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Abstract. Sometimes fingerprint-like features are found in a material.
The exciting discovery poses new challenges on how to use the features
to build an object authentication protocol that could tell customers and
retailers equipped with a mobile device whether a good is authentic or
fake. We are exactly in this situation with Cholesteric Spherical Reflec-
tors (CSRs), tiny spheres of liquid crystals with which we can tag or coat
objects. They are being proposed as a potential game-changer material
in anti-counterfeiting due to their unique optical properties. In addition
to the problem of processing images and extracting the minutiæ embed-
ded in a CSR, one major challenge is designing cryptographically secure
authentication protocols. The authentication procedure has to handle
unstable input data; it has to measure the distance between some ref-
erence data stored at enrollment and noisy input provided at authenti-
cation. We propose a cryptographic authentication protocol that solves
the problem, and that is secure against semi-honest and malicious adver-
saries. We prove that our design ensures data privacy even if enrolled
data are leaked and even if servers and provers are actively curious. We
implement and benchmark the protocol in Python using the Microsoft
SEAL library through its Python wrapper PySEAL.

Keywords: Anti-counterfeiting · Cholesteric Spherical Reflectors ·
Image processing · Authentication · Biometric hashing · Homomorphic
encryption

1 Introduction

To verify that an object is authentic, one has to seek in the object for certain
features that are hard to reproduce in a counterfeited copy. To verify that an
object is exactly that object and not another of the same family, those features
must be unique. The identifying features can be derived from the object itself as
it happens for our fingerprints [25]; or, they can be borrowed because of a tag,
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a coating, or a watermarking applied onto the object. The features have to be
extracted, recognized, and authenticated in both cases.

A common process is to extract the features from an image of the object or of
its tag, coat, or watermark, and verify them (authentication phase) by measuring
how similar they are from a reference version of the features previously extracted
from the same object and securely stored (enrollment phase). A “match” means
authentication, a “mismatch” a non-authentication1. The process sounds simple,
but the devil is in the details. The nature of the identifying features is extremely
variable and strongly object-dependent. The analysis of features from an image
requires dedicated minutiæ extraction procedures [5,21]. The authentication,
i.e., matching a freshly input and the securely stored version, must be robust
to noise. Furthermore, if the database that holds the original set of reference
features is stored remotely, e.g., if the authentication works as a service, the
process needs a security protocol that foresees the different drawbacks caused
by security vulnerabilities and authorization attacks [18].

Needless to say, there is no general authentication protocol that works across
different objects. Here, we address the problem of a particular material with
fingerprint-like features that can be used to create tags and, to a certain extent,
to coat objects. The material is composed of Cholesteric Liquid Crystals (CLCs),
the liquid we know from our digital device’s screens, made in a spherical shape.
Called CSRs in [12,14], spherical CLCs reflect light creating patterns (see Fig. 1)
that have been argued to be unique and physically unclonable [12,24]. Although
the nature of CSR is different from biometric data, they converge in their noisy
and unique behavior. A reliable and secure process needs to be implemented to
reconstruct binary strings from noise inputs. Once reliable information extrac-
tion is granted, it must be protected. Homomorphic encryption can ensure the
process of the data in the encrypted domain, which has proven effective in ensur-
ing the privacy of sensitive data [28]. CSRs tags have been demonstrated as a
promising material in applications such as anti-counterfeiting, track-and-tracing,
authentication systems, and fiducial markers [32].

Contributions. We showed how to extract minutiæ from CSR images in pre-
vious works [2,3]. However, a procedure was still missing to obtain robust infor-
mation from the extracted features and to develop a cryptographically secure
and effective authentication protocol. In this paper, we design a cryptographic
authentication protocol for CSRs, which securely authenticates objects with a
coat or tag containing CSRs.

Specifically, the contribution of this paper can be viewed from both theoret-
ical and practical angles. More concretely, we have developed the following pro-
cedures: i) features embedding and robust feature identification of the minutiæ to
increase information stability in the presence of noise; ii) cryptographic protocol
for remote authentication that relies on biometric hashing and on homomorphic
encryption; which we proved to be robust to attacks from semi-honest and mali-
cious adversaries; and iii) formulation of the Hamming distance in the encrypted

1 Match and mismatch will be defined over the features metric space.
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domain, based on which authentication is achieved by comparing two homo-
morphically encrypted bitstrings. Our proposed protocol is accompanied by a
proof-of-concept implementation in Python, using the PySEAL library for homo-
morphic encryption2 which implements the Brakerski/Fan-Vercauteren (BFV)
(somewhat) homomorphic encryption scheme [9,11]. Based on our implementa-
tion, we provide extensive performance benchmarking results, focusing especially
on the core homomorphic operations that are required for computing the Ham-
ming distance on encrypted data. The source code of our implementation is
available at https://gitlab.uni.lu/irisc-open-data/2021-nofakes.

To the best of our knowledge, there is no previous work that combines CSR’s
optical responses in a cryptographic authentication protocol, which is unsurpris-
ing since the use of CSRs in security is quite recent and largely unexplored. But,
our research has a wider application than just in relation to CSRs. The minutiæ
extraction process and the protocol that we design are applicable to several anti-
counterfeiting technologies. As we will see in Sect. 2—where we briefly recall how
a CSR response looks like—our information extraction strategy assumes that the
identifying information contained in an image (i.e., the minutiæ) are colored blobs
(i.e., connected pixels forming a circular shape) “randomly”3 distributed in a bi-
dimensional space. Our information extraction and authentication protocol are
built assuming vectors of blobs, internally represented as a list of tuples whose
elements model the blobs as circles (i.e., centers and radii) and colors. Thus,
what we have developed, modeled, and implemented here works for any water-
marking, steganography, or optical unclonable functions that embody colored
blobs as minutiæ.

Outline. Section 2 recalls the necessary background for CSRs and discusses
the related work. In Sect. 3, we introduce our design, showing a robust-to-
noise scheme to extract binary information from CSR images (Sect. 3.1), and
an innovative cryptographic protocol design for object authentication. It uses
tools such as biometric hashing to create stable bitstrings of information and
homomorphic encryption to securely compare them in the authentication phase
(Sect. 3.2). Section 4 discusses the security of the design under malicious and
semi-honest adversary models enabling security against outsider attackers and
insider provers, respectively. In Sect. 5, we demonstrate our implementation
details and results of the proposed authentication protocol. Finally, Sect. 6 con-
cludes the work and discusses open questions and future research.

2 Background and Related Work

Cholesteric Liquid Crystals and Reflectors. CLCs have been intensively
studied in chemistry and matter physics for their optical properties and ver-
satility [12,13,31]. Here, we recall the very basics necessary to understand our
contribution. What is important to know is that “CSR” is a name to indicate
2 https://github.com/Lab41/PySEAL.
3 “Random” is intended informally, meaning “in a way that we cannot anticipate”.
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Fig. 1. CSRs images acquired with (a) a DinoLite microscope and (b) a professional
microscope.

CLCs in a spherical shape. The spheres —droplets, if full of liquid, or shells,
if cave with the liquid only on the external surface— are tiny: they measure
between 10 µm and 300 µm in diameter. CSRs can be produced in a large num-
ber, and they are delivered in a medium, e.g., a piece of plastic or a dried varnish,
which we call a CSR tag. The absolute and the relative position of the CSRs in
the tag is unpredictable because it is not possible to control that variable at the
production phase. When illuminated, CSRs reflect the light, creating a peculiar
colorful pattern. We can capture that image with a microscope, e.g., one of those
we can plug into a computer with a USB cable. Such images (see Fig. 1-a) are
what we assume to have as input. From the images, we can extract blobs, for
instance, by following the procedure described in [2,3], using image processing.

Cryptographic Techniques in Object Authentication. Regarding object
authentication and anti-counterfeiting, two topics closely related to one another
and addressed by academic and industrial research alike, the literature is vast.
What is relevant to position our contribution is the works that use cryptographic
techniques such as those we also employ, namely biometric hashing and homo-
morphic encryption.

Before applying any cryptographic technique, we need to ensure the extrac-
tion of reliable information. For this purpose, we applied some techniques
reported in the literature [35]. Tuyls et al. [35] proposed a helper data that guar-
antees the extraction of a unique and robust string from fingerprint biometrics
data during the enrollment and authentication phases. As this helper data was
stored in a database (public), the authors hashed it to keep the reference data
sheltered from somebody that has access to the database. Once reliable informa-
tion extraction is granted, it must be protected. Fully Homomorphic Encryption
(FHE) can ensure to process the data in the encrypted domain. Again, research
in biometrics is rich in inspiring results. Lattice-based FHE have been proved
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effective in ensuring privacy in biometric iris authentication [34], and private
face recognition [8]. Homomorphic probabilistic encryption, a version compati-
ble with the ISO/IEC 24745 standard on biometric data protection, has been
used in a general framework for multi-biometric template protection [16].

Pradel and Mitchell [28] have recently proposed a privacy-preserving bio-
metrics authentication protocol based on FHE, where a user’s biometric sample
is matched against an encrypted biometric template held by a remote system.
This remote authentication protocol protects the privacy of users’ sensitive data.
They also conducted a proof-of-concept implementation using the TFHE4 library
and analyzed it in terms of efficiency. The underlying basic operations needed to
execute the biometric matching are well described. Still, the performance results
from the implementation show how complex it is to make FHE practical in this
context. Pradel and Mitchell’s implementation, if improved and optimized, could
be used for real-world applications.

3 The Proposed Protocol

We propose an object authentication protocol that consists of two main parts
where in each part, a set of various functionalities is deployed. The first part
copes with data instability due to macro problems in image acquisition and pro-
cessing. This is described in Sect. 3.1. The second part, which implements the
authentication protocol and its enrollment and verification phases, is robust to
noise at the level of bitstring values introduced when we extract and encode
minutiæ from the inputs. It relies on biometric hashing and ensures the secu-
rity of the protocol by storing encrypted data using homomorphic encryption.
Authentication is achieved by comparing two homomorphically encrypted bit-
strings obtained in the enrollment and authentication phases, in terms of their
Hamming distance which is computed in the encrypted domain. When the Ham-
ming distance is below a predefined threshold, the authentication is successful,
otherwise it fails. Our protocol is introduced in Sect. 3.2, while the enrollment
and authentication phases are described in Sects. 3.3 and 3.4, respectively.

3.1 Extraction of Robust Features

One necessary step must be done before we can describe any cryptographic
protocol, which is to digitalize the information that is embedded into a CSR.
The contact point with the reality of CSR is a picture of a CSR’s optical response,
an object that we indicate as [CSR]. Such pictures are noisy. Retaken pictures
from the same CSR, i.e., {[CSR]′1, . . . , [CSR]′m}, are slightly different one from the
other due to uncontrollable factors, such as ambient light, read-out process, and
variances in the sensor of the digital camera.

The reader can refer to the original work [3] for details. Still, here we recall
that any [CSR] contains identifying minutiæ (technically, blobs) that can be iden-
tified and extracted by processing the image. These minutiæ are modeled and
4 https://tfhe.github.io/tfhe/.
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Fig. 2. (a) an example of [CSR] and (b) its extracted minutiæ embedded on a grid.

represented as a list of colored circles. We abstract the feature extraction pro-
cess as a function Extract, whose domain is the set of all CSR images. An output
Extract([CSR]i) is a list ωi = (ωi(1), . . . ,ωi(n)). Each element ω in that list is a
pair (ω.c,ω.rgb), where the first item is a circle and the second its color. A circle
c is described in terms of coordinates of its center, c.x and c.y, and radius, c.r.

The features extraction algorithm operates on noisy inputs and returns noisy
outputs: depending on i, Extract([CSR]i) varies not only in the numerical values
but also in the length of the outputted list, that is, in the number of blobs
detected. We have to correct and unify that high-level noise. Abstracting from
any detail, we represent this process with two functions:

FeaturesEmbedding– using an N × M mesh grid (see Fig. 2-b), it returns a list
of exactly n = N ×M elements ω = (ω(1), . . . ,ω(n)). Each element is either
a blob, the blob found in that position in the grid, or the undefined element
⊥, if no blob is found there.

RobustPositions– taking a list of extracted embedded features, (ω1, . . . ,ωm),
from m sample images {[CSR]′i} for i ∈ {1, . . . ,m}, each ωi returns a set
K ⊆ {1, . . . , n} of reliable positions i.e., indexes where, in all the m extracted
features {(ωi(1), . . . ,ωi(n))}, there is either all blobs or all ⊥. It returns also
a list ω = {ω(j)}j∈K of reliable features which are obtained by “averaging”5
the values across the samples for all the reliable positions.

We use the two functions to pre-process CSR images in both authentication
and enrollment. We call ReliableFeatures the front-end function, so defined:

ReliableFeatures({[CSR]1, . . . , [CSR]m}) :=
RobustPositions(

FeaturesEmbedding(
(Extract([CSR]1), . . . ,Extract([CSR]m))))

(1)

5 It is a means on the values of blobs, and it returns ⊥ when one of the elements is ⊥.



A Secure Authentication Protocol for CSRs Using HE 431

Fig. 3. Message sequence chart of the enrollment phase.

The output of the function ReliableFeatures is a vector ω = (ω(1), . . . ,ω(k)), of
reliable features.

3.2 Protocol Description

We present an authentication protocol that uses CSR images and a biometric
hashing (in short, biohashing) mechanism. Biohashing schemes are simple yet
powerful biometric template protection methods [4,20,27,33].

Our protocol is divided into two main phases: enrollment, where the reference
data from each CSR image are collected, and authentication, where it is verified
whether a specific CSR image matches the one that has been enrolled.

We distinguish three entities that participate in the protocol: namely the
User, the Authentication System, and an outsourced Database, with the following
roles and responsibilities:

User (U): holds the CSR and provides the CSR images, [CSR]i6. CSR comes
with a numerical identifier, csrID, which U is able to read, and with a SV
(i.e., a PIN/password, QR code, RFID data, or item image), a token that we
intend to use for second-factor authentication.

6 Here, the number of pictures that a User takes in the enrollment and authentication
can be defined by the process. We used five images in our implementation, see Sect. 5.
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Fig. 4. Message sequence chart of the authentication phase.

Authentication System (AS): it is an entity that is responsible for extracting
reliable features and carrying out the enrollment and authentication proce-
dures. It can be a trusted hardware, for instance, in the device operated by
the User. In the enrollment phase, it receives from the User CSR images
and other data that it needs to calculate a binary vector Venrol. The vec-
tor is encrypted homomorphically and stored in an outsourced database for
later uses (see Fig. 3). In the authentication phase, it gets from the User
an authentication request, with fresh CSR images, the object identifier, and
the second-factor value, which AS processes to produce a new binary vec-
tor Vauth. The encryption of this value is compared against the one stored,
which is retrieved thanks to the object identifier (see Fig. 4). The comparison
is accomplished by computing the Hamming distance of the plaintext vectors
Venrol and Vauth in the encrypted domain, using the homomorphic operations.
A successful authentication implies that the Hamming distance is below an
acceptable threshold, while a failure indicates that the Hamming distance
exceeds that threshold. The enrollment and authentication phases are dis-
cussed in more detail in Sects. 3.3 and 3.4, respectively. We further assume
that the AS is equipped with a public/private key pair (pkAS, skAS), to be
used in the homomorphic cryptosystem, and with a public/private signing
key pair (pskAS, sskAS), to be used in a digital signature scheme.

Outsourced database (DB): it is the database of encrypted features main-
tained by an outsourced entity. For instance, it can be “in the Cloud”. It is
responsible for securely storing the data received from the AS in the enroll-
ment phase. In contrast, in the authentication phase, it is responsible for
retrieving the necessary information requested from the AS and transmitting
this information to the AS.
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3.3 Enrollment Phase

The first step in the CSR authentication protocol is the enrollment phase, in
which the User sends data necessary for the enrollment for the first time to the
AS. Without loss of generality, we assume that the User performs the enrollment.
In reality, it can be another role, for instance, the producer of the object that
carries the CSR or the producer the CSR. Then the AS executes a series of
actions which are described in Algorithm 1. In this phase CSR images (i.e., a set
of images {[CSR]i}) are taken for the first time and converted by the AS into a
CSR template ω = (ω(1), . . . ,ω(k)), according to the procedure ReliableFeatures,
described in Sect. 3.1. Then AS executes the biohashing scheme of Ngo et al. [27]
based on random projection. It consists of two steps:

Random Projection (RP)– In this step, an identically distributed pseudo
RP matrix, R ∈ Rn×k, is generated from a Gaussian distribution with zero
mean and unit variance to transform the reliable features vector built from
the CSR images provided by the User. The elements of RP can be generated
from a Pseudorandom Number Generator (PRNG), with a seed derived from
the User’s SV value, and Gram-Schmidt (GS) procedure [29] is applied to
obtain an orthonormal projection matrix. After that, the RP matrix is mul-
tiplied with the CSR template ω to project this vector onto an n-dimensional
intermediate vector I = Rω where I ∈ Rn×1.

Quantization– This step involves the binarization of the elements of the inter-
mediate vector I with respect to a quantization threshold β. The User’s SV is
mapped to an n-bit string h = H(SV), where h = (h(1), · · · , h(n)) ∈ {0, 1}n
and H is a cryptographic hash function. Then the enrollment biohash vector
Venrol = (Venrol(1), · · · , Venrol(n)) of the User is constructed, via the relation:

Venrol (i) =

{
1 ⊕ h(i), I (i) ≥ β

h(i), otherwise
,

where Venrol(i) ∈ {0, 1}. Without loss of generality, β can be selected as
the mean value of the intermediate vector I or the sign operator (i.e., 0),
depending on the design of the system.

After the quantization, the User’s biohash vector Venrol is encrypted bit-by-bit
with the public key pkAS of the AS, using a secure homomorphic encryption
scheme. The result is a vector Cenrol = (Cenrol(1), · · · , Cenrol(n)) which is com-
posed of n ciphertexts. Finally, the AS signs the ciphertext Cenrol with its secret
signing key sskAS, using a standard secure digital signature algorithm (such as
ECDSA [19]), and stores the triple (csrID,Cenrol,σenrol) in an outsourced DB.
We note here that once the AS transmits the data to the DB and the enrollment
is completed, it clears all the residual data from its memory. In other words,
the AS does not store any processed information related to the User, such as
CSR images, the SV or Venrol which are considered sensitive information. On
the contrary, we assume that the private parts of the encryption and signing key
pairs are securely stored, for example, in a Hardware Security Module (HSM).
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Algorithm 1: Enrollment algorithm (EnrolAlg)
Input: pkAS, {[CSR]i}, SV.
Output: Cenrol.
System Parameters: The RP matrix R ∈ Rn×k, a threshold β.

1 Feature extraction: ω ← ReliableFeatures({[CSR]i})
2 Compute the intermediate vector: I ← Rω, where I ∈ Rn×1

3 Compute: h ← H(SV) where h = (h(1), . . . , h(n)) and h(i) ∈ {0, 1}
4 Cenrol ← {}
5 for i ∈ {1, . . . , n} do
6 if I(i) ≥ β then
7 Venrol(i) ← 1 ⊕ h(i)
8 else
9 Venrol(i) ← h(i)

10 Compute: Cenrol(i) ← HEncpkAS(Venrol(i))
11 Append Cenrol(i) to Cenrol

12 return Cenrol

It is worth saying that, the User’s SV also provides privacy-friendly revo-
cation ability of the CSR’s biohash in case it is needed (due to customization
or membership termination) without revealing CSR data. In addition, the same
CSR template of an item/subject can be utilized in various recognition systems
without violating the privacy, as two biohash vectors Venrol of the CSR with
different User SV will be unlinkable.

3.4 Authentication Phase

The authentication phase is initiated by the User who sends the freshly taken
set of images {[CSR]′i} from the object holding the CSR, the potentially different
secret value SV′ and object identifier csrID to the AS. The AS requests from the
DB to search for an entry with CSR identifier csrID. If such an entry exists, the
DB transmits to the AS the Cenrol and σenrol that correspond to the identifier
csrID. Before proceeding to the authentication, the AS verifies the signature
with the public signing key pskAS. If the signature is not verified, the AS returns
a failure message to the User. Once the signature is verified, the AS executes the
authentication Algorithm 2, on input its public and private keys pkAS, skAS, the
images {[CSR]′i}, the secret value SV′, and the ciphertext Cenrol.

The first step in the authentication algorithm is to extract a reliable CSR
template ω′ ← ReliableFeatures({[CSR]′i}) following the procedure described in
Sect. 3.1. Using ω′ and SV′ the authentication algorithm creates a ciphertext
vector Cauth that corresponds to the CSR′ and SV′, in the same way as in
the enrollment phase. More concretely, Cauth = (Cauth(1), · · · , Cauth(n)) is the
result of the bit-by-bit homomorphic encryption of the biohash vector Vauth =
(Vauth(1), · · · , Vauth(n)), which is obtained through the quantization process,
where Vauth(i) ∈ {0, 1} for each i = 1, . . . , n.
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Algorithm 2: Authentication algorithm (AuthAlg)
Input: pkAS, skAS, {[CSR]′i}, SV′, Cenrol.
Output: 0 (reject) or 1 (accept).
System Parameters: The RP matrix R ∈ Rn×k, thresholds β and ε.

1 Feature extraction: ω′ ← ReliableFeatures({[CSR]′i})
2 Compute the intermediate vector: I ′ ← Rω′, where I ′ ∈ Rn×1

3 Compute: h′ ← H(SV′) where h′ = (h′(1), . . . , h′(n)) and h′(i) ∈ {0, 1}
4 Cauth ← {}
5 for i ∈ {1, . . . , n} do
6 if I ′(i) ≥ β then
7 Vauth(i) ← 1 ⊕ h′(i)
8 else
9 Vauth(i) ← h′(i)

10 Compute: Cauth(i) ← HEncpkAS(Vauth(i))
11 Append Cauth(i) to Cauth

12 Compute the encrypted Hamming distance HDE(Venrol,Vauth) using Eq. (2)
13 Compute: HD(Venrol,Vauth) ← HDecskAS(HDE(Venrol,Vauth))
14 if HD(Venrol,Vauth) ≤ ε then
15 return 1
16 else
17 return 0

For user authentication, the AS computes the Hamming distance of the two
plaintext vectors Venrol and Vauth, using only the corresponding ciphertexts
Cenrol and Cauth, i.e., in the encrypted domain. This is denoted as:

HDE(Venrol,Vauth) = HEncpkAS(HD(Venrol,Vauth))

= HEncpkAS

(
n∑

i=1

(Venrol(i) ⊕ Vauth(i))

)
.

In the above relation, HD(Venrol,Vauth) is the Hamming distance of the two
bitstrings Venrol,Vauth, while HDE(Venrol,Vauth) is the Hamming distance of
the two bitstrings in the encrypted domain and HEncpkAS is the homomorphic
encryption with the public key pkAS. In general, the Hamming distance compu-
tation in the encrypted domain is not straightforward, and dedicated formulas
need to be considered, which largely depend on the underlying homomorphic
cryptosystem used. Further, doing this computation efficiently is challenging
since such formulas typically require various homomorphic operations, including
homomorphic multiplications, which are usually very expensive.

Once the encrypted Hamming distance is computed, the AS decrypts it to
obtain the Hamming distance HD(Venrol,Vauth), using its secret key skAS and
checks whether the resulting Hamming distance falls within an accepted margin
that is predefined by the threshold ε. If this is the case, then the authentication
of the User is successful; otherwise, it fails.
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Computation of the Encrypted Hamming Distance. Our protocol fol-
lows the approach described in [36] for computing the encrypted Hamming
distance. Given two ciphertext vectors Cenrol = (Cenrol(1), . . . , Cenrol(n)) and
Cauth = (Cauth(1), . . . , Cauth(n)), corresponding to the plaintext vectors Venrol =
(Venrol(1), . . . , Venrol(n)) and Vauth = (Vauth(1), . . . , Vauth(n)), the encrypted
Hamming distance can be computed via the formula:

HDE(Venrol,Vauth) =
n

!
i=1

[Cenrol(i) ! Cauth(i) " (Cenrol(i) # Cauth(i)) " (Cenrol(i) # Cauth(i))] , (2)

where !, ", and # denote homomorphic addition, subtraction, and multiplica-
tion respectively. The homomorphic subtraction can be alternatively described
as negating the ciphertext to be subtracted and then adding the result homo-
morphically to the first ciphertext. Besides negation, we define the homomorphic
addition and multiplication in the usual way:

Cenrol(i) ! Cauth(i) = HEncpkAS(Venrol(i) + Vauth(i))
Cenrol(i) # Cauth(i) = HEncpkAS(Venrol(i) · Vauth(i))

These suggest that Eq. (2) can be equivalently written as:

HDE(Venrol,Vauth) =
n

!
i=1

HEncpkAS (Venrol(i) + Vauth(i) − 2Venrol(i) · Vauth(i))

=
n

!
i=1

HEncpkAS (Venrol(i) ⊕ Vauth(i))

= HEncpkAS

(
n∑

i=1

(Venrol(i) ⊕ Vauth(i))

)
,

which corresponds to the encryption of the Hamming distance HD(Venrol,Vauth).
The second equality follows since Venrol(i), Vauth(i) ∈ {0, 1}, for each i = 1, . . . , n.
We also note here that + and · denote usual addition and multiplication, while
⊕ denotes the XOR addition.

Based on the above notation, Eq. (2) implies that for each pair of ciphertexts
(Cenrol(i), Cauth(i)), the computation of

Cenrol(i) ! Cauth(i) " (Cenrol(i) # Cauth(i)) " (Cenrol(i) # Cauth(i))

requires one homomorphic multiplication (HM), one homomorphic negation
(HN), and three homomorphic additions (HA). For each i = 1, . . . , n, the result-
ing value is a ciphertext. There are n such ciphertexts that need to be computed
and then added together homomorphically to obtain the encrypted Hamming
distance. Consequently, the total cost for computing HDE(Venrol,Vauth) in terms
of homomorphic operations is: n(3 HA+1 HN+1 HM)+(n−1) HA, where the
homomorphic multiplications constitute the main bottleneck in the computation
of the encrypted Hamming distance.
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4 Security Analysis

The proposed protocol is assumed to have three sources that are subject to
attack: 1. the AS, 2. the communication channel between AS and DB, and 3.
the DB. We start with the definitions of the adversary types.

Definition 1 (Semi-honest Adversary). A semi-honest adversary (a.k.a. an
honest-but-curious adversary) [6,7,15,30] is an attacker that can do any passive
attack (including recording all the intermediate transactions, making analysis,
and retrieving any knowledge about the other parties’ private data, etc.) without
changing the prescribed definition of the protocol.

Definition 2 (Malicious Adversary). A malicious adversary is the strongest
type of adversary [6,7,15,30] that can arbitrarily deviate from the definition of
the protocol and utilizes any effective strategy to retrieve some additional knowl-
edge about other parties’ private data and/or manipulate the outcome of the
computation.

We consider both adversary types in our security analysis as follows. We
first assume the “semi-honest” security model on the User and AS sides, where
the parties honestly follow the protocol and learn nothing beyond their own
outputs. The security of AS is extremely important as the system takes the
raw CSR image, the User’s secret value SV and stores the private keys used in
the homomorphic encryption and digital signature schemes. Under this security
model, the communication channel between the User and AS is considered secure
from any malicious attack. We assume that AS and DB are different entities,
and collusion is not allowed between the AS and the DB. On the other hand,
we assume the “malicious” security model on the DB side, which is the strongest
adversary type. Therefore, depending on the application, DB can be outsourced
to a third party (such as the cloud) for flexibility and cost-efficiency reasons. We
also assume that the underlying cryptographic primitives (hash function, homo-
morphic encryption scheme, and digital signature algorithm) of the proposed
authentication protocol in Sect. 3 are securely employed and implemented. Note
that the algorithmic choices in Sect. 5 are for proof-of-concept and experimen-
tal purposes; without loss of generality, our protocol can be instantiated with
different state-of-the-art secure algorithms.

In what follows, we analyze our scheme against attackers targeting to corrupt
the DB to obtain or modify any sensitive data as DB is considered an outsourced
and untrusted entity. The adversary can aim at obtaining the CSR template
vector (ω) and the corresponding user secret value (SV) of a prover to attack
the system for an unauthorized authentication. We also analyze our scheme
against a legitimate but dishonest user trying to impersonate another user.

In addition, the adversary can also aim to clone or create an image of the
CSR modality that can be used both to attack the system and to compromise
the user’s privacy. However, at this point, we follow the general assumption
that CSRs reflect light-creating patterns that have been considered to be unique
and physically unclonable [12,24]. Therefore, in this section, we only focus on
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analyzing the security of the proposed authentication protocol given in Sect. 3
under the adversary types defined above.

Theorem 1 (Security against database corruption). The proposed authen-
tication protocol is secure in case of corruption of the database.

Proof. Let A be the malicious attacker that corrupted the DB. As A has access
to the database, she has all the encrypted Cenrol(i) = HEncpkAS(Venrol(i)), for i =
1, . . . , n where n is the size of the bitstring. The proposed authentication protocol
provides computational indistinguishability against A due to the semantic (IND-
CPA) security property of the underlying homomorphic encryption system as
Cauth(i) = HEncpkAS(Vauth(i)) is encrypted each time with freshly generated
random values (which is also different from the one used in the enrollment stage).
Furthermore, even if the ω vectors are matched in two different sessions (similarly
to the enrollment session), the adversary cannot distinguish between Vauth and
Venrol values due to the semantic security property. The attacker cannot obtain
any information about a user’s biohash vector Venrol, since it is stored in the
DB in encrypted form Cenrol, under a homomorphic encryption cryptosystem.
Therefore, the attacker can retrieve neither the CSR template (ω) nor the user
SV by corrupting the database. In addition, Cenrol is stored with the signature
of the data, so A cannot modify the enrollment data as the private keys are
stored in AS using a secure environment (such as HSM [17]). We also masked
the template data with the User secret value SV that provides revocation ability
of the CSR template in case it is needed (due to customization or membership
termination) without revealing the CSR data. In addition, the same CSR of a
subject can be utilized in different recognition systems without constituting a
privacy threat, as two templates of the CSR with different user secret values will
be unlinkable to different databases. )*

Theorem 2 (Security against malicious outsider attacker). The proposed
authentication protocol is secure against an outsider malicious adversary.

Proof. The biohash values are not revealed at the authentication phase as they
are processed in a semantically secure encrypted domain. Namely, the authenti-
cation procedure (see Algorithm 2) is determined by executing

HD(Venrol,Vauth) ← HDecskAS(HDE(Venrol,Vauth)).

Considering that we (homomorphically) decrypt a single value after the compu-
tation of Eq. (2), the only outcome is the Hamming distance of the authentication
and the enrollment biohash vectors, namely Vauth and Venrol. We then conclude
that the security of the system against an outsider malicious adversary can be
reduced to the security of the underlying homomorphic encryption cryptosystem.

)*

For example, in our implementation, we have considered the lattice-based
homomorphic encryption scheme of Fan and Vercauteren [11], whose security
relies on the Ring Learning With Errors (RLWE) assumptions. Hence, in order
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for a malicious adversary to gain partial information about the biohash vectors,
she needs to be able to identify vulnerabilities either in the implementation
of the homomorphic encryption scheme (e.g., side-channel attacks), or in the
underlying RLWE hard mathematical problems.

Theorem 3 (Security against semi-honest prover). A dishonest insider
semi-honest prover (a user) can impersonate a legitimate prover Pi with only a
negligible probability.

Proof. Let Pc be a semi-honest insider user that aims to impersonate a differ-
ent legitimate user Pi. In the enrollment phase, the prover needs to provide
a signature of the encryption of enrollment vector i.e., Cenrol. So, based on
the assumption of secure key generation/distribution Pc cannot impersonate Pi

during the enrollment phase. Considering the authentication phase, Pc needs
to masquerade both a legal CSR reading and the user SV. As CSRs have been
argued to behave as physical unclonable functions [12,24], it is very unlikely to
make a physical counterfeit of CSRs. Assuming that a verifier always requires a
CSR reading and entering SV, Pc can only impersonate a legitimate prover with
a negligible probability. )*

5 Implementation

In this section, we present the details of our proof-of-concept implementation
and the experimental results regarding the execution of the CSR authentication
protocol that is presented in Sect. 3.2. Specifically, we have implemented both the
enrollment and authentication phases, described in Algorithms 1 and 2, where
the implementation is conducted in Python 3.6.9. The homomorphic encryp-
tion scheme that we have chosen is the one presented by Fan and Vercauteren
(FV) [11], and for the implementation of this scheme, as well as the required
homomorphic operations, we use the PySEAL library7. The selected library for
the hash functions is the hashlib8, where for our purpose, we used SHA-256
and SHA-224, which are currently considered acceptable for hash function appli-
cations in [26], to obtain the digest of the User’s secret value in the enrollment
and authentication phases. Further, as a digital signature scheme, we have cho-
sen ECDSA using the NIST Curve P-256; we used the Python ecdsa 0.17.0
library9. In contrast, the feature extraction process described in Sect. 3.1 and
specifically the function ReliableFeatures that is required in both the enrollment
and authentication algorithms for extracting the reliable features was imple-
mented from scratch.

7 https://github.com/Lab41/PySEAL.
8 https://docs.python.org/3/library/hashlib.html.
9 https://pypi.org/project/ecdsa/.
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5.1 Dataset

We analyzed a set of 17 CSR IDs from which we generated a set of CSR images.
The CSR images were acquired by using two different optical microscopes. 7
CSR images were taken by using a USB Dino-Lite digital microscope with
perpendicular illumination to the sample, and flexible LED control, as shown in
Fig. 1-a. These images may be closer to the images acquired by an end-user with-
out the expertise and/or professional microscopes. In Fig. 1-a, one can observe
some green spots due to the photonic cross-communication, which consists of the
coupling effect of the optical signal between neighbor spheres [13]. This effect can
be advantageous due to the fact of having more information, but it can also be
a disadvantage as it may introduce more noise to the system. The other 10 CSR
images were taken with a professional polarized microscope equipped with a dig-
ital camera and illumination perpendicular to the sample. Those images present
a well-defined and colored CSRs, see Figs. 1-b and 2-a. The images acquired with
different microscopes clearly show different responses, meaning that a reliable
process needs to be implemented for the minutiæ detection from CSR images
when acquired with distinct readout devices.

Table 1. Operations applied to CSR image to simulate input noise.

Sequence Operation Range
1 Rotation 1 − 5◦ (anticlockwise)
2 Blurring (2 × 2) − (4 × 4)
3 Gaussian noise 0.2–0.4

We inject two types of noise: similarity noise and Gaussian noise [10]. The first
one simulates noise coming from external conditions such as sudden illumination
changes, lack of focus, rotation, etc. The Gaussian noise simulates the photonic
and electronic noise inherent to each device, and it occurs during the image
acquisition under low-light conditions, which makes it difficult for the visible
light sensors to capture details of the object efficiently [10]. Thus, we generated
a set of CSR images by applying the operations listed in Table 1 to the reference
images, whose ranges are based on the idea of keeping the noise within realistic
external conditions. The procedure of generating noisy responses ensures the
extraction of reliable blobs.

Table 2. Dataset for the enrollment and authentication phases.

Protocol phase CSR responses Number of
attempts

Acquired images
per attempt

Enrollment 17 1 7
Authentication 10 5
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For the enrollment phase, from each CSR image, we generated seven noise
images to extract the truly reliable blobs. For the authentication phase, we sim-
ulated ten attempts to authenticate CSR images taken at different time intervals
and, at each time, five images were acquired (also intending to extract the reli-
able blobs), as described in Table 2.

5.2 Homomorphic Encryption Implementation

Fan and Vercauteren proposed the FV scheme in 2012 [11] and essentially, it is
based on the homomorphic encryption scheme of Brakerski [9]. The FV scheme is
instantiated over the RLWE setting instead of the LWE setting, which is the case
in the Brakerski scheme, and it is generally a more efficient version of Brakerski’s
scheme. However, because of the similarities between the two schemes, we often
refer to the FV scheme as Brakerski/Fan–Vercauteren (BFV). We present a high-
level description of the BFV scheme here and refer to [11,23] for a more detailed
analysis.

Since the BFV scheme works in the RLWE setting, its core operations are
performed over a polynomial ring Rm = Zm[x]/(xd + 1), containing polynomi-
als modulo xd + 1, with integer coefficients in {+−m/2,, . . . , -(m − 1)/2.}. For
efficiency reasons, the degree d of the polynomial modulus is usually chosen as
a power of 2. Based on this notation, the plaintext space in the BFV scheme is
described by the polynomial ring Rt, for some positive integer plaintext modulus
t and the ciphertext space is described as R2

q , for some positive integer coeffi-
cient modulus q. In practice, the coefficient modulus is chosen to be larger than
the plaintext modulus so that each plaintext can be mapped to multiple valid
ciphertexts. Hence, a plaintext message is represented as a polynomial in Rt, and
its encryption is transformed into a pair of polynomials in Rq. Integer plaintext
messages can be encrypted using the BFV scheme after applying an encoding
to convert them to polynomials in Rt. For key generation, the secret key sk is
sampled from R2, i.e., it is a polynomial of degree at most d−1, with coefficients
in {−1, 0, 1}, while the public key pk is composed of two polynomials in Rq.

BFV Parameter Sets in PySEAL. The most crucial part of implementing the
BFV scheme is selecting a suitable parameter set that maintains a reasonable
balance between performance and security. The BFV parameter set consists
of the polynomial, plaintext, and coefficient moduli, and these parameters are
usually chosen following the homomorphic encryption standard of Albrecht et
al. [1]. PySEAL offers different flavors of such parameter sets targeting 128-bit
security, while it also allows implementers to initialize the scheme with their own
parameters in order to achieve higher security levels.

Table 3. Chosen parameter set for BFV scheme in PySEAL.

Sec. level. (bits) Parameter set
Poly modulus (d) Plaintext

modulus (t)
Coefficient modulus (q)

128 x2048 + 1 256 72057594036879361
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The parameter set chosen in our implementation is given in Table 3. This is
one of the instantiations that is used in the PySEAL library for 128-bit security.
The coefficient modulus q in PySEAL is defined as a product of distinct primes of
size up to 60-bits, where each prime is congruent to 1 modulo 2d. In our instance,
q is composed of only one prime, as shown in Table 3. The performance of the
homomorphic encryption scheme is largely affected by the polynomial modulus,
as well as by the number of prime factors in the coefficient modulus. Hence, one
needs to keep the degree d and the number of prime factors in q small.

Performance of BFV Homomorphic Operations in PySEAL. Besides
homomorphic encryption and decryption, PySEAL supports all the required
homomorphic operations for computing the encrypted Hamming distance using
Eq. (2), i.e., homomorphic addition, negation, and multiplication. In Table 4, we
list the average time required for performing the homomorphic operations that
are needed in the authentication, Algorithm 2 (the homomorphic encryption in
the enrollment takes similar times). The reason for focusing on the authentica-
tion phase in our experiments is that it contains the main bulk of homomorphic
operations, including the computation of the Hamming distance in the encrypted
domain. The timings in Table 4 refer to two different sizes of the biohash vector
Vauth, namely 224- and 256-bits, where for this purpose, we used SHA-224 and
SHA-256 for hashing the User’s secret value.

Table 4.Average execution times (in seconds) of homomorphic operations, with respect
to the BFV homomorphic encryption scheme and the parameter set of Table 3, that
are performed in the authentication phase (Algorithm 2), using the PySEAL library.

Size of
biohash

Homomorphic operations

Encryption Addition Negation Multiplication HDE Decryption
224-bits 1.423 0.0044 0.0010 0.456 0.462 0.0002
256-bits 1.635 0.0052 0.0012 0.523 0.529 0.0002

The encryption column refers to the average time required to encrypt the bio-
hash vector Vauth bit-by-bit. In other words, it refers to the average time needed
to perform n homomorphic encryption operations for n ∈ {224, 256}. The rest
of the columns concern the homomorphic operations required for computing the
encrypted Hamming distance based on Eq. (2). Specifically, our implementation
requires approximately 4.4 ms to perform 4n − 1 homomorphic additions for
n = 224 and approximately 5.2 ms for n = 256. Performing n homomorphic
negations takes roughly 1 ms in both cases. On the other hand, our implemen-
tation requires 0.456 s to perform n homomorphic multiplications for n = 224
and 0.523 s for n = 256.

The average time for calculating the encrypted Hamming distance is 0.462 s
for n = 224 and 0.529 s for n = 256, suggesting that the homomorphic multiplica-
tions consume approximately 98.78% of the computation time for the encrypted
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Hamming distance in both cases. The last column concerns the average time
taken to decrypt HDE(Venrol,Vauth). This is approximately 0.2 milliseconds in
both cases, which is expected since the encrypted Hamming distance represents
a single ciphertext corresponding to the encryption of the actual Hamming dis-
tance HD(Venrol,Vauth) and hence to the encryption of an integer in {0, . . . , n}.
Finally, the experimental results presented in Table 4 indicate that switching to
biohash vectors of size 224-bits offers around 12.82% speed-up compared to the
256-bit case, both in terms of bit-by-bit encryption as well as in the computation
of the encrypted Hamming distance.

5.3 Performance of Enrollment and Authentication Phases

In Table 5, we summarize our experimental results regarding the performance
of the enrollment (Algorithm 1) and authentication (Algorithm 2), considering
biohash vectors of size n ∈ {224, 256} to be encrypted.

Table 5. Average execution times (in seconds) of enrollment and authentication phases,
with respect to the homomorphic operations performance of Table 4. In these timings,
we exclude the performance of the feature extraction.

Size of
biohash

Enrollment (Algorithm 1) Authentication (Algorithm 2)

Encryption: Cenrol Enrollment Encryption: Cauth HDE Authentication
224-bits 1.407 1.409 1.423 0.462 1.892
256-bits 1.648 1.651 1.635 0.529 2.172

It is clear from Table 5 that almost all of the execution time of the enroll-
ment is dedicated to the encryption of Venrol, for both n ∈ {224, 256}. This
is expected since all operations in Algorithm 1, except for the homomorphic
encryption, are simple operations that can be efficiently performed, i.e., matrix
multiplication, hash computation, and XOR. Specifically, the execution of the
enrollment algorithm for 224-bits requires around 1.407 s, offering approximately
a 14.66% performance advantage over the 256 case, which requires 1.648 s.

The authentication phase has the extra computational burden of computing
the Hamming distance of the two bitstrings Venrol,Vauth using the encrypted
vectors Cenrol,Cauth. For both n ∈ {224, 256}, the bit-by-bit encryption of Vauth
consumes approximately 75.25% of the total execution time, while the computa-
tion of the encrypted Hamming distance requires approximately 24.39% of the
execution time of Algorithm 2. As expected, the computation time for homo-
morphic encryption and the Hamming distance together corresponds to around
99.63% of the total execution time of the authentication algorithm. We also
noted that the 224 case offers a performance gain of around 13.77% over the
256-bit case.
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6 Conclusions and Future Work

We started to work with a challenge: proving that it is possible to securely
authenticate objects enhanced with CSRs, a material that demonstrates
fingerprint-like features and shows optical responses acclaimed to be unpre-
dictable (at the production phase), physically non-reproducible, and identify-
ing. Images of such responses —as often happen in biometrics— contain noise.
Extracting information and minutiæ is a process with data instability, increasing
the stake for those who intend to develop a cryptographically secure authenti-
cation protocol taking advantage of the materials’ optical features.

We designed, proved it secure, and implemented a solution for authenticat-
ing CSRs tags. After illustrating a methodology to derive stable and reliable
bitstrings from the minutiæ of CSRs images using techniques borrowed by the
biometric traditions, the main contribution of the paper is the design of an
authentication protocol. It uses biohashing and homomorphic encryption, and
despite being thought to work only with CSRs, we argue that the proposed
protocol can be applied to a wider range of use-cases. In fact, since CSRs minu-
tiæ are abstractly represented as “randomly” distributed colored spots in a bi-
dimensional plane, our solution works for any technology for authentication that
relies on the same data structure, for example, dense cloud of ink dots used in
watermarking, or certain allegedly Physical Unclonable Functions emerging from
the optical analysis of fabric like silk [22].

We demonstrated that an encrypted bitstring can be stored securely in an
outsourced database. When instantiated with a practical homomorphic encryp-
tion scheme, an authentication system can be designed to perform secure com-
putations in the encrypted domain. One such operation is the computation of
the Hamming distance of two bitstrings, using as input only their corresponding
ciphertexts. This operation is the most significant in the authentication phase,
as it determines whether the authentication is successfully performed and in
a privacy-preserving manner, i.e., without revealing any sensitive information
about the User’s private data.

We presented a proof-of-concept implementation of the proposed CSR
authentication protocol, which we instantiated with the BFV homomorphic
encryption scheme. The implementation was conducted in Python, using the
PySEAL library for performing the required homomorphic operations with the
BFV scheme. Based on our implementation, we derived useful conclusions
regarding the computational time that is consumed by heavy homomorphic oper-
ations such as bit-by-bit homomorphic encryption and homomorphic multiplica-
tion, which has a major performance impact in the computation of the Hamming
distance of two bitstrings in the encrypted domain.

Future Work. We envision several extensions for this work, mainly targeting
implementations with improved performance offering at the same time high-
security guarantees. The first direction aims at achieving an optimized imple-
mentation. We believe that better timings can be obtained when switching to
other programming languages and more up-to-date libraries, such as Microsoft’s
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SEAL library10 which implements the BFV scheme in C++. In addition, we do
not claim that our formula for computing the encrypted Hamming distance is the
optimal one. It is likely that more efficient methods tailored to the BFV scheme
are already available or can be designed. For example, in [36], the authors pre-
sented an optimized way for computing the encrypted Hamming distance with
BFV homomorphic operations by applying different encodings (“packed” repre-
sentations) for the polynomials representing ciphertexts and plaintexts. The sec-
ond direction looks at the security of our implementation. We plan to emphasize
more on instantiating the BFV scheme with optimal parameter sets, achieving at
least 128-bits security. Still, from a security perspective, we also plan to look at
implementations offering side-channel protection, focusing specifically on timing
attacks.
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