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Abstract. Consider the graph with the residue classes modulo n as vertices, and the following
edges: “additive” edges from a to a + 1; “multiplicative” edges from a to ab for some fixed b.
This graph illustrates a criterion for divisibility by n for numbers written in base b. By varying
n and b, we see a great variety of structures: this topic connects arithmetic to graph theory and
has the beauty of string art. For divisibility graphs we investigate the existence of triangles and
other cycles, the girth, the minimum/maximum of the vertex degree, the chromatic number,
and the planarity.

1. INTRODUCTION. It is natural to display the residue classes modulo n as the
vertices of a regular n-gon in cyclic order. Thus adding 1 to a residue lets us move
to the next residue along a side of the n-gon, while multiplying by some integer b
lets us usually move along a diagonal of the n-gon (occasionally we move along a
side or we do not move at all). The divisibility graph Dn,b, which is the object of our
investigation, is the graph defined as follows: its vertices are the vertices of the regular
n-gon; the “additive” edges are the oriented sides from a to a + 1; the “multiplicative”
edges go from a to ba and are usually diagonals (occasionally they can be a loop or a
side). Our goal is to study the family of divisibility graphs Dn,b by varying n and b: as
expected, the graph properties depend on the arithmetic properties of the pair n, b. We
also consider the corresponding simplified graphs D′

n,b, where double edges and loops
are removed and edge orientation is neglected. For divisibility graphs, we investigate
the existence of cycles (triangles and rectangles in the canonical representation), the
girth, the minimum/maximum vertex degree, the chromatic number, and planarity. See
Section 2 for a summary of our results.
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One motivation for considering the graph Dn,b is that, for b ! 2, it illustrates a
divisibility criterion for an integer to be divisible by n that makes use of the digits in
base b, see Remark 2. It seems that divisibility graphs were introduced by David Wil-
son in 2009 to illustrate the divisibility criterion for n = 7 in base b = 10, according to
Tanya Khovanova [4]. Another motivation for studying these graphs is that they con-
nect graph theory with arithmetic in a fascinating way, and they are beautiful objects
with a great variety of structures by varying n and b, see, for example, Figures 1–3.

Considering only the multiplicative edges of D′
n,b, one obtains the graph of modular

multiplication by b, which has previously been considered to popularize mathematics.
These other graphs are optically similar, as to obtain back D′

n,b one only needs to
include all sides of the n-gon. Nevertheless, the graph structures are very different:
for example, having the additive edges ensures the existence of cycles. These other
graphs are not our object of study, so we refer the reader to the book by Daniel Shanks
[9] and to online resources like [6, 7]. In particular, these works provide a geometrical
explanation for the (b − 1)-foil pattern that will also be seen in our divisibility graphs,
see Figures 4–6. Let us also mention the existence of websites like [5] which show the
graph of modular multiplication by b, all based on the parameters n and b entered by
the user.

Figure 4. D′
125,3. Figure 5. D′

125,4. Figure 6. D′
125,5.

There is still a great deal to explore about divisibility graphs, and this work seems
to offer the first deep investigation on the subject. Beyond our conjectures, some of
our results can be improved upon, and there are surely features of divisibility graphs
that we have not yet considered. We hope that some of our readers will embrace this
challenge. Moreover, we hope that many readers introduce divisibility graphs to a
wider audience, because it is an accessible topic (related to known divisibility criteria)
that connects arithmetic to graph theory and that possesses the beauty of string art.

2. MATHEMATICAL OVERVIEW.

Definition 1. Given two integers n, b with n ≥ 1, the divisibility graph Dn,b is the
directed multigraph with vertices (a mod n) for 0 ≤ a < n and with the following
edges: additive edges from (a mod n) to (a + 1 mod n); multiplicative edges from
(a mod n) to (ab mod n). The simplified divisibility graph D′

n,b is obtained from Dn,b

by neglecting edge directions and by removing loops and double edges.

We canonically represent the vertices of a divisibility graph as the vertices of a
regular polygon in cyclic order, see for example Figure 7.

Replacing b by its remainder modulo n does not affect the divisibility graph. Thus,
to avoid trivial cases, we will assume that n ≥ 3 and 1 < b < n. Moreover, we shall
denote a vertex by any integer in the given residue class modulo n.
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Figure 7. D7,3.

Remark 2. The divisibility graph Dn,b provides a divisibility criterion by n con-
sidering the digits of a number expressed in base b. This is because the number
ckb

k + · · · + c1b
1 + c0b

0 (with k, c0, . . . , ck ≥ 0) corresponds to the end vertex of the
following walk in Dn,b: start at 0; for i = k, . . . , 0, take ci additive edges and in case
i > 0, take one more multiplicative edge. This assertion can be proven by induction
on k: the base case k = 0 is obvious; for the induction step, write the given number as
ba + c0 with a = ckb

k−1 + · · · + c1b
0, and complete the known walk for a by taking

one multiplicative edge and c0 additive edges.
For example, 21 = 2 · 32 + 1 · 31 + 0 · 30 is divisible by 7 because in D7,3 we walk

from 0 to 0 by taking two additive edges, one multiplicative edge, one additive edge,
and once more a multiplicative edge, see Figure 7.

To ease notation, we call d the greatest common divisor of n and b, we understand
that congruences are modulo n (unless specified otherwise), we call an integer a unit
if its residue class modulo n is a unit, and we say that two edges overlap if, neglecting
their orientation, they coincide. We now recall some notions from graph theory (for
references, see for example [1, 3]).

Definition 3. Let G be an undirected graph. A triangle in G is a cycle of length 3.
The girth of G is the length of a smallest cycle. The vertex degree deg(a) for a vertex
a of G is the number of incident edges. We denote by δ(G) (respectively, "(G)) the
minimum (respectively, maximum) degree, namely the minimum (respectively, maxi-
mum) among all vertex degrees. The chromatic number of G, denoted by χ(G), is the
smallest positive integer k such that G admits a k-coloring, namely a map from the
vertex set to {0, . . . , k − 1} such that any two adjacent vertices have distinct images.
The graph G is called planar if it can be drawn on the plane without crossing edges.

Our main results are the following assertions:

Main Theorem. For simplified divisibility graphs, the following hold:

(1) The graph D′
n,b contains a triangle for every b if and only if n = 4, n is prime, or

n is a power of 3.
(2) There is a rectangle in the canonical representation of D′

n,b for some value 1 <
b < n if and only if n = 4 or n ≡ 0, ±2, ±6 mod 16.

(3) The girth of D′
n,b is at most 7. It is at most 5 if b2 '≡ 1, and at most 4 if b2 ≡ b. The

girth equals 3 if b − 1 is a unit or b = n − 1 or b2 ≡ 0.
(4) We have δ(D′

n,b) ∈ {2, 3} and "(D′
n,b) ∈ {d + 1, d + 2, d + 3}. Moreover, we have

δ(D′
n,b) = 2 if and only if b or b − 1 is a unit. Further, all vertex degrees in D′

n,b

lie in {2, 3, d + 1, d + 2, d + 3}.
(5) We have χ(D′

n,b) ≤ 4. Further, χ(D′
n,b) = 2 holds if and only if n ≡ 2 mod 4 and

b = n
2 + 1.
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Figure 8. D′
11,6. Figure 9. D′

81,19.

Figure 10. D′
21,8 has girth 7. Figure 11. D′

56,43 has girth 7.

The outline of the paper is as follows: after some preliminary results in Section 3,
we consider cycles in D′

n,b in Section 4 and the vertex degree in Section 5. Finally, in
Sections 6 and 7, we respectively consider the chromatic number of D′

n,b and investi-
gate whether D′

n,b is planar. In particular, we provide evidence for the following two
conjectures:

Conjecture 4. We have χ(D′
n,b) ≤ 3.

Conjecture 5. For n ≥ 13 odd, D′
n,b is planar if and only if b = n − 1. For n ≥ 16

even, D′
n,b is planar if and only if b ∈ { n

2 − 1, n
2 , n − 1}.

3. PRELIMINARIES. We begin with some general observations. For a prime num-
ber p, the p-adic valuation of a nonzero integer k is the biggest exponent vp(k) of p
dividing k.

Remark 6. The simplified divisibility graph D′
n,b (with the additive edges forming a

regular n-gon) is symmetric with respect to the line connecting 0 to the center of the
n-gon. Indeed, the symmetry maps the n-gon to itself, and it maps the multiplicative
edge (a, ba) to the edge (n − a, b(n − a)).

Moreover, D′
n,b passes through the center of the n-gon if and only if for the 2-

adic valuation we have v2(b − 1) < v2(n). Indeed, we precisely need the congruence
bx ≡ x + n

2 to be solvable. Notice that in D′
125,51 (see Figure 1) the multiplicative

edges do not connect vertices that are almost opposite.

Remark 7. Consider the divisibility graph Dn,b and some vertex a. The outgoing
multiplicative edge at a is a loop if and only if (b − 1)a ≡ 0, thus we have a loop at
0, and this is the only loop if and only if b − 1 is a unit. The outgoing multiplicative
edge at a can overlap an additive edge: this happens if and only if (b − 1)a ≡ ±1,
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so it happens only if b − 1 is a unit and in this case there is precisely one multiplica-
tive edge that equals an additive edge (respectively, the reverse of an additive edge),
namely the edge ((b − 1)−1, (b − 1)−1 + 1) (respectively, the edge (−(b − 1)−1,
−(b − 1)−1 − 1)).

Remark 8. A vertex in Dn,b has no incoming multiplicative edge unless it is a multiple
of d (as n and b are multiples of d), and in this case it has precisely d incoming
multiplicative edges (a solution for bx ≡ d being given by Bézout’s identity).

Consider the multiplication by b on the residue classes modulo n, represented by
the multiplicative edges of Dn,b. Notice that all vertices are preperiodic under iterates
of this map. Moreover, a vertex a is periodic if and only if we have gcd(ba, n) =
gcd(a, n), hence all vertices are periodic if and only if b is a unit.

Notice that the vertices a with the property gcd(ba, n) = gcd(a, n) are precisely the
multiples of g, where g is the largest integer of the form gcd(bx, n) for some positive
integer x, so that for every prime number p, the p-adic valuation vp(g) equals vp(n) if
p divides b, and it is 0 otherwise. Then we are claiming that the periodic vertices are
precisely the multiples of g. For example, if n is even, then n

2 is periodic if and only if
b is odd.

A periodic vertex a must be a multiple of g because the quantity gcd(bxa, n) does
not decrease by increasing x and thus it is constant if a is periodic. Conversely, if
a := a′g is a multiple of g, then the congruence (bx − 1)a′ ≡ 0 mod n

g
is solvable

(because b is a unit modulo n
g
), hence the congruence (bx − 1)a ≡ 0 is solvable and a

is periodic.

If G is a graph, then a minor of G is a graph that can be obtained from G by deletion
and contraction of edges, as well as deletion of some isolated vertices. Given a subset
of the vertices of G, the induced subgraph has precisely those vertices, and it has as
edges all edges of G between them.

Remark 9. If m > 1 is a divisor of n, then Dn/m,b is a minor of Dn,b. Indeed, by
contracting the edges between multiples of m we obtain a graph with n/m vertices
such that Dn/m,b is a subgraph (notice that bk ≡ k′ mod n

m
implies bkm ≡ k′m for all

integers k, k′).

Remark 10. The subgraph D×
n,b of Dn,b obtained by removing the additive edges is

the union of orbits for the multiplication by b. A periodic orbit is a cycle (possibly
consisting of one or two vertices). Two orbits are either disjoint or have their periodic
cycle in common. A connected component of D×

n,b is as follows: there is one periodic
cycle and attached to each vertex of the cycle there are d − 1 vertices outside the cycle
(one incoming multiplicative edge belongs to the cycle). Each of the above vertices
outside the cycle is the root of a d-ary tree: these trees are pairwise disjoint and do not
intersect the cycle.

Remark 11. If m > 1 is a divisor of n, then we define Gm as the induced subgraph
on the vertices of D′

n,b that are multiples of m. Thus Gm can be obtained from Dn/m,b

(identifying multiples of m modulo n and residue classes modulo n/m) by remov-
ing additive edges and loops, and neglecting edge directions. Moreover, Gm can be
obtained from D×

n,b as the induced subgraph on the multiples of m, removing loops
and neglecting edge directions (for m = d, the induced subgraph only loses leaves
with respect to D×

n,b). An example for Gd can be found in Figure 12.
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Figure 12. G2 for D52,10.

4. CYCLES. To study cycles, we first classify triangles in D′
n,b according to the num-

ber of additive edges:

# additive edges vertices (must be distinct) further conditions
3 0, 1, 2 n = 3
2 a, a + 1, a + 2 ab ≡ a + 2 or (a + 2)b ≡ a

1 a, a + 1, ab ab2 ≡ a + 1
1 a, a + 1, (a + 1)b (a + 1)b2 ≡ a

0 a, ab, ab2 ab3 ≡ a

Lemma 12. Let n be a positive, composite, odd integer and let p > 3 be a prime factor
of n. Then there exists a positive integer x < n

p
such that p2x2 + 3px + 3 is coprime

to n.

Proof. If n is a power of p we can take x := 1, while if n is a multiple of 3 we can
take x := n

3v3(n)p
because n has no prime factor in common with

p2x2 + 3px + 3 = n2

32v3(n)
+ 3

n

3v3(n)
+ 3 .

Finally, if n is coprime to 3 and it has a prime factor q > 3 different from p, we may
take x := tn

pqvq (n) for some integer 0 < t < q. Indeed, n and p2x2 + 3px + 3 can have
at most the prime factor q in common and, for some choice of t , the latter integer is
not divisible by q: that polynomial in x has at most two roots modulo q, and different
choices for t give different values of x modulo q.

Proof of Main Theorem (1). For the “if” implication, we can check by hand the case
n = 4 and the above classification allows us to deal with n ≥ 5 prime. Now suppose
that n is a power of 3 and write k := v3(n) and v := v3(b − 1). If v = 0, we may resort
to the above classification, so suppose v > 0. Notice that a := 3k−v−1 is an integer and
a(b3 − 1) ≡ 0. So the vertices a, ab, ab2 form a triangle, as they are pairwise distinct:
a '≡ ab because 3k−v−1(b − 1) '≡ 0; a '≡ ab2, else ab ≡ ab3 ≡ a; one similarly argues
that ab '≡ ab2.

For the “only if” implication, assume that n '= 4 is neither prime, nor a power of
3. If n is even and b = n

2 + 1, then D′
n,b contains no triangle because ab is congruent
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to a or a + n
2 . Now suppose that n is odd, take p and x as in Lemma 12 and set

b := px + 1. There is no triangle in D′
n,b with additive edges because, for instance,

ab ≡ a + 2 implies apx ≡ 2; this is impossible because 2 is a unit and p divides n. We
also exclude triangles with zero additive edges because ab3 ≡ a means apx(p2x2 +
3px + 3) ≡ 0, implying apx ≡ 0 and hence ab ≡ a(px + 1) ≡ a.

Figures 10 and 11 show that the girth of D′
n,b can be as large as 7. It can, however,

not be greater:

Proof of Main Theorem (3). By the above classification, D′
n,b contains a triangle

whenever b − 1 is a unit, so we may exclude this case. For b = n − 1 or b2 ≡ 0
we have the triangle (0, 1, b). For b2 ≡ 1, we have the following cycle in D′

n,b (in case
two vertices are the same, we take a shorter cycle):

0 → 1 → b + (b − 1)
·b+− (1 − b) + (−b) + (−1) → 0 .

For b2 ≡ b, we have the cycle (0, 1, b, b − 1). For b not a unit, there is an integer
a '≡ 0, 1, −1 such that we have the cycle (0, 1, b, a + 1, a) (if b ≡ a + 1, we take
a cycle of length 4 instead). For b a unit such that b2 '≡ 1, calling a its inverse, we
consider the following cycle:

1 → b → (b + 1)
·b+− (a + 1) + a

·b−→ 1 .

It is of length 5.

Remark 13. Consider those triangles inside D′
n,b that are equilateral triangles in the

canonical representation, as in Figure 9. For n > 3 there is such a triangle based at
some vertex a if and only if n is divisible by 3 and the three numbers (b − 1)a, (b −
1)ba, (b − 1)b2a are congruent to n

3 . So we must have (b − 1)a ≡ n
3 and b ≡ 1 mod 3.

We deduce that there is an equilateral triangle if and only if n = 3 or 1 " v3(b − 1) "
v3(n) − 1. Similarly, to find a regular k-gon inside the canonical representation of D′

n,b

(beyond n = k) it is necessary and sufficient that for any prime divisor p of k we have
vp(k) " vp(b − 1) " vp(n) − vp(k).

Figure 13. A rectangle with four multi-
plicative edges in D′

64,3.
Figure 14. A rectangle with two multiplica-
tive edges in D′

62,5.
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Now we turn our attention to rectangles in the canonical representation of simplified
divisibility graphs. For example D′

64,3 contains a rectangle built with sides and diago-
nals of a regular octagon. Observe that a 4-cycle (x, y, z, w) in D′

n,b forms a rectangle
if and only if x − z ≡ y − w ≡ n

2 (i.e., there are two pairs of diametrically opposite
vertices). In particular, there is no rectangle in D′

n,b if n is odd hence we will suppose
that n is even.

Remark 14. We present a modification of the criterion due to Neeyanth Kopparapu in
[11] to have a rectangle of the form (a, ba, b2a, b3a) for some vertex a that is a unit. In
short, we must have b4 − 1 ≡ 0 and v2(b

2 − 1) < v2(n) (in particular, n ≡ 0 mod 16
and ϕ(n) ≡ 0 mod 8). See Remark 16 for a more general criterion for the existence of
a k-cycle (a, ba, . . . , bk−1a) in D′

n,b.

Having all additive edges in a rectangle is only possible for n = 4. If n > 4 is
even, then there is no rectangle in D′

n,b containing an edge which is both additive and
multiplicative. Indeed, assume otherwise that a rectangle in D′

n,b contains the edge
(a, a ± 1) which is both additive and multiplicative. As n is even, a must be odd and
b must be even. We can write the rectangle as

(
a, a ± 1, a + n

2 , a ± 1 + n
2

)
. Since

n ≥ 6, a and a ± 1 + n
2 are not consecutive modulo n, and thus

(
a ± 1 + n

2 , a
)

must
be a multiplicative edge, contradicting the parity of a and b. It thus follows that if there
are any additive edges in a rectangle of D′

n,b, then two of its edges are additive and two
of them are multiplicative. This is treated in the following:

Remark 15. We classify the rectangles with precisely two edges that are not multi-
plicative (they must be opposite). If the two multiplicative edges have the same orienta-
tion, then the rectangle is without loss of generality of the form (bx, x, x + 1, bx − 1)
with b(x + 1) ≡ bx − 1 and x − bx + 1 ≡ n

2 , which means b = n − 1 and 2x + 1 ≡
n
2 . In particular, n ≡ 2 mod 4 and we may take x = n−2

4 . Now suppose that the two
parallel edges have opposite orientation, and let (x, x + 1) be an additive edge. If
the multiplicative edge is incoming at x, the vertices are (bx, x, x + 1, bx − 1). We
have b(bx − 1) ≡ x + 1 and bx − 1 − x ≡ n

2 . Else, the vertices are (x, x + 1, bx +
b, bx + b + 1) and we have b(bx + b + 1) ≡ x and bx + b − x ≡ n

2 . Notice that D′
n,b

either contains rectangles of both cases, or of none: given a rectangle of one case,
one obtains a rectangle of the other case by replacing its vertices by their opposites
modulo n.

Proof of Main Theorem (2). Clearly there is no rectangle for n = 3, while the additive
edges form a square for n = 4. Now suppose that n ≥ 5 is even. By Remark 15 there
is a rectangle in Dn,n−1 if n

2 is odd. Moreover, if n ≡ 0 mod 16, then D′
n,3 contains the

rectangle (x, 3x, 9x, 27x) where x = n
16 . To conclude we have to prove that there is

no rectangle if n ≡ ±4, 8 mod 16.
If D′

n,b contains a rectangle of the form (x, bx, b2x, b3x), then we must have x(b2 −
1) ≡ n

2 ≡ x(b3 − b), so that b n
2 ≡ n

2 , hence n
2 (b − 1) ≡ 0 and b must be odd. Since

x(b2 − 1) ≡ n
2 and b2 − 1 is a multiple of 8, also n

2 is a multiple of 8 and hence
n ≡ 0 mod 16.

If D′
n,b contains a rectangle with two multiplicative edges of the same direction, it

holds that n ≡ 2 mod 4 and thus n '≡ ±4, 8 mod 16.
By Remark 15, the only remaining case to consider is D′

n,b containing a rectangle of
the form (bx, x, x + 1, bx − 1). We prove that n '≡ 0 mod 4 by contradiction. Write
n = 4k. Now b(bx − 1) ≡ x + 1 and bx − 1 − x ≡ n

2 imply b(bx − 1) ≡ x + 1 ≡
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n
2 + bx, so that b n

2 ≡ b(bx − x − 1) ≡ b2x − bx − b ≡ n
2 and 2k(b − 1) is a multiple

of 4k, meaning b is odd. But bx − 1 − x ≡ n
2 gives x(b − 1) − 2k − 1 ≡ 0, whose left

member is odd, a contradiction.

We conclude this section with two remarks on k-cycles:

Remark 16. Let k ! 3. In [10] Hans-Peter Stricker gives a criterion to have a k-
cycle of the form (a, ba, b2a, b3a, . . . , bk−1a) for some vertex a. Replace n by m :=

n
gcd(n,a)

and hence suppose that a is a unit. Then we precisely need that b is a unit with
multiplicative order k. So the general criterion becomes that there exists a divisor m of
n such that (b mod m) is a unit with multiplicative order k.

Remark 17. Let k ≥ 3. Assume that n ≥ k and that b − 1 is a unit. Then there exists a
k-cycle: for example, the vertices (a, a + 1, . . . , a + k − 1) where a := (b − 1)−1(k −
1) form a k-cycle because we have ba ≡ a + k − 1.

5. VERTEX DEGREE. An oriented graph is Eulerian if and only if there are the
same number of outgoing and incoming edges at each vertex.

Remark 18. The graph Dn,b is Eulerian if and only if b is a unit. Indeed, if b is a unit,
then there is precisely one incoming multiplicative edge at every vertex. If b is not a
unit, then there is no incoming multiplicative edge at 1.

Remark 19. The vertex degree is at most 3 for vertices that are not multiples of d
by Remark 8. Moreover, by Remark 7, for d ≥ 1 no additive edge at 0 overlaps a
multiplicative edge. Thus the vertex degree at 0 is d + 1 (the outgoing multiplicative
edge is a loop).

Proof of Main Theorem (4). Recall Remark 7. If b is a unit (respectively, b is not a
unit and b − 1 is a unit), then 0 (respectively, the multiplicative inverse of b − 1) has
vertex degree 2. Now suppose that b and b − 1 are not units: no multiplicative edge
overlaps an additive edge; we have δ(D′

n,b) ≥ 3 because, if the outgoing multiplicative
edge is a loop, then there is an incoming multiplicative edge that is not a loop (ba ≡ a
implies b(a + c) ≡ a for any c '≡ 0 such that bc ≡ 0).

We have "(D′
n,b) ≤ d + 3 because at every vertex there are at most d incoming

multiplicative edges; we show that the vertex degree of b is at least d + 1. For 0 ≤
i < d, the d incoming multiplicative edges (1 + i n

d
, b) are distinct; if one of them is

a loop, they do not overlap additive edges (b2 ≡ b implies b '≡ b(b ± 1)). Assume
both additive edges at b overlap incoming multiplicative edges. Then b(b + 1) ≡ b ≡
b(b − 1), in particular implying that b2 ≡ 0. The outgoing multiplicative edge at b
thus ends at 0 and is not equal to any incoming multiplicative edge at b. Therefore the
vertex degree at b is at least d + 1 in all cases.

Finally, suppose that a is a vertex. If d does not divide a, then deg(a) ∈ {2, 3} by
Remark 19. If d does divide a, then d + 1 ≤ deg(a) ≤ d + 3 by the above argument
given for a = b.

Remark 20. An integer n ≥ 3 is a prime power if and only if for all b we have
δ(D′

n,b) = 2. Indeed, by Main Theorem (4) the latter condition means that, for every
integer a, at least one of a and a − 1 is a unit (if n had distinct prime factors p, q, then
the congruences a ≡ 0 mod p and a ≡ 1 mod q have a common solution).
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Figures 15–17 are examples for the three cases in the following result:

Figure 15. D′
10,3 has maximum

degree d + 3.
Figure 16. D′

10,4 has maximum
degree d + 2.

Figure 17. D′
10,5 has maximum

degree d + 1.

Theorem 21. If b − 1 is not a unit, then we have

"(D′
n,b) =






d + 1 if bd ≡ d

d + 2 if bd '≡ d and b2d ≡ d

d + 3 if bd '≡ d and b2d '≡ d .

Proof. By Remark 19 and Main Theorem (4), to determine "(D′
n,b) we may neglect

the vertex 0. Moreover, if d > 1, or if there is a vertex of degree d + 2, then we may
neglect the vertices which are not a multiple of d.

If bd ≡ d (hence d > 1), then for every k we have bkd ≡ kd hence the vertex
degree of kd is d + 1. Now suppose that bd '≡ d, and notice that b2d ≡ d holds if
and only if for every integer k we have b2kd ≡ kd. The latter condition means that the
outgoing multiplicative edge at kd overlaps an incoming multiplicative edge. By our
assumption on b − 1, the additive edges at d do not overlap multiplicative edges. The
result follows.

Theorem 22. Suppose that b − 1 is a unit. Then "(D′
n,b) = d + 1 holds if and only if

either n = 2d or we have n = 3d and bd '≡ 0. Moreover, we have "(D′
n,b) = d + 3 if

and only if n ≥ 6, n ≥ 4d, and b2d '≡ d.

Proof. As in the proof of Theorem 21, we can neglect the vertex 0 and if d > 1, we
can also neglect those vertices that are not divisible by d. If n = 2d, then d = b and b
is even, and we only need to remark that the vertex degree for d is d + 1 (the additive
edges at d overlap multiplicative ones).

Now suppose n = 3d. If d = 1, then δ(D′
3,2) = "(D′

3,2) = 2 = d + 1. Suppose that
d > 1 and bd '≡ 0. Then b '≡ 0 mod 3 and b = d or b = 2d. Since b − 1 is a unit, b =
2d if d ≡ 1 mod 3 and b = d if d ≡ 2 mod 3. In each case, b ≡ 2 mod 3 and bd ≡ 2d.
We have bd ≡ 2d and 2bd ≡ d, hence the outgoing multiplicative edge at each of the
vertices d and 2d overlaps an incoming multiplicative edge at this vertex. We further
note by Remark 7 that exactly two multiplicative edges overlap additive edges, namely
the edge ((b − 1)−1, (b − 1)−1 + 1) and the edge (−(b − 1)−1, −(b − 1)−1 − 1). Then
(b − 1)−1 + 1 is d or 2d modulo n. If (b − 1)−1 + 1 ≡ d, then −(b − 1)−1 − 1 ≡ 2d,
while −(b − 1)−1 − 1 ≡ d if (b − 1)−1 + 1 ≡ 2d. Thus both d and 2d have vertex
degree equal to d + 1.

328 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 131



Now suppose that bd ≡ 0. Then the vertex degree of both d and 2d is equal to d + 2.
There are d distinct incoming multiplicative edges and an outgoing multiplicative edge
(towards 0) at each of the vertices d and 2d. By our argument above, exactly one
multiplicative edge overlaps an additive edge at each of d and 2d. Thus the vertex
degree at d and 2d is equal to d + 2. We note that if n = 4, then b = 2 (since b − 1 is a
unit), a case we have already treated. By inspection, we see that "(D′

5,b) = 3 = d + 2
for 2 ≤ b ≤ 4.

Finally, suppose n ≥ 6 and n ≥ 4d. By Remark 7, there exist exactly two multi-
plicative edges that overlap additive edges. Hence there exists k such that the additive
edges at kd do not overlap a multiplicative edge at kd. Thus the vertex degree at kd is at
least d + 2 for this value of k. If b2d ≡ d, then for every k, the outgoing multiplicative
edge at kd overlaps an incoming multiplicative edge, and the degree of kd is at most
d + 2. From now on, supposing b2d '≡ d, we find a vertex with vertex degree d + 3.
We first suppose that d = 1 (thus b is a unit). Then n ≥ 7, because b and b − 1 cannot
be both units modulo 6 if 2 ≤ b ≤ 5. Moreover, there exist three nonconsecutive ver-
tices that are units. If n is odd, this is because we can take the vertices (1, 4, n − 1).
If n is even, this is because ϕ(n) ≥ 4 and each unit modulo n is odd. At least one of
the three vertices is suitable because there are at most two additive edges that overlap
a multiplicative edge.

If bd ≡ 0, there exists k such that the additive edges at kd do not overlap multi-
plicative ones. Now suppose bd '≡ 0, and call d ′ := gcd( n

d
, d).

If d ′ = 1, then for 1 ≤ k ≤ k′ ≤ n
d

− 1 we have bkd '≡ 0 and hence bkd '≡ bk′d
unless k = k′. In particular, (b − 1)b4d '≡ 0 (as b − 1 is a unit). Thus the vertices
d, bd, b2d are distinct and their outgoing multiplicative edges do not overlap incoming
multiplicative edges: they are not connected by additive edges (as d > 1), and for at
most two of them an additive edge overlaps a multiplicative edge.

Finally, let d ′ > 1 and set k := n
dd ′ hence bkd ≡ 0. In particular, the outgoing mul-

tiplicative edge at kd does not overlap an additive edge, and neither does an incoming
multiplicative edge, else we would have b(kd ± 1) ≡ kd hence b ≡ ±kd, thus bd ≡ 0,
contradiction.

The maximum and minimum degree in D′
n,b may also coincide:

Theorem 23. We have δ(D′
n,b) = "(D′

n,b) if and only if n = 3 and b = 2, in which
case all vertex degrees in D′

n,b equal 2, or n ≡ 2 mod 4 and b = n
2 + 1, in which case

all vertex degrees in D′
n,b equal 3.

Proof. Assume that δ(D′
n,b) = "(D′

n,b). By Main Theorem (4), we have δ(D′
n,b) ∈

{2, 3} and "(D′
n,b) ∈ {d + 1, d + 2, d + 3}. Thus δ(D′

n,b) < "(D′
n,b) if d ≥ 3, hence

d = 1, 2.
Suppose d = 1. Then b is a unit and δ(D′

n,b) = 2 by the proof of Main Theorem
(4). If b − 1 is not a unit, then bd = b ≡ 1 by Theorem 21, which is impossible. If
b − 1 is a unit, then n = 3 and b = 2 by Theorem 22.

Now suppose that d = 2. Then "(D′
n,b) ≥ 3 by Main Theorem (4). Since δ(D′

n,b) ∈
{2, 3}, we have that δ(D′

n,b) = "(D′
n,b) = 3. Since δ(D′

n,b) = 3, it follows by Main
Theorem (4) that b − 1 is not a unit. We now see by Theorem 21 that bd = 2b ≡ d =
2. Hence b ≡ 1 mod n

2 , implying that b = n
2 + 1. Since d = 2, we observe that n

2 + 1
is even, yielding n ≡ 2 mod 4.

We now show that if n ≡ 2 mod 4 and b = n
2 + 1, then in fact we have δ(D′

n,b) =
"(D′

n,b) = 3. Let a be a vertex not divisible by d = 2. Then there are no incoming
multiplicative edges at a by Remark 8. The outgoing multiplicative edge at a is (a, a +
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n
2 ). Since n

2 ≥ 3, we see that this edge is not an additive edge, and thus deg(a) = 3.
Now suppose that the vertex a is divisible by d = 2. Then ba = ( n

2 + 1)a ≡ a and
there is a loop at a. Since b − 1 is not a unit, no multiplicative edge at a overlaps an
additive edge by Remark 7. Since there are d = 2 incoming multiplicative edges at a
by Remark 8, it follows that deg(a) = 3 in this instance also.

We were further able to characterize the vertices of degree 2:

Theorem 24. A vertex a of D′
n,b has degree 2 if and only if one of the following holds:

(i) b is a unit and a = 0.
(ii) b is not a unit, b − 1 is a unit, and a ≡ (b − 1)−1 or a ≡ −(b − 1)−1.

(iii) b is a unit, b − 1 is not a unit, and (b − 1)a ≡ 0.
(iv) n is odd, b = n − 1, and a = n±1

2 .

Proof. By the proof of Main Theorem (4), δ(D′
n,b) = 2 if and only if b or b − 1 is a

unit. Moreover, by the same proof, deg(0) = 2 if b is a unit.
Now suppose that b is not a unit and b − 1 is a unit. By the proof of Main

Theorem (4) and by Remark 7, deg((b − 1)−1) = deg(−(b − 1)−1) = 2. Further-
more, the multiplicative edge ((b − 1)−1, (b − 1)−1 + 1) and the multiplicative edge
(−(b − 1)−1, −(b − 1)−1 − 1) are the only multiplicative edges that overlap an addi-
tive edge. Let a be a vertex such that a '≡ ±(b − 1)−1. Then the outgoing multiplicative
edge at a does not overlap an additive edge. Suppose that a '= 0. Since b − 1 is a unit,
there is no loop at a. Since the outgoing multiplicative edge at a does not overlap an
additive edge, we see that deg(a) > 2. Next suppose that a = 0. Then there is a loop at
0 and the additive edges (0, 1) and (b − 1, 0) are not multiplicative edges. Moreover,
there are d ≥ 2 incoming multiplicative edges at 0. It follows that deg(0) > 2 in this
case.

Next suppose that b is a unit and b − 1 is not a unit. Let a be a vertex such that
(b − 1)a ≡ 0. Then there is a loop at a. Further, no multiplicative edge at a overlaps
an additive edge because b − 1 is not a unit. Since d = 1, there is exactly one incoming
multiplicative edge at a. Thus deg(a) = 2. Now suppose that a is a vertex such that
(b − 1)a '≡ 0. Then there is no loop at a. By the argument above, the outgoing edge at
a does not overlap an additive edge. Hence deg(a) > 2 in this instance.

Finally, suppose that both b and b − 1 are units. Then n must be odd and we have
d = 1. Let a be a nonzero vertex such that deg(a) = 2. Since b − 1 is a unit, there
is no loop at a. Since b is a unit, there is exactly one incoming multiplicative edge
at a. It follows that deg(a) = 2 if and only if the incoming multiplicative edge at a
is an additive edge and the outgoing multiplicative edge at a is also an additive edge.
Since b − 1 is a unit, it follows by Remark 7 that the edges ((b − 1)−1, (b − 1)−1 + 1)
and (−(b − 1)−1, −(b − 1)−1 − 1) are the only multiplicative edges that overlap an
additive edge. Thus, deg(a) = 2 if and only if (b − 1)−1 + 1 ≡ −(b − 1)−1, which
implies that 2(b − 1)−1 ≡ −1. It now follows that b − 1 ≡ −2. Hence b = n − 1 and
either

a ≡ (b − 1)−1 ≡ n − 1
2

or a ≡ −(b − 1)−1 ≡ n + 1
2

.

6. CHROMATIC NUMBER. For n ≥ 4 the simplified divisibility graph D′
n,b is con-

nected, and neither an odd cycle nor a complete graph, so Brooks’ theorem gives
χ(D′

n,b) ≤ "(D′
n,b).
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Proof of Main Theorem (5). For the first assertion we may suppose that n ≥ 5 and
also by Main Theorem (4) that d > 1. The subgraph Gd induced by the multiples of
d admits a 3-coloring by Remark 11, and we can extend it to a 4-coloring of D′

n,b.
Indeed, there are no incoming multiplicative edges for the vertices outside Gd , so
for 0 ≤ k ≤ n

d
− 1 we can iteratively color the vertices kd + i for 1 ≤ i ≤ d − 1:

the vertex kd + i sees at most two (respectively, three) previously chosen colors for
i '= d − 1 (respectively, i = d − 1).

If n ≡ 2 mod 4, then D′
n, n

2 +1 has a 2-coloring given by mapping a vertex to its
remainder modulo 2 (the multiplication by b maps odd vertices to even vertices, and it
maps any even vertex to itself). If χ(D′

n,b) = 2, then (considering the additive edges)
n is even and w.l.o.g. the 2-coloring maps a vertex to its remainder modulo 2. If b '=
n
2 + 1 (respectively, b = n

2 + 1 and n ≡ 0 mod 4), the vertices 2 and 2b (respectively,
1 and b) are distinct, adjacent, and have the same color.

Conjecture 4 has been verified with SageMath [8] for n ≤ 291. Moreover, it has
been proven in the following cases:

Proposition 25. If b2 ≡ 1, bd ≡ d, or bd ≡ 0, then χ(D′
n,b) ≤ 3.

Proof. In the first case, we can check by hand D′
3,2, D′

4,3, D′
5,4, and for n ≥ 6 we have

"(D′
n,b) ≤ d + 2 = 3 by Theorems 21 and 22. In the second case, we get a 3-coloring

by assigning to each multiple of d the color 0 and by alternating between 1 and 2 on
each interval between two multiples of d. In the third case, we obtain a 3-coloring as
follows: assign the color 0 to the vertex 0 and the color 1 to all the other multiples of d;
assign colors to the vertices between two multiples of d by alternating between colors
0 and 2 and by assigning the color 1 to vertices adjacent to 0.

Example 26. If n ≡ 0 mod 4, then ( n
2 − 1)2 ≡ 1 hence χ(Dn, n

2 −1) ≤ 3 by Proposi-
tion 25. Moreover, we have the following 3-colorings for D′

n, n
2

and n ≡ 2 mod 4, for
D′

n, n
2

and n ≡ 0 mod 4, and for D′
n, n

2 −1 and n ≡ 2 mod 4, respectively:

Above, the polygon consists of the additive edges, with 0 at the bottom.
If n ≡ 2 mod 3 (respectively, n ≡ 1 mod 6), then a 3-coloring for D′

n,n−2 can be
defined by mapping a vertex to its remainder modulo 3 (respectively, additionally
replacing the color of 0 to be 2). Indeed, for all a the vertices a − 1, a, a + 1 have
distinct colors, so we are left to show that a and ba have distinct colors for every
a '= 0: the remainder of ba modulo n is n − 2a or 2n − 2a, thus not congruent to a
modulo 3.

Similarly, if k ≥ 2 is not divisible by 3, then D′
3k,k+1 and D′

3k,2k+1 have a 3-coloring
by mapping a vertex to its remainder modulo 3 (as b '≡ 1 mod 3 and n ≡ 0 mod 3,
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the remainder of ba modulo n is not congruent to a modulo 3 if 3 does not divide a;
furthermore, if 3 does divide a there is a loop at the vertex a).

7. PLANARITY. To investigate planarity for divisibility graphs, we may consider
simplified divisibility graphs instead, as planarity is not affected by loops nor by mul-
tiple edges.

Figure 18. D′
n,n−1 for n odd and for n even. Figure 19. D′

n, n
2

. Figure 20. D′
n, n

2 −1.

Example 27. The graph D′
n,n−1, and for n even the graphs D′

n, n
2

and D′
n, n

2 −1 are pla-
nar. Indeed, D′

n,n−1 can be drawn as in Figure 18, while the graph D′
n, n

2
(respectively,

D′
n, n

2 −1) can be drawn as in Figure 19 (respectively, Figure 20), where the dashed edge
( n

2 , 0) is not present if n
2 is odd (respectively, even).

Wagner’s theorem states that a graph is planar if and only if it does not contain as a
minor K5 nor K3,3, which are the following graphs:

For example, D′
15,6 contains a minor isomorphic to K5. We will often exhibit a

minor isomorphic to K3,3: the vertices will be listed in cyclic order; the vertices are
{x1, x2, x3, bx1, bx2, bx3}, and x1, x2, x3 will be marked in bold.

Proposition 28. If b = 2 and n ≥ 10, or b = 3 and n ≥ 12, or b ≥ 4 and n ≥ 3b,
then D′

n,b is nonplanar.

Proof. The minors isomorphic to K3,3 are (3, 4, 5, 6, 8, 10), (2, 3, 4, 6, 9, 12), and
(1, 2, 3, b, 2b, 3b), respectively.

By Example 27, an odd integer n ≥ 13 (respectively, an even integer n ≥ 16) sat-
isfies Conjecture 5 if and only if D′

n,b is nonplanar for all b '= n − 1 (respectively,
b '= n

2 , n
2 − 1, n − 1). We verified with SageMath [8] that all prime numbers in the

range from 13 to 4391 and all integers n ≤ 1186 satisfy Conjecture 5.
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Proposition 29. If Conjecture 5 holds for all n that are prime numbers, then it holds
for all n.

To prove this, we make use of the following:

Lemma 30. If n satisfies Conjecture 5, then the same holds for 2n. If n is odd and
it satisfies Conjecture 5, then the same holds for kn for every positive odd integer
1 < k ≤ n.

Proof. For n odd, D′
2n,n+1 is nonplanar, as can be seen by considering the minor

(1, 3, 5, n + 1, n + 3, n + 5). For n even, D′
2n, n

2 −1 and D′
2n, n

2
are nonplanar by

Proposition 28, while the graphs D′
2n,n+ n

2 −1 and D′
2n,n+ n

2
are nonplanar because

of the minor (1, 4, n + 2, n + n
2 − 1, 2n − 4, 2n − 1) and the minor (1, n

2 , n, n +
n
2 , 2n − 5, 2n − 2), respectively. Remark 9 settles all remaining cases of the first
assertion, and the cases b '≡ 0, 1, n − 1 of the second assertion. To conclude, we may
suppose that b ∈ {%n, %n + 1, %n − 1} where 1 ≤ l ≤ k − 1. If b = n + 1 and k > 3,
then D′

kn,n is nonplanar by Proposition 28. In the remaining cases D′
kn,n is not planar

because of the following minors:

b minor isomorphic to K3,3

ln − 1, l < k
2 (1, 2, k, ln − 1, 2ln − 2, kn − k)

ln − 1, k
2 < l (1, k, (k − l)n + 1, ln − 1, kn − k, kn − 1)

ln, l < k
2 (0, 1, 2, k, ln, 2ln)

ln, l = k+1
2 , k = 3 (0, 1, n, 3

2 n + 9
2 , 2n, 3n − 1)

ln, l = k+1
2 , k > 3 (1, 3, k − 2, k+1

2 n, k+1
2 3n, kn − k − 1)

ln, k+1
2 < l (0, 1, (k − l)n, a, ln, kn − 1)

ln + 1, k
2 < l (1, k + 1, (k − l)n − 1, ln + 1, ln + k + 1, kn − 1)

ln + 1, l < k
2 , l '= 1, k−1

2 (1, 2, k + 2, ln + 1, 2ln + 2, 2ln + k + 2)

ln + 1, l = k−1
2 (1, 2, n − 2, k−1

2 n + 1, (k − 2)n + 2, kn − 2)

Above, a denotes a multiple of k such that kn − ln < a < ln.

Proof of Proposition 29. An odd number ≥ 13 is an odd multiple of a number ≥ 13
which is prime or ≤ 121, so we conclude by Lemma 30. An even number ≥ 16 is a
number for which the conjecture has been verified or it is a power of 2 times an odd
number ≥ 13, so we conclude by Lemma 30 and the previous case.

Notice that, in case the lower bound for n in Conjecture 5 gets updated, one could
still reduce to prime numbers and an explicit finite number set.

In this article we have raised several questions and we have answered some of them.
The interested reader can try to prove or disprove our conjectures. Moreover, there are
other notions for graphs that deserve to be investigated for divisibility graphs hence
there are many open research directions. Some of these investigations are accessible
to students, so they are suitable for undergraduate research.
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