P. E. Sischka

University of Luxembourg

Contact: Philipp Sischka, University of Luxembourg, Department of Behavioural and Cognitive Sciences, Porte des Sciences, L-4366 Esch-sur-Alzette, philipp.sischka@uni.lu

The WHO-5 Well-Being Index – Validation based on item response theory and the analysis of measurement invariance across 35 countries

Session: Various approaches to reducing measurement error

Trier, 2021, July 23th

Contents lists available at ScienceDirect

Journal of Affective Disorders Reports

Research Paper

The WHO-5 well-being index – validation based on item response theory and the analysis of measurement invariance across 35 countries

Philipp E. Sischka a, Andreia P. Costa , Georges Steffgen , Alexander F. Schmidt

*Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-aur-Alzette, Luxemb

ARTICLE INFO

Keywords: WHO 5 Item response theory Measurement invariance Differential kem functioning Cross-cultural research Stott scale Well-being

ABSTRAC

Background: The five-item World Health Organization Well-Being Index (WHO-5) is a frequently used brief standard measure in large-scale cross-cultural clinical studies. Despite its frequent use, some psychometric questioner meant that concern the choice of an adequate line response theory (RET) model, the evaluation of reliability a important cutoff points, and most importantly the assessment of measurement invariance across countries.

Method: Data from the 6th European Working Condition survey (2015) were used that collected nationally representative samples of employed and self-employed individuals (N = 43,669) via computer-aided personal interviews arous 38 European countries, but a begth Rit rangish was conducted for each country, fusting different IRT assumptions (e.g., unkinemistonality), comparing different IRT-models, and calculating reliabilities. Purthermore, neasurement invariance analysis was conducted with the recently proposed alignment processed assumed processed and the control of the control of

Furthermore, measurement into unner analysis was conducted with the recently proposed algument procedure. Results: The guide response model fitted the data bets for all counties. Furthermore, full resuments owner mostly fulfilled. The WHO-5 showed overall and at critical prints high reliability. Measurement invariance analysis revealed metric invariance bull-critical scalar invariance assecutories. Analysis of the test characteristic curves of the aligned graded response model indicated low levels of differential test functioning at medium levels of the WHO-5, but differential test functioning in crossed at more critems levels.

Limitations: The current study has no external criterion (e.g., structured clinical interviews) to assess sensitivity and specificity of the WHO-5 as a depression screening-tool.

Conclusions: The WHO-S is a psychometrically sound measure. However, large-scale cross-cultural studies should employ a latent variable modeling approach that accounts for non-invariant parameters across countries (e.g., alignment).

State of the art

The WHO-5 well-being index

- One of the most widely used measure for subjective well-being (Topp et al., 2015)
 - suicidology (Sisask et al.,2008)
 - geriatrics (Allgaier et al., 2013)
 - youth problems (Rose et al., 2017)
 - alcohol abuse (Elholm et al., 2011),
 - diabetes (Halliday et al., 2017)
 - occupational psychology (Sischka et al., 2020)
 - ...
- Measures a global hedonic dimension of well-being (Bech, 2012)

State of the art

Psychometric properties of the WHO-5

- Research on (~213 studies; Topp et al., 2015)
 - sensitivity and specificity to detect depression (M_{sensitivity} = .86, M_{specificity} = .81)
 - internal consistency (Cronbach's Alpha)
 - unidimensionality (EFA, PCA, CFA)
 - single IRT models (Mokken scaling, partial credit model, graded response model)
- Lack of research and study aim of current study
 - **adequate IRT model** (partial credit model, generalized partial credit model, graded response model)
 - reliability (at important cutoffs)
 - measurement invariance (across countries)

Survey design and participants

- Survey design
 - Data from the European Working Condition Survey 2015
 - assessment of working conditions of employees and self-employed across
 Europe (35 countries) within nationally representative samples
 - survey conducted via CAPI
 - multi-stage sample selection process (complex survey sampling)
- Participants
 - 43,469 employees and self-employed (946-3346 respondents per country)
 - 49.6% females, *n* = 21,553
 - Age: 15 to 89 years (M = 43.3, SD = 12.7)

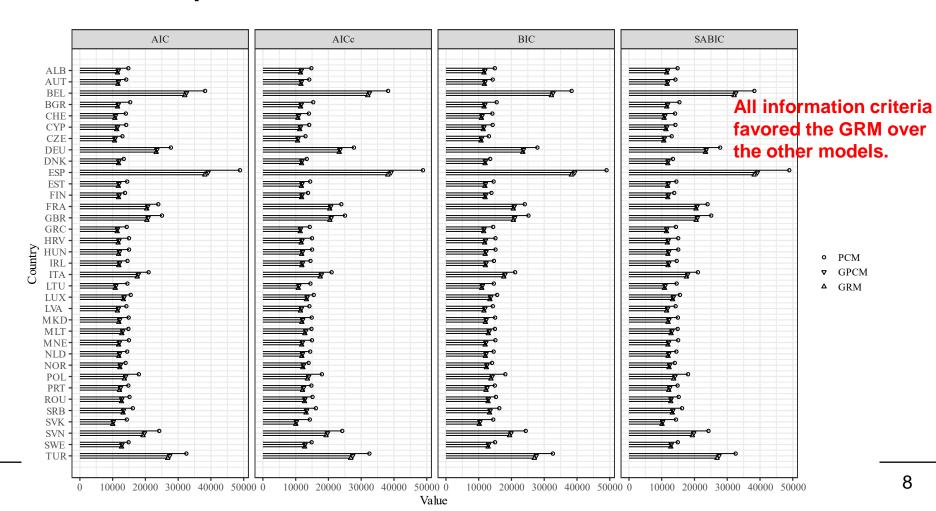
Measure: WHO-5 well-being index

<u>Instructions</u>: Please indicate for each of the 5 statements which is closest to how you have been feeling over the past 2 weeks.

	been reening over the past 2 weeks.							
	Over the past 2 weeks	At no	Some of	Less	More	Most of	All of	
		time	the time	than half	than half	the time	the time	
				of the	of the			
				time	time			
1	I have felt cheerful and	0	1	2	3	4	5	
	in good spirits.							
2	I have felt calm and	0	1	2	3	4	5	
	relaxed.							
3	I have felt active and	0	1	2	3	4	5	
	vigorous.							
4	I woke up feeling fresh	0	1	2	3	4	5	
	and rested.							
5	my daily life has been	0	1	2	3	4	5	
	filled with things that							
	interest me.							

Scaling procedure: summing up the five items. Theoretical range between 0 (absence of well-being) to 25 (maximal well-being)

Statistical analyses

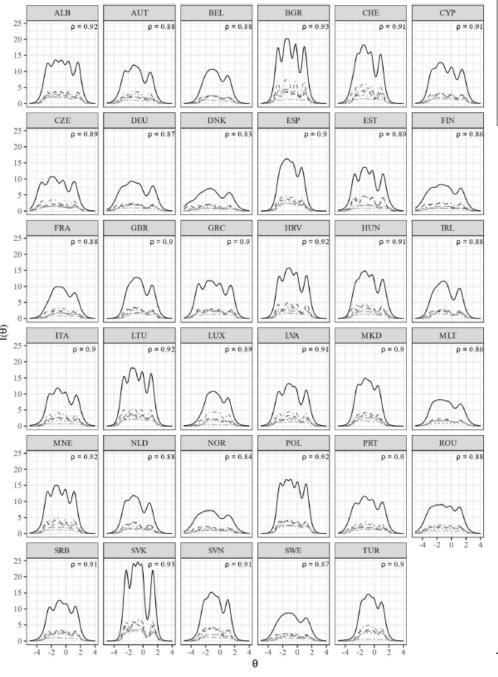

- Comparing different IRT models (PCM, GPCM, GRM):
 - AIC, BIC (sample-size adjusted)
 - Vuong Test (Vuong, 1989, Schneider et al., 2019)
 - Change in R²
 - Fit indices (C_2 test statistic with corresponding fit indices; Cai & Monroe, 2014)
- IRT analysis
 - Parallel analysis and minimum average partial method (with polychoric correlations; Garrido et al., 2011, 2013)
 - Item/test characteristic curves and information functions, raw residual plots
 - Jackknife Slope Index (JSI; Edwards et al., 2018)
 - Generalized S-X2 item fit index (Kang and Chen, 2011) and RMSEA

Statistical analyses

- Measurement invariance testing
 - Multigroup IRT analysis (configural, metric, scalar invariance model)
 - Alignment procedure (Asparouhov & Muthén, 2014; Muthén & Asparouhov, 2014)
 - The alignment method "serves the joint purposes of scale linking and purification, without literally deleting items from the linking" (DeMars, 2020, p. 56)
 - Identification of invariant and non-invariant parameters
 - Global measure of (non-)invariance: R² measure (0 and 1)
 - Differential response functioning (DRF) statistics (Chalmers, 2018) as effect size measure for differential test functioning

Comparing PCM and GPCM: ΔR^2 between .112 and .288. Comparing GPCM and GRM: ΔR^2 between .005 and .027.

Model comparison for the PCM, GPCM, and GRM.


Goodness of fit statistics for the graded response model.

Country	C_2	P	RMSEA [90% CI]	SRMSR	TLI	CFI
ALB	50,505	0,000	,096 [,073; ,120]	.028	.980	,990
AUT	29,836	0.000	.070 [.047; .095]	.030	.986	.993
BEL	151,001	0.000	.106 [.092; .121]	.053	.964	.982
BGR	40,224	0.000	.082 [.059; .106]	.026	.987	.994
CHE	35,047	0.000	.077 [.054; .103]	.028	.987	.993
CYP	30,648	0.000	.072 [.049; .097]	.032	.987	.993
CZE	52,756	0.000	.098 [.075; .123]	.034	.972	.986
DEU	59,584	0.000	.072 [.057; .089]	.030	.985	,992
DNK	79,361	0.000	.122 [.099; .146]	.055	.938	.969
ESP	315,005	0.000	.136 [.124; .149]	.063	.956	.978
EST	48,823	0.000	.094 [.071; .118]	.058	.973	.987
FIN	57,488	0.000	.103 [.080; .127]	.048	.959	.980
FRA	209,224	0.000	.164 [.145; .183]	.056	.915	.958
GBR	57,136	0.000	.080 [.062; .100]	.037	.983	.992
GRC	41,153	0.000	.085 [.062; .110]	.023	.982	.991
HRV	45,724	0.000	.090 [.067; .115]	.031	.982	.991
HUN	51,894	0.000	.096 [.073; .121]	.038	.978	.989
IRL	27,075	0.000	.065 [.042; .090]	.036	.988	.994
ITA	54,531	0.000	.084 [.065; .105]	.038	.980	.990
LTU	64,476	0.000	.110 [.087; .134]	.026	,977	.988
LUX	60,938	0.000	.106 [.083; .131]	.041	,962	.981
LVA	16,822	0.005	.050 [.025; .077]	.024	.994	.997
MKD	6.948	0.225	.020 [.000; .051]	.028	.999	1.000
MLT	49.474	0.000	.094 [.071; .119]	.051	.968	.984
MNE	82.955	0.000	.125 [.102; .149]	.030	.965	.982
NLD	42.307	0.000	.085 [.063; .110]	.031	.980	.990
NOR	43,944	0.000	.087 [.065; .112]	.051	.966	.983
POL	49,694	0.000	.087 [.066; .110]	.047	.984	.992
PRT	27,880	0.000	.067 [.044; .093]	.041	.987	.994
ROU	4,304	0,507	.000 [.000; .040]	.019	1,000	1,000
SRB	31,180	0.000	.071 [.049; .096]	.024	.988	.994
SVK	39,423	0.000	.085 [.061; .110]	.036	.987	,993
SVN	7.294	0.200	.017 [.000; .042]	.025	.999	1.000
SWE	50.692	0.000	.096 [.073; .120]	.036	.970	.985
TUR	59.262	0.000	.074 [.058; .091]	.074	.984	.992

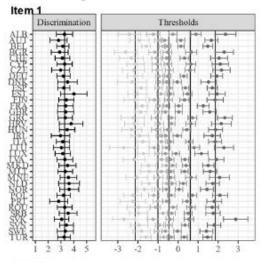
With the execption of some RMSEA values, all fit indices showed adequate fit of the GRM model.

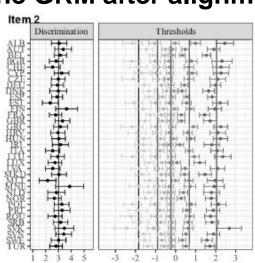
Item and test information functions for the GRM.

$$reliability = 1 - \frac{1}{test information}$$

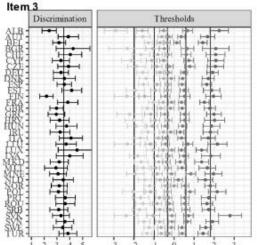
Multigroup IRT analysis.

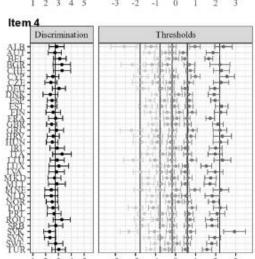
Form of invariance	C_2	p	df	RMSEA	SRMR	CFI	TLI
Configural invariance	2,073.244	0.000	175	.016	.019074	.988	.977
Metric invariance	3,248.038	0.000	311	.015	.026131	.982	.980
Scalar invariance	17,738.548	0.000	1127	.018	.026188	.898	.968
Δ Configural – metric				001		006	+.003
Δ Metric – scalar				+.002		090	009

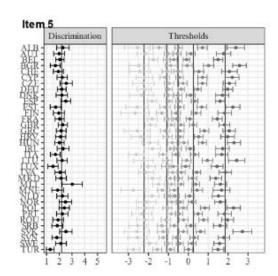

Item discrimination parameters are nearly invariant (metric invariance was confirmed). Item thresholds parameters are not invariant (scalar invariance had to be rejected).

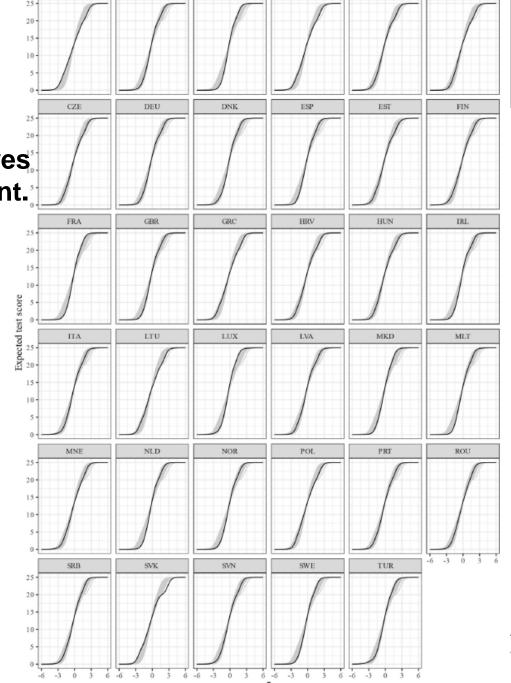

Notes. MLR estimator.

Alignment fit statistics.

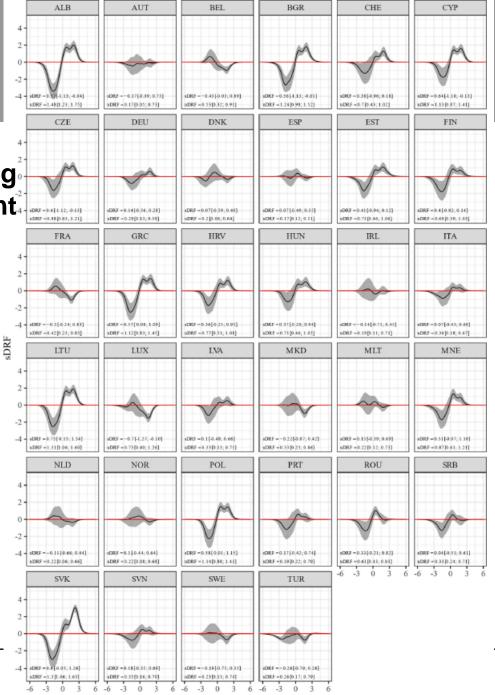

Item	Parameter	\mathbb{R}^2	Weighted Average across invariant groups	Weighted Variance across invariant groups	Weighted Average across all groups	Weighted Variance across all groups	Number (percentage) of approx. invariant groups	
Item 1	Discrimination	.728	3,28	0,24	3,28	0,24	35 (100%)	
	Threshold 1	.340	-2.14	0.26	-1,99	0,32	26 (74,3%)	
	Threshold 2	.539	-1.01	0.12	-0.95	0.16	28 (80%)	
	Threshold 3	.626	-0.46	0.10	-0.46	0.12	26 (74,3%)	n discrimination
	Threshold 4	.071	0,61	0.10	0,36	0,25	14 (40%) ILEH	i discrimination
	Threshold 5	.000	1,86	0.24	1,80	0,33	^{27 (77,1%)} nara	ameters nearly
Item 2	Discrimination	.706	3,01	0,30	2,99	0,33	34 (37,1%) ·	· · · · · · · · · · · · · · · · · · ·
	Threshold 1	.274	-1.84	0,25	-1,65	0,34	23 (65,7%) inva	ariant (metric
	Threshold 2	.444	-0.89	0.13	-0,75	0.16	18 (51.4%)	•
	Threshold 3	.693	-0.22	0.07	-0,22	0.08	33 (94,3%) INV	ariance).
	Threshold 4	.165	0.68	0.11	0,55	0,20	17 (48,6%)	n threshold
	Threshold 5	.000	2,05	0.21	1,91	0,30	21 (60%) ILEH	i tili estiola
Item 3	Discrimination	,532	3,53	0.39	3,48	0.46	33 (94,3%) nara	ameters for the
	Threshold 1	,331	-1.99	0.34	-1,67	0.40	10 (31,4%)	
	Threshold 2	.500	-0.99	0,23	-0,83	0,24	18 (51,4%) mid	dle categories
	Threshold 3	,603	-0,33	0.08	-0,28	0,12	22 (62.9%)	_
	Threshold 4	.400	0.59	0.13	0,49	0.17	22 (62,9%) ShO	wed same amount
	Threshold 5	.000	1,81	0.22	1,80	0,28	29 (82,9%)	
Item 4	Discrimination	,623	2,75	0.29	2,75	0,29	35 (100%) OT II	nvariance, whereas
	Threshold 1	,210	-1.77	0,25	-1,46	0.40	17 (48,6%)	n threshold
	Threshold 2	,337	-0.78	0.13	-0.64	0,25	17 (48,6%)	i tili esiloid
	Threshold 3	.552	-0.17	0.06	-0.10	0,13	21 (60%) para	ameters for the
	Threshold 4	.489	0.59	0.09	0,64	0,15	25 (71,4%)	
	Threshold 5	.000	2.20	0.24	2,01	0,28	21 (60%) OW	er and upper
Item 5	Discrimination	.517	2,18	0,26	2,10	0,34	31 (88 6%)	• • •
	Threshold 1	.354	-2,22	0,32	-2,20	0,34	31 (88,6%) Cate	egories are non-
	Threshold 2	.415	-1.08	0.18	-1,07	0.19	29 (82,9%)	riont
	Threshold 3	.410	-0,52	0.15	-0,48	0.19	28 (80%) IIIV	ariant.
	Threshold 4	.000	0.26	0.12	0.37	0,30	16 (45,7%)	
	Threshold 5	.000	1.85	0,26	1.84	0,33	21 (60%)	


Item parameter for the GRM after alignment.

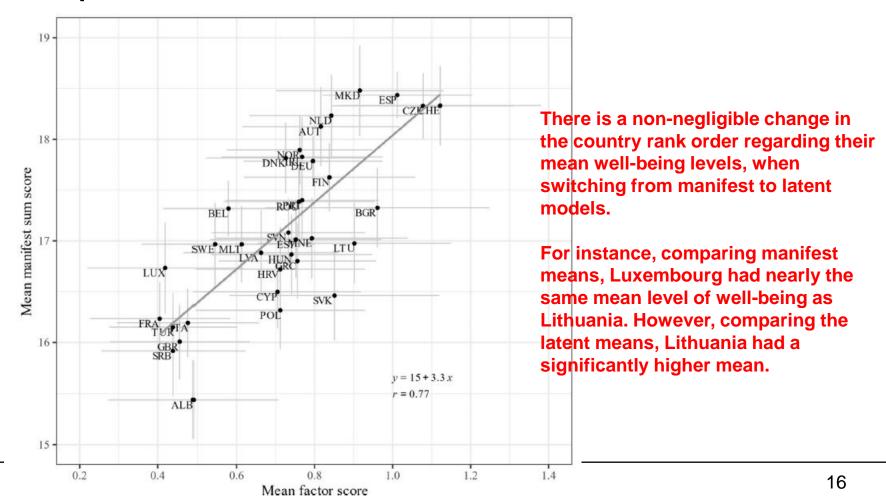



Item discrimination parameters nearly invariant.
Item threshold parameters for the lower and upper categories are non-invariant.

Test characteristic curves for the GRM after alignment.



ALB


Differential test functioning for the GRM after alignment (Reference group: GBR).

Reading example:

A respondent from Great Britain with a WHO-5 sum score of 2.5 (or 23.1) has the same (estimated) level on the latent well-being variable as a respondent from Albania with a WHO-5 sum score of 5.9 (or 21.1).

Scatterplot with means of factor scores and manifest sum scores.

Discussion

Summary

- Every criterion favored the GRM over the other IRT models.
- IRT assumptions (unidimensionality, local independence, item fit) could be confirmed.
- Test and item information analyses indicated overall as well as at critical points high reliability for all countries.
- Measurement invariance testing confirmed configural and metric invariance but discarded scalar invariance.
- The alignment procedure and the DRF statistics revealed that differential test functioning occurred more at the extreme.

Discussion

Study strengths, limitations, and outlook

- Strength: Large sample size (for all included countries)
- Limitation: no external criterion to assess sensitivity and specificity of the WHO-5 to identify depression
- Outlook: Testing the WHO-5 in unemployed persons and across a wider range of countries (e.g., African)

Conclusion

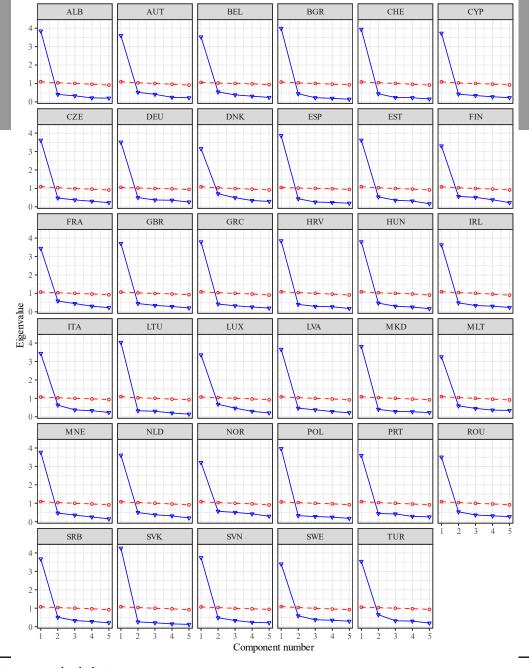
- WHO-5 is a psychometrically sound brief measure of subjective wellbeing.
- Cross-cultural research should employ a latent variable approach and consider non-invariant parameters across countries.

Thank you for your attention! Any questions?

Email: philipp.sischka@uni.lu

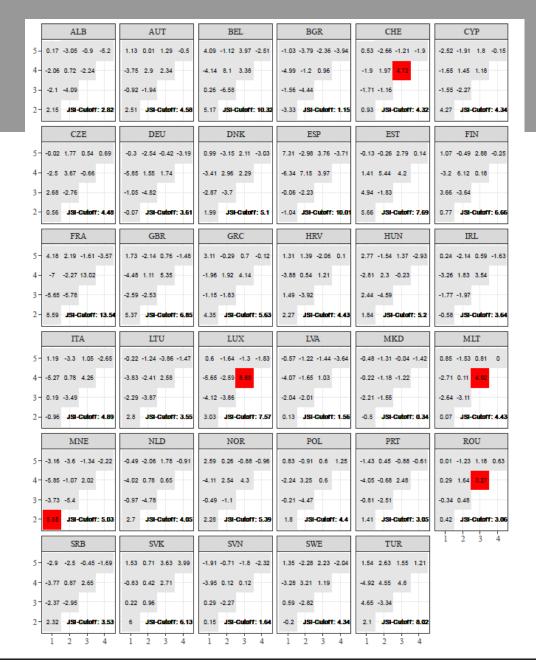
(R and Mplus scripts are stored on Open Science Framework https://osf.io/agfmk/).

References

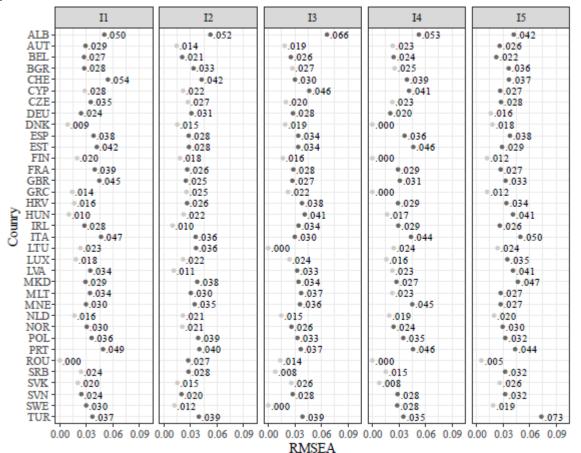

- Allgaier, A.K., Kramer, D., Saravo, B., Mergl, R., Fejtkova, S., Hegerl, U., 2013. Beside the geriatric depression scale: the WHO -five well -being index as a valid screening tool for depression in nursing homes. Int. J. Geriatr. Psychiatry 28, 1197–1204. https://doi.org/10.1002/gps.3944.
- Asparouhov, T., Muthén, B., 2014. Multiple-group factor analysis alignment. Struct. Eq. Model. 21, 495–508. https://doi.org/10.1080/10705511.2014.919210.
- Bech, P., 2012. Clinical Psychometrics. John Wiley and Sons, New York.
- Cai, L., Monroe, S., 2014. A New Statistic for Evaluating Item Response Theory Models for Ordinal Data. CRESST Report 839. National Center for Research on Evaluation, Standards, and Student Testing (CRESST).
- Chalmers, R.P., 2018. Model-based measures for detecting and quantifying response bias. Psychometrika 83, 696–732. https://doi.org/10.1007/s11336-018-9626-9.
- DeMars, C.E., 2020. Alignment as an alternative to anchor purification in DIF analyses. Struct. Eq. Model. 27, 56–72. https://doi.org/10.1080/10705511.2019.1617151.
- Edwards, M.C., Houts, C.R., Cai, L., 2018. A diagnostic procedure to detect departures from local independence in item response theory models. Psychol. Methods 23, 138–149. http://dx.doi.org/10.1037/met0000121.
- Elholm, B., Larsen, K., Hornnes, N., Zierau, F., Becker, U., 2011. Alcohol withdrawal syn- drome: symptom-triggered versus fixed-schedule treatment in an outpatient setting. Alcohol Alcohol. 46, 318–323. https://doi.org/10.1093/alcalc/agr020.
- Garrido, L.E., Abad, F.J., Ponsoda, V., 2011. Performance of Velicer's minimum average partial factor retention method with categorical variables. Educ. Psychol. Measur. 71, 551–570. https://doi.org/10.1177/0013164410389489.
- Garrido, L.E., Abad, F.J., Ponsoda, V., 2013. A new look at Horn's parallel analysis with ordinal variables. Psychol. Methods 18, 454–474. https://doi.org/10.1037/a0030005.
- Halliday, J.A., Hendrieckx, C., Busija, L., Browne, J.L., Nefs, G., Pouwer, F., Speight, J., 2017. Validation of the WHO-5 as a first-step screening instrument for depression in adults with diabetes: results from diabetes MILES–Australia. Diabetes Res. Clin. Pract. 132, 27–35. https://doi.org/10.1016/j.diabres.2017.07.005.
- Kang, T., Chen, T.T., 2011. Performance of the generalized SX 2 item fit in- dex for the graded response model. Asia Pacific Educ. Rev. 12, 89–96. https://doi.org/10.1007/s12564-010-9082-4.

References

- Muthén, B., Asparouhov, T., 2014. IRT studies of many groups: the alignment method. Front. Psychol. 5, 978. https://doi.org/10.3389/fpsyg.2014.00978.
- Rose, T., Joe, S., Williams, A., Harris, R., Betz, G., Stewart-Brown, S., 2017. Measuring mental wellbeing among adolescents: a systematic review of instruments. J. Child Family Stud. 26, 2349–2362. https://doi.org/10.1007/s10826-017-0754-0.
- Schneider, L., Chalmers, R.P., Debelak, R., Merkle, E.C., 2019. Model selection of nested and non-nested item response models using Vuong tests. Multivariate Behav. Res. https://doi.org/10.1080/00273171.2019.1664280 . (in press) .
- Sisask, M., Värnik, A., Kolves, K., Konstabel, K., Wasserman, D., 2008. Subjective psycho- logical well-being (WHO-5) in assessment of the severity of suicide attempt. Nord. J. Psychiatry 62, 431–435. https://doi.org/10.1080/08039480801959273.
- Sischka, P.E., Schmidt, A.F., Steffgen, G., 2020. Further evidence for criterion validity and measurement invariance of the Luxembourg Workplace Mobbing Scale. Eur. J. Psychol. Ass. 36, 32–43. https://doi.org/10.1027/1015-5759/a000483.
- Topp, C.W., Østergaard, S.D., Søndergaard, S., Bech, P., 2015. The WHO-5 well-being index: a systematic review of the literature. Psychother. Psychosom. 84, 167–176. doi: 10.1159/000376585.
- Vuong, Q.H., 1989. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57, 307–333. https://doi.org/10.2307/1912557.


Parallel analysis.

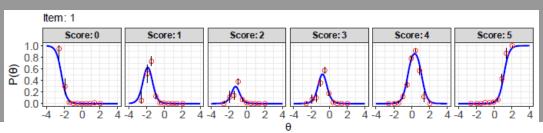
Unidimensionality is confirmed for all countries.


Test for local dependency.

Items are mostly locally independent.

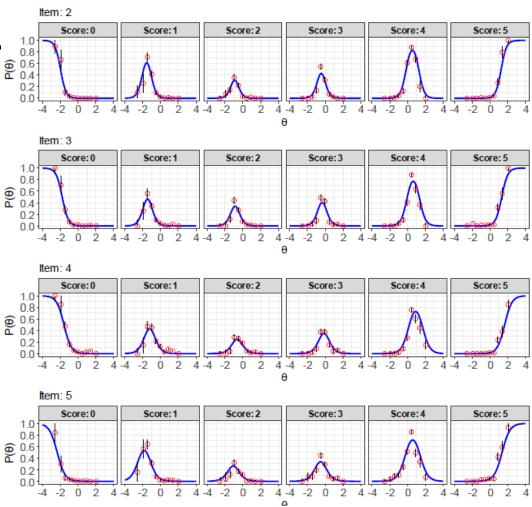
Item fit statistics.

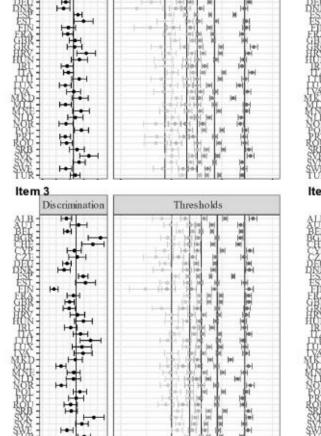
Some items showed some deviation from the GRM. However, the effect sizes are small.

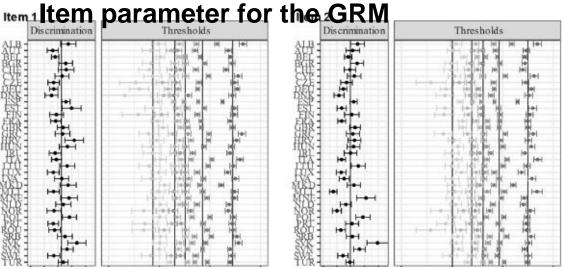


Notes. Values represent RMSEA of item. The significance test is based on the generalized S-X² statistic for polytomous items.

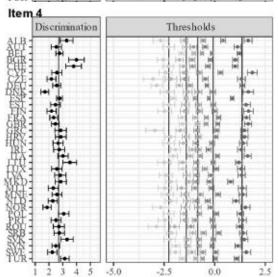
p value

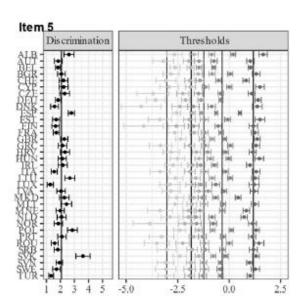

p > .01


p ≤ .01



Residual plots for GBR.


There are only small deviations between observed proportions and response functions.



Items 1, 2, and 3 yielded on average higher discrimination parameters, compared to items 4 and 5. The items differed only slightly regarding item difficulty.

Reliability.

Test information analyses indicated overall (ρ = .83-.93.) as well as at critical points ($\rho_{12.5}$ = .86- .96, ρ_{7} = .84-.95) high reliability for all countries.

Table A6. Reliability.						
	ρ (RMSE)	212.5 (SE)	ρ ₇ (SE)			
Country		ρ _{12.5} (SE)				
ALB	0.92 (0.285)	0.93 (0.272)	0.92 (0.280)			
AUT	0.88 (0.338)	0.92 (0.290)	0.90 (0.316)			
BEL	0.88 (0.347)	0.91 (0.307)	0.90 (0.312)			
BGR	0.93 (0.280)	0.94 (0.237)	0.94 (0.235)			
CHE	0.91 (0.300)	0.94 (0.238)	0.94 (0.247)			
CYP	0.91 (0.318)	0.91 (0.294)	0.92 (0.287)			
CZE	0.89 (0.347)	0.90 (0.315)	0.90 (0.324)			
DEU	0.87 (0.365)	0.89 (0.332)	0.88 (0.343)			
DNK	0.83 (0.412)	0.86 (0.379)	0.84 (0.398)			
ESP	0.90 (0.323)	0.94 (0.252)	0.94 (0.252)			
EST	0.89 (0.318)	0.92 (0.278)	0.91 (0.297)			
FIN	0.86 (0.372)	0.88 (0.350)	0.86 (0.368)			
FRA	0.88 (0.345)	0.90 (0.319)	0.90 (0.321)			
GBR	0.90 (0.318)	0.92 (0.280)	0.92 (0.287)			
GRC	0.90 (0.312)	0.91 (0.294)	0.91 (0.304)			
HRV	0.92 (0.293)	0.93 (0.255)	0.93 (0.270)			
HUN	0.91 (0.305)	0.93 (0.271)	0.93 (0.264)			
IRL	0.88 (0.350)	0.91 (0.292)	0.90 (0.308)			
ITA	0.90 (0.323)	0.91 (0.300)	0.90 (0.309)			
LTU	0.92 (0.282)	0.94 (0.241)	0.94 (0.243)			
LUX	0.89 (0.342)	0.91 (0.305)	0.90 (0.312)			
LVA	0.91 (0.317)	0.92 (0.277)	0.91 (0.297)			
MKD	0.90 (0.333)	0.93 (0.260)	0.93 (0.273)			
MLT	0.86 (0.369)	0.87 (0.354)	0.88 (0.352)			
MNE	0.92 (0.298)	0.93 (0.263)	0.92 (0.275)			
NLD	0.88 (0.348)	0.91 (0.292)	0.91 (0.305)			
NOR	0.84 (0.403)	0.86 (0.374)	0.85 (0.381)			
POL	0.92 (0.280)	0.94 (0.245)	0.94 (0.245)			
PRT	0.90 (0.326)	0.91 (0.298)	0.90 (0.315)			
ROU	0.88 (0.348)	0.89 (0.333)	0.89 (0.337)			
SRB	0.91 (0.308)	0.92 (0.283)	0.90 (0.311)			
SVK	0.93 (0.257)	0.96 (0.202)	0.95 (0.212)			
SVN	0.91 (0.307)	0.93 (0.260)	0.93 (0.266)			
SWE	0.87 (0.364)	0.89 (0.339)	0.88 (0.345)			
TUR	0.90 (0.304)	0.93 (0.265)	0.92 (0.275)			
37 .		11 1 11 11 11 1 1 1 1	4 11 11 11 11 11			

Notes. ρ represents the empirical marginal reliability, $\rho_{12.5}$ and ρ_{7} represents the reliability at the expected test scores 12.5 and 7. RMSE represents the mean root mean square standard error and SE represents the standard error at the respective expected test scores.