 with a peak less than 3 seconds after the P arrival, SA48 with just over 

3 seconds, and SA51 with about 3.5 seconds. These arrivals are most 

probably caused by phase conversions from inside the crust, as these time 

shifts correspond to a depth of just under 30 Ian. A possible place where this 

conversion could have taken place was the boundary between the lower 

mafic crust and the upper felsic, which is slower than the mafic and a 

conversion there would results in a positive peak in the radial component of 
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the receiver function. Results for station SA51 will discussed in more detail 

later in this chapter. 

The time differences between the two arrivals at each station are shown 

below in table 5.2. The table also includes the crustal thickness beneath the 

station, calculated using equation (5.1). The calculated depths are shown in 

Figure 5.2. 

5.5 Discussion 

It can be seen from Figure 5.2 that in the south-western section of the craton 

the Moho depth is between 37 and 40.0km, except for station SA23, which 

recorded a depth of 43km. The 3 stations placed off the craton boundaries in 

that region (SAIl, SA12 and SA81) gave depths of 40,43 and 45km. 

Further north along the western block of the craton the crustal thickness 

decreases (to as low as 36km for SA37), but increases significantly (up to 

44km) in southern Botswana. The crust is also thicker near Vredefort and 

Johannesburg, with results from 40 up to 46.0lon. The single reading from 

the Ancient Gneiss Terrain (SA36) gave a depth of 38km, while the result 

for the Barberton Region (SA44) was 43km. 

In the northern section of the craton the crust becomes much thicker. The 

lowest reading from that area is 41km recorded by SA57, while most of the 

other results are over 45km, some of them even over 50km. SA47 recorded a 

depth of 52km. 

Over the northern boundary of the Kaapvaal craton (in southern Zimbabwe) 

the crustal thickness decreases rapidly. Just over the boundary with the 

Zimbabwe craton it drops to 38-40km, while the northern-most station there 

(SA 78) gave a reading as shallow as 36km. 
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Table 5.2 
Crustal thickness (h) computed fur different stations in this study and compared to results ofNguuri (2000) 

Station .6.t (sec) h (this h Station .6.t (sec) h (this h 

study) (Nguuri) study) (Nguuri) 

SAIl 4.5 40 42 SA41 5.8 52 50 

SA12 4.8 43 45 SA48 5.3 48 45 

SA11 4.1 31 36 SA50 5.0 45 43 

SA18 4.1 31 36 SA51 5.0 45 50 

SA19 4.1 31 36 SA52 4.6 41 42 

SA22 4.3 39 35 SA55 4.8 43 45 

SA23 4.8 43 44 SA56 4.1 42 45 

SA24 4.4 40 38 SA51 4.6 41 43 

SA25 4.4 40 38 SA59 4.9 44 45 

SA21 5.1 46 40 SA60 4.8 43 45 

SA30 4.1 31 35 SA62 4.9 44 45 

SA31 4.3 39 38 SA65 5.0 45 45 

SA32 4.5 40 40 SA66 5.5 49 50 

SA36 4.2 38 31 SA61 5.1 46 46 

SA31 4.0 36 34 5.1 51 48 

SA38 4.1 31 38 4.8 43 44 

SA39 4.1 42 42 SA16 4.2 38 35 

SA40 4.8 43 45 SA18 4.0 36 35 

SA44 4.8 43 40 SA19 4.4 40 35 

SA45 5.1 51 44 SA80 4.2 38 36 

SA46 5.2 41 44 SA81 5.0 45 41 
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The results calculated here can be compared to those obtained by Nguuri 

(2000). These are illustrated in Figure 5.3, and are also presented in Table 

5.2. Mostly the results are similar, but there are some significant differences. 

In Nguuri's results the crustal thickness in the southern region of the craton 

varies between 35 and 38km, with the exception of SA23, which recorded a 

depth of 44km. These results, based on significantly more data, are very 

close to the results in this study. 

In the central section of the craton the results of both studies are very 

similar, results presented here being slightly higher; this is also the case for 

the Ancient Gneiss and Barberton regions in the eastern section of the 

craton. 

There are some discrepancies in the northern section. I calculate the crust to 

be much thicker in that are~ as does Nguuri. Results from individual 

stations, however, sometimes differ by up to 5km. The biggest difference in 

the studies are the results for station SA45. I calculate this to be 51km, 1km 

more than the 44km obtained by N guuri. Another significant discrepancy is 

SA51, where Nguuri's 50km is 5km more than 45km computed here. 

Looking at the stack of receiver functions for SA51 it can be seen that while 

there is a possible Ps arrival peak 1.5 seconds before the arrival of the S­

wave produced at the Moho, there are no prominent peaks after the one that 

was chosen. This means there is no evidence in this study to suggest the 

crust is thicker than the 45km calculated. Similar checks can be made for 

other stations in the area. 

As the stations move off the Kaapvaal craton, the results begin to agree 

again, with both models suggesting a rapid decrease in the crustal thickness 

of the Zimbabwe craton. 
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Chapter 6 

Upper Mant'e Structure Beneath Southern Africa 

6.1 Introduction 

In the prevIous chaple r receiver fUll Clic>11S were used \0 determine the 

thickness of the cominental crust underneath Southern Africa. Similar 

techniques call be used to study discontinuities in the upper mantic. 

The data used came from 9 of the 10 seismic C\'<::1ts recorded by the 

regional alTay and used in the pn!viou;; chap I!!!"' The 97168 evenl from lh.:: 

North Pacific was nO! used, as swcking it with the 9 Asian events would not 

be feasible. The seismic waves would reach lhe stations from a completely 

different direction, and would therefore pass through different arcas of lhe 

upper mantic. An ideal study would consider many earthquakes from 

different arcas and then produce stacks of receiver functions for each 

geographical area, but unfortunately there were not enough events available 

for such a comprehensive ~tudy. It was therefore nt::ces~ary to ignore the 

single event from the Pacific and only use the Asian earthquakes. 

Combining areas for a study of the cru.~t was not a problem, as the Moho is 

shallow enough to assume lateral homogeneity for the crust around the 

recording site. 

The events were recorded by the regional broad band array stations, and 

receiver functions were computed from them in 2 minute time windows -

from 10 seconds before the P-arrivaluntil 110 seconds after it. Stacks for 
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individual stations ar~ compiled in Appendix L1 . 

The problem ;Issoeiated with event selection (discussed in Chapter 5) is also 

going to be present in this chapter. Data used in this study is not suffieienlto 

provide com:lusivc evidem:e on any mantle f~atures, but a study will Ix; 

undertaken with the available data. 

The stach were studied fi)r arrivals of S-waves created when the primary 

wave passed a significant anomaly in the mantle and a (.:onversion occurs. 

This would be represented on th~ r~ceiv~r function by either a peak, if th~ 

wave velocity decreased on its way towards the recording station, or by a 

trough, if the velodty increased. 

From the arrival time of the converted phase, the depth of the discontinuity 

can be calculated (sec se(.:l;on 4.8). To do this it ne(.:essal)· to know how 

seismic velocities of the p- and S-waves vary \>iith depth - these values were 

obtained from th~ IASP9J model (e.g. Kennett & Engdahl 1991; Vasco et af. 

1994). Jhis model has been developed by Kennett (1991) and (.:ontains 

infimnalion aboulthe (.:hang~s with depth in the upper concerning seismic 

velocities, density. t~mperature and other data. The model docs nol deal with 

different parts orthe Earth. the valu~s in il arc (.:onsidered global av~rages, 

and Ih~rcfore do not necessarily apply to the South African mantle. Th~ 

results obtained in this chapler .... ·-ill be used to study how Ihe seIsmiC 

velocities from the Kaapvaal craton compare to the global averages. 

The relevant parts of the model are given in Tahle 6.1, and th~ p- and S­

wave velocities giv~n in it are drawn as a function of increasing depth in 

Figure 6.1. 
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Table 6.1 

Global average seismic velocities :from. the IASP91 model 

Depth(km) Vp(kmJs) Vs(kmJS) Depth(km) Vp(km/s) VS(kmlS) 

0 5.8 3.36 360 8.8475 4.783 

20 5.8 3.36 410 9.03 4.87 

20 6.5 3.75 410 9.36 5.07 

35 6.5 3.75 460 9.528 5.176 

35 8.04 4.47 510 9.696 5.282 

77.5 8.045 4.485 560 9.864 5.388 

120 8.05 4.5 610 10.032 5.494 

165 8.175 4.509 660 10.2 5.6 

210 8.3 4.518 660 10.79 5.95 

210 8.3 4.522 710 10.9229 6.0797 

260 8.4825 4.609 11.0558 6.2095 

310 8.665 4.696 809.5 11.144 6.2474 

Using the model and the mathematics from section 4.8, a computer program 

DEPTH (described in Appendix C) was written to calculate the depth at 

which a particular converted phase was produced. The assumed Moho depth 

of the model (35km) can be changed in the program to whatever value was 

obtained underneath the concerned station in the previous chapter. The 

model can also be changed as exact details of each discontinuity are 

calculated. 

6.2 The 410-km discontinuity 

This is the most significant discontinuity in the upper mantle. It is generally 

interpreted as a transition in the a .. phase to the p-phase of olivine 
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(Mg,Fe)SiOI (Bin;) & Helffrich 1994). Theoretic;)lIy this transiti0n sh0uld 

not CHuse ~ sharp disnmtinuity, hut could O«ur over a depth of up to a few 

kilomek'rs (Shearer & Flanngan 19(9). The arrival of the Ps converted phase 

from that depth (Iabded the PIl US) should be around 40-45 se(onds arkr the 

P arrival. 

Unfortunately the data used were very nOlSY and only 17 stations (ould be 

used for identifying this discontinuity. These st;)tions, and the e;)iculatcd 

depths to 41 O-km discontinuity ~re listed in table 6.2 below, ~nd the depths 

(obtained lIsing the global average seismic velocities) are ilJustrakd in figure 

6.2. 

Table (;.2 

_. __ .. 
Station Depth (km) I Station Dc'pth (km) 

-_ .. 
SAI2 403 , SA47 397 

. --_ .. . __ .-
SA 18 399 SASO 399 

- j 
SA!9 390 SASS 403 

~ . , 
SA23 403 SAS9 394 

--- . ~-

SA24 400 SM2 406 

SA3! 398 SA76 41] 
~ 

SA32 401 SA78 413 
~~ 1-- ~ .. ~--

SA38 389 SA79 411 
. --- - -- ~-

SA46 391 
. _.-

Predictably, the peaks implying a Ps conversion at that depth arc not nearly 

as prominent as the ones used to measure the depth of the crust-mantle 

boundary_ The dis(ontinuity is not;)s clear ;)s the Moho, and the converted 
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Deoths to the 41 O-km discor,tinuity calculcled using 
the velocities from the lA.SP91 rnxk;1 
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phase signal had to travel approximately 10 times as far as the ones from the 

Moho. Some signals (like the ones recorded by SA12 or SA50) were 

relatively clear to pick., while others were difficuh to identify from the 

background noise. Often in these cases, the frequency of the signal helped to 

distinguish the peak - the best example of this is SA31. The peak about 41 

seconds after the main arrival is not higher than any of the surrounding ones, 

but there is a clear difference in frequency from the rest of the receiver 

function, implying that this feature cannot be part of the noise. 

It must be stated that the results obtained in this study are not very 

convincing. A lot more events would have to be studied for a comprehensive 

study of the mantle ,from the regional array. The discussion that follows 

depends entirely on reliable results, and therefore could prove irrelevant. 

Unfortunately the only stations off th~ southern boundary of the Kaapvaal 

craton that gave a result was SAI2, which gave a depth of 403km. 

Unreliability of most of the southern stations was possibly the most 

significant shortcoming on the Kaapvaal craton project. 

6.2.1 Discussion of Results 

The values obtained for stations at the surface of the Kaapvaal craton are 

very low. This can be interpreted in two different ways - either the 410km 

discontinuity is shifted upwards by up to 20km, or the wave velocities 

beneath the craton are up to 5% faster than elsewhere. It is also possible that 

the anomalous results come from a combination of both these factors. 

After obtaining results for the 660km discontinuity it win be possible to 

determine which of these factors causes the early arrivals of this phase. 

The fact that the arrivals of the converted P 410S phase are not very prominent 

could imply that the discontinuity is not a very wen defmed boundary, but is 
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in fact a complicated structure underneath some sections of the Kaapvaal 

craton. Several of the stations (e.g. SA47 and SA59) registered multiple 

peaks near the expected time of the arrival of this phase - this can be taken 

as further evidence that in some parts the 410km discontinuity is not sharp. 

Only three stations located off the Kaapvaal craton (SA76, SA78 and SA79) 

produced positive results, and they all registered depths of between 411 and 

413km. These stations are placed on the neighbouring Zimbabwe craton. 

The significant difference in the results for the two cratons implies that the 

two are very different. 

6.3 The 66O-km discontinuity 

This is the next significant discontinuity in the mantle found throughout the 

planet. Its nature has been widely discussed, but relatively little is known 

about it. Even its name has not been universally agreed on - Ringwood and 

Irifune (1988) refer to the 650-km seismic discontinuity, while Tackley et ale 

(1993) talk about phase transition at 670 km. Collier and Helffrich (1997) 

call it the "660"km, but claim it can be deeper than 700km. 

The most popular theory states that the discontinuity is caused by an 

isochemical phase transformation of M~Si04 spinel to MgSi03 perovskite 

plus (Mg,Fe)O magnesiowustite (Shearer 1991). This interpretation permits 

whole mantle convection to occur freely between upper and lower mantles. 

An alternative hypothesis (Ringwood & Irfune 1988) maintains that the 

discontinuity is associated with a change in chemical composition from an 

overlying upper mantle dominated by Mg2Si04 olivine and spinel minerals, 

to a relatively silica-rich lower mantle composed essentially of MgSi03 

perovskite. This interpretation implies that the convective systems of the 

upper and lower parts of the mantle are independent of each other, and are 
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separated by the 660-km discontinuity. 

The solid-solid phase change from spinel to perovskite and magnesiowustite 

at this discontinuity is unusual in that it is an endothermic phase change, i.e. 

heat is absorbed when the less dense spinel converts to the more dense 

perovskite and magnesiowustite (Ito & Takahashi 1989; Schubert & Tackley 

1995). 

It has been accepted for a long time that the phase change at the 660km 

depth holds the key to explaining the observations and understanding the 

dynamical state of the mantle and in particular mantle convection (Machetel 

& Weber 1991). 

Near cold downwellings, some of the phase transformations could occur 

deeper than in the ambient mantle; if deep enough, the positive buoyancy 

could prevent downwelling slabs from penetrating into the lower mantle. 

However, mineral physics experiments and seismological observations 

indicate that the Clapeyron slope of the phase transition is probably too 

small to cause long term stratification (Albarede & van der Hilst 1999). 

For layering to occur, the intrinsic density of lower mantle material would 

have to be at least 2% larger than that of the upper mantle (Kellogg et al. 

1999). Seismological evidence that in the past 200 Myr many slabs of 

former oceanic plates have penetrated into the lower mantle demonstrates 

that the density contrast cannot be this large (van der Hilst et al. 1997). 

Tomographic studies (van der Hilst et al. 1997) also provide evidence for a 

whole-mantle convection system as opposed to two systems separated by a 

mantle discontinuity. Structural complexity probably persists down up to 

1000km (Karason & van der Hilst 2000), but the significance of this depth is 

not known, and many former oceanic slabs sink even deeper than that. 
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6.3.1 Results 

The arrivals of the Ps conversion from a depth of 660km are expected 

between 60 and 70 seconds after the P-wave arrivaL Once again the arrivals 

are not very prominent, and only 15 stations produced results. The calculated 

depths are given in table 6.3 below, and the depths obtained are illustrated in 

figure 6.3. 

Table 6.3 

Depths to the '660' discontinuity using the IASP91 seismic velocities 

Station Depth(km) Station Depth(km) 

SA12 652 SA46 657 

SAIS 635 SA50 655 

SA19 641 SASS 669 

SA24 664 SA56 651 

SA25 639 SA59 652 

SA31 658 SA76 659 

SA38 659 SA78 653 

SA39 653 

We oan see that the depths found on and off the craton are nearly all less 

than 10km away from the depth of 660km. The three stations near 

Kimberley: SAIS, SA19 and SA25, which aU produced values near 640km, 

are significantly shallower. 

Once again there were no results off the southern edge of the Kaapvaal 

craton, making it impossible to study the mobile belts located there. 

Only two stations (SA 76 and SA 78) on the Zimbabwe craton produced 

results - values of 659 and 653 km, respectively, were similar to the ones 

from the Kaapvaal craton. 
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Fig. 6.3 
Depths to the 660km d is:::wtinuity coJcukJted using 
the veocities from the IASP91 rnc:del 
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6.4 The traDJition zone 

6.4.1 Discussion 

Due to the chemical nature of the 660-km discontinuity, it is expected to be 

shifted upwards in regions of high temperature, and downwards if the 

temperature is below the global average (Schubert & Tackley 1995). This 

behaviour is the direct opposite to that of the 410-km discontinuity (Bina & 

Helffiich 1994). 

The section of the mantle between these two discontinuities is known as the 

transition zone (e.g. Nyblade et al. 2000). It is clear how the size of this zone 

is going to depend on the mantle temperature - in hot regions the '410' will 

be shifted downwards and the '660' upwards, making the transition zone 

smaller than it would be in cooler regions. This enables us to determine 

whether the mantle is relatively "hot" or "cold" by calculating the distance 

between the two discontinuities. 

Combining the size of the transition zone with the recorded travel times for 

the converted phases can be used to determine the velocities of the seismic 

waves in the region relative to the global averages. For example, assume the 

P410S phase arrived at the time the IASP91 model predicts it, but an 

abnormally large transition zone suggests that the discontinuity is elevated. 

It would then be concluded that the seismic velocities in the region 

concerned are lower than the global averages, as average velocities would 

cause the elevated discontinuity to produce early arrivals of the converted 

phase. 

For the stations located on the Kaapvaal craton the P410S arrivals were 

earlier than expected, while the P 66()S arrived close to the expected time for 

most stations (the exceptions being SA1S, SA19 and SA25 near Kimberley). 

Using seismic velocities from the IASP91 model we found the '410' lifted 
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by up to 20krn, and the '660' close to the global average depth. The size of 

the transition zone was calculated to be between 6 and 20km thicker than the 

expected 250km, implying a relative low, mantle temperature in the region. 

This thermal anomaly shifts the '410' upwards by up to 10km, and depresses 

the '660' by approximately the same amount. Comparing this to the depths 

computed using IASP91, we can see the model made the discontinuities 

appear closer to the surface than they really are. From this we can conclude 

that the wave velocities in the craton are higher than the average values 

given in the IASP91 model by up to 2%. 

For the three stations near Kimberley (SA18, SA19 and SA25), however, 

the P 660S arrived earlier than expected by approximately the same time 

difference that was observed for the P ,noS phase. This gives an average sized 

transition zone, which implies a mantle temperature very close to the global 

average. This in turn means that the two discontinuities should be found at 

their namesake depths, 410 and 660krn, respectively. As the calculated 

depths are shallower than that by up to 20km, we can conclude that the 

seismic velocities in the region are higher than the averages from the 

IASP91 model by up to 5%. The Kimberley region win be studied in more 

detail in the next chapter. 

Over the northern boundary of the Kaapvaal craton, using stations placed on 

the Zimbabwe craton, the '410' was found very slightly deeper than 410km, 

while the '660' was just a few km shallower than the depth it is named after. 

This suggests the upper mantle temperature of the Zimbabwe craton is very 

slightly (less than 1 %) warmer than the global average, while the seismic 

velocities in that area are close to the averages used in the IASP91 model, as 

the calculated depths are what is expected from this slight thermal anomaly. 

The only station off the Kaapvaal craton that produced results was SA12. It 
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registered a depth of 403km for the '410' and 652km for the '660'. This 

gives the size of the transition zone as 249km, just lkm away from the 

expected 250km. This suggests mantle temperature very close to the global 

average, and therefore the discontinuities are expected to exist very close to 

the depths of 410 and 660km, respectively. As they were calculated to be 

slightly shallower than these values, it can be concluded that the seismic 

velocities there are higher than the averages from IASP91. It is a very 

unfortunate shortcoming of the Kaapvaal craton project that only one station 

off the southern boundary of the craton was reliable enough to produce good 

results. 

6.4.2 Conclusion 

The very different results for the Kaapvaal and Zimbabwe cratons confirm 

that the two cratons are significantly different. Seismic velocities beneath the 

Kaapvaal craton are faster than beneath the Zimbabwe one, suggesting that 

the Kaapvaal mantle is denser, and therefore may contain more iron. 

Recent studies of the Tanzania craton (Nyblade et ale 2000; Owens et ale 

2000) show that the 410 discontinuity is deflected downwards in that region. 

From these the authors conclude that the region is relatively warm. This 

thermal anomaly cannot be explained by convective upwelling induced by 

passive stretching of the lithosphere. This would lead to small-scale 

convective instabilities near the base of the lithosphere, but not through the 

upper mantle (Buck 1986; Mutter et ale 1988). The only plausible 

explanation for the thermal anomaly invokes the presence of a mantle 

plume, with the bottom of its head reaching across the 410km discontinuity. 

Fluid dynamic studies of plumes suggest that the heads can be several 

hundreds of kilometers across (Griffiths & Campbell 1991); so if a plume 
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head impinged on cratonic lithosphere, it could give rise to the depression of 

the 410km discontinuity. 

It is clear that if the Kaapvaal craton had a mantle plume at the base of its 

lithosphere, a similar thermal anomaly to the one discussed above would 

have existed, and would in turn bring down the level of the 410km 

discontinuity. However, since the discontinuity is brought up underneath the 

craton, the temperatures concerned are cooler than expected. This implies 

there are no mantle plumes in the region. 

6.5 The 300-km veloeity reversal zone 

The existence of a low-velocity zone at a depth of about 300km has often 

been postulated as a feature of Archean cratons (e.g. Vinnik et ale 1995). If 

such a layer exists, it would be bounded on top by a discontinuity, and 

velocities of waves passing through it on the way to seismic stations would 

increase as they reach it after passing the low-velocity zone. Because of this 

unusual velocity-depth relation, the receiver functions would register a 

negative trough as a sign that a Ps conversion took place. For a depth of 

300km these troughs would be expected a little more than 30 seconds after 

the P-wave arrival. 

From the receiver functions included in Appendix B ten stations recorded 

clearly visible troughs near the expected time. The depths calculated from 

these arrival times using the IASP91 model are given in Table 6.4 below, 

and are illustrated in figure 6.4. 

As the seismic velocities beneath the craton were shown to be higher than 

those quoted in the IASP91 model, the depths tabulated above are 

underestimates by between 5 and 20 km. 
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Table 6.4 

Depths of a possible velocity rev~ using the IASP91 seismic velocities 

Station Depth(km) Station Depth(km) 

SAl8 294 SA40 29S 

SA19 294 SA46 302 

SA24 300 SASS 294 

SA2S 304 SAS6 289 

SA39 296 SA59 290 

With only 10 positive results, this is by no means conclusive evidence for 

the presence of a low-velocity zone. However, the consistency of these 

depths and the obvious prominence of some of the troughs recorded (e.g. 

SA24 and SA40) suggest that the zone does in fact exist from the depth of 

around 300-310km. As this is a phenomenon of Archean cratons, predictably 

the evidence for it was not registered by the single active station off the 

Kaapvaal craton, SA 12. It is interesting to note that the stations on the 

Zimbabwe craton (SA76, SA78 and SA79) also did not register any 

evidence for the existence of this zone. This further demonstrates the 

significant difference between the two cratons. 

The existence of this anomaly would mean that the results for the 410- and 

660-km discontinuities were not precise. By modifying the program to 

accommodate the velocity reversal it was checked that, depending on the 

magnitude of the velocity change, the depths obtained in the previous two 

sections would decrease by only a maximum of 3km. This would not, 

however, change the size of the transition zone, as the low-velocity zone 

does not influence velocities below the 410-km discontinuity, and therefore 

the actual depths of the two discontinuities would not be influenced. 
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The magnitude of the velocity drop has been estimated by Vinnik et ale 

(1995) to be about 3%. To compensate for this the velocities above this zone 

should be 1 % higher than originally calculated from arrival times of 

converted phases (as the low-velocity zone has the thickness of 

approximately 113 of the mantle/crust above it). This would make the mantle 

velocities up to a depth of -300km in the Kimberley region and other 

sections of the craton higher than global averages by up to 6% and 3%, 

respectively. In the low velocity zone these values would drop by the 3% 

mentioned above - to 3% and 0%, respectively. 

A cross-section through the Kaapvaal craton and its surrounding areas 

illustrating the upper mantle features discussed in this chapter is shown in 

figure 6.5. The figure also contains percentage values by which the seismic 

velocities in a particular region differ from the global averages. 
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Fig 6.50 
Diogonrl abng which the cross-section 
01 the c raton is shown in b) 
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Fig 6.5b 
Cross-section of the crmon along the diagonal shown in oj 
usng results for the crustal thk::kness Irem Chapter 5 and 
the upper mantle structures d iscussed in this chapter. 
Percentages indicate how the velocill€S Jl a specific 
region compare to global overages. 
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Chapter 7 

Study of the Kimberley Area 

7.1 The data set 

In this chapter the data used comes fTom [he seismil.: events recorded by [he 

closely-packed array near Kimberley, described in section 3.3 and illustrated 

in Figure :1.2. The array was deployed li lT a relatively short lime (only 7 

months), and only 4 events of quality sufliciently high for the purpose of this 

study were recorded in lhallilllc. Ilowcvcr, with :12 stations pla(;cs in such 

close proximity (no two stations are more than 50krn apart), there were 128 

individuallra(;(~s, over 100 of wh ich were or very good qual ity and could be 

used for a comprehensive study. The details of these events are tabulated 

below, while their locations are shown in Figure 7.1. The ray parameters 

were computed using the program TTlMS (described in Appendix C) used 

by Chevrot & Girardin (2000). 

Table 7. 1 

Llat~ Lat. Long. Loc. Uepth Mag. ! Ray parameter Dis\. R.w , 
'f9{J63 2H.343~ 57.193E lc~ , 33k.m 6.S , O.OS);7 sikm 64.); 31.4 I , , 

I Cj9{iin 
-
30.SI2~ 79.403E Nepal ! lSk.m 6.6 0.0495 sikm 78.7 45.8 

99{J93 16.660S 72.662W 'oru 87km 6.2 0.0424 sikm 88.4 251.9 

, \l9IHi 29.50 1N 51.RROE [ran 33km 63 O.OS9S sil..m 63.6 26.3 

The datos tJ <;e<i ill thi, tabl. aT~ in th e num~,.icat f<)I"m'~ wh ich v"" oc"'"T"ibcJ in ",din" 5.:' 
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Fig 7.1 

Locat'pns of the 4 earthqlJoo.es used In this stlJcty 
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7.2 Data processig 

The deconvolution process used in this chapter is similar to that described in 

Chapter 4~ but there were some significant differences in the approach. AU 

the data were processed using the Seismic Handler (SH) software, developed 

at the Seismological Central Observatory at the University of Erlangen by 

Stammler (1992) as part of his PhD research. This software enables the user 

to perform various mathematical procedures (such as rotations and 

deconvolution) on seismographs read into the program. The AH format 

necessary to read in a seismic record can be obtained from SAC format 

using the SAC2AH program, which is described in Appendix C. 

For each of the four events chosen the three principal components (Z, Nand 

E) were rotated to the L, SV and SH axes. L is along the P .. wave principal 

motion direction, SV, also known as Q, is the P-wave propagation plane and 

is normal to L, and SH is normal to both L and Q. An additional rotation is 

performed using an angle that is calculated from the radial and vertical 

components correlation matrix (Vinnik 1977). 

The L component is then deconvolved from the horizontal components 

using the mathematics introduced in Chapter 4. The deconvolution 

procedure suppresses the effects of the source (rupture process, magnitude) 

and of the wave propagation before the converting interface (Chevrot & 

Girardin 2000). After this operation the resulting Q-component trace is the 

required receiver function, which contains aU the information related to the 

P-S conversions at the seismic discontinuities beneath the station. 

The most significant difference between this approach and the one used 

earlier in the study, is that the Q-components is devoid of P .. wave energy, 

unlike the radial component which contained a peak representing the arrival 

of aU P-wave energy in the window. It is obviously vital to know the arrival 
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time of the P-wave with respect to the converted phases, and therefore it is 

important to align all the Q-traces correctly, since the P arrival is not 

registered in them. This can be done easily using the T -ORIGIN function 

with which Seismic Handler is equipped, and which shifts all traces 

accordingly to align them in phase with each other. 

7.3 P-S conversion results 

The four events chosen were filtered (high pass at 0.2Hz) to improve the 

signal to noise ratio, and were then deconvolved using the procedure 

described above. After all the Q-component traces were aligned to set the 

arrival of the P-wave at time = 0, they were cut for a time window from 10 

seconds before the P arrival up to 100 seconds after it, and were then stacked 

together for individual events. The resulting four stacks are illustrated in 

Figure 7.2. These receiver functions are dominated by arrivals of converted 

phases, as the direct P-wave energy has been mostly eliminated. A clear Ps 

from the Moho is present in all the stacks at about 5 seconds, while the Ppps 

and ppss phases are clearly seen between 15 and 20 seconds. 

To study the discontinuities in the upper mantle, a Seismic Handler function 

STACK was used. This function reads in an the available traces (Q­

components in this case) from all the events, and using the locations and 

depths of the different events as wen as exact positions of recording stations, 

produces a so-called depth stack, which takes into account the varying ray 

parameters and exact arrival times. This depth stack (Figure 7.3) is a series 

of stacks computed by varying these parameters for converted phases 

produced at different depths. Any feature implying a converted phase arrival 

is expected to be best focused at the stack corresponding to the depth it came 

from. Prominent arrivals will be seen throughout the depth stack, but win 
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Stacks of Q-components of receiver functions of the 99063, 99081, 99093 and 99126 events 
showing P-S converted phases. The direct P-wave antval was at 0 seconds, but Is not seen as 
aU Its energy was In the l-component perpendicular to Q, 
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still be best defmed at the individual stack corresponding to the depth it was 

produced at. In this study stacks were computed at depth intervals of 40 kID. 

7.3.1 The Moho 

The Ps wave produced at the Moho is the first significant feature of the 

depth stack. At the 40km stack its arrival was measured at 4.1 seconds. 

Since the ray parameter of the events has already been taken into account, 

we can use equation (4.11): 

h = At . (vp' vr.) I (vp - vs) 

, 
Using vp = 6.5 kmls and Vs = 3.8 kmls we obtain the crustal thickness as 

37.3km, which is consistent with the results from Chapter 5, where the 

Moho depths for the stations near Kimberley were between 36 and 38 kID. 

The next significant phases are the Ppps and the characteristic trough of 

ppss. These were observed at 14.6 and 18.6 seconds respectively. Later in 

this chapter they will be used to obtain a more accurate crustal thickness, as 

well as in the calculation for the Poisson ratio of the Kimberley crust. 

7.3.2 The transition zone 

The P 410S phase appears fairly prominently throughout the depth stack. At 

the stack corresponding to the depth of 400km, its arrival has been timed at 

41.9 seconds. The P 66()S is not very clear at the shallower stacks, but focuses 

clearly as a peak at 65.7 seconds at the correct depth. These results give the 

travel time of the converted S .. wave through the transition zone as 23.8 

seconds. This is exactly the same time as the one found by Vinnik et ale 

(1996b) in their study of the area, having observed the two phase arrivals at 

41.8 and 65.6 seconds, respectively. 
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This time of 23.8 seconds corresponds to the global average predicted by 

the IASP91 model (Kennett & Engdahl 1991) and confirmed by the global 

study ofChevrot et al. (1999). This implies that beneath Kimberley the 410-

and 660-km discontinuities occur very close to their namesake depths. Since 

the size of the transition zone depends on the mantle temperature (see 

section 6.4), the average thickness of 250 kID implies that this temperature in 

the region must be close to the global average. 

The mantle in the Kimberley region is therefore relatively hotter than in the 

surrounding cratonic areas (using results from Chapter 6, which were 

unfortunately not conclusive), but is not unusually hot compared to global 

measurements. This is therefore consistent with the deduction that the 

anomalously large heat flow in southern Africa (discussed in section 1.4) is 

caused by the contents of the crust, and not high mantle temperatures. 

The IASP91 model expects the arrivals ofP.lloS phase 44.1 seconds after the 

primary P-wave arrival, while the global study of Chevrot et al. (1999) finds 

this phase between 41.8 and 49.8 seconds. These variations are caused by 

different seismic velocities in different regions. All stations set within 

Precambrian platforms registered this phase earlier than 43 seconds, 

confirming that in these areas wave velocities are faster than elsewhere. The 

results obtained in this study imply that the Archean upper mantle beneath 

Kimberley is fast even by Precambrian standards; in fact the seismic 

velocities in this region are as fast as anywhere else in the world, and up to 

5% faster than the global average. 

7.3.3 The velocity reversal zone 

This zone could be identified by the presence of an 'inverted' phase arrival. 

As the velocities increase when they pass across it on the way to the station, 

77 



Univ
ers

ity
 of

 C
ap

e T
ow

n

the result would be a trough in the receiver function. Two of these troughs 

can be seen about 10 seconds before the arrival of the P410S phase. At the 

correct depth they focus at 31.9 and 34.2 seconds respectively. These times 

correspond to depths of about 305 and 330 km. The troughs seem 

sufficiently prominent to suggest that a velocity reversal zone may exist in 

the Kaapvaal craton. There is no evidence, however, to confIrm the claim by 

Vinnik et al. (1996b) that the upper bound of this zone occurs less than 50 

km above the 410-km discontinuity. On the contrary, the depth difference 

found in this study is closer to 100km (105 and 80 km respectively for the 

two registered troughs). 

7.3.4 The 520 .. km discontinuity 

The existence of this discontinuity has been reported very infrequently (e.g. 

Dueker & Sheehan 1998). It is certainly not a global phenomenon like the 

410- or the 660-km ones, and no physical or chemical explanation for its 

existence has been agreed upon. In this study's depth stack there exists a 

small peak at 53.3 seconds, which corresponds to a depth of about 530 km. It 

certainly suggests the presence of a discontinuity, but does not provide 

conclusive evidence for it, as the peak could be a reverberation of an earlier 

phase. 

7.3.5 Poisson's ratio 

The Poisson's ratio 0", is a quantity related to the elasticity of a medium. It 

is defIned as the ratio of lateral contraction to the longitudinal extension of 

the body when it is placed under stress (Bullen & Bolt 1947). It can be 

expressed in terms of two Lame elastic parameters, Iv and J.1: 
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(7.1) 

By definition a perfectly elastic solid has A = Jl, and in this case 0' takes on 

the value of 0.25. A perfect fluid has Il = 0, and therefore 0' = 0.5. 

It is possible to express the ratio of primary longitudinal wave velocity to 

that of a transverse secondary wave. The relation is: 

(v';vsi = (A + 21l)/1l (7.2) 

From the two equations Poisson's ratio can be related to the P and S 

wavespeeds via the following relation: 

0' = 0.5. {l- 11 [(v';vsi - I]) (7.3) 

It is easy to see that when (v';vsi is equal to 3, as is often assumed for 

studies of the crust (Zandt et ale 1995), 0' is then 0.25, the value predicted for 

a perfectly elastic solid. 

The ratio provides much tighter constraints on the crustal composition than 

either the compressional or the shear velocity alone (Chevrot & van der Hilst 

2000). Laboratory experiments (Christensen 1996) have shown that many 

physical and chemical factors may induce variations of the average crustal 

Poisson's ratio. The abundance of quartz (0' = 0.09) and plagioclase feldspar 

(0' = 0.30) have a dominant effect on the Poisson's ratio of common crustal 

rocks. An increase of plagioclase content and a decrease of quartz can 

increase the ratio from 0.24 for a granitic rock to 0.27 for a diorite, to 0.30 

for a gabbro (Tarkov & Vavakin 1982). Poisson's ration can therefore be a 

very useful tool in crustal structure studies. 

It was pointed out by Zandt et ale (1995) that it is possible to measure the 

crustal thickness and 0' from the analysis of the travel times of the Ps and 

Ppps phases produced at the Moho discontinuity. 

In section 4.8 it was shown that the time difference between the arrival of 
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the direct P-wave and the Ps phase converted at the Moho is given by: 

At = h . [(vs•
2 - p2i12 - (vp•2 - p2)112] (7.4) 

Where h is the crustal thickness and p the ray parameter. 

Defining this time difference as tl the equation can be rewritten as: 

tl = (h/vp)' [(Vp2/V/ - p2v/il2 - (1 - p2Vp
2il2] (7.48) 

As this is the difference between the travel times of an S-wave and a P-wave 

through the crust, the time difference between the Ppps phase (2 P-wave legs 

and an S-wave leg) and the direct P-wave will be 

t2 = (h/vp) . [(Vp2/vs
2 - ply/) 112 + (1 - ply/) 112] (7.5) 

From these equations it can be seen that the travel times depend on 3 crustal 

parameters: the P-wave velocity, the vplvs ratio and h, the crustal thickness. 

A review of seismic refraction studies by Drummond & Collins (1986) gives 

average crustal P-wave velocities for Archean cratons between 6.4 and 6.5 

kmls. This study has shown that the Kimberley area has fast crustal seismic 

velocities even by Archean standards, so a value of 6.5 kmls was used. 

A computer program POISSON, described in Appendix C was then written 

to examine the variation of theoretical values oft} and t2, as h and vplvs were 

varied between 20 and 60 km, and between 1.5 and 2.1, respectively. The 

travel times thus computed were then used to calculate the amplitudes of the 

receiver function in study, looking for the pair of parameters that would give 

the highest amplitudes. The result of the program is a matrix whose values 

are the sum of the amplitudes of tl and t2, while rows and columns 

correspond to the crustal thickness and the velocity ratio that would produce 

these particular travel times. By checking the position of the highest value in 

the matrix, the actual Moho depth and the true vplvs value will be obtained. 

Of the four events used, three (99087, 99093 and 99126) had prominent 
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arrivals of the Ppps phase, and the calculation was performed for each of 

them. The resulting graphs are shown in Figure 7.4, while the table below 

shows a summary of the results. 

Table 7.2 

Results for the austal thickness and vplVa ratio analysis, uncertainty is the iteration step size 

Event H(km) vplvs 0' 

99087 36± 1 1.78 ± 0.02 0.269 ± 0.006 

99093 36± 1 1.74 ± 0.02 0.253 ± 0.006 

99126 35 ± 1 1.78 ± 0.02 0.269 ± 0.006 

The results are fairly consistent, giving the average value for Poisson's ratio 

in the region as 

0' = 0.264 ± 0.007 

This is slightly larger than the 0.25 expected for a perfectly elastic solid, but 

typical for old continental crust. The geological interpretation of this value 

fall beyond the scope of this study, but an interested reader can find relevant 

literature on the topic, e.g. Christensen (1996); Clarke & Silver (1993); 

Zandt & Ammon (1995), Zhu & Kanamori (2000). 

The depth of the Moho discontinuity was found around 36 kID, consistent 

with previous results in the study. 

7.4 S-P eODvenioDS 

7.4.1 Introduction 

Similarly to a P-wave being partially converted to an S-wave at a 

discontinuity, an S-wave could produce P .. waves under the same 

circumstances. These converted Sp phases would then travel ahead of the 

direct S-wave, and reach the receiver a time At before it. This time shift 

would be the same as between a direct P-wave and a converted Ps phase. 
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To identify these phases a different deconvolution process had to be 

performed. The Q component is the one that contains the direct S-wave 

energy, so this was deconvolved from the L and SH components, unlike the 

L that was used in the P-S conversions. The L component was the resultant 

receiver function, as it was :free of S-wave energy and contained aU the 

necessary information about Sp conversions. 

The S-P conversions are a lot more difficult to deal with, and very few 

studies of it have been attempted (e.g. James & Snoke, 1994). It is not 

known how strong the conversions into P-waves are, and as the direct S­

wave arrives much later than the direct P-w~ve, the converted phases could 

very easily arrive at about the same time as different reflected P",waves, 

making their identification very difficult. 

7.4.2 Results 

The Seismic Handler function STACK was changed slightly to produce a 

depth stack tbr the Sp phases from aU available L components of the 4 

events used in the study. This is shown in Figure 7.5. 

The depth stack is not as clear as the one showing the Ps phases (Figure 

7.3). However, a clear peak is present at 4.8 seconds, and that strongly 

suggests a conversion at the Moho. Another prominent peak at 44.1 seconds 

suggests the arrival of a phase converted at the 410-km discontinuity. 

There are many other strong peaks and troughs in the depth stack, but many 

of these might be arrivals of reflected phases of the P-wave. For a 

comprehensive study of the S-P conversions one needs a much wider variety 

of event locations, to provide a variety of different ray parameters. Even 

then the reflected P-waves will still be present, and unless these can be 

precisely identified, studies of Sp converted phases wiU not be very reliable. 
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Chapter 8 

The Kimberley Array as a Tool for Studying 
Surface Waves 

8.1 Non-random noise in seismic events 

An recordings of seismic events contain seismic noise as wen as the desired 

seismic data, and separating the two is a very important part of data 

processing (see section 4.6). Often the noise is random and incoherent, and 

can be mostly removed by filtering the traces and stacking of receiver 

functions. However, in some cases the noise is not random. This happens 

when a different seismic wave passes through the stations at the same time 

as the main event in study (e.g. Longuet-Higgins 1950; Hasselmann 1963). 

Most of the time those waves are surface waves, or, when the array is close 

to the ocean coast, ocean waves (Darbyshire 1950). A major source of noise 

in broadband seismic records are microseisms generated by wave action 

along the coast of Africa. These differ from true seismic noise by having 

shorter periods. Identification of those waves can improve the signal-to­

noise ratio of the main event, and also enable us to use the array as a tool for 

studying these surface waves. This could be very useful, as surface wave 

tomography is a powerful method of studying deep structures of continents 

(e.g. Friedrich et ala 1998; Simons et al. 1999). 

By looking at individual Q components recorded by each station for the 

99063 event (Fig 8.1), some consistent long period noise is clearly visible. 

This noise is slightly out of phase at each station, and by considering 
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positions of each of the stations it is possible to determine the direction the 

noise is coming from, as wen as its velocity. This can only be done if the 

array concerned is closely packed - if stations were too far apart traces that 

appear in phase could actuany be out by an integer number of phases. 

8.2 Resoonse of tbe array 

The response of an array as a function of the wave number k corresponds to 

the ability of the array to study incoming waves corresponding to a specific 

wave number. 

The wave number k contains all the necessary information about the wave -

its velocity as wen as the direction. 

k= (kx, ky) (8.1) 

is a 2-dimensional vector in the horizontal plane, where kx is the wave 

number in the E-W direction (West being defined as positive), and ky the 

wave number in the N-S axis (North taken as positive). 

The velocity of the incoming wave can also be determined from k, if its 

frequency is known. For any given direction 

k=ro/c (8.2) 

where c is the wave velocity and ro is related to the frequency by the relation 

ro=2rl ~~ 

By deftning the slowness of a seismic wave as 

s = 11 c 

we get 

s = kl ro 

or by using x and y components this can be expressed as 

(Sx, Sy) = (kx I ro , ky I ro) 
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The response of the array is given by: 

AR(k) = tj ei[k'Ij] (8.6) 

where j is the station index and rj is the position vector of each station from 

an arbitrarily chosen centre of the array (Monzingo & Miner 1980). 

The array response is a complex function, but for the purposes of this study 

only the modulus of its value is needed. 

The centre of the Kimberley array was chosen at 28.6 degrees South and 

24.7 degrees East (see Fig 3.2). A computer program RESPONSE was 

written to compute the modulus of the response of this array for kx and ky, 

each varying between -0.5 and 0.5. The program is described in Appendix 

C, while the result is shown in Figure 8.2. 

The response of a perfect array would be a spike at k = 0, and zero for all 

other wave numbers. Real arrays might have secondary spikes, and any 

incoming wave with that particular wave number would be very difficult to 

study using that array. The response of the Kimberley array is very good. 

There are no spikes other than the centre one that is very narrow (wave 

numbers greater than 0.1 in any direction are not affected). The fact that it is 

elliptical in the NE-SW direction could have been predicted. Most stations 

are aligned in the NW -SE axis, and therefore a wave coming from the NE or 

SW direction would pass the array faster than one coming from the NW or 

SE, increasing the inaccuracy of any studies. However, even with this 

elliptical anomaly, the array response is still very satisfactory. 

8.3 Identification of the frequency of the non-random noise 

lf the long period noise seen in Figure 8.1 is in fact a surface wave not 

connected with the main event, it would be present in the trace before the p-
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Fig 8.2 
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wave aTTival as well as after it. To identify the fi'equeney of the llI)ise and IlIlt 

that of any signal conncckd with the sc1smic event, a power sJXctnlm was 

calculakd for the section of the trace before thc P-wave arrival. I his 

spectrum can be seen in Figure 8 .. 1. 

By studying the power spectrum it is clear that there arc in fact two signals 

of different frequenc ies present. One of these has a freq uency of about 0.07 

Hz, and the ()ther about 0.2 Hz. To study these signals separately. IW() band 

pass filters were applied to the records: (Inc for frequencies bel\\'een 0.05 

and 0.1 liz. and the other between 0.1 and OJ Hz. The two resulting sets of 

data, each largely dominated bv the surfaee wave (·oncemed. were then 

interpreted individually. 

1'1.4 Plane wave heamforming 

As the plane wave passes through the array, it \\'ill reach each stati(ln al a 

different time. Hecause ortha!, the records at cach station \\'ill be slightly out 

of phase these phase shifts eould be determined if the vdocity and 

direction of the wave were known. Similarly. by knowing the phase shifts at 

eaeh of the stations it is possiblc to detcrminc thc wave number, and hence 

thc direction and velocity of the plane wave. This can be done by trying 

diflerent wave ntlmbers and shifting all traces back by the time shift which 

wOltld result from this specific wave number. The resulting stacks can then 

be correlated for being in phase, and the highest correlation coefficient 

corresponds to the tnle wave number of the incoming plane wave. This 

procedure is known as beamfarming, or t~k analysis (Jensen eta!. 1994). 

Let liS consider this for a given wave number k. rhe angle of the incoming 

\\'ave corresponding to this k, known as the beam steering angle, is given by 

fl, = arctg (k, I k) (8.7) 
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and consider an incoming plane wave 

(8.8) 

where S is the bearing angle associated with the signal, and r is any point the 

wave passes through. If the station input at point rj is multiplied by the 

complex conjugate of the plane wave phase factor roj, the field win then be 

summed in phase. This phase factor is given by 

(8.9) 

The output of this linear beamforming process is a quadratic form obtained 

by summing the phase-corrected signal and noise for each station: 

B(Ss) = I Lj ro+lSs) [Sj(S) + nj] 12 (8.10) 

Where nj is the random noise recorded by stationj, which makes [Sj(S) + nj] 

simply the trace recorded by a specific station and ro + is the complex 

conjugate of roo For more advanced beamforming techniques (not used in 

this study) see Jensen et ale (1994). 

8.S Results 

A computer program BEAM (described in Appendix C) was then written to 

perform the beamforming calculation for different wave numbers. Using the 

relation between slowness and wave number (equation 8.5), the calculation 

was done using slowness as the input parameter; Sx and Sy were both varied 

between the values of -0.5 and 0.5. 

8.5.1 The 0.05-0.1 Hz frequency band 

For this band each f-k analysis was done for a time window of 128 seconds. 

This number was chosen so that the window would contain about 10 periods 
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a back azimuth between 150 and 180 degrees, and slowness between 0.30 

and 0.35 slkm. This implies a velocity in the range of2.9-3.3 kmls. 

8.6 Diseussion 

In the above section the directions and velocities of the external surface 

waves were determined, and it would be very interesting to find out where 

they originated. Unfortunately we were not able to do this. It would have 

been possible, however, if this event was recorded by another dense array. If 

those records also contained these surface waves, their direction with respect 

to the other array could have been computed, and combining the results for 

the two arrays, we would be able to pinpoint the origin of these waves. This 

technique was successfully used by Friedrich et al. (1998) using arrays in 

Germany and Norway. 

The 0.1-0.3 Hz is a typical frequency for microseismic noise generated by 

coastal waves. It is therefore not surprising that the waves are arriving from 

the south. The 0.05-0.1 Hz band probably represents a seismic event. 

Despite being unable to identify the source of the waves, it is possible to 

identify what type they are. This can be done by considering the particle 

motion of the wave, i.e. comparing the radial, transverse and vertical 

components against each other. To obtain these components, the original E, 

N and Z components must be rotated not by the azimuth of the main event, 

but by that of the incoming wave in study. 

To do this the most interference-free time windows were chosen. For the 

0.05-0.1 Hz band the pre-P-wave window of 0-30 seconds was used, as well 

as 120-210 seconds window divided into three 30 second sections. For the 

0.1-0.3 Hz band the 15 .. 30 seconds (pre-P-wave) as well as the 250-280 

seconds divided into two 15 second windows were used. 
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These selected sections of the records were then rotate~ and graphs of the 

radial component against the transverse, as well as the vertical against the 

radial, were plotted. These can be seen in Appendix F. 

From these graphs it appears that both waves are Rayleigh waves, but the 

signals are not very clear. For a perfect Rayleigh wave both graphs should 

by ellipses polarized along the y-axis (Lay & Wallace 1995; Dahlen & 

Tromp 1998). The verticaVradial graphs all seem to follow that prediction 

with a little bit of interference clearly visible, while the radiaVtransverse 

graphs are even more distorted. These distortions probably result from the 

fact that there are 2 surface waves present, and while they are not visible in 

each other's frequency bands, it is inevitable that they will interfere with 

each other, upsetting their particular motions. Another notable feature of the 

graphs is the fact that even the clear ellipses are tilted away from the y .. axis. 

This behaviour is normally associated with anisotropy in the region. If 

anisotropy is in fact present in the region, the velocities of the same wave 

would be different in different directions. This would cause the particular 

motion graphs of surface waves to be tilted ellipses (Dahlen & Tromp 1998; 

Simons et ale 1999). 

8.7 Conclusion 

The purpose of the study in this chapter was to demonstrate how densely 

packed arrays, such as the one near Kimberley, can be used for studies that 

cannot be done with regional arrays. These have been shown to include: 

.. improving signal to noise ratio by eliminating non-random noise, 

.. identifying this noise for surface wave tomography studies, 

.. identifying sources of surface waves (if more than one array is available), 

.. studying the anisotropy in the area. 
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Chapter 9 

Discussion and Conclusion 

9.1 Results 

In this thesis it was demonstrated how the technique of receiver functions 

can be used to identify converted phases of the seismic waves, and how 

these can be used to study the discontinuities in the upper mantle and the 

depth to the base of the crust. 

In the fIrSt part of the study the variations in the crustal thickness beneath 

the craton surface were computed. Off the southwestern boundary of the 

Kaapvaal craton the values are around 45 kID, beneath the southern section 

of the craton they vary from 37 to 40 Ian (with two exceptions of 43 and 46 

Ian). Further north the depth increases up to 52 Ian. North of the Kaapvaal 

craton (on the Zimbabwe craton) stations record depths between 36 and 40 

Ian. The results follow a similar pattern to those in parallel studies, but some 

differences were noticed and discussed. 

After a study of the transition zone between the 410- and 660-km 

discontinuities, it was observed that for the most of the craton this zone has a 

greater than expected thickness, by up to 20km. This implies that the 410-

Ian discontinuity is shifted upwards by up to 10km, and the C 660' is 

depressed by approximately the same amount. From the earlier than 

expected arrival times it was deduced that the seismic velocities beneath the 

craton are above the global average. This was to be expected from a study of 

an Archean craton (Vinnik et ale 1995, 1996b). The data for this section of 

98 



Univ
ers

ity
 of

 C
ap

e T
ow

n

the study was very limited, and further analysis will be necessary to produce 

conclusive results. 

In the Kimberley region, however, the transition zone had exactly the 

expected thickness, and therefore the mantle temperature and the positions 

of the two discontinuities are very close to the global averages. The arrival 

times imply that the seismic velocities in that region are faster than any other 

place in the world studied so far. These results were consistent for both 

arrays used in this study. 

The results indicate that there is no positive thermal anomaly in the 

Kaapvaal mantle, and therefore rule out the possibility of the existence of a 

mantle plume at the base of the lithosphere (as is the case with the Tanzania 

craton, e.g. Nyblade et al. 2000). The results also reinforce the theory of 

Hart (1978) that the anomalous heat flow across southern Africa is due to 

excessive heat production in the crust, and not the asthenosphere. , 

Eventually it was shown how a close-packed array (like the one near 

Kimberley) can be used to study surface waves. If the frequency of the wave 

can be identified (using a power spectrum or any other reliable technique), 

an f-k analysis can be performed of the data fIltered in a narrow frequency 

band. The results of such analysis would supply the direction as wen as the 

velocity of the incoming wave. This information can be used to study the 

wave in detail. 

If these waves can be identified precisely, deleting them from the records of 

the main event would be a very efficient way of filtering. This method could 

enable us to use smaller events in comprehensive studies, if their signal-to­

noise ratio can be improved significantly. 
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9.2 Continuation of the Kaapvaal craton seismic project 

Unfortunately the seismic stations used in the Kaapvaal craton project have 

aU been removed, but all the recorded raw data are stored on the IRIS 

website: www.iris.edy. and a lot of interesting projects can still be done. 

The following topics are related to this study and should be used to expand 

the project in the future: 

- Examining the variations in Poisson ~ s ratio throughout the craton, 

- A more detailed study of the upper mantle discontinuities for the whole 

craton. This will be difficult using only the main array, but can be done 

with sufficiently many events. 

- Introducing surface waves to study the deep structure of the craton, using 

techniques similar to Simons et al. (1999). 

- A detailed surface wave identification using beamforming to filter as 

many events from Kimberly as possible, to produce more usable data. 
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Appendix A 

Stacks of receiver functions for individual stations used to study the crustal 

thickness in Chapter 5. 
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Appendix B 

Slacks of receiver functions for individual stations used to study the upper 

mantle structure in Chapter 6. 
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Appendix C 

Descriptions uf computer programs mcntioncu in the ll:xt. 

1J1l1~ss otherwise stated, programs written hy Jacek Stankiewicz. 

DEPTH 

Lsed in section 6.1, this EXCEL program uses the arrival time of a 

converted phase to compute the depth it was produced at, usmg SClsmlC 

velocities from the IASP91 model. The velocities given in Table 6.1 are 

programmed in the <:omputcr, and the depth of the phase concerned is 

computed as a function of two inpllt parameters: the arrival time of the 

converted phase and the ray puramctcr of the incoming signal. This is done 

using the mathematics from scdioll 4.S. The ray puramctcr is determined 

Llsing the program TriMS described below. 

TTIMS 

Used in sCl,tiun 7.1, as wdl as in tlK' program DEPTH mentioned above, the 

l!'\.i!X script written by S~'bastien Chevrot uses th~' location or a seismic 

event and the position ofreeonling: sites to compute expected trOlvel times or 

different phases nnd th~·ir ray paramders. In this study the program is Llsed 

to compme ray parameters of the Ps pl1as~'s. tt uses a UNIX wrapper 

TTIJ\.IES, written by Ray Buland. 

SAC2AH 

This SAC utility, used in section 7.2 converts seismic record tlles from SAC 
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to AH format. Given a SAC tile and a filename as input parameters, the 

progrdm will produce an AH file under the given name from the SAC file. 

POtSSON 

Used in section 7.3.5, this Matlab program eqimates the crustal thickne~~ 

and the seismic velocities ratio using arrival times of Ps and Ppps phases 

from a given event. After reading in the seismogram, the program varies the 

values of tile velocity ratio and the crustal thickness from 1.5 to 2.t in steps 

orO.Oland rrom 20 \0 60 km in steps oro.s km, respectively. For each pair 

of values it uses equation (7.4) and (7.5) to calculate expected times of 

arrival for the Ps and I-'pp~ phases, and checks the amplitudes at these values, 

adding the two together. The resulting graph shov.'s the values obtained for 

each ordered pair input. where cold eolour~ represent low amplitudes, and 

waml colOllr~ high amplitudes that correspond to the true peaks in the 

seIsmogram, and therefore the real values of velocity ratio and crustal 

thickness. 

RFSPOXSE 

Used in section g.2. this Matlab program is used to calculate the response or 

a given array. It reads in the coordinates of recording ~ites with respect to the 

centre of the array, and using equation (g.6) computes the response. !n this 

study the wave numbers in the NS and EW directions were varied from - O.S 

to 0.5 in steps ofO.O! for each axis. The output is a lOt hy 101 matrix, 

wllere eadl value in it corresponds to the response for a specific wave 

number vector. Cold colours represent low response, whilc warm ones occur 

in areas of high response, or anomalies. 

1.16 



Univ
ers

ity
 of

 C
ap

e T
ow

n

BEAM 

Used in section !l.S, this Matlah program is ll~ed to perform plane wave 

heamforming calculation. It reads in the staTion coord inaTes and the ~eismi<.: 

records of each station, and ll~es the equation (R.l 0) to do The calculation. 

Slowness is varied from ·0.5 to 0.5 in steps of 0.01, and the result is a 

matrix similar to the one from RESPONSE, where each value corresponds to 

the result for a speeifi<.: slovmess ve<.:tor. 
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Appendix D 

Results o[thc f-k analysis for the 0.05-0.1 Hz /tequency band. 

AUuchcd figUTCS arc graphic representations or matrices computed by 

program BEAM (described in Appendix C). containing values or the 

beam forming runction B(A,) for different wave numhers k. 

Cold colours l,;orrcspond to low values of B, while warm ones imply a high 

value of B. and then.'[on: correlation to the true angle or incidence of the 
. . 
lllcmnmg wave. 
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Appendix E 

Results (lfthe f-k analysis for the 0.1-0.3 IJ;>: frequency band, 

Attached figures are graphic representations of matrices computed by 

program BEAM (dcs<.:ribcd in Appendix C), (.:ontaining values of the 

beamrorming function B(e,) for different wave numbers k. 

Cold colour.; correspond to low values ofB, whili: warm ones imply a high 

value of B, ~nd therefore <:orrdation to the true angle or incidence of the 

Incommg wave. 
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Appendix F 

Particle motion graph~ lor the two identified surfncc waves. 
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