
Specifying Source Code and Signal-based Behaviour of
Cyber-Physical System Components

Joshua Heneage Dawes[0000−0002−2289−1620] and Domenico
Bianculli[0000−0002−4854−685𝑋]

University of Luxembourg, Luxembourg
{joshua.dawes,domenico.bianculli}@uni.lu

Abstract. Specifying properties over the behaviour of components of Cyber-
Physical Systems usually focuses on the behaviour of signals, i.e., the behaviour
of the physical part of the system, leaving the behaviour of the cyber components
implicit. There have been some attempts to provide specification languages that
enable more explicit reference to the behaviour of cyber components, but it remains
awkward to directly express the behaviour of both cyber and physical components
in the same specification, using one formalism. In this paper, we introduce a new
specification language, Source Code and Signal Logic (SCSL), that 1) provides
syntax specific to both signals and events originating in source code; and 2)
does not require source code events to be abstracted into signals. We introduce
SCSL by giving its syntax and semantics, along with examples. We then provide a
comparison between SCSL and existing specification languages, using an example
property, to show the benefit of using SCSL to capture certain types of properties.

Keywords: Specification Language · Temporal Logic · Source Code · Signals

1 Introduction

Analysing the behaviour of components of Cyber-Physical Systems (CPS) often involves
analysing the behaviour of the signals generated by such components. Analysis can begin
with capturing the expected behaviour of these signals using formal specifications. For
example, one could write a specification to capture the temporal property that, if a given
signal falls below a certain threshold then, no more than ten units of time later, the same
signal has risen back to a safe value again. Ultimately, deciding whether a given system
satisfies such a specification is the goal of Runtime Verification (RV) [8].

In the context of RV, a number of languages have been introduced for the CPS setting,
one of the most notable examples being Signal Temporal Logic (STL) [23]. STL is based
on Metric Temporal Logic (MTL) [22], which allows one to capture temporal properties
over atomic propositions, that is, symbols that can be associated with a Boolean value.
STL extends these propositions to be predicates over real-valued signals. For example,
one can capture the property that a signal 𝑥 should always be strictly less than 10 by
writing □ 𝑥 < 10. Here, the always temporal operator □ is inherited from MTL, while
the ability to compare the value of a signal 𝑥 with another quantity is a novelty of STL.

Another example of a specification language introduced in the context of CPS is
the Hybrid Logic of Systems (HLS) [24]. This language allows explicit reference to

2 J. H. Dawes and D. Bianculli

the behaviour of cyber and physical components of a CPS by providing access to both
timestamps and indices. Here, a cyber component is often a component that contains
software, and a physical component is one that measures a physical process. While the
timestamps provided by HLS allow one to refer, as usual, to the behaviour of some
physical process, the indices allow one to capture properties of the behaviour of cyber
components. The capture of the behaviour of cyber components assumes that behaviour
like program variable changes has been abstracted into Boolean signals, which can then
be accessed using the indices provided by HLS. Ultimately, describing the behaviour of
cyber components is more natural when using HLS than when using STL.

In the domain of cyber components, in particular capturing properties over source
code-level behaviour, recent contributions include Inter-procedural Control-Flow Tem-
poral Logic (iCFTL) [16]. iCFTL allows one to write constraints over events such as
program variable changes and function calls by providing specific syntax for doing so.

Ultimately, iCFTL and HLS are complementary: HLS allows one to capture be-
haviour of signals and cyber components of CPS, but ultimately assumes that everything
is encoded in signals. iCFTL does not support signals, but provides syntax specific to
source code-level behaviour.

Hence, in this paper we introduce Source Code and Signal Logic (SCSL), which
is a combination of iCFTL and HLS. In particular, SCSL provides syntax specifically
designed for dealing with signal and source code-level behaviour. We also introduce a
semantics that deals with traces representing CPS runs that are on-going. In line with
existing work, such as that by Bauer at al. [10,9], our semantics uses an extended truth
domain in order to deal with situations in which information that is required by a given
specification may not yet be available. Once SCSL is introduced, we then provide a
comparison of SCSL with existing specification languages, by attempting to capture a
property using those languages, along with SCSL.

Related Work. Since we provide a comparison of SCSL with existing specification
languages, our description of related work does not go into more depth with respect to
contributions from the RV community. Instead, we focus on a subset of contributions
from Model Checking, since these languages served as a starting point for a lot of
contributions from the RV community. An example of a contribution is that by Alur
et al. [6], where hybrid systems are assumed to be represented by automata augmented
with time [7]. Other contributions are numerous, ranging from providing specification
languages for model checking of systems that contain both cyber and physical compo-
nents [13] to falsification of specifications [19,5].

In contrast with the RV community, contributions from model checking focus on
static analysis of a model of the system under scrutiny. When a system involves con-
tinuous behaviour, such as signals, this can give rise to probabilistic model checking
approaches, such as the COMPASS project [12]. Our work assumes that a trace has
already been generated, either by the real system or by a simulation. Hence, we do not
consider the probabilistic setting.

Paper structure. Section 2 motivates our new language and defines its design goals. We
describe a notion of trace for CPS in Section 3. In Section 4, we introduce the concept of
hybrid traces. Section 5 presents the syntax of SCSL; Section 6 illustrates its semantics.

Specifying Source Code and Signal-based Behaviour of CPS Components 3

We present a comparison of SCSL with existing specification languages in Section 7.
Finally, Section 8 describes on-going further work, and Section 9 concludes the paper.

2 Motivation and Language Design Goals

Our main goal is to introduce a language that enables engineers to capture properties
concerning the behaviour of multiple components in the system under scrutiny. To this
end, we assume that the expression of properties concerning both the cyber and physical
components of a system can involve placing constraints over the behaviour of 1) signals
and 2) source code components (that control the signals). Hence, a specification language
that allows one to capture such properties must provide syntax (and a semantics) specific
to both of these domains.

Considering the signal and source code domains separately, the properties that one
could aim to express can be taken from HLS and iCFTL respectively. For example, over
signals, one might express the property that the value of a signal temperature never
exceeds 100. Over source code, one might express the property that one statement is
reached from another within a certain amount of time.

Let us consider a property that requires us to talk about both signals and source
code behaviour at the same time, P1: “if the value of the signal temperature exceeds
100, then the time taken to reach the next call of the function fix should not exceed
one second”. Here, we can express the two components of this property in two separate
specification languages, but it would be useful to express the property as a whole using
a single language.

Consider a further example, P2: “if the value of the signal temperature exceeds
100, then the next change of the variable adjustment must leave it with a value that
is proportional to the value of temperature”. For this property, there are no distinct
components that we could express in HLS and iCFTL; we must be able to relate a
quantity taken from source code directly to a quantity taken from a signal.

These two examples define the key design goals for our new specification language:

G1 One must be able to define constraints over signals and source code within the same
specification.

G2 One must be able to define hybrid constraints, that is, single constraints that relate
quantities from signals with quantities from source code.

Ultimately, RV serves as a supplement to existing testing approaches. Hence, while these
design goals are met by many existing specification languages, the language features
that allow them to be met introduce a lot of additional effort to the software verification
and validation process. This is discussed in depth in Section 7, which highlights the
extra effort required (for a representative set of specification languages) if one wants to
capture properties like P1 and P2.

3 Background

In line with other approaches in RV, we refer to our representation of a system’s execution
as a trace. Given our focus on the behaviour of source code-level behaviour in control

4 J. H. Dawes and D. Bianculli

components, and signal behaviour, our notion of trace must contain information from
source code-level events, and signals. Hence, we begin by describing the traces used by
iCFTL and HLS.

3.1 Traces for Signals used by HLS [24]

The traces used by HLS are intended to represent a set of signals with the assumption
that a value of each signal in the system is available at each timestamp being considered.
This assumption is encoded in the records used by HLS, which are tuples of the form
⟨ts, index, 𝑠1, . . . , 𝑠𝑛⟩, for ts a real-numbered timestamp, index an integer index and each
𝑠𝑖 representing the value of the signal 𝑠𝑖 at the timestamp ts. A signal is a sequence of
such records, with strictly increasing timestamps and consecutive indices.

3.2 Trace for Source Code used by iCFTL [16]

The traces introduced for iCFTL are tightly coupled with the source code that generated
them, in that a trace can be seen as a path through a program. To support this idea,
iCFTL introduces concrete states, which are intuitively the states reached by a program
execution after the execution of individual program statements.

Formally, a concrete state c is a triple ⟨ts, pPoint, values⟩, for ts a real-numbered
timestamp, pPoint a program point, and values a map from program variables to val-
ues. A program point pPoint is the unique identifier of the program statement whose
execution generated the concrete state. Hence, program points capture the intuition that
concrete states represent instantaneous checkpoints, within a single procedure, that a
program can reach.

For a program point pPoint, we define the predicate changed(pPoint, x) to indicate
whether the statement at the program point pPoint assigns a value to the program
variable x. Similarly, we define the predicate called(pPoint, f) to indicate whether the
statement involves a call of the function f1.

Returning to concrete states, a concrete state c = ⟨ts, pPoint, values⟩ can be said to
be attained at time ts, which we denote by time(⟨ts, pPoint, values⟩). Since a concrete
state holds a map 𝑚 from program variables to their values, we will denote values(x),
for a program variable x, by c(x).

When concrete states are arranged in a sequence (ordered by timestamps ascending),
we call a pair of consecutive concrete states a transition, often denoted by tr, because one
can consider the computation required to move from one concrete state, to the other. For
a transition tr = ⟨ts, pPoint, values⟩, ⟨ts′, pPoint′, values′⟩, we denote by time(tr) the
timestamp ts. Since transitions represent the computation performed to move between
concrete states, we can also talk about the duration of the transition tr, which we denote
by duration(tr) and define as ts′ − ts.

Ultimately, a sequence of concrete states generated by a single procedure in code
is referred to as a dynamic run D. We remark that, since we consider dynamic runs
as being generated by individual procedures, concrete states from the same procedure
execution cannot share timestamps. Further, we can consider a system consisting of

1 These predicates can be computed via static analyses of source code.

Specifying Source Code and Signal-based Behaviour of CPS Components 5

multiple procedures and group the dynamic runs (generated by each procedure) together
into a triple ⟨{D𝑖},Procs, runToProc⟩, where {D𝑖} is a set of dynamic runs, Procs is
a set of names of procedures in the program, and runToProc is a map that labels each
dynamic run in {D𝑖} with the name of a procedure in Procs. We call this triple an
inter-procedural dynamic run.

Inside an inter-procedural dynamic run, given a concrete state 𝑐 from some dynamic
run, we write proc(𝑐) to mean runToProc(D) for D being the dynamic run in which 𝑐

is found. Similarly, for a transition tr, we write proc(tr).

4 Hybrid Traces

Based on the notions of traces introduced by iCFTL and HLS, we must now combine
them to yield a kind of trace that contains both source code events, and signal entries.
Such a notion of trace will serve as the basis for SCSL. Further, we will assume that all
traces are generated by a CPS whose execution is on-going.

Our first step in combining the two notions of trace is to assume a global clock
from which all timestamps (whether they be attached to concrete states or records) can
be taken. We highlight that our approach is so far being developed in the context of
simulators, so the existence of a global clock is a reasonable assumption. With this
global clock, we collect the system’s inter-procedural dynamic run and its sequence
of records into a tuple ⟨signalNames, records, sigID, {D𝑖},Procs, runToProc⟩, whose
elements are as such:

– signalNames is a set of names of signals in the CPS.
– records is a sequence of records, each containing signal entries for each of the

signals represented in signalNames.
– sigID is a map that sends each signal name 𝑠 in signalNames to a sequence of

triples ⟨ts, index, 𝑠⟩ derived from records. These triples are obtained by projecting
the records in records with respect to the signal name 𝑠. Assuming that one has used
sigID(𝑠) to obtain a sequence of triples, we denote by sigID(𝑠) (ts) the signal value
held in the triple whose timestamp is ts. This map is included in the tuple (i.e., it is
part of the trace) so that the correspondence between signal names and sequences
of triples is fixed for a given trace.

– {D𝑖}, Procs and runToProc are as introduced earlier.

Ultimately, we refer to the tuple introduced above as a trace, which we will denote by T .
Using this notation, we will often write T (𝑠) instead of sigID(𝑠), with the understanding
that we are implicitly referring to the map sigID held in T . Hence, to refer to the value
of a signal 𝑠 at the timestamp ts in the trace T , we write T (𝑠) (ts).

Remark on obtaining traces. We highlight that, in practice, the parts of a trace that are
dynamic runs can be obtained by instrumenting the relevant source code of a CPS [15].
Further, obtaining signal entries depends heavily on the use case (i.e., whether signals
are generated by a simulator, or by physical sensors).

6 J. H. Dawes and D. Bianculli

Entry point
𝜙 → ∀𝑣 ∈ 𝑃𝑄 : 𝜙

| true | 𝜙 ∨ 𝜙 | ¬𝜙 | 𝐴
Atomic constraints

cmp → < |> |=
𝐴 → 𝑉 cmp 𝑉

Terms
𝑉 → 𝑉Ts | 𝑉𝐶 | 𝑉Tr | 𝑉m | 𝑛
𝑉Ts → signal.at(Ts) | 𝑓 (𝑉Ts)

| time(𝐶) | time(Tr)
𝑉𝐶 → 𝐶 (𝑥) | 𝑓 (𝑉𝐶)
𝑉Tr → duration(Tr) | 𝑓 (𝑉Tr)
𝑉m → TimeBetween(Ts, Ts)

Expressions
Ts → ts | 𝑛pos | Ts + Ts | time(𝐶) | time(Tr)
𝐶 → 𝑐 | ts.next(𝑃𝐶) | 𝐶.next(𝑃𝐶)

| Tr.next(𝑃𝐶) | before(Tr) | after(Tr)
Tr → tr | ts.next(𝑃Tr) | 𝐶.next(𝑃Tr)

| Tr.next(𝑃Tr)
Predicates

𝑃𝑄 → 𝑃𝑄𝑇𝑠 | 𝑃𝑄𝐶 | 𝑃𝑄𝑇𝑟

𝑃QTs → [Ts, Ts] | (Ts, Ts)
𝑃QC → 𝑃𝐶 | 𝑃𝐶 .after(Ts)
𝑃𝐶 → changes(var).during(proc)
𝑃QTr → 𝑃Tr | 𝑃Tr .after(Ts)
𝑃Tr → calls(proc1).during(proc2)

Fig. 1: The syntax of SCSL.

5 SCSL syntax

We now introduce the syntax of SCSL, which allows one to construct specifications
over traces, as defined in Section 4. We give the syntax as a context-free grammar in
Figure 1, in which all uses of non-terminal symbols are highlighted in blue. The rules
given in the grammar are divided into groups that cover the key roles of certain parts
of specifications. Further, 𝑛 is a constant, and 𝑛pos is a real number that is greater than
zero.

Entry point. A specification is constructed by first using the rule 𝜙. This allows one to
generate a quantifier, along with a subformula that will be subject to the quantification.
The role of a quantifier is to capture events from a trace, including concrete states,
transitions, and timestamps of signal entries. Hence, quantifiers consist of a predicate
𝑃𝑄 and a variable 𝑣; 𝑃 captures values from a trace, which are each bound to 𝑣 ready to
be used elsewhere in the specification.

Aside from the form of quantifiers enforced by the grammar, we place two additional
constraints: 1) if a quantifier is not the root quantifier in a specification, it must depend
on its closest parent quantifier (i.e., it must use the timestamp of the event captured by
its parent quantifier to capture events that occur after that event); and 2) a specification
can have no free variables.

Predicates. The predicates that one can use are arranged in the grammar by what they
capture: timestamps (𝑃QTs), concrete states (𝑃QC), or transitions (𝑃QTr).

Atomic constraints. Once a quantifier has been used to assign values to a variable, the
next step is to define constraints over those values. This is done using the rule 𝐴, which
generates a comparison between two terms, that is, strings obtained using the rule 𝑉 .
These terms represent values that are obtained by extracting certain information from

Specifying Source Code and Signal-based Behaviour of CPS Components 7

concrete states, transitions or timestamps. For example, from a concrete state c, one
might wish to refer to the value of the program variable x in that state, so one would use
𝑉𝐶 to generate c(x).

Expressions. Using variables from quantifiers, one can either place a constraint on
the immediate value held by those variables, or one can search forwards in time using
a specific criterion. For example, given a concrete state c, one could denote the next
transition after c in the trace by c.next(𝑃Tr). A predicate could then be generated using
𝑃Tr to reflect the desired criterion.

5.1 Examples

We now present two sets of example SCSL specifications, and show how the design
goals introduced in Section 2 are met.

Artificial examples Our first set consists of artificial examples that have been con-
structed to showcase the expressive power of SCSL.

Example 1 “Whenever the signal temperature drops below 100 during the first 10
minutes of a system run, the time until the variable flag in the procedure monitor is
changed should be no more than 1 second.”

∀ts ∈ [0, 60 ∗ 10] : temperature.at(ts) < 100 →
TimeBetween(ts, time(ts.next(changes(flag).during(monitor)))) ≤ 1

(E1)

In this specification, we refer to the value of the signal temperature at the timestamp
held in the variable ts, and we refer to the time taken to reach a specific variable change,
from the time ts.

This specification shows that we have met design goal G1, because we can refer to
both signals and source code events in the same specification.

Example 2 “If the procedure adjust is called by the procedure control, then the
signal temperature should be equal to 100 within 1 second.”

∀tr ∈ calls(adjust).during(control) :
duration(tr) < 1 ∧ ∃ts ∈ [time(tr), time(tr) + 1] : temperature.at(ts) = 100

(E2)
In this specification, we use the time at which a given function was called to select
timestamps, and then refer to a signal value at each of the timestamps identified.

Example 3 “Within the first ten seconds of a CPS execution, the value of the program
variable x in the procedure p should reflect the value of the most recent value of the
signal signal”

∀ts ∈ [0, 10] : signal.at(ts) = ts.next(changes(x).during(p)) (x), (E3)

8 J. H. Dawes and D. Bianculli

This specification involves the comparison of a value extracted from a signal, and a
value extracted from a program variable.

This specification shows that we have met design goal G2, because we can write a
single atomic constraint that uses information from a signal entry, and from a source
code event.

The ArduPilot system The ArduPilot [3] system acts as an autopilot for various types
of vehicle both in the simulation setting and in the real-world setting. Here, we give
examples derived by inspecting the source code found in their GitHub repository [4].
We have simplified the names of some program variables and procedures to save space.

Example 4 This property is derived from the code in the file fence.cpp [2]. In this
code, the procedure fence check checks for the copter leaving some safe region, called
a fence. To this end, a program variable new breaches holds each example of a breach
of the fence that has been detected. If the copter strays more than 100 m outside the
fence, its mode is set to landing by a call of the function set mode. Hence, the property
“If a copter strays more than 100 m outside a fence, the mode should be changed within
1 unit of time” can be expressed as follows:

∀𝑞 ∈ changes(new breaches).during(fence check) :
(𝑞(new breaches) ≠ null ∧ distFence.at(time(𝑞)) > 100)
→ TimeBetween(time(𝑞),

time(before(𝑞.next(calls(set mode).during(fence check))))) ≤ 1
(E4)

We have introduced the signal distFence, which we assume contains a value representing
the distance of the copter from the fence in metres.

Example 5 This property is derived from the code in the file crash check.cpp [1].
In this file, the procedure thrust loss check checks the behaviour of the copter’s
thrust. This involves checking the attitude, the throttle, and the vertical component of
the velocity. If the checks reveal a problem, set thrust boost is called.

A property capturing this behaviour could be “If (a) The attitude is less than or equal
to an allowed deviation; (b) The throttle satisfies the predicate 𝑃; and (c) The vertical
component of velocity is negative; then set thrust boost should be called within 1
unit of time”, which could be captured by the specification

∀ts ∈ [0, 𝐿] : (att.at(ts) < maxDev ∧ 𝑃(thr.at(ts)) ∧ vel𝑧 .at(ts) < 0) →
∃𝑐 ∈ calls(set thrust boost).during(thrust loss check).after(ts) :

TimeBetween(ts, time(before(𝑐))) ≤ 1.
(E5)

for 𝐿 some positive real number. Here, we assume that att (attitude), thr (throttle), and
vel𝑧 are signals. In order to refer to their values over time, we quantify over the interval
[0, 𝐿] using the variable ts. We take maxDev to be a constant, and 𝑃 to be some atomic
constraint allowed by the syntax in Figure 1 (both to be decided by the engineer).

Specifying Source Code and Signal-based Behaviour of CPS Components 9

T , 𝛽, ts ⊢ [Ts1, Ts2] iff getVal(T , 𝛽, Ts1) ≤ ts ≤ getVal(T , 𝛽, Ts2)
T , 𝛽, ts ⊢ (Ts1, Ts2) iff getVal(T , 𝛽, Ts1) < ts < getVal(T , 𝛽, Ts2)
T , 𝛽, ⟨ts, pPoint, values⟩ ⊢ changes(x).during(func)

iff changed(pPoint, x) and proc(⟨ts, pPoint, values⟩) = func
T , 𝛽, 𝑞 ⊢ changes(x).during(func).after(Ts)

iff time(𝑞) > eval(T , 𝛽, Ts) and T , 𝛽, 𝑞 ⊢ changes(x).during(func)
T , 𝛽, tr ⊢ calls(f).during(func) iff called(pPoint′, f) and proc(tr) = func
T , 𝛽, tr ⊢ calls(f).during(func).after(Ts)

iff time(tr) > eval(T , 𝛽, Ts) and T , 𝛽, tr ⊢ calls(f).during(func)

Fig. 2: The valuation relation for SCSL. Timestamps ts are assumed to be in some
record. Transitions tr denote, as defined in Section 3.2, pairs of concrete states
⟨ts, pPoint, values⟩, ⟨ts′, pPoint′, values′⟩.

6 Semantics

We now introduce a function that takes a trace and an SCSL specification, and gives
a truth value reflecting the status of the trace, with respect to the specification. For
example, if the trace satisfies the specification (that is, holds the property captured
by the specification), then our function should give a value that indicates as such. The
situation should be similar if the trace does not satisfy the specification. However, if there
is not enough information in the trace to decide whether it satisfies the specification,
then our function should give a value reflecting this.

Our semantics function makes use of multiple components, including 1) a way to
extract the information from a trace that is needed by a term (§ 6.1); and 2) a way to
determine the truth value of an atomic constraint and, from there, the specification as a
whole (§ 6.2).

6.1 Determining values of terms

We will support our introduction of the first components of our semantics for SCSL
using the specification in Example E2.

This example includes the atomic constraints duration(tr) < 1 and temperature.at(
ts) = 100, along with a quantifier whose predicate is [time(tr), time(tr) + 1]. In each
case, there is an expression, or a term, whose value we must determine, given either the
transition held in the variable tr, or the timestamp held in the variable ts. To this end, we
introduce the eval and getVal functions. Leaving a complete definition to Appendix A,
we consider how these functions would be applied to the various components of our
running example:

First, consider the atomic constraint duration(tr) < 1. Deciding a truth value for
this atomic constraint requires us to determine 1) the transition held by the variable tr,
and 2) the duration of that transition. In this case, the getVal function is responsible for
deriving the final value of duration(tr), while the eval function is used to determine the
transition held by tr. For temperature.at(ts) = 100, the getVal function must determine
the value to which the term temperature.at(ts) evaluates. This then requires the eval

10 J. H. Dawes and D. Bianculli

function to determine the timestamp held by the variable ts. For [time(tr), time(tr) +1],
in order for the getVal function to determine the relevant values, the eval function is
needed to determine the value stored in the variable tr, whose timestamp can then be
extracted.

In all three cases, we need the eval function to determine the value held by a variable.
Hence, we need some structure that quantifiers can use to communicate the values that
they capture with the eval function. We call such a structure a valuation, which is a
map that associates with each variable in a specification a concrete state, transition or
timestamp.

Using this idea, we can say that the eval function will take a trace, a valuation, and
an expression, and return a unique result. In addition, we say that the getVal function
will take a trace, a valuation, and a term, and return a unique result. Hence, we will
write eval(T , 𝛽, expr) and getVal(T , 𝛽, term).

This notation is used by Figure 2, which gives a recursive definition of the valuation
relation. This relation defines which concrete states, transitions, or timestamps are
captured by a predicate, hence providing a way to construct valuations. The relation
also makes use of the changed(pPoint, x) and called(pPoint, f) predicates defined in
Section 3.2.

We conclude our description of the eval function and the valuation relation with two
remarks.

Returning null. We do not assume that traces will always contain the information that
a given term references. For example, a specification might refer to c.next(changes(x)
.during(p)), but we might work with a trace that does not contain the relevant concrete
state. To deal with such cases, we allow the eval and getVal functions to return null.

Interpolation of signals. Suppose that a specification contains the atomic constraint
signal.at(Ts) < 1, where Ts is some expression that yields a timestamp. Depending
on the expression Ts, the signal signal is not certain to have a value at that timestamp.
Hence, we must interpolate. Our strategy in this work is to find the closest timestamp
in the future at which the signal has a value. Interpolation, a common practice in CPS
monitoring [24], is required because, otherwise, one would have to know the precise
timestamps of events for a given CPS run.

6.2 A semantics function

We next introduce a semantics function that takes a trace, along with an SCSL spec-
ification, and yields a truth value reflecting the status of that trace with respect to the
specification. Our semantics function assumes that the trace given represents a CPS
execution that is on-going. In particular, our semantics function holds the impartial-
ity property [9], that is, it does not generate a definitive verdict, rather a provisional
one, since processing further events can lead to a change in verdict. Specifically, our
semantics function declares falseSoFar, inconclusive, or trueSoFar. These truth values
have the total ordering falseSoFar < inconclusive < trueSoFar. We also have that
trueSoFar ≡ falseSoFar, and inconclusive ≡ inconclusive. In order to generate truth
values in either of these domains, our semantics function works as follows: for a given

Specifying Source Code and Signal-based Behaviour of CPS Components 11

[T , 𝛽,∀𝑣 ∈ 𝑃 : 𝜑] = .
𝑣 ⊢ 𝑃 [T , 𝛽 † [𝑐 ↦→ 𝑣], 𝜑] [T , 𝛽, 𝜑1 ∨ 𝜑2] = [T , 𝛽, 𝜑1] ⊔ [T , 𝛽, 𝜑2]

[T , 𝛽,¬𝜑] = [T , 𝛽, 𝜑] [T , 𝛽, true] = true

[T , 𝛽,𝑉1 cmp 𝑉2] =



trueSoFar getVal(T , 𝛽,𝑉1) ≠ null and getVal(T , 𝛽,𝑉2) ≠ null

and getVal(T , 𝛽,𝑉1) cmp getVal(T , 𝛽,𝑉2)
falseSoFar getVal(T , 𝛽,𝑉1) ≠ null and getVal(T , 𝛽,𝑉2) ≠ null

and ¬(getVal(T , 𝛽,𝑉1) cmp getVal(T , 𝛽,𝑉2))
inconclusive otherwise

Fig. 3: The semantics function for SCSL.

trace, an appropriate truth value is computed by recursing on the structure of a speci-
fication, computing a truth value for each subformula. Truth values come from atomic
constraints, by deciding the truth value of each constraint with respect to the information
available in the trace. These truth values are then propagated up through the specification
by the recursion. In line with this intuition, a semantics function is presented in Figure 3.
The function takes a trace T , a valuation 𝛽, and a subformula 𝜑, and computes a truth
value. We now give a brief description of the approach taken by each case in Figure 3
to evaluate a given part of a specification.

– Computing [T , 𝛽,∀𝑣 ∈ 𝑃 : 𝜑] consists of computing the greatest-lower-bound of
the set of truth values [T , 𝛽 † [𝑣 ↦→ 𝑒], 𝜑], for each 𝑒 (whether it be a concrete
state, a transition or a timestamp) that satisfies 𝑃, according to the relation defined
in Figure 2. The †, or map amend, operator is used to extend valuations with new
values. For example, 𝑎 † [𝑣 ↦→ 𝑛] refers to the map that agrees with the map 𝑎 on
all values except 𝑣, which it sends to 𝑛. This operator is used to extend a valuation
once a 𝑣 that satisfies 𝑃 has been found.

– Computing [T , 𝛽, 𝜑1 ∨ 𝜑2] consists of computing the truth values of the two dis-
juncts, and then computing their least-upper-bound.

– Computing [T , 𝛽,¬𝜑] consists of taking the complement of [T , 𝛽, 𝜑].

– Computing [T , 𝛽, true] consists of deciding on a truth value for this case requires no
further computation, other than taking the truth value already used in the subformula.

– Computing [T , 𝛽,𝑉1 cmp 𝑉2] involves the weight of the work performed by the
semantics, and is responsible for generating truth values that are propagated up
through the specification. Specifically, provisional truth values are generated, in-
cluding trueSoFar, inconclusive, and falseSoFar, depending on whether 1) the
information necessary was found in the trace; and 2) that information satisfies the
constraint in question.

12 J. H. Dawes and D. Bianculli

Table 1: Comparison of specification languages and their features.
Sts SindexXsig Xcode X𝑙𝑙 Xhet XindexXts Xmetric

SCSL ✓ × ✓ ✓ ✓ ✓ × ✓ ×
LTL × ✓ × × × × × × ×
MTL ✓ × × × × × × × ✓
TLTL × ✓ × × × × × ✓ ×
HyLTL × ✓ ✓ × × ✓ × × ×
STL ✓ × ✓ × ✓ × × × ✓
STL* ✓ × ✓ × ✓ × × × ✓
STL-mx ✓ ✓ ✓ × ✓ ✓ × × ✓
HLS ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ×
SB-TemPsy ✓ × ✓ × ✓ × × ✓ ✓

7 Language Comparison

We now present a comparison of SCSL with existing specification languages, in order
to demonstrate the novelty of this new language. Table 1 presents an initial comparison
by highlighting a number of key features, which are defined as follows:

Sts Whether a specification language’s semantics is defined using timestamps to refer
to entries in the trace. The form of such entries differs according to the specification
language. For example, STL’s semantics considers the pair (𝑠, 𝑡) of a signal 𝑠 and a
timestamp 𝑡, and uses the timestamp 𝑡 to refer to the signal 𝑠 at the given timestamp.

Sindex Whether a specification language’s semantics is defined using indices to refer to
entries in the trace. For example, LTL’s semantics considers the pair (𝜔, 𝑖) for a
trace 𝜔 and index 𝑖.

Xsig Whether a specification language provides syntax specific to signals. For example,
HLS provides the @t operator, which enables one to write (𝑠 @t 𝑡) to refer to the
value of the signal 𝑠 at time 𝑡.

Xcode Whether a specification language provides syntax specific to events generated at
the source code level. For example, SCSL enables one to easily measure the duration
of a function call with duration(tr) (for tr holding a transition).

X𝑙𝑙 Whether a specification language’s syntax is at a low level of abstraction with respect
to the system being monitored. For example, LTL abstracts behaviour into atomic
propositions, whereas SCSL assumes that traces contain explicit representations of
key events, such as program variable value changes and function calls.

Xhet Whether a specification language provides explicit support for heterogeneity (com-
ponents of multiple types, such as sensors and source code-based control compo-
nents). For example, with SCSL one can write the constraint that 𝑞(x) = s.at(𝑡),
which involves measurements taken from both signal behaviour and source code
execution. Hence, SCSL can be said to support heterogeneity.

Xindex Whether a specification language allows reference to events in a trace by their
index. For example, HLS enables one to get the event in a signal based on its index
by writing (𝑠 @i 𝑖) for a signal 𝑠 and an index 𝑖.

Specifying Source Code and Signal-based Behaviour of CPS Components 13

Xts Whether a specification language allows explicit reference to timestamps. For ex-
ample, TLTL provides the ◁ operator, which gives the timestamp of the most recent
occurrence of some atomic proposition.

Xmetric Whether a specification language’s temporal operators are augmented with met-
rics. For example, MTL attaches a metric to its temporal operator U, yielding the
operator U[𝑎,𝑏] .

Justifications of our classification of each language are presented in Appendix B. Ul-
timately, Table 1 demonstrates the key feature of SCSL: syntax specific to the domain
of application, which is signal and source code-based behaviour. In particular, though
displaying only a representative set of languages, the table illustrates that the languages
introduced by or adapted for the RV community offer a high level of abstraction with
respect to the system being analysed. When considering specifications that talk about
the behaviour of cyber components, this leads to the need to define a correspondence
between runtime events and symbols used in a specification. While this approach often
enables a language to be highly expressive (with the addition of complex modal opera-
tors), the use of generalised syntax means that expressing simple properties (such as the
time taken by a function call) requires effort beyond simply writing the specification.

We now demonstrate the usefulness of SCSL by attempting to express the property
“whenever the program variable x is changed, eventually there is a call of the function
f that takes less than 1 unit of time” in each of the languages previously discussed. We
remark that we have opted to use a property that does not require reference to signals so
that we can include a wider range of languages in our comparison. In addition, we will
consistently make use of the following atomic propositions:

– changedx to represent whether the program variable x has been changed.
– calledf to represent whether the function f has been called.
– returnedf to represent whether the function f has returned.

Linear Temporal Logic (LTL) [25]. This language has a high level of abstraction
and provides complex modal operators. Its semantics is over untimed words, that is,
sequences of atomic propositions that encode discrete time.

While expressing the example property is possible in LTL, effort would be required
to define the correspondence and ensure that the specification was properly written
to capture the variable change and function call behaviour (such as the combination
of passing control to a function, and control being returned to the caller). Such a
correspondence would make use of changedx, calledf and returnedf, but would also
include timeLessThan1, representing whether the time that elapsed since the last call to
f is less than 1 unit of time. We might then write the specification

□ (changedx → ♢ (calledf → ♢ (returnedf ∧ timeLessThan1)))

with globally, □, and eventually, ♢, having the expected semantics.
One can see that much of the actual computation required for checking the property

would be migrated to the definition of the correspondence between runtime events and
atomic propositions.

14 J. H. Dawes and D. Bianculli

Metric Temporal Logic (MTL) [22]. This language extends LTL by attaching metrics to
modal operators, allowing time constraints to be placed on the occurrence of events. The
semantics of MTL is defined over timed words, which are sequences of atomic proposi-
tions with timestamps attached. Using the correspondence defined at the beginning of
this section, we could then write the specification

□ (changedx → ♢ (calledf → (♢[0,1] returnedf))).

A new operator is ♢𝐼 , which is the metric eventually operator. For example, ♢[𝑎,𝑏] 𝑝

means that, eventually, after a number of units of time in the interval [𝑎, 𝑏], 𝑝 will
become true.

Timed Linear Temporal Logic (TLTL) [10]. This language extends LTL with clock
variables, which take the form of additional syntax used to check the time since/until
an event occurred/will occur. Using the correspondence defined at the beginning of this
section, we could then write the specification

□ (changedx → ♢ (calledf → ♢ (returnedf∧ ◁calledf< 1))).

Here,◁calledf refers to the time at which the atomic proposition calledf was most recently
true.

Hybrid Linear Temporal Logic (HyLTL) [13]. This language supports hybrid behaviour,
meaning a combination of discrete and continuous behaviour, by extending LTL. Ex-
pressing the example property would be similar to LTL.

Signal Temporal Logic (STL) and variants [23,14,20]. Signal Temporal Logic [23],
Signal Temporal Logic with a freeze quantifier (STL*) [14], and Mixed Time Signal
Temporal Logic (STL-mx) [20] are all temporal logics whose semantics are defined
over real-valued functions. While STL-mx is aimed at the heterogeneous setting (sup-
porting both dense and discrete time), STL and STL* do not provide direct support for
heterogeneity.

Since the behaviour of heterogeneous systems could be supported via instrumenta-
tion, one could capture the example property by abstracting the relevant system behaviour
into signals, and using STL or its variants to express properties over that abstraction.
However, this approach would require effort to 1) abstract complex behaviour into sig-
nals; and 2) correctly capture properties over such behaviour as properties over signals.

The Hybrid Logic of Systems (HLS) [24]. This language is a linear time, temporal logic
whose semantics is defined over sequences of records, which are tuples ⟨𝑡, 𝑖, 𝑣1, . . . , 𝑣𝑛⟩
for 𝑡 a timestamp, 𝑖 an index, and 𝑣𝑖 signal values. Expressing the example property would
require abstraction of the variable change and function call/return behaviour required
by the property into Boolean signals. It would then be possible to use timestamp and
index-based quantifiers to imitate the semantics of the modal operators provided by the
other temporal logics considered so far. Hence, the atomic propositions used in previous
examples would be interpreted as Boolean signals (to use the terminology in Section 4,
sequences of records that associate timestamps with truth values). One further signal,

Specifying Source Code and Signal-based Behaviour of CPS Components 15

timeSinceCallf, would be necessary, to capture the amount of time since the most recent
call of the function f. We assume that this signal would be computed given the other
three signals.

We must then translate the modal operator □ into HLS, which can be expressed by
∀𝑡 ∈ [0, 𝐿], for 𝐿 the length of the trace being considered. Further, we can translate ♢
into HLS by writing ∃𝑡 ∈ [𝑡′, 𝐿], for some starting timestamp 𝑡′ and 𝐿 again the length
of the trace. Using this translation, the example property can be expressed as

∀𝑡 ∈ [0, 𝐿] : ((changedx @t 𝑡) = 1 → ∃𝑡′ ∈ [𝑡, 𝐿] :
((calledf @t 𝑡′) = 1 → ∃𝑡′′ ∈ [𝑡′, 𝐿] :

((returnedf @t 𝑡′′) = 1 ∧ (timeSinceCallf @t 𝑡
′′) < 1)

)
).

SB-TemPsy-DSL [11]. This language is a domain-specific, pattern-based language de-
signed for expressing properties such as spiking, oscillation, undershoot and overshoot
of signals. Its syntax follows the “scope” and “pattern” structure proposed by Dwyer et
al. [18]. Its semantics is defined over traces which are assumed to be functions from
timestamps to valuations of all signals being considered.

While runtime events can be extracted into signals, it would be non-trivial to express
the property under consideration in SB-TemPsy-DSL, since the syntax focuses on a
specific set of behaviours that a continuous signal could demonstrate.

Source Code and Signal Logic. Given our classification of SCSL, we highlight that:

– The lack of explicit referencing of indices (Xindex) is not a disadvantage because
SCSL provides syntax specific to certain behaviour of cyber components of systems
(namely source code level behaviour).

– The lack of metrics (Xmetric) does not pose a problem because one can make explicit
reference to timestamps.

The example property could be expressed as

∀𝑞 ∈ changes(x).during(p) : ∃ts ∈ [time(𝑞), 𝐿] :
duration(ts.next(calls(f).during(p))) < 1.

where p is a procedure in the source code of the CPS under scrutiny, and 𝐿 is the length
of the trace.

Importantly, here there is no need for definition of a correspondence between runtime
events and symbols used in the specification. We acknowledge that this specialisation
of the syntax means that SCSL can only be used to express properties concerning the
behaviour for which it was specifically designed. However, we argue that this enables a
more intuitive language to be developed.

Ultimately, SCSL is a language with which one can capture source code and signal-
based properties by referring directly to the events with which the properties are con-
cerned.

16 J. H. Dawes and D. Bianculli

7.1 Implications for Software Verification and Validation processes

Throughout this section, we have seen that, while many existing languages allow one
to capture the types of specifications with which this work is concerned, considerable
additional work is usually required.

Taking TLTL as an example, if events that take place during an execution of a CPS are
correctly encoded as atomic propositions, it is indeed possible to capture properties that
concern both signals and source code-level events. However, this places considerable
pressure on engineers to correctly define this correspondence. SCSL, on the other hand,
is designed specifically for the signal and source code-level of granularity, meaning that
there is no effort in the software verification and validation process beyond writing (and
maintaining) the specification.

Similarly to the argument used in the initial introduction of CFTL [17] (the language
that inspired iCFTL), we observe that, in some cases, the requirement to define a
correspondence between runtime events and atomic propositions in a specification can
be beneficial. In fact, such an approach can lead to a specification language that can be
used to capture properties across a wide range of behaviours. This is indeed the case
for the Java-MaC framework [21], in which one must first construct a specification,
and then use a separate language to define the correspondence between runtime events
and atomic propositions in the specification. However, as we have seen in this section,
for a specific domain of application, it can be beneficial to use a language with specific
features.

8 Ongoing Work

Our current work involves evaluating monitoring algorithms that we have developed for
SCSL, based on the semantics given in Section 6. The evaluation has two objectives:
investigating the performance of our monitoring algorithms in various situations (i.e.,
for various specifications and traces); and investigating the expressiveness of SCSL. We
will test the expressiveness by selecting open source projects and attempting to capture
representative requirements from those projects using SCSL.

Preliminary evaluations have given promising results, showing that it is feasible to
construct algorithms for monitoring for SCSL specifications in settings where 1) the
trace is still being observed, as the system under scrutiny continues executing; and 2)
the entire trace has already been observed. When the trace is still being observed, our
preliminary results show that our online monitoring algorithm that can keep up with
high event rates generated by systems under scrutiny. Alternatively, when the entire
trace has already been observed, our results show that our offline monitoring algorithm
scales approximately linearly with the trace length, in terms of time taken and memory
consumed. Ultimately, due to space restrictions, we cannot include descriptions of these
algorithms or preliminary results in this paper.

9 Conclusion

In this paper, we have introduced the new specification language SCSL, which al-
lows engineers to explicitly specify the behaviour of source code-based components

Specifying Source Code and Signal-based Behaviour of CPS Components 17

and signal-generating components of CPS. Our introduction of this new language has
included a syntax, a semantics (suitable for the online and offline settings), and a compar-
ison with existing specification languages using an example property. This comparison
highlighted the benefits of SCSL: a syntax specialised to source code and signal-level
behaviour, along with a semantics that assumes traces that contain information specific
to signals and source code-level events.

As part of future work, we plan to investigate characteristics of SCSL, such as
monitorability and satisfiability of specifications, along with diagnostics of specification
violations. We also plan to carry out an extensive evaluation of the expressiveness of
SCSL in the CPS domain.

Acknowledgments. The research described has been carried out as part of the COSMOS
Project, which has received funding from the European Union’s Horizon 2020 Research
and Innovation Programme under grant agreement No. 957254.

References

1. Copter::crash check function - ArduPilot. https://github.com/ArduPilot/
ardupilot/blob/a40e0208135c73b9f2204d5ddc4a5f281000f3f1/ArduCopter/

crash_check.cpp#L100, accessed: 2022-04-13
2. Copter::fence check function - ArduPilot. https://github.com/ArduPilot/
ardupilot/blob/36f3fb316acf71844be80e0337fdc66515b4cf50/ArduCopter/

fence.cpp#L9, accessed: 2022-04-13
3. The ArduPilot autopilot. https://ardupilot.org, accessed: 2022-04-13
4. The ArduPilot GitHub repository. https://github.com/ArduPilot/ardupilot, ac-

cessed: 2022-04-13
5. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Probabilistic Tem-

poral Logic Falsification of Cyber-Physical Systems. ACM Trans. Embed. Comput. Syst.
12(2s), 95:1–95:30 (2013). https://doi.org/10.1145/2465787.2465797, https://doi.org/
10.1145/2465787.2465797

6. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X., Olivero, A.,
Sifakis, J., Yovine, S.: The Algorithmic Analysis of Hybrid Systems. Theor. Comput. Sci.
138(1), 3–34 (1995). https://doi.org/10.1016/0304-3975(94)00202-T, https://doi.org/
10.1016/0304-3975(94)00202-T

7. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theor. Comput. Sci. 126(2), 183–
235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8, https://doi.org/10.1016/
0304-3975(94)90010-8

8. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to Runtime Verification.
In: Lectures on Runtime Verification. Introductory and Advanced Topics, Lecture Notes in
Computer Science, vol. 10457, pp. 1–33. Springer (Feb 2018). https://doi.org/10.1007/978-
3-319-75632-5 1, https://hal.inria.fr/hal-01762297

9. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Run-
time Verification. Journal of Logic and Computation 20(3), 651–674 (02 2010).
https://doi.org/10.1093/logcom/exn075, https://doi.org/10.1093/logcom/exn075

10. Bauer, A., Leucker, M., Schallhart, C.: Runtime Verification for LTL and TLTL. ACM
Trans. Softw. Eng. Methodol. 20(4) (sep 2011). https://doi.org/10.1145/2000799.2000800,
https://doi.org/10.1145/2000799.2000800

https://github.com/ArduPilot/ardupilot/blob/a40e0208135c73b9f2204d5ddc4a5f281000f3f1/ArduCopter/crash_check.cpp#L100
https://github.com/ArduPilot/ardupilot/blob/a40e0208135c73b9f2204d5ddc4a5f281000f3f1/ArduCopter/crash_check.cpp#L100
https://github.com/ArduPilot/ardupilot/blob/a40e0208135c73b9f2204d5ddc4a5f281000f3f1/ArduCopter/crash_check.cpp#L100
https://github.com/ArduPilot/ardupilot/blob/36f3fb316acf71844be80e0337fdc66515b4cf50/ArduCopter/fence.cpp#L9
https://github.com/ArduPilot/ardupilot/blob/36f3fb316acf71844be80e0337fdc66515b4cf50/ArduCopter/fence.cpp#L9
https://github.com/ArduPilot/ardupilot/blob/36f3fb316acf71844be80e0337fdc66515b4cf50/ArduCopter/fence.cpp#L9
https://ardupilot.org
https://github.com/ArduPilot/ardupilot
https://doi.org/10.1145/2465787.2465797
https://doi.org/10.1145/2465787.2465797
https://doi.org/10.1145/2465787.2465797
https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://hal.inria.fr/hal-01762297
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800

18 J. H. Dawes and D. Bianculli

11. Boufaied, C., Menghi, C., Bianculli, D., Briand, L., Parache, Y.I.: Trace-Checking
Signal-Based Temporal Properties: A Model-Driven Approach. In: Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
p. 1004–1015. ASE ’20, Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3324884.3416631, https://doi.org/10.1145/
3324884.3416631

12. Bozzano, M., Bruintjes, H., Cimatti, A., Katoen, J.P., Noll, T., Tonetta, S.: COMPASS 3.0.
In: Vojnar, T., Zhang, L. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 379–385. Springer International Publishing, Cham (2019), https://doi.org/
10.1007/978-3-030-17462-0_25

13. Bresolin, D.: HyLTL: a temporal logic for model checking hybrid systems. Elec-
tronic Proceedings in Theoretical Computer Science 124, 73–84 (Aug 2013).
https://doi.org/10.4204/eptcs.124.8, http://dx.doi.org/10.4204/EPTCS.124.8

14. Brim, L., Dluhos, P., Safránek, D., Vejpustek, T.: STL*: Extending sig-
nal temporal logic with signal-value freezing operator. Inf. Comput. 236, 52–
67 (2014). https://doi.org/10.1016/j.ic.2014.01.012, https://doi.org/10.1016/j.ic.
2014.01.012

15. Dawes, J.H.: Towards Automated Performance Analysis of Programs by Runtime Verification
(2021), https://cds.cern.ch/record/2766727

16. Dawes, J.H., Bianculli, D.: Specifying Properties over Inter-procedural, Source Code
Level Behaviour of Programs. In: Feng, L., Fisman, D. (eds.) Runtime Verification. pp.
23–41. Springer International Publishing, Cham (2021), https://doi.org/10.1007/
978-3-030-88494-9_2

17. Dawes, J.H., Reger, G.: Specification of Temporal Properties of Functions for Runtime
Verification. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Com-
puting. pp. 2206–2214. SAC ’19, Association for Computing Machinery, New York,
NY, USA (2019). https://doi.org/10.1145/3297280.3297497, https://doi.org/10.1145/
3297280.3297497

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for Finite-State
Verification. In: Proceedings of the 21st International Conference on Software Engineering.
p. 411–420. ICSE ’99, Association for Computing Machinery, New York, NY, USA (1999).
https://doi.org/10.1145/302405.302672, https://doi.org/10.1145/302405.302672

19. Fainekos, G., Hoxha, B., Sankaranarayanan, S.: Robustness of Specifications and Its Ap-
plications to Falsification, Parameter Mining, and Runtime Monitoring with S-TaLiRo. In:
Finkbeiner, B., Mariani, L. (eds.) Runtime Verification. pp. 27–47. Springer International
Publishing, Cham (2019), https://doi.org/10.1007/978-3-030-32079-9_3

20. Ferrère, T., Maler, O., Ničković, D.: Mixed-Time Signal Temporal Logic. In: André,
É., Stoelinga, M. (eds.) Formal Modeling and Analysis of Timed Systems. pp. 59–
75. Springer International Publishing, Cham (2019), https://doi.org/10.1007/
978-3-030-29662-9_4

21. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: A Run-time As-
surance Approach for Java Programs. Formal Methods in System Design 24, 129–155 (03
2004). https://doi.org/10.1023/B:FORM.0000017719.43755.7c

22. Koymans, R.: Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Syst.
2(4), 255–299 (Oct 1990). https://doi.org/10.1007/BF01995674, https://doi.org/10.
1007/BF01995674

23. Maler, O., Nickovic, D.: Monitoring Temporal Properties of Continuous Signals. In:
Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. pp. 152–166. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

https://doi.org/10.1145/3324884.3416631
https://doi.org/10.1145/3324884.3416631
https://doi.org/10.1145/3324884.3416631
https://doi.org/10.1007/978-3-030-17462-0_25
https://doi.org/10.1007/978-3-030-17462-0_25
https://doi.org/10.4204/eptcs.124.8
http://dx.doi.org/10.4204/EPTCS.124.8
https://doi.org/10.1016/j.ic.2014.01.012
https://doi.org/10.1016/j.ic.2014.01.012
https://doi.org/10.1016/j.ic.2014.01.012
https://cds.cern.ch/record/2766727
https://doi.org/10.1007/978-3-030-88494-9_2
https://doi.org/10.1007/978-3-030-88494-9_2
https://doi.org/10.1145/3297280.3297497
https://doi.org/10.1145/3297280.3297497
https://doi.org/10.1145/3297280.3297497
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/978-3-030-32079-9_3
https://doi.org/10.1007/978-3-030-29662-9_4
https://doi.org/10.1007/978-3-030-29662-9_4
https://doi.org/10.1023/B:FORM.0000017719.43755.7c
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674

Specifying Source Code and Signal-based Behaviour of CPS Components 19

24. Menghi, C., Viganò, E., Bianculli, D., Briand, L.: Trace-Checking CPS Properties: Bridging
the Cyber-Physical Gap. In: Proceedings of the 43rd International Conference on Software
Engineering (ICSE’21), May 23–29, 2021, Virtual Event, Spain. pp. 847–859. IEEE, Los
Alamitos, CA, USA (May 2021)

25. Pnueli, A.: The temporal logic of programs. In: 2013 IEEE 54th Annual Sympo-
sium on Foundations of Computer Science. pp. 46–57. IEEE Computer Society, Los
Alamitos, CA, USA (oct 1977). https://doi.org/10.1109/SFCS.1977.32, https://doi.
ieeecomputersociety.org/10.1109/SFCS.1977.32

https://doi.org/10.1109/SFCS.1977.32
https://doi.ieeecomputersociety.org/10.1109/SFCS.1977.32
https://doi.ieeecomputersociety.org/10.1109/SFCS.1977.32

20 J. H. Dawes and D. Bianculli

A The eval and getVal functions

Here, we define the eval and getVal functions that are used by the semantics in Section 6.
Intuitively, eval function identifies concrete states, transitions and timestamps from a
trace, based on an expression and a valuation. The getVal function then extracts values
from those objects, in order to determine the value indicated by a term in a specification.

A recursive definition of the eval function is given in Figure 4, and a recursive
definition of the getVal function is given in Figure 5. In the following sections, we
describe how these functions work.

A.1 The eval function

Since the eval function is responsible for identifying concrete states, transitions and
timestamps, given expressions, this function is defined for each possible expression that
can be generated by the grammar in Figure 1.

For example, the timestamp given by the expression time(𝐶) (with respect to a trace
T and a valuation 𝛽) is obtained by 1) determining the unique concrete state identified
by𝐶; and 2) determining the timestamp held by that concrete state. This process requires
a recursive call of eval on the expression 𝐶. Further, we also distinguish between the
information being found in the trace, and not being found, by either returning the actual
timestamp that is needed, or null.

A.2 The getVal function

Since the getVal function is responsible for extracting appropriate values from concrete
states, transitions or timestamps, this function generally follows the pattern of 1) obtain-
ing the relevant object using the eval function; and 2) accessing the relevant information
in this object.

For example, suppose that we have the term signal.at(Ts), along with a trace T
and a valuation 𝛽. The first step in determining a value for the term is to determine the
timestamp to which the expression Ts evaluates under the valuation 𝛽. For this, we use
the eval function. Once we have the relevant timestamp, we can refer to the value given
by the signal signal in T at time eval(T , 𝛽, Ts). Notice that, if eval gives null, then we
must also evaluate the value of the overall term to null.

B Language comparison

We now justify the characterisation of specification languages given in Section 7.

LTL

Sts (×) The semantics of LTL assumes that traces are sequences of untimed atomic
propositions; the only notion of order comes from the index that one can assign to
each atomic proposition based on its position in the sequence. Hence, timestamps
are not involved.

Specifying Source Code and Signal-based Behaviour of CPS Components 21

eval(T , 𝛽, ts) = 𝛽(ts)

eval(T , 𝛽, 𝑐) = 𝛽(𝑐)

eval(T , 𝛽, tr) = 𝛽(tr)

eval(T , 𝛽, time(𝐶)) =
{

time(eval(T , 𝛽, 𝐶)) eval(T , 𝛽, 𝐶) ≠ null

null otherwise

eval(T , 𝛽, time(Tr)) =
{

time(eval(T , 𝛽, Tr)) eval(T , 𝛽, Tr) ≠ null

null otherwise

eval(T , 𝛽, before(Tr)) =
{
𝑠 such that eval(T , 𝛽, Tr)) = ⟨𝑠, 𝑠′⟩ eval(T , 𝛽, Tr) ≠ null

null otherwise

eval(T , 𝛽, after(Tr)) =
{
𝑠′ such that eval(T , 𝛽, Tr)) = ⟨𝑠, 𝑠′⟩ eval(T , 𝛽, Tr) ≠ null

null otherwise

eval(T , 𝛽, 𝐶.next(calls(𝑓).during(𝑝))) =

tr, if there is a tr such that:
𝜂(T , 𝛽, , tr, 𝐶) and T , tr ⊢ calls(𝑓).during(𝑝)
and there is no tr′ such that:

time(eval(T , 𝛽, 𝐶)) < time(tr′) < time(tr) and T , tr′ ⊢ calls(𝑓).during(𝑝)

null otherwise

where 𝜂(T , 𝛽, tr, 𝐶) = (time(tr) ≥ time(eval(T , 𝛽, 𝐶)))

eval(T , 𝛽, Tr.next(calls(𝑓).during(𝑝))) =

tr, if there is a tr such that:
𝜂(T , 𝛽, tr, Tr) and T , tr ⊢ calls(𝑓).during(𝑝)
and there is no tr′ such that:

time(eval(T , 𝛽, Tr)) < time(tr′) < time(tr) and T , tr′ ⊢ calls(𝑓).during(𝑝)

null otherwise

where 𝜂(T , 𝛽, tr, Tr) ={
time(tr) > time(eval(T , 𝛽, Tr)) T , eval(T , 𝛽, Tr) ⊢ calls(𝑓).during(𝑝)
time(tr) ≥ time(eval(T , 𝛽, Tr)) otherwise

eval(T , 𝛽, ts.next(calls(𝑓).during(𝑝))) =

tr, if there is a tr such that:
𝜂(T , 𝛽, tr, ts) and T , tr ⊢ calls(𝑓).during(𝑝)
and there is no tr′ such that:

eval(T , 𝛽, ts) < time(tr′) < time(tr) and T , tr′ ⊢ calls(𝑓).during(𝑝)

null otherwise

where 𝜂(T , 𝛽, tr, ts) = (time(tr) ≥ eval(T , 𝛽, ts))

Fig. 4: The eval function for SCSL.

22 J. H. Dawes and D. Bianculli

getVal(T , 𝛽, 𝑛) = 𝑛, a constant

getVal(T , 𝛽, time(𝐶)) =
{

time(eval(T , 𝛽, 𝐶)) eval(T , 𝛽, 𝐶) ≠ null

null otherwise

getVal(T , 𝛽, time(Tr)) =
{

time(eval(T , 𝛽, Tr)) eval(T , 𝛽, Tr) ≠ null

null otherwise

getVal(T , 𝛽, signal.at(Ts)) =
{
T (signal) (eval(T , 𝛽, Ts)) eval(T , 𝛽, Ts) ≠ null

null otherwise

getVal(T , 𝛽, 𝐶 (𝑥)) =
{
eval(T , 𝛽, 𝐶) (𝑥) eval(T , 𝛽, 𝐶) ≠ null

null otherwise

getVal(T , 𝛽, duration(Tr)) =
{

duration(eval(T , 𝛽, Tr)) eval(T , 𝛽, Tr) ≠ null

null otherwise

getVal(T , 𝛽,TimeBetween(Ts1, Ts2)) =
eval(T , 𝛽, Ts2) − eval(T , 𝛽, Ts1) eval(T , 𝛽, Ts1) ≠ null and

eval(T , 𝛽, Ts2) ≠ null

null otherwise

Fig. 5: The getVal function for SCSL.

Sindex (✓) The LTL semantics is purely index-based, since this is the only information
held in traces that can be used to infer an ordering.

Xsig (×) LTL does not provide specific syntax for dealing with signals; it only deals
with atomic propositions.

Xcode (×) While it was introduced for expressing properties over program behaviour,
LTL does not provide specific syntax for source code level properties. Such prop-
erties must be captured by defining a correspondence between runtime events and
atomic propositions.

X𝑙𝑙 (×) LTL uses atomic propositions, therefore LTL specifications have a high level of
abstraction with respect to the system whose behaviour they describe.

Xhet (×) LTL does not explicitly support expression of properties concerning the be-
haviour of heterogeneous systems.

Xindex (×) While LTL’s semantics considers indices, one cannot refer directly to these
indices in specifications.

Xts (×) LTL does not deal with timestamps, so one cannot refer directly to timestamps
(or events in traces at those timestamps).

Xmetric (×) LTL does not provide temporal operators with metrics attached, for example,
to capture the property “𝑏 should be true within at most 5 indices of 𝑎 being true”.

MTL

Specifying Source Code and Signal-based Behaviour of CPS Components 23

Sts (✓) The semantics of MTL assumes that traces are timed words, that is, each entry
in a trace is a combination of atomic propositions and timestamps.

Sindex (×) The MTL semantics is purely timestamp-based, using timestamps to refer to
moments in which a set of atomic propositions are true.

Xsig (×) MTL does not provide specific syntax for dealing with signals; it only deals
with atomic propositions.

Xcode (×) MTL does not provide specific syntax for source code level properties. Such
properties must be captured by defining a correspondence between runtime events
and atomic propositions.

X𝑙𝑙 (×) MTL uses atomic propositions, therefore MTL specifications have a high level
of abstraction with respect to the system whose behaviour they describe.

Xhet (×) MTL does not explicitly support expression of properties concerning the be-
haviour of heterogeneous systems.

Xindex (×) MTL does not allow one to refer directly to indices and use these to refer to
events in a trace.

Xts (×) MTL assumes that traces contain timing information, but this cannot be obtained
directly and cannot be used to refer to events in a trace.

Xmetric (✓) MTL provides metric temporal operators that allow one to not only spec-
ify modal constraints on sequences of events, such as “𝑏 appears eventually if 𝑎
appears”, but also to put a constraint on when 𝑏 should appear.

TLTL

Sts (×) The semantics of TLTL assumes that traces are timed words, that is, each entry
in a trace is a combination of atomic propositions and timestamps. However, these
timestamps are only used in combination with clock variables, and not as a way to
order events in the semantics.

Sindex (✓) The TLTL semantics is purely index-based, with timestamps held in timed
words only being used by metric temporal operators.

Xsig (×) TLTL does not provide specific syntax for dealing with signals; it only deals
with atomic propositions.

Xcode (×) TLTL does not provide specific syntax for source code level properties. Such
properties must be captured by defining a correspondence between runtime events
and atomic propositions.

X𝑙𝑙 (×) TLTL uses atomic propositions, therefore TLTL specifications have a high level
of abstraction with respect to the system whose behaviour they describe.

Xhet (×) TLTL does not explicitly support expression of properties concerning the
behaviour of heterogeneous systems.

Xindex (×) TLTL does not allow one to refer directly to indices and use these to refer to
events in a trace.

Xts (✓) TLTL assumes that traces contain timing information, and allows one to obtain
the timestamp at which an atomic proposition was most recently true, or will next
be true.

Xmetric (×) TLTL does not provide metric temporal operators. Instead, it provides access
to clock variables in syntax, which enables the expression of timing constraints by
referring to the value of clock variables.

24 J. H. Dawes and D. Bianculli

HyLTL

Sts (×) The semantics ofHyLTL assumes that traces are infinite sequences that combine
discrete and continuous behaviour, but still uses indices to refer to each instance of
behaviour.

Sindex (✓) The HyLTL semantics is purely index-based, with timestamps only being
used to check whether the continuous component of the system being checked
satisfies some flow constraints.

Xsig (✓) HyLTL enables one to construct constraints over trajectories, which describe
the behaviour of the continuous component of a system. Since these trajectories
could often be signals, we say that HyLTL does indeed provide signal-specific
syntax.

Xcode (×) HyLTL was introduced to extend LTL to the hybrid system setting. The
extension is performed assuming a higher level of abstraction than source code.

X𝑙𝑙 (×) HyLTL uses atomic propositions, therefore HyLTL specifications have a high
level of abstraction with respect to the system whose behaviour they describe.

Xhet (✓) HyLTL supports expression of properties concerning the behaviour of both
continuous and discrete behaviour of hybrid systems.

Xindex (×) HyLTL does not provide syntax to refer directly to the index of an event in a
trace.

Xts (×) HyLTL does not provide syntax to refer directly to timestamps associated with
any event in a system.

Xmetric (×) HyLTL does not provide metric temporal operators, only providing the same
temporal operators as those provided by LTL.

STL, STL* and STL-mx

Sts (✓) The semantics of STL (and each variant) assumes real-valued functions, and
performs evaluation by referring to each timestamp at which these functions are
defined. STL-mx combines dense and discrete time, but ultimately still assumes
signals to be real-valued functions.

Sindex (mixed) The semantics of STL and STL* are purely timestamp-based. The se-
mantics of STL-mx are both timestamp and index-based.

Xsig (✓) STL and its variants provide syntax to refer to values of real-valued functions.
If these functions are seen as representing signals, then one can say that STL and
its variants support signals.

Xcode (×) Neither STL nor its variants provide the ability to refer to events in source
code.

X𝑙𝑙 (✓) All three variants can be used to capture properties directly over signals, so
we say that they have a low level of abstraction. However, it should be noted that
STL-mx supports heterogeneity (via support for dense and discrete time), but the
syntax used for discrete time is taken from LTL.

Xhet (mixed) Neither STL nor STL* explicitly enables the expression of properties
concerning behaviour of multiple types of components (e.g., cyber and physical
components). However, STL-mx enables expression of properties concerning sys-
tems with both cyber (discrete time) and physical (dense time) components.

Specifying Source Code and Signal-based Behaviour of CPS Components 25

Xindex (×) None of the variants of STL that we consider deal with indices of events;
values of real-valued functions are referred to via timestamps (which are not explicit,
instead being computed by the semantics).

Xts (×) Despite each of the variants being considered working with real-valued func-
tions, there is no syntax provided for explicitly referring to timestamps.

Xmetric (✓) All variants of STL provide metric temporal operators.

HLS

Sts (✓) The semantics of HLS involves recursing over the structure of a specification,
while maintaining a map from variables used in quantifiers to timestamps or indices.
Hence, one can say that HLS uses timestamps in its semantics.

Sindex (✓) HLS allows quantification over indices.
Xsig (✓) HLS provides syntax specific to referring to signals at both indices and times-

tamps.
Xcode (×) While HLS provides indices to enable one to reference the behaviour of cyber

components, it does not allow explicit references to source code.
X𝑙𝑙 (✓) Since HLS assumes traces to be signals, we say that it has a low level of

abstraction with respect to signal-based behaviour. However, it should be noted
that HLS has a high level of abstraction with respect to the behaviour of cyber
components (that it indirectly supports via indices), because that behaviour must be
encoded into signals.

Xhet (✓) HLS enables timestamp-based referencing of events generated by physical
components, and index-based referencing of events generated by cyber components.

Xindex (✓) HLS provides access to indices, either via quantifiers or via accessing the
indices of individual records in a trace.

Xts (✓) HLS provides access to timestamps, either via quantifiers or via accessing the
timestamps of individual records in a trace.

Xmetric (×) HLS does not provide modal operators, hence does not provide model op-
erators with metrics.

SB-TemPsy-DSL

Sts (✓) The semantics of SB-TemPsy-DSL is defined based on intervals of timestamps.
Sindex (×) The semantics of SB-TemPsy-DSL is defined based on intervals of times-

tamps, so does not refer to indices.
Xsig (✓) SB-TemPsy-DSL is a language for expressing properties over signals, so pro-

vides syntax specific to signals.
Xcode (×) SB-TemPsy-DSL does not provide any specific syntax for source code but, as

with other purely signal-based languages, one could use it to express such properties
by mapping events generated by source code at runtime onto Boolean signals.

X𝑙𝑙 (✓) SB-TemPsy-DSL assumes traces to be signals, and provides syntax such as
exists spike in 𝑠 (for some signal 𝑠) for capturing specific properties of signal-
based behaviour. Hence, given that it is a domain-specific language, we say that it
has a low level of abstraction.

26 J. H. Dawes and D. Bianculli

Xhet (×) SB-TemPsy-DSL does not provide explicit support for heterogeneous systems;
its focus is signals. Though one can place constraints over multiple signals, the focus
must still always be on signals.

Xindex (×) SB-TemPsy-DSL does not provide access to indices.
Xts (✓) SB-TemPsy-DSL provides explicit access to timestamps in its syntax. Because

of the intrinsic restriction due to the pattern-based syntax, timestamps can only be
referred to in the context of a (specific type of) scope.

Xmetric (✓) SB-TemPsy-DSL does not provide temporal operators, therefore also does
not provide metric temporal operators. However, we say that SB-TemPsy-DSL does
indeed use metrics because of its if p then . . . syntax, where then can be followed
by a within operator. The options for this operator include further syntax such as
exactly, at most and at least. The presence of this syntax gives one the
ability to assert that some behaviour in the signal should be observed, subject to
some timing constraints. Hence, this is a form of metric.

SCSL

Sts (✓) The semantics of SCSL involves recursing over the structure of a specification
and building up a map from variables in quantifiers, to timestamps, concrete states,
or transitions. Hence, the semantics can be said to involve timestamps.

Sindex (×) The semantics of SCSL does not use indices to refer to events in a trace.
Xsig (✓) SCSL provides syntax specific to expressing constraints over signals.
Xcode (✓) SCSL provides syntax specific to expressing constraints over events generated

by source code.
X𝑙𝑙 (✓) SCSL specifications refer directly to the events that they consider, so no corre-

spondence between runtime events and symbols in the specification need be defined.
Hence, we say that SCSL specifications have a low level of abstraction.

Xhet (✓) SCSL provides syntax for capturing properties concerning both the behaviour
of signals and the behaviour of source code-based components. Hence, we say that
SCSL supports heterogeneous behaviour.

Xindex (×) SCSL does not provide syntax for referring directly to indices.
Xts (✓) SCSL provides syntax specifically for referring to timestamps (including quan-

tifiers and operators for obtaining the timestamp of a given concrete state or transition
in a trace).

Xmetric (×) SCSL does not provide the temporal operators seen in other languages, such
as LTL and MTL, hence does not provide metric temporal operators.

	Specifying Source Code and Signal-based Behaviour of Cyber-Physical System Components

