

PhD-FSTM-2022-096
The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 05/09/2022 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Saad EZZINI
Born on 19 December 1994 in Bensouda FEZ (Morocco)

ARTIFICIAL INTELLIGENCE-ENABLED

AUTOMATION FOR AMBIGUITY HANDLING
AND QUESTION ANSWERING IN NATURAL-

LANGUAGE REQUIREMENTS

Dissertation defence committee
Dr Sallam Abualhaija, Dissertation Supervisor
Research Scientist, Université du Luxembourg

Dr Yves Le Traon, Chairman
Professor, Université du Luxembourg

Dr Bissyande Tegawende, Vice-Chairman
Associate Professor, Université du Luxembourg

Dr Andreas Vogelsang, Member
Professor, University of Cologne, Germany

Dr Davide Fucci, Member
Assistant Professor, Blekinge Institute of Technology, Sweden

Acknowledgement

I would like to express my gratitude to everyone who helped and supported me on this four years journey. I

am deeply indebted to my supervisors Mehrdad Sabetzadeh and Sallam Abualhaija, who introduced me to the

software engineering field and provided countless help from the beginning to the very end of this journey.

I would like to thank the committee members for agreeing to review my thesis and attend my defense. Especially

external members who had to travel to Luxembourg.

I am also grateful to my co-authors and colleagues in the SVV lab and SnT. I would be remiss not to mention

the industrial partnership we had with QRA and the valuable insights and assistance provided by their research

and development team during the first half of my PhD. Additionally, special thanks to Luxembourg’s National

Research Fund, European Research Council, and Natural Sciences and Engineering Research Council of Canada,

who financed my research, for their generous support.

This endeavor would not have been possible without my family, including my wife and children, for encouraging

me and providing support and motivation, and my parents for their encouragement throughout my career.

Saad EZZINI

University of Luxembourg

September 2022

Abstract

Requirements engineering (RE) quality control is a crucial step for a project’s success. Natural language

(NL) is by far the most commonly used means for capturing requirement specifications. Despite facilitating

communication, NL is prone to quality defects, one of the most notable of which is ambiguity. Ambiguous

requirements can lead to misunderstandings and eventually result in a system that is different from what is

intended, thus wasting time, money, and effort in the process. This dissertation tackles selected quality issues in

NL requirements:

• Using Domain-specific Corpora for Improved Handling of Ambiguity in Requirements: Syntactic

ambiguity types occurring in coordination and prepositional-phrase attachment structures are prevalent in

requirements (in our document collection, as we discuss in Chapter 3, 21% and 26% of the requirements

are subject to coordination and prepositional-phrase attachment ambiguity analysis, respectively). We

devise an automated solution based on heuristics and patterns for improved handling of coordination and

prepositional-phrase attachment ambiguity in requirements. As a prerequisite for this research, we further

develop a more broadly applicable corpus generator that creates a domain-specific knowledge resource by

crawling Wikipedia.

• Automated Handling of Anaphoric Ambiguity in Requirements: A Multi-solution Study: Anaphoric

ambiguity is another prevalent ambiguity type in requirements. Estimates from the RE literature suggest

that nearly 20% of industrial requirements contain anaphora [1, 2]. We conducted a multi-solution study

for anaphoric ambiguity handling. Our study investigates six alternative solutions based on three different

technologies: (i) off-the-shelf natural language processing (NLP), (ii) recent NLP methods utilizing

language models, and (iii) machine learning (ML).

• AI-based Question Answering Assistant for Analyzing NL Requirements: Understanding NL require-

ments requires domain knowledge which is not necessarily shared by all the involved stakeholders. We

develop an automated question-answering assistant that supports requirements engineers during require-

ments inspections and quality assurance. Our solution uses advanced information retrieval techniques and

machine reading comprehension models to answer questions from the same requirement specifications

document and/or an external domain-specific knowledge resource.

All the research components in this dissertation are tool-supported. Our tools are released with open-source

licenses to encourage replication and reuse.

Contents

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Context . 1

1.2 Contributions and Organization . 2

2 Background 7
2.1 Natural Language Processing . 7

2.2 Machine Learning . 7

2.2.1 Data Imbalance Handling . 8

2.2.2 Supervised ML algorithms: . 8

2.2.3 Ensembling techniques . 9

2.3 Language Modeling . 10

2.4 Word Vectorization . 10

3 Using Domain-specific Corpora for Improved Handling of Ambiguity in Requirements 13
3.1 Motivation and Contributions . 13

3.2 Related Work . 15

3.2.1 Ambiguity Handling in the RE Community . 16

3.2.2 Ambiguity Handling in the NLP Community . 16

3.3 Approach . 17

3.3.1 Preprocessing . 17

3.3.2 Pattern Matching . 18

3.3.3 Domain-specific Corpus Generation . 19

3.3.4 Application of Heuristics . 20

3.3.5 Handling Ambiguity . 23

3.4 Evaluation . 24

3.4.1 Research Questions (RQs) . 24

i

3.4.2 Implementation . 24

3.4.3 Data Collection . 24

3.4.4 Parameter Tuning . 26

3.4.5 Evaluation Procedure . 27

3.4.6 Answers to the RQs . 28

3.4.7 Error Analysis . 30

3.4.8 Discussion about Usefulness . 30

3.5 Tool Support . 31

3.5.1 MAANA . 31

3.5.2 WikiDoMiner . 32

3.6 Validity Considerations . 37

3.7 Conclusion . 37

4 Automated Handling of Anaphoric Ambiguity in Requirements: A Multi-solution Study 39
4.1 Motivation and Contributions . 39

4.2 Background and Related Work . 41

4.2.1 Background . 41

4.2.2 Related Work . 42

4.3 Solutions Design . 43

4.3.1 Problem Definition . 43

4.3.2 Preprocessing . 44

4.3.3 Alternative Solutions . 44

4.4 Empirical Evaluation . 47

4.4.1 Research Questions (RQs) . 47

4.4.2 Implementation and Availability . 47

4.4.3 Datasets . 48

4.4.4 Evaluation Metrics . 50

4.4.5 Solutions Tuning . 51

4.4.6 Answers to the RQs . 52

4.4.7 Discussion . 54

4.5 Tool Support . 55

4.5.1 Preparation . 56

4.5.2 Reader . 57

4.5.3 Language Features Extraction . 57

4.5.4 Extraction of Features Embeddings . 57

4.5.5 Classification . 58

4.5.6 Encoder . 58

4.5.7 Resolver . 58

4.5.8 Evaluation . 59

4.6 Threats to Validity . 60

4.7 Conclusion . 60

5 AI-based Question Answering Assistant for Analyzing Natural-language Requirements 63

ii

5.1 Motivation and Contributions . 63

5.2 Background . 65

5.3 Approach . 68

5.3.1 Preprocessing . 68

5.3.2 Question Analysis . 69

5.3.3 Domain-specific Corpus Generation . 69

5.3.4 Document Retrieval . 69

5.3.5 Context Retrieval . 69

5.3.6 Answer Extraction . 69

5.4 Empirical Evaluation . 70

5.4.1 Research Questions (RQs) . 70

5.4.2 Implementation Details . 70

5.4.3 Data Collection Procedure . 71

5.4.4 Evaluation Procedure . 74

5.4.5 Answers to the RQs . 76

5.5 Related Work . 82

5.6 Threats to Validity . 83

5.7 Conclusion . 83

6 Conclusion 85
6.1 Summary . 85

6.2 Future work . 86

Bibliography 87

iii

List of Figures

1.1 Dissertation Overview. 3

3.1 Example of Coordination Ambiguity (CA). 14

3.2 Example of Prepositional-phrase Attachment Ambiguity (PAA). 14

3.3 Approach Overview. 17

3.4 NLP Pipeline. 17

3.5 Domain-specific Corpus Generation. 19

3.6 Example of Category Structure in Wikipedia. 20

3.7 Excerpt of 5-grams Table. 21

3.8 Tool Architecture. 31

3.9 Tool Architecture. 33

3.10 Illustration of Traversing Wikipedia Categories (Example Keyword: “rail transport”). 35

3.11 Word-cloud Visualization of Domain-specific Corpora (Left-hand Side – Railway Domain, and

Right-hand Side – Transportation Domain). 36

4.1 Example of Anaphoric Ambiguity. 40

4.2 Illustration of our Notation. 43

4.3 Overview of Solution Alternatives (marked ① to ⑥). 44

4.4 Application Example of TAPHSIR. 55

4.5 Overview of TAPHSIR Architecture. 56

5.1 Excerpt from Software Requirements Specifications. 64

5.2 Overview of ReQAssis. 68

5.3 Overview of our QA Auto-Generation Method. 73

iv

List of Tables

3.1 Patterns for ambiguity detection (CA and PAA). 18

3.2 Data Collection Results. 25

3.3 Results of Ambiguity Handling (RQ1). 28

3.4 Unacknowledged Ambiguity Detection using V8 (RQ2). 29

4.1 Inputs, Intermediate Outputs and Ambiguity-handling Rules for Solution Alternatives. 45

4.2 Summary Statistics for our Datasets. 48

4.3 Accuracy of Different Configurations of Solutions ③ and ④ for Anaphoric Ambiguity Detection. 50

4.4 Success Rate of Different Configurations of Solutions ③ and ④ for Anaphora Resolution. 52

4.5 Accuracy Results for Different Anaphoric Ambiguity Handling Solutions. 52

5.1 Results of Document Collection. 74

5.2 Accuracy of Classification Models for Question Analysis (RQ1). 76

5.3 Accuracy of Retriever Models for Document Retrieval (RQ2-a). 78

5.4 Accuracy of Retriever Models for Context Retrieval for DocQ (RQ2-b). 79

5.5 Accuracy of Retriever Models for Context Retrieval for DomQ (RQ2-b). 80

5.7 Accuracy of Reader Models for Answer Extraction (RQ3). 81

v

Chapter 1

Introduction

1.1 Context

Requirements engineering (RE) is a sub-field of software engineering (SE) that addresses the elicitation and

specification of the goals, desired characteristics, capabilities, and constraints of software-intensive systems [3, 4].

The quality of requirements has a direct impact on the overall success of a project. In particular, ensuring the

precision and consistency of requirements is paramount for avoiding major development risks such as time

and budget overruns, failure to meet users’ needs, and systems that are not trustworthy. Examples where poor

requirements have had serious negative consequences are plenty. To give one, in 2000, FBI started to develop a

case management system, named the Virtual Case File. The project failed due to inadequate requirements with a

cost implication of over $200 million [5].

A software requirements specification (SRS) is considered as a central artifact in RE, laying out the

requirements of the system-to-be [6]. An SRS is typically intended for a diverse audience, e.g., product

managers, domain experts, and developers. To facilitate communication among stakeholders, the overwhelming

majority of SRSs are written in natural language (NL) [7]. A key advantage of NL is that it facilitates shared

understanding among different stakeholders who may have different backgrounds and expertise, often requiring

little or no additional training [8]. Despite this advantage, NL requirements are prone to a variety of quality

issues, including different types of ambiguity [9, 10, 11], incompleteness [12], and inconsistency. Requirements

are often manually inspected to identify such quality issues.

This dissertation aims to provide AI-based automated support for helping requirements engineers with

inspecting NL requirements more efficiently and identifying different quality issues, with a focus on ambiguity.

Ambiguity is an inherent phenomenon in NL, occurring when a text segment is open to multiple interpreta-

tions [13]. Manual ambiguity handling in requirements is challenging. Not only is this task time-consuming and

error-prone, but it also requires, to a certain level, domain knowledge that facilitates interpreting requirements,

consequently highlighting the ambiguous ones. SRSs vary across domains and thus use a domain-specific

vocabulary [9]. Incorporating domain-knowledge into automated ambiguity handling solutions is therefore

advantageous in order to obtain more accurate results.

In the RE literature, ambiguity in NL requirements (among other quality issues) has been extensively

1

CHAPTER 1. INTRODUCTION

studied [14, 15, 16, 17, 18]. In an early work, the different ambiguity types pertinent to NL requirements are

discussed [19]. Following this, several methods have been proposed in the literature concerning ambiguity

detection in requirements [20, 21, 9, 22]. Existing work in RE has five limitations.

C1. Despite ambiguity being prevalent in requirements, there is little work in RE dedicated to handling

the syntactic ambiguity types addressed in this dissertation, namely coordination, prepositional-phrase

attachment, and anaphoric ambiguity.

C2. Current research in RE focuses exclusively on detecting ambiguity in requirements without providing

recommendations about their interpretations.

C3. Existing domain-specific methods for detecting ambiguity in requirements cannot be easily extended to

domains other than the ones used in development. No automated means are provided to adapt the same

solution for addressing ambiguity across diverse domains.

C4. Automated solutions using natural language processing (NLP) do not exploit the full potential of NLP.

Recent advances in the NLP field, notably the dominant use of large-scale language models such as

BERT [23], prompt both new RE automation solutions as well as a reexamination of the existing ones.

C5. Related to C4, the fifth limitation is that question answering (QA) has been studied in RE with a limited

scope [24, 25, 26, 27], and to the best of our knowledge, has not yet been explored in the context of

requirements quality assurance.

Our work in this dissertation takes steps toward addressing the above limitations. To address C1, we provide

automated support for improved handling of the syntactic ambiguity types mentioned above. Complementing

the existing evidence in the RE literature about the prevalence of ambiguity [28, 19, 29, 30, 31, 21, 1, 32], we

observe that 21%, 26%, and 25% out of 5000 industrial requirements investigated in our work are subject to

coordination, prepositional-phrase attachment, and anaphoric ambiguity analysis, respectively. To address C2
and C3, we incorporate domain-specific knowledge that is automatically adapted to the underlying domain of

the SRS under analysis in providing recommendations about the interpretations of requirements. This in turn

leads to more accurate ambiguity detection. To address C4 we devise multiple new solutions and re-implement

existing ones to assess their effectiveness in the context of NL requirements. Our solutions cover a spectrum of

technologies including off-the-shelf NLP tools, feature-based machine learning (ML) methods and the recent

language models. Finally, with regard to C5, we devise a QA assistant that facilitates inspecting SRSs, where

requirements engineers can pose questions in NL concerning quality issues (e.g., incomplete requirements) and

domain-specific interpretations of requirements (e.g., clarification of certain equations or definitions of domain

concepts).

1.2 Contributions and Organization

As shown in Figure 1.1, in this dissertation, we present five components structured in three chapters as follows:

• Chapter 3: Using Domain-specific Corpora for Improved Handling of Ambiguity in Requirements.
In this chapter, we propose an automated approach for improving the handling of coordination ambiguity

(CA) and prepositional-phrase attachment ambiguity (PAA) in NL requirements. CA can potentially

occur when the two conjuncts are preceded or followed by a modifier [29]. PAA can occur when a

2

CHAPTER 1. INTRODUCTION

A1. A Database Server (DBS)
is a server which uses a
database application that
provides database services
to other computer programs
or to computers, as defined
by the client–server model.

R1. Ambiguous
R2. Ambiguous
R3. Ambiguous

Solutions

Ambiguity Handling

Coordination

Prepositional
Phrase

Attachment

Anaphora

Ch.3

Ch.3

Ch.4

Domain-
Specific Corpus

Generator
Ch.3

CorpusCorpus

QA- based Requirements
Analysis Assistant

Ch.5

Corpus

Ambiguity Detection
& Interpretation

SRSs
R1. Service availability shall
measure the outage of LEO
satellites and terminals
R2. The outage management
platform shall provide
administrators with the ability
to categorize outages with
discrete tags
R3. The S&T component shall
send all approval requests to
the DBS. If the request contains
storage parameters, it shall
create a configuration record
from the parameters.

Extract
Keywords

Questions

Q1. What is the DBS?
Q2. How often shall the S&T
component send approval
requests to the DBS?

Answers within
Contexts

A2. The frequency of sending
approval requests should not
exceed 1 Hz.

LEO: Low Earth Orbit DBS: Database ServerS&T: Surveillance and Tracking

Figure 1.1: Dissertation Overview.

prepositional-phrase (PP) is preceded by a verb and a noun phrase, then it becomes unclear whether the PP

is an adverbial modifier (attached to the preceding verb) or a noun attribute (attached to the preceding noun

phrase) [28]. The requirement R1 in Figure 1.1 contains CA with two possible interpretations. The first

interpretation occurs when the modifier “LEO” (low-earth orbit) modifies the two conjuncts “satellites”

and “terminals”. The second interpretation occurs when the modifier “LEO” modifies “satellites” only.

The requirement R2 in Figure 1.1 contains PAA with two possible interpretations due to the presence of

a prepositional-phrase (PP) attachment. The first interpretation occurs when the PP “with discrete tags”

is attached to the verb. The second interpretation occurs when the PP is attached to the noun “outages”.

Our approach builds on and enhances an ensemble of structural patterns alongside heuristics from the

existing literature. An important novelty aspect in our CA and PAA ambiguity handling approach is the

use of domain-specific corpora, and since these corpora cannot be assumed to be available a priori in most

cases, we take steps to build such corpora automatically. To this end, we develop a novel approach that

automatically extracts domain-specific corpora from Wikipedia and utilizes them to increase the accuracy

of CA and PAA handling in requirements documents. We conduct a large-scale evaluation of our approach

using more than 5000 industrial requirements from seven different application domains. Based on our

evaluation, our approach can detect CA and PAA with an average precision of ≈80% and an average recall

of ≈89% (≈90% for cases of unacknowledged ambiguity). This work has been published in a conference

paper [10] and an artifact paper [33].

Concretely, our contributions in Chapter 3 are as follows:

– We propose and devise an automated solution that leverages NLP and ML for improved handling of

3

CHAPTER 1. INTRODUCTION

CA and PAA.

– We implement our approach in Java and release it for public use [33] alongside the datasets used for

building the approach.

– We implement the domain-specific corpus generator (a sub-component of our overall improved

ambiguity handling approach) and release it for public use. Specifically, we re-implement this

sub-component in Python to be more compatible with the recent NLP literature. Further details are

provided in the tool support section 3.5.2 and submitted as a tool paper [34].

– Large-scale evaluation of our approach on a set of industrial requirements from diverse application

domains.

• Chapter 4: Automated Handling of Anaphoric Ambiguity in Requirements: A Multi-solution Study.
In this chapter, we develop, evaluate, and compare six alternative automated solutions for anaphoric

ambiguity handling in NL requirements. We focus in our work on pronominal anaphoric ambiguity (most

relevant anaphoric type to RE) which occurs when there is more than one plausible antecedent to which an

anaphor (pronoun) can refer [35, 9]. Estimates from the RE literature suggest that nearly 20% of industrial

requirements contain anaphora [1, 2]. The requirement R3 in Figure 1.1 contains pronominal anaphoric

ambiguity. Here, the anaphor is it, the potential antecedents are the preceding noun phrases (NPs), namely

“the S&T component”, “approval requests”, “the DBS”, “the request” and “storage parameters”. It is not

clear which subsystem should create a configuration record in this case. Motivated by identifying the

most accurate technology platform, we systematically compare multiple alternatives to achieve our goal.

We devise our solutions based on language models, machine learning (ML), different learning features,

and NLP off-the-shelf tools. Each solution addresses both the detection of anaphoric ambiguity and the

resolution of anaphora. Our evaluation involved two datasets with a total of ≈1,350 industrial requirements.

The best-performing solution for anaphoric ambiguity detection is the one based on ML which achieved

an average precision of ≈60% and a recall of 100%. The best-performing solution for anaphora resolution

is the one based on language models, it achieved a success rate of ≈98% in interpreting anaphora. This

work has been published in a conference paper [11] and a follow-up tool paper has been submitted [36],

and is included in the tool support section 4.5.

Concretely, our contributions in Chapter 4 are the following:

– We conduct a comparative analysis that empirically evaluates six alternative solutions across different

available technologies for improved handling of anaphoric ambiguity.

– We publicly release the Dataset for Anaphoric aMbiguity In Requirements (DAMIR), which we

created and annotated for this task.

– We implement all considered solutions, and the hybrid best-performing solution emerged in our

study and release it for public use.

• Chapter 5: AI-based Question Answering Assistant for Analyzing Natural-language Requirements.
In this chapter, we devise ReQAssis, an AI-based automated quality assurance assistance by means of

QA. ReQAssis takes as input an SRS and a question posed in NL. ReQAssis then employs two models:

a Retriever and a Reader that jointly provide the requirements engineer with the output consisting of

a list of relevant text passages and a potential answer highlighted in each passage for a given question.

4

CHAPTER 1. INTRODUCTION

Figure 1.1 shows the use case example of posing a question about the definitions of a domain-specific

term, “the DBS” in this case. The approach automatically generates external domain-specific knowledge

resource by crawling Wikipedia and finds the likely answer to the question. Our approach also enables

questions related to quality issues within a given SRS. For example, the question “How often shall the

S&T component send approval requests to the DBS?” is aimed at verifying whether the requirement R3 is

complemented by further details in another requirement in the same SRS. To evaluate our approach, we

generated the Requirements Engineering Question-Answering dataset (REQuestA) that is specific to NL

requirements in a semi-automatic manner. REQuestA is created from a collection of six SRSs covering

three different application domains, namely aerospace, defence and security. REQuestA contains a total

of 387 question-answer pairs of which 173 are automatically generated, and the rest are proposed by

third-party analysts. We empirically evaluate ReQAssis on REQuestA dataset. ReQAssis can retrieve the

relevant document for domain-specific questions from a corpus with 100% accuracy. It can retrieve the

text passage that contains the right answer to the input question among the top-3 relevant text passages

with an average accuracy of 90.6%, and extract from the right passage the likely answer to the question

with an average accuracy of 84%.

Concretely, our contributions in this chapter are as follows:

– We devise an automated QA assistance that supports requirements engineers in inspecting require-

ments more efficiently.

– We empirically evaluate our approach on a semi-automatically generated dataset.

– We publicly release the RE Question-Answering dataset (REQuestA), which we created and anno-

tated for this task.

– We implement the best configuration of REQAssis, developed in Python, and release it to the public.

5

Chapter 2

Background

This chapter provides background information for this dissertation. The content of the chapter is organized under

three main topics: (1) Natural Language Processing (NLP), (2) Machine Learning (ML), (3) Language Modeling

(LM), and (4) Word Vectorization.

2.1 Natural Language Processing

Natural Language Processing (NLP), a sub-field of artificial intelligence (AI), can broadly be defined as the

application of computational technologies to process and analyze natural language (NL), that is, written and

spoken human language [37].

In our work, we generally employ an NLP pipeline composed of the following components: (1) Tokenizer to

split the text into tokens, for example, the sentence “what time is it?” is tokenized as five tokens [What, time, is,

it,?]; (2) Sentence Splitter to break up the text into individual sentences; (3) Part-Of-Speech (POS) Tagger to

assign a POS tag, e.g., noun, verb, or pronoun, to each token in each sentence; (4) Lemmatizer to identify the

canonical form (lemma) of each token, for example, the lemma for “playing” is “play”; (5) Constituency Parser

to identify the structural units of sentences, e.g., verb phrases and noun phrases; (6) Dependency Parser for

identifying the grammatical dependencies between tokens in sentences, e.g., subject and object; (7) Coreference

Resolver to find mentions that refer to the same textual entity; and finally, (8) Semantic Parser to extract

information about the meanings of words.

2.2 Machine Learning

Machine learning (ML), another sub-field of AI, is concerned with developing models that learn on a sample

data, called training data, to make predictions and decisions on new unseen data (test data) [38].

Machine learning systems can be categorized into four types according to the type of supervision they receive

during training [39]. (1) Supervised learning algorithms require feeding the desired solutions in the training

data (labels). Supervised learning involves two main tasks, classification and regression. In short, classification

deals with categorical targets, whereas regression deals with continuous numerical targets. (2) Unsupervised

7

CHAPTER 2. BACKGROUND

learning algorithms, on the other hand, do not require training labels and try to learn without a teacher. (3) Semi-

supervised learning algorithms deal with partially labeled data and mostly unlabeled data, they often combine

supervised and unsupervised techniques. (4) Reinforcement learning systems are based on agents that observe

the environments and perform actions and get a positive or negative reward for each action [39].

In this thesis, we work primarily with supervised techniques. In this context, we briefly discuss the supervised

learning models as well some additional concepts that we use and experiment with such as data imbalance

handling and ensembling techniques.

2.2.1 Data Imbalance Handling

Data imbalance handling is the process of improving the quality of unbalanced data, where some classes are

under-represented and make a small minority of the data compared to other classes. There are two popular ways

to balance the data before feeding it to ML models, oversampling and undersampling. Oversampling techniques

create new data points of the minority class, and undersampling ones remove some of the majority class data

points, until reaching a balance. In the following, we present two sampling techniques, Synthetic Minority

Oversampling Technique (SMOTE), and random resampling.

• Synthetic Minority Oversampling Technique (SMOTE) is an oversampling technique that selects two

examples from the minority class that are close in the feature space using the k-nearest neighbour technique,

then creates a new point in a random location between the selected examples or data points [40].

• Random Resampling groups two simple resampling techniques, Random Oversampling and Random

Undersampling [41].

– Random Oversampling randomly duplicates data points from minority class.

– Random Undersampling randomly removes data points from the majority class.

2.2.2 Supervised ML algorithms:

In this dissertation, we use the following supervised ML classification algorithms: Decision tree (DT), feed-

forward neural network (FNN), k-nearest neighbor (kNN), logistic regression (LR), naïve Bayes (NB), random

forest (RF), support vector machine (SVM), AdaBoost (ADA), and XGBoost (XGB).

• Decision Tree (DT) is a supervised learning method that predicts the target value by learning simple rules

inferred from data points and characteristics and building a tree structure of decision rules. The DTs are

simple to interpret and understand, and they can be visualized. However, they can easily overfit on the

training data [42].

• Feed-forward neural network (FNN) is a simple neural network that consists of a number of processing

units that are interconnected and organized in layers. The size of the input layer is the number of data

features, and the size of the output layer is the number of classes. The FNN is called feed-forward

algorithm because it has no feedback between layers, this means that the output of any layer does not

affect that same layer or the preceding ones [43].

• k-Nearest Neighbour (kNN) algorithm is a simple supervised learning technique that classifies new data

points based on similarity (neighboring) to the available classes of the training set [44].

8

CHAPTER 2. BACKGROUND

• Logistic Regression (LR) is a probabilistic supervised classification algorithm that estimates the probability

that an instance belong to a certain class. LR provides probabilistic values between 0 and 1 [45].

• Naïve Bayes (NB) is a simple probabilistic algorithm that is based on the Bayes theorem to solve supervised

classification problems. The Bayes theorem provides the conditional probability of a first event A, given

that a second event B has occurred. NB is an effective algorithm for high-dimensional datasets; it does not

require a long training time and provides quick predictions [46].

• Random Forest (RF) is a well-known supervised learning algorithm based on combining multiple decision

trees trained on different subsets of the training dataset and predicting the final output based on the majority

votes of the predictions [47].

• Support Vector Machine (SVM) is another well-known supervised learning algorithm. The objective of

SVM is to create the best decision boundary (hyperplane) that can segregate an n-dimensional space into

classes. This hyperplane is created based on extreme points (vectors) which are referred to as support

vectors [48].

• AdaBoost (ADA), short for adaptive boosting, is an iterative ensemble boosting classification model

(classifier) that builds a strong classifier (provides highly accurate predictions) by combining multiple

weak classifiers (performs only slightly better than random guessing) to increase the accuracy of the

predictions. In each iteration, ADA sets the weights of the classifiers, ensuring accurate predictions of

unusual observations [49].

• XGBoost (XGB), short for Extreme Gradient Boosting, is an optimized implementation of Gradient

Boosted Decision Trees (GBDT). GBDT is an iterative ensemble boosting classifier that involves DTs.

In each DT iteration, GBDT adjusts the weight, coefficient, or bias values applied to each input variable

to predict the target class. In this dissertation, we refer to Gradient Boosted Decision Trees as XGBoost

(XGB) [50].

2.2.3 Ensembling techniques

Ensembling in ML can be defined as combining the decisions of individual ML models or reinforcing a main

model with smaller models, with the goal of providing an improved performance. There are multiple ensembling

techniques; however, we present two main categories that we use over the course of this dissertation: voting and

stacking.

• Voting. There are two types of voting techniques used to combine ML predictions. Hard voting, known as

majority voting, counts the number of votes for each class provided by all participating algorithms. For

each data point, the majority wins, which means that the output class is the one voted on by the majority

voters. Soft voting uses the prediction probabilities of the participating algorithms. The predictions

probabilities of each class are summed, and the predicted class is the one with the greatest sum (gets most

of the vote). For both voting types, weights can be assigned to strong algorithms and a preferred class can

be set in case of a tie.

• Stacking is an advanced voting technique that trains a new model (meta-learner) on the output of multiple

models to provide improved overall accuracy. The base models used to obtain the initial predictions are

9

CHAPTER 2. BACKGROUND

generally called weak learners. The meta-learner is not exposed to the training dataset, but it takes as input

the weak-learner predictions, and it attempts to learn the combination of these predictions to make a better

output prediction.

2.3 Language Modeling

Language models are probabilistic deep learning models that are trained to determine the probability of

occurrence of a word or a sequence of words based on the surrounding context and the training text/corpora.

BERT [23] (Bidirectional Encoder Representations from Transformers) is a notable example of such pre-trained

models, which have been widely applied for solving many downstream NLP tasks, such as Named Entity

Recognition, Sentiment Analysis, and Text Classification.

BERT is pre-trained on the BooksCorpus [51] and English Wikipedia [52], with two training objectives,

namely masked language modeling (MLM) and next sentence prediction (NSP). In MLM, a fraction of the tokens

in the pre-training text are randomly masked. The model then learns to predict the original vocabulary of these

masked tokens based on the surrounding context. For example, BERT should predict the masked token “briefed”

in the phrase “[MASK] reporters on”. NSP requires the model to predict a binary label that represents whether

two segments are consecutive in the original text. BERT uses the Transformer architecture proposed in [53]. A

Transformer is a sequence model that has an encoder-decoder structure. The encoder takes an input sequence

(say in English) and transforms it into embeddings, whereas the decoder takes the embeddings and creates the

output sequence (say, the translated sequence in French). The Transformer draws out the significant power of

parallelization. The BERT model architecture applies a 12-layer bidirectional Transformer encoder [23]. The

encoder consists of multiple layers, where each layer has two sublayers, namely a multi-head (self-)attention

mechanism and a feed-forward neural network. Self-attention is a mechanism that is used to compute the

representation of a single sequence. For example, in the text sequence “bank of the river”, the words “bank” and

“river” influence each other. Therefore, their embeddings can be re-weighed to capture more context concerning

the meaning of “bank” that is related to water and not money. NL text is more complicated than the example

above and often allows for more than one attention (the meaning of “bank”). To illustrate, consider the example

sequence “I gave food to my dog Charlie”. We see in this example multiple possible attentions like “Charlie” is

“my dog”, “I” am the one who “gave”, and “food” is given to “Charlie”. The multi-head attention mechanism

allows the model to jointly attend to information from different representation subspaces.

SpanBERT is a variant of BERT that is optimized for the prediction of spans of text. Unlike BERT,

SpanBERT masks random continuous spans, rather than random tokens. SpanBERT is trained only on one

objective, that is, the span boundary objective (the start and end of the text span boundary). SpanBERT improves

BERT’s performance on text span prediction and selection tasks.

2.4 Word Vectorization

Word Vectorization involves transforming single words into numeric representations – also called vectors.

Below, we present Term Frequency - Invert Document Frequency (TFIDF), Word2Vec, BERT embeddings, and

SentenceBERT embeddings.

10

CHAPTER 2. BACKGROUND

Term Frequency - Invert Document Frequency (TFIDF)

Term Frequency - Invert Document Frequency (TF-IDF) is statistical score that reflects the importance of a word

to a document in a set of documents. TF-IDF builds a sparse vector representation for each word. The TF-IDF

score is the product of the values of TF (term frequency) and IDF (inverse document frequency). TF is computed

per query as the frequency count of the query term in the document divided by the total number of terms in the

document. IDF is computed per query as the logarithm of the division of the total number of documents by the

number of documents containing the query [54].

Word2Vec

Word2Vec (word to vector) builds and groups vectors of similar words allowing to capture the meaning of each

word based on the training dataset/corpus. Word2Vec can be built using two main architectures, skip-gram which

try to predict surrounding words given a target word, and continuous bag of words (CBOW) which try to predict

a single words from a fixed window of words (context) [55].

Contextualized Embedding

Contextualized embeddings are representations that produce token embeddings by considering the context in

which the word occurs. In other words, the same token can have different embeddings when it occurs in different

contexts [56].

• BERT Embeddings. BERT-base model has 12 layers of transformer encoders. Each layer’s output for

each token can be used as word embeddings to represent that token. There are multiple options to extract

token embeddings from BERT such as considering the last layer or combining the embeddings produced

in several layers. Some of these options are reported the NLP literature to yield the best results [23, 57].

In our work, we experiment with these options, namely, the output of the last hidden layer, the summation

of the output of all 12 layers, the output of the second-to-last hidden layer, the summation of the output of

the last four layers, and concatenation of the output of the last four layers.

• SentenceBERT Embeddings. Combining word embeddings, as discussed above, to create sentence

representations does not lead to accurate results on sentence-related NLP tasks [57]. In our work, we use

SentenceBERT (SBERT), which is an alternative method that is trained to provide meaningful sentence

embeddings. SBERT is a modification of pre-trained BERT that uses Siamese network and triplet loss [58]

techniques to build models with the ability to provide embeddings for the input sentences.

11

Chapter 3

Using Domain-specific Corpora for Improved
Handling of Ambiguity in Requirements

3.1 Motivation and Contributions

Ambiguity has been widely studied in the requirements engineering (RE) literature [32, 59, 19, 60, 12]. Both

manual approaches based on reviews and inspections [59, 61], and automated approaches based on natural

language processing (NLP) [20, 21, 9, 22], have been proposed for detecting ambiguity in requirements. Some

recent works use domain-specific corpora for detecting terms that are likely to be ambiguous due to different

meanings across domains [9, 62, 63, 64]. Current research on ambiguity in RE, as we elaborate later, has three

main limitations. First, the research focuses exclusively on detecting ambiguity and does not address automated

interpretation for requirements in which no genuine ambiguity exists. The lack of automated interpretation

impedes further automated analysis, e.g., automated information extraction from requirements [65, 66]. Second,

existing methods for detecting domain-specific ambiguity are restricted to identifying merely words with different

meanings across domains, and further require the domain of interest to be specified a priori. Finally, while the

negative consequences of unacknowledged ambiguity are known in the RE literature [20], the question of how

accurately unacknowledged ambiguity can be detected through automated means has never been investigated

empirically.

Motivated by addressing the above limitations, we propose an automated approach for improved ambiguity

handling – both ambiguity detection and interpretation – in NL requirements. Ambiguity detection is concerned

with finding the requirements that are genuinely ambiguous. Interpretation, in contrast, is concerned with

providing the most likely meaning where the potential for ambiguity exists, but where there is no ambiguity. Our

approach incorporates domain knowledge by automatically generating domain-specific corpora, without any

a-priori assumption about the domain. These corpora alongside a set of structural patterns and heuristics are

used for handling ambiguity in requirements. In our evaluation, we analyze the impact of domain knowledge on

ambiguity handling. We further assess how well our automated approach can detect unacknowledged ambiguity

in different domains.

13

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

Our work in this chapter concentrates on coordination ambiguity and prepositional-phrase attachment

ambiguity [28, 19, 29], hereafter referred to as CA and PAA, respectively. Targeting these (syntactic) ambiguity

types is motivated by their prevalence in NL requirements [30]. In our document collection, as we will

discuss later in the chapter, out of 5156 requirements, 1098 (21%) are subject to CA analysis and 1328 (26%)

to PAA analysis. Within these, human annotators acknowledged ambiguity or had different interpretations

(unacknowledged ambiguity) in ≈57% of the requirements.

Coordination is a structure that links together two sentence elements (called conjuncts) using a coordinating

conjunction (e.g., “and” or “or”) [67]. CA can potentially occur when the two conjuncts are preceded or followed

by a modifier [29]. The sentence could then be interpretable in two ways, depending on whether only the

conjunct next to the modifier is being modified or both conjuncts are being modified [19]. Fig. 3.1 shows

an example requirement, R1, with two potential interpretations. The first interpretation, first read, hereafter,

FR, occurs when the modifier “LEO” (low-earth orbit) modifies the two conjuncts “satellites” and “terminals”

(Fig. 3.1 (a)). The second interpretation, second read, hereafter, SR, occurs when the modifier “LEO” modifies

“satellites” only (Fig. 3.1 (b)).

(a)

(b)
R1. Service availability shall measure the outage of LEO satellites
and terminals.

R1. Service availability shall measure the outage of LEO satellites
and terminals.

First Read

Second Read

*LEO stands for low-earth orbit

Figure 3.1: Example of Coordination Ambiguity (CA).

A prepositional-phrase (PP) attachment is a PP preceded by a verb and a noun phrase [28]. Virtually all PP

attachments have the potential for PAA, because they could be interpretable in two ways, depending on whether

the PP is an adverbial modifier (attached to the preceding verb) or a noun attribute (attached to the preceding

noun phrase). Fig. 3.2 shows an example requirement, R2, with two potential interpretations due to the presence

of a PP attachment. The first interpretation, verb attachment, hereafter, VA, occurs when the PP “with discrete

tags” is attached to the verb “categorize” (Fig. 3.2 (a)). The second interpretation, noun attachment, hereafter,

NA, occurs when the PP is attached to the noun “outages” (Fig. 3.2 (b)).

(b)

(a) R2. The outage management platform shall provide administrators
with the ability to categorize outages with discrete tags.

R2. The outage management platform shall provide administrators
with the ability to categorize outages with discrete tags.

Noun Attachment

Verb Attachment

Figure 3.2: Example of Prepositional-phrase Attachment Ambiguity (PAA).

R1 and R2 have the potential to suffer from CA and PAA, respectively. The question is whether these are

genuine ambiguities or merely situations that human experts can decisively interpret with little room for divergent

interpretations. Existing techniques do not incorporate domain knowledge for providing a likely interpretation

of CA; instead, they rely on frequency-based computations derived from a generic corpus [68]. For example,

14

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

using existing techniques, attempting to interpret the coordination in R1 would yield FR. This interpretation is

incorrect; with domain knowledge, the coordination would be interpreted as SR. As for the PP attachment in R2,

existing techniques are unable to provide an interpretation, although the attachment is interpretable as VA with

domain knowledge.

Contributions. We take steps toward addressing the limitations outlined above. Our contributions are as follows.

(1) We propose an automated approach for handling CA and PAA in NL requirements. Our approach

uses an ensemble of structural patterns and heuristics. Specifically, we match requirements against a set of

structural patterns, leveraging and enhancing existing patterns in the literature. In tandem, we attempt to interpret

all requirements with coordination and PP-attachment structures using heuristics that are based on semantic,

morphological, and frequency information. Some of these heuristics are novel; others are borrowed from the

literature and enhanced where necessary. By combining these patterns and heuristics, we attempt to tell apart the

requirements that can be disambiguated via automated interpretation from the requirements that are genuinely

ambiguous.

(2) We devise a novel domain-specific corpus generator. Without assuming any a-priori knowledge about the

domain, we first automatically extract keywords from an input requirements document. Our corpus generator

then assembles a large corpus of Wikipedia articles relevant to the terminology (and thus the domain) of the

given requirements document. This automatically generated corpus is utilized for increasing the accuracy of

the heuristics that rely on frequency-based information. For example, the occurrence of the word “capital” in a

requirements document within the aerospace domain differs in frequency and co-occurring words from the same

word occurring in a requirements document within the financial domain. Generating and using a domain-specific

corpus for ambiguity handling lies at the heart of our proposed approach.

(3) We empirically evaluate our approach on 20 industrial requirements documents. These documents

collectively contain 5156 requirements covering seven distinct application domains. The ground truth for our

evaluation was prepared by two trained annotators (linguistics experts and non-authors). Our results indicate

that: (i) our approach detects CA and PAA with a precision of ≈80% and recall of ≈89% (≈90% for cases of

unacknowledged ambiguity); (ii) the automatic interpretations by our approach have an average accuracy of

≈85%; and (iii) using domain-specific corpora leads to substantial gains in accuracy for ambiguity handling,

improving detection by an average of ≈33% and interpretation by an average of ≈16%. We have developed a tool,

named MAANA, which implements our approach for the domain-specific handling of ambiguity. Specifically,

MAANA detects requirements that potentially contain CA or PAA. The tool and the non-proprietary requirements

we use in our evaluation are publicly available at https://github.com/SNTSVV/MAANA.

Structure. Section 3.2 discusses and compares with related work. Section 3.3 presents our approach. Section 3.4

describes our empirical evaluation. Section 3.6 addresses validity considerations. Section 3.7 concludes the

chapter.

3.2 Related Work

We focus on handling CA and PAA in NL requirements. Our approach, discussed in Section 3.3, builds

on and further enhances the existing structural patterns and heuristics from the RE and NLP literature for

CA [69, 70, 71, 72, 73, 74, 75, 68, 76, 77, 78] and PAA [19, 79, 80]. Our work, to our knowledge, is the first to

bring these patterns and heuristics together for handling CA and PAA. Below, we position our work against the

related work on ambiguity handling in both the RE and NLP communities.

15

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

3.2.1 Ambiguity Handling in the RE Community

Ambiguity in requirements has been extensively studied from different perspectives, including understanding

the role of ambiguity in RE [81, 82, 32, 83], analyzing the linguistic causes of ambiguity [84, 31, 19, 85], and

ambiguity prevention [14, 15, 16, 17, 18]. Automated ambiguity detection solutions in RE are mainly based on

matching NL requirements against pre-defined structural patterns using regular expressions, NLP, or both [9].

Numerous approaches and tools have been proposed to this end [60, 86, 21, 75, 17, 87, 1, 2, 88, 89]. In addition

to these, some recent works attempt to detect lexical ambiguity – the situation where a word has different

meanings depending on the domain [31] – by integrating domain knowledge from Wikipedia [9, 62, 63, 64].

CA detection has been investigated to some extent in the RE literature. Chantree et al. [68] address

CA detection using structural patterns and frequency-based heuristics. Their work has been extended over

the years [72, 90, 74] with additional heuristics [70, 76], and for anaphora ambiguity detection [21], i.e.,

ambiguity due to multiple interpretations of pronouns. Though considered a prevalent ambiguity type in

requirements [31, 19, 32], to our knowledge, automated handling of PAA has not been previously studied in RE.

Our work differs from or enhances the above research in several ways. First, none of the existing approaches

address the automated interpretation of (potentially ambiguous) coordination structures. As for PAA, the

topic has not been tackled in RE before. Our approach handles both CA and PAA by combining a broad

range of structural patterns and heuristics. Second, none of the existing approaches evaluate the detection of

unacknowledged ambiguity. We address this gap in our empirical evaluation. Third, the existing automated

methods for domain-specific corpus generation from Wikipedia are limited to a pre-defined set of domains. Our

approach, in contrast, can generate a corpus based on any given requirements document without knowing the

underlying domain in advance. Fourth and finally, industrial evaluations of ambiguity handling in RE are scarce.

Our evaluation contributes to addressing this gap by using a large industrial dataset.

3.2.2 Ambiguity Handling in the NLP Community

Syntactic ambiguity types, including CA and PAA, have been studied for a long time by the NLP community [91].

In an early work by Goldberg [69], CA is handled using conditional probabilities of word co-occurrences. Pantel

and Lin [92] present an unsupervised corpus-based method for handling PAA through a notion of contextual

similarity. Agirre et al. [79] improve the accuracy of PAA handling by integrating semantic similarity with

syntactic parsing. Calvo and Gelbukh [80] propose querying the web for word co-occurrence frequencies and

use these frequencies for more accurate PPA handling. In a similar vein, Nakov and Hearst [71] use structural

patterns alongside statistical co-occurrence frequencies gathered from the web for handling CA and PAA.

In the context of ambiguity handling, the use of domain knowledge in NLP is mostly directed at word

sense disambiguation (WSD) in specific domains [93]. To this end, Wikipedia is a commonly used source of

domain knowledge [94, 95]. Fragolli [96] derives from Wikipedia domain-specific corpora as resources for

WSD. Similarly, Gella et al. [97] map manually defined topics in WordNet [98, 99] to Wikipedia for generating

domain-specific corpora that can in turn be employed for WSD.

We are not aware of any work in the NLP community that uses domain-specific corpora for handling either

CA or PAA. Instead, in the existing NLP technologies, e.g., syntax parsing [100], the handling of syntactic

ambiguity – CA and PAA included – is tuned over generic texts such as news articles. These technologies

therefore do not provide accurate results for CA and PAA in a domain-specific context. As we show in

Section 3.4, our approach, which incorporates domain knowledge for handling CA and PAA, provides significant

improvements over NLP technologies tuned over generic texts.

16

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

Preprocessing

Domain Specific
Corpus Generation

SRS Application of
Heuristics

Pattern
Matching

WordNet

Keywords

coordination & PP- attachment
      phrases

Wikipedia Articles

Pattern list

Ambiguity
Handling

Phrases with
interpretations

Phrases that
matches patterns

Unambiguous

Ambiguous

Final Output

Figure 3.3: Approach Overview.
3.3 Approach

Fig. 3.3 provides an overview of our approach, which is composed of five steps. The input to the approach is

an NL requirements document, hereafter, SRS. In step 1, we process SRS using an NLP pipeline. In this step,

we further identify two subsets of the requirements in SRS, namely Sc and Sp . These two subsets contain all

the requirements with coordination structures and all the requirements with PP attachments, respectively. In

step 2, we match the requirements in Sc and Sp against structural patterns that indicate potential CA and PAA,

respectively. In step 3, we generate a domain-specific corpus for SRS by crawling Wikipedia. Step 3 can be

bypassed if a representative corpus for SRS’s domain already exists (through earlier applications of our approach

to other requirements documents in the same domain). In step 4, we apply a set of heuristics to determine

likely interpretations for the requirements in Sc and Sp . In step 5, we classify into ambiguous and unambiguous

the requirements in Sc and Sp by combining the results of step 2 and step 4. We note that steps 2 and 4 are

independent (i.e., the output of neither step is an input to the other). Step 2 is limited to a finite list of CA and

PAA structural patterns. As we will explain later in this section, the heuristics in step 4, when compared to the

patterns in step 2, cover a wider spectrum of structures that have the potential for CA and PAA. Combining

results from both steps leads to better handling of ambiguity. Below, we elaborate each step of our approach. In

the rest of this chapter, ambiguity refers to CA and PAA exclusively.

3.3.1 Preprocessing
Figure 3.4: NLP Pipeline.

SRS

Tokenizer

POS Tagger

Lemmatizer

Sentence Splitter

Constituency
Parser

 Processed
SRS

1

2

3

4

5

The NLP pipeline we use for preprocessing SRS is depicted in Fig. 3.4. This pipeline

is a sequence of five NLP modules. The first module in the sequence, the Tokenizer,

divides the input text into tokens, such as words and punctuation marks.

The Sentence Splitter splits the text into sentences. The POS Tagger assigns

to tokens part-of-speech (POS) tags, such as noun, verb, and adjective. Next is

the Lemmatizer, which identifies the canonical form (lemma) for each token. For

example, the lemma for “bought” is “buy”. Finally, the Constituency Parser identifies

the structural units of sentences, e.g., noun phrases, verb phrases and prepositional

phrases. More details about each component can be found in Chapter 2. The results

of the NLP pipeline are used in the next steps.

In this step (step 1), we further identify the two requirements subsets, Sc and

17

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

n1, n2, nn: noun, v: verb, adv: adverb, adj: adjective, dt: determiner, p: preposition, /: or.
———

v dt/adj n1 p dt/adj n2 4
v dt/adj n1 p n2 3
v n1 p dt/adj n2 2

1 v n1 p n2

PA
A

dt/adj nn p v1 c v220

adj1 c adj2 adj nn

adv adj1 c adj2
adj1 c adj2 adv

21

23
22

v1 c v2 p dt/adj nn19

CA

nn n1 c n2 nn

n1 c n2 nn
nn n1 c n2

3

8

2

6

1

nn p n1 c n2

adj nn n1 c n2

7

n1 c n2 p nn

9

 v n1 c n2

4
5

adj n1 c n2

n1 c n2 v

v1 c v2 adv

n1 c n2 p dt/adj nn11

17

nn p v1 c v2
v1 c v2 p nn

12

v1 c v2 to v

13

adv v1 c v2

18

14

v1 c v2 nn

 v to v1 c v215
16

adj adj n1 c n2 10

dt n1 c dt n2 p nn

nn dt n1 c dt n2
nn p dt n1 c dt n2

24

26
25

adj nn dt n1 c dt n2

nn dt n1 c dt n2 nn
adj dt n1 c dt n2

27

29
28

v n n1 p n25
v dt adj n1 p n29

v n n1 p dt adj n28
v n n1 p dt/adj n27

6 v n1 p dt adj n2

v dt adj n1 p dt/adj n210

For CA: The two conjuncts are in bold and the modifier is underlined.
For PAA: The verb and first noun are in bold, and the second noun is underlined.

Table 3.1: Patterns for ambiguity detection (CA and PAA).

Sp , that should be subject to CA handling and PAA handling, respectively. Sc

is comprised of all the requirements in SRS that contain “or”, “and”, or both. We note that only these two

conjunctions can lead to CA [68, 29]. Sp is comprised of all the requirements in SRS that contain a PP

attachment [28]. Requirements that contain a conjunction of interest (i.e., “and” or “or”) as well as a PP

attachment are included in both Sc and Sp .

3.3.2 Pattern Matching

In this step, we analyze Sc and Sp to identify requirements that are likely to be ambiguous due to their syntactic

structure. Table 3.1 lists our patterns for CA and PAA. Of these, 23 CA patterns and four PAA patterns come

from the literature [69, 70, 71, 72, 74, 75, 19, 79]. The remaining patterns, shaded blue in the table (i.e., CA

patterns #24–29 and PAA patterns #5–10) are novel. The novel patterns were derived by analyzing a subset

of the requirements in our dataset, as we will precisely define in Section 3.4.3. Specifically, we analyzed the

ambiguous requirements in the tuning portion of our dataset.

We match the patterns against the requirements in Sc and Sp . For pattern matching, the unit of analysis is a

text segment, which is the part of a requirement that matches a given structural pattern from Table 3.1. A pattern

suggesting CA matches a segment that contains a conjunction (denoted as c) linking two conjuncts (marked in

bold) with a modifier (underlined). For example, the matching segment in R1 (Fig. 3.1) corresponds to pattern#1

for CA, where LEO is the modifier and the conjunction and joins the two conjuncts satellites and terminals.

We recall from Section 3.1 that CA occurs when it is unclear whether a modifier is attached to both conjuncts

(FR) or only to the closest conjunct (SR). A pattern suggesting PAA matches a segment with a verb (v) followed

by a first noun (n1) – both marked in bold – followed by a PP which consists of a preposition (denoted as p) and

a second noun (n2 – underlined). For example, the matching segment in R2 (Fig. 3.2), “categorize outages with

18

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

Query Wikipedia
Top- K
Keywords

Keywords
Extraction

Wikipedia Articles

Figure 3.5: Domain-specific Corpus Generation.

discrete tags”, corresponds to pattern#2 for PAA. Again, we recall from Section 3.1 that PAA occurs when it is

unclear whether the PP in question is an adverbial modifier attached to v (VA) or a noun attribute attached to n1

(NA).

Step 2 identifies the segments (from the requirements in Sc and Sp) that match any of the patterns in Table 3.1.

The matched segments are passed on to step 5.

3.3.3 Domain-specific Corpus Generation

This step attempts to capture the domain knowledge underlying the input requirements document (SRS) by

crawling Wikipedia. Fig. 3.5 shows the sub-steps for generating a domain-specific corpus. We elaborate these

(sub-)steps next.

Extract Keywords. Step 3.1 builds on an existing automated requirements glossary extraction approach by Arora

et al. [101]. We begin by (automatically) extracting the list of glossary terms from SRS, and thereafter select the

top-K most frequent keywords from the list. The optimal value of K is tuned in Section 3.4.4. For example, the

keywords extracted from R1 (Fig. 3.1) include “LEO”, “LEO satellites”, “satellites”, and “terminals”. These

keywords are used in the next step.

Query Wikipedia. Step 3.2 implements a query engine for identifying Wikipedia articles that are relevant to the

keywords resulting from step 3.1. These articles form the basis of our domain-specific corpus. We begin by

retrieving matching Wikipedia articles for each keyword. An article is considered a match if the keyword in

question contains (or is contained in) the title of the Wikipedia article. For instance, the Wikipedia article titled

“satellite navigation” is a match for the keyword “satellite-based navigation”. If the above condition is not met,

no matching Wikipedia article is retrieved.

Next, we broaden the domain information captured in our corpus by taking advantage of the hierarchical

category structure of Wikipedia [94]. In Wikipedia’s hierarchy, each category can contain articles and nested

sub-categories. For a matching article, we retrieve all the articles in the same category and all the articles in

the descendant sub-categories. For example, the “satellite navigation” article, as shown in Fig. 3.6, is classi-

fied under an identically named Wikipedia category (https://en.wikipedia.org/wiki/Category:

Satellite_navigation; accessed 17/8/2020). We retrieve all articles in this category and in all its descen-

dants (e.g., one descendant being “Geocaching”). Doing so increases topic coherence [102], meaning that the

articles included in the corpus are all indeed relevant to the domain under analysis.

19

https://en.wikipedia.org/wiki/Category:Satellite_navigation
https://en.wikipedia.org/wiki/Category:Satellite_navigation

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

This category has the following 3 sub-categories:

A

Category:Satellite navigation

G

Automotive navigation systems (8 P)

Geocaching (7 P*)

L
Location-based software (3 C, 31 P)

Pages in category “Satellite navigation”

The following 5 pages are in this category:
Satellite navigation

A
Automatic Vehicle location

C
Comparison of satellite navigation software

D
Satellite navigation device
Dilution of precision (navigation)

Categories: Radio navigation | Navigation | Satellites

Matching
article

Category

Number of
sub-categories

& pages

Sub-category with 7 articles

Directly
connected
 category

* We refer to a page in Wikipedia (P) as article

Figure 3.6: Example of Category Structure in Wikipedia.

Next, to make our domain-specific corpus applicable to other requirements documents from the same domain,

we attempt to increase the coverage of our corpus. In particular, we consider the categories in the Wikipedia

category graph that are directly connected to the category of the matching article. For instance, the category

“navigation” in Fig. 3.6 is directly connected to “satellite navigation”; we therefore include articles listed under

“navigation” and its descendant sub-categories.

We note that, during the creation of a corpus, we consider only the categories whose number of articles is

below a threshold (α); this is both to keep the computation time reasonable and to avoid including large and

generic categories in the corpus. We discuss the tuning of α in Section 3.4.4. The result of this step (step 3.2) is

a body of raw text from Wikipedia articles. This extracted body of text is our domain-specific corpus, hereafter

denoted as D.

3.3.4 Application of Heuristics

Step 4 attempts to provide likely interpretations for the requirements in Sc and Sp . We use six heuristics,

denoted as C1– C6, for interpreting coordination structures and four heuristics, denoted as P1–P4, for interpreting

PP-attachment structures. Out of these ten heuristics, eight (C1–C5 for CA [68, 76, 77, 78] and P1–P3 for

PAA [80, 79]) are borrowed from the literature. The other two (C6 and P4) are novel, but based on a very

20

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

intuitive idea: applying constituency parsing, which has coordination and PP-attachment interpretation built into

it.

Similar to step 2 (Section 3.3.2), we operate at a segment level. Compared to the patterns in step 2, heuristics

cover a wider spectrum of segments that have the potential to be ambiguous. The heuristics are triggered by

the presence of any coordination structure (an “and” / “or” conjunction, two conjuncts and a modifier) and any

PP-attachment structure (a verb, a noun and a PP). For example, had R2 (Fig. 3.2) contained an extra adjective

“categorize outages with standard discrete tags”, R2 would not have been detected by the patterns of Table 3.1,

but would have been picked up by the heuristics and attempted for interpretation.

2-
gr

am
s

3-
gr

am
s

Un
ig

ra
m

s

1284navigation system

satellite orbit 234

CountWords

360070system

satellite 21013

orbit 26599

navigation 11610

138satellite navigation system

low earth orbit 724

…

…

4-
gr

am
s

8
satellite power system
concept development
LEO sun synchronous

receiver satellites
8

…

…

5-
gr

am
s

89
global navigation
satellite system

geosynchronous satellite
launch vehicle

27

Figure 3.7: Excerpt of 5-grams Table.

Several heuristics in our approach are corpus-based, i.e., require

information about the co-occurrence frequencies of the words. We

therefore transform the Wikipedia articles from step 3 to an n-grams

table with n ranging from 1 to 5. We set the upper limit to 5, motivated

by the use of 5-grams in Google’s well-known Web1T database [103];

this database is utilized in a wide variety of NLP applications [104,

105, 106].

Table 3.7 shows a (very small) excerpt of a 5-grams table generated

for the satellite domain. The frequencies used by the heuristics are the

normalized values of the co-occurrence counts listed in the 5-grams

table [107]. For example, the co-occurrence frequency of “satellite

orbit” is computed as 234/(21013 + 26599) ≈ 0.005.

Heuristics for CA. A segment in Sc contains a conjunction (c), two con-

juncts (conjunct1 and conjunct2), and a modifier (mod). CA heuristics

attempt to interpret a segment in Sc as either FR or SR. If a heuristic

cannot interpret a segment, it returns a designated value, not inter-

pretable (NI). As we explain below, four of the CA heuristics (C1 and

C3–C5) require pre-defined thresholds, denoted as θi. These thresholds

come from the existing literature. We empirically tuned the thresholds

in Section 3.4.4. To illustrate the heuristics in this section, we already

use the tuned θi values: θ1 = 0.01, θ3 = 0.12, θ4 = 3.45, and θ5 = 3.

(C1) Coordination frequency computes the co-occurrence frequency of conjunct1 and conjunct2 in our domain-

specific corpus (D). We consider the co-occurrence frequency of the conjuncts irrespective of their order.

For example, for R1, we consider, among other possible combinations, the co-occurrence frequency of

“terminals and satellites” and “satellites or terminals”. The intuition is that if the two conjuncts co-occur

frequently in D, they can be regarded as one syntactic unit and thus are both modified (by mod), in turn

favoring FR. C1 returns FR if the resulting frequency is greater than a threshold (θ1) and NI otherwise. In

R1, C1 returns FR.

(C2) Collocation frequency compares the co-occurrence frequency of conjunct1 and mod against the frequency

of conjunct2 and mod. Collocation is a recurrent combination of two consecutive words in a large

corpus [37]. For example, the words “red” and “wine” would be considered collocated, while “great” and

“wine” would not. The intuition is that a collocation of the mod and the conjunct closer to it is likely to

indicate a syntactic unit, thus favoring SR. Using collocations, “red wine and cheese” can be interpreted

21

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

as SR while “great wine and cheese” would not be interpretable (NI). C2 returns SR if the collocation

frequency of mod and the closer conjunct is greater than that of mod and the farther conjunct, and NI

otherwise. In R1, C2 returns SR.

(C3) Distributional similarity measures the contextual similarity of conjunct1 and conjunct2 [108], i.e., how

frequently the conjuncts appear in similar contexts. For example, in the context of requirements documents

about satellite systems, the terms “satellite” and “navigation” have a higher distributional similarity than

“satellite” and “investment”. The intuition is that conjuncts with high distributional similarity can be

regarded as one unit, thus favoring FR. C3 returns FR if the distributional similarity of the conjuncts is

greater than θ3, and NI otherwise. In R1, C3 returns NI.

(C4) Semantic similarity measures the similarity between conjunct1 and conjunct2 based on their meanings

in WordNet. The intuition is that conjuncts with high semantic similarity can be regarded as one unit,

thus favoring FR. C4 returns FR if the semantic similarity is greater than θ4, and NI otherwise. In R1, C4
returns FR.

(C5) Suffix matching examines the number of shared trailing characters (suffixes) of conjunct1 and conjunct2.

For example, “installation and configuration” share five trailing characters. Suffixes are used to change the

meaning (e.g., “-able” in noticeable) or grammatical property (e.g., “-ed” in closed) of a given word [109].

Hence, matching suffixes provides a cue about how words are semantically or syntactically related [78].

The intuition is that conjuncts with the same number of trailing characters are likely to be a single unit,

thus favoring FR. C5 returns FR if the conjuncts share trailing characters greater than θ5, and NI otherwise.

In R1, C5 returns NI.

(C6) Coordination syntactic analysis is based on applying constituency parsing to the requirement in which the

(coordination) segment of interest appears and then obtaining (from the parse tree) the interpretation of

the parser for the segment. C6 returns FR or SR as per the parsing results, and NI if the parser fails to parse

the requirement. In R1, C6 returns FR.

Heuristics for PAA. A segment in Sp contains a verb (v) and a following noun (n1), followed by a preposition

(p) and another noun (n2). PAA heuristics attempt to interpret a segment as either VA or NA, as explained below.

If a heuristic cannot interpret a segment, it returns not interpretable (NI).

(P1) Preposition co-occurrence frequency compares the frequency of p occurring with v against p occurring

with n1. The intuition is that, based on the co-occurrence frequency of v (or n1) and p, PP can be regarded

as an adverbial modifier leading to VA or a noun attribute leading to NA. For example, in the segment

“provide user with a valid option”, the preposition “with” frequently follows the verb “provide”, thus

leading to a VA interpretation. Precisely, P1 returns VA if the co-occurrence frequency of v and p is strictly

larger than that of n1 and p. P1 returns NA if the converse is true. If there is a tie between the frequencies,

e.g., when the frequencies are zero due to v, n1 or p being absent from the corpus, P1 returns NI. In R2,

P1 returns NA.

(P2) Prepositional-phrase (PP) co-occurrence frequency has a similar definition and intuition to P1, the only

difference being that we consider the entire PP (i.e., p and n2) instead of just p. For example, consider the

segment “provide [...]” used for illustrating P1. P2 would return VA because the PP “with a valid option”

22

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

has a higher co-occurrence frequency with v (“provide”) than with n1 (“user”). P2’s precise definition is

easy to extrapolate from the definition of P1 and is omitted for space. In R2, P2 returns NA.

(P3) Semantic-class enrichment utilizes the semantic classes in WordNet that group words with similar

meanings. For example, WordNet puts “scissors” and “knife” under the same semantic class, namely

“tool”. P3 is applied after all the segments in Sp have been already processed by P1 and P2. Specifically,

P3 attempts to find an interpretation for the segments that have been deemed as NI by both P1 and P2.

For any such segment X , P3 checks whether there is some segment Y in Sp which has been interpreted as

VA or NA (by either P1 or P2) and which shares a semantic class with X . By sharing a semantic class, we

mean that X and Y contain nouns or verbs that fall under the same WordNet semantic class. If Y has been

interpreted as VA (respectively, NA) and X shares a verb class (respectively, a noun class) with Y , then P3

interprets X as VA (respectively, NA).

The intuition is as follows: segments that contain words with similar meanings are likely to have the same

interpretation [79]. For instance, a segment X: “offer operator with a valid option” is interpreted as VA by

P3 if there is a segment Y: “provide user with a valid option” already interpreted as VA by P2. This is

because the verbs “provide” and “offer” have the same WordNet semantic class: “possession”.

(P4) Attachment syntactic analysis has the same intuition and definition as C6, except that it applies to a

PP-attachment segment. P4 returns VA or NA, as per the parsing results. P4 returns NI if the parser fails.

In R2, P2 returns VA.

Combination of Heuristics. To produce a single interpretation for each segment, we combine through voting

the results of the heuristics for each ambiguity type (C1 – C6 for CA and P1–P4 for PAA). We consider two

voting methods: majority voting and weighted voting [110]. In majority voting, all heuristics contribute equally

and the resulting interpretation is based on the majority. In weighted voting, the contribution of each heuristic is

weighted differently. The weights are tuned in Section 3.4.4. In R1, majority voting yields FR, while weighted

voting (using the tuned weights of Section 3.4.4) yields SR. We compare the accuracy of both voting methods in

Section 3.4.

Step 4 partitions Sc and Sp into two subsets each: the first subset contains the interpretable segments (FR or

SR for segments in Sc , and VA or NA for segments in Sp); the second subset contains the segments that are not

interpretable. These subsets are passed on to step 5 for ambiguity handling.

3.3.5 Handling Ambiguity

In this final step, we classify into ambiguous and unambiguous the segments in Sc and Sp . This classification is

based on the results of steps 2 and 4 in our approach (see Fig. 3.3). A segment X is classified as ambiguous

if either of the following two conditions is met: (a) X matches some pattern in step 2, or (b) X is deemed as

not interpretable (NI) in step 4. Any segment that is not classified as ambiguous would be unambiguous. We

say that a requirement is ambiguous if it has some ambiguous segment; otherwise, we say the requirement is

unambiguous. Our empirical evaluation, discussed next, is at a segment level (rather than a requirement level),

because each requirement may contain multiple segments that are subject to ambiguity analysis.

23

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

3.4 Evaluation

In this section, we empirically evaluate our approach.

3.4.1 Research Questions (RQs)

Our evaluation addresses four research questions:

RQ1. What configuration of our approach yields the most accurate results for ambiguity handling? Our

approach can be configured in a number of alternative ways; the alternatives arise from the choices available

for the selection of patterns (Section 3.3.2), the use of default versus optimal thresholds for CA heuristics (Sec-

tion 3.3.4), and the voting method for combining the heuristics (Section 3.3.4). RQ1 identifies the configuration

that produces the best overall results.

RQ2. How effective is our approach at detecting unacknowledged ambiguity? As discussed in Section 3.1,

unconscious misunderstandings may occur due to unacknowledged ambiguity. Using the best configuration from

RQ1, RQ2 assesses the effectiveness of our approach in automatically detecting unacknowledged ambiguity.

RQ3. How accurate are the interpretations provided by our approach? While the exact interpretation of a

segment found by our approach (FR or SR for segments in Sc , and VA or NA for segments in Sp) has no bearing

on how we tell apart unambiguous cases from ambiguous ones, we want the interpretations to be as correct

as possible. A correct interpretation is important both for reducing manual work (in case the analysts choose

to vet the automatic interpretations), and also for ensuring that any subsequent automated analysis over the

requirements, e.g., automated information extraction, will produce high-quality results. RQ3 examines the

accuracy of the interpretations provided by our approach.

RQ4. Does our approach run in practical time? RQ4 studies whether the execution time of our approach is

practical.

3.4.2 Implementation

We have implemented our approach (Fig. 3.3) in Java. The implementation has ≈8500 lines of code excluding

comments. The NLP pipeline of step 1 is implemented using DKPro [111]. For implementing step 3, we

use the English Wikipedia dump1 timestamped 01/11/2018. We access the data in this dump using the JWPL

library [112]. In step 4, we transform the raw text of Wikipedia articles into an n-grams table using the

JWEB1T library [113]; this enables us to compute our interpretation heuristics more efficiently. We use Stanford

Parser [114] to obtain the parse trees required by heuristics C6 and P4. For C4, we compute semantic similarity

using the Resnik measure [115] as implemented by the WS4J library [116]. For implementation availability,

please see the footnote on page 2.

3.4.3 Data Collection

Our data collection involves human experts studying and annotating potential CA and PAA in industrial

requirements. We collected our data from 20 requirements documents (SRS s) written in English and originating

from three distinct industry partners. These SRSs cover seven different application domains. Data collection

was performed by two third-party annotators (nonauthors) with expertise in linguistics. The first annotator,

Anna (pseudonym), has a Master’s degree in Multilingualism. Anna had previously completed a three-month
1https://dumps.wikimedia.org/backup-index.html

24

https://dumps.wikimedia.org/backup-index.html

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

Sc

Sp

TotalDomain

A
er

os
p
ac

e

A
u
to

m
at

iv
e

D
ef

en
se

D
ig

it
al

iz
at

io
n

M
ed

ic
in

e

S
at

el
li
te

S
ec

u
ri

ty

36131 555Unacknowledged 517115 77 174
298 105 05117 14Acknowledged 278

154171 10919 19Unacknowledged 487015
370Acknowledged 36 0 7021 178 164

250416Segments 150664 3382 39 352
29449 28164295Requirements 265 10983

128133 105233 20Unambiguous 649228

172156 130106 10Unambiguous 6414522

5156284Total Requirements 701 1899101510 1421420
203 3 12SRSs 45 2

47 20388Segments 312 81360 1474266
23844353 1328Requirements 19272 333 69

Table 3.2: Data Collection Results.

internship in RE. The second annotator, Nora (pseudonym), has a Masters degree in IT Quality Management.

Nora has a professional certificate in English translation. Both annotators underwent a half-day training on

ambiguity in RE. The two annotators produced their annotations over a 6-month period, during which they

declared a total of ≈130 and ≈165 hours, respectively.

The annotators were then tasked with independently labeling with FR or SR all the (“and”/“or”) coordination

segments in Sc and labeling with VA or NA all the PP-attachment segments in Sp . The annotators were

specifically instructed to ascribe an interpretation to a segment only when they were confident about their

interpretation. When in doubt, the annotators labeled the segment in question as ambiguous. An “agreement”

between annotators is observed for segment X, when both of them either find X ambiguous or interpret X

the same way. Any other situation is a “disagreement”. Using Cohen’s kappa metric (κ) [117], we obtain an

inter-rater agreement of 0.37, suggesting “fair agreement”. To examine the sources of disagreement, we further

analyze the cases where X is deemed ambiguous (i.e., acknowledged ambiguity). For these cases, we obtain

κ = 0.78 (“substantial agreement”), indicating that most disagreements are due to different interpretations (i.e.,

unacknowledged ambiguity). As stated earlier in the chapter, unacknowledged ambiguity is believed to be

prevalent in requirements [19, 68]. The analysis, discussed above, provides empirical evidence for this belief.

We constructed our ground truth as follows: (i) any segment labeled as ambiguous by at least one annotator

is a case of acknowledged ambiguity, (ii) any segment labeled with different interpretations by the annotators

is a case of unacknowledged ambiguity, and (iii) any segment labeled with the same interpretation by both

annotators is unambiguous. We motivate our definitions of acknowledged and unacknowledged ambiguity by

considering what might happen during a manual inspection where a team would typically be involved. If a

segment is ambiguous enough for someone (not necessarily everyone) to raise a concern, then this segment

is likely to be further discussed by the team (acknowledged). The situation is different for unacknowledged

ambiguity. In reality and under time pressure, the analysts are unlikely to spell out their interpretations when

they feel there is no ambiguity. Consequently, the disagreement remains hidden (unacknowledged).

Table 3.2 provides overall statistics about our data collection, showing for each domain, the number of

25

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

SRSs, the total number of requirements, and the number of requirements and segments in Sc and Sp . The table

further lists the number of ambiguous segments (grouped into acknowledged and unacknowledged) and the

number of unambiguous segments. We observe from Table 3.2 that out of the total of 2980 segments analyzed

by the annotators, 57% are ambiguous and the remaining 43% are unambiguous. In the ambiguous segments,

the proportion of segments with unacknowledged ambiguity (1042/1690 ≈ 62%) is significantly higher than

the proportion of segments with acknowledged ambiguity (648/1690 ≈ 38%). We note that repeated segments

constitute a relatively small fraction of the ground truth: ≈9% (137/1506) for CA and ≈8% (116/1474) for

PAA. These repetitions are not disproportionately concentrated in one group. More precisely, in the case of CA,

44 repetitions are unambiguous, 48 are acknowledged, and 45 are unacknowledged. For PAA, 39 repetitions

are unambiguous, 35 are acknowledged, and 42 are unacknowledged. Since there is no disproportionate

concentration of occurrences, repetitions have no major bearing on our findings.

We set aside ≈20% of our ground truth for parameter tuning, as we will discuss in Section 3.4.4. We refer

to this subset of the ground truth as T . The remaining ≈80% of the ground truth is referred to as E. We use

E for answering all the RQs, except RQ4 which is answered over T ∪ E. The tuning set, T , consists of six

SRSs from six domains with a total of 550 requirements and representing 26% and 21% of the coordination and

PP-attachment segments, respectively. We selected one SRS from each domain; this was done in a way that

the selected document would be as close as possible to containing ≈20% of the requirements we had in each

domain. We did not select for tuning any documents from the domain of medicine, since we had only one SRS

from this domain.

3.4.4 Parameter Tuning

Tuning involves two groups of parameters: parameters for generating a domain-specific corpus (Section 3.3.3)

and parameters associated with the heuristics (Section 3.3.4). Both groups of parameters are tuned with the goal

of maximizing the overall accuracy of the interpretation heuristics. Note that tuning is performed exclusively

over T (see Section 3.4.3).

Parameters for Corpus Generation. Generating a domain-specific corpus requires tuning the maximum number

of keywords (K) to select from an input SRS and the maximum number of articles (α) in a given category in

Wikipedia. For each SRS in T , we generate a domain-specific corpus. To tune K, we experiment with five values

at regular intervals between 50–250. Values of K outside this range are undesirable as they result in a corpus that

is either too small (for K < 50) or too large (for K > 250). A suitably large corpus is necessary for accurately

estimating the co-occurrence frequencies of words in a specific domain [107]. Building and using a corpus that

is too large would be time-consuming and, more importantly, would defeat the goal of being domain-specific.

Using a corpus that is too small would simply be ineffective. For tuning α, we experiment with values in the

range of 50–1000 in intervals of 50. Larger categories (i.e., α > 1000) are too generic, and smaller ones (with

α < 50) are already covered by α > 50, as α is the upper bound for the number of articles in a category. For

optimizing K and α, we use grid search [118]. The resulting optimal values are K = 100 and α = 250.

Parameters for Heuristics. Applying the interpretation heuristics requires tuning four thresholds θ1, θ3–θ5
respectively for heuristics C1, C3–C5. For using the weighted voting method, we further need to tune the weights

of all the heuristics.

We note that the thresholds for the heuristics have been introduced and tuned in the existing literature, albeit

for generic texts [76, 68, 77]. We re-tune these thresholds to better capture co-occurrence frequencies in the

context of requirements. The threshold values from the existing literature are hereafter referred to as default.

26

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

We experiment with 1000 regular intervals in the range of 0.01–10 for tuning θ1, θ3 and θ4. To tune θ5, we

investigate suffixes of lengths 1 to 5, e.g., the suffix “-ation” has a length of five. We use random search [118] to

optimize the thresholds because the search space is too large for grid search. The resulting optimal thresholds

are θ1 = 0.01, θ3 = 0.12, θ4 = 3.45, and θ5 = 3.

For determining the weights of the heuristics, we first apply each heuristic individually on T . The weight of

a given heuristic is determined by its success in providing interpretations for the segments. In our experiments,

the weights of heuristics in descending order for CA are 0.038 for C5, 0.019 for C2, 0.012 for C1, 0.005 for C4,

0.005 for C6 and 0.003 for C3, and the weights for PAA are 0.08 for P1, 0.05 for P2 and 0.03 for P4. P3 is

not a standalone heuristic and is thus not weighted. These weights reflect the contribution of the heuristics, in

weighted voting, to produce a final interpretation for a segment.

3.4.5 Evaluation Procedure

We answer our RQs through the following experiments.

EXPI. This experiment answers RQ1. We determine the optimal configuration for ambiguity handling by

comparing the output of our approach against E. For evaluating the configurations, we define a true positive

(TP) as a detected ambiguous segment, a true negative (TN) as an unambiguous segment marked as such,

a false positive (FP) as a misclassified unambiguous segment, and a false negative (FN) as a misclassified

ambiguous segment. We compute Accuracy (A) as (TP + TN)/(TP + TN + FP + FN), Precision (P) as

TP/(TP + FP), and Recall (R) as TP/(TP + FN).

We consider eight alternative configurations for our approach, denoted as V1–V8. These alternatives are

induced by three binary decisions. The first decision is whether to use the collected or the enhanced patterns

in step 2 of our approach (see Table 3.1). The second decision is whether in step 4 we should use for the

thresholds the default or the optimal values (from Section 3.4.4). And, the third decision is whether the method

for combining the heuristics is majority or weighted voting (see Section 3.3.4). To analyze the impact of

using domain-specific corpora, we compare our approach against baselines, denoted as B1–B8, with similar

configurations but using a generic corpus: the British National Corpus [119].

To run EXPI, we first need to generate seven corpora, one for each application domain in our ground truth

(see Table 3.2). Six of these corpora are reused from Section 3.4.4. The last one – for the domain of medicine –

is generated based on the single SRS we have in our dataset for this domain. Except for the domain of medicine,

EXPI provides an implicit assessment of how reusable a domain-specific corpus is, being generated from one

SRS and reused for other SRSs from the same domain.

EXPII. This experiment answers RQ2. Given the optimal configuration of our approach from EXPI, EXPII

assesses how well our approach can detect unacknowledged ambiguity in different domains. In EXPII, we

compute Recall (R) similar to EXPI, but limiting the evaluation to only the segments with unacknowledged

ambiguity in E. The corpora used in EXPII are the same as those in EXPI.

EXPIII. This experiment answers RQ3. We evaluate the interpretations provided by our approach for the

segments classified as unambiguous (FR or SR for segments in Sc , and VA or NA for segments in Sp). Specifically,

EXPIII compares the interpretations produced by our approach against the interpretations of unambiguous

segments in E, reporting the ratio of the correctly interpreted segments (i.e., Accuracy). The corpora used in

EXPIII are the same as those in EXPI and EXPII. We further compare our approach against Stanford Parser [114]

– one of the commonly used tools for interpreting syntactic ambiguity [120].

27

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

V8

V4

V1

V6

V5

V2

V3

V7

CA PAA

 Accuracy (A), Precision (P) and Recall (R) in percentage (%)

D
om

ai
n-

S
pe

ci
fi

c
C

or
pu

s
B

ri
ti

sh
 N

at
io

na
l C

or
pu

s

47.5 53.349.9optimal 59.6weightedenhanced 63.851.6

50.9enhanced 52.946.7majority 59.663.3optimal 49.4

46.248.8weighted 57.2enhanced 50.360.8default 43.7

45.860.4enhanced 42.9majority 50.0 57.2default 48.2

weighted 49.8collected 53.543.946.8 55.942.1optimal

collected optimal 46.0 49.3 53.141.3 55.943.6majority

collected 43.238.4default 50.2 53.546.240.9weighted

collected 42.537.6default 49.9 53.545.740.6majority

B7

B6

B5

B4

B3

B2

B1

B8

84.0

66.6

A (%)

75.6

87.776.4

79.8

78.0

majority

enhanced

default

82.7

76.9

A (%)

87.9

76.7

optimal

collected 77.8

79.1

optimal

Thresholds P (%)

optimal

80.5

weighted

78.6

majority 81.1

80.3

77.5

78.578.9

optimal

collected

Patterns

90.1

majority

weighted

84.6

86.4

82.2

69.5

default

default

enhanced

78.4 84.0

Voting R (%)

default

collected

90.1

76.9

R (%)

71.6

76.3

70.8

74.5

66.9

weighted

82.282.5

82.0

69.9

P (%)

87.7enhanced

86.4

87.6

81.3

majority

collected

81.5

75.3

weighted 84.9

78.9

79.8

82.2

enhanced

Table 3.3: Results of Ambiguity Handling (RQ1).

EXPIV. This experiment answers RQ4 by running the best configuration from RQ1 over T ∪E. The experiment

is done on a laptop with a 2.3 GHz CPU and 16GB of memory.

3.4.6 Answers to the RQs

RQ1. Table 3.3 shows the results of EXPI (on E). To determine the optimal configuration of our approach,

we investigate among all configurations the factors that cause the most variation in accuracy. We do so by

performing regression tree analysis (tree not shown) [121]. The most influential factor for both CA and PAA, as

per regression tree analysis, is the choice of domain-specific versus generic corpus. The configurations that use

a domain-specific corpus, V1–V8, have an average gain in accuracy of ≈33% over the configurations that use a

generic corpus, B1–B8. This observation clearly highlights the importance of domain knowledge in ambiguity

handling.

Among V1–V8, using enhanced patterns has a considerable impact on detecting CA. Compared to the

configurations with collected patterns (V1–V4), the configurations with enhanced patterns (V5–V8) lead to an

average gain of ≈6% in accuracy and ≈18% in recall for a minor ≈2% drop in precision. Compared to collected

patterns, enhanced patterns do not improve the detection of PAA, but do not perform any worse either. Thus, we

choose the enhanced patterns over the collected ones.

With respect to the thresholds for the heuristics, the configurations with optimal thresholds (V7–V8) outper-

28

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

TP, FN: number of true positives and false negatives, R: Recall in percentage (%)

11 1 121 4
4120 14117 32

4 6
4617 28 19

2 0 0
0

37
412

39
268

87.5 88.489.4 100 - 87.3

91.6 80.0 92.194.4 88.8
FN
TP

FN
TP

R (%)

R (%)
26
1583

25 2
145 13

84.7 86.6

88.293.2 91.8

SummaryDomain

A
er
os
p
ac
e

A
u
to
m
at
iv
e

D
ef
en

se

D
ig
it
al
iz
at
io
n

M
ed

ic
in
e

S
at
el
li
te

S
ec
u
ri
ty

C
A

PA
A

Table 3.4: Unacknowledged Ambiguity Detection using V8 (RQ2).

form those with default thresholds (V5–V6) by 3.7% in terms of accuracy. Noting that our parameter tuning used

documents from six different application domains, we believe that the optimal thresholds are more suitable in

an RE context than the default ones based on generic texts. We note that, overall, the accuracy of ambiguity

handling shows little sensitivity to the choice of voting method. However, as highlighted in Table 3.3, V8
(weighted voting) is slightly more accurate than V7 (majority voting). For the subsequent RQs, we select V8 as

the best-performing configuration of our approach with enhanced patterns, optimal thresholds and weighted

voting.

To be able to perform a thorough error analysis (Section 3.4.7), we run V8 on the entire dataset (T ∪ E).

This yields a precision and recall of 80.1% and 89.3% for CA, and 81.6% and 90.2% for PAA, respectively. We

observe that, for each metric, the overall results are only marginally (≈1%) better than what was reported over

E. This provides confidence that our tuning (Section 3.4.4) did not overfit.

RQ2. The results of EXPII, obtained from running V8 (the best configuration from RQ1) on E are shown in

Table 3.4. Overall, our approach detects unacknowledged ambiguity with an average recall of 87.3% for CA and

91.8% for PAA.

Our error analysis (Section 3.4.7) examines missed cases of unacknowledged ambiguity in the entire dataset

(T ∪ E). Over the entire dataset, V8 detects unacknowledged ambiguity with an average recall of 87.8% for CA

and 92.6% for PAA.

RQ3. The interpretations provided by V8 for the segments in Sc and Sp (when restricted to E) have an average

accuracy of 85.2% and 84.4%, respectively. The accuracy of the approach on the entire dataset is marginally

higher (by an average of ≈1%). We examine interpretations errors in Section 3.4.7.

Applying the Stanford Parser to Sc and Sp (when restricted to E) yields interpretations with an average

accuracy of 65.7% and 72.6%, respectively. In an RE context and in comparison to the Stanford Parser, the

integration of domain knowledge increases the interpretation accuracy of coordination and PP-attachment

structures by an average of ≈16%.

RQ4. Executing steps 1 and 2 of our approach (Fig. 3.3) takes ≈0.2 milliseconds per requirement. Step 3 is

performed only when a suitable corpus is absent, i.e., when no corpus has been generated before for the domain

of a given SRS, or when the domain of the SRS is difficult to ascertain. Across the seven corpora we generated

for answering RQ1-3, the average execution time was ≈58 minutes (standard deviation: ≈21 minutes). To

be able to generate corpora, there is a one-time overhead of ≈3 hours; this is to set up a query engine over

29

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

Wikipedia (see step 3.2 in Section 3.3.3). Once set up, this query engine does not have to be rebuilt, unless one

wants to switch to a different edition of Wikipedia. With a corpus at hand, execution time is dominated by the

computation of the frequencies required by the heuristics of step 4. This on average takes ≈6.8 seconds for a

requirement in Sc and ≈1.5 seconds for one in Sp . Processing the requirements in Sc takes longer because there

are more corpus-based heuristics for CA than PAA. Non-corpus-based heuristics take negligible time.

Excluding corpus generation, the largest document in our dataset took ≈51 minutes to process. This

document had 492 requirements with 392 coordination and 245 PP-attachment segments. Such an execution time

is practical for offline (e.g., overnight) processing. With regard to using our approach interactively, we observe

that, at any point in time, an analyst likely works on only a small part of a large document. For interactive use,

ambiguity handling can be localized to the document fraction (e.g., page) that the analyst is reviewing.

3.4.7 Error Analysis

In this section, we analyze the root causes of the errors made by our approach (V8) on the entire dataset (T ∪E).

Errors in RQ1 and RQ2. Out of 1690 segments (Table 3.2), our approach missed 192 ambiguous segments, of

which 100 are unacknowledged. These errors can be explained as follows.

1. Coverage of patterns: 169 segments do not match any pattern in Table 3.1. For example, the segment

“register the microservice in the operations server” matches no PAA pattern. One can avoid such errors by

expanding the pattern set. However, our experiments indicate that doing so comes at the cost of a large

number of FPs and is thus not worthwhile.

2. NLP errors: 23 segments are missed due to mistakes by the NLP pipeline (Fig. 3.4). For example, “support”

in the segment “[can] support doctors in the ICU” is erroneously tagged as a noun; this results in the

segment to not match any of our patterns. Such NLP mistakes are hard to avoid [122].

Errors in RQ3. We found two causes for interpretation errors.

1. Interpretation errors by the heuristics: 74 segments fall under this class of errors, having to do with situa-

tions where the combination of heuristics provide a wrong interpretation or return not interpretable (NI)

where there is indeed an interpretation. For example, for the segment “pulse width and duration” the

resulting interpretation is SR, although it should be FR. One can try to address individual interpretation

errors by adjusting the weights of the heuristics. However, doing so will have a negative overall impact by

causing other errors.

2. Document-specific abbreviations: 58 segments are misinterpreted due to abbreviations. An abbreviation

that is specific to a document can mislead frequency computations if the abbreviation has a homonym

or is not found in the corpus at all. For example, “MOC” in “MOC operator and component” stands

for “MOnitoring and Control” in one of our SRSs from the satellite domain. This abbreviation, however,

matches “Mars Orbiter Camera” in the corpus that we generate for this domain. Such mismatches can be

reduced through abbreviation disambiguation [123]. We leave this for future work.

3.4.8 Discussion about Usefulness

As shown by Table 3.2, ambiguity was acknowledged by the annotators in only 38% of the cases. The remaining

62% were unacknowledged. In practice, even if the analysts perform a manual review, under time pressure and

30

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

…

VASegment-31

Interpretable?
FR
NISegment-21

Segment-ID
Segment-11

Requirements
Document

Text Preprocessing Pattern Matching

Pattern List

Heuristic-based
Interpretation

Domain-specific
Corpus Generation

Wikipedia

Domain-
specific
Corpus

WordNet

Ambiguity Handling

A

C

B

D

E…

NoSegment-31

Yes
No

Matches?

Segment-21
Segment-21
Segment-ID

Service availability shall
measure the outage of
LEO satellites and terminals.
The outage management
platform shall provide
administrators with the
ability to categorize
outages with discrete tags.
[…]

Output File
…

Segment-31 UnambiguousPAA

Am
bi

gu
ity

Segment-21 Ambiguous
Ambiguous

Decision?

PAA

Segment-ID

CASegment-11

Figure 3.8: Tool Architecture.

outside an evaluation setting, they will likely only examine what at least one analyst finds to be ambiguous and

thus miss out on the cases where they unconsciously disagree about the interpretation.

We believe that the main benefit of our automated approach is in bringing ≈90% of the cases of unac-

knowledged ambiguity to the attention of the analysts (see RQ2). This is achieved while maintaining a high

overall precision (≈80%), meaning that the analysts will spend a small fraction of their manual effort over false

positives. While user studies remain essential for establishing usefulness, our good accuracy results suggest that

our approach has the potential to be helpful in practice.

3.5 Tool Support

This section presents the tool support for our ambiguity handling approach.

3.5.1 MAANA

MAANA is the implementation of our approach for detecting coordination ambiguity (CA) and prepositional-

phrase attachment ambiguity (PAA).

Fig. 3.8 depicts the architecture of MAANA. The tool is implemented as an Apache Maven project [124]

and builds on the Apache UIMA framework [125]. Below, we discuss the main modules of MAANA, marked A

– E in Fig. 3.8.

Text Preprocessing

This module parses the text of the input requirements document, splitting it into sentences and identifying the

requirements that contain coordination and/or PP-attachment segments. The NLP pipeline that MAANA applies

consists of a tokenizer, sentence splitter, part-of-speech (POS) tagger, lemmatizer, and constituency parser.

31

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

Pattern Matching

This module matches the coordination and PP-attachment segments in the input document against a predefined

set of patterns. These patterns are meant at identifying those segments that have a higher chance of being

ambiguous. The output for each segment is whether or not it matches any of the patterns in the list.

Domain-specific Corpus Generation

This module generates a domain-specific corpus from Wikipedia based on (automatically identified) keywords in

the input requirements document. For further information about how to set up Wikipedia in order to generate a

corpus for a given input document, consult the “Additional Instructions” provided alongside our actual artifact.

Heuristic-based Interpretation

This module subjects the identified coordination and PP-attachment segments to a set of interpretation heuristics,

as described in Section 3.3. The output is a combined decision based on these heuristics. NI suggests that

a segment is not interpretable. For coordination, FR and SR suggest that a segment should be interpreted as

first read or second read, respectively. And for PP attachment, VA and NA suggest that a segment should be

interpreted as a verb attachment or a noun attachment, respectively.

Ambiguity Handling

The final module combines the results of modules (B) and (D) to obtain a final verdict for each identified segment.

This final verdict is written out to the output file.

3.5.2 WikiDoMiner

WikiDoMiner (Wikipedia Domain-specific Miner) is an improved and optimized tool for the domain-specific

corpus generation component. Given an SRS as input, WikiDoMiner automatically generates a domain-specific

corpus from Wikepedia, without any a-priori assumptions about the domain of the input SRS. WikiDoMiner

is a re-implementation of the corpus generator in an earlier research prototype, MAANA [10]. MAANA

is an automated ambiguity handling tool which uses frequency-based heuristics to detect coordination and

prepositional-attachment ambiguity. In that context, a large domain-specific corpus is needed for estimating

word frequencies. In our ongoing research since MAANA, we have increasingly needed domain-specific corpus

generation, not for frequency-based statistics but rather for fine-tuning pre-trained language models. This

prompted us to build and release WikiDoMiner as a stand-alone tool and a more robust and usable alternative to

the corpus generator in MAANA. MAANA’s corpus generator is Java-based. Furthermore, it requires a local

dump of Wikipedia installed as an SQL database. This consumes significant resources and makes both the

installation and (re-)use of MAANA complex. WikiDoMiner lifts this major limitation and further, by virtue of

being Python-based, is much easier to use alongside language models.

WikiDoMiner is a usable prototype tool for generating domain-specific corpora. Figure 3.9 shows an

overview of WikiDoMiner architecture. The tool is implemented in Python 3.7.13 [126] using Google Colab2.

Below, we discuss the different steps of the tool marked A – C in Figure 3.9.

2https://colab.research.google.com/?utm_source=scs-index

32

https://github.com/SNTSVV/MAANA/blob/main/Additional-Instructions.md
https://colab.research.google.com/?utm_source=scs-index

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

Requirements
Specification Wikipedia

A CB

txt

Wikipedia
Articles

Preprocess Text Extract Keywords Query Wikipedia

Tokenizer Sentence
Splitter

POS
Tagger

Lemma-
tizer

Syntactic
Parser

NP
Extractor

Frequency
Computer

Articles
Retriever

Corpus
Expander

Preprocessed
Text

Top-K Domain-
specific Keywords

Stopwords
Removal

Figure 3.9: Tool Architecture.

Preprocess Text

In the first step, we parse the textual content of the input SRS and preprocess the text. To do so, we apply an

NLP pipeline composed of six modules, four of which are related to parsing and normalizing the text, and two

are for performing syntactic parsing. These modules include: A tokenizer splits the text into different tokens

(e.g., commas and words), sentence spitter identifies the boundaries of sentences in the running text (e.g., a

sentence in English can end with a period), lemmatizer finds the canonical form of a word (e.g., the singular

word “communication” is the canonical form of its plural variant “communications” and the infinitive “transmit”

is the canonical form for its past-tense variant “transmitted”), and finally, a stopwords removal module removes

the stopwords such as articles (“the”) and prepositions (e.g., “in”). To perform syntactic analysis, we further

apply: POS tagger that assigns a part-of-speech tag for each token (e.g., the tag VBD is assigned to “transmitted”

indicating a past-tense verb), and a syntactic parser that identifies the syntactic units in the text (e.g., “the

notification service” is a noun phrase – NP).

To operationalize the NLP pipeline, we use the Tokenizer, Porter Stemmer and WordNet Lemmatizer

available in NLTK 3.2.5 [127]. We further apply Python RE 2.2.1 regex library3, in addition to available modules

in SpaCy 3.3.0 [128] including the English stopwords list, Tokenizer, NP Chunker, Dependency Parser, and

Entity Recognizer.

Extract Keywords

In this step, we extract a set of keywords that are representative for the underlying domain. To do that, we adapt

a glossary extraction method from the RE literature [101]. The basic idea in this step is to collect the noun

phrases in the input SRS, and sort them according to their frequency of use. To ensure that these keywords

are domain-specific, WikiDoMiner applies two measures. First, we remove from the list any keyword that is

available in WordNet [98, 99], which is a generic lexical database for English. The intuition of this step is to

remove very common words that are not representative of the underlying domain. For instance, the word “rover”

exists in WordNet4 as a noun referring to “someone who leads a wandering unsettled life” or “an adult member

of the Boy Scouts movement”. These two meanings do not fit the “rover” in the “lunar rover” context, and the

NP “lunar rover”. This way, we filter out the word “rover” when it occurs alone (i.e., “the rover”), and keep it

as part of the NP (“lunar rover”). We note that the the NP “lunar rover” is not available in WordNet, but is in

Wikipedia5.

As a second measure, WikiDoMiner computes term frequency/inverse document frequency (TF/IDF) [129]

instead of mere frequency. TF/IDF is a traditional method that is often applied in the context of information
3https://docs.python.org/3/library/re.html
4http://wordnetweb.princeton.edu/perl/webwn?s=rover&sub=Search+WordNet&o2=&o0=1&o8=1&

o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=
5https://en.wikipedia.org/wiki/Lunar_rover

33

https://docs.python.org/3/library/re.html
http://wordnetweb.princeton.edu/perl/webwn?s=rover&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=
http://wordnetweb.princeton.edu/perl/webwn?s=rover&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=
https://en.wikipedia.org/wiki/Lunar_rover

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

retrieval (IR) to assign a score reflecting the importance of words to a specific document in a document collection.

In WikiDoMiner, the importance of the words (NPs in our case) indicates that the words are significant for the

underlying domain. We note that IDF is computed only when there are multiple documents from other domains

available. Otherwise the TF/IDF scores are similar to term frequencies. Once the TF/IDF scores are computed,

we sort the keywords in descending order of these scores and select the top-K keywords. While the default value

applied by WikiDoMiner is K = 50, we show in the demo of the tool that this parameter can be configured by

the user according to the intended application.

We implement the different modules using WordNet from NLTK 3.2.5 [127], and TF-IDF transformation

from Scikit-learn 1.0.2 [130].

Query Wikipedia

In this step, we use the keywords from the previous set to query Wikipedia and collect the relevant articles which

will then constitute our final domain-specific corpus.

To better understand this step, we first explain the structure of a category in Wikipedia, illustrated in

Figure 3.10. Each article in Wikipedia belongs to one or more categories. Each category contains a set of

articles and sub-categories. To illustrate, assume that we are querying Wikipedia for the keyword “rail transport”

within the “Railway” domain. Our first hit will be a page titled “Rail Transport”6. Note that we refer to a page

in Wikipedia as an article. If we view the category structure for this article7, we find out that it belongs to a

category under the same name “Rail Transport”, i.e., Category A in Figure 3.10. Inside this category, there

are 31 sub-categories such as “Locomotives”, “Rail Infrastructure”, and “Electric rail transport”. Category A

contains 22 other pages alongside the above mentioned pages, such as “Bi-directional vehicle” and “Pocket

wagon”. Viewing the structure of a sub-category, e.g., “Rail Infrastructure” will show us again the available

pages and sub-categories.

In WikiDoMiner, the result of querying Wikipedia for a given keyword is a Wikipedia article whose title

partially matches the keyword. We consider the title of a Wikipedia article as partially matching the keyword if

they have some overlap. For example, if we query Wikipedia for the keyword “Efficiency of rail transport”, then

we will retrieve the same article mentioned above whose title, “Rail Transport”, partially matches the keyword.

For each keyword, we retrieve from Wikipedia a matching article if applicable. Some applications might

require that the domain-specific corpus be sufficiently large. For example, to accurately estimate the frequencies

of words co-occurrences, one needs a large corpus [131]. Similarly, to pre-train a domain-specific language

model, a large text body should be available. Therefore, we expand our corpus by defining a configurable

parameter depth to control the level of expansion, thus allowing the user to adjust the size and relevance of the

corpus based on their needs. The minimal depth depth = 0 can be used to extract directly matching articles only

(leading most often to a few hundred articles). WikiDoMiner further retrieves, for each matching article, all

articles in the same categories for depth = 1 (e.g., the two other pages in the example above), subcategories of

depth = 2, sub-subcategories of depth = 3, and so on.

Specific details of our implementation are as follows. We use the Wikipedia 1.4.08 and Wikipedia-API 0.5.49

libraries to query Wikipedia. Other libraries which we use but which are not necessary to run the tool include

6https://en.wikipedia.org/wiki/Rail_transport
7https://en.wikipedia.org/wiki/Category:Rail_transport
8https://wikipedia.readthedocs.io/
9https://wikipedia-api.readthedocs.io/

34

https://en.wikipedia.org/wiki/Rail_transport
https://en.wikipedia.org/wiki/Category:Rail_transport
https://wikipedia.readthedocs.io/
https://wikipedia-api.readthedocs.io/

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

rail transport Keyword
2

Keyword
K...

...

Categories ...

Articles ...

Sub- Categories

Articles ...

SRS

depth 0

depth 1

depth 2

Articles

Extract
Keywords A

22

31

860

Figure 3.10: Illustration of Traversing Wikipedia Categories (Example Keyword: “rail transport”).

PyPDF2 2.2.010 to read requirements documents in PDF format, the word2vec similarity feature in SpaCy 3.3.0

library [128], and the WordCloud 1.5.011 library to visualize the most prevalent words in the extracted corpora.

Application

In this subsection, we apply WikiDoMiner to automatically generate domain-specific corpora for two distinct

domains, namely, railway and transportation. We further assess how representative the corpus generated for each

of these domains is. We do so by computing the semantic relatedness of each domain-specific corpus against

SRSs from the same domain other than those used for generating the corpus. Generating a domain-specific

corpus is not a frequent activity. In practice, requirements engineers would typically have a small set of SRSs

from a given domain at the time of generating a domain-specific corpus and would utilize this corpus to perform

activities on other SRSs not involved in the generation process.

Data Collection For the two domains considered in this subsection, we collected a total of six SRSs from the

PURE dataset [132], with three SRSs from each domain. One SRS is used for generating the corpus and the

others are used for evaluating semantic relatedness against the resulting corpus.

In the following we list the six SRSs:

• From the railway domain, we used SRS1 (ERTMS) about train control, SRS2 (EIRENE SYS 15) and SRS3

(EIRENE FUN 7) both about digital radio standard for railway.

• From the transportation domain, we used SRS4 (CTC NETWORK) about traffic management infrastructure,

SRS5 (PONTIS) about highway bridge information management, and SRS6 (MDOT) about transportation

info management.
10https://pypdf2.readthedocs.io/
11https://amueller.github.io/word_cloud/

35

https://pypdf2.readthedocs.io/
https://amueller.github.io/word_cloud/

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

Figure 3.11: Word-cloud Visualization of Domain-specific Corpora (Left-hand Side – Railway Domain, and
Right-hand Side – Transportation Domain).

Domain-specific Corpora For illustration, we centre our discussion around the railway domain. We generate

the corpus from SRS1, and evaluate the relatedness on SRS2 and SRS3. The first step in WikiDoMiner is to

preprocess SRS1. WikiDoMiner then extracts a set of keywords based on their TF/IDF scores. Examples of such

keywords include trainborne equipment and emergency brake. We select the top-K keywords, where K = 50.

The next step is to query the keywords on Wikipedia. For our set of keywords in this domain, we retrieve 15

matching articles. We then set the configuration parameter depth to 1. Following this, we collect for each article

that matches a keyword the articles in the respective categories (see Figure 3.10). Finally, we collected a total of

686 articles, which are considered as our domain-specific corpus.

We apply WikiDoMiner on SRS4 (from the transportation domain) in a similar manner. The two resulting

corpora are depicted in Figure 3.11 as word clouds. We show for each domain the main terms that frequently

occur in the corpus. We see that the keywords rail, track, train, railway, and railroad characterize the railway

corpus, while the transportation corpus is characterized by the keywords traffic, road, street, and lane. We note

that the railway domain can be regarded as a sub-domain of the transportation domain. This observation is

highlighted through the frequent terms that the two corpora have in common in Figure 3.11, such as signal,

system, vehicle, and driver.

Domain Representativeness To examine how representative the resulting domain-specific corpora are, we

compute semantic relatedness as follows. We first transform each article in the corpus into a vector representation

using word2vec. We do the same for the test SRS. Then, we compute the cosine similarity between the vector

representing the (test) SRS and the vector representing each article. In the following, we report the minimum,

average, and maximum cosine similarity scores for each domain:

• Railway domain (cosine similarity between the railway corpus and test SRSs): min=0.27, average=0.94,

and max=0.98

• Transportation domain (cosine similarity between the transportation corpus and test SRSs): min=0.67,

average=0.95, and max=0.99.

Our results show that the domain-specific corpora are, on average, highly similar to the test (unseen) SRSs

not used for generating the corpora. In particular, the average semantic similarity is ≥ 0.94, indicating that many

articles in the corpus are relevant to the test SRSs. The minimum score of 0.27 in the railway domain implies

that there are articles in the corpus which are more document-specific, i.e., more relevant to the SRS that induced

the corpus but having little in common with the test SRSs. Note that, despite some document-specific articles

36

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

being present in the generated corpus, the very high average semantic similarity (≥ 0.94) indicates that such

articles are a small minority and thus do not have a significant negative impact on the in-domain usability of the

generated corpus.

The gap seen between the minimum scores reported for the two domain-specific corpora can be explained

by the following: As mentioned in Section 3.5.2, all SRSs from the transportation domain in our collection are

on the topic of traffic and transportation information management. This leads to extracting many keywords

related to information management. In contrast, the SRSs in our collection from the railway domain are

tailored to more specific topics, namely train control and digital radio standard for railway. This in turn

leads to extracting document-specific terms which are related to train control (i.e., the topic of the SRS

used for corpus generation) but not so much to digital radio standard for railway (i.e., the topic of the test

SRSs). To summarize, our experiments show that WikiDoMiner has successfully generated representative

corpora for two distinct domains.

3.6 Validity Considerations

Internal Validity. Bias is a potential threat to the internal validity of our evaluation. To mitigate this threat,

the authors had no involvement in the annotation activities. Instead, two third-party annotators, who had no

knowledge of our technical approach, independently annotated the dataset. Further, we made a strict separation

between the data used for defining patterns and tuning, and the data used for assessing effectiveness.

Construct Validity. An individual requirement can potentially have multiple instances of CA or PAA. To ensure

that this possibility is properly reflected in our metrics, we defined accuracy, precision and recall at the level of

segments rather than whole requirements.

External Validity. Our evaluation builds on 20 industrial requirements documents, covering seven different

domains. The promising results obtained across these domains provide a measure of confidence about the

generalizability of our approach. This confidence is further strengthened by the fact that our approach can adapt

itself to new domains via the (automatic) generation of domain-specific corpora. Due to this characteristic, we

are optimistic that our approach will be able to achieve comparable results in other domains. That said, future

case studies would help further improve external validity.

3.7 Conclusion

In this chapter, we proposed an automated approach for improving the handling of coordination ambiguity (CA)

and prepositional-phrase attachment ambiguity (PAA). The main novelty of our approach is in automatically

extracting domain-specific corpora from Wikipedia and utilizing them to increase the accuracy of CA and PAA

handling in requirements documents. We conducted a large-scale evaluation of our approach using more than

5000 industrial requirements from seven different application domains. Our results indicate that our approach

can detect CA and PAA with an average precision of ≈80% and an average recall of ≈89%. The results further

indicate that employing domain-specific corpora has a substantial positive impact on the accuracy of CA and

PAA handling. Specifically, over our dataset, we observed a ≈33% improvement in accuracy when compared to

baselines using generic corpora. While our work is motivated by improving the quality of systems and software

requirements, our technical solution is also novel from an NLP standpoint. Our solution thus has the potential to

be useful over other types of textual documents within and beyond software engineering.

37

CHAPTER 3. USING DOMAIN-SPECIFIC CORPORA FOR IMPROVED HANDLING OF AMBIGUITY IN
REQUIREMENTS

In future work, we would like to integrate our ambiguity handling approach with automated techniques for

extracting structured information from requirements specifications. The motivation for doing so is to increase

the quality of information extraction by more accurately interpreting coordination and prepositional-phrase

structures. Another direction we would like to explore in the future is to use deep learning to complement or as

an alternative to our current approach.

38

Chapter 4

Automated Handling of Anaphoric Ambiguity
in Requirements: A Multi-solution Study

4.1 Motivation and Contributions

Anaphora means repetition in Greek and is defined as references to entities mentioned earlier in the text. These

references are called anaphors and the entities to which they refer are called antecedents [133]. Anaphoric

ambiguity occurs when there is more than one plausible antecedent [35, 9]. In linguistics, there are several types

of anaphora [133]. In requirements engineering (RE), anaphora is typically scoped to pronominal anaphora,

i.e., when the anaphor is a pronoun [21, 2]. This is because pronominal anaphora has been clearly established

as a genuine source of ambiguity in requirements [31]. Anaphoric ambiguity detection in RE is thus the task

of identifying ambiguous occurrences of pronouns [134]. The closely related task of anaphora resolution

(interpretation) is concerned with finding the most likely antecedent for a given pronoun [35].

To illustrate, consider the example in Figure 4.1. Here, the anaphor is it, occurring in the second sentence.

The potential antecedents are the preceding noun phrases (NPs), namely “the S&T component”, “approval

requests”, “the DBS”, “the request” and “storage parameters”. The pronoun it is unlikely to refer to “approval

requests” or “storage parameters” due to number disagreement (here, singular pronoun versus plural NPs).

Similarly, it is unlikely to refer to “the request”, since it is the subject of the verb “create”, and “the request” is

not a suitable replacement for the subject of this verb. It is not entirely clear though whether it refers to “the S&T

component” or “the DBS”. Depending on which antecedent – “the S&T component” or “the DBS” – is selected,

there are two different interpretations as to which subsystem should create a configuration record. To properly

deal with this situation, the pronoun it has to be either detected as ambiguous or resolved as referring to the

correct antecedent, which happens to be “the S&T component”. We note that identifying the correct antecedent

in this example would likely be impossible without domain knowledge.

Anaphoric ambiguity is prevalent in NL requirements. Estimates from the RE literature suggest that nearly

20% of industrial requirements contain anaphora [1, 2]. Current RE research on anaphoric ambiguity [134,

21, 135, 136, 2], as we elaborate in Section 4.2.2, does not adequately explore two important facets. First, the

39

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

?
x

?
The S&T component shall send all approval requests to the DBS.

If the request contains storage parameters, it shall create a
configuration record from the parameters.

x
x

“S&T” and “DBS” stand for “Surveillance and Tracking” and “Database Server”, respectively.

Figure 4.1: Example of Anaphoric Ambiguity.

existing work relies primarily on the traditional methods in NLP and machine learning (ML). With the rapid

emergence and adoption of new technologies such as pre-trained language models, BERT [23] being a notable

example, the landscape for the processing (and generation) of NL content has changed drastically. This, on

the one hand, provides an opportunity to develop new solutions, and, on the other hand, necessitates a revamp

and reexamination of the existing solutions, now using better enabling technologies. Second, the existing RE

solutions for anaphoric ambiguity have been evaluated on either a single application domain (e.g., railway) or

on very small datasets. As such, empirical results remain scarce on the usefulness of automated techniques for

dealing with anaphora in software requirements specifications.

Our aim in this chapter is to arrive at a practical and effective solution for handling anaphoric ambiguity in

textual requirements. By “handling” anaphoric ambiguity, we mean the primary task of detecting genuine cases

of anaphoric ambiguity and the secondary task of interpreting (resolving) anaphora when the risk of ambiguity

is sufficiently low. We achieve our aim by empirically investigating multiple solution strategies. Some of the

investigated strategies are new and some are adaptations of existing work that are implemented using state-of-

the-art technologies. The alternative strategies considered are choices that, in our experience, recurrently arise

when engineering requirements automation solutions using NLP and ML. These choices particularly include: (1)

whether to use hand-crafted language features, word embeddings or a combination thereof for classification, (2)

whether pre-trained language models like BERT are a viable replacement for the more traditional techniques,

and (3) whether a mashup of existing (and often generic) NLP tools would be adequate for specific RE tasks.

Our decision to examine and report on multiple solution strategies is motivated by building empirical insights

about the mentioned choices. Naturally, our findings in this chapter are limited to the task at hand, i.e., handling

anaphoric ambiguity. Nonetheless, we believe that our mode of investigation contributes to establishing a

framework for comparing the choices available in other requirements automation tasks that are addressed via

NLP and/or ML.

Contributions. This chapter makes the following contributions:

(1) We develop six alternative solutions for automated handling of anaphoric ambiguity in requirements. The

solutions span both traditional as well as more recently established NLP and ML technologies. We implement

all six solutions using Jupyter Notebooks [137], and make the solutions publicly available1.

(2) We empirically evaluate the above-mentioned alternatives on two industrial datasets. The first dataset is

a pre-existing one [138], containing 98 requirements with 109 pronoun occurrences. The second dataset was

curated as part of our work using third-party (non-author) annotators. This second dataset is a collection of 22

industrial software requirements specifications from eight different application domains and containing a total

1https://tinyurl.com/mww2w46t

40

https://tinyurl.com/mww2w46t

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

of 1,251 requirements with 737 pronoun occurrences. Over these datasets, for detecting anaphoric ambiguity,

supervised ML classification yields the best results with an average precision of ≈60% and a recall of 100%. As

for anaphora resolution, a fine-tuned language model from the BERT family of models turns out to be the best

solution with a success rate of ≈98%. The fact that different best solutions emerge for two closely related tasks

further signifies the usefulness of running multi-solution studies like ours.

Significance. The significance of our work is two-fold: (1) ambiguity handling is a major concern in RE. We

devise an accurate automated solution to address a prevalent (and problematic) ambiguity type, namely anaphoric

ambiguity; (2) the NLP landscape has evolved drastically in recent years. Comparing the more traditional

techniques against new advancements is beneficial and relevant to many AI-based RE automation tasks beyond

ambiguity handling. We demonstrate how such comparisons can be made systematically. We further provide

insights and lessons learned, and shed light on potential challenges.

Structure. The remaining of this chapter is organized as follows. Section 4.2 discusses background and positions

our work against the related literature in NLP and RE. Section 4.3 presents our alternative solutions for handling

anaphoric ambiguity in requirements. Section 4.4 reports on our empirical evaluation. Section 4.6 addresses

threats to validity. Section 4.7 concludes the chapter.

4.2 Background and Related Work

This section presents the necessary background for our solutions and further discusses the related literature in

RE and NLP.

4.2.1 Background

Below, we discuss the enabling technologies used by our solutions marked ① to ⑥ in Figure 4.3. The precise

design of these alternative solutions will be elaborated in Section 4.3.

Language Models (LMs). Pre-trained LMs can be employed to directly solve downstream NLP tasks such

as anaphoric ambiguity handling (the focus of our work). We integrate LMs into our solutions using two

strategies. The first strategy is to fine-tune the parameters of a pre-trained LM on a labeled dataset for anaphoric

ambiguity handling. We apply this strategy to devise solutions ① and ② based on SpanBERT [139]. SpanBERT

is a variant of BERT that is optimized for the prediction of spans of text. In contrast to BERT, SpanBERT

is pre-trained to predict masked text spans (rather than masked tokens). SpanBERT is trained only on one

objective, that is, the span boundary objective (the start and end of the text span boundary). SpanBERT is

better suited than BERT for text span prediction and selection tasks such as anaphora resolution and question

answering where the output is a text span, e.g., a noun phrase rather than an individual noun [140]. The second

strategy is to extract contextual embeddings from the pre-trained LM and use these embeddings as learning

features in ML-based text classification. Embeddings are mathematical representations capturing the syntactic

and semantic characteristics of text. For developing solution ④, we use embeddings from both BERT [23] and

SentenceBERT (SBERT) [57]. While BERT derives embeddings for individual tokens, SBERT is optimized for

deriving semantically meaningful embeddings for an entire text sequence. Necessary background about LMs,

BERT, SpanBERT, word embeddings, and SBERT is provided in Chapter 2.

Machine Learning (ML). We apply in our work both manually-crafted features collected from the literature as

well as contextual embeddings, presented earlier. Solutions ③ and ④ – and also ⑤ which is a combination of ③

41

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

and ④ – are ML-based. In our labeled data, each datapoint is the combination of a pronoun and a candidate

antecedent, both occurring in some context. Each datapoint is labeled correct, incorrect or inconclusive, as we

explain in Section 4.3. Our empirical evaluation examines several widely used ML classification algorithms,

namely decision tree (DT), feed-forward neural network (FNN), k-nearest neighbour (kNN), logistic regression

(LR), naïve Bayes (NB), random forest (RF), and support vector machine (SVM). We refer the reader to Chapter 2

for more details on these algorithms.

Natural Language Processing (NLP) Pipeline. In our work, we apply an NLP pipeline composed of eight

modules: (1) tokenizer, (2) sentence splitter, (3) part-of-speech (POS) tagger, (4) lemmatizer, (5) constituency

parser, (6) dependency parser, (7) coreference resolver, and finally, (8) semantic parser. Necessary background

about these NLP pipeline modules is provided in Chapter 2. Modules 1 to 6 are prerequisites for all our solutions

(see the preprocessing step in Section 4.3.2). Our ML-based solutions additionally use modules 7 and 8 for

extracting language features. Module 7 is the basis for solution ⑥.

4.2.2 Related Work

Ambiguity in natural language has been studied extensively [85, 35, 32]. In RE, different dimensions of

ambiguity have been explored, including understanding the significance of ambiguity in requirements [82, 9, 32,

81, 83], analyzing the linguistic causes of ambiguity [31, 84, 19, 85], ambiguity prevention [14, 15, 16, 17, 18],

and ambiguity detection and resolution [60, 86, 21, 75, 17, 87, 1, 141, 2, 88, 89, 142, 143, 10]. Below, we

discuss related work on anaphoric ambiguity detection and anaphora resolution, covering both the RE and NLP

communities.

In RE, anaphoric ambiguity has been addressed only to a limited extent, despite (pronominal) anaphora

being a common source of misunderstandings in requirements [32]. Yang et al. [21, 134] propose an ML-based

solution over language features for detecting cases of anaphoric ambiguity leading to misunderstandings. Using

200 anaphoric pronouns from different domains, they report an accuracy of ≈76% for classifying whether an

antecedent is correct for a given pronoun. Detecting potential anaphoric ambiguity has also been addressed

as a sub-topic of defects detection, with some basic solutions having been proposed, e.g., generating potential

ambiguity warnings for all pronouns or only for pronouns whose surrounding text matches some simple syntactic

patterns [17, 1, 32].

The approaches outlined above have two limitations. First, they are based on traditional technologies from

NLP and ML – two fields that have advanced significantly over the past few years. Second, these approaches

have been evaluated on small datasets or single domains. We address the first limitation by (i) devising solutions

in view of recent advances in NLP and ML, particularly the emergence of pre-trained language models; and

(ii) re-examining the state-of-the-art approach by Yang et al. [134, 21], enhanced with several new language

features gleaned from the literature [144, 145, 146, 147, 148, 149]. To address the second limitation, we conduct

a multi-solution empirical study including a relatively large RE dataset that covers eight different application

domains.

In the NLP community, dealing with anaphora is a long-standing problem [35]. As already noted in the

introduction section, compared to RE, the focus in NLP is primarily on anaphora resolution, given the needs

of the NLP tasks that are further downstream [150, 149]. Despite numerous attempts at addressing anaphora

resolution, the complex nature of the task has slowed progress for several anaphora types [151]. The anaphora

resolution techniques in the NLP community are broadly classified into three categories: syntactic, semantic

and neural-network-based [152]. The syntactic and semantic approaches focus on designing ML features based

42

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

r2 [If the request contains storage parameters, it shall create a

configuration record from the parameters.]

r1 [The S&T component shall send all approval requests to the DBS.]

Co
nte

xt

Pronoun

Candidate antecedents

<latexit sha1_base64="3wVEX7q337YuUvn2caHbGtFElMM=">AAACJ3icbVDLSgMxFM3Ud31VXboJtoILKTPF10pENy4rWBXaYcikd2po5kFyRyzD/I0bf8WNoCK69E9Mp12o9ULC4dxz7k2On0ih0bY/rdLU9Mzs3PxCeXFpeWW1srZ+peNUcWjxWMbqxmcapIighQIl3CQKWOhLuPb7Z8P+9R0oLeLoEgcJuCHrRSIQnKGhvMpxpwuB8RaTMgQm80z1/Dyz6/Yutev7xZWXOwj3+FNU455Ty71K1QiLopPAGYMqGVfTq7x0ujFPQ4iQS6Z127ETdDOmUHAJZk+qIWG8z3rQNjBiIWg3KxbndNswXRrEypwIacH+dGQs1HoQ+kYZMrzVf3tD8r9eO8XgyM1ElKQIER8tClJJMabD0GhXKOAoBwYwroR5K+W3TDGOJtqyCcH5++VJcNWoOwf1vYtG9eR0HMc82SRbZIc45JCckHPSJC3CyQN5Iq/kzXq0nq1362MkLVljzwb5VdbXN7dnpTQ=</latexit> c 1
<latexit sha1_base64="01TPxA/D9CXRCzb6nf6WMH9RLog=">AAACJ3icbVDLSgMxFM34tr6qLt0EW8GFlBnxtZKiG5cV7APaUjLpnTY08yC5I5Zh/saNv+JGUBFd+iem0y609ULC4dxz7k2OG0mh0ba/rLn5hcWl5ZXV3Nr6xuZWfnunpsNYcajyUIaq4TINUgRQRYESGpEC5rsS6u7getSv34PSIgzucBhB22e9QHiCMzRUJ3/Z6oJnvNmkBIHJNFE9N03skn1E7dJpdqW5FsIDjkWujCFNilHHKaadfMEIs6KzwJmAAplUpZN/bXVDHvsQIJdM66ZjR9hOmELBJZg9sYaI8QHrQdPAgPmg20m2OKUHhulSL1TmBEgz9rcjYb7WQ981Sp9hX0/3RuR/vWaM3kU7EUEUIwR8vMiLJcWQjkKjXaGAoxwawLgS5q2U95liHE20OROCM/3lWVA7LjlnpZPb40L5ahLHCtkj++SQOOSclMkNqZAq4eSRPJM38m49WS/Wh/U5ls5ZE88u+VPW9w/OU6VD</latexit>p1

<latexit sha1_base64="G0tB+RzwFcS0V1i+l597Rfk63Og=">AAACKXicbVDLSgMxFM3Ud31VXboJVsGFlBnxtSy6calgVWhLyWTutKGZB8kdsYT5HTf+ihsFRd36I6bTLrR6IeFw7jn3JsdPpdDouh9OaWp6ZnZufqG8uLS8slpZW7/WSaY4NHgiE3XrMw1SxNBAgRJuUwUs8iXc+P2zYf/mDpQWSXyFgxTaEevGIhScoaU6lXorgNB6i0kGgcncqK6fG7fm7lG3dlhcebmFcI8jkYIgN9usYzwv3847laqVFkX/Am8MqmRcF53KSytIeBZBjFwyrZuem2LbMIWCS7CbMg0p433WhaaFMYtAt02xOqc7lglomCh7YqQF+9NhWKT1IPKtMmLY05O9Iflfr5lheNI2Ik4zhJiPFoWZpJjQYWw0EAo4yoEFjCth30p5jynG0YZbtiF4k1/+C673a95R7eByv1o/HccxTzbJFtklHjkmdXJOLkiDcPJAnsgreXMenWfn3fkcSUvO2LNBfpXz9Q1L7qYE</latexit>a11
<latexit sha1_base64="jhrRFEZ1SpS3xUApPOCm3Bw+K20=">AAACKXicbVDLSgMxFM34rPVVdekmWAUXUmaKr2XRjcsKtgptKZnMnRrMPEjuiCXM77jxV9woKOrWHzGdduHrQsLh3HPuTY6fSqHRdd+dqemZ2bn50kJ5cWl5ZbWytt7WSaY4tHgiE3XlMw1SxNBCgRKuUgUs8iVc+jeno/7lLSgtkvgChyn0IjaIRSg4Q0v1K41uAKH1FpMMApO5UQM/N27N3aNu7aC48nIX4Q7HIgVBbrZZ33j1fDvvV6pWWhT9C7wJqJJJNfuV526Q8CyCGLlkWnc8N8WeYQoFl2A3ZRpSxm/YADoWxiwC3TPF6pzuWCagYaLsiZEW7HeHYZHWw8i3yojhtf7dG5H/9ToZhsc9I+I0Q4j5eFGYSYoJHcVGA6GAoxxawLgS9q2UXzPFONpwyzYE7/eX/4J2veYd1vbP69XGySSOEtkkW2SXeOSINMgZaZIW4eSePJIX8uo8OE/Om/Mxlk45E88G+VHO5xdNdaYF</latexit>a12

<latexit sha1_base64="pTyoYQchcFLJUW/VyJNXuuS8Uto=">AAACKXicbVDLSgMxFM34tr6qLt0Eq+BCykx9LotuXCrYVmhLyWTu1GDmQXJHLGF+x42/4kZBUbf+iOm0C18XEg7nnnNvcvxUCo2u++5MTE5Nz8zOzZcWFpeWV8qra02dZIpDgycyUVc+0yBFDA0UKOEqVcAiX0LLvzkd9lu3oLRI4kscpNCNWD8WoeAMLdUr1zsBhNZbTDIITOZG9f3cuFV3l7rVg+LKSx2EOxyJFAS52WI94+3lW3mvXLHSouhf4I1BhYzrvFd+7gQJzyKIkUumddtzU+waplBwCXZTpiFl/Ib1oW1hzCLQXVOszum2ZQIaJsqeGGnBfncYFmk9iHyrjBhe69+9Iflfr51heNw1Ik4zhJiPFoWZpJjQYWw0EAo4yoEFjCth30r5NVOMow23ZEPwfn/5L2jWqt5hdf+iVqmfjOOYIxtkk+wQjxyROjkj56RBOLknj+SFvDoPzpPz5nyMpBPO2LNOfpTz+QVO/KYG</latexit>a13

<latexit sha1_base64="hoSLt9XQ5Ef84jMcnjigq7t1l/s=">AAACKXicbVDLSgMxFM34tr6qLt0EW8GFlBnxtSy6calgtdCWksncaUMzD5I7YgnzO278FTcKirr1R0ynXfi6kHA495x7k+OnUmh03Xdnanpmdm5+YbG0tLyyulZe37jWSaY4NHgiE9X0mQYpYmigQAnNVAGLfAk3/uBs1L+5BaVFEl/hMIVOxHqxCAVnaKluud4OILTeYpJBYDI3qufnxq25e9StHRZXXmoj3OFYpCDITZV1jXeQV/NuuWKlRdG/wJuACpnURbf83A4SnkUQI5dM65bnptgxTKHgEuymTEPK+ID1oGVhzCLQHVOszumOZQIaJsqeGGnBfncYFmk9jHyrjBj29e/eiPyv18owPOkYEacZQszHi8JMUkzoKDYaCAUc5dACxpWwb6W8zxTjaMMt2RC831/+C673a95R7eByv1I/ncSxQLbINtklHjkmdXJOLkiDcHJPHskLeXUenCfnzfkYS6eciWeT/Cjn8wtQg6YH</latexit>a14
<latexit sha1_base64="pWBYyto17WAnIzfTE13I4fKt/FE=">AAACKXicbVDLSgMxFM34tr6qLt0EW8GFlBnxtSy6calgtdCWksncaUMzD5I7YgnzO278FTcKirr1R0ynXfi6kHA495x7k+OnUmh03Xdnanpmdm5+YbG0tLyyulZe37jWSaY4NHgiE9X0mQYpYmigQAnNVAGLfAk3/uBs1L+5BaVFEl/hMIVOxHqxCAVnaKluud4OILTeYpJBYDI3qufnxq25e9StHRZXXmoj3OFYpCDITZV1jXeYV/NuuWKlRdG/wJuACpnURbf83A4SnkUQI5dM65bnptgxTKHgEuymTEPK+ID1oGVhzCLQHVOszumOZQIaJsqeGGnBfncYFmk9jHyrjBj29e/eiPyv18owPOkYEacZQszHi8JMUkzoKDYaCAUc5dACxpWwb6W8zxTjaMMt2RC831/+C673a95R7eByv1I/ncSxQLbINtklHjkmdXJOLkiDcHJPHskLeXUenCfnzfkYS6eciWeT/Cjn8wtSCqYI</latexit>a15

Figure 4.2: Illustration of our Notation.

on grammatical structure and word meanings in sentences. In the neural-network-based approaches, anaphora

resolution is often reformulated as a question-answering problem. Recent solutions in this category achieve

promising results [153, 154].

In addition to being focused on resolution, the techniques developed by the NLP community are trained on

generic corpora, e.g., Wikipedia. Due to the major differences between the terminology and style applied in

requirements writing versus what is available in generic corpora [132], NLP tools usually do not work well if

applied as-is to requirements documents [143, 10]. To address this problem, we collect and annotate, as part of

our work, a dataset of industrial requirements. Taking inspiration from the state-of-the-art NLP directions, we

build multiple solutions for handling anaphoric ambiguity, while ensuring that anaphoric ambiguity detection is

explicitly addressed and prioritized over anaphora resolution.

4.3 Solutions Design

We start this section by defining in an analytical manner anaphoric ambiguity detection and anaphora

resolution. This is followed by a discussion of the preprocessing required for automating these tasks. We then

present the design of six alternative solutions for automated handling of anaphoric ambiguity in requirements;

these solutions will be tuned and evaluated in Section 4.4.

4.3.1 Problem Definition

Let R = (r1, r2, . . . , rn) be a sequence of requirements, where each ri represents a single requirements sentence.

Let P = (p1, p2, . . . , pm) be all the pronouns in R in their order of appearance. Following best practice [21],

we define the context cj of a pronoun pj as two consecutive sentences cj = (ri−1, ri); 2 ≤ i ≤ n, 1 ≤ j ≤ m,

where ri is the sentence in which pj occurs. If pj occurs in r1, then the context is one sentence only, i.e.,

cj = (−, r1). Each pronoun occurrence is represented by a distinct pj ∈ P . This means that multiple

occurrences of the same pronoun constitute different elements in P , even when the occurrences are within the

same sentence. For each pj ∈ P , the context of pj , i.e., cj , induces a set of candidate antecedents denoted

Aj = {aj1, aj2, · · · , ajt}.

To illustrate our notation, we recall the example of Figure 4.1. Let r1 and r2 be the two consecutive sentences

in that example. Then, R = (r1, r2). There is only one pronoun in R; therefore, P = (p1) where p1 = it. The

context for p1 is c1 = (r1, r2), and the set of candidate antecedents for p1 is A1 = {a11, a12, a13, a14, a15}
where a11 = “the S&T component”, a12 = “approval requests”, a13 = “the DBS”, a14 = “the request” and

43

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

Input RS

Preprocess

Ambiguous?
Most likely antecedent

A: Tuples of the form (context and pronoun) B: Triples of the form (context, pronoun, candidate antecedent) C: Contexts of pronoun occurrences
LFs: language features FEs: feature embeddings

<latexit sha1_base64="U25J/5+gIqg1LykLgC9HFcDQ9vg=">AAACCXicbVA9SwNBEJ2LXzF+RS1tFhPBQsJdELUM2lhGMB+QO469zSbZZG/v2N0TwpHWxr9iY6GIrf/Azn/j5pJCEx8MPN6bYWZeEHOmtG1/W7mV1bX1jfxmYWt7Z3evuH/QVFEiCW2QiEeyHWBFORO0oZnmtB1LisOA01Ywupn6rQcqFYvEvR7H1AtxX7AeI1gbyS+issux6HOKiD88i00h7KfD0cSVmVz2iyW7YmdAy8SZkxLMUfeLX243IklIhSYcK9Vx7Fh7KZaaEU4nBTdRNMZkhPu0Y6jAIVVemn0yQSdG6aJeJE0JjTL190SKQ6XGYWA6Q6wHatGbiv95nUT3rryUiTjRVJDZol7CkY7QNBbUZZISzceGYCKZuRWRAZaYaBNewYTgLL68TJrVinNROb+rlmrX8zjycATHcAoOXEINbqEODSDwCM/wCm/Wk/VivVsfs9acNZ85hD+wPn8ANX6ZaA==</latexit>hcj , pj , ajki
<latexit sha1_base64="wCngGIDP0opjoEtljP3qhsew80I=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHaJUY9ELx4xcYEENqRbulDptpu2a0I2/AYvHjTGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g7HtzO//USVZlI8mElCgxgPBYsYwcZKfpX0H6v9csWtuXOgVeLlpAI5mv3yV28gSRpTYQjHWnc9NzFBhpVhhNNpqZdqmmAyxkPatVTgmOogmx87RWdWGaBIKlvCoLn6eyLDsdaTOLSdMTYjvezNxP+8bmqi6yBjIkkNFWSxKEo5MhLNPkcDpigxfGIJJorZWxEZYYWJsfmUbAje8surpFWveZe1i/t6pXGTx1GEEziFc/DgChpwB03wgQCDZ3iFN0c4L86787FoLTj5zDH8gfP5A/0Sjic=</latexit>cj

<latexit sha1_base64="rRDTYDEKzzRQRstGplMwlHU+OoU=">AAACIXicbZDLTgIxFIY7XhFvqEs3E8HEFZkhRlkSiYkLFxjkksCEdMoBKp1L2jNGMuFV3PgqblxoDDvjy1gGFgqepMmf/zunp/3dUHCFlvVlrKyurW9sprbS2zu7e/uZg8O6CiLJoMYCEcimSxUI7kMNOQpohhKo5wpouMPylDceQSoe+Pc4CsHxaN/nPc4oaquTKbYRnjC5J3ZFBOO4Vb6tOuMc6zzklln1uqJZqFknk7XyVlLmsrDnIkvmVelkJu1uwCIPfGSCKtWyrRCdmErkTMA43Y4UhJQNaR9aWvrUA+XEyfaxeaqdrtkLpD4+mon7eyKmnlIjz9WdHsWBWmRT8z/WirBXdGLuhxGCz2aLepEwMTCncZldLoGhGGlBmeT6rSYbUEkZ6lDTOgR78cvLol7I2xf587tCtnQ1jyNFjskJOSM2uSQlckMqpEYYeSav5J18GC/Gm/FpTGatK8Z85oj8KeP7BztjpME=</latexit>

[CLS]cj [SEP]pj

NLPCoref

6

(iii) NLP-based

Coref1 Coref2

C

MLLF

MLFE
Extract

Features

(ii) ML-based

MLensemble

3

4

5

LFs

FEsB C

Ambiguous?
Most likely antecedentAmbiguous?

Most likely antecedentAmbiguous?
Most likely antecedent

Output

<latexit sha1_base64="UMx5mftUbJLi5KnrIu5mUsxxVC4=">AAACXnicZZDfjhIxFMbLrCI7ugLrjYkXotwYo2SGuHpLYkj0DqP8SSghnXKGbei0TVtYsJlH8Hb32bzzIfYB7AAxGfluevL1fL98OYnizNgo+l0Jzh48rD6qnYePn1w8rTealyMj15rCkEou9SQhBjgTMLTMcpgoDSRLOIyT1efif7wBbZgUP+xOwSwjS8FSRon11nc1j+eNdtSJ9mqdDvFxaPeqI37/8tX7wbxZ6eOFpOsMhKWcGDOlUqSgQVCYua/9ft9qIvIQrw0oQldkCW5ftGRN1SK1sJ25pSbqmtFtObDWvGwQrckuD0Ms4IbKLCNi4TBwKFrk03jmHE6ltEJaMOwnYM+2JnXtOM/zcihjghXBfylhi4S7yl2Uh60W9tcEagu/TCljjN+RitE9Bm+MLwpvXafrwVgRjYVkYuHLuT2E+TdJDWgGpnXA+cPH/5/5dBh1O/HHzodvcbv3Dh1UQy/Qa/QGxegT6qEvaICGiKIl+oVu0V3lT1ANLoL6YTWoHDPPUEnB87+6fLzh</latexit>

p1
<latexit sha1_base64="6sF7JNu0b91y5nQiSLw9uALDmrY=">AAACXnicZZDdSisxFIXT0VN11OPfjeCF1d4cDueUmeLPbUEKeqdoq9CUkkn31GAmCUnqX5hH8FafzTsfwgcw04owum6yWdnrY7ETxZmxUfRaCWZmf1Xn5hfCxaXl3yura+tdI8eaQodKLvVVQgxwJqBjmeVwpTSQLOFwmdwcFf+Xt6ANk+LCPijoZ2QkWMoosd46V4PmYLUeNaKJaj+H+HOot6pd/r698/90sFZp46Gk4wyEpZwY06NSpKBBUOi7k3a7bTUReYjHBhShN2QEblK0ZPXUMLVw33cjTdQ1o/flwFjzskG0Jg95GGIBd1RmGRFDh4FD0SLvxX3ncCqlFdKCYY+APdua1NXjPM/LoYwJVgS/UsIWCbefuygPazXsrwnUFn6ZUsYYvyMVoxMMvjW+KPx1jaYHY0U0FpKJoS/nJhDm3yQ1oBmY2hTnDx9/P/PPodtsxAeNvbO43vqHpppHW2gX/UExOkQtdIxOUQdRNEJP6Bm9VN6CarAcrExXg8pnZgOVFGx+ALx0vOI=</latexit>

p2
<latexit sha1_base64="tzWCiAVZs3FZtf3kAh+ifVdpQYo=">AAACYXicZZC9TsMwFIXd8B/+WhhZKsqAGKoE8TNSCUWCrUi0INUVcpybYkjsyHZLwco7sNI34JGYeRGctkIKnMVXx/d8OrphljClPe+r4iwsLi2vrK656xubW9vV2k5XiaGk0KEiEfI+JAoSxqGjmU7gPpNA0jCBu/D5svi/G4FUTPBb/ZpBPyUDzmJGibZWF48iodVDteE1vanq/wd/PjQuPj8KTdoPtUqAI0GHKXBNE6JUjwoegwROoW+ugyDQkvDcxUMFGaHPZABm2rVk9bIo1jDum4Ek2SOj43JgKJOyQaQkr7nrYg4vVKQp4ZHBkEDRIu/5fWNwLITmQoNib4AtW6vYNPw8z8uhlHFWBH9TXBcJc5obL3frdWwPClQXfplSxii7IzJGpxg8UrYoHJnmsQXjjEjMBeORLWemEGbfMFYgGaj6DGcP7/898/+he9z0z5onN36jdYBmWkV7aB8dIh+doxa6Qm3UQRQ9oXf0gSaVb2fNqTo7s1WnMs/sopKcvR/4icCZ</latexit>...

<latexit sha1_base64="s+qW48ai2QmfevlJ7xwWc4ih5Zc=">AAACg3icZVDRShwxFM1OterU1rU+CrJ0oRQLw8yi7VNlQRbsm4KrwmZZMtk7u8FMEpKsVUP+oD/QfkZf9Uf8m2Z2F2H0vORwcs/JzckVZ8am6VMjerOy+nZtfSN+t/n+w1Zz++OFkTNNoU8ll/oqJwY4E9C3zHK4UhpImXO4zK+Pq/vLG9CGSXFu7xQMSzIRrGCU2CCNmp8xh8Jih2/UlAgry8CMIhRclkLpPdZsMrXJqNlOk3SO1muSLUm7u/enwt/T0Xajh8eSzkoQlnJizIBKUYAGQWHofvZ6PauJ8DGeGQjPXZMJuPlvatJAjQsLt0M30URNGb2tG2aa1wWiNbnzcYwF/KKyLIkYOwwcqi38IBs6hwsprZAWDLsHHLKtKVw7897XTSUTrDI+u4StHO7Qu9THrRYOlQO1lV5PqceYMCMVo/OYZbP7LumEYKyIxkIyMQ7LuXkIC2deGNAMTGsRF4rPXtb8mlx0kuxbcnCWtbtHaIF1tIs+oS8oQ99RF52gU9RHFP1G/9ADeoxWo69RJzpYjEaNpWcH1RD9+A9Wqs1f</latexit>

{

Legend

<latexit sha1_base64="WkYcA747n99Yjh+kRFznXPb37Js=">AAACXnicZZBLSwMxFIXT8dnxrRvBTbEbESkz4mNbkILuKloVmlIymTs1OJOEJPUVZuPGlVv9Ff4gd/4TzbQijJ5NLif3fBxuJFOmTRB8VLyJyanpmdmqPze/sLi0vLJ6ocVQUehQkQp1FRENKePQMcykcCUVkCxK4TK6OSr+L29BaSb4uXmQ0MvIgLOEUWKcdSb7WX+5HjSCkWr/h/BnqDerz/H719NOu79SaeFY0GEG3NCUaN2lgieggFPo2ZNWq2UU4bmPhxokoTdkAHZUtGR1ZZwYuO/ZgSLymtH7cmCo0rJBlCIPue9jDndUZBnhscWQQtEi74Y9a3EihOHCgGaPgB3b6MTWwzzPy6GMcVYEf1PcFAm7n9sg92s17K4J1BR+mVLGaLcjJKMjDL7Vrihs28auA2NJFOaC8diVsyMIc2+UaFAMdG2Mc4cP/575/3Cx2wgPGnunYb0ZoLFm0QbaRFsoRIeoiY5RG3UQRQP0gl7RW+XTm/YWvKXxqlf5yayhkrz1bz89vkY=</latexit>

pm

<latexit sha1_base64="WH9YNQ8DhDHQhSZrSSCrb7Zkg+A=">AAACAXicbVDLSgMxFM3UV62vUTeCm2AruJAyU0RdFt24rGAf0ClDJr1t02YyQ5IRSqkbf8WNC0Xc+hfu/BvT6Sy0euDCyTn3kntPEHOmtON8Wbml5ZXVtfx6YWNza3vH3t1rqCiRFOo04pFsBUQBZwLqmmkOrVgCCQMOzWB0PfOb9yAVi8SdHsfQCUlfsB6jRBvJtw9KHieizwFTf3ga+0NPps+SbxedspMC/yVuRoooQ823P71uRJMQhKacKNV2nVh3JkRqRjlMC16iICZ0RPrQNlSQEFRnkl4wxcdG6eJeJE0JjVP158SEhEqNw8B0hkQP1KI3E//z2onuXXYmTMSJBkHnH/USjnWEZ3HgLpNANR8bQqhkZldMB0QSqk1oBROCu3jyX9KolN3z8tltpVi9yuLIo0N0hE6Qiy5QFd2gGqojih7QE3pBr9aj9Wy9We/z1pyVzeyjX7A+vgFuk5Y/</latexit>hcj , pji

SpanBERTRE

Pre-trained
SpanBERT

SpanBERTNLP

Encode Input

(i) SpanBERT-based

CoNLL2011
Fine-tune

(1)

Fine-tune
(2)

DAMIRT

21

A

Figure 4.3: Overview of Solution Alternatives (marked ① to ⑥).

a15 = “storage parameters”. For easier referral later in the chapter, we visually show in Figure 4.2 how our

notation is applied to the example of Figure 4.1.

Using our notation, anaphoric ambiguity detection is to decide whether a given pronoun occurrence pj is

ambiguous or unambiguous in its context cj . Anaphora resolution is to identify the most likely antecedent for pj .

4.3.2 Preprocessing

The preprocessing step generates the input for the alternative ambiguity handling solutions that we consider

in this chapter. We first apply the NLP pipeline, discussed in Section 4.2.1, on a given software requirements

specification (SRS) to parse its textual content. We create the list of all pronouns (i.e., P) occurring in SRS;

this is done by selecting the words that the POS tagger marks as PRP (personal pronoun) or PRP$ (possessive

pronoun) [155]. For each pj ∈ P , we identify the context cj as the requirement ri in which pj occurs and the

preceding requirement ri−1 (for i ≥ 2). Finally, for each pj , we generate the set of all candidate antecedents Aj .

Since antecedents are NPs, as noted in Section 4.1, we generate Aj by including all NPs that precede pj in cj , as

automatically identified by the constituency parser module in the NLP pipeline. We further include any segment

following the pattern [NP and/or NP] (e.g., “the sender and the receiver”) and [NP preposition NP] (e.g., “the

component of the system”). Doing so improves the set of candidate antecedents by covering the cases where pj

refers to a compound NP [21, 101].

4.3.3 Alternative Solutions

We consider six alternative solutions for handling anaphoric ambiguity. These are shown in Figure 4.3.

Alternatives ① and ② are based on SpanBERT; alternatives ③, ④ and ⑤ are based on supervised ML; and,

alternative ⑥ is based on existing NLP coreference resolvers. We note that the expected input differs across

solutions: The solutions based on SpanBERT take as input tuples of the form ⟨cj , pj⟩; the ML-based solutions take

as input triples of the form ⟨cj , pj , ajk⟩; and, the NLP-based solution take as input merely the context information

(cj) for pronoun occurrences. The input for all solutions is directly constructible from the preprocessing results.

Table 4.1 outlines for each solution the inputs, the intermediate outputs and the rules for processing the

intermediate outputs. The rules produce the final results for anaphora resolution and ambiguity detection. We

elaborate our alternative solutions next.

44

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

Table 4.1: Inputs, Intermediate Outputs and Ambiguity-handling Rules for Solution Alternatives.

Alternative(s) Input (I), Intermediate Output (O) and Ambiguity Handling Rules (R)

① ② I: ⟨cj , pj⟩ tuples. O: Tuples of the form ⟨sq, prq⟩, where sq is a text span and prq is the
probability of sq being the antecedent for pj . R: (Anaphora Resolution∗) For a pronoun pj ,
if there is exactly one sq in cj such that prq is ≥ a fixed (empirically tuned) threshold, then
sq is the most likely antecedent of pj . (Ambiguity Detection) If such sq is identified, then
pj is unambiguous; otherwise pj is ambiguous.

③ ④ ⑤ I: ⟨cj , pj , ajk⟩ triples. O: Tuples of the form ⟨ℓjk, prjk⟩, where ℓjk is a label characterizing
the referential relation between ajk and pj in cj and where pr jk is the prediction probability
for ℓjk. For anaphora resolution, the labels admitted by ℓjk are correct and incorrect; for
ambiguity detection, ℓjk additionally admits inconclusive. R: (Anaphora Resolution∗) For a
given pj , if there is exactly one ajx such that ℓjx = correct with any probability, then ajx
is the most likely antecedent of pj . Otherwise, if multiple ℓjk are predicted as correct for
pj , then we deem pj’s most likely antecedent to be ajx where x is the index at which ℓjx
has the highest probability pr jx. (Ambiguity Detection) For a given pj , if there is exactly
one label ℓjx = correct, then pj is unambiguous if, additionally, either of the following
conditions hold: (a) pr jx is ≥ a fixed (empirically tuned) threshold, or (b) there is no label
ℓjk that is inconclusive. Otherwise, pj is ambiguous.

⑥ I: Contexts (cj) of pronoun occurrences. O: Each pronoun occurrence pj alongside mentions
m1 and m2 found by Coref1 and Coref2, respectively. R: (Anaphora Resolution∗) If
m1 = m2, then m1 (= m2) is the most likely antecedent of pj . (Ambiguity Detection) If an
antecedent is identified by the anaphora resolution rule, then pj is unambiguous; otherwise,
pj is ambiguous.

* If no anaphora resolution rule is triggered for a given pronoun occurrence, then no antecedent is predicted.

(i) Solutions based on SpanBERT. We employ the recent language model SpanBERT [139], introduced in

Section 4.2.1, to develop solutions ① and ②, referred to as SpanBERTNLP and SpanBERTRE , respectively. We

first fine-tune the pre-trained SpanBERT model to generate SpanBERTNLP using the CoNLL2011 dataset [156,

157, 158] – a large dataset of generic text with about 7,000 pronoun occurrences. This fine-tuning step – fine-tune

(1) in Figure 4.3 – aims to adjust the parameters of the general SpanBERT model using the inputs and outputs of

CoNLL2011 on the anaphora resolution task. Next, we fine-tune SpanBERTNLP to generate SpanBERTRE on a

subset of DAMIR – a dataset of NL requirements, which we have constructed as part of our work. The second

fine-tuning – fine-tune (2) in Figure 4.3 – enhances SpanBERTNLP by exposing it to examples of ambiguous

and unambiguous pronouns from the RE domain. The hypothesis we would like to examine using the resulting

solution, i.e., SpanBERTRE , is whether requirements-specific knowledge improves the accuracy of anaphoric

ambiguity handling in RE. The CoNLL2011 and DAMIR datasets are discussed in Section 4.4.3.

The input to BERT and its variants needs to be tokenized and encoded into the same format used by the

pre-trained models. Specifically, we encode each tuple ⟨cj , pj⟩ as [CLS]cj [SEP]pj . Two special tokens are

automatically added by BERT’s tokenizer: [CLS] to represent the classification output and [SEP] to separate

cj from pj . Any repeated occurrence of the same pronoun pj is replaced with pj#d, where d ≥ 1 is a unique

identifier. The multiple occurrences are then encoded as [CLS]cj [SEP]pj#d. The [CLS] token is relevant for

SpanBERT’s pre-training, which is not part of our analysis. [CLS] thus has no significance for our analytical

purposes.

The SpanBERT-based solutions, ① and ②, handle ambiguity using the respective rules provided in Ta-

ble 4.1. There is a threshold θα for controlling the resolution results. We recommend θα = 0.9 based on our

45

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

tuning, discussed in Section 4.4.5. For the example in Figure 4.2, the input to ① and ② is ⟨c1, p1⟩, encoded as

[CLS]c1[SEP]p1. The intermediate output of both solutions would be a tuple like ⟨s1 =“the S&T component”, pr1 = 0.99⟩.
The text span s1 would be the antecedent of p1, since it is identified with a probability ≥ 0.9. Thus, p1 would

be detected as unambiguous. Note that ① and ② do no necessarily demarcate all possible text spans in cj , but

rather only those that the solutions find relevant for anaphora resolution.

(ii) Solutions based on supervised ML. We refer to our three ML-based solutions, ③, ④ and ⑤, as MLLF ,

MLFE and MLensemble , respectively. MLLF is trained on 45 language features (LFs) collated from the existing

NLP and RE literature on anaphora resolution [21, 144, 145, 146, 147, 148, 149]. The description of the LFs

is provided online [159]. MLFE is trained on feature embeddings (FEs) which are contextual representations

of the input, as explained in Section 4.2.1. MLensemble is an ensemble classifier which combines the results of

MLLF and MLFE .

Each triple ⟨cj , pj , ajk⟩ in the input to the ML-based solutions needs to be transformed into a feature vector.

MLLF is built over 45-dimensional feature vectors encoding the LFs. The values for the LFs are computed using

the NLP pipeline. The LFs characterize the referential relation between pj and its candidate antecedent ajk,

e.g., number agreement when both are plurals or singulars. MLFE is built over 768-dimensional feature vectors

representing the FEs extracted from BERT [23] and SBERT [57]. The FEs capture the semantic and syntactic

regularities of a text sequence [160]. There are other pre-trained models, e.g., GloVe [161] and word2vec [55],

that can be used for deriving the FEs. We favor embeddings derived from BERT (and SBERT), because these

embeddings are contextual and known to better capture sequence-level semantics, including referential relations,

when compared to the (non-contextual) embeddings from GloVe and word2vec [162]. In Section 4.4.5, we

experiment with three different ways of deriving FEs from BERT.

For a triple ⟨cj , pj , ajk⟩, the intermediate output of the ML-based solutions is a predicted label that assumes

one of the following three values: correct (meaning that pj refers to ajk), incorrect (meaning that pj does not

refer to ajk) or inconclusive (meaning that the referential relation between pj and ajk is not clear enough to

be classified as either correct or incorrect). MLensemble generates its intermediate output by combining the

predictions from MLLF and MLFE . If MLLF and MLFE agree on the label predicted for a given triple, then

MLensemble assigns this label to the triple as well. If MLLF and MLFE disagree, then MLensemble assigns to the

triple the label predicted with the higher probability, but only if the difference between the two probabilities is

greater than or equal to a threshold θδ. If the probability difference falls short of θδ, then MLensemble assigns the

label inconclusive. Based on our tuning presented in Section 4.4.5, we recommend θδ = 0.1.

For ambiguity detection, we train the classifiers underlying our ML-based solutions on a subset of the DAMIR

dataset, with datapoints covering all three outcome classes (correct, incorrect and inconclusive). Doing so enables

the classifiers to distinguish unambiguous cases (correct and incorrect) from ambiguous ones (inconclusive).

For anaphora resolution, we train the classifiers on only the datapoints labeled correct or incorrect. For

this task, the datapoints labeled inconclusive are not useful and may even mislead the learning of correct and

incorrect referential relations.

The rules used by our ML-based solutions for ambiguity handling are inspired by Yang et al. [21] and

provided in Table 4.1. There is a threshold θβ in the rules for controlling the detection results. We recommend

θβ = 0.5, based on the tuning results of Section 4.4.5. To illustrate the ML-based solutions, recall the example of

Figure 4.2. For that example, the input would be five triples: ⟨c1, p1, a1k⟩; 1 ≤ k ≤ 5. For ambiguity detection,

when trained and tuned as we explain in Section 4.4.5, MLLF predicts inconclusive for all triples, whereas MLFE

predicts inconclusive for k ∈ {1, 2, 5} and incorrect for the rest. These predictions jointly lead to MLensemble

46

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

predicting inconclusive for all triples. Due to space, we do not show and argue through the probability scores

that MLensemble uses for deriving its results for our illustrative example. When the ambiguity-handling rules are

applied to these intermediate results, none of the ML-based solutions provide a resolution for p1, and all three

detect p1 as ambiguous.

(iii) Solution based on NLP coreference resolvers. We refer to our final solution, numbered ⑥ in Figure 4.3, as

NLPcoref . This solution requires two independent coreference resolvers and can easily be implemented using the

NLP pipeline. Let us denote the two resolvers by Coref 1 and Coref 2. NLPcoref , as shown in Table 4.1, combines

the results of Coref 1 and Coref 2 via consensus. We instantiate Coref 1 and Coref 2 using two popular coreference

resolvers [163]: the resolver in the CoreNLP toolkit [164, 165] and the one in the SpaCy library [128]. For the

example of Figure 4.2, NLPcoref resolves p1 as referring to a14 (“the request”), thus deeming p1 as unambiguous.

4.4 Empirical Evaluation

In this section, we tune and assess the alternative solutions presented in Section 4.3.

4.4.1 Research Questions (RQs)

Our evaluation tackles the following three research questions (RQs):

RQ1. Which solution alternative is the most accurate for detecting anaphoric ambiguity in requirements?
By comparing the accuracy of the alternative solutions in Figure 4.3, we identify, in RQ1, the best-performing

solution for detecting anaphoric ambiguity in requirements.

RQ2. Which solution alternative is the most accurate for resolving anaphora in requirements? In RQ2, we

identify among the alternatives in Figure 4.3, the one that is most accurate for resolving anaphora. Having

an accurate anaphora resolver is beneficial for RE in at least two ways: First, during requirements reviews,

the machine-generated interpretations are a good indicator for the risk of misunderstandings. Notably, if the

requirements analyst(s) settle on an interpretation that differs from the one (if any) offered by automated

resolution, then there is an increased chance that other stakeholders, e.g. developers, may misinterpret the

anaphora in question, with this misinterpretation potentially happening much later in the development process

and thus potentially being more costly to fix. Second, for automated information extraction purposes, e.g., the

extraction of conceptual models from requirements [166, 167], one would typically want to use the results of

automated anaphora resolution as-is and without additional manual processing.

RQ3. What is the execution time of each solution alternative? Execution time is an important factor for

ensuring practicality. RQ3 examines the execution time of each of the alternatives in Figure 4.3.

4.4.2 Implementation and Availability

We use Python 3.8 [126] for implementing the preprocessing step (Section 4.3.2) as well as for the high-level

scripting of the alternative solutions shown in Figure 4.3. The NLP pipeline and language-feature extraction

are implemented using SpaCy 3.0.5 [128], NLTK 3.5 [127], Stanza 1.2 [168], and CoreNLP 4.2.2 [169].

The SpanBERT-based solutions use the Transformers 4.6.1 library [170] provided by Hugging Face (https:

//huggingface.co/) and operated in PyTorch [171]. For the ML-based solutions, we use Scikit-learn

0.24.1 [130]. We use the Transformers library for extracting embeddings. BERT’s embeddings are extracted

from the bert-base-cased model. For extracting SBERT’s embeddings, we use the paraphrase-MPNet-base-

47

https://huggingface.co/
https://huggingface.co/

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

Table 4.2: Summary Statistics for our Datasets.

DAMIR ReqEval CoNLL2011

Unique Sentences 1,251 98 6,888

Pronouns
Ambiguous 342 62 -

Unambiguous 395 47 6,757

Triples
Correct 404 66 6,866

Incorrect 2,814 104 14,666
Inconclusive 3,448 272 -

v2 model [172], also available in the Transformers library. Finally, for implementing the solution that uses

existing NLP resolvers, we use the coreference resolution modules available in SpaCy 3.0.5 [128] and CoreNLP

4.2.2 [164, 165]. The different solutions proposed in this chapter are implemented using Jupyter Notebooks [137].

4.4.3 Datasets

We use three datasets in our evaluation. The first dataset has been curated using two external (non-author)

annotators, as we elaborate momentarily. We call this dataset DAMIR, which stands for Dataset for Anaphoric

aMbiguity In Requirements. The other two datasets are borrowed from the literature. These are CoNLL2011 [156,

157, 158], the NLP dataset on coreference resolution released in the 2011 edition of the Computational Natural

Language Learning conference (CoNLL2011); and ReqEval [173], the RE dataset on anaphoric ambiguity

released in the 2020 edition of the NLP4RE workshop. We use the CoNLL2011 dataset for fine-tuning the

SpanBERT-based solutions. We use the ReqEval dataset to evaluate the solution alternatives. The DAMIR dataset

is split into two portions, as we explain later; one portion is used for development and tuning, and the other

portion is used for evaluating the solution alternatives.

Table 4.2 provides summary statistics for DAMIR and the adapted versions of CoNLL2011 and ReqEval.

Specifically, the table shows the number of unique sentences in each dataset, the number of pronouns marked

as ambiguous and unambiguous, and the number of triples marked as correct, incorrect and inconclusive. We

discuss the three datasets next. Note that the number of correct antecedents is greater than the number of

unambiguous pronouns since the correct antecedent can occur in the context multiple times, in which case it will

be counted more than once.

DAMIR. We collected 22 industrial software requirements specifications (SRSs) from eight application domains:

satellite communications, medicine, aerospace, security, digitization, automotive, railway, and defence. The

requirements in these specifications were independently analyzed by two third-party annotators with expertise in

linguistics. The first annotator, who has a Masters degree in cultural studies and multilingualism, had, prior to

her engagement in our work, done a six-month internship, focusing on investigating the linguistic characteristics

of requirements. The second annotator has a computer-science background with a Masters degree in quality

management. This annotator further has a professional certificate in English translation. Both annotators received

training on anaphoric ambiguity in requirements. The annotators’ work spanned two months, with a total of 44

and 56 hours declared by the annotators, respectively. To mitigate fatigue effects, the annotators were encouraged

to limit their periods of work to two hours at a time. In addition to the original SRSs, we shared with the

annotators the lists of automatically generated triples (⟨cj , pj , ajk⟩).
The annotators were asked to examine the list of triples associated with each pronoun occurrence pj . If they

48

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

were confident that a candidate antecedent ajk is the likely one in a triple, then they were instructed to label

that triple as correct and all other triples involving pj as incorrect. In case of doubt, the annotators were asked

to label all the triples involving pj as inconclusive. The annotators could also select the label invalid if some

automatically generated triple had an error caused by, e.g., inaccurate splitting of the sentence constituents. All

such invalid triples were filtered out.

To construct the DAMIR dataset, we checked the annotations for the triples associated with each pj . If the

annotators agreed that a triple should be labeled as correct (meaning that they also agreed that the other triples

for pj should be labeled as incorrect), we considered pj as unambiguous. In this case, the triples associated

with pj received the same labels as indicated by the annotators. If the annotators disagreed on the label for any

triple associated with pj , then we regarded pj as ambiguous, and consequently, labeled all the associated triples

as inconclusive. We identified two types of disagreement between the annotators: (i) one annotator found pj

ambiguous and labeled its triples as inconclusive, while the other annotator found pj unambiguous and labeled

some triple as correct; or (ii) the annotators labeled two different triples as correct, i.e., they unconsciously

disagreed on the interpretation. We define as an agreement any case other than (i) and (ii) above. Using Fleiss’

kappa (κ) [174], we obtain an inter-rater agreement of κ = 0.54, which indicates moderate agreement [117]

between the annotators. We note that for datasets related to ambiguity analysis, this level of agreement is to be

expected [10], considering that disagreements are indicators for ambiguous cases.

We split the pronoun occurrences in DAMIR into two disjoint subsets: DAMIRT and DAMIRE . The contexts

for the elements in DAMIRT are also distinct from those for the elements in DAMIRE , i.e., all triples associated

with a pronoun pj including the candidate antecedents ajk of pj appear in either DAMIRT or DAMIRE but not

in both. DAMIRT contains 80% of the dataset and is used for developing and tuning the solutions. DAMIRE

contains the remaining 20% and is used for evaluation. Our empirical evaluation, presented in Section 4.4, is

conducted using DAMIRE only.

CoNLL2011. We extracted from the original CoNLL2011 dataset only the annotations relevant to anaphoric

ambiguity analysis, i.e., the annotations where a pronoun has been labeled with the antecedent it refers to. We

used the source documents released alongside CoNLL2011 in order to identify a context of size two for each

pronoun occurrence. To adapt this dataset to our work, we generated ⟨cj , pj , ajk⟩ triples through preprocessing

(Section 4.3.2). We then assigned labels to the triples in a backward manner: A triple ⟨cj , pj , ajk⟩ is labeled

correct if ajk represents the selected antecedent for pj . Otherwise, the triple is labeled incorrect. We note that

no triple is marked as inconclusive here, since CoNLL2011 was not created for ambiguity detection; all pronoun

occurrences in CoNLL2011 are regarded as unambiguous.

ReqEval. The ReqEval dataset is composed of a set of independent requirements, each with at least one

pronoun occurrence. Each pronoun occurrence is labeled as either ambiguous or unambiguous. In the latter case,

the correct antecedent is provided. To adapt ReqEval to our work, we generated ⟨cj , pj , ajk⟩ triples through

preprocessing. In contrast to the DAMIR and CoNLL2011 datasets where we set the context size to two when

generating the triples, for ReqEval, we use a context of size one. This is because we could not ascertain that the

requirements were in any particular order; a context beyond the immediate sentence where a pronoun appears

was not intended in ReqEval. For each ambiguous pj , we assigned the label inconclusive to all triples associated

with pj . For each unambiguous pj , we assigned the label correct to the triple where ajk matches the antecedent

provided for pj and incorrect to all other triples.

49

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

Table 4.3: Accuracy of Different Configurations of Solutions ③ and ④ for Anaphoric Ambiguity Detection.

Models
③ ④
LF FE1 FE2 FE3 FE4

DT
P 50.9 51 49.8 51.9 56.9
R 94 86.3 89 89 87.3
F2 80.3 75.7 76.7 77.7 77.5

FNN
P 50.2 51.6 51.1 49.9 55.5
R 96.2 99.2 98 94 96.9
F2 81.2 83.6 82.7 79.8 83.6

kNN
P 50.3 50.2 49.8 50.2 55.7
R 91 98.2 96.8 97.7 98.3
F2 78.3 82.4 81.4 82.1 84.7

LR
P 49.5 50.3 50.4 51.2 52.5
R 89 95.3 95.9 97.2 90.4
F2 76.6 80.6 81.2 82.3 78.3

NB
P 50.4 50.8 50.1 50.6 55
R 99.7 98.3 96.9 98.7 95.3
F2 83.3 82.8 81.5 82.9 82.8

RF
P 49.9 50.3 51.1 50.6 57.7
R 94.3 94.5 96.7 95.5 100
F2 80 80.3 82 80.9 85.9

SVM
P 50 50 50.4 50.4 56
R 94.4 97.2 97.7 97.7 92.6
F2 80.1 81.7 82.2 82.2 80.3

† FE1: FEs from SBERT, FE2: FEs from BERT’s
second-to-last layer, FE3: concatenation of FEs
from BERT’s last four layers, FE4: summation of
FEs from the same four layers.

4.4.4 Evaluation Metrics

Anaphoric ambiguity detection. We evaluate ambiguity detection using precision (P), recall (R) and Fβ-score

computed as P = TP/(TP + FP), R = TP/(TP + FN), and Fβ = (1 + β2)(P ∗ R)/(β2 ∗ P + R),

respectively. A true positive (TP) is a case where the solution correctly predicts pj as ambiguous. A true negative

(TN) is a case where the solution correctly predicts pj as unambiguous. A false positive (FP) is a case where the

solution falsely predicts pj as ambiguous, and a false negative (FN) is a case where the solution falsely predicts

pj as unambiguous. As is common for many requirements analysis tasks including ambiguity analysis [21, 175],

we favor recall over precision. We thus use and report F2-scores (i.e., β = 2).

Anaphora resolution. We evaluate resolution using the following metric, which we call success rate: the ratio of

correctly resolved pronoun occurrences to the total number of pronoun occurrences labeled as unambiguous in

the ground truth. We apply two modes to decide whether the antecedent identified by a solution is correct as per

the ground truth. In the full matching mode, we consider the identified antecedent to be correct only when it fully

matches the text span in the ground truth. In the partial matching mode, we consider the identified antecedent

to be correct if it overlaps with the text span in the ground truth. For example, the identified antecedent “all

approval requests” compared to “approval requests” (in the ground truth) is considered as correctly resolved

in partial matching but not in full matching. The rationale for considering partial matching is that, when the

50

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

matching results are destined for a manual review, pinpointing the location of the text span of interest is highly

useful, even though the identified span may be incomplete or only partially correct.

4.4.5 Solutions Tuning

In this section, we describe the tuning of our solutions. The resulting tuned solutions are used in Section 4.4.6

for answering RQ1-3.

Tuning SpanBERT. We fine-tune the SpanBERT-based solutions to maximize F2-score for ambiguity detection.

We follow the recommendations in the literature for fine-tuning pre-trained language models [176, 23, 139]. To

generate SpanBERTNLP (solution ① in Figure 4.3), we fine-tune SpanBERT on the CoNLL2011 dataset for 20

epochs with 2e-5 learning rate and 32 batch size. We then generate SpanBERTRE (solution ② in Figure 4.3) by

fine-tuning SpanBERTNLP for 3 epochs on the DAMIRT dataset with the same learning rate and batch size as

used in solution ①.

We apply a threshold θα as the lower bound for accepting a text span identified by solution ① or ② as

the antecedent of a pronoun occurrence (see Section 4.3.3). We tune θα on DAMIRT via exhaustive search.

Specifically, we experiment with 10 values [0.1, 0.2, · · · , 1.0]. The optimal value is θα = 0.9.

Tuning ML. We optimize MLLF and MLFE (solutions ③ and ④ in Figure 4.3) on DAMIRT . We consider

different configurations that arise from varying the ML classification algorithm and the FEs. For both ③ and ④,

we experiment with seven widely used classification algorithms, namely decision tree (DT), feedforward neural

network (FNN), k-nearest neighbor (kNN), logistic regression (LR), naïve Bayes (NB), random forest (RF) and

support vector machine (SVM) [21, 177, 178]. Following best practice [23, 57], we explore four options for

extracting FEs for solution ④. In the first option, FE1, the embeddings are extracted from SBERT. The other

three options, FE2–FE4, are based on embeddings from BERT. FE2 are the embeddings from the second-to-last

hidden layer; FE3 are the concatenation of the embeddings from the last four hidden layers; and FE4 are the

summation of the embeddings from these four layers.

The various options explained above induce seven configurations for solution ③ and 28 for solution ④. We

tune solutions ③ and ④ for maximizing F2-score for ambiguity detection in DAMIRT . We further tune the

solutions for maximizing the success rate of anaphora resolution (using only the datapoints labeled correct or

incorrect, and excluding those labeled inconclusive). Since correct is the minority class in anaphora resolution,

we downsize the incorrect class using random under-sampling [179].

We evaluate all configurations using 10-fold cross-validation [110]. We note that standard 10-fold cross-

validation would partition DAMIRT at the triple level, implying that some of the triples associated with a pronoun

occurrence could land in the training set and the others in the test set. Such splitting of the triples associated with

the same pronoun is undesirable. We therefore develop a variant of 10-fold cross-validation where we first group

the datapoints in DAMIRT by pronoun occurrence, perform random shuffling and only then split the dataset into

ten equal partitions. This ensures that all the triples associated with a single pronoun occurrence are placed in

one partition only, used either for training or for testing.

Tables 4.3 and 4.4 list the various configurations and the results obtained for each. We note that, in Table 4.4,

we apply the full matching mode for computing accuracy. This is because the ML-based solutions predict

an exact candidate antecedent from a pre-generated list instead of demarcating a text span. The best results

for each solution are highlighted in bold. We select as the best-performing configuration for MLLF the NB

algorithm for ambiguity detection, and the SVM algorithm for anaphora resolution. We select as the best-

performing configuration for MLFE the RF algorithm trained over FE4 for ambiguity detection, and the FNN

51

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

Table 4.4: Success Rate of Different Configurations of Solutions ③ and ④ for Anaphora Resolution.

DT FNN kNN LR NB RF SVM

③ LF 32.2 81.4 61.0 86.4 18.6 71.1 91.5

④

FE1 6.8 74.6 13.6 66.1 62.7 66.1 69.4
FE2 0.0 59.3 16.9 66.1 55.9 67.8 71.1
FE3 8.5 61.0 16.9 66.1 18.6 67.8 66.1
FE4 6.8 57.6 15.2 62.7 52.5 57.6 66.1

Table 4.5: Accuracy Results for Different Anaphoric Ambiguity Handling Solutions.

P, R, and F2 of Ambiguity Detection SR (%) of Anaphora Resolution

DAMIRE ReqEval DAMIRE ReqEval

P (%) R (%) F2 (%) P (%) R (%) F2 (%) Full Partial Full Partial

SpanBERTNLP 40.0 81.8 67.6 60.2 75.8 72.1 73.5 88.2 97.8 97.8
SpanBERTRE 36.9 77.2 63.3 57.6 96.8 85.2 68.9 96.1 97.8 100
MLLF 57.6 100 87.2 61.8 98.9 88.3 81.2 - 57.4 -
MLFE 57.5 100 87.1 62.2 98.2 88.0 51.0 - 82.9 -
MLensemble 58.2 100 87.5 61.5 100 88.9 82.3 - 57.4 -
NLPCoref 52.4 48.5 49.2 56.7 51.5 52.5 52.5 52.5 39.6 51.7
† For each dataset, the best values of P, R, F2 and success rate (SR) are highlighted in bold.

algorithm trained over FE1 for anaphora resolution. Following the above decisions, we apply grid search [180]

to optimize the hyperparameters of the best-performing configurations; hyperparameter optimization for all

possible configurations would have been too expensive due to the high dimensionality of feature embeddings.

Finally, there are two fixed thresholds in the ML-based solutions, θβ and θδ, which we tune after hyper-

parameter optimization. The role of θβ is the same as that of θα, discussed earlier for the SpanBERT-based

solutions. The θβ threshold is tuned in the same manner as θα. The optimal value is θβ = 0.5. As for θδ, the

threshold is used by MLensemble to ensure that one candidate antecedent is not favored over another when the

predicted probabilities are too close (see Section 4.3.3). We tune θδ using exhaustive search on DAMIRT and

over the same ten values tried for θα and θβ . The optimal value is θδ = 0.1.

4.4.6 Answers to the RQs

RQ1. Which solution alternative is the most accurate for detecting anaphoric ambiguity in requirements?

Table 4.5 (left side) shows the precision (P), recall (R) and F2-score (F2) of the different solutions measured on

the DAMIRE and ReqEval datasets.

As shown by the table, all alternatives perform better on ReqEval than DAMIRE . The difference in accuracy

is particularly notable for the precision of SpanBERT-based solutions. We believe that this difference can be

explained by the different context sizes used for pronoun occurrences in the two datasets. In ReqEval, the context

is one sentence with an average length of 25 words, where both the pronouns and their antecedents occur. In this

dataset, the average number of candidate antecedents for a pronoun is four. In contrast, in DAMIRE , the context

is composed of two sentences with an average of 47 words. For this dataset, the average number of candidate

antecedents is nine, i.e., more than twice as many as for ReqEval. Parsing larger contexts and having to deal

with more candidate antecedents allow more room for error. Overall, we believe that the results for DAMIRE are

52

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

more reflective of practice, since analysts often consider a broader context for a pronoun than the sentence where

the pronoun appears. As noted earlier, this broader context information is unavailable in ReqEval, hence our

evaluation using single sentences as context in this dataset.

As seen from Table 4.5, the ML-based solutions have the best recall (and also precision) on both datasets.

We believe that the superior accuracy of the ML-based solutions has to do with the fact that these solutions are

explicitly trained to distinguish ambiguous and unambiguous pronoun occurrences. We further observe that the

choice of features in ML-based solutions, i.e., LFs versus FEs, has little impact on the accuracy of ambiguity

detection. Overall MLensemble leads to the best F2-scores, including perfect recall on both datasets. In terms of

precision, the ML-based solutions are the superior ones as well. We note that MLLF and MLFE neither achieve

perfect recall on ReqEval nor offer tangible gains over MLensemble in terms of precision. Across ReqEval and

DAMIRE , MLensemble has an average precision of 59.9%. We believe that this level of precision is acceptable in

practice. The implication of a ≈60% precision is the manual effort needed for filtering out the pronouns wrongly

marked as ambiguous (FPs). Discarding FPs is still easier and requires less effort than finding FNs, i.e., the

ambiguous cases that are missed.

The answer to RQ1 is that MLensemble (solution ⑤ in Figure 4.3) with an average precision of ≈60% and a

recall of 100% is the most accurate solution for detecting anaphoric ambiguity in requirements.

RQ2. Which solution alternative is the most accurate for resolving anaphora in requirements? Table 4.5 (right

side) shows the resolution success rate (defined in Section 4.4.4) for DAMIRE and ReqEval. Our evaluation

covers 96 unambiguous pronouns in DAMIRE and 62 in ReqEval. We apply both the full and partial matching

modes (see Section 4.4.4). We note though that only full matching applies to the ML-based solutions, since these

solutions identify the antecedent of a pronoun from a pre-calculated list of candidate antecedents.

As Table 4.5 shows, for anaphora resolution, no solution outperforms all the others on both datasets. For

instance, the ML-based solutions (③ – ⑤) perform well on one dataset but not the other. MLensemble is the

best-performing solution on DAMIRE , but performs rather poorly on ReqEval. As highlighted in the table, the

SpanBERT-based solutions clearly outperform all other solutions in partial matching mode, with SpanBERTRE

achieving the highest success rate. We thus believe that SpanBERTRE is the most useful solution in terms of

providing assistance to analysts during manual requirements reviews.

The answer to RQ2 is that SpanBERTRE (solution ② in Figure 4.3) with an average success rate of ≈98% is

the most accurate solution for resolving anaphora in requirements.

RQ3. What is the execution time of each solution alternative? We consider the execution time of our solutions

both from the perspective of a solution developer and that of an end-user.

A developer would be interested in how long it takes to tune the SpanBERT- and ML-based solutions,

as discussed in Section 4.4.5. Tuning is a one-off activity and not pertinent to end-users. We used Google

Colaboratory [181] for developing and tuning the SpanBERT-based solutions. Fine-tuning SpanBERT on

CoNLL2011 (with 6,757 pronouns) to generate SpanBERTNLP took ≈4 hours. Fine-tuning SpanBERTNLP on

DAMIRT (with 533 pronouns) to generate SpanBERTRE took ≈23 minutes. For tuning the ML-based solutions,

we used a workstation equipped with a 12-core processor (AMD Ryzen 9 5900X 3.7 GHz) and 64 GB of

memory. Recall from Section 4.4.5 that the ML-based solutions are tuned separately for ambiguity detection and

anaphora resolution. Tuning time is directly impacted by the best-performing configuration picked for each task

53

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

(which will then be subjected to hyperparamater optimization). Tuning MLLF required 30 minutes for detection

and 53 minutes for resolution. Tuning MLFE was more expensive, requiring 6.5 hours for detection and 45

minutes for resolution.

To measure execution time from an end-user’s perspective, we used a normal laptop with a 2.3 GHz CPU

and 16 GB of memory. We picked from our evaluation set a random selection of 100 pronoun occurrences.

These occurrences span 96 requirements sentences and induce 842 triples. We combined the 96 sentences

into a single document. The resulting document is not meant to represent a real-world RS. Rather, we want

this document to emulate a representative situation for pronoun occurrences (e.g., in terms of having different

pronoun types and different numbers of candidate antecedents in context). In a real setting, before one applies

any of our solutions to an RS, all the material in the RS other than the sentences within the context of some

pronoun occurrence can be removed.

The resulting document was used for measuring per-pronoun execution time. The measured times are

representative for larger samples as well, with the overall execution time increasing linearly as the number of

pronoun occurrences increases.

The answer to RQ3 is as follows. The average time (in seconds) required for handling an individual pronoun

occurrence is: 1.5s using SpanBERTNLP or SpanBERTRE ; 8s for detection and 8s for resolution using

MLLF ; 7.5s for detection and 6s for resolution using MLFE ; 14.5s for detection and 13s for resolution using

MLensemble ; and 7s using NLPCoref .

The practical implication of these execution times is as follows: Based on the literature [2], one can expect

that 20% of the requirements in a given RS would contain (pronominal) anaphora. Processing a large RS with,

say, 2000 requirements would then require processing 400 (give or take) requirements sentences. Extrapolating

from our datasets, one can expect 1.2 pronouns per sentence and thus 480 pronouns in our hypothetical RS with

2000 requirements. Using the most accurate solutions from RQ1 and RQ2, one would require about 2 hours for

detecting ambiguity using MLensemble and about 4 minutes for resolving anaphora using SpanBERTRE . The

execution time of ambiguity detection can be cut by almost half if one applies either MLLF or MLFE , potentially

at the cost of a slight decrease in recall. These execution times are acceptable for offline processing, e.g., during

a break or overnight. As for online (i.e., interactive) processing, we observe that, at any given time, an analyst

likely works on only a small fragment of a large document. For interactive usage, anaphoric ambiguity handling

can be localized to the document segment (e.g., sentences) that the analyst is working on.

4.4.7 Discussion

Below, we make two remarks: the first one is the overall conclusion of our empirical evaluation; the second one

is a lesson learned about using pre-trained language models in RE.

(1) Given the accuracy results (RQ1 and RQ2) and the execution times (RQ3), we propose a hybrid solution

for handling anaphoric ambiguity in requirements. This hybrid solution combines supervised ML for ambiguity

detection and SpanBERT for anaphora resolution. For the detection task, MLensemble is the most accurate. One

may nonetheless elect to use the slightly less accurate MLLF or MLFE to reduce execution time. For the resolution

task, we recommend SpanBERTRE. This solution is highly accurate in pinpointing the location of antecedents.

(2) We benefited from the CoNLL2011 dataset for the initial fine-tuning of SpanBERT, before further

fine-tuning it with RE-specific data. Our preliminary experimentation indicated that, without the intermediate

fine-tuning step over CoNLL2011, SpanBERT would not lead to a viable solution through fine-tuning on our

54

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

R1. Where records are stored on external folders,
the system shall enable the complete obliteration
of records, parts, folders, and groups of folders.

R2. If records are stored on write-once folders, the
system shall prevent access to them.

myRS.txt

Review

Validate

Requirements
Engineer

python taphsir.py --doc myRS.txt

TAPHSIR

myRS-detection.csv

Context DetectionPronoun

R1. Where records are
stored on external folders,
the system shall enable
the complete obliteration
of records, parts, folders,
and groups of folders. R2.
If records are stored on
write-once folders, the
system shall prevent
access to them.

them ambiguous

myRS-resolution.csv

Context Pronoun Resolution

R1. Where records are
stored on external folders,
the system shall enable
the complete obliteration
of records, parts, folders,
and groups of folders. R2.
If records are stored on
write-once folders, the
system shall prevent
access to them.

them records

Figure 4.4: Application Example of TAPHSIR.

RE datasets alone. We believe that, due to the general scarcity of tailor-made datasets for RE tasks, one should

take into account the possibility that intermediate fine-tuning data may be required, when attempting to design

requirements automation solutions based on pre-trained language models. To this end, RE researchers may need

to look for complementary datasets in other communities, e.g., NLP, to be able to get the best traction from

pre-trained language models.

4.5 Tool Support

TAPHSIR, standing for Towards Anaphoric Ambiguity Detection and Resolution in Requirements, is the

implementation of the best performing parameters of our approach. In Arabic, TAPHSIR means “interpretation”.

TAPHSIR focuses on pronominal anaphoric ambiguity, an ambiguity type that has been explored only to a

limited extent in requirements engineering (RE) [21, 2]. There are no existing tools in RE to handle anaphoric

ambiguity, although this type of ambiguity is prevalent in NL requirements: it is estimated that up to 20% of

industrial requirements may suffer from anaphoric ambiguity [1, 2].

TAPHSIR aims to reduce the time and effort that requirements engineers spend inspecting the use of

pronouns in an SRS. To illustrate, consider the example in Figure 4.4. The figure shows a requirements engineer

55

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

Loader

txt

RS

nltk==3.5
spacy==2.3.7
benepar==0.2.0
stanza==1.2
pydotplus==2.0.2
nimbusml==1.8.0
scikit-plot==0.3.7
imblearn==0.0
tensorflow==2.4.1
textblob==0.15.3
sentence-transformers==2.0.0
openpyxl==3.0.9
et_xmlfile==1.1.0

1

libraries.txt

2

ML-based Anaphoric Ambiguity Detection

SpanBERT-based Anaphora Resolution

csv

Reader

Language
Features Extraction

Features
Emebeddings Extraction

Context +
Pronoun +
Antecedent

Classifier[LF1, LF2, …, LFn]

[FE1, FE2, …, FEm]

3

4

5

MLLFMLFE

label

Encoder
6

Context + Pronoun

Resolver
7

[CLS] C [SEP] P Antecedent

SpanBERT

OutputRS: Requirements Specification, LF: Language Features, FE: Features Embeddings

Figure 4.5: Overview of TAPHSIR Architecture.

reviewing the requirements in the file “mySRS.txt” and using TAPHSIR for automated analysis of pronominal

anaphora in that SRS. The pronoun “them” in R2 contains anaphoric ambiguity since it is not clear whether

the pronoun refers to the write-once folders (in R2), records only (in R1), or records, parts, folders and groups

of folders altogether (in R1). Deciding about the exact interpretation has an impact on properly implementing

the requirement. TAPHSIR defines a context for each pronoun occurrence. This context is composed of the

requirement in which the pronoun occurs and the preceding requirement. Within this context, the tool identifies

all noun phrases (NPs) preceding the pronoun as candidate antecedents [35]. In our example, TAPHSIR will

consider, in addition to those mentioned above, the following candidate antecedents: access, obliteration, system.

TAPHSIR then goes through different steps as we explain in the next section, and produces an output file

(“mySRS.csv” in Figure 4.4). This output lists all pronoun occurrences in the input SRS, and provides both the

detection decision as well as the resolution result. We note that TAPHSIR can recommend a resolution also for

those pronouns that are marked as ambiguous, since it applies two separate solutions for detection and resolution.

TAPHSIR is a usable prototype tool for anaphoric ambiguity handling. The tool realizes a technical solution

that resulted from an empirical examination of several alternative solutions [11]. Figure 4.5 shows an overview

of TAPHSIR architecture. The tool is implemented in Python 3.8 [126]. Below, we discuss an end-to-end

application of the tool going through steps 1 – 7 of Figure 4.5.

4.5.1 Preparation

Prior to using the tool, the user needs to perform some preliminary setup. To do so, one can type in the following

on the command line:

python pip install -r libraries.txt

python -m spacy download en_core_web_sm

The first command installs the required libraries, and the second one downloads en_core_web_sm which is

needed for operationalizing the natural language processing pipeline in SpaCy. To be able to apply the tool, the

user further needs to ensure that the input file is in the right format. TAPHSIR expects as input a text file (with

the extension *.txt) containing a set of requirements (or sentences).

56

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

4.5.2 Reader

This step parses the text of the input requirements specification, preprocesses it using an NLP pipeline, and

identifies the requirements that should be subject to anaphoric ambiguity analysis. The NLP pipeline consists of

the following seven modules illustrated in Figure 4.5: (i) tokenizer splits the input text into tokens, (ii) sentence

splitter demarcates the sentences in the text, (iii) part-of-speech tagger (POS) assigns a POS tag for each token,

(iv) lemmatizer identifies the canonical form of a token, (v) constituency parser identifies the structural units of

sentences, (vi) dependency parser defines the grammatical dependencies between the tokens in sentences, and

(vii) semantic parser extracts information about words’ meanings.

The output of this step is a set of triples, each of which includes a (i) a pronoun occurrence, (ii) context

defined as the requirement in which the pronoun occurs and a preceding requirement (recall from Section 4.1,

and (iii) a likely antecedent to that pronoun occurrence. The number of triples depends on the number of likely

antecedents. In Figure 4.4, there are three possible antecedents as discussed in Section 4.1, namely “records,

parts, folders and groups of folders”, “records”, and “write-once folders”. Following this, this steps generates

three triples associated with the pronoun occurrence “them”, where each triple includes one possible antecedent.

The triples will further have the same context, which combines R1 and R2.

ML-based Anaphoric Ambiguity Detection

Our earlier work [11] indicates that, for the task of anaphoric ambiguity detection, (feature-based) ML leads to

better accuracy than language modeling and off-the-shelf NLP methods. For anaphoric ambiguity detection, we

employ an ensemble ML classifier that combines the results of a classifier trained over language features (MLLF)

and another trained over feature embeddings (MLFE). For training and applying ML classifiers, we use Scikit-

learn 0.24.1 [130]. This component takes as input a set of triples associated with one the pronoun occurrence

from the previous step, and derives as output a final label for that pronoun (ambiguous or unambiguous).

4.5.3 Language Features Extraction

This step extracts the different sets of learning features. In our work, we collected a set of 45 language features

(LFs) from the NLP and RE literature. These features capture the characteristics of the relationship between

the pronoun and its likely antecedent, e.g., both agree in gender or number. For extracting LFs, we use SpaCy

3.0.5 [128], NLTK 3.5 [127], Stanza 1.2 [168], and CoreNLP 4.2.2 [169]. The result of this step is a vector

representing each input triple, where each entry in this vector is the result of computing an LF. For the example

in Figure 4.4, we will generate three vectors representing the LFs of the pronoun “them” and each of its likely

antecedents.

4.5.4 Extraction of Features Embeddings

This step extracts the feature embeddings (FEs) for each input triple. FEs are mathematical vectors that

encapsulate the semantic and syntactic regularities of the sentence [131]. In our work, we extract 768 dimensional

FEs from the BERT language model [23]. For that, we use the Transformers library, particularly the bert-base-

cased model. Similar to the previous step, the output of this step is a vector representing each input triple. In a

similar manner, this step results in three vectors for the example in Figure 4.4.

57

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

4.5.5 Classification

In this step, we pass the vector representation of each input triple to two pre-trained classifiers, namely MLLF

that is trained over LFs, and MLFE trained over FEs. For each triple, the two classifiers independently predict a

label as follows: correct (conversely, incorrect) indicating that the antecedent refers (conversely, does not refer)

to the pronoun, or inconclusive when the anaphoric relation cannot be inferred. We then apply a set of rules on

the predicted labels for the triples associated with one pronoun occurrence to conclude whether the pronoun is

deemed ambiguous or unambiguous by each of the two classifiers. The rules, presented in the RE literature [21],

consider the prediction probabilities produced for each possible antecedent.

Finally, we combine in an ensemble manner the results of the two classifiers MLLF and MLFE to derive

the final label for the pronoun (i.e., ambiguous or unambiguous). If the two classifiers agree on the label (e.g.,

both conclude that the pronoun is ambiguous), then this label will be the final one for that pronoun. Otherwise,

the label with the highest prediction probability will be selected. This ensemble learning method yields a more

accurate prediction.

SpanBERT-based Anaphora Resolution

Based on the empirical findings in our earlier work [11], we know that for the task of anaphora resolution,

the SpanBERT language model [139] outperforms alternatives. Consequently, the resolution component in

TAPHSIR uses a SpanBERT model that is fine-tuned on a curated dataset from requirements. The dataset will be

discussed in the next section. We implement SpanBERT using the Transformers 4.6.1 library [170] provided by

Hugging Face (https://huggingface.co/) and operated in PyTorch [171]. This model takes as input,

from the triples generated in the first step, only the pronoun and the context in which it occurs (i.e., disregards

the likely antecedents). As SpanBERT is originally trained to extract text spans, SpanBERT in our work predicts

as output the likely antecedent for the pronoun from its context.

4.5.6 Encoder

To be able to use SpanBERT model, the input pair of context and pronoun has to be encoded into the same

format as the training data that BERT has been trained on. To do so, the input tuple is passed on to BERT’s

tokenizer which adds two special tokens: [CLS] to represent the classification output and [SEP] to separate

the context from the pronoun occurrence. The token [SEP] informs BERT about which pronoun occurrence to

analyze in the given context.

4.5.7 Resolver

In this step, we pass on the encoded input to the fine-tuned SpanBERT model and have the model predict the

text span which likely represents the antecedent of the pronoun. SpanBERT can predict multiple such text spans

with different probabilities indicating the likelihood of being the right antecedent. If an antecedent is predicted

with a high probability (greater than 0.9), then we consider this as the resolution result for the pronoun.

Output

Given an input SRS, the output of our tool is a csv file listing all pronoun occurrences in the input, and for each

occurrence, providing the predicted label (ambiguous or unambiguous) and the most probable antecedent.

58

https://huggingface.co/

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

4.5.8 Evaluation

In this section, we evaluate how accurately TAPHSIR can detect unacknowledged cases of anaphoric ambiguity

and bring them to the attention of the requirements engineer.

Dataset Description

In this section, we use the curated dataset DAMIR (standing for Dataset for Anaphoric Ambiguity In Require-

ments) [11]. We curated this dataset with the help of two third-party annotators who underwent half-day training

on ambiguity in requirements. We collected 22 industrial requirements specifications covering eight domains

including satellite communications, medicine, aerospace, security, digitization, automotive, railway, and defence.

We preprocessed this collection and prepared the list of triples (a context, a pronoun occurrence and a

possible antecedent) as explained above. The possible antecedents for a pronoun include all of the noun phrases

preceding that pronoun [182]. The annotators then examined each pronoun occurrence and its possible antecedent

considering the context in which they occur, and assigned a label correct, incorrect, or inconclusive with the

same indications as explained above. We then post-processed the annotations and grouped them per pronoun

occurrence as follows. We mark a pronoun as ambiguous in two cases: (i) if at least one annotator acknowledges

the ambiguity of this pronoun by labeling one or more associated triples as inconclusive; or (ii) if the same triple

associated with this pronoun receives different labels from the two annotators (e.g., correct versus incorrect).

The former case implies acknowledged ambiguity, and the latter implies unacknowledged ambiguity.

As a result, DAMIR dataset contains a total of 737 pronoun occurrences that are analyzed for anaphoric

ambiguity. About 46% of these pronouns (342/737) are deemed ambiguous by the annotators. Out of the

ambiguous pronouns, we identified ≈87% with unacknowledged ambiguity, i.e., the annotators assumed that the

pronoun is unambiguous yet had two different interpretations for that pronoun.

Results and Analysis

To assess how TAPHSIR performs in detecting unacknowledged ambiguity, we run TAPHSIR (depicted in

Figure 4.5) on DAMIR dataset. TAPHSIR applies the an ensemble ML classifier for detecting ambiguity and

SpanBERT for resolving anaphora as discussed above. On DAMIR dataset, TAPHSIR detects ambiguous cases

with a perfect recall of 100% with a precision of ≈60%, while recommends automated resolution with an

accuracy of ≈96% [11]. The perfect recall implies that TAPHSIR detects all unacknowledged ambiguous cases

that were not explicitly marked by the human annotators as ambiguous. The precision value indicates that the

requirements engineer will invest some manual effort filtering out false positives, i.e., falsely detected ambiguous

requirements. In the context of ambiguity in RE, recall is often favored over precision [183]. Achieving 100%

recall ensures that all requirements suffering from all potentially ambiguous requirements will be brought to the

attention of the engineers and further discussed at an early stage.

In a practical scenario where requirements engineers review requirements under time pressure, only the

requirements that are found problematic by at least one engineer would be thoroughly discussed. The engineers

might not discuss those requirements which they could confidently interpret unaware of having multiple

inconsistent interpretations. In conclusion, we believe that TAPHSIR has a potential in practice since it perfectly

detects also those requirements with unacknowledged ambiguity which would go otherwise unnoticed during

manual inspection sessions. That said, a user study is required to assess the practical usefulness of the tool.

59

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

4.6 Threats to Validity

The validity concerns most pertinent to our evaluation are internal and external validity.

Internal Validity. The main concern regarding internal validity is bias. This concern applies mainly to the

DAMIR dataset, which was developed on the authors’ initiative. To mitigate bias, the labelling of DAMIR was

performed exclusively by two independent (non-author) annotators. To avoid learning bias, the annotators were

never exposed to either the design or the results of any of the alternative solutions in our study.

External Validity. We evaluated all solutions on two datasets – DAMIR and ReqEval, the latter being an external

dataset. The individual solutions show comparable results across the two datasets. In terms of domain coverage,

DAMIR spans eight different application domains. The consistency of the results across the DAMIR and ReqEval

datasets, taken alongside the domain coverage of DAMIR, provides confidence about the generalizability of our

empirical findings. That said, further evaluation using additional documents and user studies can help further

mitigate external-validity threats.

Construct Validity. Due to their different enabling technologies, the solutions examined in this chapter require

different inputs. Notably, the ML-based solutions take as input triples comprised of a pronoun, a likely antecedent

and a context. In contrast, the SpanBERT-based solutions take as input tuples made up of a pronoun and a

context. We believe that exposing the ML-based solutions to candidate antecedents during training does not

put SpanBERT-based solutions at disadvantage: The SpanBERT-based solutions are exposed to candidate

antecedents during fine-tuning. Since SpanBERT is pre-trained to identify text spans, we fine tune the model

to predict the text span that represents likely antecedent of a pronoun. A requirements sentence might have

multiple occurrences of the same pronoun. We ensure that the detection and resolution of an ambiguous pronoun

is properly reflected in our evaluation by treating each occurrence as a distinct pronoun.

4.7 Conclusion

In this chapter, we developed and evaluated six alternative automation solutions for handling anaphoric ambiguity

in requirements. Each solution addresses both the detection of anaphoric ambiguity as well as the resolution

of anaphora. Our motivation for conducting a multi-solution study stems from the availability of competing

NLP and ML technologies that we could build on. Without an empirical examination of different solution

designs, we would not be able to ascertain which technologies would be the most suitable for our analytical

needs. This situation is not limited to our work per se; choosing the right set of technologies for the task at hand

is a consideration that one increasingly has to contend with in AI-enabled automation.

Our evaluation involved two datasets with a total of ≈1,350 industrial requirements. Our results indicate that,

for anaphoric ambiguity detection, supervised ML is more accurate than both SpanBERT (a variant of BERT)

and a solution built using off-the-shelf coreference resolvers. Our best solution for ambiguity detection has an

average precision of ≈60% and a recall of 100%. Differently from the ambiguity detection task, for anaphora

resolution, SpanBERT yields the best solution with an average success rate of ≈98%. Based on these results,

we recommend a hybrid solution for anaphoric ambiguity handling, where ambiguity detection and anaphora

resolution are realized using different technological platforms.

Anaphoric ambiguity is an important but still a single aspect of the broader problem of ambiguity. In

requirements engineering, where ambiguity handling is closely associated with quality assurance, analysts are

likely interested in a more holistic treatment that addresses a wider range of ambiguity types. In the future, we

60

CHAPTER 4. AUTOMATED HANDLING OF ANAPHORIC AMBIGUITY IN REQUIREMENTS: A
MULTI-SOLUTION STUDY

would like to expand our work to other ambiguity types, particularly semantic ones, that are still under-explored.

Furthermore, and to more conclusively evaluate the usefulness of our current results, we plan to conduct user

studies involving practicing engineers.

61

Chapter 5

AI-based Question Answering Assistant for
Analyzing Natural-language Requirements

5.1 Motivation and Contributions

At early stages of software development, natural language (NL) requirements are reviewed to ensure their quality

and reduce any potential misunderstandings that might have an impact on the software development process.

Among quality issues that requirements engineers have to deal with are different types of ambiguity [9, 10],

incompleteness [12], inconsistency and change analysis [184]. Depending on the complexity of the system-

to-be, an SRS can contain hundreds (and even thousands) of requirements. Therefore, manual inspection

where requirements engineers attempt to discuss and interpret problematic requirements is time-consuming and

error-prone. We refer to the requirement that suffers from at least one quality issue as a problematic requirement.

In this chapter, we propose ReQAssis standing for Requirements Quality Assurance Assistance through

Question Answering. ReQAssis is an AI-enabled automation that uses question-answering (QA) as a means to

support requirements engineers in inspecting requirements. To better interpret certain requirements, the engineer

might need to instantly browse through the different parts of an SRS in order to find relevant information.

For example, the requirement “the system shall compute the wet mass of the spacecraft at a regular basis.”

misses information concerning the computation procedure of the wet mass and the exact frequency of doing

this computation. Such information might be mentioned elsewhere in the SRS. In this case, it is advantageous

if the analyst can pose questions like “how shall the wet mass be computed?” and “how often shall the wet

mass be computed?”, and get a prompt answer. This is a typical use of a QA assistant. Another potential use

that benefits from QA is to cover the gap in domain-specific knowledge. Posing questions about the definitions

of domain-specific terms to an automated assistant helps the requirements engineers build a glossary table for

the SRS with minimal effort. Alternatively, posing a clarification question about unclear requirement helps the

engineer acquire necessary domain-knowledge for a better understanding of the requirement.

To cover the potential uses above, we differentiate between a document-based question whose answer can be

found in the same SRS, and a domain-based question whose answer is not explicitly specified in the SRS and

63

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

Rx. The spacecraft shall support telecommanded
override of all autonomous actions, either to inhibit
an action, or to cancel an action in progress, should it
be determined that the action is undesirable.

R1. The spacecraft shall function fully autonomously
throughout the solar conjunction on cruise to Mars.

R2. The wet mass of the spacecraft (excluding adapter
and clamp band) shall not exceed 3004 kg.

Current page
of the SRS

Other pages
of the SRS

Q: Is it possible to override the autonomous action?

Q: What is the wet mass of a spacecraft?

A: the ratio of the rocket's wet mass equals vehicle
plus contents plus propellant.

A: Yes Document-based

Domain-based

Figure 5.1: Excerpt from Software Requirements Specifications.

need to be looked up in an external knowledge resource for that domain. To illustrate the multiple scenarios

for using the QA assistant, consider the example in Fig. 5.1. Assume that a requirements analyst is reviewing

the current page of a given SRS. On that page, R1 describes the autonomous functionality of the spacecraft,

while R2 describes the wet mass of the spacecraft. To properly implement R1, it is important to know whether

a counter-requirement about an override functionality is also specified. This information is mentioned in Rx,

which appears first in a later section. To properly interpret R2, one needs to understand what a wet mass of

a spacecraft is. Since this information is not explicitly given in the SRS, the answer has to be mined from an

external resource, e.g., a domain-specific corpus generated by crawling Wikipedia.

In RE, QA has been investigated mostly in the context traceability [24, 25, 26]. Traceability refers to the

ability to follow the life of a requirement throughout the software development process [8]. A set of questions

are often used to trace a requirement across multiple artifacts, e.g., system specifications, user stories, and class

diagrams. Such trace questions are often generated to find related artifacts to a given requirement. Traceability

can also be within an SRS, e.g., the engineer asks about requirements impacted by certain change in the SRS.

Compared to existing work in RE, we exclusively focus on questions posed during inspection sessions of SRSs.

We concern ourselves with clarification questions that help improve the interpretation of requirements and quality

assurance of NL requirements.

In NLP, QA is a well-established topic. In our work, we adapt the definition of an open-domain QA,

which is the task of finding the answer to a given question in a collection of documents [185]. Our approach

(ReQAssis) combines two components: a Retriever which retrieves a document and/or a text passage in a

document using information retrieval (IR) methods [186], and a Reader which extracts the answer to the question

from the retrieved text passage. The latter is a standalone task in NLP known as machine reading comprehension

(MRC) [187]. There is a wide spectrum of existing work with regard to QA as we elaborate in Section 5.5. NLP

methods cannot be directly applied in our work due to the following limitations. First, there is no available

dataset that is specific to RE such that the question-answer pairs describe the content of an SRS. Second, existing

methods do not foster domain-based questions whose answers are found in a domain-specific corpus.

Contributions. We take steps toward addressing the above limitations. Concretely, this work has the following

contributions:

(1) We devise ReQAssis, an AI-based automated quality assurance assistance by means of QA. ReQAssis

takes as input an SRS and a question posed in NL. ReQAssis then employs two models: a Retriever and a Reader

that jointly provide the requirements engineer with the output consisting of a list of relevant text passages and a

potential answer highlighted in each passage for a given question.

(2) We generate a dataset for QA that is specific to NL requirements in a semi-automatic manner. We refer

64

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

to this dataset as REQuestA which stands for Requirements Engineering Question-Answering dataset. REQuestA

contains a total of 387 question-answer pairs, of which are 173 automatically generated and the rest are proposed

by human annotators. We created REQuestA with the help of two third-party annotators who validated the

auto-generated questions and answers, and also proposed additional question-answer pairs. The two annotators

have been involved in several other annotation tasks for RE, and gained sufficient experience from working on

the same SRSs. We discuss the annotation process in more detail in Section 5.4.3. To develop ReQAssis and

generate question-answer pairs automatically for REQuestA, we utilize in our work large-scale language models

that are reported to perform well for QA [188].

(3) We empirically evaluate ReQAssis on REQuestA dataset. REQuestA is created from a collection of six

SRSs covering three different domains, namely aerospace, defence and security. We experiment with different

possible configurations for ReQAssis and report in Section 5.4 on the best performing configuration for each

component. Our results indicate that ReQAssis (i) distinguishes between document- and domain-based question

types with an accuracy of 88.5%, (ii) retrieves from domain-specific corpora of various sizes the document that

contains the right answer to a given domain-based question with a perfect accuracy of 100%, (iii) retrieves the

text passage that contains the right answer to the input question among the top-3 relevant text passages from the

retrieved document in (ii) or the input SRS depending on the question type with a average accuracy of 90.6%,

and finally (iv) extracts from the right passage the likely answer to a given question with a semantic accuracy of

84%. In Section 5.4, we present more details on the evaluation metrics and the results of our evaluation.

Structure. Section 5.2 presents the background of the language models that we use in our work. Section 5.3

describes ReQAssis. Section 5.4 reports on our empirical evaluation. Section 5.6 discusses threats to validity.

Section 5.5 places our work against the NLP and RE literature. Section 5.7 concludes the chapter.

5.2 Background

In this section, we present a brief introduction to language models, followed by an explanation of different

Retriever and Reader models we apply in our work.

Language Models (LMs) for QA. LMs are statistical models that assign to a sequence of words a probability

value estimated from a large training corpus, indicating the likelihood of these words to co-occur in the sequence.

For example, an LM would assign a higher probability to the phrase “briefed reporters on” compared to the phrase

“briefed to reporters” [131]. Such probabilistic models are highly dependent on the training data. For solving

different downstream NLP tasks, different probabilistic LMs are built using in-domain data, i.e., task-relevant

corpora. For example, to build an LM for a question-answering system, the training corpus should contain

questions, answers, and context information.

In many real-world applications, it is expensive to collect enough training data and rebuild statistical LMs

for each and every NLP task. To address this issue, transfer learning can be used [189]. Specifically, LMs are

pre-trained on a large amount of generic text. This pre-training process results in a model with general knowledge

about the words and their syntactic and semantic relations. Then, the pre-trained LMs can be fine-tuned, even

using small datasets, to solve specific NLP tasks. BERT [23] (Bidirectional Encoder Representations from

Transformers) is a notable example of such pre-trained models, which have been widely applied for solving

many downstream NLP tasks.

BERT is pre-trained on the BooksCorpus and English Wikipedia, with two training objectives, namely

masked language modeling (MLM) and next sentence prediction (NSP). More details about LMs and BERT can

65

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

be found in the Chapter 2.

DistilBERT (a distilled version of BERT) [190], is lite version of BERT that uses distillation (a small

student model trained to reproduce the behaviours of a larger teacher model) to produce a liter model with close

performance to BERT. DistilBERT is based on BERT-base architecture with some components optimized or

removed, and a reduced number of layers. This optimization techniques results of a lite model that is 60% faster

and has 40% fewer parameters than BERT while retaining 97% of capabilities.

MiniLM (Mini Language Model) [191] is a similar model to DistilBERT, as it aims to produce a light

yet efficient LM using the distillation technique. MiniLM (the student model) focuses on learning the the

self-attention modules of the teacher model (BERT-base). Moreover, MiniLM utilizes an improved version of

the self-attention distributions of the last Transformer layer of the teacher model. This results in a model that is

cheaper (consumes less resources to apply) and powerful at the same time (MiniLM outperformes BERT-base

and DistilBERT on some NLP benchmarks).

ALBERT (A Lite BERT) [192] is a variant of BERT that alters some parameters of BERT to increase its

efficiency. It results in lower memory consumption and better computing speed compared to BERT. ALBERT

is based on the extended version of BERT (BERT-large) with fewer parameters. ALBERT is not only more

efficient than BERT-large, but also achieves better performance on some NLP benchmarks.

RoBERTa (A Robustly Optimized BERT Pretraining Approach) [193], as the name shows, is another variant

of BERT that aims to optimize its training parameters and choices to improve its performance. Compared to

BERT, RoBERTa authors proposed to train the model longer and on more text with larger batches. They also

propose to change some pretraining objectives by removing the NSP objective and changing the training masking

pattern. RoBERTa model outperforms BERT on some NLP benchmarks.

ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately) [194], is yet

another variant of BERT that aims to increase its efficiency by improving the pretraining objective. The authors

of ELECTRA propose to replace the token masking objective by token replacement method that corrupts some

tokens. The model objective becomes then to predict for each token whether it was corrupted or not. The new

pretraining method results in a faster training time and outperforms larger models on some NLP benchmarks.

T5 model (text-to-text transfer transformer) model [195] has been more recently introduced. T5 is pre-

trained on the Colossal Clean Crawled Corpus (C4) which was also released with the model. C4 consists of

hundreds of gigabytes of clean text that is crawled from the Web. Unlike previous LMs, T5 is a text-to-text

model, which means that it addresses an NLP task after it is transformed into a text-to-text problem. For example,

text summarization is a text-to-text problem, since it takes a text as input and returns another text as output.

For text classification tasks, the T5 model predicts as output a single word that corresponds to the label (e.g.,

“positive” or “negative” in a sentiment analysis task). However, T5 can also predict words that are not included in

the predefined labels of the classification task (e.g., “food”) which is then counted as a wrong prediction. There

are publicly available T5 models that are pre-trained on different tasks. In our work, we use T5 models that are

pre-trained on QA datasets specifically to generate question-answer pairs and build our dataset, as we elaborate

in Section 5.3.

Retriever Models. Retriever models (Retrievers for short) apply IR-based methods. IR is the field concerned

with identifying relevant documents or text passages for a query from a collection of documents [196]. In our

work, we experiment with the best Retrievers reported in the recent Benchmark for IR (BEIR) [188]. This

includes traditional approaches like TF-IDF and BM25, advanced methods based on recent large-scale language

models like DistilBERT, and re-ranking methods. We explain these methods next.

66

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

(1) Term Frequency - Invert Document Frequency (TF-IDF): Necessary background on TFIDF is provided

in Chapter 2. TF-IDF is often used as a ranking factor for information retrieval and text mining. The main

applications of TF-IDF include text-based recommendation systems and search engines. The TF-IDF score is

the product of the values of TF (term frequency) and IDF (inverse document frequency).

Despite TF-IDF being less used in the IR community in view of the advancements of NLP technologies, we

still apply TF-IDF as a baseline in our experiments.

(2) Okapi Best Matching (BM25): Similar to TF-IDF method, BM25 estimates the relevance of a particular

document to the query terms (question in our case) [197]. Compared to TF-IDF, BM25 is more sensitive towards

term frequencies and document length. BM25 is a method that computes and assigns a score to each document

according to its relevance to a given question. BM25 is still widely applied in the IR community [197].

Specifically, the BM25 score of a document D containing terms q1, q2, .., qn that are part of a given query

Q is calculated based on the IDF value for each term qi, the frequency of the term qi in document D, the total

number of words in document D, the average length of the documents in the text collection, and two free

parameters that are usually selected without advanced optimization [198].

(3) DistilBERT In recent years, the IR domain has witnessed a shift towards using large-scale language models.

These methods are also called dense Retriever models. We experiment in our work with DistilBERT [190]

(explained above). Dense retrieval methods capture semantic relevance between the document and the question

by embedding them into a shared dense embedding space using deep learning. Though dense Retrievers improved

the accuracy of the state-of-the-art, they are often computationally expensive than the traditional methods.

(4) Reranking methods: Reranking methods are recently introduced to utilize the output of two different IR-based

Retrievers. The idea is to let the first Retriever rank the document collection according to relevance to a given

question, then use a second Retriever to rerank the top-K relevant documents. In our work, we apply the most

commonly paired methods, namely BM25 followed by MiniLM cross-encoder [199]. Cross-encoder models are

designed to provide a score for each input pair of sentences. This make cross-encoders suitable for the IR task,

as they can be fine-tuned to provide scores and rank query and context input pairs according to the relevance of

the context to the input query.

Readers. To solve the MRC task in NLP, Readers take a question and a text passage as input and return an

answer by selecting a text span within the input passage. Readers can be classified into Extractive Readers that

extract an answer span from the retrieved passages and Generative Readers that generate answers in NL using

text-to-text or sequence-to-sequence (Seq2Seq) models.

(1) Extractive Readers: Probabilistic Readers uses similarity- and heuristic-based approaches to extract the

answers [200]. However, recent Transformer-based LMs proved to be successful and demoniated the state-

of-the-art (SOTA) for this task. Namely, bi-encoders such as RoBERTa [193], BERT [23], DistilBERT [190],

ALBERT [192], ELECTRA [194], and MiniLM [191]. These models (explained above) are the best performing

LMs for this MRC task [201, 202, 203].

(2) Generative Readers: The goal of using generative readers is to generate naturally formulated answers, rather

than extracting text spans, usually relying on text-to-text models such as BART [204] and T5 [195]. However,

Generative Readers need to be further explored and improved, as their results often suffer from syntax errors,

inconsistencies, or illogicality [205]. Experimenting with generative Readers is left for future work.

67

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

Question
Analysis

Preprocessing
Domain Specific

Corpus Generation

Document
Retriever

Question

D
om

Q

Keywords

Answer
Extraction

Context
Retriever

Top- K
Contexts

DocQ

Top- K
Articles

 Arti
cle

sSRS
Wikipedia

Retrievers

Reader

Question

Answers in
Context

DocQ, DomQ are document- and domain- based questions

Question- Answering Assistant

1

2
3

456

Figure 5.2: Overview of ReQAssis.

5.3 Approach

Our QA assistance approach (ReQAssis) is composed of six steps as depicted in Fig. 5.2. The input to the

approach includes a software requirements specification (SRS) and a question (q) posed in NL by a human

analyst. The output is a list of relevant text passages for q, in each is a possible answer highlighted. Thereafter,

we will refer to the text passage as context c.

In step 1, we preprocess SRS using an NLP pipeline. In step 2, we analyze q and decide whether it is

a document-based (DocQ) or domain-based (DomQ) question. Based on this decision, we either perform

steps 3 and 4 or directly proceed to step 5. In step 3, we generate a domain-specific corpus by crawling Wikipedia

based on relevant keywords extracted from the input RS. For readability purposes, we will refer to a document in

the domain-based corpus as article, since in our work we build the corpus from Wikipedia. Subsequently, we

retrieve in step 4 the most relevant document from this corpus that are relevant to q. In step 5, we search for

contexts relevant to q within one document (RS for DocQ or the article retrieved in step 4 for DomQ). In the

same step, we further rank the resulting set of relevant contexts and select the top-K. Finally, we extract in step 6

a potential answer to q from each relevant context resulted from the previous step. We note that steps 4 and 5

apply IR-based models whereas step 6 applies MRC-based models. In the following, we elaborate on each step.

5.3.1 Preprocessing

To preprocess RS, we apply a standard NLP pipeline consisting of two modules, namely tokenization and

sentence splitting to break the text into tokens and sentences.

In this step, we further partition SRS into a set of contexts. We define a context as a text passage that contains

consecutive sentences from SRS fitting a maximum tokens limit. The goal of this partitioning is to prepare a

meaningful input for steps 5 and 6, as we explain later in this section.

68

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

5.3.2 Question Analysis

In this step, we analyze the input question q. In our work, we address domain-based questions for the purpose

of glossary extraction (definition question) in addition to clarification questions. Such definition questions

take the form of a predefined template: “what is the definition of [concept]x”. Templated questions can be

predicted using heuristics. However, to provide a more general solution, we train in this step a supervised

ML-based classifier over tokenized questions to predict the question type, i.e., DocQ or DomQ. We experiment

in Section 5.4 with several classification algorithms and different representations, namely TFIDF-vectors, and

word2vec and SBERT embeddings. we perform steps 3 and 4 if q is predicted as DomQ, As shown in Fig. 5.2.

Otherwise, we proceed to step 5.

5.3.3 Domain-specific Corpus Generation

This step generates a domain-specific corpus for SRS by crawling Wikipedia. To do so, we apply an existing

automated method [10]. In summary, the method first extracts the top-N most frequent keywords derived from

Noun Phrases (NPs) in the input SRS. Then a query engine is implemented to query these keywords in Wikipedia.

The output is a corpus consisting of Wikipedia articles whose titles overlap with any of the extracted N keywords.

We then filter these articles and keep only matching articles that have high similarity to the original SRS. The

intuition of this filtering is to avoid extracting out-of-domain articles. The corpus is passed on to step 4.

5.3.4 Document Retrieval

This step relies on IR-based methods to retrieve from the corpus the top relevant article to q. Specifically, we

apply a Retriever model (Retriever, for short) that takes as input one article at a time paired with q. For each

article in the corpus, we calculate the relevance between the article and q. This results in a score between 0 and

1, with 1 indicating identical. We then rank the articles in descending order according to their similarity scores

against q and select the most relevant. As we explain in further detail in Section 5.4.4, we experiment with

several Retrievers that are widely used in the QA literature [188]. The output of this step is the most relevant

article to q.

5.3.5 Context Retrieval

This step is similar to step 4. The only difference is that the Retriever computes the relevance score between the

contexts of the input SRS identified in step 1, one at at time, against q. If q is predicted as DomQ, then this step

is performed on the most relevant article from the previous step. We note that the article is also passed through

the same preprocessing step (step 1 in Fig. 5.2). Following this, the output of this step is the set of top-K relevant

contexts to q.

5.3.6 Answer Extraction

The last step in our approach is to extract the answer to q from the top-K retrieved contexts. To do so, we use a

Reader model (Reader, for short) that takes both q and a context as input and returns a text span in the context

that is likely to provide the answer to q. As we explain in Section 5.4.4, we experiment with several Readers

which are widely known to have good performance on different QA datasets [206].

69

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

The overall output of our approach is a likely answer highlighted in each of the top-K selected contexts. This

way, we provide the human analyst with the necessary context to understand and validate the extracted answers.

We discuss different values of K in Section 5.4 and the impact of selecting K in practice.

5.4 Empirical Evaluation

In this section, we empirically evaluation our REQAssis approach.

5.4.1 Research Questions (RQs)

Our evaluation addresses the following RQs:

RQ1: Which ML classification algorithm is the most accurate for distinguishing between document-based
and domain-based questions? Step 2 in our approach (i.e., Question Analysis) identifies the question type as

discussed in Section 5.3. RQ1 investigates alternative classification algorithms and selects the one that yields the

most accurate results.

RQ2: Which Retriever model yields the most accurate results for retrieving for a given question the most
relevant (a) domain-based article and (b) the most relevant contexts within a document? Steps 4 and 5 in

our approach (i.e., Document Retrieval and Context Retrieval) can be implemented using several alternative

Retrievers. Specifically, Step 4 applies the Retriever to retrieve from the domain-based corpus a Wikipedia

article that likely contains the answer to the input question. Then, step 5 applies the Retriever to select from the

input SRS (in case of DocQ) or from the most relevant article identified in step 4 (in case of DomQ) the top-K

relevant contexts that likely contain the answer. Compared to step 4, step 5 provides a more-focused view to

better pinpoint the answer to the input question. RQ2 identifies the most accurate alternative for each step. The

most accurate Retrievers are used the to answer the subsequent RQs.

RQ3: Which Reader model yields the most accurate results for extracting the likely answer to a given question?
Step 6 in our approach (i.e., Answer Extraction) delineates the likely answer in the top-K relevant contexts

to a given question. In RQ3, we experiment with multiple alternative models and identify the most accurate

alternative.

RQ4: Does our approach run within practical time? RQ4 analyzes the execution time required by our approach

to analyze a given question, provide the relevant contexts and highlight the likely answer. For our approach to

be applicable in practice, the overall pipeline described in Section 5.3 has to be performed in practical time to

improve the efficiency of manual inspection of a given SRS.

5.4.2 Implementation Details

We implemented our approach (in Fig. 5.2) in Python 3.7.13. We implemented step 1 (Preprocessing) using

the following libraries: For parsing the text of the input SRS (provided as MS Word document), we used

Python-docx 0.8.11 library1. For operationalizing the NLP pipeline, we employed the T5 tokenizer from

the Transformers 3.0.1 library [170], Porter and Snowball Stemmers, English stopwords list, Word tokenizer,

WordNet, and WordNet Lemmatizer available in NLTK 3.2.5 [127], Python RE 2.2.1 regex library2, and

Tokenizer, Dependency Parser, and Entity Recognizer from SpaCy 3.3.0 [128]. For implementing step 3

1https://github.com/python-openxml/python-docx
2https://docs.python.org/3/library/re.html

70

https://github.com/python-openxml/python-docx
https://docs.python.org/3/library/re.html

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

(Question Analysis), we used the following libraries. Scikit-learn version 1.0.2 [130], for ML modeling including

test-train splitting, TF-IDF transformation, training and testing of ML models, cross-validation, hyperparameter

tuning, scoring and evaluation. For domain-specific corpus generation, in addition to the preprocessing libraries,

we used Wikipedia library, version 1.4.03. For both Document Retrieval and Context Retrieval, in addition to

NLTK, Transformers, and Scikit-learn, we used ElasticSearch version 7.9.1 [207], Beir version 1.0.0 [208],

and Rank-BM25 version 0.2.2 [209]. For Answer Extraction, in addition to SpaCy and Scikit-learn, we used

Haystack version 1.4.1rc0 [210], and PyTorch version 1.11.0+cu113 [171]. The approach and experiments in

this chapter are conducted and made available using Jupyter Notebooks [137].

5.4.3 Data Collection Procedure

Our data collection procedure aimed at collecting questions and answers from industrial SRSs covering diverse

domains. To that end, we collected six SRSs covering three domains, namely aerospace, defence, and security.

Despite the availability of several QA datasets, none of them is fitting the RE application discussed in our work.

Hence, we created the REQuestA (standing for RE Question-Answering dataset). Further and to reduce the cost

of the annotation process, about 50% of the question-answer pairs in REQuestA are generated fully automatically

and then validated by human analysts as we discuss later in this section. Next, we discuss the desiderata specific

to REQuestA, our automatic QA generation method, the annotation process, and finally our ground truth.

Desiderata. To ensure that REQuestA enables the development of a QA assistant for requirements engineers,

we posit the following specific desiderata:

(1) Focusing on content-based questions. Existing datasets in RE that cover questions related to RE tasks, e.g.,

“which requirements are affected if I change this requirement”. Such a question can be useful for change impact

analysis. In contrast, REQuestA focuses on content-based clarification questions concerning quality issues.

(2) Ensuring distance between questions and answers. To provide meaningful assistance, the answer to a question

posed by a requirements engineer on a particular requirement is not expected to be in that requirement or its

surrounding context. Instead, the answer is expected to be in distant parts of the same SRS, i.e., outside the range

of the engineer’s current review. The motivation behind this desideratum is to (i) differentiate REQuestA from a

conventional MRC dataset (see Section 5.2) which is not useful for requirements engineer, and (ii) emphasize

the RE application scenario of our approach, i.e., assisting engineers in their review activity.

(3) Enabling the acquisition of domain knowledge. A requirements engineer should be able to pose questions

related to domain knowledge. In our work, we motivate this desideratum with the possibility of generating

glossary terms via templated questions, e.g., “what is the definition of [concept]x”. To provide a more generic

view, we also consider other domain-based clarification questions.

QA Auto-generation. To better provide clarification, REQuestA contains both document-based questions

(DocQ) whose answers can be extracted from the input SRS, and domain-based questions (DomQ) whose

answers are obtained by mining an external domain-specific knowledge resource. REQuestA further covers

diverse types of questions based on the expected answer, including yes/no, short span answer, and sentence

answer. We refer to a question-answer pair as ⟨qc, ac⟩ (in case of DocQ) and ⟨qm, am⟩ (in case of DomQ).

Fig. 5.3 shows the overview of our auto-generation method. Given an SRS as input, our method generates a list

of ⟨q, a⟩ pairs in five steps, elaborated next.

(1) Preprocessing: In this step, we preprocess the input SRS using the NLP pipeline discussed in Section 5.3

extended with three more modules: part-of-speech (POS) tagging assigns a POS to each token, text chunking

3https://pypi.org/project/wikipedia/

71

https://pypi.org/project/wikipedia/

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

groups words that act as one syntactic unit, e.g., noun phrases (NP), and stopwords removal eliminates very

frequent words, e.g. prepositions. This step results in a preprocessed SRS that is passed on the next two steps.

(2) Analyzing Domain: Inspired by [10], we identify in this step the domain-specific concepts which can trigger

a domain-based question. We do so by computing for each NP occurring in the SRS a variant of TF-IDF score.

The TF is estimated from the input SRS and the IDF is computed considering the termsn in the SRSs of the

other domains. Further and to ensure domain specificity, we filter out NPs that are contained in WordNet [98], a

generic lexical database for English. The intuition is that if an NP is included in WordNet, then it might be a

generic word/phrasewhich is falsely assigned a high TF-IDF score, e.g., “Lunar Rover”. We then sort the NPs

in descending order and select the top-50, referring to them as keywords. In a similar manner to generating

domain-specific corpus proposed in the literature [10], we use each keyword to query Wikipedia and find a

matching article, i.e., an article whose title overlaps with the keywords. For quality purposes, we generate ⟨q, a⟩
from Wikipedia articles only when they have semantic relatedness to the input SRS greater than a threshold. In

our work, we set threshold value to 0.5. Greater and lower threshold values produce articles that are very similar

or very dissimilar in content to the input SRS, and thus less informative either way for answering clarification

questions (the goal of our approach). The result of this step is a set of Wikipedia articles which are closely

related to the input SRS, and the set of seed keywords that were used to find these articles.

(3) Partitioning: In this step, we automatically partition a document into a set of contexts using a fixed-size

sliding window [131]. Our partitioning aims at satisfying two objectives. First, the context size should not

exceed 512 tokens, a constraint imposed by the architectures of QA technologies. Second, a context should be

coherent, i.e., preserves an idea. To meet these objectives, we define a context as a set of adjacent sentences

including an overlapping sentence with the preceding and/or following context. This procedure is ignored in

case of paragraphs that do not exceed the token limit, as we believe a defined paragraph can act as a stand-alone

context. To generate ⟨qc, ac⟩, we partition the input SRS. To ensure the above second desideratum, we filter

out isolated contexts, i.e., such contexts that have zero relatedness to all other contexts in SRS. To generate

⟨qm, am⟩, we partition each Wikipedia article resulted from step (2) explained above.

(4) Generating ⟨q, a⟩: In this step, we feed in to a question generation (QG) model each context from step (3)

and an answer type for the desired question. The QG model first extracts an answer according to the answer

type and then automatically generates a respective question from the given context. In our work, we apply three

models based on T5 for generating the different questions, except for definition questions for which we apply a

predefined template using the keywords extracted in step (2) as concepts. For these definition questions, we

feed in both the context and the question to a QA model that extracts the answer. This model is again based on

T5. Note that for validity reasons, none of the models contributed to generating our dataset are experimented

with in Section 5.4. The output of this step is then the tuple ⟨d, c, q, a⟩, where d and c are the document and

context containing the answer a to the question q. The first element d is the input SRS in case of ⟨qc, ac⟩, and a

Wikipedia article in case of ⟨qm, am⟩.
(5) Evaluating meaningfulness of ⟨q, a⟩: In the last step, we evaluate the meaningfulness of each auto-generated

⟨q, a⟩. In particular, we utilize the model BERT-base-uncased-QA evaluator, which computes a score for a given

⟨q, a⟩ based on a large QA training corpus exposed to the model. Finally, we select the top-N ⟨q, a⟩ ranked to be

meaningful.

Annotation. The annotation process involved two human analysts, each having more than three years of

experience in annotation tasks in the context of RE. The first analyst has a Master’s degree in multilingualism

and she did a three-month internship about ambiguity in requirements. The second analyst has a Masters degree

72

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

Preprocessing

Analyzing
Domain

SRS

* QG: Question Generation

1

2

Generating

Evaluating
⟨q, a⟩

4

5

⟨q, a⟩

⟨q, a⟩ pairs
within context

Answer Types

co
nt

ex
ts

Partitioning

3

Wikipedia Articles

QG Models

Figure 5.3: Overview of our QA Auto-Generation Method.

in quality assurance over computer science background. Both human analysts underwent half-day training

session on question-answering with a focus on RE.

We shared with the annotators, the original SRSs and the lists of automatically generated tuples ⟨c, q, a⟩
for each SRS and domain considered in our analysis. The annotators were then asked to examine the tuples

as follows. Except for templated questions which are assumed to be correct, each auto-generated question q

was labeled as valid indicating that q was correct as-is, rephrased indicating that q was semantically correct but

required structural improvement to become valid, or invalid indicating that q did not make much sense. Similarly,

each auto-generated answer a was labeled as correct, corrected, or incorrect with similar indications to the ones

mentioned above for q. Additionally, a could be labeled as not in context, when the answer to the question

cannot be extracted from the context (we considered these cases as invalid). We further asked the annotators

to manually add question-answer pairs on each context c (if possible). For domain-based questions, they were

recommended to use external resources such as Wikipedia as reference to broaden their options for providing

questions related to the domain of the context.

To construct the REQuestA dataset, we filtered out any tuple if q or a was labeled as invalid or incorrect. For

the remaining tuples, we replaced the auto-generated q and a with the rephrased q and corrected a by the human

annotator, respectively. We further appended the human-based q and a and the respective c. In total, REQuestA

contains a list of 387 tuples in the form of ⟨c, q, a⟩ split by input SRS, and by domain. Table 5.1 reports the

results of our document collection. Specifically, the table shows the total number of sentences S for each SRS,

the total number of contexts in each SRS cc, and the average number of contexts from the domain-specific

articles considered per question in each SRS. The table then lists for each SRS both DocQ and DomQ, the

number of auto-generated question-answer pairs ⟨qc, ac⟩ and ⟨qm, am⟩, as well as the number of question-answer

pairs provided by annotators hc and hm, respectively. The table also reports for each domain the size of the

domain-specific corpus C computed as the total number of Wikipedia articles in the corpus.

In summary, we generated a total of 204 question-answer pairs, of which 111 are document-based and 93 are

domain-based. We introduced 69 (of 93) templated questions for the purpose of glossary extraction from external

domain-specific resources. We filtered out 31 tuples from REQuestA due to invalid questions and/or answers.

The remaining tuples, a total of 173 (86 DocQ and 87 DomQ questions), alongside the human-based questions, a

total of 214 (103 DocQ and 111 DomQ questions), constitute our ground truth. We note that answers can appear

in more than one context due to the nature of the requirements and the employed context definition technique.

73

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

Table 5.1: Results of Document Collection.

Domain C† SRS S‡ cc ⟨qc, ac⟩ hc¶ cm ⟨qm, am⟩ hm¶

Aerospace 1158
SRS1 202 24 8 18 19 8 15
SRS2 1500 107 37 40 23 37 38

Defence 747
SRS3 112 11 5 4 67 5 12
SRS4 782 71 19 26 27 33 38

Security 46
SRS5 110 18 15 13 23 4 8
SRS6 32 4 2 2 - - -

Total 1951 6 2738 235 86 103 159 87 111
† C represents the size of the domain-specific corpus computed as the total number of Wikipedia articles.
‡ S represents the size of the SRS computed as the total number of sentences in the SRS.
‡ cc represents the number of contexts in the SRS, and cm represents the average number of contexts from the

articles considered in the respective domain.
§ ⟨qc, ac⟩ and ⟨qm, am⟩ represent the automatically generated document- and domain-based questions and

answers, respectively.
¶ hc and hm represent the respective document- and domain-based question-answer pairs provided by human

annotators.

Quality of REQuestA. As a quality measure, the two annotators annotate an overlapping subset equals to 10%

of the auto-generated tuples. We consider that the annotators agreed when they select the same label for a given

question or answer (i.e., valid or invalid). Note that valid questions include rephrased ones. On this subset, the

annotators fully agreed on the labels of the questions. Out of 173 auto-generated questions, the two annotators

rephrased 24 questions (representing ≈14%) and corrected 46 answers (representing ≈26%). To better assess

the quality of our generation method, we further compare the generated questions to the rephrased ones by

the annotators. Following best practices in the natural language generation literature and machine translation

(MT) [131], we apply the following metrics: BLEU, ROUGE, METEOR, and BERTScore. The first three are

well-known n-gram metrics that measure the overlap between the generated questions (qg) and the rephrased

ones (qh). BLEU and METEOR compute the overlap with respect to the total number of tokens in qg, while

ROUGE computes the overlap with respect to the longest common sequence between qg and qh. The last metric

measures the semantic equivalence between qg and qh. The resulting scores are as follows: BLEU=53.6%,

ROUGE=31%, METEOR=39.8%, BERTScore=95.3%. These values indicate that qg and qh are very close

semantically yet different at the lexical level to some extent. This implies that the automatic generation could

successfully produce semantically correct questions, but failed in structuring them well.

In addition, we investigated the annotated answers. Out of 173 answers validated by the annotators, 47

answers were corrected (27%). Out of these corrected answers, about 57% subsumed the original extracted

answers. In other words, the annotators expanded the answers to include missing tokens, e.g., the auto-extracted

answer “software code” was corrected to “implemented software code”.

5.4.4 Evaluation Procedure

To answer our RQs, we conduct the experiments explained below. We note that we perform these experiments

independently in order to evaluate each step of our approach separately.

EXPI. This experiment answers RQ1. In EXPI, we evaluate widely used and recommended algorithms [211, 173,

11]. Specifically, we compare six ML algorithms, including Random Forest (RF), Decision Tree (DT), AdaBoost

74

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

(ADA), Logistic Regression (LR), Gradient Boosting (XGB), and Support Vector Machine (SVM). Each model

is explained in detail in Chapter 2. Following best practices [212], we train the classifiers on feature embeddings

(FE). The questions are first transformed into mathematical representations using two methods, the traditional

TF-IDF method, and more advanced embeddings extracted from word2vec and Sentence BERT (SBERT), since

they are reported to have good performance in text classification [11]. In this experiment, we compute the

TF-IDF by considering each question as a document. We train the classifiers and tune the hyperparameters on

80% of REQuestA. We then evaluate the classifiers and report the results in RQ1 on the remaining 20% of

REQuestA. To compare the performance of the classifiers, we use Accuracy (A) computed as the number of

correctly classified questions divided by the total number of questions attempted for classification.

EXPII. This experiment answers RQ2. In EXPII, we evaluate three widely used alternatives Retrievers explained

in Section 5.2. Specifically, we experiment with two traditional sparse Retrievers, namely TF-IDF with cosine

similarity and BM25. We further experiment with dense and reranking Retrievers, which are reported as the best

performing models in BEIR benchmark [188]. These models are DistilBERT and BM25 combined with cross

encoder. In our work, we restrict the re-ranking to top-10 results.

In EXPII, we evaluate the Retrievers applied in in steps 4 and 5 of our approach (see Fig. 5.2) to retrieve for

a given question the most relevant article and the top-K relevant contexts. EXPII is divided accordingly into two

sub-experiments elaborated next.

• EXPII-a. Document Retrieval: We compute the traditional TF-IDF representation as explained in

Section 5.2 where the articles in the domain-based corpus together with the input question constitute the

overall vocabulary. The question is regarded as a single document. For conducting EXPII-a, the Retriever

selects the candidate article from the domain-based corpus

• EXPII-b. Context Retrieval: We compute the TF-IDF representation where the IDF is computed from

each context within a document. Similarly, the input question is regarded as a single document. The

question and the set of contexts constitute the overall vocabulary. For conducting EXPII-b, the Retriever

selects the candidate context from the list of contexts in the input SRS or in the selected article from

EXPII-a.

To compare the performance of the alternative Retriever models in EXPII, we apply common evaluation

metrics in the IR literature [129] explained next. Recall@K (R@K) assesses whether the document (or context)

containing the correct answer to the input question is found anywhere in the ranked list produced by the Retriever

models. Discounted cumulative gain@K (NDCG@K) is similar to R@K except that it takes into account the

rank given to the context that contains the right answer to the input question. Mean Reciprocal Rank (MRR)

evaluates the rank given to the first relevant retrieved context, this metric disregards other relevant items in the

same ranked list. Mean Average Precision@K (MAP@K) computes the precision relative to the rank of the

relevant context in the list of K retrieved contexts, e.g., MAP is 1/3 when the relevant context is ranked 3.

In our work, MRR and MAP are equivalent since there is for each question one relevant context only

according to our ground truth. We still report both similar to the common practice in the QA literature [185].

We further note that in EXPII-a we are interested in the most relevant article and this article is known in our

ground truth. Therefore, we only report the conventional recall which similar to the definition of R@1 (explained

above).

EXPIII. This experiment answers RQ3. To extract the answer to a given question, we apply several Readers

that are reported to perform well in the QA literature [188]. Specifically, we apply ALBERT, BERT, ELECTRA,

75

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

Table 5.2: Accuracy of Classification Models for Question Analysis (RQ1).

RF DT ADA XGB LR SVM

TF-IDF 79.5 80.8 87.2 83.3 84.6 52.6

word2vec 78.2 56.4 71.8 70.5 52.6 52.6
SBERT 84.6 69.2 80.8 69.2 80.8 83.3

MiniLM, and RoBERTa (see Section 5.2 for more details on these models). To compare the performance of

these Readers, we compute the Accuracy (A) as the number of correctly predicted answers divided by the total

number of predicted answers found by the model. To decide whether a predicted answer (ap) is correct or not,

we compare ap with the answer provided in the ground truth (agt) using three modes explained next.

1. Exact matching (EM): ap is considered correct only if it fully matches agt, otherwise ap is incorrect.

2. Partial matching (PM): ap is correct if there is some overlap between ap and agt, otherwise ap is incorrect.

3. Semantic matching (SM): For this mode, we first compute semantic similarity between ap and agt.

Following this, ap is correct if the similarity score is greater than a threshold (in our case, we use 0.5).

Otherwise, ap is incorrect.

In addition to reporting accuracy, we also report F1-measure, another commonly reported metric in the QA

literature. F1-measure is the harmonic mean computed as 2*P*R/(P+R), where P is the precision computed as

the ratio of the overlapping tokens between ap and agt to the total number of tokens in ap, and R is the recall

computed as the ratio of the overlapping tokens between ap and agt to the total number of tokens agt. We then

report the overall average of the F1-score for all questions.

EXPIV. This experiment answers RQ4. We report the execution time needed to run our QA assistant approach

REQassis with the most accurate models from previous experiments. EXPIV is conducted on a Google

Colaboratory cloud using the free plan with the following specifications: Intel(R) Xeon(R) CPU@2.20GHz,

Tesla T4 GPU, and 13GB RAM.

5.4.5 Answers to the RQs

RQ1. Which ML classification algorithm is the most accurate for distinguishing between document-based and

domain-based questions? Table 5.2 shows the accuracy (A) of the six alternative ML classification algorithms

using different learning features. We highlight in the table the best accuracy achieved for each representation

technique. As the table shows, RF performs well when it is trained over embeddings from both SBERT and

word2vec. However, ADA outperforms RF when trained over TF-IDF vectors, as it has the best accuracy in

this table. LR achieves good accuracy combined with TF-IDF and SBERT representation techniques, but its

performance degrades drastically when trained over word2vec embeddings. On the other hand, both ADA

and RF have stable average performance in all three representations. We further experiment with ensembling

methods. As per our results, the best ensembling is using stacking, that is a procedure where a classifier learns to

combine the predictions of single classifiers. Stacking ADA and XGB both trained over TF-IDF vectors, LR

and SVM over SBERT embeddings, and RF trained over word2vec yields 88.5% accuracy with a gain of 1.3%

over the best classifier (ADA over TF-IDF vectors). This observation leads to the conclusion that the stacking

solution performs best.

76

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

The answer to RQ1 is that stacking different Frequency-based, Embedding-basedw and Embedding-baseds
models is the best performing classification approach for distinguishing the two question types with an

accuracy of ≈88.5%.

For the purpose of our study, we believe that the achieved accuracy of 88.5% is sufficient. We note that there

can be alternatives to using ML classification for analyzing the question type. Considering the application use of

our approach for extracting glossary terms from external domain knowledge resource, this classification task can

be easily handled with nearly a perfect accuracy using heuristics about the question template. An alternative is to

allow the user to provide the question type as an input parameter. Another alternative is to disregard the question

type and provide two answers, one extracted from the input SRS (i.e., regarding the question as document-based)

and another extracted from the domain-specific corpus (i.e., regarding the question as domain-based). This latter

alternative requires more time to process a given question, yet it has the advantage of providing the requirements

engineer with a domain-specific perspective of the input question.

RQ2. Which Retriever model yields the most accurate results for retrieving for a given question the most

relevant (a) domain-based document(s) and (b) the most relevant contexts within a document? To answer (a),

Table 5.3 shows the performance of the different Retriever models for retrieving the correct domain-based article.

In the table, we assume that the DomQ questions are correctly classified, independently of the Question Analysis

component discussed in the previous RQ. Lexical models (TF-IDF and BM25) can easily identify the correct

article achieving a perfect Recall@1 of 100% over all domains. The dense Retriever (DistilBERT) has a slightly

lower performance compared to the lexical approaches, achieving an average Recall@1 of 98.8%. Since the

reranking approach uses the results of BM25, it achieves the same 100% Recall@1. Since three approaches

achieve the same results, we select the BM25 model as the best Retriever for this Document Retrieval component

since it is computationally efficient, simple and has a robust behavior. We note that the average reported in

table 5.3 is calculated by weighting the domains by their corpus size.

To answer (b), Tables 5.4 and 5.5 show the performance of the different Retrievers for retrieving the top-K

relevant contexts for DocQ and DomQ, respectively. In these tables, we assume that the DocQ and DomQ

questions are correctly classified, and the correct article is retrieved for DomQ, independently of the results of

the Question Analysis and Document Retrieval components discussed in RQ1 and the first part of RQ2. For

DocQ, the lexical models (TF-IDF and BM25) have a comparable performance, with BM25 having a slight

edge over TF-IDF in the smaller values of K. The dense Retriever improves the results of BM25 reaching an

average of ≈84% for R@3. Reranking Retriever which pairs BM25 with the CE model achieves the best overall

results, that is an average of ≈85.8% for R@3. For DomQ questions, TF-IDF outperforms BM25 in most of the

cases. However, the dense Retriever achieves better R@1 and R@3 than both lexical approaches. The reranking

approach has a better overall Recall for all K values, achieving an average of ≈95.4% for R@3.

We observe from the results that the lexical approaches (BM25 and TF-IDF) perform better for DocQ than

for DomQ, whereas the neural-based approaches (dense and reranking Retrievers) perform better for DomQ

than for DocQ. We hypothesize that the reason can be due to the fact that DocQ contexts are extracted from

the original input SRS on from where the question was originally asked/generated, while DomQ contexts are

from Wikipedia articles. This might have an impact on the relevance score that is computed by the Retrievers to

identify the right context.

The table further shows that selecting the value K = 3 yields good results on average for both DocQ and

DomQ. In comparison, the results at K = 1 are often insufficient and miss the right context to a given question.

77

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

Table 5.3: Accuracy of Retriever Models for Document Retrieval (RQ2-a).

Domain C† Model Recall@1

Aerospace 1158

TFIDF 100
BM25 100

DistilBERT 99.0

BM25+CE 100

Defence 781

TFIDF 100
BM25 100

DistilBERT 98.9

BM25+CE 100

Security 50

TFIDF 100
BM25 100

DistilBERT 91.7

BM25+CE 100

Average 663

TFIDF 100
BM25 100

DistilBERT 98.8

BM25+CE 100
† C the domain-specific corpus size in numbers of Wikipedia articles.

Considering larger values of K (K ≥ 5) is also possible and it improves the overall results. Selecting the best

value of K has practical implications. In practice, selecting higher values of K provide the requirements engineer

with more context required for understanding and interpreting the requirements. However, this comes at the

cost of more time needed to navigate through the contexts and check the extracted answers. We therefore select

K = 3 in our work, but we believe that K can be left as an external parameter to our approach and can be then

adjusted by the requirements engineer according to the practical context.

The answer to RQ2 is that BM25 is the best model for Document Retrieval with a perfect 100% R@1, and

the reranking approach which pairs BM25 with CE performs the best for Context Retrieval with an average

of R@3 90.6% .

RQ3. Table 5.7 compares the accuracy of the Readers for extracting the answer to a given question. In this

table, we assume that the previous steps (RQ2) provided the context (and the Wikipedia article, when applicable)

containing the right answer to the input question. The table shows that the most accurate Reader varies according

to the matching mode. Consequently, the best performing model is DistilBERT in terms of PM mode, but

RoBERTa has the best performance in terms of EM mode and also considering F1 score, and finally ALBERT

has a slightly better accuracy in terms of SM mode mode than RoBERTa. Thus, we can argue that RoBERTa

model always provides the best answer compared to other models, despite having a low PM score. MiniLM and

DistilBERT are the most efficient models computational-wise, which makes them preferable in low-resource

case studies, particularly DistilBERT, since it performs well in terms of PM. Though in PM mode the model

does not identify the exact answer as-is in the ground truth, the good results of DistilBERT indicate that it still

can point the engineer to the text fragment containing the right answer. ALBERT is the largest model that we

use in this list, since it is based on BERT-large. Though ALBERT has comparable results to RoBERTa (even

has superiority in terms of PM and SM), it is computationally expensive and thus less preferred than RoBERTa

78

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

Table 5.4: Accuracy of Retriever Models for Context Retrieval for DocQ (RQ2-b).

SRS († c) SRS1 (34) SRS2 (123)

Model TFIDF BM25 DistilBERT BM25+CE TFIDF BM25 DistilBERT BM25+CE

Top-1

R 50.0 50.0 53.8 80.8 46.8 51.9 59.7 75.3
MAP 50.0 50.0 53.8 80.8 46.8 51.9 59.7 75.3
MRR 50.0 50.0 61.5 80.8 48.1 51.9 62.3 75.3
NDCG 50.0 50.0 53.8 80.8 46.8 51.9 59.7 75.3

Top-3

R 73.1 76.9 84.6 92.3 66.2 66.2 83.1 84.4
MAP 60.3 61.5 68.6 85.3 55.2 57.6 70.3 79.4
MRR 60.3 61.5 72.4 85.3 56.1 57.6 71.9 79.4
NDCG 63.6 65.5 72.8 87.0 58.0 59.8 73.6 80.7

Top-5

R 73.1 88.5 96.2 92.3 76.6 75.3 89.6 85.7
MAP 60.3 64.0 71.5 85.3 57.7 59.7 71.8 79.7
MRR 60.3 64.0 75.3 85.3 58.2 59.7 73.1 79.7
NDCG 63.6 70.1 77.7 87.0 62.4 63.6 76.3 81.2

Top-10

R 84.6 92.3 100 92.3 85.7 87.0 93.5 87.0
MAP 61.8 64.6 72.0 85.3 58.9 61.2 72.3 79.9
MRR 60.9 64.6 75.9 85.3 59.4 61.2 73.8 79.9
NDCG 67.2 71.4 79.0 87.0 65.3 67.3 77.6 81.7

SRS († c) SRS3 (13) SRS4 (87)

Top-1

R 44.4 44.4 22.2 55.6 48.9 55.6 71.1 68.9
MAP 44.4 44.4 22.2 55.6 48.9 55.6 71.1 68.9
MRR 44.4 44.4 22.2 55.6 48.9 55.6 71.1 68.9
NDCG 44.4 44.4 22.2 55.6 48.9 55.6 71.1 68.9

Top-3

R 88.9 66.7 88.9 88.9 57.8 75.6 84.4 82.2
MAP 64.8 53.7 55.6 72.2 51.9 64.8 77.8 75.6
MRR 64.8 53.7 55.6 72.2 51.1 64.8 77.8 75.6
NDCG 71.0 57.0 64.3 76.6 53.3 67.6 79.5 77.3

Top-5

R 100 77.8 100 100 66.7 77.8 86.7 82.2
MAP 67.6 55.9 58.3 75.0 54.1 65.3 78.3 75.6
MRR 67.6 55.9 58.3 75.0 53.3 65.3 78.3 75.6
NDCG 75.8 61.3 69.1 81.4 57.2 68.5 80.5 77.3

Top-10

R 100 100 100 100 75.6 82.2 91.1 82.2
MAP 67.6 58.9 58.3 75.0 55.3 65.8 78.9 75.6
MRR 67.6 58.9 58.3 75.0 54.2 65.8 78.9 75.6
NDCG 75.8 68.5 69.1 81.4 60.0 69.8 81.9 77.3

SRS († c) SRS5 (23) SRS6 (4)

Top-1

R 71.4 75.0 60.7 92.9 100 100 50.0 100
MAP 71.4 75.0 60.7 92.9 100 100 50.0 100
MRR 71.4 75.0 60.7 92.9 100 100 50.0 100
NDCG 71.4 75.0 60.7 92.9 100 100 50.0 100

Top-3

R 85.7 85.7 96.4 92.9 100 100 50.0 100
MAP 77.4 79.8 76.2 92.9 100 100 50.0 100
MRR 77.4 79.8 76.2 92.9 100 100 50.0 100
NDCG 79.5 81.3 81.4 92.9 100 100 50.0 100

Top-5

R 89.3 92.9 96.4 92.9 100 100 50.0 100
MAP 78.3 81.5 76.2 92.9 100 100 50.0 100
MRR 78.3 81.5 76.2 92.9 100 100 50.0 100
NDCG 81.0 84.4 81.4 92.9 100 100 50.0 100

Top-10

R 92.9 92.9 96.4 92.9 100 100 50.0 100
MAP 78.9 81.5 76.2 92.9 100 100 50.0 100
MRR 78.9 81.5 76.2 92.9 100 100 50.0 100
NDCG 82.3 84.4 81.4 92.9 100 100 50.0 100

† c represents the number of contexts.

79

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

Table 5.5: Accuracy of Retriever Models for Context Retrieval for DomQ (RQ2-b).

(a) Aerospace Domain

SRS († c) SRS1 (19) SRS2 (23)

Model TFIDF BM25 DistilBERT BM25+CE TFIDF BM25 DistilBERT BM25+CE

Top-1

R 43.8 56.2 78.1 85.7 43.4 44.7 55.3 64.5
MAP 43.8 56.2 78.1 85.7 43.4 44.7 55.3 64.5
MRR 39.0 100 78.1 76.2 40.8 100 53.9 59.2
NDCG 43.8 56.2 78.1 85.7 43.4 44.7 55.3 64.5

Top-3

R 61.0 85.7 90.5 95.2 68.4 80.3 84.2 94.7
MAP 51.1 69.7 84.3 90.5 54.8 61.6 69.1 78.7
MRR 51.9 100 84.3 85.7 54.4 100 68.4 76.1
NDCG 53.6 73.8 85.9 91.7 58.3 66.5 73.0 82.9

Top-5

R 61.0 95.2 90.5 95.2 76.3 88.2 90.8 94.7
MAP 51.1 71.6 84.3 90.5 56.5 63.5 70.5 78.7
MRR 51.9 100 84.3 85.7 55.6 100 69.9 76.1
NDCG 53.6 77.5 85.9 91.7 61.4 69.7 75.7 82.9

Top-10

R 85.7 95.2 90.5 95.2 97.4 94.7 92.1 94.7
MAP 54.5 71.6 84.3 90.5 59.2 64.3 70.7 78.7
MRR 52.7 100 84.3 85.7 56.2 100 70.1 76.1
NDCG 61.7 77.5 85.9 91.7 68.2 71.8 76.1 82.9

(b) Security Domain

SRS († c) SRS3 (67) SRS4 (27)

Top-1

R 41.7 44.4 83.3 88.9 42.1 31.6 71.1 63.2
MAP 41.7 44.4 83.3 88.9 42.1 31.6 71.1 63.2
MRR 52.8 100 83.3 88.9 28.9 100 69.7 46.1
NDCG 41.7 44.4 83.3 88.9 42.1 31.6 71.1 63.2

Top-3

R 58.3 86.1 88.9 94.4 65.8 76.3 90.8 94.7
MAP 49.1 63.9 86.1 91.7 53.5 52.4 79.6 78.5
MRR 57.4 100 86.1 91.7 46.7 100 78.9 70.0
NDCG 51.5 69.6 86.8 92.4 56.7 58.6 82.5 82.7

Top-5

R 58.3 94.4 88.9 94.4 75.0 84.2 93.4 94.7
MAP 49.1 65.6 86.1 91.7 55.4 54.1 80.2 78.5
MRR 57.4 100 86.1 91.7 47.5 100 79.5 70.0
NDCG 51.5 72.9 86.8 92.4 60.3 61.8 83.5 82.7

Top-10

R 77.8 94.4 88.9 94.4 94.7 94.7 96.1 94.7
MAP 51.9 65.6 86.1 91.7 57.9 55.6 80.5 78.5
MRR 59.3 100 86.1 91.7 48.9 100 79.9 70.0
NDCG 57.9 72.9 86.8 92.4 66.5 65.2 84.4 82.7

(c) Defence Domain

SRS († c) SRS5 (23)

Model TFIDF BM25 DistilBERT BM25+CE

Top-1

R 60.0 66.7 63.3 80.0
MAP 60.0 66.7 63.3 80.0
MRR 0.0 100 43.3 36.7
NDCG 60.0 6.7 63.3 80.0

Top-3

R 80.0 73.3 100 100
MAP 70.0 40.0 80.0 90.0
MRR 33.3 100 70.0 68.3
NDCG 72.6 48.7 85.2 92.6

Top-5

R 80.0 100 100 100
MAP 70.0 45.7 80.0 90.0
MRR 33.3 100 70.0 68.3
NDCG 72.6 59.3 85.2 92.6

Top-10

R 100 100 100 100
MAP 72.2 45.7 80.0 90.0
MRR 34.3 100 70.0 68.3
NDCG 78.7 59.3 85.2 92.6

† represents the average number of contexts.

80

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

Table 5.7: Accuracy of Reader Models for Answer Extraction (RQ3).

Model
Accuracy

F1 Time
EM PM SM

RoBERTa 24.6 60.2 84.0 65.2 11.6

BERT 21.4 70.6 82.9 63.1 32.2

DistilBERT 23.0 86.4 75.9 61.0 5.8

ALBERT 24.3 79.1 84.2 64.6 193.2

ELECTRA 21.1 81.3 81.0 60.1 19.1

MINILM 23.3 73.3 82.4 63.4 5.0

model. ELECTRA and MiniLM did not perform well on average compared to the other models.

The answer to RQ3 is that RoBERTa is the best performing Reader with an accuracy of 84% indicating that

the answers extracted by RoBERTa are semantically relevant to the right answers. RoBERTa further achieves

the best average F1-score of 65.2%.

RQ4. To answer this RQ, we consider the best models from the previous RQs. Therefore, we consider the

stacking approach for the Question Analysis step, reranking BM25 paired with the CE method for the Document

Retrieval and Context Retrieval steps, and RoBERTa for the Answer Extraction step. Accordingly, we discuss

next the execution time required to run ReQAssis from end-to-end estimated for a given question. Running the

steps Preprocessing and Question Analysis requires 0.7 seconds. Then, running the Document Retrieval and

Context Retrieval steps takes 4.9 and 3.5 seconds, respectively. We note that DomQ questions require both steps

(i.e., 8.4 seconds), while DocQ questions require the Context Retrieval step only (3.5 seconds). In our analysis,

DomQ constitute about half of the total questions in our dataset. However, we anticipate that requirements

engineers pose less DomQ than DocQ in practice. The reason is that the engineers would have some familiarity

with the underlying domain, and our automation is mainly intended for improved handling of quality issues,

mainly addressed using DocQs.

Finally, the Answer Extraction step requires 0.1. The total execution time required on average to process a

single question is approximately 4.3 seconds for DocQ questions and 9.2 seconds for DomQ questions. We note

that we did not account in our estimation for the Domain-specific Corpus Generation step, since this step can be

done offline. In the above estimation, we focused more on the use of ReQAssis during online inspection sessions.

The answer to RQ4 is that ReQAssis requires 4.3 seconds to answer DocQ and 9.2 seconds to answer DomQ

on a given SRS. Scaling this up to 50 questions, the total execution time will be around 3.5 min for DocQ,

and 7.6 min for DomQ questions (5 min on average). From a practical standpoint, this can be considered

convenient, as the practical use case involves multiple engineers inspecting the same SRS often for a duration

of two hours. We believe that applying ReQAssis to clarify problematic requirements on the spot provides

accurate results within practical time.

81

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

5.5 Related Work

In this section, we contrast our work with the existing literature on QA in the RE and NLP fields.

Question Answering in RE.

QA has been studied in the RE community with limited scope focusing on traceability [24, 25, 26]. Malviya

et al. [213] investigate the potential questions and the artifacts that a requirements engineer typically asks. The

authors collected by means of survey with industry practitioners a set of 159 queries, grouped into nine different

categories and 53 sub- categories. These categories represent the RE activities for which the query is most

relevant. Our work is closely related to the category quality proposed by the authors. However, unlike the

questions that they address, we enable requirements engineers posing questions that are about the content of the

requirements. For example, instead of asking “which requirements are incomplete?”, the requirements engineer

can pose the question “how distance is measured?” on a particular requirement. This way, if one requirement

is incomplete on its own, the engineer is still able to find the complementary information in the SRS during

inspection. Pruski et al. [25] present TiQi, an automated solution that transforms trace queries from natural

language into structured query language (SQL). TiQi is designed to answer queries from a database, i.e., all

data and traceability links have to be extracted in advance and stored in a SQL database. Compared to TiQi, our

work focuses on answering questions posed in NL that arise while inspecting a given SRS concerning quality

assurance activities. For that purpose, we limit extending the information in the input SRS to a domain-specific

knowledge resources automatically generated throughout our work to better address quality questions.

Other directions for applying QA in RE literature include requirements elicitation [214], and information

extraction form legal text [66]. The first direction provides guidelines in formulating questions that are useful to

elicit a complete set of requirements, whereas the second direction aims at helping the requirements engineers

better understand legal text that is relevant to requirements. For answering legal queries, the automation utilizes

a set of pre-defined information content (e.g., prohibition or constraint). Compared to the above, our work

(i) provides automated assistance that covers evaluating quality-related issues and acquiring domain-specific

knowledge in requirements; (ii) relies merely on the unstructured textual content of SRS and (if needed) consults

an external domain-specific knowledge resource.

In a wider context, QA is more recently investigated for chatbots in software engineering [215]. Zhang’s

team [216] introduce an interactive approach to improve retrieving questions and answers from technical

platforms like Stack Overflow. Their approach builds a chatbot that interacts with and assists the user in finding

more desired results. Bansal et al. [217] build a context-based QA system that covers basic programming

questions about subroutines in programs (e.g., Java programs).

Question Answering in NLP. Question Answering (QA) is a long-standing topic in the NLP community. QA

tasks include question classification, answer extraction, question-answer matching, knowledge base question

answering, and question generation [218, 219, 220, 221]. Answer extraction is considered the main QA task

in NLP, it involves extracting exact answers from related contexts or documents [222]. Recent advances in

QA answer extraction include fine-tuning various state-of-the-art deep learning-based language models such as

BERT, RoBERTa, and ALBERT [223, 224, 225, 226]. The question classification task involves determining the

type of questions or answers, or the intent of the question in the case of chatbots and AI-based conversational

systems [227]. Inspired by the NLP literature, we apply in our work the QA models that are reported in BEIR

leaderboard, a recent benchmark for QA in NLP.

Several existing datasets are curated from generic text (e.g., Wikipedia) are publicly available for QA.

82

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

Among these, we mention the widely-used ones including SQuAD [228], GLUE [229], Natural Questions [230],

MS MACRO [231], and TriviaQA [232]. These datasets are considered as benchmarks for the QA tasks.

There are some existing domain-specific datasets covering various domains [233, 234, 235, 236] (e.g., medical

domain [237]). None of the above-mentioned datasets is suitable for the purpose of our study in the context of

QA assistance for requirements engineering. Available datasets either lack questions that capture domain-specific

knowledge needed by requirements engineers, or do not explicitly cover the types of questions potentially posed

by the engineer during inspection sessions (the focus of our work). Thus, we opted for creating an RE-specific

dataset and making it available to the community.

The recent emerging of sequence-to-sequence language models enabled huge advances in text generation

related tasks [238], such as dialog systems and Question Generation (QG). QG systems utilize the encoder-

decoder structure and attention mechanisms (e.g., BART and T5 model) [239, 195, 204]. Such models enabled

researchers in many fields to automatically generate their own synthetic QA datasets [240, 241, 242, 243]. In

our work, we use QG models to generate our dataset.

Compared to the QA literature in NLP discussed above, our work differs in two ways. First, we provide

an end-to-end textual question answering solution. Specifically, we devised our approach to cover all different

steps starting from posing a question, all the way to providing the relevant contexts and potential answers. In

contrast, the research directions in NLP often focus on one step only, e.g., document/context retrieval or answer

extraction. Second, our work aims at providing automated assistance to requirements engineers at two levels,

document-based questions that are posed and answered from the SRS under review, as well as domain-based

questions that require mining external knowledge-based resources.

5.6 Threats to Validity

The validity concerns most pertinent to our evaluation are internal and external validity.

Internal Validity. The main concern regarding internal validity is bias. This concern mainly impacts our dataset

REQuestA. To mitigate this threat, the authors had no involvement in the annotation activity of REQuestA.

Instead, the annotation was performed exclusively by two third-party nonauthor annotators who had no exposure

to our implementation.

External Validity. Our evaluation is based on REQuestA dataset, which spans six industrial requirements

specifications, covering three different domains. The results we obtained across these domains alongside the

variety of question types considered in REQuestA provides confidence about generalizability of our empirical

findings. Further experimentation is nevertheless required to further mitigate the external-validity threats.

5.7 Conclusion

In this chapter, we proposed an AI-enabled automated solution that uses question-answering (QA) as a way

to support the requirements engineers in inspecting requirements. We call this solution ReQAssis, which

stands for Quality Assurance Assistance through Question Answering. ReQAssis is composed of three main

components: question analysis, information retrieval, and answer extraction. For each component, we used and

compared different advanced machine learning (ML) and natural language processing (NLP) techniques. We

empirically evaluated our solution on our semi-generated QA dataset REQuestA, which stands for Requirements

Engineering Question-Answering dataset. REQuestA contains a total of 387 question-answer pairs of which 173

83

CHAPTER 5. AI-BASED QUESTION ANSWERING ASSISTANT FOR ANALYZING NATURAL-LANGUAGE
REQUIREMENTS

are automatically generated. The question analysis component could distinguish document-based and domain-

based questions with 88.5% accuracy, using stacking to combine multiple ML models based on frequency and

embeddings. The information retrieval component could retrieve the relevant document for domain-specific

questions with 100% accuracy, and retrieve the text passage that contains the right answer to the input question

among the top three relevant text passages with an average accuracy of 90.6%. The answer extraction component

could extract from the right passage the likely answer to the question with an average accuracy of 84%. These

results show that our solution can accurately provide three alternative answers to a document or a domain

question, which can be useful in practice. This solution has some room for improvement, and it can evolve to an

interactive chatbot.

84

Chapter 6

Conclusion

This chapter concludes this dissertation by summarizing the previous chapters, outlining the main contributions,

and exploring future research directions.

6.1 Summary

In this dissertation, we presented multiple solutions to handle different types of ambiguity in software require-

ments specifications. We further proposed a question-answering-based requirements analysis assistance system

based on advanced machine learning (ML), NLP, and information retrieval technologies. We empirically evalu-

ated our automated solutions on RE-related datasets that we designed and got annotated by third-party annotators.

We have implemented and are releasing under open-source licenses our tools with the best-performing solutions

for handling ambiguity and QA-based assistance. Briefly, the contributions made in the different chapters of this

dissertation are as follows:

In Chapter 3, we proposed an automated approach to improve the handling of two types of ambiguity,

coordination ambiguity (CA) and prepositional-phrase attachment ambiguity (PAA) using a combination of

syntactic patterns and different types of heuristics. We further proposed in Chapter 3 an automated module for

extracting domain-specific corpora by crawling Wikipedia. We utilized this module to increase the accuracy of

CA and PAA handling in requirements specifications. We evaluated our approach on a dataset with more than

5000 industrial requirements covering seven different application domains. Our results showed that our approach

can detect CA and PAA with an average precision of ≈80% and an average recall of ≈89%. The results further

showed that employing domain-specific corpora has a substantial positive impact on the accuracy of CA and

PAA handling. Specifically, in our dataset, we observed a ≈33% improvement in accuracy when compared to a

baseline that uses generic corpora.

In chapter 4, we tackled another type of ambiguity: pronominal anaphoric ambiguity. We proposed and

developed six solution alternatives based on ML over language features and feature embeddings, fine-tuning of

language models, and widely-applied NLP coreference resolution tools. Our evaluation involved two datasets,

DAMIR, a requirements engineering anaphoric ambiguity dataset created for this task and annotated by external

annotators, in addition to another publicly available RE dataset. Our results indicated that, for anaphoric

85

CHAPTER 6. CONCLUSION

ambiguity detection, supervised ML is more accurate than alternatives, having an average precision of ≈60%

and a recall of 100%. For anaphora resolution, the SpanBERT language model (a variant of BERT) yields the

best performance with an average success rate of ≈98%.

In Chapter 5, we proposed ReQAssis, short for Requirements Quality Assurance Assistance through Question

Answering. ReQAssis is an automated approach that uses question-answering (QA) to support the requirements

inspection and analysis process. ReQAssis combined information retrieval and machine reading comprehension

and further incorporates domain-specific knowledge to provide answers to the requirements engineers regarding

quality issues in requirements (e.g., incomplete requirements, or unclear concepts). We evaluated our approach

on REQuestA, a semi-automatically generated RE question answering dataset. Our approach achieved an

accuracy of 88.5% for classifying a given question into a document-based (whose answer is in the requirements

specification) or a domain-based question (whose answer requires mining an external domain-specific resource).

Our approach further achieved 100% accuracy for extracting the relevant document that contains the answer

from a given domain-specific corpus, an average accuracy of 90.6% in retrieving the text passage(s) that contain

the likely answer to the input question among the top-3 text passages marked as relevant, and an accuracy of

84% in extracting the likely answer from the retrieved text passage(s).

6.2 Future work

In this dissertation, we have addressed three types of syntactic ambiguity in natural-language requirements. In

requirements engineering, where ambiguity handling is closely associated with quality assurance, analysts are

likely interested in a more holistic treatment that addresses a wider range of ambiguity types by considering

other under-studied ambiguity types in RE (e.g., semantic ambiguity). Transforming textual requirements

specifications into structured information, combining our ambiguity handling solutions into one tool, and

considering other potentially prevalent ambiguity types are potential future directions that can improve the

effectiveness and usefulness of automation for requirements quality assurance.

Furthermore, our solution for coordination and prepositional-phrase attachment ambiguity can be extended by

combining straightforward methods based on syntactic patterns and heuristics with more advanced technologies

relying on language models and/or machine learning algorithms. In relation to our question-answering-based

quality assurance system, an interesting avenue for future work is to build an interactive, user-friendly chatbot

around the existing system. Our QA system can be further extended to embed our ambiguity handling solutions

and consequently pinpoint problematic text passages (requirements in this case). Finally, more user studies are

necessary to better assess the usefulness and applicability of our solutions and to more conclusively evaluate our

current results in practical scenarios.

86

Bibliography

[1] Benedetta Rosadini, Alessio Ferrari, Gloria Gori, Alessandro Fantechi, Stefania Gnesi, Iacopo Trotta, and

Stefano Bacherini. Using NLP to detect requirements defects: An industrial experience in the railway

domain. In Proceedings of the 23rd Working Conference on Requirements Engineering: Foundation for

Software Quality, 2017.

[2] Alessio Ferrari, Gloria Gori, Benedetta Rosadini, Iacopo Trotta, Stefano Bacherini, Alessandro Fantechi,

and Stefania Gnesi. Detecting requirements defects with NLP patterns: An industrial experience in the

railway domain. Empirical Software Engineering, 23(6), 2018.

[3] Klaus Pohl. Requirements engineering: An overview. RWTH, Fachgruppe Informatik Aachen, 1996.

[4] Pamela Zave. Classification of research efforts in requirements engineering. ACM Computing Surveys

(CSUR), 29(4):315–321, 1997.

[5] R Ryan Nelson. IT project management: Infamous failures, classic mistakes, and best practices. MIS

Quarterly executive, 6(2), 2007.

[6] Axel Van Lamsweerde. Requirements engineering: From system goals to UML models to software,

volume 10. Chichester, UK: John Wiley & Sons, 2009.

[7] Liping Zhao, Waad Alhoshan, Alessio Ferrari, Keletso J Letsholo, Muideen A Ajagbe, Erol-Valeriu

Chioasca, and Riza T Batista-Navarro. Natural language processing for requirements engineering: a

systematic mapping study. ACM Computing Surveys (CSUR), 54(3):1–41, 2021.

[8] Klaus Pohl. Requirements engineering: fundamentals, principles, and techniques. Springer Publishing

Company, Incorporated, 2010.

[9] Alessio Ferrari and Andrea Esuli. An NLP approach for cross-domain ambiguity detection in requirements

engineering. Automated Software Engineering, 26(3), 2019.

[10] Saad Ezzini, Sallam Abualhaija, Chetan Arora, Mehrdad Sabetzadeh, and Lionel C Briand. Using

domain-specific corpora for improved handling of ambiguity in requirements. In 2021 IEEE/ACM 43rd

International Conference on Software Engineering, 2021.

87

BIBLIOGRAPHY

[11] Saad Ezzini, Sallam Abualhaija, Chetan Arora, and Mehrdad Sabetzadeh. Automated handling of

anaphoric ambiguity in requirements: A multi-solution study. In 2022 IEEE/ACM 44th International

Conference on Software Engineering, 2022.

[12] Fabiano Dalpiaz, Ivor Schalk, and Garm Lucassen. Pinpointing ambiguity and incompleteness in

requirements engineering via information visualization and NLP. In Proceedings of the 24th Working

Conference on Requirements Engineering: Foundation for Software Quality (REFSQ’18), 2018.

[13] Steven Piantadosi, Harry Tily, and Edward Gibson. The communicative function of ambiguity in language.

Cognition, 122(3), 2012.

[14] L. Mich. NL-OOPS: From natural language to object oriented requirements using the natural language

processing system LOLITA. Natural Language Engineering, 2(2), 1996.

[15] Vincenzo Ambriola and Vincenzo Gervasi. On the systematic analysis of natural language requirements

with CIRCE. Automated Software Engineering, 13(1), 2006.

[16] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak. Easy approach to requirements

syntax (EARS). In Proceedings of the 17th IEEE International Requirements Engineering Conference,

2009.

[17] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. Automated checking of con-

formance to requirements templates using natural language processing. IEEE Transactions on Software

Engineering, 41(10), 2015.

[18] Danissa Rodriguez, Doris Carver, and Anas Mahmoud. An efficient wikipedia-based approach for better

understanding of natural language text related to user requirements. In Proceedings of the 39th IEEE

Aerospace Conference, 2018.

[19] D. Berry, E. Kamsties, and M. Krieger. From contract drafting to software specification: Linguistic

sources of ambiguity, a handbook, 2003.

[20] F. Chantree, B. Nuseibeh, A. de Roeck, and A. Willis. Identifying nocuous ambiguities in natural language

requirements. In Proceedings of the 14th IEEE International Requirements Engineering Conference,

2006.

[21] Hui Yang, Anne de Roeck, Vincenzo Gervasi, Alistair Willis, and Bashar Nuseibeh. Analysing anaphoric

ambiguity in natural language requirements. Requirements Engineering, 16(3), 2011.

[22] Fabiano Dalpiaz, Davide Dell’Anna, Fatma Aydemir, and Sercan Cevikol. Requirements classifica-

tion with interpretable machine learning and dependency parsing. In Proceedings of the 27th IEEE

International Requirements Engineering Conference, 2019.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep

bidirectional transformers for language understanding. arXiv:1810.04805, 2018.

[24] Patrick Mäder and Jane Cleland-Huang. A visual language for modeling and executing traceability

queries. Software & Systems Modeling, 12(3):537–553, 2013.

88

BIBLIOGRAPHY

[25] Piotr Pruski, Sugandha Lohar, William Goss, Alexander Rasin, and Jane Cleland-Huang. Tiqi: answering

unstructured natural language trace queries. Requirements Engineering, 20(3):215–232, 2015.

[26] Jinfeng Lin, Yalin Liu, Jin Guo, Jane Cleland-Huang, William Goss, Wenchuang Liu, Sugandha Lohar,

Natawut Monaikul, and Alexander Rasin. Tiqi: A natural language interface for querying software project

data. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE),

pages 973–977. IEEE, 2017.

[27] Sallam Abualhaija, Chetan Arora, Amin Sleimi, and Lionel Briand. Automated question answering for

improved understanding of compliance requirements: A multi-document study. In In Proceedings of the

30th IEEE International Requirements Engineering Conference, Melbourne, Australia 15-19 August 2022,

2022.

[28] Carson Schütze. PP attachment and argumenthood. MIT working papers in linguistics, 26(95), 1995.

[29] Paul Engelhardt and Fernanda Ferreira. Processing coordination ambiguity. Language and Speech, 53(4),

2010.

[30] Fabian de Bruijn and Hans Dekkers. Ambiguity in natural language software requirements: A case study.

In Proceedings of the 16th Working Conference on Requirements Engineering: Foundation for Software

Quality, 2010.

[31] Erik Kamsties and Barbara Peach. Taming ambiguity in natural language requirements. In Proceedings

of the 13th International Conference on Software and Systems Engineering and Applications, 2000.

[32] Vincenzo Gervasi, Alessio Ferrari, Didar Zowghi, and Paola Spoletini. Ambiguity in requirements

engineering: Towards a unifying framework. In From Software Engineering to Formal Methods and Tools,

and Back. Springer, 2019.

[33] Saad Ezzini, Sallam Abualhaija, Chetan Arora, Mehrdad Sabetzadeh, and Lionel Briand. Maana: An

automated tool for domain-specific handling of ambiguity. In 2021 IEEE/ACM 43rd International

Conference on Software Engineering: Companion Proceedings, 2021.

[34] Saad Ezzini, Sallam Abualhaija, and Mehrdad Sabetzadeh. Wikidominer: Wikipedia domain-specific

miner. arXiv preprint arXiv:2206.10218, 2022.

[35] Ruslan Mitkov. Anaphora resolution. Routledge, 2014.

[36] Saad Ezzini, Sallam Abualhaija, Chetan Arora, and Mehrdad Sabetzadeh. Taphsir: Towards anaphoric

ambiguity detection and resolution in requirements. In Proceedings of the 17th joint meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering (submitted), 2022.

[37] Christopher Manning and Hinrich Schütze. Foundations of statistical natural language processing. MIT

press, 1st edition, 1999.

[38] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and prospects. Science,

349(6245):255–260, 2015.

89

BIBLIOGRAPHY

[39] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools,

and techniques to build intelligent systems. " O’Reilly Media, Inc.", 2019.

[40] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic

minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

[41] Nitesh V Chawla. Data mining for imbalanced datasets: An overview. Data mining and knowledge

discovery handbook, pages 875–886, 2009.

[42] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[43] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117, 2015.

[44] Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The American

Statistician, 46(3):175–185, 1992.

[45] David R Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society:

Series B (Methodological), 20(2):215–232, 1958.

[46] Irina Rish et al. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop on empirical

methods in artificial intelligence, volume 3, pages 41–46, 2001.

[47] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on document

analysis and recognition, volume 1, pages 278–282. IEEE, 1995.

[48] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

[49] Robert E Schapire. Explaining adaboost. In Empirical inference, pages 37–52. Springer, 2013.

[50] Jerry Ye, Jyh-Herng Chow, Jiang Chen, and Zhaohui Zheng. Stochastic gradient boosted distributed

decision trees. In Proceedings of the 18th ACM conference on Information and knowledge management,

pages 2061–2064, 2009.

[51] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and

Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and

reading books. In The IEEE International Conference on Computer Vision, December 2015.

[52] Wikimedia Foundation. Wikimedia downloads.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz

Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

[54] Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. Journal

of documentation, 1972.

[55] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations

in vector space. arXiv:1301.3781, 2013.

[56] Justyna Sarzynska-Wawer, Aleksander Wawer, Aleksandra Pawlak, Julia Szymanowska, Izabela Stefaniak,

Michal Jarkiewicz, and Lukasz Okruszek. Detecting formal thought disorder by deep contextualized word

representations. Psychiatry Research, 304:114135, 2021.

90

BIBLIOGRAPHY

[57] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.

arXiv:1908.10084, 2019.

[58] Xingping Dong and Jianbing Shen. Triplet loss in siamese network for object tracking. In Proceedings of

the European conference on computer vision, pages 459–474, 2018.

[59] Erik Kamsties, Daniel Berry, and Barbara Paech. Detecting ambiguities in requirements documents using

inspections. In Proceedings of the 1st Workshop on Inspection in Software Engineering, 2001.

[60] Nadzeya Kiyavitskaya, Nicola Zeni, Luisa Mich, and Daniel Berry. Requirements for tools for ambi-

guity identification and measurement in natural language requirements specifications. Requirements

Engineering, 13(3), 2008.

[61] Paola Spoletini, Alessio Ferrari, Muneera Bano, Didar Zowghi, and Stefania Gnesi. Interview review: An

empirical study on detecting ambiguities in requirements elicitation interviews. In Proceedings of the

24th Working Conference on Requirements Engineering: Foundation for Software Quality, 2018.

[62] Siba Mishra and Arpit Sharma. On the use of word embeddings for identifying domain specific ambiguities

in requirements. In Proceedings of the 27th IEEE International Requirements Engineering Conference

Workshops, 2019.

[63] Daniel Toews and Leif Van Holland. Determining domain-specific differences of polysemous words

using context information. In Proceedings of the 25th Working Conference on Requirements Engineering:

Foundation and Software Quality Workshops, 2019.

[64] Vaibhav Jain, Ruchika Malhotra, Sanskar Jain, and Nishant Tanwar. Cross-domain ambiguity detection

using linear transformation of word embedding spaces. In Proceedings of the 26th Working Conference

on Requirements Engineering: Foundation and Software Quality Workshops, 2020.

[65] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. Extracting domain models from

natural-language requirements: approach and industrial evaluation. In Proceedings of the ACM/IEEE 19th

International Conference on Model Driven Engineering Languages and Systems (MODELS’16), 2016.

[66] Amin Sleimi, Nicolas Sannier, Mehrdad Sabetzadeh, Lionel Briand, and John Dann. Automated extrac-

tion of semantic legal metadata using natural language processing. In Proceedings of the 26th IEEE

International Requirements Engineering Conference, 2018.

[67] Barbara Strang. Modern English Structure. Edward Arnold, 2nd edition, 1968.

[68] Francis Chantree, Adam Kilgarriff, Anne De Roeck, and Alistair Willis. Disambiguating coordinations

using word distribution information. In Proceedings of the 5th International Conference on Recent

Advances in Natural Language Processing, 2005.

[69] Miriam Goldberg. An unsupervised model for statistically determining coordinate phrase attachment. In

Proceedings of the 37th annual meeting of the Association for Computational Linguistics, 1999.

[70] P. Resnik. Semantic similarity in a taxonomy: An information-based measure and its application to

problems of ambiguity in natural language. Journal of Artificial Intelligence Research, 11(1), 1999.

91

BIBLIOGRAPHY

[71] Preslav Nakov and Marti Hearst. Using the web as an implicit training set: application to structural

ambiguity resolution. In Proceedings of the 5th conference on Human Language Technology and Empirical

Methods in Natural Language Processing, 2005.

[72] Anne De Roeck. Detecting dangerous coordination ambiguities using word distribution. In Proceedings

of the 6th International Conference on Recent Advances in Natural Language Processing, 2007.

[73] Sri Tjong and Daniel Berry. Can rules of inferences resolve coordination ambiguity in natural language

requirements specification? In Proceedings of the 13th Workshop on Requirements Engineering, 2008.

[74] Hui Yang, Alistair Willis, Anne De Roeck, and Bashar Nuseibeh. Automatic detection of nocuous

coordination ambiguities in natural language requirements. In Proceedings of the 10th IEEE/ACM

international conference on Automated software engineering, 2010.

[75] Sri Tjong and Daniel Berry. The design of SREE—a prototype potential ambiguity finder for requirements

specifications and lessons learned. In Proceedings of the 19th Working Conference on Requirements

Engineering: Foundation for Software Quality, 2013.

[76] A. Kilgarriff. Thesauruses for natural language processing. In Proceedings of the 1st International

Conference on Natural Language Processing and Knowledge Engineering, 2003.

[77] Hui Yang, Anne De Roeck, Alistair Willis, and Bashar Nuseibeh. A methodology for automatic identifi-

cation of nocuous ambiguity. In Proceedings of the 23rd International Conference on Computational

Linguistics, 2010.

[78] Akitoshi Okumura and Kazunori Muraki. Symmetric pattern matching analysis for English coordinate

structures. In Proceedings of the 4th Conference on Applied Natural Language Processing, 1994.

[79] Eneko Agirre, Timothy Baldwin, and David Martínez. Improving parsing and PP attachment performance

with sense information. In Proceedings of the 46th Annual Meeting of the Association for Computational

Linguistics, 2008.

[80] Hiram Calvo and Alexander Gelbukh. Improving prepositional phrase attachment disambiguation using

the web as corpus. In Proceedings of the 8th Iberoamerican Congress on Progress in Pattern Recognition,

Speech and Image Analysis, 2003.

[81] Mitra Bokaei Hosseini, Rocky Slavin, Travis Breaux, Xiaoyin Wang, and Jianwei Niu. Disambiguating

requirements through syntax-driven semantic analysis of information types. In Proceedings of the 26th

Working Conference on Requirements Engineering: Foundation for Software Quality, 2020.

[82] Unnati Shah and Devesh Jinwala. Resolving ambiguities in natural language software requirements: A

comprehensive survey. SIGSOFT Software Engineering Notes, 40(5), 2015.

[83] Cristina Ribeiro and Daniel Berry. The prevalence and severity of persistent ambiguity in software

requirements specifications: Is a special effort needed to find them? Science of Computer Programming,

195, 2020.

[84] Fabrizio Fabbrini, Mario Fusani, Stefania Gnesi, and Giuseppe Lami. The linguistic approach to the

natural language requirements quality: Benefit of the use of an automatic tool. In Proceedings of the 26th

Annual NASA Goddard Software Engineering Workshop, 2001.

92

BIBLIOGRAPHY

[85] Aaron Massey, Richard Rutledge, Annie Anton, and Peter Swire. Identifying and classifying ambiguity

for regulatory requirements. In Proceedings of the 22nd IEEE International Requirements Engineering

Conference, 2014.

[86] Benedikt Gleich, Oliver Creighton, and Leonid Kof. Ambiguity detection: Towards a tool explaining

ambiguity sources. In Proceedings of the 16th Working Conference on Requirements Engineering:

Foundation for Software Quality, 2010.

[87] Henning Femmer, Daniel Méndez Fernández, Stefan Wagner, and Sebastian Eder. Rapid quality assurance

with requirements smells. Journal of Systems and Software, 123, 2017.

[88] Giuseppe Lami, Mario Fusani, and Gianluca Trentanni. QuARS: A pioneer tool for NL requirement

analysis. In From Software Engineering to Formal Methods and Tools, and Back. Springer, 2019.

[89] Fabiano Dalpiaz, Ivor van der Schalk, Sjaak Brinkkemper, Fatma Aydemir, and Garm Lucassen. Detecting

terminological ambiguity in user stories: Tool and experimentation. Information and Software Technology,

110, 2019.

[90] Alistair Willis, Francis Chantree, and Anne De Roeck. Automatic identification of nocuous ambiguity.

Research on Language and Computation, 6(3-4), 2008.

[91] Kenneth Church and Ramesh Patil. Coping with Syntactic Ambiguity or How to Put the Block in the Box

on the Table. MIT Press, 1st edition, 1982.

[92] Patrick Pantel and Dekang Lin. An unsupervised approach to prepositional phrase attachment using

contextually similar words. In Proceedings of the 38th Annual Meeting on Association for Computational

Linguistics, 2000.

[93] Eneko Agirre, Oier de Lacalle, Christiane Fellbaum, Andrea Marchetti, Antonio Toral, and Piek Vossen.

SemEval-2010 task 17: all-words word sense disambiguation on a specific domain. In Proceedings of the

5th Workshop on Semantic Evaluations: Recent Achievements and Future Directions, 2010.

[94] Michael Strube and Simone Ponzetto. WikiRelate! computing semantic relatedness using Wikipedia. In

Proceedings of the 21st national conference on Artificial intelligence, 2006.

[95] Evgeniy Gabrilovich, Shaul Markovitch, et al. Computing semantic relatedness using wikipedia-based

explicit semantic analysis. In Proceedings of the 20th International Joint Conference on Artificial

Intelligence, 2007.

[96] Angela Fogarolli. Word sense disambiguation based on Wikipedia link structure. In Proceedings of the

3rd IEEE International Conference on Semantic Computing (ICSC’09), 2009.

[97] Spandana Gella, Carlo Strapparava, and Vivi Nastase. Mapping WordNet domains, WordNet topics

and Wikipedia categories to generate multilingual domain specific resources. In Proceedings of the 9th

International Conference on Language Resources and Evaluation, 2014.

[98] George Miller. WordNet: A lexical database for English. Communications of the ACM, 38(11), 1995.

[99] Christiane Fellbaum. WordNet: An Electronic Lexical Database. The MIT Press, 1st edition, 1998.

93

BIBLIOGRAPHY

[100] Danqi Chen and Christopher Manning. A fast and accurate dependency parser using neural networks. In

Proceedings of the 18th Conference on Empirical Methods in Natural Language Processing, 2014.

[101] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. Automated extraction and

clustering of requirements glossary terms. IEEE Transactions on Software Engineering, 43(10), 2017.

[102] David Newman, Jey Lau, Karl Grieser, and Timothy Baldwin. Automatic evaluation of topic coherence.

In Proceedings of the 8th annual conference of the North American chapter of the association for

computational linguistics: Human language technologies, 2010.

[103] Stefan Evert. Google web 1T 5-grams made easy (but not for the computer). In Proceedings of the 8th

annual conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies and the 6th Web as Corpus Workshop, 2010.

[104] Chris Biemann, Felix Bildhauer, Stefan Evert, Dirk Goldhahn, Uwe Quasthoff, Roland Schäfer, Johannes

Simon, Leonard Swiezinski, and Torsten Zesch. Scalable construction of high-quality web corpora.

Journal for Language Technology and Computational Linguistics, 28(2), 2013.

[105] Tzu Yen, Jian Wu, Jim Chang, Joanne Boisson, and Jason Chang. WriteAhead: Mining grammar

patterns in corpora for assisted writing. In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural Language Processing,

Proceedings of System Demonstrations, 2015.

[106] Tobias Hawker. USYD: WSD and lexical substitution using the Web1T corpus. In Proceedings of the 4th

International Workshop on Semantic Evaluations, 2007.

[107] D. Jurafsky and J. Martin. Speech and Language Processing: An Introduction to Natural Language

Processing, Computational Linguistics, and Speech Recognition. Prentice Hall, 2nd edition, 2009.

[108] Georgiana Dinu and Mirella Lapata. Measuring distributional similarity in context. In Proceedings of the

14th Conference on Empirical Methods in Natural Language Processing, 2010.

[109] Laurel J Brinton. The structure of modern English: A linguistic introduction. John Benjamins Publishing,

2000.

[110] Ian Witten, Eibe Frank, Mark Hall, and Christopher Pal. Data Mining: Practical Machine Learning Tools

and Techniques. Elsevier, 4th edition, 2011.

[111] Richard Eckart de Castilho and Iryna Gurevych. A broad-coverage collection of portable NLP components

for building shareable analysis pipelines. In Proceedings of the Workshop on Open Infrastructures and

Analysis Frameworks for HLT, 2014.

[112] Torsten Zesch, Christof Müller, and Iryna Gurevych. Extracting lexical semantic knowledge from

Wikipedia and Wiktionary. In Proceedings of the 6th International Conference on Language Resources

and Evaluation, 2008.

[113] C Giuliano. jWeb1T: A library for searching the web 1T 5-gram corpus. Last accessed: August 2020.

94

BIBLIOGRAPHY

[114] Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. Fast and accurate shift-reduce

constituent parsing. In Proceedings of the 51st Annual Meeting of the Association for Computational

Linguistics, 2013.

[115] Philip Resnik. Using information content to evaluate semantic similarity in a taxonomy. In Proceedings

of the 14th International Joint Conference on Artificial Intelligence, 1995.

[116] Hideki Shima. WS4J WordNet similarity for java. Last accessed: August 2020.

[117] J. Richard Landis and Gary G. Koch. An application of hierarchical kappa-type statistics in the assessment

of majority agreement among multiple observers. Biometrics, 33(2), 1977.

[118] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of

Machine Learning Research, 13(1), 2012.

[119] Geoffrey Leech. 100 million words of English. English Today, 9(1), 1993.

[120] J. Hirschberg and C.D. Manning. Advances in natural language processing. Science, 349(6245), 2015.

[121] Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classification And Regression Trees.

Routledge, 1st edition, 1984.

[122] Yuan Tian and David Lo. A comparative study on the effectiveness of part-of-speech tagging techniques on

bug reports. In Proceedings of the 22nd IEEE International Conference on Software Analysis, Evolution,

and Reengineering, 2015.

[123] Jean Charbonnier and Christian Wartena. Using word embeddings for unsupervised acronym disambigua-

tion. In Proceedings of the 27th International Conference on Computational Linguistics, 2018.

[124] Apache Software Foundation. Apache Maven. https://maven.apache.org/.

[125] Apache Software Foundation. Apache UIMA. https://uima.apache.org/.

[126] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, 2009.

[127] Edward Loper and Steven Bird. NLTK: The Natural Language Toolkit. In Proceedings of the ACL-

02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and

Computational Linguistics, 2002.

[128] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spaCy: Industrial-strength

Natural Language Processing in Python, 2020.

[129] M. McGill and G. Salton. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

[130] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier

Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[131] Dan Jurafsky. Speech & language processing. Pearson Education India, 2000.

95

BIBLIOGRAPHY

[132] Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. Pure: A dataset of public requirements

documents. In 2017 IEEE 25th International Requirements Engineering Conference, 2017.

[133] Ruslan Mitkov. Anaphora resolution: the state of the art. Citeseer, 1999.

[134] Hui Yang, Anne De Roeck, Vincenzo Gervasi, Alistair Willis, and Bashar Nuseibeh. Extending nocuous

ambiguity analysis for anaphora in natural language requirements. In Proceedings of the 18th IEEE

International Requirements Engineering Conference. IEEE, 2010.

[135] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, Frank Zimmer, and Raul Gnaga. RUBRIC: A flexible

tool for automated checking of conformance to requirement boilerplates. In Proceedings of the 9th joint

meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, 2013.

[136] Henning Femmer, Daniel Méndez Fernández, Elmar Juergens, Michael Klose, Ilona Zimmer, and Jörg

Zimmer. Rapid requirements checks with requirements smells: Two case studies. In Proceedings of the

1st International Workshop on Rapid Continuous Software Engineering, 2014.

[137] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, Jonathan

Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia

Abdalla, and Carol Willing. Jupyter notebooks – a publishing format for reproducible computational

workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas, 2016.

[138] Sallam Abualhaija, Davide Fucci, Fabiano Dalpiaz, Xavier Franch, and Alessio Ferrari. ReqEval: The

shared task on anaphora ambiguity detection and disambiguation, 2020. last accessed: July 2021.

[139] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. Span-

BERT: Improving pre-training by representing and predicting spans. Transactions of the Association for

Computational Linguistics, 8, 2020.

[140] Matthew Lamm, Jennimaria Palomaki, Chris Alberti, Daniel Andor, Eunsol Choi, Livio Baldini Soares,

and Michael Collins. Qed: A framework and dataset for explanations in question answering. Transactions

of the Association for Computational Linguistics, 9, 2021.

[141] Nicolas Sannier, Morayo Adedjouma, Mehrdad Sabetzadeh, and Lionel Briand. An automated framework

for detection and resolution of cross references in legal texts. Requirements Engineering, 22(2), 2017.

[142] Mohamed Osama, Aya Zaki-Ismail, Mohamed Abdelrazek, John Grundy, and Amani Ibrahim. Score-

based automatic detection and resolution of syntactic ambiguity in natural language requirements. In

2020 IEEE International Conference on Software Maintenance and Evolution, 2020.

[143] Yawen Wang, Lin Shi, Mingyang Li, Qing Wang, and Yun Yang. A deep context-wise method for

coreference detection in natural language requirements. In 2020 IEEE 28th International Requirements

Engineering Conference, 2020.

[144] Joseph F McCarthy and Wendy G Lehnert. Using decision trees for coreference resolution. In International

Joint Conferences on Artificial Intelligence, 1995.

96

BIBLIOGRAPHY

[145] Richard Evans. Applying machine learning toward an automatic classification of it. Literary and linguistic

computing, 16(1):45–58, 2001.

[146] Natalia N Modjeska, Katja Markert, and Malvina Nissim. Using the web in machine learning for other-

anaphora resolution. In Proceedings of the 2003 conference on Empirical methods in natural language

processing, 2003.

[147] Samuel Broscheit, Massimo Poesio, Simone Paolo Ponzetto, Kepa Joseba Rodriguez, Lorenza Romano,

Olga Uryupina, Yannick Versley, and Roberto Zanoli. Bart: A multilingual anaphora resolution system.

In Proceedings of the 5th international workshop on semantic evaluation, 2010.

[148] Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nathanael Chambers, Mihai Surdeanu, Dan

Jurafsky, and Christopher D Manning. A multi-pass sieve for coreference resolution. In Proceedings of

the 2010 conference on empirical methods in natural language processing, 2010.

[149] Timothy Lee, Alex Lutz, and Jinho D Choi. Qa-it: classifying non-referential it for question answer pairs.

In Proceedings of the ACL 2016 Student Research Workshop, 2016.

[150] Massimo Poesio, Roland Stuckardt, and Yannick Versley. Anaphora resolution. Springer, 2016.

[151] Rhea Sukthanker, Soujanya Poria, Erik Cambria, and Ramkumar Thirunavukarasu. Anaphora and

coreference resolution: A review. Information Fusion, 59, 2020.

[152] Kusum Lata, Pardeep Singh, and Kamlesh Dutta. A comprehensive review on feature set used for

anaphora resolution. Artificial Intelligence Review, 54(4), 2021.

[153] Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Jiwei Li. Corefqa: Coreference resolution as query-

based span prediction. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, 2020.

[154] Yufang Hou. Bridging anaphora resolution as question answering. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, 2020.

[155] Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of

english: The penn treebank. Computational Linguistics, 19(2), 1993.

[156] Sameer Pradhan, Lance Ramshaw, Mitch Marcus, Martha Palmer, Ralph Weischedel, and Nianwen Xue.

CoNLL-2011 shared task: Modeling unrestricted coreference in ontonotes. In Proceedings of the Fifteenth

Conference on Computational Natural Language Learning: Shared Task, pages 1–27, 2011.

[157] Liberman Mark, Davis Kelly, Grossman Murray, Martey Nii, and Bell John. Emotional Prosody Speech

and Transcripts LDC2002S28, 2002. CD-ROM. Philadelphia: Linguistic Data Consortium.

[158] David Graff Huang, Shudong and George Doddington. Multiple-Translation Chinese Corpus

LDC2002T01, 2002. Web download file. Philadelphia: Linguistic Data Consortium.

[159] Saad Ezzini, Sallam Abualhaija, Chetan Arora, and Mehrdad Sabetzadeh. “Online Annex (online)”, 2021.

Available at https://tinyurl.com/yw29ff7r, August 2021.

97

https://tinyurl.com/yw29ff7r

BIBLIOGRAPHY

[160] Alessio Miaschi and Felice Dell’Orletta. Contextual and non-contextual word embeddings: an in-depth

linguistic investigation. In Proceedings of the 5th Workshop on Representation Learning for NLP.

Association for Computational Linguistics, 2020.

[161] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word

representation. In Empirical Methods in Natural Language Processing, 2014.

[162] Qi Liu, Matt J Kusner, and Phil Blunsom. A survey on contextual embeddings. arXiv:2003.07278, 2020.

[163] Xinyun Cheng, Xianglong Kong, Li Liao, and Bixin Li. A combined method for usage of nlp libraries

towards analyzing software documents. In International Conference on Advanced Information Systems

Engineering, 2020.

[164] Kevin Clark and Christopher D. Manning. Deep reinforcement learning for mention-ranking coreference

models. In Empirical Methods on Natural Language Processing, 2016.

[165] Kevin Clark and Christopher D. Manning. Improving coreference resolution by learning entity-level dis-

tributed representations. In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics, 2016.

[166] Marcel Robeer, Garm Lucassen, Jan Martijn E.M. van der Werf, Fabiano Dalpiaz, and Sjaak Brinkkemper.

Automated extraction of conceptual models from user stories via NLP. In Proceedings of the 24th IEEE

International Requirements Engineering Conference, 2016.

[167] Chetan Arora, Mehrdad Sabetzadeh, Shiva Nejati, and Lionel Briand. An active learning approach

for improving the accuracy of automated domain model extraction. ACM Transactions on Software

Engineering and Methodology, 28(1), 2019.

[168] Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning. Stanza: A Python

natural language processing toolkit for many human languages. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics: System Demonstrations, 2020.

[169] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David McClosky.

The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd Annual Meeting of

the Association for Computational Linguistics: System Demonstrations, 2014.

[170] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric

Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System

Demonstrations. Association for Computational Linguistics, 2020.

[171] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,

Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie

Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In

Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019.

98

BIBLIOGRAPHY

[172] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-training

for language understanding. arXiv:2004.09297, 2020.

[173] Sallam Abualhaija, Davide Fucci, Fabiano Dalpiaz, and Xavier Franch. Preface: 3rd workshop on

natural language processing for requirements engineering (NLP4RE’20). In Joint Proceedings of REFSQ-

2020 Workshops, Doctoral Symposium, Live Studies Track, and Poster Track co-located with the 26th

International Conference on Requirements Engineering: Foundation for Software Quality, 2020.

[174] Joseph L. Fleiss. Measuring nominal scale agreement among many raters. Psychol. Bull., 76(5), 1971.

[175] Daniel M Berry. Empirical evaluation of tools for hairy requirements engineering tasks. Empirical

Software Engineering, 26(6), 2021.

[176] Jason Phang, Thibault Févry, and Samuel R Bowman. Sentence encoders on stilts: Supplementary training

on intermediate labeled-data tasks. arXiv:1811.01088, 2018.

[177] Panos Louridas and Christof Ebert. Machine learning. IEEE Software, 33(5), 2016.

[178] Felipe Quecole, Maisa Cristina Duarte, and Estevam Rafael Hruschka. Coupling for coreference resolution

in a never-ending learning system. Journal of Information and Data Management, 9(2), 2018.

[179] Nathalie Japkowicz. The class imbalance problem: Significance and strategies. In Proceedings of the

International Conference on Artificial Intelligence, 2000.

[180] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter

optimization. Advances in neural information processing systems, 24, 2011.

[181] Ekaba Bisong. Building machine learning and deep learning models on Google cloud platform: A

comprehensive guide for beginners. Apress, 2019.

[182] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeff Dean. Distributed representations of

words and phrases and their compositionality. In Proceedings of the 26th International Neural Information

Processing Systems Conference, 2013.

[183] Daniel Berry. Evaluation of tools for hairy requirements and software engineering tasks. In Proceedings

of the 25th IEEE International Requirements Engineering Conference Workshops, 2017.

[184] C. Arora, M. Sabetzadeh, A. Goknil, L. Briand, and F. Zimmer. Change impact analysis for natural

language requirements: An NLP approach. In 23rd IEEE International Requirements Engineering

Conference, 2015.

[185] Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and Tat-Seng Chua. Re-

trieving and reading: A comprehensive survey on open-domain question answering. arXiv preprint

arXiv:2101.00774, 2021.

[186] Philipp Cimiano, Christina Unger, and John McCrae. Ontology-based interpretation of natural language.

Synthesis Lectures on Human Language Technologies, 7(2):1–178, 2014.

99

BIBLIOGRAPHY

[187] Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu, and Jun Zhao. An end-to-end

model for question answering over knowledge base with cross-attention combining global knowledge.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 221–231, 2017.

[188] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir:

A heterogenous benchmark for zero-shot evaluation of information retrieval models. arXiv preprint

arXiv:2104.08663, 2021.

[189] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and

data engineering, 22(10):1345–1359, 2009.

[190] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:

smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[191] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-attention

distillation for task-agnostic compression of pre-trained transformers. Advances in Neural Information

Processing Systems, 33:5776–5788, 2020.

[192] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Al-

bert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942,

2019.

[193] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,

Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv

preprint arXiv:1907.11692, 2019.

[194] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text

encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

[195] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,

Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.

arXiv:1910.10683, 2019.

[196] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval, volume 463. ACM

press New York, 1999.

[197] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25 and beyond. Now

Publishers Inc, 2009.

[198] Christopher Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to Information Retrieval.

Cambridge University Press, 1st edition, 2008.

[199] Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv preprint arXiv:1901.04085,

2019.

[200] Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun. Denoising distantly supervised open-domain

question answering. In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1736–1745, 2018.

100

BIBLIOGRAPHY

[201] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum. Multi-step retriever-reader

interaction for scalable open-domain question answering. arXiv preprint arXiv:1905.05733, 2019.

[202] Omar Khattab, Christopher Potts, and Matei Zaharia. Relevance-guided supervision for openqa with

colbert. Transactions of the Association for Computational Linguistics, 9:929–944, 2021.

[203] Zhuosheng Zhang, Hai Zhao, and Rui Wang. Machine reading comprehension: The role of contextualized

language models and beyond. arXiv preprint arXiv:2005.06249, 2020.

[204] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,

Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural

language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

[205] Shanshan Liu, Xin Zhang, Sheng Zhang, Hui Wang, and Weiming Zhang. Neural machine reading

comprehension: Methods and trends. Applied Sciences, 9(18):3698, 2019.

[206] Rakesh Chada and Pradeep Natarajan. Fewshotqa: A simple framework for few-shot learning of question

answering tasks using pre-trained text-to-text models. arXiv preprint arXiv:2109.01951, 2021.

[207] Manda Sai Divya and Shiv Kumar Goyal. Elasticsearch: An advanced and quick search technique to

handle voluminous data. Compusoft, 2(6):171, 2013.

[208] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR:

A heterogeneous benchmark for zero-shot evaluation of information retrieval models. In Thirty-fifth

Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[209] Brown Dorian, Jain Sarthak, Novotný Vít, and nlp4whp. dorianbrown/rank_bm25:, February 2022.

[210] Malte Pietsch, Tanay Soni, Branden Chan, Timo Möller, and Bogdan Kostić. haystack.deepset.ai:.

[211] Sallam Abualhaija, Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Eduardo Vaz. A machine

learning-based approach for demarcating requirements in textual specifications. In Proceedings of the

27th IEEE International Requirements Engineering Conference, 2019.

[212] Washington Cunha, Vítor Mangaravite, Christian Gomes, Sérgio Canuto, Elaine Resende, Cecilia Nasci-

mento, Felipe Viegas, Celso França, Wellington Santos Martins, Jussara M Almeida, et al. On the

cost-effectiveness of neural and non-neural approaches and representations for text classification: A

comprehensive comparative study. Information Processing & Management, 58(3):102481, 2021.

[213] Sugandha Malviya, Michael Vierhauser, Jane Cleland-Huang, and Smita Ghaisas. What questions do

requirements engineers ask? In 2017 IEEE 25th International Requirements Engineering Conference

(RE), pages 100–109. IEEE, 2017.

[214] Mujahid Sultan and Andriy Miranskyy. Ordering interrogative questions for effective requirements

engineering: The w6h pattern. In 2015 IEEE Fifth International Workshop on Requirements Patterns,

pages 1–8. IEEE, 2015.

[215] Sara Pérez-Soler, Esther Guerra, and Juan de Lara. Creating and migrating chatbots with conga. In 2021

IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings, pages

37–40. IEEE, 2021.

101

BIBLIOGRAPHY

[216] Neng Zhang, Qiao Huang, Xin Xia, Ying Zou, David Lo, and Zhenchang Xing. Chatbot4qr: Interactive

query refinement for technical question retrieval. IEEE Transactions on Software Engineering, 2020.

[217] Aakash Bansal, Zachary Eberhart, Lingfei Wu, and Collin McMillan. A neural question answering system

for basic questions about subroutines. In 2021 IEEE International Conference on Software Analysis,

Evolution and Reengineering, pages 60–71. IEEE, 2021.

[218] Tianyong Hao, Xinxin Li, Yulan He, Fu Lee Wang, and Yingying Qu. Recent progress in leveraging deep

learning methods for question answering. Neural Computing and Applications, pages 1–19, 2022.

[219] Abdulganiyu Abdu Yusuf, Feng Chong, and Mao Xianling. An analysis of graph convolutional networks

and recent datasets for visual question answering. Artificial Intelligence Review, pages 1–24, 2022.

[220] Hai Jin, Yi Luo, Chenjing Gao, Xunzhu Tang, and Pingpeng Yuan. Comqa: Question answering over

knowledge base via semantic matching. IEEE Access, 7:75235–75246, 2019.

[221] Dennis Diefenbach, Andreas Both, Kamal Singh, and Pierre Maret. Towards a question answering system

over the semantic web. Semantic Web, 11(3):421–439, 2020.

[222] Bolanle Ojokoh and Emmanuel Adebisi. A review of question answering systems. Journal of Web

Engineering, 17(8):717–758, 2018.

[223] Li Jing, Caglar Gulcehre, John Peurifoy, Yichen Shen, Max Tegmark, Marin Soljacic, and Yoshua Bengio.

Gated orthogonal recurrent units: On learning to forget. Neural computation, 31(4):765–783, 2019.

[224] Aziguli Wulamu, Zhenqi Sun, Yonghong Xie, Cong Xu, and Alan Yang. An improved end-to-end memory

network for qa tasks. CMC-COMPUTERS MATERIALS & CONTINUA, 60(3):1283–1295, 2019.

[225] Qiyu Ren, Xiang Cheng, and Sen Su. Multi-task learning with generative adversarial training for multi-

passage machine reading comprehension. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 34, pages 8705–8712, 2020.

[226] Tetiana Parshakova, Francois Rameau, Andriy Serdega, In So Kweon, and Dae-Shik Kim. Latent question

interpretation through variational adaptation. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 27(11):1713–1724, 2019.

[227] Eduardo Cortes, Vinicius Woloszyn, Arne Binder, Tilo Himmelsbach, Dante Barone, and Sebastian

Möller. An empirical comparison of question classification methods for question answering systems. In

Proceedings of the 12th Language Resources and Evaluation Conference, pages 5408–5416, 2020.

[228] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for

machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[229] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:

A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint

arXiv:1804.07461, 2018.

[230] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti,

Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a benchmark for

102

BIBLIOGRAPHY

question answering research. Transactions of the Association for Computational Linguistics, 7:453–466,

2019.

[231] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and Li Deng.

Ms marco: A human generated machine reading comprehension dataset. In CoCo@ NIPS, 2016.

[232] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly

supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

[233] Heyan Huang, Xiaochi Wei, Liqiang Nie, Xianling Mao, and Xin-Shun Xu. From question to text:

Question-oriented feature attention for answer selection. ACM Transactions on Information Systems

(TOIS), 37(1):1–33, 2018.

[234] Chia-Hsuan Lee, Hung-yi Lee, Szu-Lin Wu, Chi-Liang Liu, Wei Fang, Juei-Yang Hsu, and Bo-Hsiang

Tseng. Machine comprehension of spoken content: Toefl listening test and spoken squad. IEEE/ACM

Transactions on Audio, Speech, and Language Processing, 27(9):1469–1480, 2019.

[235] Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and Le Song. Variational reasoning for

question answering with knowledge graph. In Thirty-second AAAI conference on artificial intelligence,

2018.

[236] Liwen Zhang, John Winn, and Ryota Tomioka. Gaussian attention model and its application to knowledge

base embedding and question answering. arXiv preprint arXiv:1611.02266, 2016.

[237] Junqing He, Mingming Fu, and Manshu Tu. Applying deep matching networks to chinese medical

question answering: a study and a dataset. BMC medical informatics and decision making, 19(2):91–100,

2019.

[238] Liangming Pan, Wenqiang Lei, Tat-Seng Chua, and Min-Yen Kan. Recent advances in neural question

generation. arXiv preprint arXiv:1905.08949, 2019.

[239] Vishwajeet Kumar, Yuncheng Hua, Ganesh Ramakrishnan, Guilin Qi, Lianli Gao, and Yuan-Fang Li.

Difficulty-controllable multi-hop question generation from knowledge graphs. In International Semantic

Web Conference, pages 382–398. Springer, 2019.

[240] Nelson F Liu, Tony Lee, Robin Jia, and Percy Liang. Can small and synthetic benchmarks drive

modeling innovation? a retrospective study of question answering modeling approaches. arXiv preprint

arXiv:2102.01065, 2021.

[241] Max Bartolo, Tristan Thrush, Robin Jia, Sebastian Riedel, Pontus Stenetorp, and Douwe Kiela. Im-

proving question answering model robustness with synthetic adversarial data generation. arXiv preprint

arXiv:2104.08678, 2021.

[242] Adam D Lelkes, Vinh Q Tran, and Cong Yu. Quiz-style question generation for news stories. In

Proceedings of the Web Conference 2021, pages 2501–2511, 2021.

[243] Shrey Gupta, Anmol Agarwal, Manas Gaur, Kaushik Roy, Vignesh Narayanan, Ponnurangam Kumaraguru,

and Amit Sheth. Learning to automate follow-up question generation using process knowledge for

depression triage on reddit posts. arXiv preprint arXiv:2205.13884, 2022.

103

	
	
	
	List of Figures
	List of Tables
	Introduction
	Context
	Contributions and Organization

	Background
	Natural Language Processing
	Machine Learning
	Data Imbalance Handling
	Supervised ML algorithms:
	Ensembling techniques

	Language Modeling
	Word Vectorization

	Using Domain-specific Corpora for Improved Handling of Ambiguity in Requirements
	Motivation and Contributions
	Related Work
	Ambiguity Handling in the RE Community
	Ambiguity Handling in the NLP Community

	Approach
	Preprocessing
	Pattern Matching
	Domain-specific Corpus Generation
	Application of Heuristics
	Handling Ambiguity

	Evaluation
	Research Questions (RQs)
	Implementation
	Data Collection
	Parameter Tuning
	Evaluation Procedure
	Answers to the RQs
	Error Analysis
	Discussion about Usefulness

	Tool Support
	MAANA
	WikiDoMiner

	Validity Considerations
	Conclusion

	Automated Handling of Anaphoric Ambiguity in Requirements: A Multi-solution Study
	Motivation and Contributions
	Background and Related Work
	Background
	Related Work

	Solutions Design
	Problem Definition
	Preprocessing
	Alternative Solutions

	Empirical Evaluation
	Research Questions (RQs)
	Implementation and Availability
	Datasets
	Evaluation Metrics
	Solutions Tuning
	Answers to the RQs
	Discussion

	Tool Support
	Preparation
	Reader
	Language Features Extraction
	Extraction of Features Embeddings
	Classification
	Encoder
	Resolver
	Evaluation

	Threats to Validity
	Conclusion

	AI-based Question Answering Assistant for Analyzing Natural-language Requirements
	Motivation and Contributions
	Background
	Approach
	Preprocessing
	Question Analysis
	Domain-specific Corpus Generation
	Document Retrieval
	Context Retrieval
	Answer Extraction

	Empirical Evaluation
	Research Questions (RQs)
	Implementation Details
	Data Collection Procedure
	Evaluation Procedure
	Answers to the RQs

	Related Work
	Threats to Validity
	Conclusion

	Conclusion
	Summary
	Future work

	Bibliography

