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Figure 1: Failure is inevitable, part of the process and sometimes beautiful. (Localisation estimate of a rover driving in a
straight line.)
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Abstract

WithmanyNew Space companies aiming to return to the surface of theMoon in the com-
ing years, novel missions are being considered that can only last up to a single lunar day (14
earth days). In combination with the communication time delay (2.4 seconds), this leads to
an increased incentive for enabling more autonomy to maximise operations for any mobile
surface robot.

Since the primary component for this type of autonomy is good localisation estimates,
both relative and absolute, are the main focus of this work. While this has been demon-
strated before for terrestrial applications, the challenge here is to propose systems (software
and hardware) which function within the limitations of what is physically possible on the
lunar surface, andmore importantly, what is financially viable for private companies, leading
to more conservative mass and power requirements.

In terms of relative localisation, we address which sensor hardware should be considered
for such applications. Additionally, we propose a novel software approach to improve local-
isation around lunar landers. The resulting localisation estimates can then be used to either
support and accelerate the operator’s decision making, or to allow for the rover to perform
some of its driving independently.

On the absolute localisation side, we have turned towards machine learning to propose
two novel methods to speed up the absolute localisation process through orbital and surface
perspective imagery. Through this approach, we can more rapidly determine a rover’s posi-
tion in orbital imagery, which in turn, can be used to quickly commence surface operations
after landing, as well as correct the localisation drift on longer traverses.

Because none of these methods could be validated on the Moon, we also considered the
how to effectively configure testing environments to achieve the required confidence for pri-
vate investors to support this technology. As such, two lunar analogue facilities were built,
multiple virtual simulators were configured and an extensive field test was also conducted for
the completion of this work.
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1
Introduction

When we talk about pose estimation in the field of robotics, we generally are interested in

the position and orientation of an object with regards to a reference frame. The term pose is

used as a combined term for position and orientation ([179], p98). The term estimation is

used because there is always some degree of uncertainty or error in the calculated pose. In the

context of mobile robotics, we are interested specifically in the pose of our robot. Here, the

1



term localisation often refers to the pose of a robot with respect to its initial starting point

([196], p157). Other arbitrarily selected reference frames can also be considered as the centre

of a robot’s world, such as the centre of the lunar lander which deploys the rover. Global

reference frames, such as the latitude and longitude coordinates of a global geodetic system

can also be used.

Because themeaning of the following terms can sometimes be ambiguous, we define them

as follows for the purpose of this thesis. We refer to the term absolute localisationwhen deal-

ing with the pose of a robot in a global frame, such as a map or orbital imagery, relative local-

isation when discussion the pose of a robot relative to it’s starting point and pose estimation

when talking about the pose of an object in an image with regards to the camera reference

frame.

Localisation for planetary rover missions has been a concern since the first Mars rover

landed on the surface ofMars in 1997. All existing planetary rovers have had some internal lo-

calisation system to support surface operations. Even themost basicLunokhod1 and2which

roamed the Moon back in the seventies, had some simple form of odometry/speedometer in

order to support the ground operators during transverses [180]. While the first rovers had

very basic localisation systems [143], we have seen constant improvement with new rovers

and more complicated systems [91]. The current generation of these robots, such as Perse-

verance and Exomars, are complex systems developed by large teams of engineers from dif-

ferent space agencies. While expensive to develop and operate, some of these systems have

managed to display high degree of reliability with more than 15 years of continuous opera-
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tion [3]. Given that these are solitary rovermissions, they also present a single point of failure

where one problem on a rover system can lead to the end of a mission [213]. Nowadays, we

are starting to see much smaller exploration systems which are instead developed by private

companies. These smaller robotic systems rely on Commercial Off The Shelf (COTS) com-

ponents [9] to save costs. This approach is spearheaded by so-called ”New Space” companies

which aim to bring innovative and affordable solution to space [147]. The small size of the

proposed rovers also makes multi-robot systems a possibility, offering up new mission con-

cepts with heterogeneous robot teams [174]. With localisation being a crucial element to

rover operations, new approaches are being developed to accurately estimate a rover’s pose

during traverses [56] on these smaller systems.

In addition to the decreasing rover size, a new class of rover missions is being considered,

where extremely short missions of less than a lunar day* [57, 124] are acceptable for commer-

cial operations on the lunar surface to achieve the same primarymission goal, but at a fraction

of the cost. The primary reason for this short life-time mission is the extreme temperature

difference between the lunar day and the lunar night, where the temperature drops from

+120 degrees Celsius during the day to -205 degrees Celsius during the lunar night [154].

In combination with the lunar night lasting 14 earth-days, and the fact that most current

commercial lunar rovers solely rely on solar energy to power their systems, night-time sur-

vival is a costly feature[85]. Due to the limited duration, rover operations should commence

almost immediately after touchdown to maximise the time for exploration. Additionally, an

increased level of autonomyof the rovers is needed to be less dependent on teleoperationwith

*From sunrise to sunset, this equates to approximately 14 earth days.
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1.1. Problem Statement

its large time delay.

This poses several challenges that we aim to address, including absolute localisation imme-

diately after touchdown, improved relative localisation to enable semi- and fully-autonomous

operations, as well as facilities and environments to validate any of these proposed methods.

1.1 Problem Statement

A. Testing and Validation

Problem: The first issue we encountered when we started working on lunar surface robotics

was the lack of available testing environments to validate our results. Given the added risk in-

volvedwith any autonomy reliant on new localisation systems, the validation of these systems

also needs to be addressed. If a risk cannot bemitigated, some level of risk may be acceptable,

but it should always be properly understood. For terrestrial localisation applications, like

autonomous cars, this translates to collecting thousands of hours of data from localisation

systems operating in real scenarios in order to find edge cases which the engineers have not

previously considered [76]. Based on such datasets, the reliability of a system can then be

estimated. For lunar surface applications however, this is not practical because there is no ac-

cess to the actual operational environment on the Moon before each mission. Furthermore,

we only have limited knowledge of the surface environment which our rovers will encounter.

While high resolution orbital imagery covering almost all parts of theMoon are available, this

imagery is only accurate to about 0.5 metres per pixel [164] for nearly all locations. Knowl-

edge of anything smaller than that, such as smaller rocks or the composition of the surface

material, are simply estimates based on other landing sites or other available remote sensing
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1.1. Problem Statement

data. As a consequence, testing requires a wider range of scenarios to be covered to account

for the environment uncertainty. On its own, this is already a complex challenge and many

space agencies worldwide are currently trying to address this issue. For commercial opera-

tions however, the question of testing and validation is more nuanced. To them, reliability

is important, but so is the cost of testing. This issue is further complicated by the fact that

there are currently only a handful of relevant lunar testing facilities available in theworld. We

will therefore, address how new facilities can be built, specifically with testing of localisation

systems in mind. While taking into consideration the concerns of New Space companies, we

will also examine which environments satisfy the trade-off between acceptable accuracy, and

cost-effective testing strategies.

Brief State of the art: For the purpose of this work, we have divided the testing environ-

ments into three different categories: virtual simulator, indoor testing facilities and outdoor

field tests.

There are numerous virtual simulators used in robotics research, with themost commonly

used ones being Gazebo, Vrep andWebots (based on [28]). However, only a handful of sim-

ulators have been configured [7] or built [43] specifically to mimic the lunar or martian en-

vironment. Onemajor disadvantage is that some of these solutions are not publicly available

or expensive to procure. Alternatively, simpler lunar environments are available, which are

easy to interface with robotic systems such as the Gazebo environment in the NASA Space

Robotics Challenge II* as well as more realistic simulators based on computer games engines

[177, 40]. Lastly, we can also look towards employing 3D rendering tools such as Blender to

generate images offline. Notably, Blender has also been extended to generated more accurate

*http://www.spaceroboticschallenge.com/

5

http://www.spaceroboticschallenge.com/


1.1. Problem Statement

shading of the lunar surface [5].

In terms of physical lab facilities, their construction depends heavily on the intended use

case. These facilities normally have to focus on a number of priorities, such as the use of accu-

rate soil properties with lunar regolith simulant [111, 51], accurate environmental properties

with simulated pressure and temperature values [45], lighting conditions [51], complex ter-

rain [29] or simply size [187, 89, 50].

For the final validation, field tests should always be considered for autonomous systems as

indoor facilities are often limited in variation due to their small size. Often, the more prac-

tical solutions are nearby quarries [212] or sand beaches [80], which are excellent choices

because of their accessibility. Ideally, volcanic locations such as mount Etna should also be

used [202] as they are highly suitable. The fresh basalt rock that covers the landscape mim-

ics the landscape of the Moon accurately because the fine sharp particles are very similar to

the lunar regolith. Alternatively, desert locations, which are often used for Mars analogues,

present good solutions as they provide large unstructured environments. Some favourable

desert locations can be found for example in Morocco [142, 108], the Atacama desert [142]

or Devon Island [61].

That leads to the first research objective of this thesis: How can we best configure an array of

testing environments which can help use validate localisation systems without going to the

Moon.

B. Relative localisation

Problem: The next issue we need to address is the time delay of at least 2.4 seconds for round

trip communications between the Earth and the Moon [32, 140]. This delay considerably
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slows down any remote operations because the controller needs more time to intervene in

case a problem arises. Often, this leads to short distance driving commands or very slow driv-

ing speeds. As the mission lifetime is limited, this leads to a strong incentive to increase the

autonomyof surface exploration systems, even if this comes at the expense of some additional

risk. In this case, we consider autonomous systems which can reduce the wait times while a

robot is waiting for human input. This could be as simple as an operator providing way-

points [132] rather than direct wheel commands. On the other end of the spectrum, fully

autonomous planning, navigation and obstacle avoidance would provide full autonomy. Be-

tween these two solutions, there is a sizeable difference in risk. Regardless of the complexity,

both solutions rely on a robust relative localisation systemwhich can inform the robot where

it has started and how far it has since moved. This is the basis of any complex autonomous

system such as mapping, obstacle avoidance and path planning. For New Space missions,

the question which arises from this issue is how to select a localisation system for small-sized

rovers while relying onCommercial Of The Shelf (COTS) components. This question deals

with issues which are both software and hardware related. On the hardware side, we need

to evaluate which new sensors are available and suitable for this application whereas on the

software side, we can leverage more computing power of newer COTS components.

Brief State of the art: For relative localisation, we look at existing solutions employed by

current planetary rovers. First promising localisation results were shown by Spirit and Op-

portunity, where visual odometry was used to correct short stretches of way-point driving

[132]. To date, all planetary rovers still rely on stereo camera systems as primary localisa-

tion sensor (Yutu[121] and Yutu-2[131], Exomars[199], MSL Curiosity[91], Perseverance

[133]). To achieve localisation out of these stereo camera systems, the rovers rely on what is
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known as Stereo Visual Odometry, where the difference between the left and the right cam-

eras is used to estimate depth, while the difference between two consecutive images is used

to estimate travel distance. The resulting estimate is also often used with other available in-

formation. In relation to hardware, the question which emerges is why these robots do not

use LIDAR, as this technology has been proven in terrestrial rover experiments[67]. The

main reason is due to the lack of availability of a small reliable LIDAR sensors that are space

qualified. On the other hand, digital cameras have a longstanding history of being used in

space. As an additional option, localisation can also be achieved with a monocular camera

system. However, stereo systems provide more accurate and thus more reliable odometry.

On the software side, the next big leap for camera based localisation systems is to run Si-

multaneous Localisation AndMapping (SLAM) on-board planetary rovers. Some missions

have performed additional processing similar to SLAM in post processing on the ground

(Yutu2[131], MER [38]). However, this technology has not yet found its way onto the

rovers themselves because it requires considerably more processing power, which is simply

not available on today’s radiation hardened computing platforms. In terrestrial experiments,

they have however shown promising results: [174].

That leads to the second objective of this thesis, which focuses on evaluating different local-

isation systems in order to recommend a relative localisation system for lunar surface robots.

C. Absolute localisation

Problem: The first problem is the uncertainty of the actual touchdown location within the

landing ellipse of the lunar lander. For missions aiming to perform a traverse to a specific

anomaly detected from space [27], or missions with a detailed mission plan based on orbital
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data [74], this requires an absolute localisation system with the ability to accurately estimate

the position of the landing site in relation to a global lunar reference frame [130]. Given that

most lunar missions have a limited lifetime, speed is the essential component here to max-

imise exploration time, thereby providing increased opportunity for science return.

Brief State of the art: For terrestrially applications, the solution to this problem is to rely on

Global navigation satellite systems (GNSS)[142], but these will not be available around the

Moon for at least another decade[156]. The next best solution is to search for the robot in an

orbital image taken after landing [121]. This relies on the availability of a high resolution or-

biter to fly over the expected location in favourable lighting conditions, which can take weeks

[34]. On Mars, this has also been solved through a time-consuming process of triangulat-

ing a rover’s location through horizon features [25], before manually matching the ground

around a rover to orbital imagery. In recent findings, an example from a lunar mission has

successfully shown that this process can be accelerated [206]. For this approach, one needs

to rely on lander descent images, which may not be available when flying a rover on a com-

mercial lander. However, this method would also not be helpful on traverses where we want

to sporadically update the rover’s position. Instead, we can look towards terrestrial methods,

where machine learning has been used successfully to match surface perspective and orbital

imagery [197, 13]

That leads to a third objective of the thesis, which dealswith the question of how to accelerate

absolute localisation immediately after landing.
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1.2 Objectives

TheMain objective is to increase autonomy of small lunar rovers through improved localisa-

tion. This will be achieved through the following sub-objectives:

A. Configure an array of testing environments to validate lunar localisation systems on

Earth.

B. Evaluate different localisation systems in order to recommend a relative localisation

system for the lunar surface covering both hardware and software.

C. Build an absolute localisation system to speed up rover operations immediately after

landing.

1.3 Thesis Contributions

Thework in this thesis will contribute to advancing the autonomy of small lunar exploration

rovers while specifically considering commercial New Space applications. Since one primary

technology to enable autonomous mobile robots is localisation, we will therefore focus on

localisation, as well as the testing of localisation systems.

• When dealing with computer vision systems, guaranteeing a flawless implementation

is impossible, even for terrestrial applications. For lunar rovers, this is even more chal-

lenging as we cannot test on location. While there are specialised facilities to replicate

the designated environment on the Moon, only a few of them exist, and they are ex-

pensive to build. On the other hand, simulation environments are accessible and easy
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to set up, but have low degree of fidelity. In chapter 2, we address the different solu-

tions which exists in order tomake a qualitative assessment on how to build, configure

and plan a testing campaign. This is achieved especially by considering cost, in order

to keeping the proposed solutions accessible to New Space actors. This includes the

following contributions:

– We provide examples of existing facilities and testing environments to provide a

baseline for the configuration of any new environments.

– Construction of two indoor lunar lab facilities.

– Configurationof virtual simulation testing environments that can interfacewith

existing robotic systems, such as ROS (Robotics Operating System).

– Organisation and performance of a field test in an outdoor lunar analogue test-

ing environment.

• When developing a relative localisation system for a lunar rover, many factors must be

taken into account. In chapter 3, we will explore the different hardware and software

solutions which are available for this purpose. We will provide an overview of possible

solutions, and addresswhich solutions arepreferable for small rover applications. With

respect to hardware, this addresses which sensors to use and how to configure them.

For software options, this concerns examining existing terrestrial localisation systems

and extending them for planetary rover missions.

– Evaluation of the state of the art of relative localisation systems.

– Qualitative assessment of different localisation sensors, and their suitability for

small rovers operating in the harsh environment of the lunar surface.
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– Stereo camera considerations for the lunar surface robotics

– Proposal of a localisation system thatmakes use of the continuous close proxim-

ity of a lunar lander in order to improve a rover’s localisation estimate.

• In chapter 4 we look at different approaches available for performing absolute localisa-

tion on other planetary bodies with regards to a global reference frame. We then assess

how machine learning can be used to improve the state of the art by evaluating two

different methods to compare orbital imagery and surface perspective imagery. Here,

we provide the following contributions:

– Evaluation of the state of the art of absolute localisation systems.

– Generation of a virtual lunar dataset composed of orbital and surface perspective

imagery to perform absolute localisation benchmarking

– Training and evaluation of a machine learning approach to perform absolute

localisation between orbital imagery and surface perspective imagery

– Evaluation of a second absolute localisation method, address the shortcomings

of the initial approach to include horizon features in the matching process.

1.4 Scope

To focus on the development of more flexible New Space approaches, the following limita-

tions have been observed:

Environment: Planetary probes have been sent to the surface of Moon [122], Mars [143],

Venus, Titan [112] and a number of asteroids and comets, with many more missions
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being planned. For the main body of work in this thesis, we will focus on the specific

problems posed by operating rovers on the surface of the Moon. We will also address

some of the challenges of operating on the surface ofMars. While this is not the main

aim of this thesis, it is important tomention these rovermissions, because themajority

of planetary rovers to date have been sent to the red planet.

Processing Hardware: We are not making use of radiation hardened or even flight-proven

space hardware to validate our results due to the added development complexity. In-

stead, we are using Commercial OffThe Shelf (COTS) components which are within

reasonable assumptions of power and mass budget. While this technology has not yet

been proven in space, we assume that similar hardware will be flown to theMoon and

Mars in the near future, especially considering themuch shorter lifetime of upcoming

lunar missions. A good example of this is the cellphone grade processing unit flown

on the Mars helicopter Ingenuity [12].

Bench-marking limitations Concerning testing and validation of localisation systems, we

purely evaluate the localisation performance of systems, for which we benchmark the

estimated pose of a system and compare it to the pose provided by our ground truth.

We donot address any hardware requirements, such as structural, thermal or any other

engineering challenges as they are only indirectly related to the localisation quality.

Additionally, we assume software validation and verification to be outside of the scope

of this thesis because this step is only required after a valid localisation system has been

selected to fly.

Risk: Some of the presented work applies a level of risk-taking currently not being applied
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by space agencies for planetary exploration. We do however, expect such risks to be

acceptable in the near future for multiple reasons. Commercial operators are join-

ing and even financing space exploration of the Moon, and are eager to be successful

on a smaller budget [9]. At the same time, they are not required to justify potential

failures to the general public which can lead to a very conservative approach to space

exploration. Secondly, multi-robotmissionswill no longer result in the end ofmission

when a single robot fails, making smaller less reliable rovers an acceptable compromise.

Lastly, the mission lifetime which is being considered, is less than 10 earth-days on the

lunar surface. This is due to the fact that some commercial robots are not slated to

survive the lunar night with temperatures of -205 degrees Celsius. This short lifespan

provides added incentive to take additional risk, especially towards the end of a mis-

sion. This is in stark contrast to someMars explorationmissions such asOpportunity,

lastingmore than a decade andwhere there is very little incentive to takemajor risks[3].

Mission concepts: When developing a localisation system, the intended use case is just as

important as the available payload mass or size. Especially for resource constrained

systems, we have to ensure that the final solution is tested in similar scenarios to those

expected during normal operations. In this work, we are considering a set of possible

use cases towards which we benchmark our pose estimation. For relative localisation,

we will investigate long traverses (> 100 metres), ground mapping (zigzag shapes that

cover amaximumof the surface area), and collaborative robot systems (multiple robots

operating around a landing structure). For absolute localisation, we are considering lo-

calisation immediately after landing, as well as missions requiring single absolute po-

sition updates when taking scientific measurements. When dealing with localisation
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systems, the intended use is just as important as the available payload mass or size.

1.5 Interdisciplinary Aspects

Planetary robotics has its roots deeply embedded in terrestrial applications as the majority

of the work presented here can be applied on earth. But it is difficult to compete with au-

tonomous cars with their highly accurate LIDAR systems, which are not available for plan-

etary applications. Many applications however, need to keep costs low and therefore still

make use of similar vision-based localisation systems found on today’s Mars rovers. Even

more interestingly, unmanned aerial vehicles (UAV), have very similar limitation than what

is observed in space. As UAV’s also suffer frommass constraints, their payload is also guided

bymass, power suitable compute units. This is very similar towhatwewould expect for space

applications, even if the radiation issues lead to more stringent restrictions in terms of avail-

able compute power.

In addition to possible applications, the thesis is also drawing on the expertise of a number

of different fields. The biggest contribution, besides the robotics component, comes from

machine learning. In recent years, it has foundmanymore applications in robotics, especially

when dealing with complex vision systems. In order to accurately benchmark such systems,

a good understanding of computer graphics as well as geographic information systems was

also necessary. Abasic understanding of the engineering challenges in the target environment

should also not be discarded. There are many interesting methods that can be explored, but

at the end of the day, solutions will only really be successful, if they are based on reasonable
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engineering assumptions. This is especially important in commercial environments where

this can also mean that a technically feasible solution might not be economically viable. For

New Space, ‘good enough‘ can sometimes be more interesting than the best, most accurate

solution.

1.6 Methodology

For the presented body of work and its respective topics, the thesis follows the following

high-level approach to arrive at our conclusion, moving from the initial field to an identified

problem, to a proposed solution with its evaluation. As a first step, we provide the reader

with a detailed introduction of why and how the chapter topic is relevant to pose estima-

tion on the lunar surface. For each designated topic, we have evaluated and tested different

existing solutions, to gain an understanding of the underlying issues as well as the proposed

solutions that deal with them. After this initial step to familiarise ourselves with the topic, it

is essential to cover the state of the art in detail to be able to build on top of existing work.

Aside from examining work from planetary rover missions, terrestrial applications must also

be evaluated. This is integral to bringing broader, more compelling and original ideas to this

research, as the body of work from terrestrial applications is much wider. After gaining an

understanding of the problems in the field, we identify a gap in the state of the art which

can be addressed in order to support future generations of lunar exploration rovers. Once

this gap has been identified, development of different solutions begins, which is the most

time-consuming aspect to this work. This is where new methods are being implemented

and tested in order to bring novel solutions to the proposed problem. The most critical part
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when implementing new approaches is a strong evaluation of the resulting solutions. Ideally,

this includes a quantitative comparison against ground truth measurements, but also testing

in representative environments. For this reason, a significant part of this body of work has

been devoted to recreating the characteristic environment of the lunar surface with different

testing approaches.

1.7 Thesis Outline

The primary topics covered in this thesis are relative localisation, absolute localisation and

testing & validation of localisation systems. As each of these topics constitutes a single

body of work, the thesis is separated into three separate chapters, each chapter covering their

own state of the art, before elaborating on their the different experiments and the resulting

outcomes:

Chapter 1 provides an overview of the work covered in this thesis, including objectives and

methodology.

In Chapter 2, we present the different testing methods and facilities that are needed to eval-

uate localisation techniques with a certain degree of reliability. This is subdivided into the

following major sections.

• In the first section, we cover virtual simulation environments. This includes evalu-

ating the state of the art as well as the configuration and use of four different virtual

environments.
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1.7. Thesis Outline

• In the second section, we introduce existing indoor lab facilities, whichmimic the sur-

face of the Moon. Based on these facilities, we then explain how two additional such

facilities were constructed as part of this research.

• In the third section, we describe the use of outdoor analogue field tests as final data

point in a series of test to validate a localisation for the lunar surface.

In Chapter 3, we consider different relative localisation systems and sensors.

• In the first section, we address the state of the art, considering different types of odom-

etry as well as simultaneous localisation and mapping (SLAM).

• In the second section, we investigate different sensor technologies used for localisation,

and we give a qualitative assessment on how they can be used for planetary robotics.

• In the third section, we evaluate which factors need to be considered when building a

stereo localisation systems for the lunar surface.

• In the fourth section, we apply machine learning based pose estimation technique to

improve localisation systems of surface rovers in proximity of a lunar lander.

In Chapter 4, we look at absolute localisation system.

• In the first section, we introduce different absolute localisation systems that have been

used for space applications.

• In the second section, we present a novel machine learning approach to localise by

comparing surface perspective imagery and orbital imagery.
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• In the third section, we extend previousmethods to localise by comparing surface per-

spective imagery with reprojected orbital imagery.

Chapter 5 concludes the thesis and provides a prospective outlook to where the localisation

domain is heading.
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Lunar Testing and Validation
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2.1. Background

2.1 Background

In order to reliably compare different localisation techniques, we need to consider how to

evaluate their qualities. This is especially problematic for our case due to the inability to test

in the actual operational environment. In this chapter, we therefore discuss the bestmethods

to evaluate and validate vision-based localisation systems for planetary surface robots. The

focus on vision-based systems stems from the considerations shown in chapter 3, where we

establish that camera-based localisation is currently the most likely candidate for localisation

in our use case. As presented in chapter 1, our work is geared towards the private industry,

where cost-effective testing methods are of particular interest. This chapter serves as a guide

on how to best evaluate the accuracy of localisation systems by advising the reader of the

strengths and weaknesses within each approach. This chapter is divided into three separate

sections where wewill be detailing testing in virtual simulation environments, indoor testing

facilities and outdoor testing facilities. For each of these sections, we will first cover the state

of the art and the facilities which were constructed or configured for this research before

discussing the strengths and weaknesses of each environment.

Some of this work in this chapter has been previously published and presented in [128],

[127] and [129].
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Figure 2.1: Different types of testing environments for a lunar surface rover

2.2 Virtual Simulation Environments

The first environment to address is that of digital simulations as they require no actual rover

hardware or physical testing grounds. As such, they should be used right from the start, when

changes to the design and the requirements are still relatively inexpensive.

Virtual environments are commonly used in robotics. As shown in figure2.3 from [28],

there are numerous simulators, however, only a handful of them are regularly mentioned

in research papers. The most commonly mentioned simulators are Gazebo, CoppeliaSim

(previously known as Vrep) and Webots. While MuJoCo and PyBullet are also popular, we

will avoid these as they primarily focus on accurate physics rather than camera images and are

thus not relevant to this work
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Figure 2.2: Virtual lunar environment in Unreal Engine

In addition to dedicated simulators, 3D computer graphics tools such as Blender*, Maya†

or Houdini‡ also need to be mentioned, as not all applications require direct a connection

with a robotics system, as long as they can create the required imagery andmetadata required

for experiments.

GameEngine based solutions such as Airsim§ andROS-Sharp¶ also need to bementioned.

They are both built on top of current computer games engine Unreal Engine and Unity.

While not being full robotics simulation environments, they are able to produce real-time

imagery and metadata, often providing a more realistic rendering quality, rivalling offline

rendering tools. They sit in themiddle of complete robotics simulators and offline rendering

tools.
*https://www.blender.org/
†https://www.autodesk.com/
‡https://www.sidefx.com/
§https://microsoft.github.io/AirSim/
¶https://github.com/siemens/ros-sharp
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Figure 2.3: Citation count from 2016 to 2020 for reviewed simulators. Citations were gathered from Google Scholar
using either one or more of a simulators’ research paper, reference manual or other citation type and then filtered for
robotics keyword. (graph taken from [28])

2.2.1 Existing Lunar Simulators

Only a handful of simulators have been specifically built or modified for planetary surface

operation testing, such as Pangu [43, 136], Gazebo [7, 23], IRIS [4], and 3Drov [68]. In this

section, we will examine Gazebo and Pangu in more detail.

2.2.1.1 RP Simulator - Gazebo [7]

Gazebo is one of the primary simulators used in the research community, because it is an

open-source project closely tied to ROS. It provides a range of localisation sensors such as

cameras,wheel encoders, inertialmeasurementunits andLIDAR’s, forwhich it alsohas noise

models to simulate more realistic sensor data. However, it is lacking capabilities to render

complex environment and lighting conditions. As a result, the camera images are somewhat

simpler. It is also limited in the scale of it’s surface geometry as it provides no Level Of Detail

(LOD) system that can change the number of polygons of distant objects automatically.
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The cited references [7] and [23] show amodified version of this simulator providingmore

realistic rendering of the lunar environment. Most importantly, it introduces a Level Of

Detail (LOD) system which can automatically manage the size and resolution of a subdi-

vided surface terrain model based on the distance from a robot. This is essential for dealing

with large scale high resolution surface geometry and textures. The presented work describes

methods for adding synthetic centimetre level resolution to the best Digital Elevation Mod-

els available for the lunar surface with the help of rock and crater distributions estimates.

The work also implements an approximation to provide real-time Hapke physically-based

rendering (based on the Hapke Bidirectional Reflectance Distribution Function (BRDF)

[75]). This is a photometric model often used to accurately render planetary surfaces. To

improve shadows, Gazebo’s default shadow maps are replaced with light-space perspective

maps, which reduce their aliasing artefacts. Lastly, it also adds rover tracks in the soft soil

through the help of an existing Gazebo plugin. Overall, the simulation is a very complete

package, and probably the closest, most realistic Lunar simulator currently available, which

can provide real-time feedback and a good integration with existing robotic systems.

However, the upgrades presented in this work still are limited by the use ofGazebo and the

Org3D render engine. The updated shadowmaps still present artefacts. The self-shadowing

of the surface geometry is baked into the surface textures, and is only updated once every hour

to account for the slowmovement of the sun. The physics model of the rover is also approx-

imated to reduce the computational cost. Most importantly the simulator is not publicly

available, which makes some of the claims hard to verify. The features described in this sec-

tion are therefore solely based on available publications and presentation given by members

of the NASA AMES research centre [7, 23].
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2.2.1.2 Pangu [43]

Pangu*, also known as Planet and Asteroid Natural scene Generation Utility, is a tool de-

veloped by the European Space Agency and the University of Dundee to produce synthetic

environments of entire planets or asteroids, as well as for limited high resolution surface sec-

tions. In order to achieve this, it can generate environments from scratch, or by building

on existing data, such as Digital Elevation Models (DEM). Craters and rocks can be gener-

ated based on statistical models in order to produce realistic environments [43, 134]. It can

simulate a range of different sensors, such as cameras, LIDAR or RADAR. In [152], it has

been used to simulate Guidance andNavigation (GNC) operations for planetary lander and

rendezvous operations. It was also utilized to simulate surface environments, as described in

[136] to generate data for the validation of the navigation algorithms of ExoMars. Similarly,

[162] mentions how Pangu data was applied in combination with other approaches to vali-

date a monocular SLAM system. One notable limitation that was mentioned in this paper is

that boulder textures produced by Pangu can be repetitive, leading to identical visual features

being observed at different locations. While we considered testing this simulator, it was not

used due to the software licensing costs involved.

2.2.2 General Simulator Considerations

When building a simulation environment, several considerations and design choices must be

dealt with. The following is a list of parameters which were considered in the simulation en-

vironments that were tested throughout this work (Gazebo, Unreal Engine/Airsim, Blender,

ISAAC Sim).

*https://pangu.software/
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2.2.2.1 Real-time Vs Offline Rendering

If data is not required in real-time, there aremore options for data generation available. We see

this especially in machine-learning applications, where recorded datasets are needed, rather

than real-time interaction with a simulation environment. From a simulation perspective,

this leaves more processing time for higher quality rendering, or the use of more suitable

tools such as Blender or Maya with render engines such as Cycles, Vray or Renderman. A

good example can be seen in [5], where the limits of physically accurate shading of the lunar

surface are being explored, but at costly rendering times of∼ 40 seconds per frame.

On the other hand, some applications require real-time feedback to test a complete system.

Autonomous navigation systems for example, generate control commands based on the in-

coming sensor data. As the new rover positions are not known beforehand, sensor data has

to be generated in real-time.

Our localisation problem is situated somewhere in the middle. To benchmark a localisa-

tion system, real-time feedback is not required ifwe are only interested in the pure localisation

accuracy of an existing traverse. The downside of this approach is that researchers often only

rely on a small number of datasets, while edge cases are more likely to appear as additional

testing is completed. For rover systems with autonomy, this is also problematic, because the

type of driving can influence the localisation accuracy, which in turn, impacts the driving

commands of the autonomous system. As such, when testing a navigation with a full auton-

omy, real-time simulators are preferable.
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2.2.2.2 Dedicated Robotics Simulator vs Game Engine

In recent years, robotics simulators such as AirSim[177] or Carla[40], which are based on

computer games engines, have gained more popularity. Other notable examples are also ma-

chine learning approaches which have been trained directly on an existing computer game as

shown in [163]. The discussion here is mainly choosing betweenmore realistic graphics, and

a higher overhead on integration with other robotics systems. In recent years, these types of

simulation environments have shown upmore frequently inmachine learning papers, where

no direct interface is needed, as long as the required data can be extracted.

2.2.2.3 Dynamics - Physics

To generate camera images, physics might not seem of great importance, but when bench-

marking localisation systems, the type of locomotion a vehicle presents may have a signifi-

cant impact on the quality of the localisation. Shocks caused by rocks add noise to the IMU

measurements, and potentially cause motion blur in the camera systems. All of the tested

simulators provide a physics engine, which is used to estimate a rovers movement. As this is

calculated in real-time, the physics accuracy can face some limitations. Often, simulators rely

on existing physics engines such as ODE*, Bullet†, Simbody‡, or DART§ to produce these

calculations.

If physics needs to be estimated at a higher accuracy, discreet ElementMethod analysis can

more accurately estimate the wheel-soil-interactions as shown in [28]. These methods, while

*http://opende.sourceforge.net/
†https://pybullet.org
‡https://simtk.org/projects/simbody/
§http://dartsim.github.io/
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highly precise, are however slow to compute andput additional limitations onour simulation

environment, which is why we have decided to discard them.

Real motion data from a motion capture system is also another option for providing ac-

curatemotion. In this case, a 3Dmesh of the surface should be captured tomatch the virtual

environmentwith themotion. While thismethod limits the surface area to the lab size where

the data is captured, it does allow for virtual environments that extend over the boundary

of the lab environment, while providing real dynamics. We did not further investigate this

approach, as significant vibrations were not observed during testing in our lab environment.

However, during some outdoor testing on harder surfaces, vibrations from themobility were

more noticeable and impacted the quality of the camera and IMUdata. WithMarsmissions,

this could also be a more predominant issue, as Mars does not possess a similar uniform dust

coverage as on the Moon.

2.2.2.4 Scanline Vs Raytracing / Path-Tracing

Since the beginning of computer graphics, abstractions have been used to generate images

accurately. Simulating photons bouncing around the scene is a computationally expensive

process, which is why most render engines use a form of scanline rendering, where polygons

are sorted by the proximity to the camera, and then shaded based on the orientation towards

the camera and the available light sources. This greatly reduces the complexity of the prob-

lem and is ideal for applications that require real-time feedback, as seen in computer games.

Ray-tracingworks by firing rays into the scene through each pixel of the image. The colour of

each pixel is then determined by the average of colour of all the photons that are being fired

through this pixel, as each photon can be reflected into slightly different directions. This
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essentially reverses the way photons travel, but is also much more efficient as most photons

emitted by a light-source never hit the camera. This process was generally used for single im-

ages or animations that can be rendered offline. Only in recent years, has this approachmade

its way into real-time rendering of computer games. To achieve this, they often use hybrid-

methods where different rendering passes are rendered with different methods, in order to

find the best compromise between realism and rendering speed.

2.2.2.5 Integration With Other Systems

When selecting a simulation environment, one should consider how to best interface it with

external systems. Many simulators offer interfaces to tools such as Robotics Operating Sys-

tem (ROS) as shown in [7], or Matlab Simulink as shown in [134]. Here we differentiate

between open-loop systems which are only able to export data and close-loop systems where

the simulator reacts to commands coming from outside. Such systems even allow for testing

with flight hardware, where the sensor data is generated by a simulator, but the processing is

performed on the actual rover hardware. While it is always possible to build custom inter-

faces, the addedwork shouldhowever not beunderestimated, as they often add a considerable

amount of overhead in terms of development and maintenance.

2.2.2.6 Post-Processing - Improved Realism

As shown in figure 2.4 from [163] Generative Adversarial Networks (GANs) have success-

fully been used to improve the realism of simulator images based on a training dataset of real

and synthetic imagery. While it remains to be seen how suitable such imagery will be for vali-

dating computer vision tasks, it is certainly an impressive achievement towards photo-realistic
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Figure 2.4: Example of post‐processing performed on computer games images (GTA V) to improve the realism of the
images. (image taken from [163])

computer generated imagery. Most importantly and unlike other recent examples [90], the

presented approach is able to provide temporal consistency* betweenmultiple frames, which

is crucial for localisation tasks. It should also be noted that depending on the configuration,

the inference of such a network needs to be operatedwithin a fraction of a second to produce

real-time results. The results shown in [163] are too intensive for this, as they require half a

second of inference time on a high-end GPU. Such an approach was also considered for this

thesis through a collaboration with another researcher. For the proposed project, has been

assembled covering both real imagery and simulator imagery. 2500 real images from the lu-

nar surface were taken and pre-processed from the ongoing Chang’e 4 [116]mission. For the

simulator images, we used an existing dataset of 840.000 images from our Unreal Engine en-

vironment which is described in more detail in section 4.4. Due to lack of time, this project

was not completed at the time of writing.

2.2.3 Lunar Environment Considerations

In this subsection we will explore the different trade-offs to consider specifically when build-

ing a lunar environment in a virtual simulator.

*Video of [163] showing the temporal consistency: https://www.youtube.com/watch?v=P1IcaBn3ej0
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2.2.3.1 Real Lunar Surface Vs Synthetic Environment

Regardless of the simulation environment being used, the realism of the solution is heavily

dependent on the environment that is being rendered. This is particularly interesting for the

lunar surface, where we have only data of limited accuracy for most locations. From a scien-

tific point of view, as much real data as possible should be used. As we can see in [7], this is

not always possible, because we simply do not have enough data for detailed surface environ-

ments of the Moon*. The work does demonstrate that it is possible to take existing orbital

data as a basis for synthetic environments. This is currently the best possible scenario, despite

adding a significant amount of work to produce a more realistic simulation environment. In

figure2.5 we can see an example of a 1 metre/pixel height map that was converted into a 3D

mesh with the help of Open3d† and some custom code. Alternatively, it is also possible to

Figure 2.5: Example of a 1 metre/pixel lunar heightmap which was converted into a 3D mesh.

use existing lunar environments made for computer games. Although these environments

are synthetic, they instantly provide a significant amount of realism at minimal cost. Some

of these environments are also procedural, meaning that we can easily produce square kilo-

*with the exception of a handful of existing landing sites.
†http://www.open3d.org/
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metres of terrain, which is useful for longer traverses. Procedural terrains can also be easily

modified to generate multiple slightly different environments, which are helpful in machine

learning, where over-fitting is a serious problem. Aside from the terrain, surface features such

as rocks or textures can also be generated procedurally, as shown in 2.15.

The time saved from using an existing environment should also not be underestimated

in the development cycles, as the simulation environment is only a single link in the chain

of the development cycle. Ultimately, regardless of the simulation quality, any perception

system still needs to be validated in lunar analogue environments and with real imagery, as

simulators are still not able to perfectly reproduce image data.

2.2.3.2 Scale Of The Environment

When dealing with lunar or martian environments in simulation, one of the issues to deal

with is how to cover large surface areas while providing high resolution detail. Additionally,

we want to be able to spawn our rover in many locations, so that we can simulate many dif-

ferent scenarios.

This use case is problematic for simulators like Gazebo, which are simply not optimised to

handle such large scale environments. As shown in [7], Gazebo can be extended to achieve

this, but it requires additional modifications. Other tools like Unreal Engine, already have

this type of optimisation built in with their landscape tool*, which automatically generates

map subdivisions with different levels of detail, with a an area of up to 8× 8 kilometres at a

1 metre per pixel resolution.

In section 4.4, we have addressed this issue inside Blender, by building our own tools to

*https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/Landscape/TechnicalGuide/
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generate surface geometry tiles with different textures and geometry resolutions. The differ-

ent tiles are then replaced with higher or lower resolution tiles based on which part of the

map was being used.

2.2.3.3 Ephemeris Model

In order to accurately simulate the conditions on the lunar surface, we need to take into ac-

count the position of other elements in our solar system. This includes the relative of the

sun, which dictates the illumination conditions, but also any other objects that appear in

the lunar sky, such as stars, Earth, or any other celestial bodies. In order to achieve this, an

ephemeris model is needed. Thankfully, there are an existing and well maintained libraries

that can be used for this purpose such as SPICE (Spacecraft Planet Instrument Camera-

matrix Events)[1]. SPICE can provide us with the orientation vector of the sun with respect

to our current surface position on the Moon. Additionally, Earth may also be correctly po-

sitioned in the sky based on this library. As time passes, we can then update these values

iteratively. While this could also be used to correctly map the sky with stars, it is less of an

issue in our use case, as a camera that is correctly exposed for the lunar surface would not be

able to see any stars.

2.2.3.4 Directional Lighting

Recreating the correct scale and distances between the Sun, Earth and the Moon is possi-

ble in a virtual environment, but dealing with a centimetre level surface area and a correctly

position point-light at a distance of an astronomical unit (1au) leads to numerical precision

problems. Therefore, most render engines propose an abstraction known as a directional
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Figure 2.6: Example of shadows case by a directional light source (top) vs a point light source (bottom)

light. As shown in figure 2.6 the light rays from a point-light (and the shadows they cast) are

not parallel. Given a large enough distance from the light source, they do however, appear

to be so. In our case, we cannot place the point light at the correct distances, but the direc-

tional light solves this problem by simply illuminating the scene with parallel light rays from

one direction. It also removes the quadratic falloffwhichwould not be noticeable within our

scene at this distance to the sun. This will then produce identical shadows to what we would

expect from a point light positioned at 1au. This feature was available in all the simulation

environments we have tested.

The brightness of the scene is less of a concern for our digital environments, as render

engines do not require a set amount of photons to produce an image. Images are generally

exposed correctly and can be over or under exposed if this is required.
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2.2.4 Sensor Modelling

Determining how sensor data will be generated is an important factor when choosing a test-

ing environment, as well as when evaluating results. In this subsection, we will cover how

various sensor data can be simulated, and how accurate the modelling of the sensor data is.

2.2.4.1 Camera

Simulating realistic data from camera sensors is undoubtedly one of the most difficult parts

of building a virtual simulation environment. Apart from the different rendering techniques

described in the previous subsection, we also need to consider a couple of optical artefacts.

1. Motion-blur is a difficult effect to simulate because it is a temporal effect which re-

quires our simulation environment to be sampled over a certain time period. One

approach to solving this problem involves rendering an image in slightly varying po-

sitions. Those images are then fused to produce a final image taking into account the

motion of the object. This does however lead to a considerable increase in rendering

time. Today, we can also rely on amethod that appliesmotion vectors, to blur pixels in

certain directions. While this method is considerably faster, it is also lacking in accu-

racy, especially when separate objects move in different directions in the same frame.

Luckily, this effect can and should be mitigated on our real rover cameras. It is the re-

sult of longer exposure times on a camera, which can be avoided by havingmore sensi-

tive camera sensors, faster lenses, or simply filming in brighter environments. Luckily,

the sun is even brighter on the lunar surface than on Earth due to the lack of atmo-

sphere on the Moon. As a result, we consider this issue less problematic, with the no-
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table exception of landing sites closer to the polar regions where the sun is consistently

at a very shallow angle.

2. Lens distortion is an issue that affects every single camera. There are different types

of distortion, as well as different models to represent them. In simulation though, we

make use of perfect camera models which do not exhibit any type of distortion. This

can however easily be added in post-processing. Ideally, the sampled distortion of a

real camera is employed for added realism.

3. Vignetting is an effect which darkens the image the further we move away from the

optical centre of the lens. This effect is a known issue present in any camera lens. This

effect can also be sampled from a real camera lens, and applied in post-processing.

4. Film grain is an effect that occurs because of the differences in measurement noise ex-

perienced by every single pixel on a camera sensor. This noise is included on top of

the data that the sensor collects from the environment when a picture is taken. As

the noise also varies over time, it generates some small fluctuations in the image, even

when the complete scene is stationary. While different in nature to noise collected

by analogue film cameras, digital cameras also experience the same problem. Because

simulator images do not experience this type of noise, it can either be sampled from a

real camera, or generated digitally and added to an existing image. A good example of

generated film grain can be found in ISAAC Sim, as shown in figure 2.7.

5. Depth of Field is a natural effect of parts of the image being out of focus. The strength

of the effect primarily depends on the sensor size and the chosen lens aperture, with

larger sensors andwider lens apertures seeing amore pronounced effect. In virtual im-
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Figure 2.7: Examples of simulated film grain in camera images from ISAAC SIM

ages, this effect is not present because the used pinhole camera model has an infinitely

small camera sensor. The out-of-focus effect can be simulated through the Z-Blur*

method, where a depth image is produced, and each pixel is blurred based on its dis-

tance to focal plane. We see thatmoremodern raytracingmethods also have the ability

to simulate this effect directly, resulting in a higher fidelity image. In our case, we de-

cided to disregard this effect, because it is not very pronounced on cameras with small

sensors typically used in our application.
*the Z in Z-Blur refers to the Z axis, which typically refers to the axis moving away from the camera in

computer graphics. Sometimes it is also known as Depth-Blur.
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2.2.4.2 Stereo Camera

Surprisingly, producing good stereo camera data in simulators ismuchmore challenging than

it appears. The issue here lies within the synchronisation between multiple cameras and the

added complexity required to provide it. Additionally, this is a feature not often needed for

simulations because many terrestrial localisation applications tend to rely on LIDAR (Au-

tonomousCars), RGBDormonocular camera (UAVs) configuration. Nonetheless, it is pos-

sible to achieve synchronisation, by freezing the simulation when images are rendered in se-

quence. Notably, this feature is not implemented in the Airsim/Unreal Engine setup. Even

on dedicated robotics simulators such as Gazebo, we have encountered issues where stereo

camera sensors have not always produced reliable synchronisation.

2.2.4.3 RGBD

Depth images are simple to deliver for render engines. The depth-buffer or Z-buffer is es-

sential for render engines to determine which object is in front of which. Highly accurate

depth images can thus be provided for no extra computational cost. The drawback is that in

real-life, depth images are never perfect, and usually contain a lot of noise. This is because

they are not measured directly, but through observing other factors, such as the distortion of

a projected pattern, or the difference in perspective between two cameras. To produce more

realistic depth images, it should be considered to simulate the entire sensor configuration that

is used to produce depth images on the real rover hardware.
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2.2.4.4 IMU

Given that simulation environmentsprovideperfect position andaccelerationmeasurements,

accelerometer and gyroscope data can also be mimicked. Even so, for robotics applications,

it is necessary to accurately simulate sensor noise. Gazebo provides a good implementation

of such sensor noise, where the sensor noise is defined with rate noise, rate bias, acceleration

noise, and acceleration bias *. Incidentally, these are the same parameters which are needed to

accurately characterise an IMU for localisation purposes.

2.2.4.5 LIDAR

In comparison to camera sensors, LIDAR sensors have proven to be simpler to implement.

Even if no direct implementation is available, most render engines provide ray-casting tools

which can be used to cast a way into a specific direction, andmeasure the distance to the first

object it hits. A noise distribution can then be added to mimic the ranging errors present in

real LIDAR data. If the object reflectivity is available, maximum range estimates can also be

computed. In order to more efficiently sample a large number of points, depth images are

at times used to generate LIDAR data in simulators, because they already provide accurate

range measurements while efficiently returning a complete point array simultaneously. In

specific scenarios with edge cases like dust, fog or rain, realistic LIDAR measurements are

more difficult to simulate. Since these effects rarely occur in lunar environments, we can

safely avoid these.

*http://gazebosim.org/tutorials?tut=sensor_noise#IMUnoise
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2.2.4.6 Star Trackers

It is technically feasible to fully simulate a star tracker by generating imagery of the sky taking

into account an ephemeris model (as shown in [170]). For that reason, the added complex-

ity, as well as the computational cost is not proportional to the gain in realism. As simulators

already provide us with pinpoint accuracy ground truth, this ground truth data can also be

usedwith noise tomimic the orientation estimates from a real star tracker, while addingmin-

imal computational cost.

2.2.4.7 Ground Truth

Ground truth data is where virtual simulators excel. They can provide the pose of any object

in the scene with pinpoint accuracy. This is especially interesting for localisation systems,

where it is often challenging to correctly align the orientation of the estimated rover trajec-

tory with the ground truth. Additionally, simulators can also provide automatically-labelled

image data, which is advantageous for many machine learning applications. Additionally,

simple object masks or pixel-wise semantic segmentation images can be calculated with al-

most no effort.

2.2.5 Evaluated Simulators

For the purpose of this work, we evaluated virtual lunar environments inside Gazebo, Air-

sim/Unreal Engine, Blender and ISAAC Sim:
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2.2.5.1 Unreal Engine 4

Unreal Engine is a computer game enginewhich has been used for numerous computer game

titles and as opposed to the other simulators presented here, its primary focus is on realistic

imagery delivered with real-time performance. This simulator has also been used in sections

4.3 and 4.4. As the source code of this engine is publicly available, the code can also be com-

piled from source, and potential modifications can be applied directly.

In order to use it for our applications, we need to make the sensor data available for out-

side tools. Unreal provides two different interfaces to develop and automate data collection

solutions. Its Blueprint interface allows for simple node-based programming. This interface

lets us randomly position the camera and take screenshots. Through some simple extensions

*, it is also possible to easily write data to disk. Alternatively, it is also possible to use Unreal’s

direct C++ interface to automate data collection tasks. This method is preferable as it pro-

vides muchmore control then the Blueprint setup. Aside from its stellar real-time rendering

Figure 2.8: 64 km2 lunar surface environment inside Unreal engine

capabilities, Unreal Engine also shines with its terrain optimisation tools. Unreal can provide

*https://forums.unrealengine.com/t/39-ramas-extra-blueprint-nodes-for-you-as-a-plugin-no-c-
required/3448
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large surface environments of up to 64 km2 at resolution of 1 metre/pixel (in terms of sur-

face geometry). With procedural shaders, additional detail can then be generated, including

surface texture depending on the slope of the terrain, as well as random rock distributions.

Additionally, these effects are deterministic, which is an important factor for our applica-

tion. The lunar landscape used for Section 4.3, can be observed in figure 2.8. We have tested

two existing ROS interfaces in order to connect our lunar environment with our robotics

systems.

AirSim[177] * is the most commonly used tool to extract data from Unreal Engine. It

was primarily developed for data generation in machine learning applications. The data-

capturing process can be automated through Python and C++ APIs. For robotics applica-

tions, AirSim also provides a ROS wrapper † which can stream it’s data to our other robotic

applications. AirSim possess an active community, with regular software updates. In figure

2.9, we can observe a rover in a lunar environment, while the AirSim sensor data is displayed

on the bottom, and the data stream arriving in ROS is shown in the window on the right.

One notable issue we found with this configuration was that stereo cameras were not syn-

chronised. ROSIntegration‡ was also tested and explored as an option, but was considered

more limited, as it only provides the communication interface between Unreal Engine and

ROS.While sample code is provided, the user still needs to connect the individual sensors of

each rover to the provided communication interfaces. This requires an in-depth understand-

ing of Unreal Engine, making this approach less user-friendly, and which was ultimately the

reason why we did not pursue this route any further.

*https://microsoft.github.io/AirSim/
†https://microsoft.github.io/AirSim/airsim_ros_pkgs/
‡https://github.com/code-iai/ROSIntegration
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Figure 2.9: Unreal/AirSim with ROS wrapper showing a rover in a lunar environment. The AirSim sensor data (camera
image, semantic segmentation image, and depth image) is shown at the bottom while the data stream arriving in ROS is
shown on the right.

Another notable mention isCARLA ([40]) which is often used for automotive data gen-

eration. In the end, it was not tested for the purpose of this work due to limited time.

2.2.5.2 Gazebo

Gazebo [97] was used extensively throughout this work, mainly because the NASA Space

Robotics Challenge* provided a lunar environment inside Gazebo (more about this in An-

nex A). It is by far, the most popular simulator in the research community. It maintains an

excellent integration with ROS, which also makes it easy to use. It presents solutions for all

commonly used robotics sensors, including some simulation of sensor noise. While it is easy

to setup, it does have some limitations. It can be quite resource-intensive to run. Notably,

*http://www.spaceroboticschallenge.com/
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it does provide a real-time factor, which means that if it can not simulate the environment

rapidly enough, it will slow down the simulation time to still provide accurate results. We

have observed that the simulator quickly slows down when the terrain size is large or if there

are many objects in the scene, especially if these objects require interactive dynamics. Its 3D

rendering qualities are not as realistic as the other solutions presented here. It relies on the

Orge3d* render engine, which is a raster-based engine. However, due its practicality, the lim-

itations in 3D rendering quality can be overlooked for some applications.

2.2.5.3 ISAAC Sim

Figure 2.10: Image from ISAAC Sim using it’s path‐tracing render engine.

Nvidia ISAAC Sim is a relatively new simulator which was released in 2019, and is cur-

*https://www.ogre3d.org/
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rently still in an Open-Beta and it is based on the NVIDIA Omniverse environment. For

our work, it is interesting because it attempts to combine realistic 3D rendering with real-

time robotics simulators. It provides both Real-time ray-tracing and path-tracing options to

generate more physically accurate images. To produce these computationally heavy images

in real-time, it offers to render images at lower sampling rates, which can then be denoised

through machine-learning tools. While this process does soften the images and is not physi-

cally accurate, it still generates more realistic images than for example, Gazebo. The tool also

provides a bidirectional ROS bridge, sending sensor data to ROS, while taking ROS com-

mand velocity control commands as an input. Since version 2021.1, it also offers synchro-

nised stereo camera images, which is an essential feature for simulating planetary robotics (as

seen in 2.12). Given that it was designed with machine learning applications in mind, it pro-

vides additional features to automatically label data as shown in 2.11. It is currently still in a

Beta version, whichmeans that some features, such as sensor noise for IMU’s are still missing.

This simulator looks promising for future robotics andmachine learning research. Unfor-

tunately, we were only able to test this tool briefly at the end of this thesis, as it does require

access to an adequate high performance GPU.

2.2.5.4 Blender

Blender is not a robotics simulator, but can be used to generate datasets for machine learn-

ing for computer vision tasks. It is a flexible tool which can perform many tasks from mod-

elling, animation, to rendering. It was not designed for real-time rendering, but instead of-

fers high quality offline-rendering capabilities. With its path-tracing render engine Cycles, it
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Figure 2.11: ISAAC sim producing RGB, Depth and Semantic images, as well as 2D image labels.

can produce realistic imagery. For our application, its most interesting component is the in-

cluded Python programming interface. Through this interface, we can procedurally modify

any parts of the 3D environment in order to automate tasks. An example of procedurally gen-

erated rock geometry can be seen in figure 2.15. This can be extended to complete scenes, the

placement of virtual cameras, and automatic rendering. To render large amounts of images,

this can also be performed remotely on connected computers. Thework presented in Section

4.4 was produced following this approach where the camera was placed randomly based on a

list of predetermined locations. Through this approach, 800.000 images were generated on

a render farm. Through the Python interface, data from robotic systems such as ROS can

also be loaded to produce animated visualisations, as shown in figure 2.14. This work was

completed in collaboration withManuel Castillo-Lopez for the following publication: [21].
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Figure 2.12: Synchronised left and right stereo images streamed from ISAAC into ROS. The top part shows the left and
right image data inside ROS, while the bottom part shows the image headers, with the synchronised timestamps.

All of the previously described examples require a significant amount of experience with

3D software packages which not all researchers posses. In order to overcome this issue, tools

like BlenderProc [36] or BlendTorch [79] are available to help generate different types of

sensor data and metadata, while taking into account the domain randomisation required to

generate datasets for many machine learning applications.

As shown in [5], Blender can also be extended to accurately render the lunar surface based

on the Hapke BRDF lighting model [75]. In this example, one can also see the correctly

rendered opposition effect that was observed by astronauts on the Moon.

Of all the examined solutions, Blender is the most promising option if real-time rendering

is not a requirement. The realism of offline path-tracing is difficult to overcomewith current

compute hardware. Other offline rendering tools such asAutodeskMaya or SideFxHoudini,

can also be considered for this, but Blender has the advantage of beingOpen-Source and free

to use which makes it accessible to a broader research community.
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Figure 2.13: Lunar environment inside the 3D rendering software Blender.

2.2.5.5 Comparison

As visible in table 2.1 we compare some of the previously mentioned features between the

four simulations environments which were used for this research. Of the evaluated tools,

Gazebo and Blender stand out being that Gazebo provides the best integration with other

robotics systems andBlenderbecauseof its high renderingquality. Unreal Engine and ISAAC

Sim also present relevant solutions, but they do require more time to be configured for our

application.

2.2.6 Advantages & Limitations Of Simulation Environments

The primary limitations of simulators are that they provide data which is too perfect. By

default, surfaces are clean and present no defects. Rendered edges are often perfectly sharp

and there is generally very little noise in simulated data, or it must be generated in addition
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Figure 2.14: Visualisation of uncertainty in Human motion, produced with ROS and Blender.

to the produced data. The terrain resolution of virtual environments is also not without

limits, especially when dealing with large-scale landscapes. When approaching objects up

close, this can lead to sharp edges through the low polygon count on these objects. In terms

of advantages, the simulators are able to create environmentswhich are larger thanmost other

testing facilities. Landscapes can also be modified easily and in a procedural way. The testing

is deterministic and reproducible, which is a crucial element when trying to modify specific

parameters in isolation, and is especially interesting for troubleshooting. Additionally, the

perfect ground truth knowledge is invaluable for accurate benchmarking and likely the best

feature of virtual environments.
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Figure 2.15: Procedurally generated Rock geometry inside Blender.

2.3 Lab Environments

2.3.1 Existing facilities

Before exploring the details on building an indoor testing facility, we list a number of existing

facilities which were considered before the construction of our own environment.

2.3.1.1 NASA Ames - US

TheNASAAmes LunarTestbed [51] has a 4 by 4metre footprintwith a depth of 0.5metres.

In order to have a high material fidelity, it uses JSC-1A Regolith Simulant. In addition, the

facility uses a setup of 12 lights to facilitate changes in illumination conditions for dataset

generation. In the past, it has been used for rover excavation tests, as well as testing of sensor

payloads for localisation purposes. The POLAR stereo dataset has been produced here with

a stereo camera and a LIDAR as ground truth [215].
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Gazebo Unreal-AirSim ISAAC Sim Blender
Real-time ✓ ✓ ✓ ×
ROS-Bridge ✓ ✓ ✓ ×
Ray-Tracing × ✓ ✓ ✓
Machine Learning
Data Generation

× ✓ ✓ ✓

Terrain LOD Op-
timisation

× ✓ × ×

Stereo Camera
Synchronisation

✓ × ✓ ✓

IMU ✓ ✓ × ×
Masks/Semantic
segmentation

× ✓ ✓ ✓

Physics Engine
(default)

ODE PhysX PhysX Bullet

Table 2.1: Table comparing the features of the different simulation environments that were evaluated.

2.3.1.2 DFKI - Germany

While this facility does not use stimulant or even sand as surface material, it has a large slope

used to demonstrate the climbing capabilities of multi-legged robots to crawl up the steep

slopes of craters [29].

2.3.1.3 KSC SwampWorks - US

GranularMechanics andRegolithOperations (GMRO) laboratory is located in Florida, US.

It is an8mx8menclosed chamberfilledwithup to1.5metres of regolith. Its primarypurpose

is to test mechanical systems of regolith mining robots, making use of Black Point-1 lunar-

regolith simulant [111].
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2.3.1.4 Sagamihara - Japan

The space exploration expert building is owned by the Japanese Space Agency (JAXA). It has

a 22.6m x 17.7m sandbox filled with 425 tons of coarse and fine silica sand. Because of the

height of the facility and amount of sand, it has the potential to simulate rough terrain with

steep slopes. Their use of of silica sand does however notmimicking the optical properties of

lunar regolith.[89]

2.3.1.5 KICT Dirty Thermal Vacuuum chamber (DTVC)

The DTVC facility [45] in South Korea hosts up to 25 tons of soil with a surface area of 4.0

x 3.8 metres for roving operations. The environment can be held at vacuum and at temper-

ature ranges between -190 and +150. This facility represents the closest one to the actual

conditions on the lunar surface. However, this also limits the size of the testing ground due

to the large equipment needed to produce a vacuum and the temperature changes.

2.3.1.6 MCSS - Canada

The Moon Room was built in 2020 by Mission Control Space Services (MCSS) in Canada.

The primary purpose of the facility is to generate image datasets for machine learning pur-

poses. While it does not rely on regolith simulant, its surface material consists of different

pebbles, cobbles and boulders to create a variety of different surface areas. [187].

2.3.1.7 Future ESA Facility - Germany

The European Space Agency (ESA) is planning to build a 1000 m2 indoor facility named

Luna at the European Astronaut Centre (EAC) in Cologne, Germany [50].
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2.3.1.8 Mars Analogue facilities

In addition to Lunar testing facilities, we have also looked at Mars analogue testing facilities,

which face similar problems. Two notable facilities in this field are the AstriumMars Yard in

Stevenage [139], and the Mars Dome at UTIAS, Canada [198].

2.3.2 Building a testing Facility

During this research, two separate Lunar Lab environments were constructed. The ispace

Europe Lunar Yard (figure2.17) is a 10x10 metre facility, while the University of Luxem-

bourg LunaLab (figure2.16) measures 7x11 metres. The details below present a selection of

parameters to consider when building such a facility which were explored through the exist-

ing state of the art, as well as trial and error experimentation.

Figure 2.16: Lunalab at the university of Luxembourg. The blue lights on the ceiling are part of the motion capture
system.

2.3.2.1 Material

Ideally, lunar regolith simulant is used for such a facility [214], because the material is the

closest replication of the regolith on the lunar surface. It does, however, limit the operation
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Figure 2.17: ispace Europe lunar yard in Luxembourg

of the facility, as regolith simulant is made from fine ground sharp particles of basalt rock

which is a known carcinogenic. Additionally, it is expensive to produce, which limits the size

of the facility. For daily testing, one can use rocks, gravel and sand of volcanic origins, which

is sufficiently accurate, and easier to work with. It is still recommended to install a filtered

ventilation system, as sand of any type tends to spread and infiltrate everywhere, including

the mechanical components of robotic systems. For our tests, we have used a combination

of basalt sand (0.1-2mm) and basalt gravel (2-5mm). As seen in [187], other materials, such

as limestone are also sometimes used.

2.3.2.2 Surface Shape

The design of the facility surface will depend on the area of theMoon considered for testing.

The lunar surface varies widely between smoother areas within maria regions, with low den-

sity of craters (approx. 73 craters per 1 million km2; e.g. Apollo landing sites) to the rough

and rocky areas with high density of craters (approx. 442 craters per 1 million km2) [165].

Since direct surface observations are lacking for most areas of theMoon, we need to extrapo-
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Figure 2.18: Opposition effect with washed out terrain features observed on lunar surface. Credit: NASA

late data to build an assumption of what a specific area could look like. When it comes to the

crater and rock distributions, we look at the distribution of larger craters and boulders visible

in high-resolution remote sensing images and make assumptions for the smaller craters and

rocks. In figure 2.19 from [55], we can see an estimated frequency of different rock sizes for

different locations on the Moon.

Figure 2.19: Estimated frequency of different rock sizes for different locations on the Moon. Taken from [55].
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When manually crafting craters, they should be bowl-shaped and perfectly circular as de-

scribed in [73] (p58). When considering the amount of surface material, at least half a metre

of depth is recommended to increase the flexibilitywhendesigning craters ormoremountain-

ous regions with small hills which can cast longer shadows. This also allows for testing more

edge cases with regards to localisation, but also the overall mobility of robots with steeper

slopes. Another interesting approach that we can see in [215], is to rely on computer simu-

lations to generated random surface and rock distributions, which are then implemented in

a lab environment. This is useful to guarantee randomness of a facility setup. In this specific

example, such a tool was used to produce many different surface configurations for an image

dataset.

2.3.2.3 Illumination

To reproduce the optical properties of the lunar surface as accurately as possible, the illumina-

tion and the cast shadows play a significant role. Therefore, a single lighting source should be

used to illuminate the complete environment. If multiple light sources are used, this causes

each light to cast its own shadow, and the resulting shadows are also not as dark as theywould

be otherwise. Lights used in the film industry are suitable for this use case, as they provide

enough power to illuminate the complete environment from a single light source. Evenmore

cost effective tungsten light-bulbs are perfectly suitable to illuminate a lunar yard. While they

cannot exactly match the spectrum of our sun, they cover the visible spectrum and the IR

spectrum well, while being somewhat weaker in the UV part of the spectrum. When con-

sidering the strength of a light-bulb, commercial lights are given in lux output at a specific

distance. With the quadratic falloff of light, we may then calculate (figure2.21) the distance
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at which the light source can match the solar constant of 135000 lux.

Figure 2.20: 2000W Lamp used to illuminate the lunar yard.

Another element to examine is the directional light one can find on theMoon. Due to the

large distance from the Sun to theMoon, it appears that the Sun’s rays and the cast shadows

are parallel (described in more detail in section 2.2.3.4 and figure 2.6). In order to replicate

this effect, the light source should be positioned as far from the scene as possible. However,

this is not very practical as it requires additional space and a more powerful light source due

to the quadratic falloff of the light intensity. For practical reason and because this is less of a

concern for most computer vision applications, we consider this factor as secondary.

The solar illumination is fairly consistent throughout the year, due to the near circular

orbit of Earth, resulting in a distance between 1.01671033 AU and 0.935338 AU. For our

calculations, we use a solar illumination constant for the Moon which is equal to 135.000
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Figure 2.21: Illumination calculations for both lights used in each facility, showing the distance to the lightsource in
metres on the X axis and the illumination intensity in lux on the Y axis. The red line indicates the strength of the sun on
the Moon.
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lux [33]. This is the approximate illumination intensity found on the lunar surface, before

the sunlight is reflected of the ground. The combined illumination can be derived from the

direct and indirect lighting in the target environment. For both types of illumination, we

need to consider the sun inclination throughout the lunar day. For the indirect illumination,

we also need to estimate the reflective properties of the surface material at the target location.

We can estimate the landing site material properties from the albedo* values as measured by

the Diviner lunar radiometer experiment [211]. If the sun angle, the sun intensity and the

reflectivelyproperties of the surface aremodelled correctly,we can reproduce the illumination

conditions to a high degree of fidelity.

Formost computer visionproblems, the illumination intensity is not directly an impacting

factor as most cameras can adjust the image brightness through a combination of aperture,

shutter speed, sensor sensitivity andNDfilters. One impacting factor to consider is if images

are too dark, as it can lead to longer exposure times, resulting in motion-blur. Therefore, the

intensity of the light should be adapted to the size of the facility, to ensure a well lit scene.

While cameras can adapt to the illumination strength, some active illumination sensor,

such as projection-pattern based systems, time-of-flight cameras or LIDARs, can be affected

if the lightsource is too bright. These sensors are only able to operate if the signal they send

out to measure distances is not overpowered by the Sun [201]. When performing field test-

ing with such sensors outdoors, one should keep in mind that Earth’s atmosphere not only

diminishes the overall power of the sunlight, but that it also filters out certain wave-lengths

at a higher rate than others. Sensor manufacturers for outdoor systems specifically pick these

wavelengths because they work favourably within Earth’s atmosphere and often extend the

*measure of solar radiation reflectively
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range of the sensor. When testing such sensors in lab environments, light sources are thus

needed, whichmore accuratelymirror the spectrum and the illumination strength of the sun

on the Moon.

2.3.2.4 Facility walls

On the lunar surface, few light-rays are reflected by the environment into shaded areas. This

is because theMoondoes not have an atmosphere, nor any tall structures to reflect light from.

In an indoor lunar yard, the biggest sources of reflecting light are the walls and the ceiling. In

order to reduce the amount of light bouncing into the shaded areas, the walls and the ceiling

should be paintedmatte black. Curtains should also be considered to achieve the same effect.

This results in darker shadows, which can also be observed in figure 2.16 where the contrast

between illuminated and non-illuminated areas is much stronger. In comparison, we refer to

figure 2.17 where the shadows are brighter due to the lighter environment. This effect has an

impact on the localisation systembecause darker areas are less suitable for localisation systems

to detect features. It also influences the auto exposure system on cameras, which now have to

deal withmore extreme values in a single picture. Darkerwalls are therefore useful to increase

the accuracy of the simulated environment.

The walls themselves should be featureless and not covered with patterns or horizon im-

ages, as any features will be picked up by the camera systems providing ideal points for stereo

depth estimation. Whilst on the Moon, stereo cameras will also see the horizon, but these

features are not within the stereo depth estimation range and can thus, only marginally con-

tribute to better localisation accuracy.
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2.3.2.5 Sun Position And Movement

The angle of the Sun should be positionedwith respect to the expected latitude for operation

on the Moon. Landing sites in the equatorial region will endure mostly top-down illumina-

tion with limited shadows through a large part of the day. In the polar regions, the Sun will

remain on the horizon through-out the day, casting long moving shadows. The simulation

of equatorial regions requires facilities with a higher ceiling to mount the light source suffi-

ciently far away from the terrain. Due to the slow movement of the Sun’s positions in the

lunar sky, a moving Sun position depends on the scenario to be tested. The Sun’s relative

position moves approximately 28 times slower than on Earth. For most types of surface nav-

igation, this means that the movement is negligible. Nonetheless, for SLAM systems, it is

important to consider if loop closure algorithms will still function accurately, should a rover

revisit a location during various time periods. To examine these results, the Sun’s position

can be moved by hand to simulate a different time of day. To assist with these changes in

positioning, robotic light mounts may also be considered for repeatable configurations.

2.3.2.6 Localisation Ground-Truth

To test any type of localisation, an external system is needed to accurately measure the actual

position of the testing platform. For this purpose, we rely on a motion capture system, be-

cause these systems can typically determine a rover’s position with sub-millimetre precision.

Such systemsuse reflective IRmarkerswhich are clearly visiblewith IR cameras. Next, wepo-

sition multiple IR cameras around the testbed. Through triangulation, the system will then

determine the position of each marker and consequentially, the position and orientation of

the mobile platform with 6 degrees of freedom. In order to achieve this, the motion capture
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system requires at least 3 cameras and 3 markers. By using more cameras and more mark-

ers, the precision of the measurement can be improved. This also helps in avoiding occluded

markers, which can result in the loss of the position tracking. Whenplacing themarkers, they

should be placed in an asymmetrical pattern, to guarantee that the system does not confuse

left/right or front/back of the test platform. An example of suchmarkers mounted on a sen-

sor can be seen in figure 2.22. The sub-millimetre precision of the ground truth is required

because of the small scale of such facilities. Since the roving space is limited, the localisation

error must be measured at a smaller scale as well. One factor to note with such systems, is

the illumination interference with other IR based systems, such as RGBD cameras or Time-

Of-Flight cameras. In order to circumvent this problem, active IR markers can be used to

limit the IR illumination of the scene to an absolute minimum, while still maintaining the

accuracy of the system. An example of localisation markers can be found in figure 2.22

Figure 2.22: Motion‐Capture tracking markers mounted on top of a rover, in order to retrieve accurate ground‐truth
data.

2.3.3 Advantages & Limitations Of Indoor Testing Grounds

Indoor testing facilities are ideal for regular testing where real sensor data can be collected.

Since these tests are being held in a controlled environment, they are also suitable to configure

specific scenarios and edge cases. On the other hand, the size of these facilities is problematic
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for navigation purposes. The range of most sensors easily exceeds the size of most facilities,

and often the walls are being detected by localisation systems, regardless of active or passive

sensor approaches. Additionally, the small environment can lead to only a limited number of

navigation scenarios being tested. Nevertheless, if testing in such locations yields favourable

results, this is a good indication on the accuracy and the functionality of a navigation system

on the lunar surface.

2.3.4 Existing Datasets

One notable dataset of an indoor facility is the POLARdataset [214]. It has been recorded at

the NASAAmes lunar yard, specifically to test the robustness of stereo camera systems with

regards to the lunar lighting conditions, and the material properties of lunar regolith. The

dataset also provides a LIDAR based ground truth, to validate the stereo depth estimation.

2.4 Outdoor Field Testing

Before flying any localisation system to the Moon, a long-range outdoor field test should be

performed, ensuring that the developed system has no bias towards the simulation environ-

ment or the indoor testing environment. A good example for the necessity of such tests is the

development of the Mars Exploration Rover’s (MER) HAZCAM visual odometry system,

where the system performedwell during indoor tests, but unfortunately, turned out to be bi-

ased towards features on the walls of the testing facility [132]. Once presented on the surface

of Mars, the system did not perform as anticipated. Therefore, it is crucial to test outside of

lab facilities, in order to detect any potential bias towards the testing environment.
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2.4.1 Field Test Examples & Datasets

Figure 2.23: Field test location at Mt. Etna, taken from the ROBEX dataset [202]

Due to the cost and time needed for field testing, initial research can also be conducted on

existing field test datasets. While they probably do not match the the actual rover’s size and

sensor configuration, they are a good place to start testing algorithm and software implemen-

tations, before a testing platform is available. They can also be used as validation dataset, to

test the software robustness in an additional environment. An example of such a lunar ana-

logue dataset was recorded on mount Etna [202] (figure6). Mars analogues should also be

considered, as the primary difficulty of lunar navigation systems lies in the repetitiveness of

the environment and the limited number of visual features used for tracking and matching.

One suchMars analogue is available for the Moroccan desert [108].
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Figure 2.24: Test with SummitXL rover in a quarry during on our our tests.

2.4.2 Field Test Considerations

2.4.2.1 Ideal Locations

Ideal locations for testing are volcanic environments because the surface materials and rocks

have similar optical properties to the ones on the Moon. There is also a limited amount of

vegetation which is especially significant because vegetation moves with the wind, creating

moving features which would not be present on the lunar surface. Buildings should also be

avoided as they produce very angular shapes and shadows, which are not observed on the

Moon. For example, volcanic areas such as Hawaii (USA), Cape Verde or Lanzarote (Spain)

are good lunar analogue locations. Alternatively, desert-like unstructured environmentswith

little vegetation may also be useful, such as the Atacama (Chile) or Mojave (USA) deserts.

For the latter, the optical properties may not be quite as accurate, but the bare unstructured
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environment is still useful, as it provides few visual features for navigation systems to properly

localise.

2.4.2.2 Other Locations To Consider

Ultimately, it is not always a feasible option to travel to remote locations to perform the test-

ing. When considering locations with easy access and/or closer in proximity, quarries are the

most straightforward solution. Tomaximise the similarity between the analogue site and the

lunar surface, it is advisable to look for an abandoned or out-of-hours basalt quarry with lim-

ited buildings and vegetation. The sand dunes of beaches and coastal areas can also be used

for testing purposes if there is limited vegetation moving with the wind. For our research,

most testing was performed in a sandstone quarry, as shown in figure 2.24.

2.4.2.3 Ground Truth

There are two types of ground truth sources which can be used for outdoor field testing: Re-

alTime Kinematics - Global Positioning System (RTK-GPS) or optical surveying equipment

[138].

The RTK-GPS solution provides a lot of flexibility because it puts few limations on the

rover movement. It works in most places with good visibility of the sky and is capable of

providing centimetre-level accuracy. To achieve this type of accuracy, a rover mounted re-

ceiver and a stationary receiver are needed. The stationary antenna measures the error in

the signal which is then subtracted from the rovers receiver (figure2.25 right). If two GPS

receivers are paired on the robotic platform, both position and orientation may also be esti-

mated (figure2.25 left). However, the GPS signal can be subject to interference from other
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Figure 2.25: RTK‐GPS configuration with two GPS receivers mounted on top of the rover (left) as well as the ground
station (right)

electronic systems onboard the testing platform. In such cases, shielding or receiver masts

should be considered. The localisation estimates can be estimated in real-time, or through

post-processing tools, such as RTKLIB [191].

Optical surveying equipment can also be used, to estimate the rover position position,

but direct line of sight with a base station always needs to be guaranteed. Most total station

surveying equipment can cover distances up to 1500 metres at an accuracy of up to 1.5 mm

accuracy. Particularly withGPS systems, longer traverses should be considered to ensure that

the constant ground truth error is smaller than the localisation error that we are trying to

measure.

2.4.3 Advantages & Limitations Of Field Testing

The primary disadvantage of field testing remains in the time and effort required to organise

a location, as well as the travel and delivery of the equipment. In addition, the illumination

conditions of a field test cannot be fully controlled, as the Earth atmosphere scatters light,
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particularly in the blue spectrum. Our atmosphere also blocks certain parts of the IR spec-

trum which affect testing of active IR sensors such as LIDAR. This can be mitigated to an

extent by testing at night with a controlled light source, which, in turn, limits the range of

the field test. The main advantage of a field test is the longer range of the tests which can not

be replicated in a lab environment. The out-door tests are also necessary for verifying that

tested systems are not bias towards our other testing environments.

2.5 Discussion

When addressing the different options for testing navigation systems, it is important to con-

sider all available options to mimic the environment of the lunar surface. Planning different

testing strategies is an integral part when it comes to developing systems for space to cover all

possible edge cases. Particularly for lunar surfacemissions, this is difficult, because there is no

single testing facility which can reliably reproduce all the environmental conditions encoun-

tered on the Moon. Of the approaches presented, all have strengths and weaknesses when it

comes to the fidelity of the testing. Indoor facilities, while producing accurate lighting condi-

tions and a certain degree of repeatability, suffer from the small surface area of the test setup.

Virtual environments can be configured at a large scale and allow for perfect repeatability for

testing different parameters. However, they still experience limitations when it comes to re-

producing environment detail and sensor artefacts. Outdoor analogues help with large scale

environment testing, while having downsides with control over environmental conditions as

well as a significant organisational overhead. The outcome of this work provides a qualita-

tive assessment of different testing approaches which can be used to test perceptions systems
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for the lunar surface. While none of the described environments can perfectly recreate the

lunar surface, each approach has its own specific advantages. We therefore, rely on the com-

bination of all three methods to better assess the reliability of our systems. We also note that

convenience is a major factor, as time consuming test setups can significantly slow down the

development process. Accurate and frequent testing remains a priority in order to deliver

reliable systems, especially when developing systems for the lunar surface.

2.6 Summary

The work in this chapter has been a journey through a wide variety of different fields and

sources of knowledge ranging fromthephysical properties of rocks, to the illumination strength

of the sun to efficient software implementations required for real-time simulation environ-

ments. With none of the described facilities described existing in Luxembourg at the begin-

ning of this work, numerous literature examples were consulted. In the end however, several

lessons were learned through trial and error. The first lunar yard was built in a matter of

months providing invaluable insights into the different considerations for lab testing. The

lessons learned from this were then addressed with the creation of the LunaLab at the Uni-

versity of Luxembourg, which resulted in a second lunar testing facility with a high level of

fidelity. On the simulator side, game engines provide a great way to quickly generate realistic

large scale environment. The integration with existing robotic systems is nevertheless not as

straightforward. This is also what has led to the investigation of ISAAC, as it is a dedicated

environment attempting to combine the qualities of both state of the art rendering and pur-

pose build robotics interfaces. While this is a promising tool, it does currently not have all
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the features one would expect. Given the complexity of developing a render engine, it seems

unlikely that tools like Gazebo, which rely on open-source render engines, will be able to

improve considerable over the current image quality in the near future.

When it comes to testing with real hardware, this is a tedious process, where more issues

appear as more time is invested. The is especially true with field testing, where systems of-

ten experience new edge cases as for example different terrain types or the overheating of

hardware. Additionally, said edge cases are difficult to address while being in these locations,

without Internet access or even simple lab equipment, making the debugging a lengthy pro-

cess.
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3.1 Background

Good localisation is an important part for all mobile robots that require any degree of au-

tonomy. Even the most basic semi-autonomous systems require some form of localisation.

While localisation is not the part that takes autonomous control, it is a necessary component

to enable autonomy. A simple example of this is to command a robot tomove forward by one

metre. The rover will start driving, but in order to decide when to stop, it needs a metric to

determine whether or not it has completed its task successfully and arrived at it’s destination.

In this case, simply counting the number of wheel revolutions could suffice, but for complex

scenarios, more elaborate localisation systems are needed. For this type of robot-centric tasks,

we are looking at relative localisation, as it does not matter where in the world the rover is,

but only where it has started and where it will stop. Absolute measurements are also impor-

tant, for example when trying to plan a trajectory through an existing map, or when trying

to collaborate with other robots. However, this is a topic we will cover in chapter 4. Note

that this work only covers online localisation methods. Structure From Motion (SFM) or

photogrammetry, are also compelling tools for localisation and mapping. They are however

very processing intensive, and often donot run in real-time, whichmakes themunsuitable for

autonomous systems. Instead, they are sometimes used to support operators on the ground,

as they have much more computational power available once images are down-linked.

In this chapter we will first cover the state of the art with regards to relative localisation.

We will specifically address issues concerning planetary rovers while looking at both sensors

and algorithms. Thenwewill cover considerations in developing a stereo visual-inertial local-

isation system for the lunar surface. Lastly we will cover the development of an vision based
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localisation system which is automatically corrected through the pose estimation of known

landmarks, such as the lander that deploys our rover.

3.2 State Of The Art

In this section, we will look at how relative localisation for surface robots can be performed

in general, and how previous and current planetary rovers approach this problem.

3.2.1 Odometry

Odometry is the use of data frommotion sensors to estimate change in position over

time. Cited from: [210]

In principal, we can estimate odometry measurements from any rover mounted sensors that

let us infer the updated movement of a robot. This does not imply the consideration of a

map, or any understanding of the environment. In terms of sensors, this can be something

as simple as a wheel encoder counting wheel revolutions, to a LIDAR system estimates the

transformation between two LIDAR scans at two different points in time. When working

with robotic systems, odometry not only describes position updates, but also linear and an-

gular velocity estimates. For example, this type of data is needed by systems sending drive

commands to the rover’s wheels to follow a path. The hardware component of the sensors

used for this will be covered in section 3.3 with a more detailed look towards space applica-

tions.
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3.2.2 Wheel Odometry (WO)

Wheel odometry is the simplest form of odometry. It only requires a sensor that canmeasure

the number of wheel revolutions. Due to its simplicity, this method has been used on many

planetary rovers [132, 121]. From the individual wheel revolutions we are able to estimate

the overall movement of the rover, based on how the wheels are aligned to the rover. The

main problem it suffers from is wheel slip. When modelling the motion of the robot in the

environment, wemust to take into account that the wheels will never provide perfect surface

grip. In our case, the added issue is that we do not necessarily know what composition the

surface has, making it even more difficult to predict the amount of wheel slip. This requires

a good understanding of wheel-soil interaction. The type of motion affects this drift as well.

For example, differential drive systems rely on wheels slipping sideways to control the rovers

orientation. While such a system is mechanically simpler to construct, it also makes it more

difficult to estimate the wheel slip. As described in the results from a field test atMount Etna

[202], wheel odometry should be tested in locationswith similar soil properties, as the quality

can vary significantly from lab testing.

The second issue we are facing is the complex surface shape which we are presented with.

On a flat surface, it is fairly easy to calculate the robot’s motion from the individual wheel

rotations, but on a three dimensional (3D) surface, additional variables are introduced,which

we are unable to estimate through wheel movement alone.

While WO is an important source of information, building an accurate model is a com-

plex problem to deal with which requires a good understanding of the mechanical setup of

a robot and the wheel soil interaction with the surface terrain. During the NASA SRC2
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competition (Annex A), wheel odometry was considered and it worked well as on flat terrain

traverses. However, once more complex surface shapes were involved, making some wheel

lose contact with the ground, the pose estimation error grew much more rapidly. Because it

had to competewith a visual odometry systemwhich performed exceptionally well on simple

simulator images, the wheel odometry was simply not accurate enough and discarded in the

end.

3.2.3 Visual Odometry

Visual odometry covers any type of odometry generated through one ormore camera sensors

and image based methods. It relies on being able to estimate a pose update from the changes

of a previous image to the current image. Once applied to a sequence of images, this allows

us to estimate the completemotion of a camera through 2Dor 3D space. In figure 3.1 we can

see the different study fields in visual odometry, including the different existing sensor types

and configurations, as well as the different approaches used to estimated the aforementioned

pose updates. For most of the approaches we will mention, the principles will be applicable

to all of the sensor types, even if they will differ in implementation.
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Figure 3.1: General classification of studies in the field of visual odometry

3.2.3.1 Geometric Approach

The concept of visual odometry is to rely on the slight difference in perspective between two

images. For a stereo camera setup, the concept is themost simple to explain, andwewill do so

following the diagram shown in figure 3.2 with a 3D-to-3D estimation and the camera setup

shown in figure 3.3.

In the first step, we use a feature extractor to search for individual features which we can

detect in both the left and right image Cl and Cr. Because of the perspective change between

the two images, we can then calculate the depth of each individual feature in the image based

on the camera baseline (distance between left and right camera). This is done through the

following formula from [87](p289):

depth = (baseline ∗ focallength)/disparity) (3.1)
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Next, we repeat the same process for the previous images (Pl and Pr) and end up with two

sets of features. We now proceed to the featurematching between the current features Fc and

the previous features Fp. As we now have a relative 3D position of the same features from the

current and the previous image, we can estimate the relative motion of the camera between

both images Cl and Pl. Lastly, some local optimisation, can be performed to improve the

trajectory estimation of multiple images.

Figure 3.2: Block diagram showing the main components of a geometric VO system [172]

For a monocular camera setup, the process is similar, but the depth must be estimated

through the current and previous image as well. As a result, monocular visual odometry

has no way to accurately and consistently estimate the scale of the environment on its own.

RGBDcamera configurations are identical to the stereo camera, except that the depth estima-

tion comes directly from the sensor, instead of estimating it through a left and right image.

The 3D-to-3D correspondence seems to be the most obvious solution, but 2D-to-2D and

2D-to-3D approaches can also be beneficial. According to [148], these methods have the ad-
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vantage in that they optimise the camera pose based on 2D features, which do not contain

the added uncertainty from the depth estimation process.

Figure 3.3: The operation principal of a stereo camera. Taken from [151]

3.2.3.2 Geometric - Direct

Early approaches to visual odometry have looked at estimating the movement of every pixel

fromone frame into the next frame. Thismethoddirectlyworks on individual pixels anduses

the updated position of pixels to estimate the pose update of the camera between two images.

Given that this approach relies on processing every single pixel, it is computationally expen-

sive. To simplify the process, sparse methods have also been developed. As opposed to the

dense method, they apply the same principle, but first make a selection of pixels which seem

more promising to track, such as pixels in high contrast areas. In general, direct methods are

easy to implement but are not very robust against lighting changes or geometric distortions

of objects and are rarely used today.
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3.2.3.3 Geometric - Feature-based

Feature-based methods differ from direct approaches in that they first extract features from

each image (feature detection), which they then try to match with features from previous

images (featurematching). Inprinciple, these features provide robustmatchingmethods that

can be invariant to specific types of transformations (rotation, scale, affine)[59] or changes in

lighting conditions.

”One of the major advantages of the feature-based method is that it is robust

against geometric distortions and brightness inconsistencies” Cited from: [144],

p6

The downside of feature-based methods is that they add computational complexity, which

is directly related to the number of features selected. As a result, we can often only com-

pare a limited number of them. Due to the added robustness and because not all parts of

an image contribute usable features, this method is still preferred in most of toady’s VO ap-

proaches. Examples of commonly used features include Scale-Invariant Feature Transform

(SIFT)[194](shown in figure 3.4), Speeded Up Robust Features (SURF)[14] and Oriented

FAST and Rotated BRIEF (ORB)[168]. Another issue presented by feature-based methods

is that they do not work well in feature sparse environments such as smooth surfaces with no

distinct texture.
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Figure 3.4: Scale and orientation of SIFT features. Taken from [59]

As visible in figure3.4, feature detectors generally prefer locations with fine details. This

can be problematic when some areas of the image are features spares, resulting in an uneven

distribution throughout the image. Because this can impact the quality of the motion esti-

mation, modern feature detectors divide the image into a grid, where they search for an equal

amount of features in each cell of the grid.

3.2.3.4 Geometric - Hybrid

While feature matching approaches are preferred VO techniques today, direct methods can

outperform them in some environments. Therefore, it can sometimes be useful to use a com-

bination of both methods in order to produce a more robust setup, as shown in [53].

3.2.3.5 Non-Geometric

In recent years, there have beenmajor advances inmachine learning applications, especially in

the field of computer vision. This can also be seen in the numerous machine-learning based

81



3.2. State Of The Art

approaches and hereinmainly neural networks for localisation as shown in the following sur-

vey [22]. Some of these methods can learn the motion estimation directly from consecutive

images. Other methods use a hybrid approach, where the depth estimation part is taken over

by a neural network, while the remaining VO components rely on traditional approaches.

The benefit of using machine learning is that it does not necessarily require domain knowl-

edge to produce a good model. The drawback is that large amounts of data are needed to

train a good network, especially for modern deep neural networks. Ideally, this would be

data from the lunar surface, which is not available in our case. Additionally, it is difficult to

interpret the resulting models. Being a black box makes neural networks problematic when

it comes to validating the reliability of a system.

3.2.3.6 Local Optimisation / Filtering

Besides simplemotion estimation, more complex VO systems also apply additional post pro-

cessing to the estimated trajectory. This is commonly achieved through filters such as the Ex-

tendedKalmanFilter (EKF), theUnscentedKalmanFilter(UKF)or theMulti-State-Constraint

Kalman Filter (MSCKF). These filters are often chosen because of their low computational

cost. Additionally, they also allow for easy integration with other sensor data, such as inertial

measurements. As an alternative to this, optimisation strategies, such as bundle adjustment,

can also be performed over several frames. This is also sometimes known as windowed bun-

dle adjustment, as it is a local optimisation and not a global optimisation which would be

performed for a SLAM system (section 3.2.7).
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3.2.3.7 Application To The Moon

VOworks best in static environments. The quality of the localisation depends on the quality

of the images and requires that there is sufficient illumination which allows for lower sensors

noise, and motion blur (through shorter shutter speeds). Additionally, a good amount of

surface textures are essential to extract enough image features. The final requirement is that

of sufficient overlap between consecutive images. On the lunar surface these requirements are

manageable. The illumination conditions are good, with the sunlight being even stronger

than back on earth (excluding polar regions). As opposed to some problematic terrestrial

indoor environments, the lunar surface does present some texture, even if the landscape is

mostly barren and not perfect for this type of application. The image overlap of consecutive

images primarily depends on the camerafield of view, frame rate and the turn rate of the rover.

This is particularly important for rovers that rely on spot turns, the rotation speed needs to

be chosen such that enough image overlap is guaranteed.

3.2.4 Inertial Odometry

Given an initial condition, we can estimate a pose based on a sequence of gyroscope and ac-

celerometer data. The gyroscope provides use with angular velocity information which we

can use to compute the attitude changes from the previous step to the current step. The

accelerometer provides us with linear accelerations, which can be used to compute the up-

dated positions based on the current attitude. On its own, inertial odometry present a high

degree of drift. Due to its small size and because it has almost no mounting limitations, it is

often used in combinationwith other sources of odometry. For theMars ExplorationRovers
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(MER), an initial pose estimate was calculated relying on data fromwheel odometry and the

IMU.[132]

3.2.5 Laser/LIDAR Odometry

LIDARdevices localisationbyproducing a 2Dor3Dpoint-cloudof their environment. This

point-cloud is then matched with a previous point-cloud, once the sensor has moved. Often

an algorithm called IterativeClosest Point (ICP) is used for this type of odometry. Essentially

it calculates a transformationmatrix between twopoint-cloud, ‘whichminimises the distance

between corresponding points‘[144]. Other devices that can generate point-cloud can also

use the same approach[169].

3.2.6 Odometry Fusion

Often, multiple types of odometry can be fused to provide better results. Adding inertial

measurements to other sensor data is a popular choice because IMUs can be very small. How-

ever, this does require careful estimation of the quality of individual sensor inputs. A good

example can be found in [141] and is shown in figure 3.5. Here, a VIObased SLAMsystem is

directly compared toVObased SLAMwith the same localisation algorithm (ORB-SLAM3).

While VIOdoes not outperformVO in all the cases shown, the authors claim that the inertial

part allowed the system to keep estimating the localisation accurately in some difficult edge

cases. During the NASA SRC2 competition, we experimented with different Visual Inertial

Odometry (VIO) algorithms (AnnexA).The rover configurationwas particularly interesting

because it presented us with an exceptionally noisy IMUwhile the stereo camera was lacking

a lot of the noise and image artefact which we would expect from real camera data. In this
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particular case, we determined that the combination of both of these factors resulted in a

worse result in comparison to the original visual odometry.

Figure 3.5: Stereo VO based SLAM on the left vs Stereo VIO based SLAM on the right. The graph shows an estimated
trajectory(est) and the ground truth (gt). Taken from [141]

3.2.7 Simultaneous Localisation And Mapping

Simultaneous Localisation And Mapping (SLAM), as the name suggests, is an algorithm

which builds both a map and determines the rover’s pose in this map. This is useful for

autonomous robotics, where a map is needed for continuous path planning and obstacle

avoidance. However, even for tasks that do not require autonomy, SLAM can be interesting

as themap the systems builds can be useful to improve the overall localisation accuracy. They

can achieve this by detecting locations that the robot has already been to (loop closure), as

well as by performing a global optimisation, rather than just optimising a portion of themap,

as discussed in the previous section 3.2.3.

3.2.7.1 Loop Closure

Odometry systems continuously accumulate error over time, because they essentially look at

theworld as an infinite corridor (as shown in figure 3.6). SLAM systems try to address this by
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looking previous data, to determine if the rover has already been to a location. Once a loop is

detected, themap can then be corrected to take into account the drift between the beginning

and the end of the loop, as shown in figure 3.7. This can also be performed between separate

localisation sessions, as shown in [106], or for multi-robot systems as shown in [41].

Figure 3.6: Loop closure diagram. The left side shows a map built with odometry, resulting in a long corridor travelling
from A to B. The right side shows a map built with SLAM, where the system discovered shortcuts in the map. Taken
from [18]
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Figure 3.7: Localisation maps without (left) and with (right) graph optimisations. Loop closures are shown in red. Taken
from [106]

3.2.7.2 SLAM types

The SLAM field can be broadly divided into two categories. One for systems that use a filter

approach such as EKF-SLAMorparticle filters and one for systems that rely onnon linear op-

timisation techniques, which is also known as graph SLAM. The filtering approach is how

SLAM was initially performed, but in recent years, graph SLAM has grown in popularity

because of its improved accuracy. In [188] the authors conclude that EKF filtering can be

beneficial when little computational power is available, but for any other cases, bundle ad-

justment based optimisation outperforms the filtering methods.
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Today, most popular visual SLAM systems are based on graph SLAM, such as Rtab-Map

[104], Orb-SLAM3[19] or Kimera [167], and are often based on optimisation tools such as

G2o[102] or GTSAM[35].

ConcerningLIDARbasedSLAM, themostpopular algorithmused today isLOAM[220].

Even though it has been in use for several years already, it is still performing exceptionally well

in comparisonwithother approaches[220], aswell as benchmarkingdatasets such as theKitty

dataset[65].

3.2.7.3 Difference Between SLAM And VO

When not considering the map component of a SLAM system, some current VO and VIO

systems can look very similar to early SLAM systems. The main difference is that SLAM

systems generally perform optimisations over a complete map, rather than a number of the

most recent camera images. Additionally SLAMsystems can detect knownplaces and correct

their map and localisation estimates through loop closure.

3.2.7.4 Application To The Moon

In [18], three parameters are givenwhichmust be taken into accountwhen assessing a SLAM

system in a given use case: the robot, the environment and the performance requirements.

The robot deals with the sensor suite, the motion of the robot and the available computa-

tional resources, all of which are parameters that we can directly influence, even if the com-

pute resources on current planetary resources are quite low. Especially the slow travelling

speed of current planetary rovers is beneficial to localisation systems.

The environment is the landing site which we are considering. This can be problematic
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due to a lack of features, aswell as difficult illumination conditionswhen the sun is positioned

low on the horizon. The uncertainty about the surface terrain makes it rather challenging to

assess some of these issues before the beginning of the mission. An advantage here is the fact

that the environment is completely static, with the exception of the rover tracks imprinted in

the soft regolith.

The performance requirements describe how accurate and robust the systemmust be, as

well as the duration and area to be mapped. These factors depend on the application that we

are using SLAM for and are mission-specific.

We consider two use cases here: long distance traverses and continuous operations in prox-

imity of a lander. Both of these will have longer operations thanmost academic applications.

While longer explorations have been achieved, they need to deal with the question on how

to store large long-term map information and if all of it needs to be kept in memory. Some

papers have also dealt with compressing or forgetting parts of a map. Specifically operations

in close proximity to a lander benefit from long-termmap consistency. As for the longer tra-

verses, which do not intersect with themselves, the utility of SLAMbecomes more marginal.

At this stage, loop closure becomes less useful, and many odometry systems can provide an

equally good local consistencywith local optimisation. The availability of amap should how-

ever not be underestimated, as it is needed for autonomous path planning and obstacle avoid-

ance. It is also a useful tool to support ground operators, even if the map building for this

purpose could also be performed on the ground.

Currently, no SLAM systems have been used on-board a planetary rover. This is mainly

due to the limited computational power available onboard. However, tests with rovers in

analogue environments back on earth have been promising.
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3.3 Hardware I: qualitative assessment of locali-

sation sensors for space

In this section, we will investigate commonly used localisation sensors and outline a qualita-

tive assessment of their applicability and usefulness in the space sector.

3.3.1 Wheel Encoders

Wheel encoders provide the most basic type of localisation sensors and are generally present

on planetary rovers. It is a simple addition which not only helps localisation, but can also

be used to check on the status of the motors. Additionally, it provides feedback for soil

mechanics experiments, as the amount of a single wheel drift can be calculated when three

other wheels are stationary, or when comparing other localisation estimates against the wheel

odometry. The individual wheel rotation is measured through rotary wheel encoders, of

which there are many types. As an example, commonly used hall effect encoders for example

measure the magnetic field with magnets mounted around the drive shaft.

Application to Space: Wheel odometry estimated from wheel encoders is the simplest

source of odometry on a surface robot, and has been used on many planetary rovers [132,

121].

3.3.2 IMU

Inertial Measurement Units (IMUs) are a popular choice in robots because they are small,

lightweight, and because they have few mounting limitations. Most IMUs cover 6 Degrees
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of Freedom (DoF) with both an accelerometer and a gyroscope for each axis. Some 9DoF

IMUs also include a magnetometer to improve the heading estimation.

The gyroscope component measures the changes in orientation of a robot. There are dif-

ferent types of Gyroscopes, but generally we talk about Micro-ElectroMechanical Systems

(MEMS) type gyroscopes when dealing with small sized robotics, as the optical or mechani-

cal variants are bigger in size.

The accelerometer component canmeasure forces acting on the rover and respective direc-

tions. This includes gravity as well as forces generated through the rover’s own movement.

The gravity component is especially interesting because the accelerometer can tell us consis-

tently in which direction is up/down. Most current accelerometers work through the help

of a piezoelectric crystal, which produces a voltage when squeezed in a specific orientation.

IMUs can provide absolute pitch and roll estimates, precisely because of the gravity vector.

Additionally, they are useful because some graph-SLAM systems align their individual poses

in their map with regard to the gravity vector, thus reducing error[218].

A magnetometer is essentially a compass indicating the direction of the planet’s magnetic

field. This is especially interesting to be incorporated into an IMU because the compass can

eliminate drift of the yaw component. In combination with the gravity vector, this can pro-

vide more consistency in the overall orientation estimates.

Application to Space: IMUs are a popular choice on planetary rovers because of its form

factor. While the accuracy of localisation estimates from this sensor alone is low, it is often

used in combination with other sensors [132]. Currently, only 6DoF IMUs are used for

planetary robotics because both the Moon and Mars lack a suitable magnetic field for the

magnetometer to properly function.
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3.3.3 Stereo Camera

The concept of stereo cameras is to rely on the slight difference in perspective between the left

and the right camera, in order to extract depth cues. Our brains also use the samemethod to

extract stereo depth cues from two images. In the simplest configuration, we assume the same

setup, where two identical cameras are oriented in the same direction and positioned with

an offset next to each other in a horizontal configuration (as shown in figure 3.3). Vertical

configurations are also possible as shown in [109]. The distance between the two cameras is

the primary factor which determines the minimum and maximum depth estimation range

that can be achieved while the camera is stationary. Other contributing factors include the

field of view and the resolution of the cameras. Generally, cameras are mounted in parallel,

but they can also be angled slightly inwards, in order to increase the overlap between the

two images for a specific distance [101]. For most of our work, we have used the ZED* and

ZED2† stereo cameras, both of which have a baseline of 12 cm, and a range of about 0.5

to 20 metres. Most planetary rovers use wider camera baselines for the navigation cameras,

but also make use of additional short baseline stereo cameras to cover close range obstacles.

The Perseverance rover, for example, uses a Navcam with a stereo baseline of 42.4cm and a

Hazcam with a baseline of 24.8cm [133]. One limitation of stereo camera systems is their

maximum range limit. Longer ranges can be achieved through moving a single camera to a

second location in order to produce a longer baseline (described in section 3.3.4). As shown

in [149], this can be further refined with stereo cameras, as they can calculate an initial wide-

baseline estimate through the odometry calculations produced during the traverse between

*https://www.stereolabs.com/zed/
†https://www.stereolabs.com/zed-2/
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both camera poses.

The stereo approach requires a good calibration. Both intrinsic and extrinsic parameters

need tobemeasured for every single camera configuration and re-calibration is necessary if the

geometry of the camera setup is modified. Here, the stereo baseline is especially important,

as materials should be selected that minimally change the geometry of camera baseline even

under temperature fluctuations. A good example showing how significant good calibration

is can be seen in [109], where a localisation algorithm is presented that is performing excep-

tionally well in a benchmarking dataset[65], partially because it did not assume the provided

calibration as the best possible calibration.

Application to Space: Stereo cameras are the most commonly used localisation sensors

in planetary robotics besides wheel encoders and IMUs. They have been proven in space

exploration, and allmajor past and currentMoonandMars rovers have relied on stereo vision.

3.3.4 Monocular Camera

Monocular localisation approaches are often considered on drones because of the limited

payload space and thus there is a wide body of existing research [146]. In order to localise

with a single camera, monocular cameras need to extract depth information from the scene.

However, unlike a stereo camera configuration, they cannot extract depth cues froma left and

right image. Instead, when the camera is moved, depth information can be extracted from

the current and previous images through a process called Structure From Motion (SFM).

The primary issue with this approach is the lack of accurate knowledge of the stereo baseline.

While this can be estimated through othermetrics, such aswheel odometry or IMUdata, any

inaccuracies or drift in the baseline estimation may lead to variation in the scale of the map
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and result in poor localisation performance. As a result, and as shown in [69], feature-based

monocular SLAM systems consistently performworse than stereo camera systems, although

in some specific cases, the differences are not as prominent. Alternatively, learnedmonocular

depth clues similar to the ones our brains rely on [219] are also an option, but these are likely

less effective on the Moon. While occlusion clues work just as well as on earth, known-size

object clues are more difficult to judge. This means that observed rocks or boulders could be

of any dimension, with just the size distribution in the area being an indication of their actual

scale. Interestingly, Apollo astronauts have reported similar difficulties in judging distances

while on the lunar surface [15] .

While they are not able to estimate the scale of the environment, monocular camera con-

figurations do not have a maximum depth estimation range, because the range depends on

how far the camera has been moved between two images. There are scenarios where the re-

quired stereo baseline would be too large for a reasonably sized stereo camera. This is, for

example, the case for observation satellites orbiting the Moon at 50 kilometres in altitude.

Even close to the ground, this can be the case with drones or helicopters such as Ingenuity

[12]. In such cases, monocular visual odometry should be considered as discussed in [217].

Application to Space: Similarly to the stereo cameras, monocular vision will be useful in

space applications. For novel applications such as extremely small rovers[208] or UAVs[217],

monocular localisation approaches are the most likely candidates, because in those cases, the

platform does not provide enough space to include a large enough stereo baseline.
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3.3.5 LIDAR

A LIDAR (acronym for Light Detection and Ranging) sensor is a sensor that can produce a

rangingmeasurement by emitting a laser signal, andmeasuring the time it takes for the signal

to return. A single point measurement can be used for example as laser altimeter during a lu-

nar landing sequence to estimate the distance to the ground. To be useful for our localisation

purposes, a more complex setup is required, with either an array of lasers, a laser on a ro-

tating platform, or a combination of both. A single LIDAR sensor on a rotating platform is

known as a planar LIDAR, and can give us a 2Dviewof the scene. Such a device can be found

in some autonomous vacuum cleaners. A robot with such a sensor can make assumptions

about the relative position of perpendicular surfaces for 2D navigation. For more complex

environments, a planar LIDAR can also be used, but it requires an additional articulation to

view the environment in 3D.An alternative is to use a full 3DLIDARwhere an array of lasers

are mounted vertically on a horizontally rotating axis. This method is preferably used by the

automotive industry due to the fact that such a sensor can produce a high density point cloud

and achieve distancemeasurements over one-hundredmetres with a ranging error of∼ 5cm.

The error in this case with is less pronounced at closer ranges. This is significantly better than

the depth estimation accuracy of most stereo camera systems. Through the rotating setup,

they can scan the complete environment multiple times per second, with a resolution of sev-

eral million points distributed over 360 degrees. While they can easily surpass the coverage of

a single camera, the resolution is relatively sparse. In order to localise with such a sensor, we

perform point-cloud matching between multiple point clouds.

Application to Space: While the localisation accuracy of both an oscillating 2D LIDAR
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or a 3DLIDARconfiguration are suitable for our application, the sensors themselves present

some severe drawbacks. They consume a considerable amount of power through their ac-

tive sensing, and the motors required to spin the sensors. Besides the additional mass of this

mechanism, these moving parts also present a risk that needs to be considered for space qual-

ifications. LIDAR devices have been used successfully in space in order to automate docking

procedures with the international space station [173]. That being said, the devices in ques-

tion are to big and power hungry to be considered for small lunar surface robots.

3.3.6 Solid State LIDAR

An alternative to mechanical LIDARs are solid state LIDARs, which promise to solve the

problem of a complex mechanical setup with static alternatives that can diverge laser beams

through other means. While these systems are promising for the automotive industry and

the space industry, they are still relatively new. So far, no Solid State LIDAR has been flown

in space.

Application to Space: To date, no solid state LIDAR has flown into space. This will

likely change once the technology matures. The devices are interesting because they have

lower power andmass requirements thanmechanical LIDARs, while still providing a similar

range measurement accuracy, making them an interesting contender.

3.3.7 RGBD camera

RGBD cameras are an interesting sensor because they can generally make good assumptions

about the distance to an object, even in feature-sparse environments. They achieve this by

projecting a pattern into the scene. This pattern is then photographed and from the distor-
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tion of the projected pattern, one can estimate the distance and sometimes the orientation of

the surface. The simplest pattern is a set of circles, as we can simply measure the size of the

circle. The bigger the circle, the closer the object. This data can then be transformed into a

point-cloud or a depth image.

There are two different methods to make this data useful for localisation. In the simplest

configuration, we only have a projector and a camera. Here, we can perform localisation

throughmatching of point-clouds with an algorithm like Iterative Closest Point (ICP)[190].

For the second approach, we need to couple the sensor with an additional camera which can

record an image without the projected pattern. To achieve this, the pattern is generally pro-

jected in the Infra-Red (IR) spectrum,with one camera recording the pattern in IR,while the

second camera is a normal RGB camera with an IR-cut filter. We now end up with a colour

and a depth image (RGBD), the same type of data we would normally extract from a stereo

camera for localisation purposes. The second method is often preferred, as these sensors of-

ten use a higher resolution colour image which provides more recognisable features than the

lower resolution depth image.

The benefit of such a sensor is that it can operate well with textureless surfaces. This is

especially interesting for indoor environments, but could also be useful on some parts of the

lunar surface. The sensor’s primaryweakness is the strength of the pattern projection. Due to

the inverse square law falloff of the light distribution, these sensors have a limited range. This

is especially evident in outdoor environments, where the projector is quickly overpowered by

the sunlight shining onto the same surface. This is also the case on the lunar surface where

the illumination conditions are more intensive than here on earth.

One method to avoid this issue is combining the advantages of a stereo camera with the
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advantages of a depth camera. By adding a second IR camera, stereo depth estimation can

now be performed on the projected pattern, as well as regular image features. In this case,

the range of the camera is now limited to the baseline of the stereo camera and not the range

of the pattern (or whichever one is bigger). As an added benefit, this approach also increases

the accuracy of the initial pattern depth estimation as seen in [8]. While this approach could

be interesting for future work, until recently, no commercially available RGBD stereo had a

suitable baseline for this application. It also remains to be seen if such a sensor would out-

perform a simple stereo camera on the lunar surface. The primary issue of the projection

strength remains inmaking such anRGBD camera just as useful as a traditional stereo one in

most scenarios. Nevertheless, such a sensor would provide some benefits when driving into

Permanently ShadowedRegions (PSRs) which the sunlight cannot reach, or areas where tra-

ditional cameras can not pick up any surface features.

Application to Space: So far, no RGBD sensors have flown into space, and there are cur-

rently no plans to do so. Given that they rely on existing camera technology, space qualifying

the technology should be feasible. As mentioned, the primary issue of the sensor is the lower

detection range for outdoor applications. Once first rovers are designed to enter PSRs, the

sensor could become useful because it is an active illumination sensor.

3.3.8 Time Of Flight Camera

ATime of Flight (ToF) camera relies on the same principle as LIDAR sensors, and are some-

times also referred to as Flash LIDAR. They work by emitting a light signal and measuring

the time it takes for it to be reflected off an object and arrive back next to the emitter. The

key difference is that a ToF camera uses a single light-source to illuminate the complete scene
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rather then a single point. Next, an array of receivers behind a lens capture the returning

signal similarly to a camera. This difference has a major impact on the range and quality of

the system, as the focused beam used with LIDAR systems now has to illuminate the entire

scene, thus reducing the strength of the signal. Similarly to the pattern projection systems

found in RGBD cameras, ToF cameras suffer from being overpowered by the sunlight inten-

sity. While it is possible to increase the power of the light source to overcome this problem,

this makes it problematic to work with as it could harm human eyesight in its proximity.

Figure 3.8: This point‐cloud was generated with the help of a Time of Flight camera mounted on a rover while perform‐
ing a 180 degree turn. The different sensor point‐clouds were aligned with ICP

In order to provide localisation estimateswith such a sensor, we canusemethods operating

with point-cloud information such as ICP. During our testing in the lab environment, we

have successfully localised our rover on small test manoeuvres. However, during our testing,

it became apparent that the small range and low resolution of our test device is problematic

when dealing with environments with little geometric features. The localisation worked best
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when providedwithwell-placed rocks or craters to provide ICPwith recognisable 3D surface

geometry. For simpler surface geometry, low resolution cloud matching often failed rapidly.

Figure 3.9: Localisation estimate based on data from a ToF camera while moving in a straight line.)

Application to Space: As described in [205], a suitable ToF camera has beenmodified for

the use on the lunar surface, with an expected range of 2-3 metres. A similar device has also

successfully flown on a cubesat [155]. While such a sensor might not be suitable for localisa-

tion purposes, it can still be used for obstacle detection, where the low range and resolution

is less problematic as shown in [201].

3.3.9 Omni-Directional Camera

Omni-directional cameras can provide a 360 degree view. This makes them interesting for

providing full situational awareness. Unfortunately, the downside of this approach is that the

horizontal set of pixels must be divided between the full 360 degree field of view, resulting
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on a low angular resolution. This means that we can only track objects which are relatively

close or quite large. There are different methods to achieve this 360 degree coverage. The

simplest is to point a camera upwards into a convex mirror resulting in a perfect panorama

[173]. More complicated forms rely on multiple wide-angle cameras, where the images are

then stitched together through apost-processing setup. In this case, weusually still encounter

stitching artefacts, especially when looking at objects close to the cameras. These are the re-

sult of a perspective shift between each one of the cameras used. Similarly to the monocu-

lar camera, most omni-directional cameras are unable to directly observe stereoscopic depth.

However, as shown in [110], this can be achieved through a configurationwith a ring ofmul-

tiple horizontally stacked cameras which cover 360 degrees and an identical vertically stacked

ring providing a corresponding stereo image for each camera of the first ring [110].

Application to Space: Todate, such a sensor has never flownon a planetary surface robot.

While the increased situational awareness is useful, it puts considerable limitations on how

to place the sensors in order to provide ideal coverage. The limited range, and the complexity

of achieving accurate depth estimation is not to be underestimated. Lastly, for multi-camera

approaches, the image artefacts resulting from stitching can introduce errors into any pose

estimation techniques.

3.3.10 Event Camera

Event cameras (also known as neuromorphic cameras) are a new type of camera, which does

not generate complete images, but rather individual pixels which have changed since the pre-

vious sample. Because this greatly reduces the amount of data that needs to be transmit-

ted for each sample, it allows for much faster sampling rates at the order of microseconds
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(1,000,000 fps). While the data format is substantially different from traditional image ar-

rays, the technology can be used for localisation as shown in [72, 221]. This has also been

shown to work on drones where high speed processing requirements are combined with low

computing power [72, 203]. Currently, the main downside of such sensors is their high cost

and their low spacial resolution.

Application to Space: The sensor efficiency makes this sensor interesting for space appli-

cations. Given thatmost of the technology is very similar to traditional camera systems, it can

rely on anumber of existing space qualified components. Initial lab experiments to determine

the image sensor’s robustness to radiation are promising. According to [166], radiation does

effect the sensitive detectors, but it is also shown that this will likely not impact the ability

to extract features from camera data. Additionally, an event camera has been launched into

space in 2021 [46], and more data on this mission will hopefully be available soon. In simu-

lation, first lunar applications have been tested, as can be seen in this example [182], which

examines the utility of event cameras to aid lunar surface missions during the landing phase.

3.3.11 Communication Ranging

When dealing with lunar rover missions operating around a lander, the most obvious solu-

tion for communication is to use the lander as a relay instead of direct-to-earth communica-

tion. This can also be useful for localisation purposes, as we can measure how long it takes

for the signal to propagate from the lander to the rover and back. Given an omni-directional

antenna, this then provides us with a radius around the lander where the rover could be sit-

uated. On its own, this information is very limiting, but when combined with other sensors,

can be useful to improve the localisation of an existing system. Amore accurate solution can
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also be seen in [39], where a ring of directional antennas is used to provide a heading esti-

mate as well. As shown in [186], communication ranging can also be extended to swarms of

robots. While the position of each individual antenna is not static in this case, localisation

estimates can be estimated through the optimisation of a graph containing all the connected

nodes. As opposed to the other examples provide in this section, communication ranging

here is not self-containedwithin a single robot, it is shared between all the platforms involved

in a single mission. It should also be noted that communication ranging between a rover and

Earth is also feasible, but this is covered in chapter 4.

3.3.12 Sensor Comparison

When selecting a sensor for a localisation system,many factorsmust be taken into account. In

the space industry, the Technology Readiness Level (TRL) is a common indicator if a device

shouldbe considered for flight. Adevicewhichhas flownbefore in spacewill have ahighTRL

level, whereas a device that has only been proven to work experimentally will be assigned a

low TRL level. As we have presented a number of sensors which have never been flown in

space, wewill discard those (OmniCamera, Solid State LIDAR,DepthCamera). We are also

interested in sensors with a high localisation accuracy and we will discard monocular camera

systems here because they can not estimate the scale of the environment without additional

input. Equally, we remove the time of flight camera, because most such devices are too low

in resolution to provide reliable localisation, especially in environments with few geometric

features. This leaves us with LIDAR sensors and Stereo camera systems. Current LIDAR

devices from the automotive industry would be ideal for our application, as they provide a

high level of accuracy coupledwith a long range. However, they dopresent a high risk because
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to date, no compact versions have been flown in space. Additionally, stereo camera systems

are superior in mass and power, which are equally important for lunar surface applications.

Given the current state of the art, the stereo camera is the most suitable sensor, a fact that

is validated by its common use on almost every existing planetary rover. Given that other

sensor data can also be fused with stereo visual odometry, IMU and wheel odometry should

also be considered. Additional monocular cameras with different viewing angles may also

be helpful in addition to a primary stereo camera system. For future applications, solid state

LIDARsystemswill certainly be an interesting technology to follow. Similarly, event cameras

have already shown promising results, and can rely on the know-how of traditional camera

systems.

104



3.4. Hardware II: Stereo camera considerations for the lunar surface

Space
Heritage Range Power Mass Data

rate Cost Localisation
Accuracy

Wheel ✓ / LOW LOW LOW LOW LOW
IMU ✓ / LOW LOW LOW LOW LOW
Mono
Camera

✓ MED LOW MED HIGH MED MED

Stereo
Camera

✓ MED LOW MED HIGH MED HIGH

Omni
Camera

× LOW LOW MED HIGH MED MED

LIDAR ✓ HIGH HIGH HIGH MED HIGH VERY
HIGH

Solid
State
LIDAR

× HIGH MED MED MED HIGH HIGH

Depth
Camera

× LOW MED HIGH HIGH MED HIGH

ToF × LOW HIGH MED MED MED MED
Event
Camera

✓ MED LOW MED HIGH HIGH HIGH

Coms
Ranging

✓ HIGH LOW FREE LOW LOW LOW

Table 3.1: Table comparing the different possible localisation sensors. The qualities are ranked as very‐high, high,
medium and low.

3.4 Hardware II: Stereo camera considerations for

the lunar surface

When designing small lunar rovers with autonomous capabilities, one of the questions to

deal with is how to provide localisation. In the previous section, we established that stereo

cameras are themost popular sensor for planetary rovers. Given the current state of the art, we

105



3.4. Hardware II: Stereo camera considerations for the lunar surface

also established that while there are other sensors with interesting characteristics, including

higher accuracy in localisation, stereo cameras are still the best choice when evaluating the

trade-off between technology maturity, size, power and accuracy. Stereo cameras come in

many configurations and can be customised for a given application. In this section, we will

evaluate the different variables to consider when designing a stereo camera for a lunar rover.

3.4.1 Rolling vs Global Shutter

Rolling shutter is a type of image capture where pixels are read and recorded sequentially

and there is a time delay between the first and last pixel of the image being captured. This is

opposed to global shutter image capture where all pixels are recorded in parallel. This small

delay between pixels is often not noticeable for most applications. Since rolling shutter sen-

sors are cheaper to produce, they are widely used. However, for our application even small

differences in timing can have an impact on localisation quality. The effect is accentuated

if we either have strong vibrations in the system or when the camera is moved rapidly. The

effect can also be avoided when the rover is stationary, given that we have nomoving subjects

in the scene on the Moon.

3.4.2 Mounting Angle

When mounting a stereo camera for lunar surface operations, tilting the camera downwards

is a valid consideration. If we keep the camera horizontally, this leads to half of the capture

image being above the horizon, and half of the image being below the horizon (assuming the

ground is a flat plane). As the part above the horizon is mostly black, this does not provide

any useful localisation features for our application. Instead, wewant to tilt the camera down-
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wards. We should note here that mounting the camera on a tilt mechanism would provide

more flexibility in operations, but this mechanical system also presents an additional point

of failure. For this example, we will assume the camera configuration of a ZED camera with

a mounting height of 0.35 metres where we aim to maximise the following 3 parameters.

1. Ground visibility at the minimum depth estimation range of our stereo camera (0.5

metres).

2. Ground visibility at the maximum depth estimation range of our stereo camera (20

metres).

3. Visibility above the horizon to allow for long range mission planning.

With our camera, we have a vertical field of view of 60 degrees. If we do not tilt the camera

downwards, we are missing anything that is closer than 0.6 metres to the rover (assuming the

ground is flat). If we tilt the camera downwards to -15 degrees, we can see everything from

0.35metres onwards. Since the distance between the camera and the ground (hypotenuse) is

now0.495metres, wewill also have a good convergencebetween the stereo images to calculate

a depth image with our current image baseline. At -20 degrees, we get an extra 5 degrees of

uneven terrain buffer for close range visibility. At this tilt angle, we can also see 10 degrees

above the horizon, allowing us to see features that are further away, which is necessary for

longer range mission planning.

3.4.3 Depth Estimation range

The depth estimation range is dependent on the baseline, FoV and image resolution. In order

to decide on a threshold for the depth estimation a the stereo camera pair we need to quantify

107



3.4. Hardware II: Stereo camera considerations for the lunar surface

Figure 3.10: RMS error for all ZED camera resolutions (0‐20m) Taken from [151]

the depth estimation error. In figure 3.10 by [151], we can observe the depth estimation error

grows exponentially for a stereo camera with a 12cm baseline (the same ZED camera used in

parts of this research). The graph shows the different estimate errors depending on the image

resolution used. We can observe that the depth estimation error on low resolution images

(672x376px) quickly exceeds a metre and even exceeds an error of 4 metres at a distance of

20 metres. For the higher resolution approaches, we note that for estimates further than 15

metres, the sensor always exceeds a depth estimation accuracy of 0.5 metres. While this error

rate is less than ideal, the impact of themeasurement errors does also depend on the way how

it is fed into the localisation system, which is usually implemented with a confidence value

for each landmark.
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3.4.4 Mounting Height

One of the issues when working with smaller robots is the low profile. Most existing plane-

tary rovers have a camera mast to give the navigation cameras a better vantage point (MER

Navcam 1.5m [132]; Perseverence Navcam 1.98m [133]; ExoMars Navcam 2m [183]). This

has several benefits where, on one hand, the added height lets us see past smaller obstacles.

On the other hand, the surface features on the ground are easier to track from frame to frame,

as there is less distortion.

3.4.5 Baseline

For smaller rovers which can only accommodate a single stereo camera, a shorter baseline is

recommended as the camera not only needed to localise, but is also required to detect hazards

close to the rover, which could lead to the end of a mission. The height of the mast also plays

a role. If we have a two metre tall mast, being able to detect objects that are closer than two

metres away is of little use on mostly flat terrain. Longer distance range estimation on the

other hand are helpful for localisation purposes as well as trajectory planning.

3.4.6 Mobility

The type of locomotion can have a great impact on the localisation quality, and should be

considered right from the start. Legged robots for example, have regular shocks during their

movement, while robots with solid wheels pick up a lot of vibration. Changing orientation

can also be different, as some robotsmay be unable able to perform spot turns, while they can

carry out smooth longer turns instead. All these factors have consequences on the locations,
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but can also be adapted to improve localisation. For instance, if a robot can only perform

spot turns to reorient itself, one should consider what maximum speed the localisation can

tolerate during these spot turns.

Figure 3.11: Different mobility systems tested throughout the course of this research. The DevRover on the left, the
SummitXL in the middle and the Spot on the right.

3.5 Software: Rigid-body-landmark Supported

SLAM

This work was performed as part of the NASA Space Robotics Challenge Phase 2 (SRC2)*

(more details about this in Annex A). While the original approach and implementation was

proposed by myself, this work was a collaboration across multiple disciplines and accom-

plished through thehelpofPaulWright,FrankSoboczenski,MaciejZurad,KarthikVenkatara-

mani, Swetha Pillai,Mathieu Labbe, Lukas Meyer and Daniel Medina. The training data

was generated by Maciej Zurad, Karthik Venkataramani and myself. The efficient pose

*https://spacecenter.org/space-robotics-challenge/space-robotics-challenge-phase-2/
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training was completed by Paul Wright, Maciej Zurad and Swetha Pillai. The inference

ROS node was programmed byMaciej Zurad and myself. The YOLO detector was trained

by Frank Soboczenski. The filtering component was implemented and tweaked by myself.

Lastly, the relative localisation system into which the landmarks were integrated into was

setup and configured byMathieu Labbe, LukasMeyer,DanielMedina and myself.

Figure 3.12: Visualisation of landmark 6DoF pose estimation

3.5.1 Introduction

As global navigation satellite system (GNSS) equivalents are currently unavailable beyond

Earth, planetary rover missions rely on relative localisation approaches combined with occa-

sional absolute localisationupdates [118] to ascertain a rover positionduringmissions. While

a number of methods exist to provide absolute location updates, the simplest approach is via

direct detection inorbital imagery [96, 121]. However, thismethod is dependent on the avail-

ability of an orbiting satellite equipped with a camera that is capable of resolving the rover in

its images. As a result, thismethod is only of occasional usewhen the orbit of the satellite, the

rover’s position and ideal lighting conditions align [81]. Alternatively, a robot’s position can
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be directly estimated by comparing orbital and surface perspective imagery [71, 216, 118].

This is a time and effort intensive approach that requires human intervention for accurate

results, limiting its applicability in planetary and/or multi-robot missions where signal prop-

agation delays prevent an operator from providing real-time feedback.

Given the constraints of real-time operations, applicability to small rover systems, and

need for sub-metre level accuracy, relative localisation with occasional corrections through

a known landmark is a more reliable approach. Here, one possible approach is to use the

lander as such a known landmark, taking into account that many planetary rover missions

are performed in the vicinity of a lander. As shown in [175], fiducial marker systems such as

AprilTags [150] or ArUcomarkers [64] can be used for this application by attaching them to

the lander. However, suchmarkers also suffer from a few drawbacks. Firstly, fiducial markers

constrain lander design and take up valuable space on the surface of the lander, which would

otherwise be used for solar panels, radiators and other functional components in support of

themission. Secondly, themarker pose estimation accuracy is dependent on the distance and

viewing angle [176] from the rover. Any marker should therefore be as large as possible in

order to reduce the pose estimation error, clashing with typical engineering requirements of

making the marker as compact as possible. Lastly, multiple markers would be required for

this approach in order to provide full coverage around the lander as well as to reduce view-

ing angle limitations, constraining the lander design even further. While it has been shown

that non standard features such as light-emitting diodes (LED’s) can be distributed over a flat

surface to construct fiducial markers [52] to solve some of these issues, they do not address

constraints with respect to the lander shape and marker size.

Recent advances in computer vision techniques have demonstrated that high accuracy six
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Degrees of Freedom (6DoF) pose estimation of rigid bodies in camera images can be achieved

through machine learning [17, 153, 24, 107]. This approach has the potential to replace

the use of fiducial markers in interplanetary missions, assuming a rigid body is used whose

features are well known beforehand.

In such a scenario, a neural network can be trained to detect the complete lander, repre-

senting the largest possible ”marker” without any engineering modifications to the lander.

Detection can thus be performedover amuch larger range of distances andorientationswhen

compared to the use of fiducial markers, given the same camera setup. Additionally, there are

no restrictions on viewing angles, as it can be accounted for in the training data provided to

the pose estimation network. Due to differences in geometry details and feature density, the

pose estimation accuracy will vary as a function of viewing angle.

For localisation, current planetary rovers often rely on a combination of wheel odometry,

visual odometry and data from an Inertial Measurement Unit (IMU) [131]. Future mis-

sions could also rely on Simultaneous Localisation And Mapping (SLAM) to build more

consistent maps for path planning and localisation as shown in [175]. This is especially in-

teresting when operating around the same location for an extended period of time. In this

case, loop closure could also be used to detect when known locations are encountered again

as this approach is quite accurate and can partially solve the issue of drift around a lander

[105]. However, this only works when the rover and lander orientation geometry is similar

to a previously encountered situation - i.e., loop closure will not be possible when looking at

a lander from the ‘wrong’ side.

In order to address relative localisation around a lunar lander, we propose to use an existing

SLAM system to which we feed our landmark position updates. Updating and correcting an

113



3.5. Software: Rigid-body-landmark Supported SLAM

existingmapwith the help of fiducial landmarks has been successfully implemented in [145].

In [117], pose estimations fromconvolutional neural networks have successfully beenused to

correct a trajectory calculated by ORB-SLAM [146]. In this case however, the experiment is

based onmany small objects, close to the trajectory. This work alsomakes use of amonocular

camera configuration, which is more prone to drifting than the stereo camera systems used

on current planetary rovers.

To the best of the author’s knowledge, this is the first application of this approach to plan-

etary robotics. The proposed method is able to provide relative localisation updates while

automatically updating its map with regards to a known landmark without the need of an

artificial marker. Additionally, this is also useful for multi-robot scenarios, where these land-

marks canbe used to determine the pose and continuously align individualmapswith regards

to a global reference frame.

3.5.2 Methodology

3.5.2.1 Simulation Environment

To build this proof of concept, a simulator was used that was made available as part of the

NASA Space Robotics Challenge (Phase II) (SRC2)*. It is a lunar simulation environment

with full control over relevant parameters that was created using Gazebo [98]. Two surface

structures are provided: a processing plant, as seen in figure3.12, and a charging station, as

well as several rovers. While it is possible and beneficial to use multiple landmark objects

in a graph-SLAM setup, the work presently focuses on using only the processing plant for

simplicity, which we will refer to as lander for the remainder of this paper. The simulation

*https://spacecenter.org/space-robotics-challenge/space-robotics-challenge-phase-2/
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can be initialised with a seed that generates random but reproducible distributions of craters

and rocks on the lunar surface. The orientation of the surface structures are also chosen at

random, leading to different lighting conditions for each initialisation. The simulated rovers

are equipped with a stereo camera, IMU, wheel odometry and a planar Lidar. The cameras

used provide a 640x480 pixel resolution with a wide field of view. Notably, the simulation

includes Gaussian noise and other image artifacts in the rover cameras, which can interfere

with computer vision systems.

3.5.2.2 Data Generation

Data generation to train the selected 6DoF pose estimation model, EfficientPose [17], pre-

sented in this work, followed an iterative approach. An initial model was trained on data

collected by manually driving the rover on the lunar surface within the Gazebo simulator

and extracting frames and generating appropriate labels. While the model that was trained

using this data generated inaccurate inferences, it also demonstrated the network’s ability to

capture useful features in some scenarios. Inference errors in this case were attributed to the

training data being non-representative of actual use conditions, where either a) the target ob-

ject can be offset from the centre of the field of view or b) the target object can be occluded

by other objects/shadows.

To address this problem, a data generation tool was created, that will arbitrarily orient the

target object and the rover in relation to each other, generating viewing conditions that are

more representative of actual use conditions. In the current version of this tool, the target

object (e.g., lander) is initially rotated about its yaw axis at fixed angular steps. The rover is

thenmoved through an angular step around the lander such that its distance from the lander
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remains fixed. For each rover pose, the lander is rotated once around its yaw axis. These steps

are repeated until the rover has taken an image of the lander from every side while being il-

luminated from every side. This process is then completed at three different distances from

the lander (10,20 and 30meters). At any given step, the target object can be placed anywhere

within the FOV (i.e. not necessarily centered). This captures the lander and its features in a

variety of orientations, distances, and lighting conditions. The simulationdata is collected via

rosbags*, fromwhich individual frames are extracted and automatically labeled. This requires

synchronization between image capture and generating position labels, which is ensured by

freezing the simulation when data capture occurs. Data capture involves recording the im-

age frame as seen by the rover, along with the generation of image masks highlighting only

the target object, which is required by EfficientPose. This is done in pyrender †, using the

known camera intrinsics for the simulation environment, a transformationmatrix capturing

viewing geometry, and a 3D model of the target object. The resulting images, masks and

transformation matrix were transformed into the same format as the Linemod dataset [83]

for training EfficientPose. The training dataset generated in this manner is representative of

the conditions underwhich the rover will perceive the lander when operating autonomously.

3.5.2.3 Neural Network

The work presented here, follows the EfficientPose[17] model architecture which is based

upon the state-of-the-art 2D object detection architecture family, EfficientDet[193], capa-

ble of detecting objects and estimating their 6D pose at approximately 30 frames per second

(FPS). While other solutions exist, EfficientPose was chosen because at the time of experi-

*http://wiki.ros.org/rosbag
†https://pyrender.readthedocs.io
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mentation, it was ranked #1 in the “6D Pose Estimation using RGB” on the Linemod dataset

[82]*. We used the official implementation available on Github†, with a slight modification

to increase the weight on the transformation component of the loss function from 0.02 to

0.5. As with the official implementation, we trained EfficientPose starting with a pre-trained

EfficientDet model on the Common Objects in Context dataset (COCO; [120]).

During our experimentation process, we have primarily concentrated our efforts on cu-

rating a representative set of training data, but we have performed a limited hyper-parameter

search on the component-wise weighting of the loss function. We also experimented with

providing EfficientPose with pre-trained weights from training EfficientDet on problem-

specific images.

3.5.2.4 Filtering

The resulting EfficientPose network finally generates reasonable pose estimation. However,

a number of edge cases still need to be addressed, because they are not acceptable for relative

localisation systems, as wrong pose estimationwill result in large divergences in the generated

map. As only a few correct detections are needed to improve the localisation estimates, any

possible false positives should be discarded, even if some correct detections are removed in

the process. This is achieved by relying on other available information.

An additional object detection neural network is used, which is based on You Only Look

Once Version Three (YOLOV3) [161]. This was originally trained to differentiate between

different objects in the simulation environment. In the simplified lunar environment of the

SRC2 competition, YOLOV3 gives exceptionally reliable results, even with a relatively low

*https://paperswithcode.com/task/6d-pose-estimation
†https://github.com/ybkscht/EfficientPose
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number of 2000 manually labelled images. The YOLOV3 neural network used in this work

was based on the Darknet-53 architecture. However, initial results showed a suboptimal in-

ference time. Hence, the architecture was refined to a custom YoloV3-Tiny [2] version with

fewer layers and an alternate optimizer namely AdamW [125]. The final version performs

inference tasks in less than 0.1 seconds. The overall results of this detector have shown no

false positives and a model accuracy of 95%.

Because the confidence in the YOLOV3 detector is high, it is used to search for the lander,

before the pose estimation is executed. This provides multiple benefits: a) The YOLOV3-

based detector runs three times as fast than the EfficientPose network (∼ 0.15sec vs∼ 0.5sec

). EfficientPose is therefore only being executed if the lander has been positively identified. b)

The pose estimation was only trained on images of the lander in order to accelerate training,

leading to pose estimations on other structures that it has not seen during training. Once the

YOLOV3-based detector provides a detection of the lander, any parts of the image which are

outside of the lander bounding box are turned black, in order to avoid estimations on other

objects. In this case, the bounding box needs to be slightly bigger than the 2D bounding

box from YOLOV3-based detector, as the 3D bounding box occupies a bigger space in the

image. c)We filter out cases where the object bounding box is touching the edge of the frame

(top/bottom/left/right), as a correct pose estimation is much harder in these edge cases. d)

Based on the bounding box size, the approximate distance to the lander is known and can

filter cases where the lander is too far for an accurate detection. As shown in figure 3.16 the

estimation accuracy decreases with range. This step could also be supported by the stereo

camera depth estimation, however this was not necessary in this case.

Once a YOLOV3-based detection passes the initial filtering steps, the EfficientPose net-
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work is used to filter the remaining results again. If EfficientPose returns multiple results,

these are usually faulty and are therefore discarded. This generally happens when we are very

close to the target object and when the object is not fully contained within the image.

3.5.2.5 Localisation

Figure 3.13: RTAB‐Map graph, showing the estimated rover trajectory (blue), loop closures (red), as well as the landmark
connections to the the centre (green), where the lander is located.

For the onboard rover localisation, a stereo camera is used to provideVisualOdometry up-

dates, which are then fed into a Real-Time Appearance-BasedMapping (RTAB-Map) [104]

to provide full Simultaneous Localisation And Mapping (SLAM), including loop closure.

To integrate our EfficientPose position updates, we make use of the existing landmark fea-

ture of RTAB-Map, allowing us to feed landmarks with a 6DoF transformation matrix, as

well as a covariance matrix describing the confidence in the provided landmark. The land-

marks can be identified in RTAB-Map’s graph view with a green line. As seen in figure3.13,

each landmark detection along the traverse (blue line) is pointing to the same point in the

centre (green lines). By default, this system works similarly to loop closure, as there is no ab-
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solute position attached to these landmarks. Each subsequent detection provides additional

information to the graph solver used by RTAB-Map (g2o [103]), while taking into account

the covariance matrix we provide.

An additional element we need to consider here is what values to use for the covariance

matrix. As mentioned, the covariance matrix describes the confidence in our landmark and

this is presented by a 6 × 6 matrix which addresses different combinations of confidence

into the six x, y, z and r, p, y values. If the confidence is not known, a simple unit matrix can

be used. In our case however, we can evaluate which values to use empirically by testing a

number of different combinations to best cover the entire search space.

In order to test this efficiently, RTAB-Map’s database feature is being used to record rover

traverses. This includes the odometry, any type of landmarks and the ground truth infor-

mation of the simulation environment. Since we are only interested in modifying the links

between the different components of the graph-SLAM for our evaluation, a database can

be recorded during a traverse and subsequently modified in order to test different scenarios.

Additional tools have also been built to completely remove certain types of links for testing

purposes. Oncemodifications have been applied to a database, the graph is then recomputed,

providing us with an updated trajectory estimate. The new estimate is compared against the

simulator ground truth, which is also stored in the database. As an evaluation metric, the

Absolute Trajectory root-means-square Error (ATE) [189] at the last rover position is used

to provide a single value for each test. This value, allows us to compare a databasewithout any

of our EfficientPose landmarks against databases including landmarks with different confi-

dence levels. With our approach, reproducible results can be generated rapidly, without the

need to rerun the complete SLAM setup for each test.
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In order to create a representative sample, we producedmultiple traverses (23), while vary-

ing the distance to the lander, the total driving distance (169-867 metres), the number of

times the lander is visible, and the angle at which we return to the lander. At the start of

each test, the lander is in the field of view of the rover. For these tests, the rover was driven

semi-autonomously through a waypoint system. For some of the traverses, loop closure of

SLAM systemwas incentivised by driving the rover back to its original station position. The

lighting conditions were also changed during some tests in order to evaluate the robustness

of the EfficientPose network against illumination changes.

3.5.2.6 Multi-Robot Scenario

In addition to the single-robot scenarios, a multi-robot use case has also been taken into con-

sideration, where we have implemented an extension toRTAB-Mapwhich considers the lan-

der as the centre of the map, meaning that our map is automatically aligned to the lander as

soon at it appears in the rover’s field of view. With the help of this extension, multiple robots

are able to interact in the same reference frame, without the need of a shared map.

3.5.3 Results and Discussion

3.5.3.1 EfficientPose vs Ground Truth

Before evaluating the EfficientPose model integrated into a SLAM system, we first evaluate

the estimation accuracy of a test dataset against ground truth as can be seen in table 3.2. In

figure3.14 we can see the complete test dataset where the estimated pose is plotted relative

to the lander. Overall, the estimations are in roughly the correct position, without any cases

on the wrong side of the lander. We also notice that most errors are introduced through
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Figure 3.14: Top‐down view of ground‐truth (green) rover position and its corresponding estimation (red) relative to the
lander. For visualisation purposes, we plot the inverse of the estimation where the lander is stationary, and the rover
position is plotted
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deviations in the orientation, while the distance estimate is accurate within 0.224 metres in

90% of the cases as seen in figure3.15. We can see a correlation between the estimation error

and the distance to the lander, as can be seen in figure3.16. Furthermore, we can also see that

there is no significant accuracy difference regarding the detection fromdifferent angles, as can

be seen in figure3.17.

TranslationErrorMean in metres 0.1390
TranslationErrorStd in metres 0.0919
RotationErrorMean in degree 2.1131
RotationErrorStd in degree 2.1975

Table 3.2: Error values from EfficientPose Test dataset

Figure 3.15: Polar distance error at a distance to the lander between 5 and 35 metres (excluding any position error
introduced to orientation offset).

3.5.3.2 Landmark SLAM vs Ground Truth

In figure3.18 we can observe the impact that our method can have on the estimate trajectory.

We also note that the use of a unit matrix is not ideal, and searching for a custom covariance

matrix is necessary for providing useful results.

123



3.5. Software: Rigid-body-landmark Supported SLAM

Figure 3.16: Distance from the processing plant vs position error (R2 = 0.448)

Figure 3.17: Distance from the processing plant vs angular error (R2 = 0.028)
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Figure 3.18: Trajectory estimate of different SLAM methods vs the ground truth measurement for a traverse number 5.
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To evaluate different covariance matrix options, a range of different options have been

tested to analyse the search space, starting with a unit matrix. Initial modifications were per-

formed considering a single matrix to be applied to all landmark links. In this case, the best

results were foundwhen giving high confidence in the position estimates and low confidence

in orientation estimates. The resulting accuracy can be seen in table 3.3, where we note that

localisation performs better than the original SLAM system in some cases, but worse on av-

erage.

Based on the results from figure3.17, we establish that EfficientPose performs worse when

the lander is further away from the camera. For our second approach, the covariance ma-

trix is thereforemodified to reduce the landmark confidence based on the estimated distance.

This is not relying on a ground truth measurement, but the distance estimation provided by

EfficientPose. High confidence is placed into nearby pose estimations (1 metre), and grad-

ually lower confidence in pose estimations which are further away (1 - 31 metres). Pose es-

timations that further away are giving a very low confidence value and effectively discarded

(> 31 metres). This accounts for 47% of our landmark observations.Additionally, we also

reduce the overall confidence of the odometry links. This is needed because providing in-

creasingly higher confidence values in the landmarks will only yield marginal changes in the

overall graph once we pass a certainmagnitude of values. Instead, lowering the confidence of

other links in the graph can also yield the desired result.

The average accuracy can be considerably improved with this approach, as shown in table

3.4. While there is still some variance in the results with our method performing worse in

some cases, on average, this approach outperforms the original approach without the Effi-

cientPose landmarks. The variance likely originates from the low number of landmark links
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traverse # original updated delta traverse
rmse rmse length

1 0.295 2.179 1.884 175.627
2 18.461 15.219 -3.242 311.684
3 0.722 0.797 0.075 209.179
4 0.503 1.617 1.114 294.299
5 5.882 3.842 -2.04 223.326
6 2.107 3.358 1.251 271.119
7 2.907 5.072 2.165 370.044
8 0.385 3.027 2.642 220.805
9 1.377 4.209 2.832 304.348
10 0.158 1.772 1.614 257.601
11 3.584 4.226 0.642 236.316
12 7.613 7.255 -0.358 169.742
13 8.556 8.436 -0.12 295.943
14 12.631 13.066 0.435 189.871
15 0.396 6.185 5.789 189.259
16 0.133 3.549 3.416 169.073
17 0.715 1.33 0.615 199.123
18 1.157 3.454 2.297 273.337
19 0.418 3.616 3.198 424.867
20 3.281 7.577 4.296 819.445
21 2.592 5.663 3.071 778.842
22 6.096 8.565 2.469 866.768
23 0.803 7.238 6.435 481.025

Average: 3.512 5.272 1.76 336.158

Table 3.3: Table displaying the original localisation accuracy in comparison with the updated localisation accuracy of 23
different traverses. In this case, high confidence was placed in the position values and low confidence was placed in the
orientation values.
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traverse # original updated delta traverse
rmse rmse length

1 0.295 0.321 0.026 175.627
2 18.461 15.496 -2.965 311.684
3 0.722 0.801 0.079 209.179
4 0.503 0.805 0.302 294.299
5 5.882 2.562 -3.32 223.326
6 2.107 2.044 -0.063 271.119
7 2.907 2.9 -0.007 370.044
8 0.385 0.596 0.211 220.805
9 1.377 1.35 -0.027 304.348
10 0.158 0.196 0.038 257.601
11 3.584 3.565 -0.019 236.316
12 7.613 7.465 -0.148 169.742
13 8.556 7.63 -0.926 295.943
14 12.631 13.922 1.291 189.871
15 0.396 2.832 2.436 189.259
16 0.133 0.449 0.316 169.073
17 0.715 1.608 0.893 199.123
18 1.157 1.164 0.007 273.337
19 0.418 0.421 0.003 424.867
20 3.281 3.277 -0.004 819.445
21 2.592 2.594 0.002 778.842
22 6.096 6.217 0.121 866.768
23 0.803 0.89 0.087 481.025

Average: 3.512 3.439 -0.072 336.158

Table 3.4: Table displaying the original localisation accuracy in comparison with the updated localisation accuracy of 23
different traverses. Here, a variable covariance matrix was used based on the estimated distance to the lander.
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in the overall graph (35 on average), where even small changes in accuracy can have an large

impact on the overall trajectory estimation.

traverse average original updated delta
< 250 metres 3.236 3.412 0.176
> 250 metres 3.724 3.460 -0.264
> 300 metres 4.492 4.143 -0.349

Table 3.5: Localisation accuracy with regards to traverse length.

In addition to these findings, wewould also like to highlight that our pose estimation error

is constant as noted in subsection 3.5.3.1, and will hence outperform relative localisation on

longer traverses. In comparison to image feature-based loop closures, the proposed system is

performing worse, but loop closures often only occur if we return very close to locations we

have previously visited.

In addition to these findings, we observe that on average, ourmethod performsworse than

the original on shorter trajectories below 250 metres and better on longer ones as shown in

Table 3.5. This is likely because on shorter traverses the visual odometry estimates are very

accurate and we are more likely to worsen the overall trajectory estimate. On longer trajecto-

ries, the growing error of visual odometry makes it easier to compete. Furthermore, the loop

closures that can help reduce this drift only occurs occasionallywhile our landmark detection

is triggered more frequently.

3.5.3.3 Discussion

In this work, it has been shown that the presentedmethod is beneficial to autonomous lunar

surface operations because it can regularly update the robot pose with regard to a fix refer-

ence point, without the need to approach a fiducial marker. The detection works well at

129



3.5. Software: Rigid-body-landmark Supported SLAM

distances up to 31 metres. While loop closure can produce better results, driving back to

a known location is a time-consuming process without a guarantee for success. Addition-

ally, our method is also robust against illumination changes occurring throughout the lunar

day, which is not the case for all loop closure systems. The presented approach is especially

interesting for longer traverses that return to the lander from a different direction.

Our work opens up an interesting use case for multi-robot systems relying on a global ref-

erence frame, which is shared between all robots. The primary issue such systems encounter

is the need for synchronising maps between multiple rovers. In our case, we can guarantee

almost identical map alignment without communication, provided that the robots are oper-

ating close enough to a known structure like a lunar lander.

While EfficientPose produces consistent results, the average orientation estimate error is

still within several degrees. As this is a relatively new approach, andwith only limited training

time for our network, we expect that new pose estimation algorithms will be able to increase

the accuracy of our localisation method. As next steps, we therefore, propose to evaluate

different pose estimation networks with additional training data, including distances further

than 30 metres from the lander. Higher resolution camera sensors, or cameras with a nar-

row field of view are also reasonable to consider with current planetary rovers in mind [133].

Lastly, our results have only been demonstrated in a simulation environment which does

not necessarily reflect real-world applicability. In order to address this Sim2Real gap [93], we

need to test our approach in a lunar analogue environment with amore realistic lunar lander.
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3.6 Summary

In Section 3.3, we have presented a qualitative assessment on different localisation sensors,

and their applications to space. As a result, we consider that given the current state of the art,

stereo cameras are providing the best trade-off, a fact that is reinforced by all current planetary

rovers using stereo cameras. Based on this, in Section 3.4, we have evaluated different factors

which should be considered when selecting or configuring a stereo camera system for a small

lunar rover.

In Section 3.5, a novel method has been proposed to extend current graph-SLAM systems

by including a lunar lander as a landmark. This can be used as an alternative for loop closure

systems. The method can also be applied to continuously align the map with regards to a

known reference point, which is an interesting application for multi-robot systems requir-

ing a common reference frame in order to collaborate. Instead of commonly used fiducial

markers, we have made use of recently developed 6DoF pose estimation techniques, which

rely on convolutional neural networks and amonocular camera. This creates an advantage in

that ourmarkers are as large as the complete lander, essentially transforming the largest object

in the area into a fiducial marker. Our current results show improvements with longer tra-

verses and we have successfully demonstrated our proof of concept. Since the applied 6DoF

pose estimation is a novel approach, we expect that improvements in this area will also lead

to better results for our landmark-SLAM and rival traditional loop closure systems.

In addition to the methods proposed in this chapter, one of the key takeaways from this

work is that it is difficult to fully comprehend the complexity of a localisation system if we

don’t look at it as part of a larger system. The localisation accuracy is impactedbymanydesign
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decisions. Some, such as the mobility system, are hard to modify. Others, including driving

speed, or the mounting height of the sensors are constraint by the general mission concept,

and often result in trade-offs. This also became clear when working on multiple different

rovers. Therefore, any such autonomy systems should have rapid development cycles which

focus on completing a concise mission with a specific set of constraints. The work on the

NASA robotics competition presented in Annex A is a great example of this, as it provided

a good insight of what is feasible with different sensors, and how precise and robust good

localisation must be in order to solve specific tasks.
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4.1 Background

Apart from the relative localisation we explored in chapter 3, localisation with regard to an

absolute reference point is also an important topic for planetary rovers. A compass is a good

example of an absolute localisation system, as it provides us with a heading of the magnetic

north, regardless of where we are on earth*. Depending on the mission concept, rapid abso-

lute position estimates can be essential, for example, to plot scientific surface measurements

on orbit orbital imagery or, for instance, when trying to take a surface sample of an anomaly

detected through remote sensing [27]. Another example can be found in [206], where the

absolute localisation on the lunar surface was required in planning the ascend and the subse-

quent orbital rendezvous of a sample return capsule.

Absolute localisation can also improve the quality of our relative localisation, or at the very

least, bring down the precision requirement of relative localisation solutions. This is because

absolute localisation estimates, while experiencing high error rates, have constant error rates

for everymeasurement. Relative localisation on the other hand, is oftenmuchmore accurate

between single measurements, but as their error is cumulative, it will eventually outgrow the

error of any absolute localisation system. While our robotic systems do and should rely on

relative localisation systems, we should make use of absolute localisation systems to correct

the relative drift in the pose estimation on a regular basis in order to prevent unbounded error

rates.

On Earth, absolute localisation in outdoor environments can be considered a solved prob-

lem formost applicationsdue to the availability ofGlobalNavigationSatellite System(GNSS)

*with some limitations closer to the poles
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receivers. This is however, a problem which has not been solved for deep space missions.

Once we leave direct vicinity of our earth, we can no longer rely on GNSS satellites for abso-

lute localisation. Instead, other methods need to be considered, both for orbital and surface

operations. In this chapter, we will first explore existing methods for absolute localisation,

before presenting two newmachine learning approaches, as well as the datasets generated to

train them.

4.2 State Of The Art

Absolute localisation for planetary robotics is a relatively young topic. Most applications are

related to operating satellites, as mankind has had decades of experience with orbit determi-

nation of satellites travelling through space. While some of these methods can be applied to

surface operations, the accuracy required to safely operate a satellite is often lower than what

we would expect for surface operations. Surface localisation has only really become a topic

with the first planetary rovers landing onMars.

4.2.1 Global Navigation Satellite System (GNSS)

For earthbound applications, the most commonmethod to turn to when highly accurate lo-

calisation is required is GNSS. This approach relies on a receiver acquiring a signal and being

to able to calculate a range estimate to at least three satellites. As the approximate location

of each satellite and the distance to each satellite are known, the receiver’s position can be

estimated through trilateration ormultilateration (as opposed to triangulation, themeasure-

ment of angles). This approach can be used for outdoor applications [142], as well as satellite
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operations [86, 114]. The accuracy of such systems depends on a range of factors, including

the number of visible satellites and the availability of single or multi-band receivers to better

estimate the atmospheric disturbances. For more accurate measurements, the use of a fixed

ground-station close to the rover can be used to improve the accuracy. As the position of the

ground-station receiver is known to be fixed and exposed to similar disturbances, one can es-

timate the error offset, and remove it from the rover receiver data. Thismethod is also known

as differential GNSS (DGNSS) or differential GPS (DGPS).

Unfortunately, there are currently no operational GNSS satellites constellations around

Moon orMars. For lunar applications, it could be technically feasible to detect GNSS signals

from earth in a lunar orbit, or the lunar surface. The distance to earth puts some limitations

on the achievable accuracy, which lies somewhere between 100 [49] and 200 metres [58].

This accuracy however, has never been demonstrated and relies on larger and highly sensitive

GNSS receivers. As such, we do not consider GNSS as a feasible solution for private entities

localising on or around the Moon in the near future.

4.2.2 Radiometric Measurements

With interplanetary satellites, themost commonly usedmethods for tracking are radiometric

doppler and ranging. The accuracy of thesemethods depend on a number of factors, includ-

ing the distance between the ground-station/relay and the satellite, type of antenna, the total

measurement time and the communication frequency used [195]. Additionally, Very Long

Baseline Interferometry (VLBI) can be applied to further increase the accuracy through the

simultaneous use of multiple ground stations. However, these radiometric ranging methods

are not applicable to our rover use case, as this would require our rover to have direct to earth
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communicationwith a powerful receiver. Aswe are using the rover’s lander as a relay through

an omni-directionalWiFi antenna, a pose estimation between lander and rover is limited to a

distancemeasurement. Nevertheless, this method could be applied to determine the lander’s

position, as it is equipped with direct-to-earth communication. As shown in [206], this can

result in a position estimation accuracy of 100 metres. If the lander is communicating via a

relay satellite, even more accurate ranging could be estimated as shown in [70].

The downside of these radiometric methods is however, that they require multiple days

of data, time and data-bandwidth which may not be available for certain mission concepts.

Aside from radiometric ranging, Laser ranging can also be considered. This has been used

successfully for the Lunar Reconnaissance Orbiter (LRO) [222, 135]. The estimated accu-

racy of this method for determining LRO’s lies within 200 metres, with some outliers [184]

(shown in figure 4.1). This was achieved through a combination of Doppler, ranging, laser

ranging and star trackers. Since location and distance from earth are similar to LRO and as

there are no atmospheric disturbances on theMoon,we can expect a similar position accuracy

for our lander, given the same sensor suite.

4.2.3 Star Trackers

Star trackers are awell-establishedmethod for absolute orientation estimates in space. In sim-

ple terms, a star tracker is a highly sensitive camera, with a long baffle* to avoid illumination

from unwanted sources, such as our Sun or other parts of a spacecraft. It then compares the

pattern of detected stars against a database to determine which part of the sky the camera is

looking at. The basic principal has been used for centuries by navigators at sea. As theMoon

*Abaffle is amechanical system, whose function is to shield the light coming from sources outside the field
of view (FOV) of the camera. [171]
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Figure 4.1: RMS total position definitive accuracy, early commissioning orbit and complete nominal mission orbit. This
figure is taken from [LUNAR RECONNAISSANCE ORBITER ORBIT DETERMINATION ACCURACY ANALYSIS, S. Slo‐
jkowski] and used with permission of NASA [184]

does not have an atmosphere, the stars are visible throughout the lunar day. With the ex-

ception of times when the star tracking is pointing too close to our Sun, this approach can

also be used to estimate the rover’s orientation. The upcoming Viper mission is an excellent

example in their use of star tracker [27]. Current star trackers can deliver a heading estimate

within an accuracy of less then 10 arcseconds [54] and at an update frequency between 0.5

and 10 hz [119].

Themap of the sky that the star tracker provides can be usedwith two separate approaches

for a full 6 DoF pose estimation. The simple approach can support existing odometry meth-

ods by providing accurate orientation estimates. This can significantly improve the pose esti-

mation, as even small relative orientation errors lead to large relative position errors over time

as shown in [63]. While this example shows good results in theory, it would benefit of further
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research, as the results are only compared to a pure wheel odometry (WO) approach, which

is known to yield low orientation accuracy, especially when used on a differential drive rover

platform.

Another approach is to produce a full pose estimation with star trackers alone. Provided

accuracy is based on accurate ephemeris data and therefore relies on an accurate on-board

clock. The resulting accuracy is also limited, as shown in this theoretical example, where a

position accuracy of 200 metres is being mentioned [181]. While this seems significant, it

can still be useful for longer traverses or to determining the position of a landing site within

a larger landing ellipse. While these methods could also be applied to Mars rovers, they are

less useful in this case. AsMars has an atmosphere, star trackers can only be used to their full

potential during the night, when the stars are fully visible. Besides a heading estimation, a

full pose estimation would also be far less accurate, as this estimate varies with the radius of

the planetary body.

4.2.4 Sun Tracker

Beside Star trackers, a more simple approach can also be to directly use our Sun as reference

point. Special sun sensors exist [185], which can detect the direction of the sunwithin 0.5 de-

grees accuracy. In turn, this can then be used to estimate the rover heading as described here

[88]. Such a sensor however, even if extremely light, takes upprecious resources in rover space

and development for a limited detection accuracy. Due to the restricted field of view, multi-

ple such sensors are also needed for certain use cases. Instead, approaches which make use of

already existing cameras on the rover should be considered to detect the sun and thereby esti-

mate the rover heading. With the help of an accurate on-board clock, an ephemeris model of
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our solar system, an IMU, and a rough estimate of our position on theMoon,we can estimate

the rover’s heading. The estimation process is composed of four parts. Firstly, the x, y coordi-

nates of the sun need to be determined in a 2D image, which can be achieved with computer

vision. Secondly, the direction of the sun relative to the rover can be estimated based on the

camera intrinsics and extrinsics. Thirdly, we estimate the sun direction with respect to the

gravity vector from the IMU, as if the roverwas on flat ground. Lastly, we estimate the rover’s

absolute orientation based on the ephemeris data, and where the sun should be based on our

current rough location on the Moon. The first three steps have been demonstrated in [42]

by using simulation data and lab testing. During lab experiments with some ground truth

measurement uncertainty, the mean error lies between 7.9 and 39.0 degrees, depending on

the dataset used. While the lab results are less promising, the simulation results show that the

approach can provide an accuracy of around 1 degree under ideal circumstances on a wide

angle lens (150 degrees FoV).While it is clear that a star tracker is amore suitable sensor in this

case, the sun tracker approach is still promising given the hardware limitation ofmicrorovers.

That being said, additional research is still necessary to more reliably assess the accuracy of

this method under realistic conditions and with different FoV lenses. This approach should

also be considered for larger rovers as redundancy concept for star trackers, eliminating the

need for duplication of critical hardware.

4.2.5 IMU & Compass

In recent years, many odometry solutions have shown that inexpensive 9 degrees of freedom

IMUunits can be used to increase the accuracy of odometry estimates and SLAM.Themost

common approach is to include the IMU’s accelerometer and gyroscope in direct pose esti-
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mations as shown in [159, 158, 66] (as mentioned in subsection 3.3.2) . We can, however,

also look at the absolutemeasurements, such as the gravity vectorwhich can be deduced from

the accelerometer. Since the gravity vector always points towards the centre of the planetary

body, we can use this information to correct the orientation of our pose estimation . The

gravity vector will, however, only give us a pitch and roll direction. Heading or yaw estimates

can be calculated from a compass for terrestrial applications. On bothMoon andMars how-

ever, the magnetic fields are not useful for this application [62]. The Moon does not have

a global magnetic field [207] which would be necessary for compass usage. Additionally,

theMoon’s magnetic field is alsomuchweaker thanwhat we are used to here on Earth [157].

Therefore, for localisation purposes on theMoonorMars, only 6DOF InertialMeasurement

Units with an accelerometer and gyroscope can be used. This is also what makes Sun or star

tracker especially interesting for planetary robotics, as they can help estimate the yaw angle

that a magnetometer provides here on earth.

4.2.6 Detection In Satellite Imagery

Currently, the most common method used for estimating the position of a lander or rover

on the lunar surface is direct satellite imaging. This method is generally used as ground truth

measurements for other localisation approaches [121]. To achieve this, an orbiting satellite is

required to pass over the desired location under ideal lighting conditions. As currently only

a limited number of lunar orbiters are equipped with high resolution cameras (LRO [164]

and Chandrayaan-2 [26]), it can be a matter of weeks before an image can be taken, often

exceeding the mission lifetime of a rover. In the resulting images, landers (Apollo landers

[96]) as well as larger rovers (Lunokhod-1 [94]) are directly visible . Photometric anomalies
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have also been observed in orbital imagery for the trajectories of vehicles such as the Apollo-

era Lunar Rover Vehicle (LRV) or Chang’e 3, resulting from the regolith being disturbed

during the traverse [96, 95, 121].

4.2.7 Descent Imagery Localisation

If the mission concept does not allow waiting for an orbiter flyover, a lander can also be

localised through descend imagery. For this process, an image is taken at a high altitude

matched with a georeferenced image from an imaging orbiter like LRO. The final landing

position is then estimated by taking the sequence of descend images and estimating the pose

update from the previous image to the current image, until the lander is on the ground. As

shown in [197], an accuracy of 30 metres can be achieved with this method within a time-

frame of 30 minutes after landing. Still, this method does require a high data bandwidth to

downlink the imagery, making it less suitable for Mars missions.

4.2.8 Satellite Imagery Matching

As rovers do not have any descend imagery, another approach is to match surface perspective

images from a rover directly with orbital imagery. This technique has the advantage in that

it can be achieved regardless of orbiter availability, as long as orbital imagery has been ob-

tained beforehand. As LRO imagery almost covers the entire lunar surface, even providing

multiple high resolution images for many locations, this makes it the most attractive source

of information for absolute localisation.
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4.2.8.1 Manual Matching

For current Mars missions, orbital and surface perspective imagery are matched manually.

This process is tedious and slow (30-60 minutes [T. Parker, personal communication, 9 Au-

gust 2018]), and requires a downlink to earth. As described in [71], this process relies on find-

ing recognisable features (e.g., hills, craters, larger boulders,..) in surface perspective imagery,

which can also be seen in the orbital imagery. Through triangulation, a rough position esti-

mate can then be calculated (∼ 100m according to [25]). As described in the example, this

process is ideally performed on a panorama picture which covers 360◦, in order to include

features in all directions. The accuracy of this method is however limited by the resolution

of both image types, as well as the distance to the features. To increase the accuracy, this can

then be extended bymanuallymatching a reprojected surface image to an orbital image, until

the two overlap ([T. Parker, personal communication, 9 August 2018]).

4.2.8.2 Automated Matching

When matching surface perspective images to orbital imagery, the distortion which appears

when attempting to match an image from the surface to an image taken at a 90 degree angle

from a satellite, is the biggest constraint. In [178] this is addressed, by equipping a rover with

a flash LIDAR, allowing for the projection of surface images onto accurate surface geome-

try. With the help of this automatically generated textured surface geometry, accurate or-

thographic reprojections can be produced of the rover’s surroundings. The resulting images

are then directly matched to satellite images with an error rate of less than 2 metres within

a 300 × 300 metre search window. The results are however produced in simulation with

limited information about the rendering setup. Computer vision algorithms generally yield
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better results in simulation than on real data, due to the lack of noise. A similar LIDAR de-

vice also has never flown on a planetary rover, although the use of a stereo camera would also

be possible, but at the expense of reprojection accuracy. The research does, however, con-

fidently address variations in illumination conditions between surface and orbital imagery

which would be problematic on a real mission.

4.2.8.3 Rock And Feature Matching

Directmatching of rocks distributions has been shown to performwell in [37, 84, 126], even

with sub metre accuracy. One of the methods described detects rocks in both satellite and

surface perspective imagery, and then tries to randomly match the rock distribution, min-

imising the number of non overlapping rocks. Another method applies direct image based

feature matching in locations with distinct surface textures, such as outcrops. The authors

however even state themselves that they rely on the availability of good features which can

be used to match to satellite imagery, thus limiting the locations where this can be applied.

This is especially tricky around lunar landing sites, which are generally picked for being free

of obstacles and thus devoid of features. As the work is applied to the MER rovers, high

resolution satellite imagery (0.25 metres per pixel) is also available. As the best imagery with

reasonable coverage on the Moon has a resolution of 0.5 metres per pixel, far fewer recog-

nisable features will be available for matching. Additionally, the research has mostly been

applied to locations with almost flat surface geometry. Lastly, the method required a good

amount of computational power, making it difficult to process directly on a rover.
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4.2.8.4 3D Terrain Matching

As Digital Elevation Models (DEM) are available for both Mars and Moon at a high reso-

lution ( > 1 metre per pixel), they can be considered for direct matching with 3D surface

geometry. The advantage of this approach is that it avoids the problem of distortions which

occurs when attempting to directly match surface and orbital imagery.

As shown in [20], LIDAR data can be used for this type of matching, and with the help

of geometric feature detection, computational cost can be kept to a minimum. The method

does however, rely on matching enough good features. This can be a problem depending on

the amount of variation in the terrain, and howmuch of the surrounding area is occluded by

the shape of the terrain. The data from a Mars analogue and a 13 metre per pixel resolution

DEMshows that the proposedmethod can yield results around 20metres with outliers of up

to 80 metres. The primary issue with this method lies nonetheless with the LIDAR sensor

itself, which to date, has not flown on a planetary rover due to the mechanical complexity

and power requirements.

A different matching use case is shown by [84], where a high resolution DEM (1 me-

tre/pixel) is matched with a DEM from the stereo camera of the rover. The matching is

achieved by treating the DEMs as images and directly matching the attitude intensity. The

achieved accuracy lies at 90 metres. This could probably be improved as the DEMmatching

is not the primary goal of this work. Instead, the described matching process is only applied

to limit the search space for a rock matching approach.

145



4.2. State Of The Art

4.2.8.5 Horizon Line Matching

A simpler way to match DEM with surface imagery is to only look at the horizon line. For

this purpose, we look at the Visual Position Estimator for Rover (VIPER) algorithm as pro-

posed by [31]. The orientation is considered to be known in order to reduce the search space,

and panorama images have been used to increase the possible features to match. From the

images, the algorithm detects mountains and then searches for mountain peaks in the topo-

logical map. With terrestrial data, the method achieves an accuracy below 100 metres in a

mountainous regions. In a more recent example by [25], the same method has been applied

to imagery from Mars, where the MER rovers have been localised within 27 and 51 metres

on Mars. These results however, have been achieved under ideal conditions, at the edge of a

crater, where the added crater features provide a very distinct horizon line.

Figure 4.2: Examples of automated horizon line detection (red). Source: [10]

A variation of the horizon matching approach can also be found in [10] (shown in figure

4.2). In this case, the horizon line itself has been extracted and matched to a dataset of lines

horizon lines which were previously generated from the DEM. Although, in this example,

the results have been less accurate, this is possibly due to the much larger search area, and the

use of single images instead of panoramas. Generally, the accuracy of this methodwill always

be limited by the large distance to the features used for matching. Additionally, the method
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is unlikely to perform well on flat terrain.

4.2.8.6 Terrestrial Methods

For additional state of the art methods, we look towards terrestrial examples, where we can

rely on GNSS ground truth measurements for validation. Here, localisation based on satel-

lite imagery has already been demonstrated [197, 13], especially with a focus on urban areas

with abundant and distinct features, such as roads and buildings. Despite this, few terres-

trial studies have focused on natural unstructured environments, which would be applica-

ble to the lunar surface. This is primarily due to the limited availability of geo-referenced

ground imagery in these areas. The preferred data source for most of these studies is Google

Streetview * because it has been georeferenced and provides a 360 degree view. Nevertheless,

other datasets from study sites exist, which have included terrestrial lunar/martian analogues

(Devon Island, Canada (e.g., [113, 61]); Atacama desert, Chile (e.g., [209])). Unfortunately,

most of them are low in resolution, have limited coverage and and are relatively small in size.

Especially the dataset size is a limiting factor for machine learning applications where data

volume is critical.

As discussed in [16], most of the presented terrestrial methods pose some issues for the

planetary rover use case. Besides the mentioned repeatibility and openness of the results, not

all of the methods are feasible on a planetary rover. Additionally, most methods lack the

validation in environments similar to the lunar surface.

*www.google.com/streetview/
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4.3 OrbitalMapMatchingWithReprojected Sur-

face Perspective Imagery

In this section we propose a new method to perform absolute localisation on other plane-

tary bodies. As described in section 4.2, the current state of the art contains a wide range of

methods for absolute localisation. However, as GNSS systems are not available for Moon

or Mars, this is especially challenging for our use case. Additionally, a number of presented

approaches are not applicable as they either require too much time (radiometric approaches

[206]), or require additional sensors which have never flown on planetary rovers due to en-

gineering challenges (LIDAR [178]). Therefore, the most promising methods are camera

based, which compare already existing orbital imagerywith surface perspective imagery (hori-

zon line matching [31], terrain matching [84]). Some methods have successfully shown im-

age feature matching can be achieved when enough recognisable features are available (out-

crop featurematching [37]). Here, webelieve that currentmethods canbe improved through

the use ofmachine learning in order to successfully localise in a wider range of scenarios. Ter-

restrial approaches have shown that machine learning methods can be used to match images

from completely different points of view (terrestrial matching [197]). To the best of our

knowledge, these methods are promising, they have not been applied to the unstructured

environments that we deal with for planetary surface robotics.

Wepropose to compare reprojected surface imagerywith orbital imagery, through the help

of a neural network. We limit our assumptions to currently available technology: high reso-

lution imagery available through orbiters (LRO [164]) or descent imagery (Chang’e 3 [121]);
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a surface rover with a single camera on top of a mast which can be rotated through turning

the mast or the rover in order to take images in all directions (Perseverance [133]).

We take 4 surface images which are then reprojected and stitched on a flat surface to make

them comparable to the orbital data. The resulting image, while heavily distorted, can then

be compared to a number of satellite images from the same location with the help of a neural

network. With this method, we iterate over the complete satellite image of the area, until we

find the locationwith the highest likelyhood of amatch. In order to overcome the previously

described issues of limited availability of geo-referenced surface perspective, we use a virtual

synthetic lunar environment to train and evaluate our approach. (This work has previously

been published in [216] and was done in collaboration with Ben Wu, Ross Potter, Andrew

Chung and Timothy Seabrook)

4.3.1 Methodology

4.3.1.1 Data Generation

With the followingmethod being amachine learning approach to localisation, one of the im-

portant aspects we need to solve first is the availability of enough location-referenced train-

ing data. Current datasets (e.g., Apollo mission, martian rover traverses or available datasets

from terrestrial datasets) only provide a limited number of photos and with varying degrees

of ground truth position accuracy. The primary limitation here was the size of the available

datasets, as large amounts of data are preferable for machine learning approaches (100.000

samples or more, although not impossible with smaller datasets). We considered two differ-

ent options: 1) either to create our own dataset in a terrestrial lunar ormartian analogue or 2)

using a synthetic virtual planetary environment. For both of these options, adequate ground
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truth information can be collected, and orbital imagery can either be generated or is already

publicly available. As real data is always preferable, we initially started working on our own

dataset by sending a stereo camera and a GPS receiver to a martian analogue expedition on

Devon Island (Canada). Due to the timeline of our project and the expedition, we decided to

focus on our second option with the expectation of using the expedition dataset for valida-

tion instead. Unfortunately, the expedition did not provide any useful results in the end, as

it was plagued by bad weather and our data collection had to be dropped (figure 4.3). While

the virtual environment was not our first choice due to the sim2real gap, it does have the

advantage in that it eliminates most effects which could influence the results in a positive or

negative way, due to the full control we have over our simulation environment.

Figure 4.3: Stereo images from Devon Island expedition before the traverse vehicle got stuck in the mud.

The dataset we have generated is comprised of planetary surface (i.e., rover-perspective)

images and corresponding satellite images. The synthetic test environment was built using

an existing Moon Landscape* v3.0 and Unreal Engine† 4, a free‡, real-time game engine (de-

scribed inmore detail in section 2.2.5.1). The datawas generated on a powerful desktop com-

puter and later uploaded to a server for pre-processing and training. Notably, other studies

*https://www.unrealengine.com/marketplace/the-moon
†https://www.unrealengine.com/
‡for non-commercial purposes
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have also relied on generated data using rendered lunar terrains (e.g., [178]).

Within the 8 km× 8 km synthetic lunar landscape, three distinct regions (figure 4.4) were

used for dataset generation: a training zone (2.05km×2.05km), a validation zone (1.05km×

1.05km), and a testing zone (1.05km×1.05km). The zoneswere chose such that each one of

them would provide both flat and cratered regions (figure 4.5) while being far enough from

the border to avoid generating images showing the edge of the world.

Unreal Engine allows for perfect control over multiple parameters such as sun angle, light-

ing conditions, and rock and crater distributions within the synthetic environment. In our

work, a single sun angle of 30° above the horizon was chosen to avoid complications arising

from challenging lighting conditions. While future work should consider different illumina-

tion conditions, roughlymatching the time of day on the surface with satellite images should

be feasible as there aremultiple orbital images available formost locations on theMoon. Envi-

ronmental features, such as craters and rocks, can also be added following a realistic distribu-

tion and at cm-scale resolution. The original environment we used was adjusted accordingly

to match a more realistic rocks distribution. Though Unreal Engine has the capability of in-

gesting other datasets (such as lunar andmartianDEMs), only the synthetic test environment

of Moon Landscape v3.0 was considered for this proof-of-concept.

An automated pipeline was built within Unreal Engine to place the rover at random lo-

cations within the synthetic lunar environment, capturing four ground perspective images

(front, left, rear, right, spaced 90° apart) with minimal overlap. Figure 4.6 displays a set of

such images taken at one location within the lunar environment. The camera, which had

horizontal and vertical fields of view of 90° and 50.6°, respectively, was placed 2m above the

surface and tilted downwards by 15° to simulate the rover camera height and orientation.
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Figure 4.4: Complete map of the 8 km × 8 km environment. The different zones are highlighted in colours for the
training, validation and testing datasets.
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Figure 4.5: The 2.05 km× 2.05 km training zone (left panel), 1.05 km× 1.05 km validation zone (middle panel), and
1.05 km× 1.05 km testing zone (right panel) within the synthetic lunar landscape.

The mast height was selected based on the Exomars rover configuration [183]. The camera

tilt angle was selected tomaximise the ground view in the images and to avoid capturing large

parts of the sky, which does not provide usable features for localisation (assuming that the

cameras are exposed for the lunar surface and not the stars). We assumed that the complete

rover orientation is known and therefore, the images are always taken in the same direction.

Pitch and roll angles can be inferred from an inertialmeasurement unit (IMU), while the yaw

angle could be from star trackers (e.g., [30, 47, 63], accurate to arcsecond-scale [119, 47]), or

via sun position and time of day (e.g, [204, 44, 6]) formartian applications. This assumption

significantly reduces the matching search space from five degrees of freedom (DoF) down to

two, as we now only deal with the horizontal translation coordinates. For each location, co-

ordinates, orientation, sun angle and image size were recorded to a text file. The images were

extracted from the Unreal Engine using the Fraps* video capture tool, which enabled images

to be saved to disk at 60 frames per second. In order to match the images to the metadata,

ID numbers were encoded into the first row of the images, as the top edge of the frames were

*http://www.fraps.com/
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not used for our approach. This approach was chosen because directly recording and saving

images to disk inside Unreal Engine is significantly slower and only at the order of several im-

ages per second. The final output was converted to grayscale before further processing as our

environment does not present any colour. The satellite images were collected separately by

iterating over the complete environment while taking top-down images. These images were

then stitched into several large images, fromwhich the required orbital images were extracted

based on the requested coordinates.

Figure 4.6: Example ground view images taken at one location within the testing region. Clockwise from top left panel:
front view, right view, rear view, left view.

4.3.1.2 Data Processing

Each set of four ground perspective images was processed into a pseudo-aerial image using

custom Python scripts utilising the OpenCV library. Specifically, each rectilinear ground
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perspective image was cropped to remove areas further away than 25 m ahead of the rover

location, approximating the surface as a locally flat plane. The remaining nearby landscape

was reprojected using the camera matrix to form one quadrant of an equivalent top-down

view. The quadrants were then smoothly stitched and scaled into a representative 50 m x 50

m aerial image with a pixel resolution of 0.05 m.

Figure 4.7 shows the image obtained by reprojecting the views taken in Figure 4.6. The

respective ground truth satellite image is shown alongside for reference. As the ground per-

spective images were reprojected onto a flat plane, distortions are inevitably introduced. De-

viations from the satellite image depend on the topography and can range fromminimal for

open terrain to significant near craters and sharp elevation changes. While 3D re-projections

were considered, they were not used due to the added complexity, as well as the additional

data collection requirements. These imagesweredownsampled from1000×1000 to224×224

(0.22m resolution) to be used as input to our neural network. This reduced resolution is still

comparable to the best available satellite images forMars (0.25metres per pixel (m/px): Mars

Reconnaissance Orbiter High Resolution Imaging Science Experiment [137]) and higher

than that for the Moon (0.5 m/px: Lunar Reconnaissance Orbiter Narrow Angle Camera

[164]). Even higher resolution imagery would be expected during the landing phase of amis-

sion, as highlighted by the Chang’e-3 spacecraft, which collected images at 0.05m/px around

its landing site [123], further aiding localisation accuracy. High resolution images compara-

ble to those captured from landers and rovers may also be obtained via aerial vehicles (e.g.,

Mars 2020 helicopter [11]). Thus, neural networks utilising higher resolution inputs may be

explored in future work.

To build the training dataset, all reprojected images were pairedwith a satellite image from
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the training zone. The pairing was performed in such a way that in 50% of the cases, the

satellite image matched the location of the ground view image exactly. For the remaining

50% of the dataset, a non-overlapping random satellite image with the same physical scale

was paired with the ground view image.

Figure 4.7: (Left) Example of an aerial reprojection using the ground views in Figure 4.6. The black square encompasses
the camera position and indicates regions near the rover not imaged due to the limited vertical field of view. (Right) The
corresponding ground truth satellite view. In both images, the region represented is 50 m× 50 m.

4.3.1.3 Neural Network

The labelled (matching/non-matching) image pairs were used to train a neural network to

identify matching pairs of reprojected surface-perspective images and satellite images. The

resulting model, Planetary Localisation Neural Network (PLaNNet v0), is depicted in Fig-

ure 4.8 and described below.

PLaNNet is a Siamese neural network. Each head of the network feeds into a pre-trained
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50-layer ResNet v2[77, 78] feature extractor*. The pre-trained weights of the feature extrac-

tor come from training on the ILSVRC-2012-CLS image classification dataset, andwere not

modified during the training of our network. Each head takes a 224 × 224 px RGB im-

age as input, with intensity values in the range [0, 1]. As we use grayscale images, the single

channel is replicated across red, green, and blue channels before feeding into the network.

Although inefficient, this allows the use of pre-trained weights, which was critical to the suc-

cess of this project within the time constraints of NASA Frontier Development Lab. Each

feature extractor outputs a one-dimensional feature vector of length 2048. These two feature

vectors are concatenated into a single 4096-element one-dimensional vector. This is fed into

a 256-neuron fully connected layer with 30% dropout probability, used to produce the final

match/no-match logits vector. Softmax is applied to the logits to produce the match/no-

match probability distribution for a pair of input images.

Thus the trained network, given unlabelled image pairs, outputs the probability that the

two image locations “match”. This is a classification problem, and so we use cross-entropy

loss. The probability of the pair being a match was used as the similarity score.

4.3.1.4 Localisation

Localisation of a given positionwas performed by comparing the corresponding reprojection

query image with a series of satellite-view candidate images. The array of candidate images

was extracted via a sliding window which sampled 50 m×50 m regions of interest within

the 1.05 km×1.05 km testing zone at regular spatial intervals. At each window position, the

enclosed 50 m×50 m ground truth satellite image received a similarity score, with respect to

*https://alpha.tfhub.dev/google/imagenet/resnet_v2_50/feature_vector/1
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Figure 4.8: Schematic illustrating the PLaNNet v0 architecture.

the query, via the neural network. All candidates were then ranked based on similarity score

to determine the top inferences for absolute location.

4.3.2 Results and Discussion

4.3.2.1 Dataset Generation

In total, 2.4+ million surface-perspective images corresponding to 600,000+ distinct loca-

tions were generated within the synthetic environment, which was itself divided into sepa-

rate training, validation, and testing regions. For each location, 4 specific outputs are pro-

duced: (1) a set of 4 surface-perspective images, (2) metadata for the location and camera,

(3) a processed top-down reprojection view, and (4) the extracted ground truth satellite im-

age. The surface images were captured in 1920×1080 px resolution and reprojected to form

1000×1000px imageswith 0.05m/px resolution, representing a physical area of 50m×50m.
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The corresponding ground truth satellite image also covers 50 m×50 m and is 1000×1000

px. These data types together comprise our full dataset, the Lunar UNreal Assets (LUNA)

Localisation Dataset. The dataset is approximately 10 TB and its details are shown in Ta-

ble 4.1. The breakdown of the training, validation, and testing dataset splits is shown in

Table 4.4. The LUNA Localisation Dataset and project source code are publicly hosted on-

line*.

Table 4.1: Summary of the LUNA Localisation Dataset

Item Physical Scale Resolution Quantity
Training 2.05 km× 41000×
Region 2.05 km 41000 px 1
Validation 1.05 km× 21000×
Region 1.05 km 21000 px 1
Testing 1.05 km× 21000×
Region 1.05 km 21000 px 1
Surface
Images 90°×50.6° 1920× 1080 px 2.42× 106

Satellite
Images 50 m× 50 m 1000× 1000 px 6.06× 105

Reprojected
Images 50 m× 50 m 1000× 1000 px 6.06× 105

4.3.2.2 Localisation

Figure 4.9 illustrates results using our localisation method on three randomly selected posi-

tions. In these cases, we first performed localisation testing in a 300 m×300 m sub-region

within the aforementioned 1.05 km × 1.05 km testing region, using a sliding window step

*http://moonbench.space/
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Figure 4.9: Localisation results for three positions are shown, indicated in the upper, middle, and lower sets of panels,
respectively. In each set, the blue panel displays the top‐down reprojected ground image (50 m x 50 m), the green panel
displays the matching ground truth satellite image (50 m x 50 m), and the red panel displays the testing environment
(300 m x 300 m). The ground truth location is highlighted as a solid grey square within the testing environment, while
white square outlines show the neural network’s topN=5‐10 matches to the reprojected image.
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Figure 4.10: Localisation benchmarks comparing PLaNNet against random sampling, SAD, and SSD. Given a minimum
distance from the ground truth location, the rank of theNth “best” choice as determined by the various methods is
found. Averages for 50 locations within the 300 m× 300 m sub‐region (upper panel) and 300 locations within the full
1.05 km × 1.05 km testing region (lower panel) are plotted and their respective standard deviations are shaded. The
distance and topN are also shown as fractions of the region length and total includedN, respectively.
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Table 4.2: Breakdown of the Datasets

Dataset Type Number of
Locations

Fraction
of Total

Description

Training 5.62× 105 0.93 Used to fit the model
Validation 0.30× 105 0.05 Used during training to

tune model hyperparame-
ters

Testing 0.14× 105 0.02 Used at the end to check
the network with unseen
data samples

size of 12.5 m. For each position, the reprojected image is displayed in addition to its ground

truth locationwithin the testing sub-region alongside the topN=5-10matches as determined

by the neural network.

Our method is further compared against traditional benchmarks in Figure 4.10. The lo-

calisation performance from PLaNNet, random sampling, the sum of absolute differences

(SAD), and the sum of squared distances (SSD) are shown. For each method, the query

reprojection image is compared against each sliding window satellite candidate image and as-

signed a similarity score. Here, window step size of 5 m is used. Over a collection of different

random locations, the Nth best choice which satisfies a certain minimum distance from the

ground truth location is found. Thus, for a given minimum distance, the lowest value of

Best N is desired. PLaNNet achieves the best localisation performance overall in both the

300 m× 300 m sub-region (3600 candidate points) and 1.05 km× 1.05 km testing region

(40,401 candidate points). In both cases, the neural network requires, on average, only 5% of

the available candidate regions to localise within 10 m and 10% to localise within 5 m. SAD
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and SSD perform approximately a factor of 2 worse. Random sampling achieves the worst

performance for localising within 5 m.

The current system is able to reduce the search areaby90-95%, providing valuable input for

any human-in-the-loop localisation. By severely reducing the search space in an automated

fashion with high confidence and with calculation times of order seconds, the workload and

time required by teams to localize successfully may be sharply reduced.

Furthermore, this method could be used as a starting point upon which to develop addi-

tional systems to refine localisation, as vast reductions of search space would allow for greater

computational resources to be dedicated to such algorithms. The network itself is also rela-

tively small and inference can be run in a matter of seconds (on a current laptop). As such, it

could potentially be run onboard a spacecraft, given that we can load the satellite images and

theNeuralNetworkmodel on-board. The performancewill depend on the size of the region

to search, as well as the selected image resolution. Alternatively, reprojecting the surface im-

ages onboard is also feasible, resulting in only needing to downlink a single 224× 224 pixel

images, which is the more realistic scenario, especially for the Moon, where the communica-

tion delay is only at a couple of seconds, and such a small file can easily be downlinked.

4.3.2.3 Discussion

The presented approach is a step forward in expediting localisation by reducing the search

space and time and can serve as a guideline for future approaches to improve absolute lo-

calisation on planetary surfaces. Extensions to this short-study proof-of-concept include: a

greater parameter study within the synthetic environment (e.g., multiple sun angles and il-

lumination conditions), utilising 3D reprojections to overcome flat plane restrictions with
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additional sensor data, training the response of the network on the sliding window outputs

end-to-end, training the network from scratch instead of using pre-trained weights. On the

simulator side, the quality could be improved by switching from a fully synthetic environ-

ment to a terrain based true lunar or martian DEM’s to increase the realism of the virtual

environment. The lack of rover tracks could also be addressed here, since rover tracks are

features which are not present in the orbital imagery but would be present on real surface

perspective imagery. To overcome the sim2real gap, experiments using real data, from lunar

or martian analogues on earth (e.g. Devon Island) would also be helpful to prove the fea-

sibility of these method on a further step. For the training and testings parts, we currently

use the same virtual environment, even though we select different regions for the training,

validation and testing datasets. Future work would need to test howwell training in a virtual

environment or lunar analogue can help to run the inference part on the lunar or martian

surface. This is essential because we currently do not have enough data to train the network

with real lunar or martian data. We expect this part to be feasible, because our network is

primarily learning the distortion between the reprojected images and the orbital images. The

actual feature extraction part is based on an existing pre-trained neural network (ResNet 50),

which has been successfully used in a variety of different applications. [92, 99, 115, 60].

While our approach is a step forward to accelerate the absolute localisation process, it still

requires human supervision. The primary reason for this, is that we can not guarantee that

the first choice of our neural network is the actual location. Instead, the network excels at

finding similarly looking locations, regardless of how close they are from the actual target.

The likely reason for this is that our approach is only feeding the network information from

a 50× 50metre section around the rover. It excludes any information on the horizon, which
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could be used to differentiate between locations with similar surface features. In order to

overcome this issue, we therefore propose a newmethod in the next section, which compares

the complete surface perspective imagery against available satellite imagery.
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4.4 Surface Perspective Imagery MatchingWith

Reprojected Orbital Imagery

Asdescribed in theprevious subsection (4.3.2.3), the initialmethodwepresented for absolute

localisation, while an improvement over the state of the art, has some shortcomings. In this

section, we try to address these limitations with a modified approach which can also include

horizon features in the matching process. In theory, these horizon features should help to

differentiate two locations with similar surface textures. With this modification, we aim to

improve the localisation accuracy and speed, as well as to increase the possible size of the

surface area to be analysed. In more detail, we propose the following approach (figure 4.11).

Figure 4.11: The proposed method compares a surface image with thousands of surface images from a virtual environ‐
ment based on real data.

First, we build a virtual 3D environment of the expected landing site with satellite imagery

and digital elevation models (DEM) as this data is already available for most regions of the
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Moon * and Mars †. Once we have images from the surface of the real Moon, we randomly

spawn our robot in different locations of our virtual environment andwe take surface images

in each one of these locations. These images are then compared with the real surface images

by a neural network, which has been trained to return a likelihood of amatch. After iterating

randomly over the region of interest in our virtual environment, we select the location with

the highest likelyhood of a match. As we know the location of the matching image from our

virtual environment, we now also know the location of the actual position on the Moon.

As in our previous works, we demonstrate our method in simulation, where we have full

control over all parameters. Once we can prove our hypotheses in a virtual environment, we

can then expect to move onto experiments using real data. While we specifically mentioned

the Moon, this work could also be applied to any planetary surface with a GPS denied use

case, including Earth.

Thiswork has been completed in collaborationwithBenWu, withDrWu focusing on the

Neural Network architecture, and myself focusing on the data generation part. Any other

components were done collaboratively.

4.4.1 Methodology

4.4.1.1 Dataset Generation

For this approach, we need to produce two separate environments, and real-virtual-moon

with the highest possible surface details, as well as a reprojected-virtual-moon, which has been

built only from orbital imagery from the first environment.

*https://trek.nasa.gov/moon/
†https://trek.nasa.gov/mars/
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For the real-virtual-moon, wemake use of the same virtual environment inside Unreal En-

gine* as presented in section 4.3.1.1. With its detailed procedural textures and random rock

distributions, the environment provides a high level of detail down centimetre level. The

terrain uses a height map at a one metre per pixel resolution. This resolution limitation is,

however, not noticeable in most locations as the terrain is relatively flat, and because the sur-

face shaders provide the illusion of terrain detail with surface textures and bump mapping

(top half of figure 4.12). The only difference to the data generation part was the manner in

which the data was collected. As opposed to the previous method of using Fraps† to cap-

ture the image data, we used our now openly available data generation tool ‡. The difference

in the capturing method is that we now use Unreal Engine’s internal screenshot capturing

method rather than relying on an external tool. This simplified the generation process as it

is easier to match the terrain coordinates to each image. Yet it also takes significantly longer

to run. As the original dataset was no longer available due to it’s size, we had to generate it

from scratch. Although the random seed and therefore the random locations are different,

the environment is identical in any other way. For the reprojected-virtual-moon, we make use

of data that could be available from orbital data alone. In our case, this is a combination of a

Digital Elevation Map and satellite imagery. As the Unreal height-map is already limited in

resolution with 1 metre/ pixel, this is used as is. This type of DEM resolution is a reasonable

assumption, as 1 metre/ pixel DEMs have already been generated for the Moon using exist-

ing satellite imagery and a technique called photoclinometry [100]. For the surface textures,

we have generated our own orbital images in Unreal Engine by moving a perspective camera

*https://www.unrealengine.com/
†http://www.fraps.com/
‡www.moonbench.space
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Figure 4.12: Both 3D environments used for the localisation process, top is the high resolution simulation environment,
bottom is the reprojection environment based on lower resolution satellite imagery.
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at a high altitude (50km) over the complete map. The resulting data was then stitched into

one complete image of the surface. This was done similarly as before, but this time, the com-

plete 64 square kilometres of the terrain needed to be mapped, while we only had mapped

the regions of interest previously (training, validation and testing areas). Since we are deal-

ing with a completely virtual environment, we could also make use of orthographic view

cameras for this satellite imagery capture. However, due to technical limitations of Unreal

Engines 4, these do not render the scene in the same way as perspective cameras do, resulting

in illumination and shading differences. As a result, we have to use perspective images while

accepting small amounts of distortion, which are limited instead through a narrow field of

view at a large distance, as well as very small capture area of only 50 by 50 metres. Through

the described process, we rendered the complete map (8 × 8km) of our Unreal Engine en-

vironment from above in sections at a resolution of 5cm per pixel resulting in a total image

size of 163, 840× 163, 840 pixels. We picked this resolution because this is currently the best

possible satellite imagery available on the Moon, and it can be achieved during the landing

phase ([122]). Once we have successfully demonstrated our approach for this resolution, we

intend to downgrade the imagery resolution to 0.25 and 0.5 metres per pixel, which match

the resolution currently publicly available for Mars [137] and the Moon [164]. As opposed

to the previousmethod, experimentingwith different satellite image resolutions does require

re-rendering the surface perspective in our reprojected environment.

As render engine for our reprojected environment we made use of Blender* and Cycles†.

Blender was chosen due to its python interface, which allowed us to quickly build a pipeline

*https://www.blender.org/
†https://docs.blender.org/manual/en/latest/render/cycles/introduction.html
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around our use case. Eevee * was also initially considered as render engine, because path trac-

ing is not necessary for our pre-shaded environment, speeding up render times considerably.

However Eevee does currently not support headless rendering onmachineswithout a display.

Therefore, Cycles was used as it can run on a server farm, which helps to speed up the data

generation on a different scale. While we could also have usedUnreal Engine for this step, we

believe it is important to have a clearly separated render engine for the second environment, as

therewould also be a clear difference between images from a rover and the reprojected surface

in a scenario using a real robot. In order to load the captured orbital imagery into Blender, it

had to be subdivided due to the large amount of data to be handled.

InsideUnreal Engine, the subdivision of the surface areawas not necessary for two reasons.

Firstly, unlike Blender, Unreal supports large geometry objects based on a texture of 8129 x

8129 pixels (where the distance between two pixels equals 1 metre in our case). In order to

display such a large object, Unreal automatically subdivides the object into quads, some of

which are shown at a lower resolution, depending on their proximity to the camera. The

second issue is that the original environment used procedural surface textures. In order to

produce an exact pixelated version of the same texture, they had to be saved as an image. In

our case, as the terrain is very large at a 5cm resolution, this resulted in a terrain texture of

163, 840× 163, 840 pixels, which is too large for a single texture image.

Therefore, both the DEM and the surface textures were subdivided into smaller tiles of

256x256 m, and a high and low resolution version was made for each tile. The DEM tiles

are at a resolution of 257 × 257px and 33 × 33px while the texture tiles are of a resolution

of 5120 × 5120px and 640 × 640px. The DEMs were subsequently converted into a 3D

*https://docs.blender.org/manual/en/latest/render/eevee/introduction.html
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mesh with Open3D. With the help of custom Python scripts, the resulting geometry and

textures were loaded into Blender as can be seen in figure 4.13. As textures already have the

shading backed in, no additional shading was applied. For the rendering process, the areas

Figure 4.13: Subdivided terrain tiles loaded into Blender.

to be rendered were limited to a 1 × 1km locations. The main location, as well as the bor-

dering tiles were loaded at high resolution, while the remaining tiles were replaced with low

resolution versions. This was done as Blender was not able to load the complete environ-

ment at a high resolution (A 1× 1km surface area at a 1 metre per pixel resolution results in

(999× 999)× 2 = 1996002 polygons). In the top half of figure 4.14 we can see the differ-

ence in surface geometry between high and low resolution tiles. The bottom half shows the

two different texture resolutions.

As visible in figure 4.12 the primary difference between the images is the lack of surface

texture solution in the reprojected environment, as well as the rocks that are now baked into

the surface texture. This is exactly what one would expect for a reprojected environment

from a real satellite image. We took great care to match the positions of objects and cameras
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Figure 4.14: Adjacent low (left) and high (right) resolution tiles. The top image chose the shaded geometry while the
bottom image shows the final textured tiles.
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in Blender exactly, as can be seen on the horizon where the surface geometry and the textures

are an exact match. For the rendering process we initially considered rendering new Blender

locations around every single location from the original Unreal Engine dataset (as shown

in figure 4.15). As we already produce a dense coverage distribution inside Unreal Engine

(210.000 locations), a similar distribution can also be generated from the origin locations.

To simplify the setup, we therefore rendered the exact same locations inside Blender, which

we are then able to pair selectively with the Unreal locations.

Figure 4.15: Original distribution considerations for training a pair of surface and reprojection images. Red are the
surface images, green are random reprojection locations, and blue are reprojection locations based on a Gaussian distri‐
bution offset.

4.4.1.2 Generated Datasets

In order to train our network, we need to divide our terrain into different locations for train-

ing, validation and testing. All of these have no overlap and are sufficiently far enough away

from the edge of the map. We also ensured that all three environments experience different
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types of terrain, such as flat areas and crater areas. For this test, the selected locations were

identical to the ones presented in the previous approach in section 4.3.1.1 and figure 4.4.

For this test, we have generated 210.000 locations in our surface environment, and another

210.000 locations in our reprojected environment. The surface locations were randomly dis-

tributed and for the reprojected locations we initially considered picking locations that are

close to existing Unreal Engine locations for training (figure 4.15). However due to the lim-

itations in rendering time, this would have required extensive additional render times, each

time we would test the training process with a different location matching distribution. In-

stead, we decided to render the same locations in the reprojected environment as in the real

surface environment. Due to the high density of locations we have rendered this way, we

were still able to test different approaches to match up image pairs for the training process.

4.4.1.3 Neural Network

The network layout proposed for this approach can be seen in figure 4.16 and is similar to the

onedescribed in section4.3.1.3. Thenetwork is also a Siamese neural network,where the true

surface images and the re-projected surface images are loaded into two respective branches of

the network. The primary difference between the two approaches is that the images are fed

into the network are at their full HD resolution. The four images (front, right, back, left)

are simply stacked, without the need for any coplex preprocessing or stitching. As before,

we make use of a re-trained 50-layer ResNet v2[77, 78] feature extractor*. The pre-trained

weights of the feature extractor come from training on the ILSVRC-2012-CLS image clas-

sification dataset, and were not modified during the training of our network. Because the

*https://alpha.tfhub.dev/google/imagenet/resnet_v2_50/feature_vector/1
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Figure 4.16: Proposed network layout

ResNet-50 network has an input of 224×224, we need to add our own customCNN layers

to connect to original input image vectors to the input of the pretrained Resent setup. Ad-

ditionally, the input images also need to be converted from greyscale to RGB. The resulting

feature vector of each branch is of length 2048, and the two vectors are concatenated into a

single 4096-element one-dimensional vector. The other difference in our network is the out-

put, as we not only seek to learn amatch/no-match probability, but we also hope to learn the

horizontal (x, y) offset. This change should help guide our solution to the correct location if

the network is confident that it is close to the actual target location
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4.4.1.4 Localisation

For the final localisation step we use our trained model to compare a real surface image with

a set of rendered images from our projected surface environment. With rendering times in

mind, a dataset of uniformly distributed locations should be rendered beforehand in our

reprojected surface environment in order to localise as fast as possible. Given two sets of

images, our model then returns the likelihood of a match between the two locations. The

simplest approach is to sample our complete dataset of pre-rendered location. At the end, we

then pick the location with the highest likelihood and add the estimated x and y offset values

to its position. We currently estimate that our inference of ourmodel would take at the order

of one second,which canquickly addup, depending on the surface area and the dense density

of the surface coverage is. As our method can easily be run in parallel on multiple machines,

executing this in less than an hour is, however, not an unreasonable assumption for amethod

that we run back on earth.

In order to speed up detection, a more optimised version can also be considered. In this

case, we will initially pick locations at random until we hit a location with a high matching

value. We then continue to pick locationswithin close proximity, in order to validate the orig-

inal match. Additionally, since our network also provides an estimate of the horizontal offset

(x-offset, y-offset), we can also pick the next location taking into account the current offset

direction. This process can be repeated until we maximise the likelihood of a match based

on all the images in the proximity. While this approach considerably reduces the number of

images that need to be processed, it also can also fall into a local minimum.

To limit the risk of this happening, we propose a hybrid approach, where the complete

map is sampled with a uniform distribution of density d. Of these locations, then only the
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top n number of locations are considered for a further proximity search.

Furthermore, we can also try to improve our estimation by stepping outside of our pre-

rendered dataset. Once we have our highest likelihood match, we can use the x and y offset

values to render new locations from our reprojected surface environment to further min-

imise the localisation error. Additional locations can also be rendered to validate the results.

To note, this method does require more processing time, as our render times were at the or-

der of several seconds for a single image. Nonetheless, this is not an unreasonable approach.

Further optimisation on rendering side could also reduce rendering times. The quality of the

presented methods still need to be evaluated experimentally.

4.4.2 Results and Discussion

4.4.2.1 Results

In this work, we have presented a detailed new approach for absolute localisation which

should be an improvement over the method presented in 4.3. Unfortunately, the work on

the machine learning model has not been fully completed at the time of writing. Therefore,

we currently do not have any results on the feasibility of the proposed network architecture

and the accuracy of the subsequent inference and localisation process. The data generation

component has been completed and a detailed description of the generated data can be found

in tables 4.1 and 4.3.

4.4.2.2 Discussion

While the work shown in this section is still in progress, we have described our proposed

approach in detail. The dataset generation has been completed and accounts for a signifi-
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Table 4.3: Summary of the LUNA2 Localisation Dataset

Item Physical Scale Resolution Quantity
Training 2.05 km× 41000×
Region 2.05 km 41000 px 1
Validation 1.05 km× 21000×
Region 1.05 km 21000 px 1
Testing 1.05 km× 21000×
Region 1.05 km 21000 px 1
Surface
Images 90× 50.6 1920× 1080 px 840.000
Reprojected
Surface Images 90× 50.6 1920× 1080 px 840.000

cant part of this project, thus enabling the machine learning work. Direct image comparison

through Neural Networks has been demonstrated before and should be easier to perform

in this case due to the lack of distortions. This and the addition of horizon features makes

us confident that this method will perform at least as well as the previous approach. While

we are less confident of the x and y offset metrics, they are not required for this approach to

function. That being said, they would provide be a helpful addition over the state of the art.

Aside from the continuation of the current work, we also propose to refine the satellite im-

agery with corrected orthomaps. While real satellite imagery is also not truly orthographic,

the pushbroom cameras and the post processing applied in this case enable reasonably accu-

rate orthographic views which our current perspective views are not comparable to.

In any case this, the limitations of this work are very similar to the approach described in

section 4.3, and could be improved through a better simulation environment, a wider scope

of test parameters, as well as field tests with real data.
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Table 4.4: Breakdown of the Datasets

Dataset
Type

Number of
Locations

Fraction
of Total

Description

Training 200.000 0.95 Used to fit the model
Validation 5.000 0.024 Used during training to

tune model hyperparame-
ters

Testing 5.000 0.024 Used at the end to check
the network with unseen
data samples

4.5 Summary

In section 4.3, we presented a novel proof-of-concept approach to planetary rover localisa-

tion: surface perspective-to-satellite perspective image matching using machine learning, de-

signed to improve localisation efficiency and accuracy compared to current methods. The

outcomes of this project were: generation of a localisation benchmark dataset (∼10TBdata)

and generation tools - available to the community for testing and training their localisation

methods; a demonstrated proof-of-concept for automated absolute localisation using the

ResNet convolutional neural network; and a method to assist human-in-the-loop localisa-

tion. The resolution used within the generated lunar landscape was comparable to that of

the highest resolution martian images, meaning these methods could be directly applied to

martian environments. Based on these results, we then proposed an improved approach in

section 4.4 where we presented surface to surface matching between real and reprojected en-

vironments, using machine learning. The outcomes of this project were: generation of a
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localisation benchmark dataset (∼3.0 TB data) consisting of two renders in two virtual envi-

ronments; a proposed method for automated absolute matching and offset detection using

the ResNet convolutional neural network; and a proposed method to perform automated

localisation in GNSS denied locations. The satellite image resolution used was equivalent to

resolution gathered during a recent lunar landing, meaning these methods could be directly

applied to lunar environments. As future work for 4.3, we propose to improve imagery with

true 3D surface reprojections using stereo camera imagery. For section 4.4 we are currently

finalising the training of the models in order to gain some comparable results. As additional

work, we propose to replace the orbital imagery used in this work with truly orthographic

imagery with the help of a different simulation environment. Lastly, both proposed meth-

ods require some validation using real imagery in order to overcome the sim2real gap, before

they are applied to a real mission. This should be done in a lunar or martian analogue envi-

ronment, in order to gain a large number of different sample locations with accurate ground

truth (GNSS).Thiswould also address someof the issues of the limitedparameter space (fixed

lighting conditions, no rover tracks), which were deliberately chosen in order to reduce the

complexity of this proof of concept work.
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5
Conclusion and Future Work

In this chapter we provide an overview of the results achieved throughout the different chap-

ters of this thesis before providing a prospective outline on where the field appears to be

heading. Here, we will discuss which technologies will most likely advance the field of pose

estimation on other planetary bodies in the near future.
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5.1 Conclusion

In this thesis, we have addressed the localisation issues which arise from having very short

(less than 14 earth days) lunar surface missions. This is especially interesting for commercial

NewSpace operators considering this type ofmission to avoid a costly night time survival. To

support this goal, we have worked on three separate angles. The combination of themethods

presented are a guideline on how to best build reliable localisation systems which can be used

to increase the science return of lunar surface robots and any other planetary surfacemissions.

A. Testing and Validation

Objective: Configure an array of testing environments to validate lunar localisation systems

on Earth.

In chapter 2, we have looked at how localisation methods can be validated for the Moon.

As with any new approach, the potential users of such methods require some degree of con-

fidence that they will be effective. This is especially difficult for space applications, due to

the inability to test our methods in the target environment. To achieve this, we have con-

sidered different approaches, resulting in two new indoor testing facilities, the evaluation of

four different simulation environments (three of which were also configured by the author),

as well as three field tests in a quarry with different robots. Because none of these testing en-

vironments can individually reproduce the conditions on the lunar surface, a combination

of multiple approaches will be necessary, at least until regular testing on the lunar surface

becomes a financially viable option.
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B. Relative localisation

Objective: Evaluate different localisation systems in order to recommend a relative localisa-

tion system for the lunar surface covering both hardware and software.

In chapter 3, we have considered the measures needed to best speed up rover traverses with

the help of relative localisation systems. Here, we focused on both the hardware and software

sides of localisation systems which can fit on small planetary rovers. For the hardware, we ex-

amined different sensors in their usefulness for localisation and their applicability for lunar

surface operations. Given that stereo camera systems performed the best in this trade-off, we

also covered considerations for configuring stereo camera parameters. In dealing with the

software component, we covered the state of the art, and presented an extension to graph-

SLAM systems. Through our work, we have shown that it is possible to improve existing

SLAM localisation systems in the specific use case of localisation around Lunar landers. Ad-

ditionally, this method can also be used to enable multi-rover systems, without the need for

map exchanges or fiducial markers.

C. Absolute localisation

Objective: Build an absolute localisation system to speed up rover operations immediately after

landing.

In chapter 4, we have looked atmethods to determine a rover’s positions in orbital imagery to

speed up operations immediately after landing, as well as to support mission concepts reliant

on following trajectories pre-planned on orbital imagery. In order to achieve this, we have
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generated a large dataset with co-referenced images which is now publicly available*. With

the help of this dataset, we have trained a neural network to compare orbital imagery with re-

projected surface perspective imagery. The resulting network has the capacity to reduce the

search space of possible locations by 90%. From the results and lessons learned, we have also

explored a second approach which addresses the short-comings of the initial method. For

this work, we have generated a second dataset combining surface perspective image and re-

projected surface perspective image. While a resulting networkwhich has learned to compare

both of these inputs is still being worked on to validate this approach, we expect an improve-

ment over the method that we initially tested.

5.2 Main contributions

The main contributions of this thesis can be summarised as follows:

1. Inception, development and qualitative assessment of different benchmarking pose

estimation techniques for the lunar surface, including simulator environment, indoor

lunar yard and lunar analogue field tests.

2. Qualitative assessment of different sensors and algorithms for their localisation suit-

ability on the lunar surface.

3. Development of an extension for a relative localisation system which is automatically

corrected through the detection of a lunar lander.

*www.moonbench.space
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4. Development and validation a new absolute localisation approach through surface

perspective and orbital imagery.

5. Development of a second absolute localisation based on the results of the first ap-

proach.

6. Generation of two different datasets to facilitate machine learning-based absolute lo-

calisation.

5.3 Future work

In this section we will explore where the work accomplished could be adapted or extended

upon in the future.

A. Testing and Validation

The next step to improve the illumination accuracy of simulation environments is to include

Hapke shader or a Hapke-approximation Shader. On the field test side, a more extensive

field test campaign will be necessary. On one hand, this could be addressed by moving into

a basalt quarry instead of a sandstone quarry, where the soil properties are more similar to

what we could expect on theMoon. Ideally however, the next field test would be performed

in a region with volcanic ash such as the tests performed by DLR onMt Etna. While a basalt

quarry works well, the ground is generally removed in flat layers, where we still see the steep

walls of the quarry in the field of view, which is not the case onMt Etna.

In regards to testing sites, the ideal scenariowill be to test rover systems in their operational

environment, which in our case, is on the Moon. However, even once this will more easily
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accessible, the testing strategies outlined in this thesis will remain relevant due to the cost of

testing on theMoon. The most significant changes will occur on the virtual simulation side.

It is already clear that upcoming computer game engines are trying to address the scale issue,

which happens when faced with managing a large amount of detail near the camera while

also needing to provide detail in the distance on the horizon. The recently released examples

of the upcomingUnreal 5 engine, display some stunning examples of this in action (shown in

figure5.1). Along with the added detail in the environment, more accurate lighting models

are slowly being used in the computer games engine. While ray-tracing has been purely used

for offline rendering purposes until recently, we are now seeingmore games containing some

real-time ray-tracing capabilities.

Figure 5.1: Image taken from ’A first look at Unreal Engine 5’ [48]

B. Relative localisation

Our novel SLAM approach to simply localise around a lunar lander is promising. While we

have successfully shown that it works, it still needs further research, as it is currently only a
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proof of concept. Image-based rigid body pose estimation algorithms are advancing quickly,

and it clear that better results can be achieved than the Efficient Pose networkwehave trained.

Given the modular nature of our solution, it would be easy to replace the current network

with a new network. The second problem which needs to be addressed is the Sim2Real gap.

Using a virtual simulator to build a proof of concept is perfectly acceptable, especially due

to the full control over all parameters. To properly judge its efficacy in a real scenario, the

experiment needs to be performed with real data. This is especially important when it comes

to image data. Therefore, as future work, we propose tomake use of amock lander in a lunar

analogue environment in order to gain more confidence in our proposed method.

C. Absolute localisation

In this area, we would like to complete the second machine learning approach which was

presented in section 4.4. Since the first method yielded promising results which were pri-

marily limited by the lack of available data on the horizon, it seems likely that the improved

approachwill provide better results. Depending on the outcome of this ongoing experiment,

more scenarios can be explored. Since we plan to use this technology on a moving rover, the

next logical step is to feed a complete image sequence into our localisation system to further

reduce the uncertainty of the position estimate. Alternatively, we could also extend this work

by assuming that the starting position is known through othermeans, and ourmethod could

be used to primarily search during a traverse andwithin the vicinity of the already known po-

sition. This could lead to a further speedup in estimation speed as well as a reduction in the

computational complexity where the resulting algorithm could potentially run directly on-

board a rover.

For absolute localisation, a significant advancement is expectedwith the availability of bet-
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ter satellite imagery. With any image-based localisation, accuracy is directly related to the

image resolution available. Additionally, better orbital imagery will allow for more accurate

pre-planning of surface missions, which will make absolute localisationmore relevant. Even-

tually, GNSS systems will be available around the Moon, rendering image based methods

obsolete. But even at this stage, the methods outline in this work will continue to remain

relevant for surface robots targeting other planetary bodies.

5.4 Outlook

In this section, we provide an outlook on the evolution of the topics discussed for the near

future. This section is an informed personal opinion, based on past and current research, as

well as comparable examples from different other relevant fields.

5.4.1 Autonomy Risk

In order to truly assess how pose estimation will be performed on planetary rovers in the fu-

ture, we need to contemplate how the rovers themselves and their missions will change, as

this will have the biggest impact on the possible design changes to localisation systems. To-

day, planetary rovers like Curiosity, Perseverance or the Chang’e 4 are designed as a single

complex system where failure is to be avoided at any cost. This leads to expensive systems

which only large institutions can afford. As a consequence, operators are less willing to ac-

cept risks in their concepts of operations, which could lead to the end of the mission. This

includes additional autonomy for any robotic systems. We cannot simply anticipate every
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possible situation that can occur during surface operations. For some smaller systems, it is

possible to test them exhaustively, but this is only feasible when the set of possible situations

is limited. For instance, this can be the case when we consider subsystems that works in an

enclosed box where every possible state has been pre-planned. When dealing with unknown

environments, and especially when wemake use of camera sensors, this becomes impossible.

A relevant comparison are autonomous cars. Despite thousands of hours of driving have

been recorded by different companies, engineers still find potentially dangerous edge cases,

as demonstrated by recent incidents*. While these cars can safely navigate many situations,

the current public perception is that they are still not reliable enough. As we can not pre-

emptively consider all possible scenarios a system will experience, a 100% safety guarantee

will never be given. Therefore, the discussion about reliability of autonomous systems must

prioritise what degree of risk is acceptable.

For current planetary rovers, this is a difficult question to answer, as it takes millions of dol-

lars to build and launch these systems. When they finally arrive at their destination after a

treacherous journey, a single mistake can still render the rover inoperable. As this could lead

to the end of an expensive mission, such mistakes are to be avoided at all cost. As a result,

most operation is manual and slow due to the communication delays. Such a conservative

operational approach is therefore a major obstacle in exploring large areas of the Moon and

Mars. As a result, it is unlikely that major autonomous systems will be widely adopted until

multi-rover configurations are launched. Once such systems are available, the loss of a single

robot no longer leads to the end of the mission and results in redundancy in numbers. At

*https://www.bbc.com/news/technology-54175359
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this stage, the risk of autonomous operations will be easier to accept and to facilitate these

multi-rover systems, smaller, less capable rovers will eventually be used. While this may have

a negative impact on the sensor suite, the benefit is that multi-robot components will also

make new localisation systems possible, like for example the multi-robot radio localisation

shown in [174].

5.4.2 Sensors

Current space applications are limited by sensors which are suitable for space. LIDAR, the

mostpromising and accurate localisation sensor available for terrestrial applications, has never

been used on a planetary rover. Although the timeline is currently undetermined, solid state

LIDAR systems could change this, as they promise to provide the benefits of traditional LI-

DAR point-cloud information without the need for complex mechanical systems. For ter-

restrial applications, there are presently only a handful of research devices that could be used

for localisation. Even if they become widely used, the cost factor for smaller multi-robot sys-

tems is not to be underestimated. With cost, we not only consider the direct pricetag, but the

combined cost of mass, power and volume, required in comparison to a stereo camera.

A good comparisonwe can see for this is found in cheap consumer cleaning robots. While

some companies offer devices with technically superior LIDAR sensors (planar LIDAR’s),

most autonomous cleaning robots still rely on cameras for localisation. This ismost likely due

to the complete trade-off when taking into account, cost reliability and required accuracy.

While camera technology is well understood and regularly used in space, there are still

many advancements and discoveries ahead. In fact, event cameras have already shown that
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they are highly beneficial for localisation accuracy and efficiency. Furthermore, apart from

the image sensor, most components are identical to existing cameras and thus easier to up-

grade to. For small rovers, the switch from passive to active sensors is unlikely to occur in the

near future as power is a scarce resource. If cost, reliably and power consumption drop to a

reasonable level, LIDAR systems are preferable due to their higher accuracy.

When compared to other systems, it appears stereo cameras with an IMU will remain to

be the preferred sensor combination. The added cost of an additional camera sensor is not

negligible, but the added accuracy is substantial. Given this trade-off, it seems unlikely that

stereo cameras will be replaced by monocular camera systems, even if there have been some

improvements in depth estimation inmonocular camera systems throughmachine learning.

This is, with the exception of systems, where the robot is too small to contain an adequate

stereo baseline, such as in extremely small rovers. Another example would be aerial robots

where the large distance to the ground requires a much larger stereo baseline.

5.4.3 Software

With considerations to software, the current systems aremostly limiteddue to the insufficient

computation power available on today’s radiation hardened processors. Once this limit is

lifted, or at least increased, the widely-used SLAM systems that we can observe on terrestrial

robots will also be used in space. In state of the art research, we see interesting examples
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of semantic SLAM. For this technology, a semantic segmentation network is used to label all

pixels in the scene based on the object that they belong to. This is thenused to help the SLAM

system distinguish different features when performing feature matching. On longer rover

traverses, it is not clear how helpful this would be in environments that are mostly composed

of the same objects and materials. However, for multi-robot missions, it could be useful for

separating man-made objects from the background.

When looking at robotics frameworks, ROS is at the frontier of new robotics develop-

ments. It is only a matter of time until it will be used in space. This is especially evident as

NASA has already indicated their interest in building a modified version of ROS2 for use in

space.
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A
NASA SRC2

The following is the content of the technical report that was delivered as part of the NASA

Space Robotic Challenge: Phase II (SRC2). This work was a collaborative effort to deliver

a fully autonomous multi-robot solution that can search, extract and deliver underground

volatiles in a virtual lunar environment. A total of twenty-five researches were involved in

the making of this solution: Sara Jennings, Adam Cobb, Francisco Rodriguez Lera,Frank
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Figure A.1: NASA SRC2 competition logo (source: NASA)

Soboczenski, Chelsea Sidrane,Manuel Castillo-Lopez,BenWu,Maciej Żurad, SaraGregg, Jose

Delgado, Paul Wright, Zahi Kakish, Valentin Bickel, Karthik Venkataramani, Swetha Pil-

lai, SanjeevNarayanaswamy, Krzysztof Żurad, Ignacio López-Francos, AtılımGüneş Baydin,

Lukas Meyer, Dietmar Backes, Daniel Medina, Mathieu Labbe, Miguel A. G. Santamarta,

Philippe Ludivig

A.1 Introduction

The goal of the Space Robotics Challenge is to develop a robust system that allows for a het-

erogeneous, multi-robot team to autonomously complete tasks envisioned for a lunar in-situ

resource utilization (ISRU)mission. In Phase I, this involved finding and localizing volatiles,

coordinating between an excavator and a hauler robot, and detecting a known object. In this

first phase, these tasks could be solved independently, greatly simplifying the complexity of

195



A.2. Methods

the problem. In Phase II, the above mentioned tasks had to be solved in combination in a

single environment, while also dealing with the added constraint of accounting for the state

of charge of the rover batteries.

From the perspective of implementing a solution, the challenge represents the intersec-

tion of various robotics fields, namely, perception, localization, planning, and control. Our

approach to the challenge was to complete a prototype solution in each of these areas using

one or more ROS nodes, and then iterate on them until they were sophisticated enough to

coordinate with each other in order to complete the intended task.

While we were unable to complete all of the requested tasks, we were able to create a proof

of concept solution to each of the challenges. The implementation, performance and learn-

ings from each of these sub-challenges is described in the following sections of this report,

followed by a final discussion and description of performance of the complete solution.

A.2 Methods

A.2.1 Perception

The rover is equipped with multiple sensors which are used to complete the different tasks.

There is a wide baseline stereo camera, an IMU, a planar lidar and the volatile sensor. We

developed several nodes for the perception subsystem to perform a variety of functions in-

cluding camera noise detection and removal, object detection (e.g. rocks, processing plant,

other vehicles), object pose estimation, and sun direction estimation.
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A.2.1.1 Image noise

Figure A.2: Left: Image affected by Gaussian noise (Type 1); Right: Image affected by a combination of Gaussian noise
and horizontal banding noise (Type 2).

The stereo camera onboard a given rover is affected by two types of noise: gaussian noise

and a type of horizontal banding noise (Fig A.2). This noise is problematic because it affects

various downstream tasks like SLAMnavigation. Tomitigate its effects, we developed a noise

detector that measures the noise intensity using a signal-to-noise metric. We subsequently

choose to apply a noise removal filter if the noise strength exceeds a manually predefined

threshold. Weperformed empirical experimentswith various filters to provide noise removal.

The filtering performance was measured by evaluating the accuracy of a visual odometry al-

gorithm on the pre-processed images. In those tests, the non-local filtering provided the best

balance betweenfiltering performance andprocessing requirements. In the endhowever, due

to the limited performance for both testing and the final evaluation, we decided against using

the filtering approach, and only used the noise sampling approach. In our localization sys-

tem (more details below) the visual odometry is given the raw data, while the SLAMsystem is

provided the image feed where noisy images are removed. As the SLAM system is operating
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at 1hz, this was fine, until the camera frame rate of the simulator was lowered to 5hz. At this

stage we had to add an extra constraint, where the SLAM system is fed an image once per

second, regardless of the noise level, if all current images are over the noise level.

A.2.1.2 Sun heading

Figure A.3: Left: Image from the camera onboard the rover where the projection of the shade of the rover. Right: pre‐
diction of the sun direction as a white line drawn over the rover shadow.

A crucial element in planetary robotic autonomy is absolute localization. In order for the

rover to localize itself relative to its internal map, we developed a method to estimate its ori-

entation using the projection of its own shadow with respect to the Sun’s position. More

commonly this is done using the sun-disk, but this was not available in the given simulator.

As the terrain wasmostly flat, we used the shadow approach instead. We applied purely com-

puter vision techniques to first determine and outline the shadow of the rover (Fig A.3), and

then to determine the direction of the sun and draw a line in the image representing this di-

rection. Due to the added complexity of integrating this approach into our tools, as well as

the already high accuracy of our relative localization, we ended up not using this method for

the final delivery.
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A.2.1.3 EfficientPose

Akey component of the challenge is to develop the ability of the hauler robot to returnmined

resources to the processing plant. In order to effectively do so, the hauler must be capable of

identifying the 6D pose of the processing plant. This provides the hauler with information

regarding the location of the plant in space (x, y and z coordinates) as well as its orientation

about each axis. To accomplish this, we used the official implementation of the Efficient-

Pose algorithm [17] which has demonstrated state-of-the-art performance on the Linemod

benchmark dataset. EfficientPose utilizes an EfficientNet [192] backbone, combined with

a bidirectional feature pyramid network (BiFPN) and several prediction subnetworks that

predict the class, bounding box, spatial location and rotation of the object. The algorithm

was pre-trained on the Linemod dataset, and subsequently trained on a dataset generated

from theGazebo simulator that captured the processing plant at various distances and orien-

tations from the perspective of the rover. Additional data augmentation techniques used by

Bukschat [17], were not used to generate training data, as experiments involving the addition

of such datasets in the training data indicated an undesirable increase in the mean rotation

error.

The orientation accuracy of the final trained model did not meet the performance crite-

ria required to carry out the task. While we tried testing the system with position estimates

only, this approach only provided limited advantages over loop closure. Finally, given the

performance limitations of the grading hardware, we chose not to investigate this approach

for improvements.

While a trained EfficientPose model would have significantly simplified tasks requiring

collaboration between different robots, we managed to solve the pose estimation problem
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using a combination of traditional approaches.

Figure A.4: EfficientPose was used to obtain the pose of an object relative to the rover

Figure A.5: EfficientPose was trained using RGB images (left) generated from Gazebo, along with relevant masks (right)

A.2.1.4 ML Detectors

Wealsodeployed several visionmachine learningmodels such as amulti-class detectionmodel

for rovers, processing plant andbase station (Fig 5). Additionally,models for detecting craters
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(Fig A.6), the collection bucket for the excavator as well as a rock detection model (Fig A.8).

Allmodelswere trainedusing amodifieddarknet of theYouOnlyLookOnce (YOLO) frame-

work [160]. The neural network based models were trained on images obtained from the

Gazebo simulator, and were both automatically and manually labeled using LabelImg [200]

(Fig A.9).

Figure A.6: Summary overview of the multi‐class detection models for base‐station, processing plant and rovers.

Figure 7: Summary overview of the rock detection model.

A.2.1.5 ML Detectors Implementation

For the YOLO detector implementation in ROS, we combined the detections from the left

image with the point-cloud from the stereo images. Based on the bounding box, we cropped

the point cloud, and then averaged the remaining points to estimate a relative XYZ offset

to the camera. Depending on the object that needed detecting, we used different filtering

techniques, to reshape the size of the bounding box, as well as to filter the point clouds. For
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Figure A.7: Summary overview of the crater detection model.

Figure A.8: Summary overview of the rock detection model.
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Figure A.9: LabelImg was used to annotate images obtained from Gazebo.

the rock detection for example (Fig. A.10), we only selected points at the bottom of the

detection window to avoid the selection of points behind the rock (the blue bounding box

is the YOLO detection, while the green bounding box is the reshaped detection). As only

rocks in close proximity were relevant in this detection, and due to the decreased estimation

accuracy at longer ranges, only rocks at up to 10 meters were considered in this case. For the

detection rovers and stations (Fig. A.11), we instead scaled the bounding boxes uniformly,

as the center of the bounding boxes generally yielded the best points for a range estimation.

In this case we also filtered out darker points from the pointcloud, as the rovers and objects

generally provided bright detection surfaces.
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Figure A.10: rviz display showing nearby rock detections in the RGB camera (bottom left) and in the point cloud (right)

Figure A.11: rviz display showing nearby object detections in the RGB camera (bottom left) and in the point cloud (right)
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A.2.1.6 Volatile Detection and Localization

To locate volatiles, we decided to follow a strategy of stopping the scout when the volatile

sensor first detected a volatile and performing amaneuver to get multiple readings so that the

volatile canbe located. The initial strategywe consideredwas to take advantage of the fact that

the scout would encounter any volatile in a semi-circular area enclosed by the volatile sensor

detection range and bisected by its velocity vector. The advantages of this method are that

only small deviations are required from the planned path in order to locate the volatile. More

details are given in Figure A.12. However, in the end, we decided to implement a simpler

strategy of travelling along the circumference of the initial volatile detection circle to obtain

two more readings. After three readings are obtained, the volatile can be located.

A.2.2 Localization & Navigation

For the localization system, we tested a number of different approaches, but in the end we

relied on a purely stereo image based approach. Our system is composed of a stereo visual

odometry systemwhichprovides continuous odometry updates at a rate of 5Hz. This odom-

etry is then fed into a SLAM system based on Rtabmap [104], which is operating at a rate

of 1 Hz. Rtabmap was selected due to the multitude of features it provided in it’s imple-

mentation. To increase the accuracy of the SLAM system it is provided with filtered images,

where noisy images are discarded. Rtabmap also performs loop closure to correct for drift

after longer traverses. This requires some tweaking as the terrain looks very similar, especially

due to the repetitive surface texture. Loop closures therefore do not happen very often and

require the rover to be in almost the same location to work. Besides this, Rtabmap also pro-
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Figure A.12: The semi‐circular detection strategy initially considered for volatile detection and location. In the top
diagram, the volatile is detected by the volatile sensor. In the second diagram, the scout moves left 5cm. Depending
on whether or not a volatile was detected in the second stage, the quadrant containing the volatile can be determined.
In the third diagram, the scout moves a certain distance at a 45 degree angle into Q1 or Q2, based on which quadrant
was determined to contain the volatile in the second step. If in Q1, the scout moves to (0.05 m, 0.05 m) and if in Q2, it
moves to (‐0.05 m, 0.05 m). The volatile can be located after this step using the intersection of the first and third volatile
sensor readings.

206



A.2. Methods

vided the gradient cost map which was used for the navigation part. Fig. A.13 shows the one

of the benchmark plots which was used to evaluate the accuracy of the localization system.

Figure A.13: rviz display showing nearby object detections in the RGB camera (bottom left) and in the point cloud (right)

A.2.2.1 Initial absolute localization

In order to have all the rovers aligned in the same reference frame, we used the initial absolute

localization service provided by the organizers. We called this service at the very beginning of

the simulation. Subsequently, we published an additional topic for each rover, which con-

verted the rovers relative localization to an absolute pose. This absolute pose was also used

for rough rover collaborations. It is important to note here that while each rover was operat-

ing in the same reference frame, the drift of the localization was independent for each rover.

Therefore, the localization system was only used for rovers to meet near to each other, while

the ML detectors were used for operations that required a higher accuracy.
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A.2.2.2 Other tested odometry approaches

Besides VO based odometry, we also tried to implement the inertial measurement unit and

the wheel odometry into our system. From our observations and tests however both of these

sensor configurations experienced some major drawbacks. As opposed to the first phase of

the competition, the IMU noise has significantly increased, making it more noisy than what

one would traditionally experience with such a sensor. The resulting Visual Inertial Odom-

etry (VIO) was found to be less accurate than simple visual odometry (both VinsFusion and

OpenVins). This was likely due to a combination of the noisy IMU, as well as the simplicity

of the gazebo environment, which led itself well to visual odometry estimates. Besides the

VO, we also experimented with wheel odometry (WO). This approach worked well on flat

areas, but was difficult to deal with on slopes, such as in the crater or hills. This was due to

vibration introduced by the suspension of the robots. In the end we therefore reverted back

to our original VO implementation.

A.2.2.3 Navigation

For the navigation part, we used move_base, which is a well known local planner. This tool

took the generated cost maps and it produced a path using the A* algorithm. As our con-

troller is using command velocity commands as an input, this can be directly connected to

move_base. The local planning is then continuously updated with each update to the cost

map. (Fig. A.14)
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Figure A.14: Figure 13. Costmap showing the free terrain (white tiles), obstacles (black tiles) and unexplored terrain(gray
tiles)

A.2.3 Planning

A.2.3.1 Volatile Searching and Mining Strategy

Before proceeding to design a waypoint generation scheme for the planner, we examined the

relevant rules to find the best way to maximize the score. The relevant competition rules are

listed below: There is no penalty for not collecting certain volatile types. Since the volatile

zones are distributed evenly within a circular band with inner radius 28m and outer radius

93m, it is optimal to search the area close to the inner radius first before going to the outer

area. The competitionwill contain 72 volatile locations, known as zones, which canbemined

for volatile clods. Each volatile zone contains 20 clods of the appropriate volatile. Digging at

the exact location of the volatile zone will get the maximum of 5 clods per scoop, but digging

2m away from the volatile zone gives only regolith. If the scoop is between 0m and 2m from

the zone location, then the number of volatile clods in the scoop will be between 5 and 0 -
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extra space on the scoop will be filled with regolith. If everything is perfect and the scoop

is right over the volatile location, then 20/5 = 4 scoops are necessary to deplete the zone of

volatiles. Some volatile types have mass thresholds which must be satisfied before volatile de-

positions into the hopper of that type are counted. For example, if 70kg of ice, or 7 clods,

have been deposited cumulatively into the processing plant hopper, then only 1pt is con-

tributed towards the Total Score. To emphasize, scoring for threshold-type volatiles starts

from 0 after the threshold is met. After adjusting for theminimum threshold, analysis shows

that Carbon Dioxide is slightly less valuable per clod (0.925 adjusted point/clod) compared

to Ethane, Methane, or Methanol (1 adjusted point/clod) - the other types fall in between.

This was calculated by dividing the [Volatile Field Points - Adjusted forMinimumQuantity]

values by the [Volatile Clod/Types on Field] values.

After analyzing the points above, it was determined that since the differences between the

adjusted points/clod are small enough, we can treat each clod of anymaterial as being roughly

worth 1 point. In addition, the threshold requirements for any volatile (maximum 9 clods

for carbon dioxide) can be satisfied by fullymining the 20 clods in a single zone. Thus, a good

strategywould be to treat all volatile types equally and focus on extracting 20 clods from each

detected volatile zone. Choosing which volatile zone to target next should be done based on

proximity to the excavator and capacity left in the hauler.

Two types of planners were created for the competition to provide the scouts with high-

level goal waypoints during their search for volatiles. These consisted of a “predetermined”

and “frontier” planner. In the end, the “predetermined” planner was used for the competi-

tion due to its smoother trajectories and simplicity, as it requires less input from the rest of

the system to work.
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The “predetermined” planner provides a scout rover with a predefined path resembling

a “flower” pattern generated through a combination of multiple ellipses. If these goal way-

points are in a location that the rover cannot move to, the state machine queries the next

point.

The “frontier” planner uses amore generic and complex approach towaypoint generation.

It employs a 2D grid to represent the world and assigns a reward value to each cell, depending

on the potential for discovering volatiles. The highest reward cell is the next goal location,

and a new goal is queried either when the rover has arrived at the goal or when a new route is

requested. The reward function is calculatedbasedon the cell’s proximity to large unexplored

areas, the relative heading difference from the rover’s current heading needed to travel there,

its overall distance from the rover, and finally if a volatile has been detected via the rover’s

camera in that cell.

Once the state machine has a goal location from the “predetermined” planner, it conveys

this request to the lower level planner, the standard ROS package “move_base”. This is used

for lower-level planning and obstacle avoidance. The output of this package was a linear and

angular velocity command that was sent to the controller. In order to avoid obstacles, this

package required a map as input from localization as well.

A.2.4 Control

For our controller, we use a combination of an Ackerman steering control and a spot turn

control, which is used depending on the required angle of orientation. The controller was

tweaked to improve the quality of the localization, and to provide a smooth driving experi-

ence. An earlier version of our controller resulted in numerous spot turn operations which
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are less than ideal for localization accuracy. In some specific scenarios, like the approach to

the processing plant by the hauler, some ROS-nodes were also given direct control over the

wheels, in order to simplify the control loop

A.2.5 State Machine

The high level design of our solution is based around a state machine that manages the be-

havior of each of the rovers. When the high level system is in a certain state, each relevant

rover is commanded to perform a specific action, such as ”drive to the next waypoint” or

”scoop regolith”. Further, each rover has its own state machine, which deals with low-level

tasks for maneuvering itself, avoiding obstacles, reaching waypoints and recharging its bat-

tery. A global state machine deals with the more complex digging operation which requires

the collaboration of all robots. The following two flow charts show the operations dealt with

on a local and global level. (Fig. A.15) (Fig. A.16)

A.3 Results and Discussion

Below is a description of the tasks and the outcome of each task:

A.3.1 General Rover systems

1. Relative vision based navigation - SUCCESS

2. SLAM system with loop closure - SUCCESS

3. Gradient based obstacle detection - SUCCESS
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Figure A.15: Solution Rover State Machine
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Figure A.16: Solution Global State Machine
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4. ML based rock detection - SUCCESS*

5. ML based crater detection - SUCCESS*

6. ML object detector (Processing plant, recharding plant, rovers) - SUCCESS

7. Regular battery checks and recharding - SUCCESS

8. Processing plant pose estimation for relocalization - 50%

9. Waypoint based navigation - SUCCESS

10. Local and Global path planning and replanning with Costmap - SUCCESS

11. State machine to decide on rover behaviour - SUCCESS

*Note: Due to limited performance on hardware and because of uncertainty around the

solution behavior on the final grading hardware, the ML rock and crater detection were dis-

abled in the final submission.

A.3.2 Task specific systems

1. Scout search pattern for volatiles - SUCCESS

2. Detecting volatiles - SUCCESS

3. Determining exact volatile position relative to Scout - SUCCESS

4. Position Scout above volatile - SUCCESS

5. Position Excavator close to scout - SUCCESS
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6. Determine volatile position relative to Excavator - SUCCESS

7. Position Excavator next to volatile, to enable digging - SUCCESS

8. Position Hauler in the field of view of the Excavator - SUCCESS

9. PositionHauler next to Excavator - 80% - would need to use rock detection (working)

to determine if the field is clear, and reorient otherwise

10. Digging - 50% excavator control working but needs refinement

11. Hauler return to base - SUCCESS

12. Hauler aligning with processing plant and dumping volatiles - SUCCESS

A.4 Conclusions

A.4.1 Logistical Considerations

This challenge was complicated by our large and globally dispersed team, our team has 25

members across 7 countries. Our team had started out remotely which provided us with the

ability to continue working uninterrupted where other teams may have had to have shifted

with the impacts ofCOVID.The access to hardware required for the competition also proved

to be a challenge for our teamwith differentmembers having different systems and accessibil-

ity however cloud computing resources and docker containers were essential for our team to

work in the remote distributed environment. Virtual tools like Zoom, Mattermost, Google

docs/slides, gitlab were useful for our remote team to interact and work together.
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A.4.2 Future Work

One interesting aspect of the competition was the integration of various machine learning

techniques and the ROS integration, easing implementation could be an area of exploration

to develop new workflows or frameworks.

Another consideration for future work would be to take the developed software solutions

and to test themout in a real life environment. The simulator provided vital information and

constraints but still falls short of a realworld scenario. The actual outputwould also varywith

the hardware implementation put on a real robotic system in a lunar-like environment and

would be interesting to test out as a future phase of the competition and could result in some

unique hardware solutions.
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B
Scientific Dissemination

B.1 Publications & Posters

1. IAC 2018 - Bremen, DE

Poster presentation with a 5 minute speaking slot.

EXPLORATIONOFTHELUNARSOUTHPOLETHROUGHAUTONOMOUS
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B.1. Publications & Posters

NAVIGATIONANDMAPPINGSYSTEMSFORMAXIMISINGSCIENCERE-

TURN

https://iafastro.directory/iac/paper/id/46207/abstract-pdf/IAC-18,A3,IP,

8,x46207.brief.pdf?2018-08-01.22:32:37

October 1–5, 2018

2. IROS 2019 - Macau

Paper publication with 15 minute presentation slot.

Absolute Localization Through Orbital Maps and Surface Perspective Imagery: A

Synthetic Lunar Dataset and Neural Network Approach

https://ieeexplore.ieee.org/abstract/document/8968124/

Nov 4-8, 2019

3. ICRA / RAL 2020 - Paris, FR

2ndCo-author on a paper publication with a 15minute presentation slot. Converted

to a virtual conference due to COVID19

AReal-TimeApproach forChance-ConstrainedMotionPlanningwithDynamicOb-

stacles.

https://arxiv.org/pdf/2001.08012.pdf

May 31, 2020 – Aug 31, 2020

4. IAC 2020 - Cyberspace Edition

Paper publicationwith a 10minute presentation slot, whichwas converted to a virtual

presentation due to COVID19.

Building a piece of the Moon: Construction of two indoor lunar analogue environ-
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B.1. Publications & Posters

ments

https://orbilu.uni.lu/handle/10993/45539

October 12–14, 2020

5. ISAIRAS 2020 - Pasadena, US

Paper publication with a 30 minute speaking slot. Converted to a virtual conference

due to COVID19

TESTINGENVIRONMENTSFORLUNARSURFACEPERCEPTIONSYSTEMS;

COMBININGINDOORFACILITIES,VIRTUALENVIRONMENTSANDANA-

LOGUE FIELD TESTS.

https://www.hou.usra.edu/meetings/isairas2020fullpapers/pdf/5078.pdf

October 18–21, 2020

6. ISAIRAS 2020 - Pasadena, US

Poster presentation with 15 minute speaking slot. Converted to a virtual conference

due to COVID19

Large scale realistic virtual environments for lunar robotics testingusing real-time com-

puter games engines

https://www.hou.usra.edu/meetings/isairas2020/eposter/4071.pdf

October 18–21, 2020

7. ISAIRAS 2020 - Pasadena, US

Poster presentation with 15 minute speaking slot given by co-author. Converted to a

virtual conference due to COVID19

Absolute Localization for Surface Robotics in GPS-Denied Environments Using a
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Neural Network.

https://www.hou.usra.edu/meetings/isairas2020/eposter/4032.pdf

October 18–21, 2020

8. Second AI and Data Science Workshop for Earth and Space Sciences - Pasadena, US

Poster presentation with a 15 minute speaking slot. Converted to a virtual conference

due to COVID19

AbsoluteLocalisation for surface robotics inGPSdenied locations using aNeuralNet-

work https://datascience.jpl.nasa.gov/poster-27

February 9–11, 2021

9. Space Resources Week - Luxembourg, LU

Poster submission. Semi-virtual conference, unable to attend due to COVID19

LunaLab lunar analogue testing facility

https://cloud.list.lu/index.php/s/4jEnpqGPfodTo6o

April 19–22, 2021

B.2 Awards

FNR Photo competitions 2019 & 2021
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B.2. Awards

Figure B.1: 2019 1st prize ‐ Category: Places and tools

Figure B.2: 2021 1st prize ‐ Category: Places and tools
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B.3. Additional Grants

Figure B.3: 2021 1st prize ‐ Category: Scientists in action

B.3 Additional Grants

1. ESA-ISEB - IAC 2018 conference funding

2. NVIDIA - Applied Research Accelerator Program

B.4 Media and mentions

1. IEEE Spectrum

https://spectrum.ieee.org/ai-trains-to-guide-planetary-rovers-without-gps

2. Intel chiptalk podcast

https://connectedsocialmedia.com/17027/for-lunar-exploration-intel-ai-can-help-where-gps-cant-intel-chip-chat-episode-629/
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B.4. Media and mentions

3. FNR article on research.

https://www.fnr.lu/research-with-impact-fnr-highlight/lunar-rover-for-space-exploration/

4. FNRAR - Lunar rover in augmented reality.

https://www.fnr.lu/letzscience-ar/

5. IGLUNA 2020 - Swiss space center

https://www.youtube.com/watch?v=jcRb1sk_UYQ

6. NASA Frontier Development Lab

https://www.youtube.com/watch?v=-ymnvxuCggw&feature=emb_title

7. FNR -What does it mean to be a researcher?

https://youtu.be/N3lV_mOsjAs

8. ESERO - Ask a Space Expert:

https://www.esero.lu/ask-a-space-expert/?lang=en
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