Machine learning to identify pathways In
Parkinson Disease?

Poster SOM_ 3: Machine learning applied to higher order functional representations of omics data
reveals biological pathways associated with Parkinson Disease

Elisa Gomez de Lope

Biomedical Data Science
University of Luxembourg, Luxembourg Center for Systems Biomedicine (LCSB) nni.

UNIVERSITE DU
LUXEMBOURG




Parkinson’s Disease & higher order functional representations
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« Single gene mutations?
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Schematic representation of metabolic networks
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Aggregating omics data into higher order functional features

Abundance matrix Aggregation based on Higher order Aggregated abundance
(mxn) database mappings aggregated matrix (mxp)
abundance

KEGG Aggregation statistics &
principal curves “Pathifier’
deregulation scores

)

Database Mappings

KEGG = Kyoto Encyclopedia of Genes and Genomes

m = number of samples

n = number of single-level features (i.e. genes, metabolites, etc)

p = number of higher order functional aggregates (e.g. number of pathways) | eessss



I Results: Predictive PD diagnosis with ML models

AUC score

Line charts of crossvalidated AUC scores from models & pooling types on transcriptomics (A) and metabolomics (B) data
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(A) Transcriptomics data

External two-level cross-validation was used including nested feature selection
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(B) Metabolomics data* Models

*Pooling aggregations based on KEGG



Results: Relevant features from predictive diagnosis PD/HC

Shap values of (pooled mean -aggregated) KEGG metabolic pathways predictors on reqularized logistic regression model
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Limitations & outlook for future analyses

X Unknown confounders

X Large variability among PD patients makes identifying common trends dfficult
X Data represents late stages of the disease

®» Modelling other PD prognostic outcomes (e.g. motor dysfunction scores)

®» Use a graph representation of the data via protein-protein interactions and metabolic networks

Convolution - A
' O o ‘N,_\'& *
- o
i Eol A~
— . —>@P—> 00 00 - ~52
Patient Patient’s gene ' 2 o . %‘ %\
expression o Pooling = "'o/%,,i

Molecular network

Gene expression profile as a graph signal of the molecular network O

Source: Chereda, H., 2022. Explaining decisions of graph convolutional neural networks for analyses of molecular FONDATION
10-Sep-22 subnetworks in cancer [Doctoral thesis, Georg-August-Universitét Goéttingen] DE LUXEMBOURG

P opy ! Fondation du Pélican
sous I'égide de la Fondation de Luxembourg.




Machine learning to identify pathways in
Parkinson Disease?

Poster SOM_3: Machine learning applied to higher order functiohal representations of omics data reveals
biological pathways associated with Parkinson Disease

Find my poster here!

Elisa Gomez de Lope

X elisa.gomezdelope@uni.lu
¥ @elisagdelope




