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Organisation of the manuscript

This PhD dissertation is organized in the following way.

In Chapter |1}, we give an overview of the main topics we will adress. Sec-
tions[I.T]and [I.2] consist in a detailed presentation of the fractional Brownian
motion and Hermite processes. These processes are the main focus of the
two articles [14] and [15].

In Section|[1.3] we gather some relevant facts about Stein’s method, Malli-
avin calculus, and the way to combine them to build the so-called Malliavin-
Stein’s approach. This recent and flourishing topic provides us a with a set
of tools which is used in the three research articles that constitutes this the-
sis, by allowing us to prove normal and non-normal convergences in different
settings. In Section [I.4] we give a summary of the three articles on which
constitute this dissertation is based.

Finally, Chapters and [] will consist in a copy of the three articles
aformentioned.



Chapter 1

Introduction

1.1 Fractional Brownian motion

1.1.1 Historical background

In 1951, Hurst released his paper [24] describing the fluctuations of the levels
of the Nile river. The observations did not appear to verify the independence
assumption; instead, they turned out to be positively correlated, with the
variance of their (renormalized) partial sum behaving like n%72 (with n the
sample size). This phenomenon was surprising at the time, because scientists
were more used to the ”y/n-type behaviour” observed for the variance of the
sum in case of independent summands. More details on this can be found
in [56] and [59]. A few years later, Mandelbrot had the idea to utilize a
then relatively overlooked object introduced by Kolmogorov [27] to model
such phenomenon. Together with Van Ness, they popularized the name
”fractional Brownian motion” in a seminal paper [34].

Since its introduction in [34], the popularity and range of applications
of the fractional Brownian motion has literaly exploded. What makes this
mathematical object beautiful is that it can model numerous phenomena
with very different behaviours, simply by fitting its self-similarity exponent
H (called ”Hurst exponent” ). For instance, it can be used to describe highly
irregular, negatively correlated observations, such as the time series of the
log-volatility of some financial assets, see |16], as well as phenomena exhibit-
ing long range dependence, such as the example of the Nile river’s fluctua-
tions described above. The fractional Brownian motion also plays a pivotal
role in the rough path theory introduced by Lyons in [31], which studies
differential equations perturbed by irregular noises.



In the present dissertation, we exclusively work with the case H > %

(which encompass both the ”standard Brownian case” (H = 1) and the
"regular case” (H > %)), which is already a very rich object from which a
whole range of remarkable mathematical phenomena can be derived.

1.1.2 Definition

We start with the following proposition.

Proposition 1.1.1. Let H € (0,00). The function F defined on Ry x Ry
by: Vs, t € Ry,

1
F(s,t) = B (27 4 21— |t — 5?7 (1.1)
1s positive semidefinite if and only if H < 1.

For a proof of this fact, the reader is refered to e.g [36], Proposition 1.6.
The fractional Brownian can be defined in the following way.

Definition 1.1.2. Let H € (0,1]. We call fractional Brownian of index H
any centered Gaussian process B = (B;)¢>0 such that

e By=0;

e B has almost surely continuous sample paths;

o Vt,s € Ry, Cov(By, Bs) = 5 (821 + s*H — |t — s>
H is called the Hurst index of B.

law

Remark 1.1.3. When H = 1, we have (Bt)i>0 = (tG)t>0 where G ~
N(0,1). Since this case is too simple to be interesting, we will exclude it
from now on.

Remark 1.1.4. When H = %, we can notice that

1
Vt,s >0, Cov(By, Bs) = 3 (t+s— |t —s|) = min(t,s).

Then, it turns out that the standard Brownian motion is the fractional
Brownian motion of index %



1.1.3 Some basic properties

In the following statement, we gather some elementary properties of the
fractional Brownian motion which are useful throughout this dissertation
and may help the reader to get a better grasp of this object.

Proposition 1.1.5. Let B be a fractional Brownian motion with Hurst
index H € (0,1).

(a) B is H-self similar, i.e. Ve >0, (Bet)t>0 faw (cH By)>o0-

(b) B has stationary increments, i.e., Vh >0,

law

(Bi+n — Br)n=0 = (Bt)eo-
(¢c) If H > %, disjoint increments are positively correlated, i.e.
E[(Bh - le)(BtQ - BSQ)] >0

for all0 < s1 < t1 < 89 < tg. If H < %, disjoint increments are

negatively correlated, i.e.
E[(Btl - le)(Btg - BSQ] <0

forall 0 < 51 <t < s9 < ty. If H = %, disjoint increments are
independent.

(d) Let (r(k))ren be the sequence defined as r(k) = E[(Bk+1 — Bx)Bi).
e (long memory) if H > %,

> Ir(k)] = oo;

keN

e (short memory) if H < %7
Z Ir(k)| < 0.
keN

(e) Increments of B have finite moments, which are controlled in the fol-
lowing way: Vs, t > 0, Vp > 0,
E[|B: - BJJ"] < Kt — s,

p+1
with K = E[|ByJ#] = 202 C2).

™



(f) For any 0 < a < H, B admits an a-Hélder continuous version on
each compact interval [0,T].

Proof. Points (a)-(c) can be proved through easy computations, using the
covariance function (L.1). The proof of (d) follows from the fact that
7(k) ~psoo H(2H — 1)k27=2 Finally, Vs,t > 0,

law

B, — B, & |t —s|l@

with G ~ N(0,1). From this, we have that E[|B; — Bs|P] = E[|G?]|t —

ptl
s and E[G] = 20"CZ) by [63]. This proves (c). Then, (£) follows
immediately from the Kolmogorov-Censov criterion. g

Another important property of the fractional Brownian motion is that it
can be represented as a Volterra process, i.e a sequence of Wiener integrals
with respect to a standard Brownian motion.

Proposition 1.1.6. For H € (0,1), we have that:

(By)iso ' (/Dt Kyt s)dWS)t>0, (1.2)

where W is a standard Brownian motion and

Kult;s) = p(;(fi);)séH /:UH%(U — 52 du < if H> ;) ,
Kilts) = F(Iff)) <t>H (t— )/}
- (;(IH—)é) é—H/s W= (u— s)1 =3 du < if H < ;) ,
with

1
2T (H+5)T(3 - H)\*
C( H) — ( 2) (2 ) .
T(2 - 2H)
A proof of this fact can be found in either |11, Corollary 3.1] or [45]
Proposition 5.1.3]. Another useful representation due to Mandelbrot and
Van Ness involves a two-sided Brownian motion (see [34]); we will discuss it

later in Section [[.2

Except when H = %, B does not verify the properties required to be
an integrand in an Ito-type integral, because it is not a semimartingale,



as explained in e.g [50, Section 2]. To build an integral with respect to
the fractional Brownian motion, in the present thesis we will use either
the divergence operator of Malliavin calculus or the Young integral (when
H> 1.

2

1.1.4 Isonormal Gaussian process and Malliavin derivative

Malliavin calculus is a powerful set of tools first introduced by Paul Malliavin
in [33] in order to give a probabilistic proof of Hormander’s theorem for
parabolic SDEs. It can be thought of as an infinite dimensional integro-
differential calculus operating on Gaussian fields (although it has also been
extensively studied in the setting of Poisson processes, see e.g [28]). In
the three following sections, we give a brief introduction to this topic and
some relevant applications in the fractional Brownian motion setting. For
more details, the reader is refered to the seminal monography [45] or to [41],
Chapter 1-2 for a more compact presentation.

The framework for (Gaussian) Malliavin calculus is a general object
called isonormal Gaussian field. For simplicity, we restrict the presentation
to the case of R-valued fields (one can also consider R%valued fields). Fix
an Hilbert space H endowed with a scalar product (-,-) and a probability
space (92, F,P).

Definition 1.1.7. An isonormal Gaussian field over H is a centered Gaus-
sian family X = {X(h), h € H} defined on Q such that

Vfag € H? COV(X(f)7X<g>) = <f7g>7'l

Let T > 0. If H = L%([0,7]) is endowed with its usual scalar product,
and if X is the associated isonormal Gaussian process, then the (standard)
Brownian motion B over [0,7] can be embedded in X:

(Biepor] 2 {X (I y),t € 0,77}, (1.3)

Moreover, provides a convenient representation of the Wiener integral
with respect to B.

If f € L?([0,T]), then the Wiener integral of f with respect to B has
the same law as X (f). Fortunately, such a representation also exists for the
fractional Brownian motion of any index H € (0, 1), but the procedure to
obtain it is not trivial, see Section [1.1.6]

With these definitions in mind, we are now ready to define the main
operators of Malliavin calculus.



Definition 1.1.8. Let X be an isonormal Gaussian process over H. We
define S as the class of functions f € U;,enC®(R™, R) such that f and its
derivatives have at most polynomial growth.

Definition 1.1.9 (Malliavin derivative). Let X be an isonormal Gaussian
process, f € S and F = f(X(h1),...,X(hp)) with hy,... hy € H. Let
p € N*. Then, the p-th Malliavin derivative of F' with respect to X is the
element of L2(Q, H®P) defined by

DPF = Z — 2 (X(h1),.... X(h )i, @ ... h
8$i1...8xip( (h1), .., X(hp))hiy ® ... ®

ip-

i1 yeeyip=1
(Here, H®P denotes the subset of the tensor product space H®P formed of
the elements which are symmetric, see Definition |1.1.14]).

The Malliavin derivative can then be extended to the whole space H in
the following way.

Proposition 1.1.10. Let the notations of Definition[1.1.9 prevail. For any
p € N*, the operator DP defined above is closable with respect to the norms

1
p q
k
1Flp.q = (EHF\Q] +Y E[ID FH‘;{@;C])
k=1
for any ¢ > 1. The closure of S with respect to || - ||, is denoted DP1.

Hence, the Malliavin derivative can be viewed as an infinite dimensional
derivative operator.

1.1.5 The Skorokhod integral

Let us now explain how to build an integral with respect to an isonormal
Gaussian process.

Let X be an isonormal Gaussian process, let p € N* and let u €
L?(Q, H®P). If there is a constant K > 0 such that E[(DPF,u)yer] <
K+/E[F?] for all cylindrical functional F' € S, it means that the linear oper-
ator ' — E[(DPF, u)yep] is continuous, and then, by Riesz Theorem, there
is a unique element 67 (u) € L?(Q2) such that E[(DPF, u)yer] = E[F&P(u)].
We then say that u belongs to the domain of §P.

Definition 1.1.11 (Skorokhod integral). The operator 67 is called the p-th
multiple Skorokhod integral with respect to X. By construction, it is the

adjoint of the p-th Malliavin derivative DP. Its domain (consisting of the
elements described above) is denoted by Domd®.

10



Let us gather some important properties of Skorokhod integrals.
Proposition 1.1.12. (a) If p < q, then Domdé? C DomoP.
(b) If u,v € Domd", then
E[6(u)d' (v)] = E[(u, v)%] + E[(D.w.., D.v.)yenu)]. (1.4)

(c) If u € Domd", then
E[(8"(u))?] < M (E[||ull?] + E[| Dull3gm]) - (1.5)

Point (c) is a particular case of the more general Meyer’s inequalities
and will be used in Chapter [2| as well as Point (b).

Notice that if B is a standard Brownian motion (that is, if H = L2([0, T))
and if u, v are two processes in D2 that are progressively measurable with
respect to B, then Dsu; = 0 if s > t. From (1.4]), we deduce that

T
E[5 (u)5 (v)] = /0 Efuvs]ds,

and we recover the isometry property of the It6 integral. Actually, the
Skorokhod integral coincides with the It6 integral when H = % and the
integrand is progressively measurable.

Proposition 1.1.13. Let B be a standard Brownian motion and u be a
square integrable, progressively measurable process over [0,T]. Then, u €
Domé'. Moreover, §'(u) coincides with the Ité integral of u with respect to
B over [0,T]:

T
d(u) :/ Uyd By, (1.6)
0
and Vs, t € [0,T],
t
S(ullsy) = / UgdBy. (1.7)

We end this section with a discussion about multiple Wiener-Ito inte-
grals.

Definition 1.1.14 (Symmetric elements). Let e = (e;);eny be an orthonor-
mal basis of the Hilbert space H. Let p € N*. Every element h € H®P can
be written as

h = E @iy ... ip€1 X ... ® ey,

11 ,00p EN

11



with Qiy,.ip € R.
The symmetrization of & is the element:

T 0€G g i1, yipEN
The space HP is the space of elements h € H®P such that h = h.

Definition 1.1.15. Let p € N* and consider an element f, € H“P. We have
that f, € DomdP. The multiple Wiener-Ito integral of f, with respect to X

is the Skorokhod interal dP(f,). In this case, we will use the more classical
notation I,(f,) 1= 0P(fp).

Remark 1.1.16. When p = 1, we have I1(f1) = X(f1), so the Wiener-1t6
integrals of order 1 are Gaussian.

Remark 1.1.17. When H = L?([0,T]) (so that X generates a Brownian
motion B), multiple Wiener-It6 integrals coincide with iterated It6 integrals.
Indeed, if f, € H®P, we have:

T t1 tn
Ip(fp) = p‘ / / e fp(th e 7tn)dBtn e ClBtl
0 0 0

(see |41], Exercice 2.7.6 for a proof of this fact).

Multiple Wiener integrals are fundamental because they form a ”basis”
of L?(Q,F) (where § is the o-algebra generated by X) as shown by the
following proposition.

Theorem 1.1.18 (Chaotic decomposition). Let F' € L?(Q,F). Then, there
is a unique sequence of elements f, € HP such that

F=E[F]+ ZIp(fp)a
p=1

where the previous series converges in L*(Q).

Multiple Wiener-It6 integrals possess rich properties that we enumerate
below.

Proposition 1.1.19. (a) (Isometry) For all integers k,1 > 1, all f € HOF
and all g € H®!,

E[6"(1)0"(9)] = kNS, 9)pgorTgp=y.-

12



(b) (Hypercontractivity) For all v > 2 and all integer k > 1, we have that
for all f € HOF,

E[I*(NI"] < (r = DT (0 ()5 (1.8)

(¢) (Malliavin derivative) If us = 6*(f(.,s)) with f € HEED symmetric
in the k first variables, then u € DV2(H), with

Dguy = k6*L(f(., ¢, 5)).

(d) (Product formula) Fiz f € HOF and g € H®' and, as usual, let ®,
(resp. @;) denote the contraction operator (resp. the symmetrization
of the contraction operator) of order r, see [41, Appendiz B] for a
precise definition. Then,

0 =3 1) (w2500

r=0

We will provide further properties of multiple Wiener-It6 integrals in
the forthcoming Section Before, we end this section dedicated to the
fractional Brownian motion with a description of the space H associated to
it, followed by a short discussion on the Young integral.

1.1.6 The spaces H and |#| in the case of the fractional Brow-
nian motion.

Let B be a fractional Brownian motion with index H € (0,1)\{3}. Similarly
to Brownian motion, the fractional Brownian motion can be represented by
means of an isonormal Gaussian field. The most comprehensive survey on
this subject is the paper [48|, from which we extract the following relevant
facts.

e When H < %, let us define

— {f :3¢; € L2([0,T)),Vu € [0,T), f(u) = uz~ (I%H8H5¢f(s)> (U)}

(1.9)
endowed with the scalar product:

2rH(H — 3)
rghu: I‘(2—2H)sm (H-1)) /¢f $)94(5)

13




Here, I7_ stands for the fractional integration operator, i.e.
1 T 1
Ia = — - o d .
Tff(s) F(O[) /(; f(u)(u S) U

Then, (Bt)efo,r) faw {X(Tjoq),t € [0,T]}, with X an isonormal Gaussian
process with respect to H.

e When H > %, let us define first the scalar product

T T
(fra)n = CH/O /0 fw)g(s)|u — s|* ~2duds

with ¢y = H(2H — 1). Let ||.||% be the norm induced by (-,-)3 and let
H1 be the space of measurable functions f over [0, 7] such that || f||y < oo.
Finally, let 1 be the completion of H; with respect to (-, ), that is,

W=7 (1.10)

Then, if X is an isonormal Gaussian process with respect to H, we have
law

that (Bi)ejo,r) = {XToy),t € [0, T}

In the case H > %, complications arise from the fact that H contains
distributions (i.e, H; is not complete). This fact was proven in [48]. In order
to only work with functions, one often introduces the following subspace ||
of Hli

| = {f, £y = H(2H —1) /[0 @IS =P dud < oo} -

It turns out that (|#H[, || - /%) is a Banach space.

For the fractional Brownian motion B, the Malliavin derivative and Sko-
rokhod integrals defined above are obtained by taking H as in (when
H < 3)orasin (when H > 3). In Chapter [2, we often restrict the
domain of these operators in order to always work with elements in |#|.

This discussion provides the first type of integrals with respect to the
fractional Brownian motion B that we shall use in this dissertation. The
case H < % will not be used further and was only given for informative
purpose. Finally, for convenience, notice that we will sometimes use the

notation

/f(:vl, ooy @q)dBy, ... dBy, = 1,(f)

in the sequel (with f any element in H®?).

14



1.1.7 The Young integral

We now turn to the second type of integral (beside the Skorokhod inte-
gral) commonly used in the fractional Brownian motion setting, and also
throughout this dissertation, the Young integral. It was introduced first
in [64]. Contrary to the Skorokhod integral, it is obtained through a deter-
ministic procedure, and can be seen as a generalization of the usual Riemann
integral. Its existence is in general not guaranteed, especially when H < %
(see Remark[1.1.25)). A nice overview of this topic (as well as an introduction
to the more advanced theory of rough paths) can be found in [2].

Definition 1.1.20 (p-variation). Let p > 0 and fix an horizon 7" > 0. A
function f :[0,7] — R is said to have finite p-variation if the quantity:

| fllp—var = <0:t0<8}1.12tn=T; | f(ti) — f(ti—l)‘p>

is finite (where the supremum is taken over all subdivisions of the interval
[0,7]). The space of functions with finite p-variations over [0,77] is de-

noted by CP~"*"([0,T]). Endowed with the norm f — | f(0)|| + || fllp—vars
CP=ve7([0,T)) is a Banach space.

A classical example of functions with finite p-variations is the class of
Holder continuous functions.

Proposition 1.1.21. Let f : [0,T] — R be an a-Hélder continuous function
for some « € (0,1]. Then, f belongs to Ca—var,

Proof. Let {0 =ty < ... < t, = T} be a subdivision of [0,7]. Then,
Vie {1,...,n}, |f(t:) — f(tie1)|a < Ka(t; —ti_1), where K is the Holder
modulus of f. Then,

1715y < KT < o0,

Theorem 1.1.22. Let f € CP7Y*([0,T]) and g € CT"*"([0,T]) with
1 1

- +->1
P q

Let 0 < a <b<T. Then, the sequence (Sp)nen of weighted Riemann sums
- k kE+1 k
= b—a)— b— - b—a)—
Spi= f<a+( a)n> <g<a+( a)— ) g<a+( “)n>>

15




converges to a quantity that is denoted fab fdg and called the Young integral
of f against g.

The Young integral possesses the following properties.
Proposition 1.1.23. Let f,g be as in Theorem[1.1.23

e (Chasles relation): Let 0 < a <b<c¢<T. We have

/:fdgz/:fdﬁ/bcfdg.

e (change of variables): Let 0 <t < T. Assume that f € C%, and that
q <2. Then, f'oge CT v ([0,T]) and

F(a(t) = F(a(0)) + /0 fog dg. (1.11)

o (differentiable case): If g is an absolutely continuous function, then

/fdg— /fg’dA,

with A the usual Lebesgue measure.

Recall now that the fractional Brownian motion B of index H € (0,1) is
(H — ¢)-Hoélder continuous for every € > 0. Then, we can define the Young

/ udB

as long as the process u has finite p—variation with p such that + > 1—H+e¢
for some € > 0 (for example, when u is (1 — H + ¢)-Holder continuous). In
particular, if H > % and f is Lipschitz, we can define in this way the integral

[ F(B)dB.

Remark 1.1.24. The Young integral behaves in a very different way com-
pared to the It6 integral or to the Skorokhod integral defined above. Indeed,
it is actually a pathwise integral, and verify as such a first order Taylor ex-
pansion (instead of the Ito formula, which also involves the second order
derivative)

Remark 1.1.25. The Young integral is of little use when H < % Indeed, it
is impossible to define simple expressions such as [ f(B)dB. When H < %,
one can instead relies on the rough path theory, which involves a more
complicated approximation scheme. Although we will briefly make use of
the notions of Lvy area and controlled path in Chapter [2] the rough path
theory itself will not be used in this dissertation.

integral
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1.2 Hermite processes

1.2.1 Historical motivation

Hermite processes form a relatively recent addition to the field of stochastic
analysis. This family of processes share a lot of similarities with the frac-
tional Brownian motion (which is actually the simplest example of Hermite
process) except a crucial one: they are in general not Gaussian. Historically,
they have been discovered in [13] and [18] as the limiting process arising in
a functional central limit theorem in the context of long-range dependence
(although Rosenblatt was the first to observe such phenomenon in [52]).
More precisely, let us consider (X, )nen, a centered Gaussian stationary (i.e
Vk € N, Vp € N, E[X,1+Xx] = E[X,X¢]) sequence, with E[X?] = 1 and
such that X has long-range dependence, i.e. there is a € (0,1) and a slowly
varying function L : Ry — R such that

Vn e N, r(n) = E[XoX,] =n"*L(n).

Let us now consider the sequence
Y, = F(X5), (1.12)

where A,, is an appropriate renormalization constant (which we will make
explicit later) and where f € L?(R,v) with v the standard Gaussian mea-
sure, that is, f : R — R satisfies

1 1'2
Nors /R |f(x)|e” 2 dx < oo.

Then, depending on « and some properties of the function f, the limit may
or may not be Gaussian, see Theorem for a more precise statement. A
functional version of this result also provides a counterpart to the Donsker
theorem. In the non-Gaussian case, the limit has been called a Hermite
Process.

Hermite processes have been the object of a growing interest in the recent
literature, as they provide an interesting non-Gaussian alternative to the
fractional Brownian motion. Among the relevant works, one can mention
the aforementioned pioneering papers by Dobrushin, Major and others (
113], |18], [52]) as well as various recent additions, see for instance [1], [§],
132], [44], [53] or [60].
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We would also like to mention the recent PhD dissertation [61] which
has been an important source of material for the present section.

In the forthcoming sections, we introduce more rigorously the Hermite
processes and review their main properties, as well as some connections with
the fractional Brownian motion. We also give a short introduction to the
stochastic calculus with respect to the Hermite processes.

1.2.2 Hermite polynomials

Hermite polynomials form an infinite family of polynomials of increasing
degrees. They can be defined as below (both definitions given here are
equivalent).

Definition 1.2.1 (Hermite Polynomials). 1. The Hermite polynomial of
order k is given by the Rodrigues formula:
2 dF .2

Vx € R, Hi(z) = (—1)k67dxk€77.

2. Alternatively, the Hermite polynomials are the only polynomials veri-
fying the following recursive relationship:
Hy(X) =1
H,(X) = X
Vk >2, H(X) = XHp1(X)—(k—1)Hp_o(X).
Since the Hermite polynomials are graduated, they define a basis of R[X].
More remarkably, if X is an isonormal Gaussian field with respect to a
Hilbert space H, and if § denotes the o-algebra generated by X, then it
is possible to build an orthonormal basis of L?(£2,§) with the help of the

Hermite polynomials. As a result, we can reformulate Theorem [1.1.1§ in
the following way.

Theorem 1.2.2 (Chaotic decomposition revisited). Let F € L*(Q,5). Let
Ly, be the closed linear subspace of L?(2,§) generated by the family

{Hp(X(h)), heH, |[hlly =1}

(with Hy, the Hermite polynomial of order k). Then, there is a unique se-
quence of random variables Fy, € Ly such that:

n
F=E[F]+) F
k=1
with the above serie converging in L*(Q).
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A proof of this theorem can be found in |41} Section 2.2]. Notice that an
equivalent decomposition exists in the one dimensional case, see the following
proposition.

Proposition 1.2.3. Let v be the standard Gaussian measure over R, i.e
12

Jg hdy = \/% Jg M(x)e™ = dx for all positive Borel function h : R — Ry.

Let f € L?(v). Then, there is a unique sequence (ay)ren Such that:

o0
f= " axH,
k=0

where the above serie converges in L*(7).

Finally, Hermite polynomials are directly connected to multiple Wiener
integrals introduced above in Section [1.1.5

Proposition 1.2.4. Let h € H and p € N. Then,
1,(hP) = Hy(X (h)). (1.13)

A direct consequence of the equation (1.13|) is the following formula,
which is immediate but will be used many times in Chapter

Corollary 1.2.5. Let B be a fractional Brownian motion of Hurst index
H € (0,1), and let s < t. Then,

L(I7%) = (B — By)* — 1. (1.14)

1.2.3 Definition of Hermite processes

With the definition of Hermite polynomials at hands, we are now ready to
introduce the Hermite processes, using the notion of Hermite rank. There
are more general ways to introduce the Hermite processes (e.g, by using the
sequence and the notion of slowly varying functions), but the defini-
tion we give here is more in line with the general spirit of this dissertation.

Definition 1.2.6. Let f € L?(y) (where once again, « is the standard

Gaussian measure). Let (ag)ren be the sequence involved in the Hermite
decomposition of f given in Proposition The Hermite rank of f is the
integer ko = inf{k > 0, a; # 0}.

Hermite processes are then obtained as follows.
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Theorem 1.2.7. [Dobrushin-Magjor, 1979] Let B be a fractional Brownian

:L‘2
motion of index H' € (0,1) and let f € L*(y) be such that [, f(z)e” 2z do =
0. For all m € N*, let us define the process (Y")i>o as:

n-)
Y= ntUHTIN " f(Byy — By). (1.15)
k=0

Assume that the Hermite rank q of f verifies H' > 1—%. Then, the sequence
Y™ converges in Dr(Ry) to a process with values in the q-th Wiener chaos.

Definition 1.2.8. The limiting process of Theorem [1.2.7]is called Hermite
process of order q and self-similarity parameter H = 1 — q(1 — H'). Tt is
denoted by Z9H.

Here D4 (B) is the Skorokhod space of cadlag functions f: B — A (for
more information, see the forthcoming Section |1.3.1]).

We end this section with a couple of important remarks, as well as a
further definition.

Remark 1.2.9. In the case where ¢ = 1, it turns out that H = H' and that
the Hermite process Z9! is actually a fractional Brownian motion of Hurst
index H. This is the only case where Z9 is Gaussian.

Remark 1.2.10. Due to the condition on H’ imposed in Theorem the
Hurst parameter H belongs to (%, 1). In particular, a fractional Brownian
motion of Hurst index H < % is not a Hermite process.

Definition 1.2.11 (Rosenblatt process). Let ¢ = 2 and let H € (3,1). The
Hermite process Z%! is called the Rosenblatt process.

The Rosenblatt process was actually discovered before the seminal works
by Dobrushin, Major and others. This name was used for the first time
in [58] as a tribute to Murray Rosenblatt.

After the fractional Brownian motion, the Rosenblatt process is the sec-
ond most well known among the Hermite processes. In particular, the fact
that the Rosenblatt process belongs to the second Wiener chaos make it
more practical to study than the higher order Hermite processes (second
order iterated integrals possess useful properties which are lost at higher
orders, se e.g [41], Section 2.7.4). For a thorough review of the properties
of the Rosenblatt process, we refer the reader to the paper [62] and to the
dedicated section in the dissertation [61].
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1.2.4 Properties of Hermite processes

Hermite processes differ significantly from the fractional Brownian motion
in one regard: as soon as ¢ > 2, their marginals laws are no longer Gaus-
sian. Aside from this important caveat, Hermite processes share most of
their properties with the fractional Brownian motion. Here is a list of such
properties, which is very similar to Proposition [1.1.5

Proposition 1.2.12. Let (Z‘LH)te[O’T] be a Hermite process of order ¢ € N*
and self-similarity parameter H € (%, 1).

(a) ZPH s H-self similar.
(b) Vt,s >0, E[ZP"] = 0 and E[Z227 701 = 1827 + 27 — |t — 2.
(c) Z9H has stationary increments.

(d) (long memory) Let (r(k))ren be the sequence defined as
r(k) = E[(Z1) - 20" 20",

Then,

> Ir(k)| = ce.

keN

(e) The increments of Z9™ have finite moments, which are controlled in
the following way: Vs,t > 0, Vp > 0,

pPa
E(|Zf" - 28" P < (- 1) 7 [t - PP

(f) For any 0 < o < H, Z9H admits an a-Hélder continuous version on
each compact interval [0, T].

(g) Let t > 0. There is a constant ¢; > 0 such that B[|f(Z@™)|] < oo for
all measurable function f : R — R satisfying that there exists K > 0
2

such that Vo € R, |f(z)] < Ke~ctlol?,

Proof. The items (a)-(c) can be proved by means of the forthcoming integral
representation given in Proposition the details have been written
down in [61], Proposition 1.1.2.

For the item (d), the proof is exactly the same as in the fractional Brow-
nian motion case (because the sequence (r(k))ren is identical).
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For all 0 < s,t, the difference Zf’H — 78" ig a multiple Wiener integral

of order ¢ (thanks to Proposition [1.2.14)) so we can use the self-similarity

property and hypercontractivity property to obtain that zZ" — z& '« law

It — s/ Z%" | and that
E[|zP" — Z2H P <E[(ZP7))E(p - 1) 7 |t — s

The proof of (e) then follows from the fact that ]E[(Zf’H)Z] = 1, and the
proof of (f) follows from the Kolmogorov-Censov criterion.

Finally, let us prove (g). A power series developement provides
o 1
Z‘L - k an
B < 3 ez

Since th’H is an element of the ¢ — th Wiener chaos, the hypercontractivity
property yields: Vk > 2,
2
E[|2%"]3*] < g(k) = (k — 1)F"Ts"

The Stirling formula then provides:

k! k—oo (&t kk Tﬂ'k )
and the associated series converges if ¢; < e %log(t)_l. O

Remark 1.2.13. The item (g) is linked to a very important property of the
Hermite processes: the law Zf’H is uniquely characterised by its moments if
and only if ¢ < 2. In the case ¢ = 1, (g) is also a direct consequence of the
more general Fernique’s theorem for Gaussian measures, see [57].

Similarly to the fractional Brownian motion case, it is possible to repre-
sent Hermite processes as stochastic integrals with respect to the Brow-
nian motion. The most common (and useful) representation makes use
of a two-sided Brownian motion (Wi)ier (i.e, (Wi)i=o := (Wi)i>0 and
(W30 = (W_t)i>0 are two independant standard Brownian motions).
In this case, the Skorokhod and multiple Wiener integrals with respect to
W can be obtained by specializing to the case H = L?(R).
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Proposition 1.2.14. Let (W;)icr be a two sided Brownian motion, and for
all p € N and f, € L2(R)®P, let I,(f,) be the multiple Wiener integral of f,
with respect to W. Then, the Hermite process (Zq’H) has the same law as
the process

(Iq (flI<t)))t20 (1.17)
with . 3
fq(t, ) (x1,...,2q) — c(H, q)/o (s — xi)fo_ids,
o1 LM
q

B H(2H — 1)
C(H7Q> - \/q'B(HO — %,2—2[{0)‘1.

When ¢ = 1, Proposition provides an alternative ”spatial” repre-
sentation for the fractional Brownian motion, thus completing Proposition
1. 1.0l

Another integral representation exists, which only involves a one sided
Brownian motion (see e.g. [49]) but it won’t be utilized in this thesis.

1.2.5 Wiener integral with respect to Hermite processes

It is possible to build a Skorokhod-type integral with respect to Hermite pro-
cesses. It was done in [62, Section 6] in the specific case of the Rosenblatt
process. In this thesis, we will only need to work with Wiener integrals, that
we introduce now very briefly.

Let us extend the class |H| already introduced in Section for func-
tions defined on [0 T] to functions f:R — R. We say that f : R — R be-

longs to 1] i /]2, = 1) i Ji | I1F ()] — 22 dud < oo.
As noted above, (|H], H Hl”Hl) is a Banach space. In [32], the authors con-
sidered integrals of simple functions, i.e

p—1

bl 7H

/R<f::2ai]l[tiyti“]> )dz4H ZaZ Z{t — zgm),
=0

The Hermite process Z%H itself can be viewed as a multiple Wiener integral,
see Proposition so the previous expression can be rewritten as:

/ F(5)dZ8H = 1,(F)
R
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with I, the g-th multiple Wiener integral with respect to the two sided
Brownian motion W and

_3
(u— xz)fo 2du.
1

F:(x1,...,2q) —>c(H,q)/Rf(u)

q

)

Finally, using a classic isometry extension procedure, it is shown in [32] that
the above integral (defined for simple functions) can be extended to the
whole space |H|, as a L?(Q2)-limit of integrals of simple functions. Further-
more, it coincides with the following multiple integral with respect to the
two-sided Brownian motion W: Vf € |H],

/Rf(s)dzgﬂ =c(H,q) /]R“ (/}R fu) :

(2

(u — Ei)fo_gdu> dW (&) ... dW ().

(1.18)

1

1.3 Stein’s method, Malliavin-Stein approach and
other convergence results

This dissertation is all about establishing probabilistic convergence results
for sequences of functionals of Gaussian fields (or, in Chapter {4, for func-
tionals of log-concave distributions). In the previous two sections, we gave
some background about the fractional Brownian motion and the Hermite
processes. In the present section, we will review some of the techniques
that we will use in order to establish these convergence results. We will
first start by providing some reminders about the functional convergence
of stochastic processes. We will then review the basics of Stein’s method,
before introducing the more recent Malliavin-Stein approach.

1.3.1 Convergence of processes

Let ((X{)ter),en be a sequence of stochastic processes (where [ is either
R4 or an interval of the form [0,7] for some T" > 0) whose marginals are
RZ-valued for some d € N*. Assume further that both X™ and X take values
in a complete metric space X'. We say that the sequence X" converges in
law to X in the space X if

Elp(X™)] — E[¢(X)] (1.19)

n—oo

for all functionals ¢ : X — R which are bounded and continuous with respect
to the topology induced by the distance on X. When dealing with stochastic
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processes, the two most commonly used spaces are the Wiener space and
the Skorokhod space. A useful reference about the Skorokhod space is the
short note [26].

Definition 1.3.1 (Wiener space). Let us denote by Cra(I) the space of
continuous functions f: I — R% Let | - |« be the uniform norm over I, i.e

Vf € Crall), [flloe = sup 1/ ()]

(where || || is the usual Euclidian norm on R%). Then, (Cga(I), ||||s) is called
the Wiener space. It is a vector space and a Polish space.

Definition 1.3.2 (Skorokhod space). Let Dra(I) be the space of cadlag
functions f : I — R? (i.e, the functions which are right continuous and
admit a left limit in every point x € I). Let us define the following map on

(Dra(1))*:
o :(f,9) = inf {|A = Tdllc + [f = g0 Allsc},

where A is the set of all continuous and increasing bijections A : I — I.
Let J; be the topology generated by the metric o. Then, the space Dya(I)
endowed with the J; topology is called the Skorokhod space. 1t is a vector
space and a Polish space.

We endow the space Dya(I) with the topology Ji rather than the topol-
ogy of uniform convergence, because otherwise it wouldn’t be a Polish space.
That said, we have the following result, which will be useful in Chapter

Lemma 1.3.3. The topology J1 and the topology of uniform convergence
coincide on Cra(I).

To establish the convergence ([1.19)) in the Wiener space, we will mainly
rely on the following classic result, which is an easy consequence of the
Prokhorov’s Theorem.

Proposition 1.3.4. Let (z,,)nen+ be a sequence of processes in X (here X
is the Wiener space Cra(I)). Then the sequence (Xy)nen+ converges (for the
topology of X ) to a process X € X if and only if the two following conditions
holds.

(1) The finite dimensionals distributions of the processes X™ converge to
the finite dimensional distributions of the process X.
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(2) The sequence (X™)pen= is tight, that is, for all € > 0, there is compact
K. of X such that Vn € N*,

PX" € X\ K] <e.

Proof. The implication ”<” is immediate. Let us now assume that both
conditions (1) and (2) hold true. By condition (2) and thanks to the fact
that X is a Polish space, the Prokhorov theorem implies that there is a sub-
sequence (Xg(n))nen+ such that (Xy,))nens converges weakly to a process
X4 € X. Thanks to (1) (and the fact that the finite dimensional projections
are continuous in X’), we have that the finite-dimensional distributions of

the process X are the finite dimensional distributions of X. By the unique-

ness part in the Kolmogorov extension theorem, Xy law x (and the limit

does not depends on the extraction function ¢). This prove the implication
2 :>77 . |:|

Remark 1.3.5. The case of the Skorokhod space is more delicate because
the finite dimensional projections are not continuous. More information on
this can be found in [3, Section 13]

It is in general very inconvenient to directly verify the condition (2).
Fortunately, in the case where I is a compact interval (I = [0,7] in our
case), (2) follows from criterions which are much easier to check. Below are
the two criterions that will be used in this thesis.

Lemma 1.3.6. Let X be either Dr([0,T]) or Cr([0,T]) and let (X™)pen+ €
XN". Then, we have the two following sufficient conditions.

(a) If X = Cr([0,T]), and if there is o, B > 0 and a constant K (depending
only on «, 8 and T) such that

Yne N YV 0<st<T, E[|I X} - X"°] < K|t —s|'TP,  (1.20)
then the sequence is tight in Cr([0,T]).

(b) If X = Dr([0,T]), and if there is e, 5 > 0 and a constant K (depending
only on «, 8 and T) such that

Vn e N*V0<st<T, E[|XP— X" < Klt, — s,/ (1.21)

(where t, = %, Sp = %), then the sequence is tight in Dg([0,T]).
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The first criterion (a) is the classic and well known result proved by
Billingsley in the seminal book [3]. A proof of (b) can be found in [12]

Finally, we provide a way to check the tightness for a sequence X" €
Cr([0,T7]), which will prove particularly convenient in Chapter [2| It consists
in decomposing the sequence X into two sequences of processes belonging
to Dr([0,77]) and checking the tightness of each separate sequence.

Lemma 1.3.7. Let (X™)en: € Cr([0,T))Y". Assume that for all n € N*,
we can write X™ = A™ + C™, with

1. Yn e N*, A", C™ € Dg(]0,T))

2. (A™)nen- verifies the criterion (b) from Lemma[1.5.6 for some o, B >
0.

3. limy 00 [|C™]|o = 0.
Then, the sequence (X™)nen+ is tight in Cr([0,T1)

Proof. By Lemma the sequence (A™),, is tight in Dg([0,7]). By hy-
pothesis, (C™),, is also tight in Dr([0,7]) and converges in Dgr([0,T]) to 0,
which is a continuous process. By [25, Lemma 2.2], the sequence (A", C"),
is tight in Dp2([0,T]) and since the map (x,y) — x + y is continuous from
Dg2([0,T]) to Dr(]0,T]), the sequence (X")y is then tight in Dgr([0,T]).
Finally, by Lemma [1.3.3] the sequence (X"), is tight in Cr([0, 7). O

1.3.2 Distances between probability laws

Let j, v be two probability measures on R? for some d € N*. In this section,
we are interested in quantifying the discrepancy between the laws p and v.
More precisely, we want to endow the space M of probability measures over
R? with a distance, in order to make it a complete metric space.

There are several options which are commonly used in the litterature. A
review can be found in [41, Appendix C].

Definition 1.3.8 (Fortet-Mourier distance). The application

(,0) Hsgp‘/fdu/fdv

where the supremum runs over all Lipschitz functions f : R* — R such that
|| flloo + 11fl|zip < 1, is a distance on M, called the Fortet-Mourier distance.

)
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Definition 1.3.9 (Kolmogorov distance). The application

(u,v) — ) “s.uxpe]R | 1((—o00, 1] x. . .x (=00, 24])—v((—00, T1] X. . .x (=00, 24]) |

is a distance on M, called the Kolmogorov distance.

Definition 1.3.10 (Total variation distance). The application

(n,v) = sup  |u(A) —v(A)
AeB(R9)

is a distance on M, called the total variation distance.

Proposition 1.3.11. Let u, v be two probability measures on R:. The three
distances defined above are related as follows:

dra(p,v) < dior(p,v) < dry (p,v). (1.22)

Remark 1.3.12. An important feature of the Fortet-Mourier is that it

metrizes the convergence in law. In other words, a sequence (i )nen con-

verges weakly to a measure p if and only if dpp(ppn, n) — 0. A con-
n—oo

sequence of this fact and the inequalities ([1.22)) is that the convergence of
a sequence of measures for the Kolmogorov and total variation distances
implies the weak convergence of this sequence.

1.3.3 The basics of Stein’s method

Introduced first in the seminal work [54], Stein’s method is a set of tools
aiming at quantifying the distance between probability measures. It has
been the object of a wide number of subsequent investigations generalizing
it in various settings. An extensive presentation with references can be
found in the book [6] for the topic of Stein’s method with Gaussian target
law (which is the only setting we consider in the present dissertation). A
more compact and simplified presentation can be found in [41, Chapters
3-4], which already encompass all the material we need for this dissertation.
Although it is not limited to it, Stein’s method is mostly known for its
contributions to normal approximation. The root of Stein’s method is the
following simple lemma, also known as Stein’s lemma, which establishes an
integration by part formula with respect to the Gaussian measure.

Lemma 1.3.13. Let N be a real valued random wvartable. Let again v be
the standard Gaussian measure. Then, N follows the standard Gaussian
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distribution v if and only if, for all absolutely continuous functions f € L'(vy)
such that f' € L'(v),

E[|f/(N)[] + E[[Nf(N)]] < o0

and
E[N f(N)] =E[f(N)].

A multidimensional counterpart of Lemma [1.3.13] exists, this time in-
volving second order differential operators.

Lemma 1.3.14. Let C be a d X d non-negative definite matriz, and let N
be a random vector with values in R?. Then, N has the N'(0,C) distribution
if and only if

E[|(N, Vf(N))gall + E[[(C, Hessf(N))ms|] < o0

and
E[N, Vf(N))ra] = E[(C, Hess f(N)) s,

for every function f € C,?(]Rd,]R), where Hess f is the Hessian matriz of f
and (-,-)gs is the Hilbert-Schmidt scalar product on the d X d square matrix
space, i.e

VA, B € M(R%), (A, B)ys = Tr(ABT).

Proof of these results can be found in [41], p. 60 and pp. 80-81. It should
be noted that similar results can be obtained in non-Gaussian settings as
long as the target law possess a suitable form. In Chapter 4] we will make
use of the following variation in the case of reqular Gibbs measure.

Lemma 1.3.15. Let i be a probability law whose density is given by

1
g = ?e_q>, (1.23)
with ® € C(RY, R) such that
K = e @ dr < co.
R4

Then, for all absolutely continuous function f : R4 — R¢ such that
Eullf1] + Eu[l(f, VO)gal] + Eu[|Tr(V )] < o0, (1.24)

we have

Eul(f, V)] = E,[Tr(V 1)) (1.25)
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Proof. We start the proof with the case where f has compact support. We
have, thanks to Fubini’s theorem and the fact that | f;(x)le”®® — 0 for

[l =00
allie{1,...,n},

d
Eu[(f, V®)pa] = > filw e @y
i Rd Bacl

=1
n

= Z < — eq’(x)dxi> H dxj
i=1 R J#i

= ( 8fl x)dxz> H dx;
= 1 JF#

= E, [Tr(Vf

Let now f be a function satisfying the hypotheses of Lemma and
let (pn)nen: be a sequence of smooth functions from R? to R? such that
pn(z) = 1if ||z]] < n, pu(z) = 01if ||z > n+ 1 and sup,, || Vpnlleo < 00.
Then, the sequence u,, = (fpp)nen+ verifies

Epl{tn, V®)gn] = E,[Tr(Vuy)]

Thanks to ((1.24]), we can apply the dominated convergence theorem from
which the desired conclusion follows. O

The other main ingredient of Stein’s method is the utilization of the
following diffential equation, known as Stein’s equation of unknown f (here
stated in the one dimensional setting)

fi(x) = 2 f(x) = h(z) — E[A(N)], (1.26)

where N is a standard Gaussian random variable and h : R — R is a given

Borel function in L(7).

It is not difficult to show that (1.26)) admits a unique solution f = f; € L'(y
z2

verifying the decay condition fj(x)e™ 2 —> 0. By Stein’s lemma (1.3.13,

| —
we also know that E[f] (N)—N f,(N)] = 0. Puttmg these two facts together

leads to the identity

E[h(F) — h(N)] = E[f;(F) — F fp(F)], (1.27)
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for every real valued random variable F' such that E[|h(F)|] < cc.

Crucially, the identity means that the distance between any ran-
dom variable F' and the standard Gaussian distribution can be bounded by
a quantity which does not depend on the Gaussian distribution . More
formally, let us observe that the total variation distance between F' and N
given in Definition can be expressed as

dry (F,N) = sup [E[A(N) = h(F)][,

where the supremum is taken over the set G = {I4, A € B(R)}. We deduce

from ((1.27)) that

dry (F,N) = sup [E[f;(F) = F fu(F)]|,
heg
where the supremum is taken on the same set G. To bound the total variation
distance, it is then enough to find the ”image” of the set G in the space of
the solutions to the Stein’s equation.

Proposition 1.3.16. Let F' be a real valued random variable. The total
variation distance between F and N can be bounded as follows:

dry (F,N) < sup [EL'(F) = F(F)], (1.28)

where the supremum runs over the set of absolutely continuous functions f
such that || floe < v/Z. | Fllee < 2.

Similar estimates also exist for the Fortet-Mourier and Kolmogorov dis-
tances, but they will not be used in this thesis.

In order to establish a bound on dry (F, N) or to prove convergence in
total variation, it remains to exhibit a bound on the quantity

Stv(F) = Sup E[f'(F) = Ff(F)]],

known as the Stein’s discrepancy. There is no general way to establish such
a bound, so the method has to be taylored on the type of random variables
studied. A well known tool is the method of exchangeable pairs used first
in [10]. Another method, mostly used in the multidimensional setting, is to
use Stein’s kernel as a way to minimize Stein’s discrepancy, see [55, Lecture
6] for an introduction. When the random variable F' can be represented
as a functional of a Gaussian field, a powerful tool is the Malliavin-Stein
approach, which we will introduce in the forthcoming section.
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1.3.4 The Malliavin-Stein approach

The Malliavin-Stein approach is a recent and active topic of research. Its
foundations rests on two important articles: the paper [46] establishing the
fourth moment theorem and the paper [37] linking for the first time Stein’s
method and Malliavin calculus for functionals of a Gaussian field. The
main reference on this topic is the dedicated book [41] and particularly the
chapters 5-6. The basic idea is that when the random variable G belongs
to a space DP4, integration by parts formulas involving the operators of
Malliavin calculus can be used to bound the Stein’s discrepancy for the
total variation distance. This approach has been succesfully used, among
other examples, to study universality phenomenons (see [38]), to extend the
central limit theorem in total variation (see [42]), to obtain a central limit
theorem for the solution of the stochastic heat equation (see [23]) and have
been extended in the Poisson setting in e.g. [29]

We need first to introduce two additional operators.

Definition 1.3.17. Let X be an isonormal Gaussian process on a Hilbert
space H. Let F' € L*(Q2,§) with chaotic expansion F = E[F]+> "2, I,(fp(F))
for a unique sequence of elements f,(F) € H®P. Then, the Ornstein-
Uhlenbeck semigroup (P;)¢>¢ is defined as

Vt >0, BF =Y e "I (fpi1(F)).
p=0

Its infinitesimal generator L is defined by
LF = —Zplp(fp(F))
p=1
for all variables F' € Dom(L), with
Dom(L) := { F, Y p*ElL(f,(F))?] < o0
p=1

Lemma 1.3.18. Let F € DY? with chaotic expansion as above and E[F] =
0. Let us define L™'F as

LE =Y L)),
p=1 p
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Then, L~'F € DY2 and
oo
—~DL7'F = / e 'P,DFdt. (1.29)
0

We are now ready to present the main result of this section, which was
obtained first by Nourdin and Peccati in [37].

Theorem 1.3.19. Let F € DY? with E[F] = 0 and Var(F) = o® > 0.
Then, with N ~ N(0,0?)

drv(F,N) < Spv(F) < —E[lo — (DF, - DL~ F)y|]. (1.30)

To get a better understanding of this formula in a less abstract setting,
we can look at the particular (and easier) case when F' is a functional of
a Gaussian vector. This case has been investigated in [19, Theorem A.1],
and will be extended in Chapter [4] to a non Gaussian setting. The proof is
similar in spirit (but simpler) to that of Theorem|1.3.19} so we will reproduce
it almost to the identical to illustrate the type of techniques utilized.

Proposition 1.3.20. Let g be a standard normal vector in R¢ and let

H : R4 — R be square integrable with respect to vy the d-dimensional Gaus-
sian measure. Assume further that H € DY2. Set m = E[H(g)], 0% =
Var(H(g)) and

Moreowver, for t>0, set gt =etg+v1—e2tG with § an mdependent copy
of g. Let | be the expectation with respect to ¢ and E=E ® &. Then,

dry(F,N) < 2E [
U

02—/OOOe_t(DH(g),E[DH(gt)]>Rddt‘]. (1.31)

Remark 1.3.21. The Mehler formula gives an equivalent characterisation
of the Ornstein-Uhlenbeck semigroup in the d-dimensional setting as follows:
Let I = H(g), then Vt > 0,Vz € R,

(B F) () = » H(e™'z + V1 = e 2y)dy(y).

Combining this representation with the equation ([1.29) ensures that the

formula ([1.31)) indeed coincide with ((1.30)).
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Proof of Proposition [1.5.20; Without loss of generality, we may assume

that m = 0 and 02 = 1. The random vector g; = V1 — e 2lg — e~ is an
independant copy of g;, and g = e g, + V1 — e~ 2tg,.
By a standard approximation argument, it is sufficient to show the result for
H ¢ C' with H and its derivatives having subexponential growth at infinity.
Let E = E®R. If ¢ :R — Ris C', then using the growth conditions imposed
on H to carry out the interchange of expectation and integration-by-parts,
one has

E[Fo(F]
= Bl(H(g) ~ H@)o(H )] =~ [ GBI G0(H (o))
ef2t

B /ooo <€_tE<VH<§t>,g>¢<H<g>> - E<VH<gt>,g>¢<H<g>>) dt

V1—e 2

00 —t
= | A=) @ T )t

_ / e B(VH(6), VH(e g+ /1 — e2tg,)
0

x¢'(H(e g + 1 — e 2gy))dt

- [T BTG )t (1.32)
Applying the identity (1.32) to (1.28) yields the stated result. O

1.3.5 Fourth moment and Breuer-Major theorems

Another milestone of the Malliavin-Stein approach is the fourth moment the-
orem initially proved in [46] in a one dimensional setting and then extended
to multivariate setting in [47].

A usual method to prove the convergence in distribution of a sequence of
random variables to a Gaussian distribution is to use the method of mo-
ments (i.e, checking the convergence of every moment of the elements of the
sequence to those of a Gaussian random variable). This method might be
overly tedious in some instances. If the elements of the sequence belongs to
a fixed Wiener chaos, the fourth moment theorem states that one only has
to check the convergence of the second and fourth moments of each element
of the sequence to the second and the fourth moments of a Gaussian random
variable. We state the multi-dimensional version below:
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Theorem 1.3.22 (Peccati-Tudor, [47]). Let X be an isonormal Gaussian
field (with respect to H), fix d > 2 and let qi,...,qq be a family of fized
integers. Consider the random vector

F = (I (1) - 1aa(f3),

with fg € HOU for alli € {1,...,d} and all n € N*. Assume that
v1<i,j<d,
COU(FinvF]n) ? C(Za])7

where C' is a covariance matriz. Then, the two following statements are
equivalent:

(1) For alli€ {1,...,d}, E[(F")?* — 3C(i,4)?.

n—oo

(2) (F™)nen+ converges in law to a Gaussian vector F ~ N(0,C).

The most celebrated application of this result is a modern proof of the
Breuer-Major theorem. Initially proved in [5] using the method of moments,
this result establishes a Gaussian counterpart to the non-central limit the-
orem mentioned in Section in the case where the stationary sequence
(X1 )nen+ possesses short-range memory. The fourth moment theorem dras-
tically simplify the proof, and allowed to improve the result in several direc-
tions.

Another application is the following result which is of foremost impor-
tance in Chapter [2] where we investigate the asymptotic behaviour of the
quadratic variation of the multidimensional fractional Brownian motion.
The proof in the case H = % is done in Chapter [2| the case H > % was
already studied in |22, Section 5] and is much more intricate. Reading the
already very computational proof given in [22] gives a sense of how incredibly
hard it would be to try to establish the result with the method of moments!

Definition 1.3.23 (matrix-valued Brownian motion). Assume that

H e [4,3]. For H ¢ {3, 3}, define

1 t prp+1 v
qg = Z/ / / / s — w22 |v — t|* 1 2dsdvdudt,
pez /0 Y0 Jp p
1 1 v
rg = Z/ / inthrl/ s — ul?H 2 |v — t|* 1 2dsdvdudt,
peZ 0 Jt p

and let g1 = %,
2

Lemma 2.1]. Let {W%%7},o,c;<q and {W1%I} o, i<y be two independent

ri =0and g = rs = 3. We have gy > rg by [22,
2 4
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families of independent standard Brownian motions, both independent of
our underlying process B. We set W% = W94 for j < i. The matriz-
valued Brownian motion (Wi’j)lgi,jgd is then defined as follows:

Wi’j _ CH\4H + TH Wl"i"'j o iti= j’ (1 33)
i =W e rgWis iti 2y,

with the convention that c1 = 1.
2

Proposition 1.3.24. Let B be a d-dimensional fractional Brownian motion
of Hurst index H € [5,3]. Let vg(n) = /n if H < 3 and vs(n) = o
4

foralln > 2. Foralln >2,1<14,5 <d, let us consider the process

[n]-1 ktl,.

—=A
0% = > / (By — B..)0B]
k=0 Yn "

n

(here, the integral is understood as a Skorokhod integral with respect to the
field generated by the d-dimensional Brownian motion B). Then, for any
B-measurable random wvariable F', the following convergence holds in the
Wiener space Craxa([0,T]):

(F, (On)nz2) — (F,W) (1.34)

n—oo

where W is the independent matriz-valued Brownian motion defined above

in Definition [1.5.25.

1.4 Overview of Chapters[2|to[4], which constitutes
the new results obtained in this thesis

1.4.1 Chapter

Work based on the paper [14)], currently in revision for the Electronic Journal
of Probability, entitled ”Asymptotic error distribution for the Riemann ap-
prozimation of integrals driven by fractional Brownian motions” and written
i collaboration with Ivan Nourdin and Pierre Vallois.

Let B = (By,...,Bg) be a d-dimensional fractional Brownian motion
with Hurst index H € [$,1) over [0,7] and let u = (uy,...,un) be a B-

measurable stochastic process. We assume that the integral fo udB is well
defined (either as an It6 integral if H = % or as a Young integral if H > %)
In [14], we investigate the following problem: under which conditions over
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the process u does the approximation of [udB by its Riemann sum verifies
a limit theorem? More precisely, is there a sequence (ay)nen, @ process X
and a mode of convergence — such that:

an, / u'dBl — Zu% ( e Bé) vd (X i<mj<d?
1<m,j<d

(1.35)
Since computing stochastic integrals requires this kind of approximation
schemes, the problem ([1.35)) is natural from a practical point of view. The
first paper to tackle this problem was [51] in the (standard, one dimensional)
Brownian setting for processes u of the form us; = f(Bs), with f a regular
enough function. It established the following convergence result.

Theorem 1.4.1.

. Ln-]
| FBaan =Y 1B (Bess, - 8,) | L - [

k=0
(1.36)
with W a Brownian motion independent of B.

Surprisingly, the problem has received relatively little attention
after [51] (especially in the fractional Brownian motion case), even though
a substantial amount of litterature has been dedicated to the related ques-
tion of error quantification for approximation schemes of SDEs, both in
the Brownian motion setting (e.g [25]) and, more recently, in the fractional
Brownian motion setting (see e.g [22] and [35]).

In Chapter 2, we establish a general framework to tackle the problem

, which we summarize below (without entering too much here into the
technical details).
Inspired by the notion of controlled paths, we define a notion of pseudo
derivative P for the process u, whose role is to mimick the process f'(Bs)
which appear in the specific case described by Theorem This process
P naturally appears in the limit, provided we can bound the quantity u; —
us — Ps(B; — Bs) for all s,t € [0,T].

Definition 1.4.2 (See Definition [2.1.1)). Fix a € {1,2}. We say that the
pair (u, P) belongs to C, if

o P= (P )tg[o T],1<i<m,1<j<d 15 & 0{B}-measurable m x d-dimensional
process ;
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° fst u,indBﬁ is well-defined for any 1 <¢<mand 1 <j <d;

E L8] L2, | = o(fals,t.2,) (1.37)

forall 1 <i<mand 1 < j <d, uniformly on (s,t,x,y) € [O,T]4 such
that s <tand x <yas [t —s|+ |z —y| =0,

where .
Ly, :/ {u;‘, —ul— > PH*(By —Bf)}ng. (1.38)
$ k=1

Here, f1, f2 are two functions from [0, T]* to R, whose precise definition
will be given in the introduction of Chapter

We also rely on (and extend when necessary) various results established
regarding the weighted power variations of the fractional Brownian in order
to establish the limit X. These results describe the asymptotic behaviour

of the quantity
[n-]

an g zrf (Bm/\_ - B£>7
n n n
k=0
where x is a stochastic process, (a,)nen+ & normalization sequence and f a

suitable function (most of the time a polynomial).

For n € N*, let (M;l’i’j)te[o,T},igm,jgd be the matrix-valued process whose
entries are

Lnt)

t
ni,j . 2H-1 j
M :=n /udBj g uk< k+1/\t_B]k)
n n

In [14], we establish the following two results:

Theorem 1.4.3 (See Theorem . Fiz H € (3,1) and let (u,P) € C,
be such that v and P are U{B}—measumble, where P is a.s. continuous and

satisfies K [HPH%;HY} < 400 for some v > 0. Then, uniformly on [0,T] in
probability,

i 1 T
n,,J - %,
{M' }1§i§m’1§jgd e {2 /0 Y d8}1<i<m 1<j<d‘ (1.39)

Moreover, this convergence also holds in L*(Q) for any fized t € [0,T).
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Let us define the function vg by:

v ifHE[5,3)
va(n) =4 /n/lnn if H=3 , n>1

n?—2H if H € (

[y

1)

Theorem 1.4.4 (See Theorem. FizH € [3,1), and let Z = (Z"9) 1<y j<q
(resp. W = (WH3), <y j<q) denote the matriz-valued Rosenblatt process mea-
surable with respect to B (resp. the matriz-valued Brownian motion inde-
pendent from B) constructed in the Section 2.2.5 in Chapter@ (see also the
Section above).

(A) [non-Brownian case H > 1] Assume (u,P) € Cy is such that u is
a-Holder continuous for some o > 1—H and P is f-Holder continuous over
[0,T7] for some B> 3.

o If 1 < H <2 then, stably in Crmxa([0,T1),

{I/H(n) (M_n’i’j - 1/. Pj’jds>}
2 Jo 1<i<m,1<j<d

d .
ik j1rk.g
Ay ) ’

1<i<m,1<j<d

where the integrals in the right-hand side are understood as a Wiener
integrals.

e If 2 < H < 1, assume in addition that Z?Zl ZﬁlEHPi’jH%JW < 00
for some v > 0. Then, uniformly on [0,T] in probability,

{VH(n) (M‘”’i’j - 1/. P?jds)}
2 Jo 1<i<m,1<j<d

d .
ik g7k,
R ) ’

g i R

where the integrals in the right-hand side are understood as Young

integrals. Moreover, this convergence also holds in L?(2) for any fived
t€[0,T].

(B) [Brownian case H = 1] Assume (u,P) € Cy is such that u and
P are progressively measurable, and P s a.s. piecewise continuous with
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E [||P|\gj'q < 400 for some v > 0. Then, stably in Crmxa([0,T]),

d .
{VH(n)M~n”}1§i§m,1§j§d n:fo {Z/o PordW J} )
k=1

1<i<m,1<j<d
where the integrals in the right-hand side are understood as Wiener integrals.

From a heuristic point of view, the threshold H = % appearing above was
somehow expected, as it already appears when dealing with the quadratic
variation of the fractional Brownian motion, see the paper [39] for a synthe-
sis. The main innovation of our work is the introduction of the more general
framework defined above, with the spaces C; and Cs.

We then explore various illustative examples.

e We use an estimate taken from [20] to prove that processes of the form

ugzz/o ag,jd3g+/0 bds, i€ {1,....m}

verifies the hypothesis of Theoremwith P = g% (provided that
a is regular enough). Depending on the value of H, an additional term
involving b’ might also appear in the limit. As a particular case, we
recover the case u = F(B) where F is a regular function R? — R™.,

e We use Malliavin calculus to tackle the case where the marginals of u
can be expressed as multiple Wiener integrals.

e We establish a sufficient criterion for Theorem [[.4.4] to be verified in
the specific case where B is a standard Brownian motion.

e Finally, we study the ”limit” case us = F(Bs) where F' is a convex
function (so not necessarily C!). Although we can not directly use
Theorems [I.4.3] and to study this case, we were able to prove the
following result.

Proposition 1.4.5 (See Proposition . Fiz H € (3,2). Let us =
F(Bs), s € [0,T], with F' a real convex function such that, for some
K >0 and v € (0,2),

|z

|F(z)| + |F'(x)| +/ (la| + D)dF"(a) < Kel*I",  z e R,

—|T
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where F' is the right derivative of F' and F" denotes its second deriva-
tive in the distributional sense (a simple ‘non-smooth’ example is given
by x — |x|). Then, for all t € [0,T],

t [nt]
M = n2H-1 / ZF Bk+1/\t By)

F/
n—)oo 2

1.4.2 Chapter

Work based on the paper (15], entitled ” Limit theorem of integral functionals
of Hermite-driven process” and written in collaboration with Ivan Nourdin,
David Nualart and Magjid Salamat. Bernoulli 27 (2021), no. 3, pp. 1764—
1788.

We consider the following moving average process

¢
X(1) ;_/ 2t — w)dZu, t >0, (1.40)
—0o0
where z is a sufficiently integrable function and Z is a Hermite process of
parameter ¢ > 1 and Hurst index H € (%, 1). Here, the integral should
be understood in the sense defined in Section [[L2.51 We are interested in
studying the fluctuations as T" — oo of the sequence
T
t— P(X(s))ds, t €[0,1] (1.41)
0

when P is a polynomial. The study of these fluctuations are useful, from a
statistical point of view, in order to derive parameter estimation methods.
For example, the paper [44] establishes the consistency of estimators of the
parameters of a Hermite-driven generalization of the Vasicek model. Our
work [15] is a continuation of the particular case of studied in the
paper [60] with P(z) = 22. When general polynomials are considered, and
depending on the parity of the coefficients of P, a rather surprising behavior
arises, which contrasts with the ”"Breuer-Major” type behavior observed in
the Gaussian case. We also establish convergence in C([0,1]) whereas [60]
only looked at finite dimensional distributions.

Let d be the centered Hermite rank of P (see Section [1.2.3]) and
1-H
P

Hy=1-
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The following three theorems are the main results established in this part
of the thesis.

Theorem 1.4.6 (See Chapter Proposition . Let Z be a fractional
Brownian motion of Hurst index H € (1,1) and let x € L*(Ry) N L%(R+).
Consider the moving average process X defined by and assume without
loss of generality that Var(X(0)) = 1 (if not, it suffices to multiply x by a
constant). Assume that ¢ > 2 and the following condition holds: Vr €
{1,...,q— 1}, lim,, || fo ®» fSHLZ(R2q72'r) =0, with

s q

_3
fs(yla ce e )yq) = ]I(foo,s]q(yl,...,yq) / x(s - U) H(u - J;i)HO 2du.
Yy1V...Vyq i=1
Then, for every measurable function f such that E[| f(Xo)|] < oo,
1 Tt
T f(X(s))ds — tE[f(X0)] a.s.
0 T—o0

Theorem 1.4.7 (See Chapter |3, Theorem . Let 7 be a fractional Brow-
nian motion of Hurst index H € (3,1) and let x € LY(Ry) N L%(RJF).
Consider the moving average process X defined by and assume with-
out loss of generality that Var(X(0)) =1 (if not, it suffices to multiply = by
a constant).

(1) If d > 2 and H € (3,1 — 55) then

NG

i M) - BLPX(6))])ds

tel0,1]

converges in distribution in C([0,1]) to a standard Brownian motion
W, up to some multiplicative constant Cy which is explicit and depends
only on z, P and H.

(2) If H € (1 —55,1) then
Tt
d(1—H)—1 §)) — Nds
T { /0 (P(X(s)) - E[P(X(s))])d }tem

converges in distribution in C([0,1]) to a Hermite process of index d
and Hurst parameter 1 —d(1 — H), up to some multiplicative constant
Cy which is explicit and depends only on x, P and H.
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Theorem 1.4.8 (See Chapter [3, Theorem [2). Let Z be a Hermite process
of order ¢ > 2 and Hurst parameter H € (%,1). Let x € Sp for some
L > 1 (where Sy, is the set of bounded functions | such that y“I(y) —

ly|—o0
0). Consider the moving average process X defined by (1.40). Finally, let
P(z) = 22[:0 anx™ be a real valued polynomial function. Then, one and
only one of the following two situations takes place as T — oo:

(1) If q is odd and if an, # 0 for at least one odd n € {1,..., N}, then

v [ Y s - BIPCX(9)]ds

te[0,1]

converges in distribution in C([0,1]) to a fractional Brownian motion
of parameter Hi := Hy, up to some multiplicative constant Ky which
is explicit and depends only on x, P,q and H (the constant possesses
an intricate expression and is explicitely computed in the paper).

(2) If q is even, or if q is odd and a, =0 for all odd n € {1,..., N}, then

o { M) - EIPOX(s)))ds

te(0,1]

converges in distribution in C([0,1]) to a Rosenblatt process of Hurst
parameter Hy := 2Hy—1, up to some multiplicative constant Ko which
is explicit and depends on x, P,q and H (similar remark as above).

The proof technique relies on a fine study of the chaotic decomposition
of the process X viewed as a multiple Wiener integral. As a by-product
of this analysis, we introduce the novel notation ®q(h1,...,hy) for multi
index contractions of symetric elements (h;);en+ of L2(RY), and establishes
the following multi-index version of the product formula.

Lemma 1.4.9 (See Chapter [3), Lemma . Let n,q > 2 be some integrers
and let h; € L2(RY) fori=1,...,n. We have

n

[T7) = Y Calng-sja)(@alhn, ..., b)),

k=1 a€An 4

where I, is the g-th multiple Wiener integral with respect to the standard
Brownian motion, Cq is a constant which depends on o € A, 4 and A, 4
is a suitable set of multi-index o = (o j, 1 < i < j < n) which is made
explicit in Chapter[3
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Finally, we apply our result to a generalized version of the stationary
Ornstein-Uhlenbeck process, i.e. the case where the driving function x can
be written as x : s — e~ *’Ig, (s) for some o > 0. This process, relatively
well studied in the case where the driving process is a fractional Brownian
motion (see [7] or the seminal paper [9]) had received a lot of attention
attention very recently, with papers initiating a study about parameter es-
timation (see [1], [44] or [60]). We also combine the well-known Birkhoff
ergodic theorem with a criterion established in [43] to prove a first order
ergodic theorem for the Hermite-Ornstein-Uhlenbeck process.

Remark 1.4.10. Shortly after the release of our paper, the paper [17]
was also released, independantly proving similar results in a more general
(though also more abstract) setting. This paper also contain a nice ap-
plication to homogeneization of differential equations, thus illustrating the
potential scope of this result.

1.4.3 Chapter

Work in progress currently titled ”fluctuation of the Hadwiger- Wills infor-
mation content”, written in collaboration with Ivan Nourdin.

In this study, as a departure from the aforementioned works, we no
longer investigate the asymptotic behaviour of a functional of a Gaussian
field. Rather, we focus on a log-concave functional which was introduced by
Hadwiger in [21] in a geometric context.

Definition 1.4.11 (Distance law). Let K be a convex body in R? (i.e a
convex compact set) for some d € N*. The distance law with respect to K
is then the probability measure pux on R? with density given by

1 —71'21'
fug 1x— 7W(K)6 d*( ’K),

where

W(K) :/ e @ K) gy
R4
and d(-, K) is the Euclidian distance with respect to K.

Definition 1.4.12 (Information content). If X is a R? valued random vari-
able with density f,,, its information content is the random variable

HMK == log(qu (X))
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The notion of information content is of particular interest in information
theory. In this paper, we will study the information content of the distance
law with respect to a convex body K, that is, the random variable

H,, =nd*(X,K) + In(W(K)) with X ~ pug. The functional Hy := H,,

is of particular interest for its connections with geometric invariants of the
body K. Indeed, there is a correspondance between H,,, and the distribu-
tion of the intrinsic volumes of the body K through the Steiner formula.
This fact is in particular used in the paper [30] to establish concentration
bounds for the variance of the intrinsic volumes distribution of the convex
body K.

In our work, we establish a central limit theorem for the information
content of the distance law H,, (as the dimension d of the space goes to
infinity). The main result is a quantitative bound on the total variation
distance obtained with the use of Stein’s method. Although in some par-
ticular case (for example, when K is a cube), the central limit theorem can
be obtained through elementary computations, the general case requires a
more sophisticated methodology.

Theorem 1.4.13 (See Theorem {.1.1). Consider a sequence (Ky)n>1 of
non-empty convex bodies and suppose, for each n, that

o K, C R%™ with d,, — co;
e the boundary 0K, of K, is C?;

o K, is symmetric in the sense that there exists y € K, such that x €
K,=2y—zec Ky;

o the quantity N} := mingcar, N (), where M () denotes the min-
imal principal curvature of 0K, at x (see Section , satisfies
0 < AP <1 (in particular, K, is strictly convez) and 5= = O(d})

1

as n — 0o, for some % > v > 0 independent of n.
Then, there exists o, 8 > 0 independent of n such that
Hy —EHpg 9v—d
dpy | 25— 22K N0 1) ]| = 0 (d7 ) 1.42
T ( Var(HKn) ( )) n—oo \ Yn ( )
as n — oo. In particular, Hg, satisfies a central limit theorem:

Hy, —EHgk,

— N(0,1) asmn — oo.
Var(HKn)
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The proof of the above theorem is inspired by the paper |19], which es-
tablished, among other results, a central limit theorem for the projection of a
Gaussian vector over a convex cone using Stein’s method. Though, the non-
Gaussian character of our setting involves different and more complicated
techniques.

The proof of Theorem [1.4.13| relies on the following ingredients.

(1) We establish a generalization of the Malliavin-Stein formula (1.31)) to
the case where the target random variable F' can be expressed as a
functional of a continuous Gibbs measure. This formula applies in
particular to the functional Hg.

Proposition 1.4.14 (See Proposition and Remark [4.4.2)). Let
d € N* and let X be a random variable with values in RY. Assume
further that X has a density satisfying

1
fX(x) = ?€_¢(z)’

with ® a twice differentiable, absolutely continuous function such that

e~ ® is integrable.

Let F = % with 0? = Var(f(X)) > 0,u = E[f(X)] and f €
CYH(RLR) a function such that V f is absolutely continuous and

E[f(X)" + [IVF(X)|I] < oo

Let X be an independent copy of X, E the expectation with respect to
X and E=EQ®E. Finally, for allt € Ry, define

X;=e !X +/1—e2tX.

Then, we have, for all v > 0:

dry (F,N) (1.43)
< 2y var ([T s B sc)a)
oyl Bl (57) (Pro o= Soe0o)
e—2t

- (X - Ve at],

46



where N ~ N(0,1), dpy is the total variation distance and
T
6= {o e BRIV R o) < lal+ .10 @) < 2.

We then use the Brascamp-Lieb inequality from [4] to bound the vari-

ance in the expression (|1.43)).

Since the Brascamp-Lieb inequality only applies to strongly log-concave
random variables (which is not the case of a random vector X follow-
ing the distance law as soon as K # {0}), we need to introduce a
modified version X of X which is strongly log-concave, and such that

dry(d?(X, K,),d*(X,K,)) — 0.

dp—00

We then prove that the log-concavity index of the random vector X is
tied to the curvature properties of the boundary 0K of K, hence the
condition in Theorem [1.4.13|
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Chapter 2

Asymptotic error
distribution for the Riemann
approximation of integrals
driven by fractional
Brownian motion

Reproduction of the paper [14)], currently in revision for the Electronic Jour-
nal of Probability, entitled ”Asymptotic error distribution for the Riemann
approzimation of integrals driven by fractional Brownian motions” and writ-
ten in collaboration with Ivan Nourdin and Pierre Vallois

2.1 Introduction

Fractional Brownian motion was introduced by Kolmogorov [16] in the 40’s.
Mandelbrot and Van Ness [20] popularized it and gave some quantitative
properties. Since then, its range of applications has been steadily grow-
ing: for example, nowadays it can serve to recreate certain natural land-
scapes (such as submarine floors, see [29]) or to model rainfalls (see [35]).
It also often serves as a model in hydrology (e.g. [22]), telecommunications
(e.g. [17,21]), finance (e.g. [4]) or physics (e.g. |36]), to name but a few. Since
the explicit calculation of stochastic integrals driven by fractional Brownian
motion is impossible except in very particular cases, it is natural to try to
approximate these integrals by Riemann sums and to study their conver-
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gence.

In [32], Rootzén considered the It6 integral fot usdB;s of an adapted inte-
grand u with respect to a standard Brownian motion B, and investigated the
asymptotic behavior of the approximation error fot usdBg — fg uldB when
u" are approximating integrands (for instance, we can choose u" so that
fg ulldBs corresponds to the Riemann sum associated with fot usdBs). Us-
ing It6 stochastic calculus, Rootzén [32] exhibits after proper normalisation
a stable limit of the form fg asdW, with W a Brownian motion independent
of B. As an illustration, he applied his abstract result to prove a func-
tional central limit-type theorem in the space Dr([0,7]) of cadlag functions
equipped with the Skorohod topology, and with us = f(Bs) (provided f is
smooth and bounded enough):

¢ [nt]—1
Vi | [ #B)dB. =Y (BB - By)
0 k=0 t€[0,T]
t
e (\f/ f’(BS)dWS> . (2.1)
n—00 2 0
t€[0,T]

Rootzén’s work [32] paved the way for a new area of research on the
subject and related topics. For example, we can mention multidimensional
extensions (see [1§]), generalizations to the case of random discretisation
times (see [9]), applications in finance (see [11]) and approximation schemes
of stochastic differential equations (SDEs) driven by semimartingales (see
[14]). The recent paper [1] provides an asymptotic expansion for the weak
discretization error of It0’s integrals.

Approximation schemes for SDEs driven by a fractional Brownian mo-
tion has been addressed in [13,23]. But Riemann sums approximations of
stochastic integrals with respect to fractional Browian motion, as done by
Rootzén [32] in the case of the standard Brownian motion, had not yet been
studied; the aim of this article is to fill this gap.

In the present paper, we deal with a fractional Brownian motion B of
Hurst index H € [%, 1). All the processes considered in this paper will
always be implicitly assumed to be measurable with respect to B. Also,
note that the range of H includes % (corresponding to Brownian motion),
which will allow us to compare our results with those of [32]. Our goal is
to analyze the fluctuations around the approximation by Riemann sums of
stochastic integrals with respect to a fractional Brownian motion. We will

set up an approach based on two main steps.
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e Step 1: weighted limit theorem. Let (u™) be a sequence of processes of

the form v = ]EZJI X} for which a functional convergence u" — w
holds. We extend this convergence to

] .
thx;g—>/ hedws
k=1 0

for a given class of appropriate random processes h, and where the
nature of the integral with respect to w (It6, Young, etc.) is chosen
according to the features of w. When the sequence (X}) is built from
the increments of a fractional Brownian motion, this type of questions
has received some important contributions in recent years, see e.g. [19)
and the references therein. We also mention |13|, which was actually
our main inspiration for this step.

e Step 2: Tuaylor expansion. To perform Step 1, we assume that our
integrand w is ‘controlled’ by the increments of the integrator B, in the
sense that there is a process h and a remainder r such that u; = us +
hs(Bt — Bs) 415+ for any t > s. These types of Taylor-like expansions
are strongly related with the notion of controlled paths studied in the
rough path theory, see [12]. We will characterize precisely the set of
such processes below.

The statement of the two main Theorems [2.1.2] and [2.1.3] require the
introduction of notations:

(i) a d-dimensional fractional Brownian motion B = (B',..., B%) of
Hurst index H € [%, 1) (as already mentioned, all the processes considered
in this paper are implicitly assumed to be measurable with respect to B);

(ii) an m-dimensional process u, with the property that the stochastic
integrals fg uldBl, 1 <i<m, 1< j<d, are well-defined. At this stage,
we note that the integrals [ u*dB? must be understood in the Young sense
when H > % and in the It6 sense when H = % Precise statements will be
given later on.

(iii) our quantity of interest: for ¢t € [0,7], 1 <i<m, 1 <j <d,

M = 2t (/ ugdBl =) ' <Bjk+1m - Bjk)) (2:2)
0 n n n

k=0

t

_ . 2H-1 i j

= n /(us—usn)dBS.
0
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In 1) and in all what follows, we write ¢, = % when ¢t € Ry and
n € N\ {0}.

(iv) the correlation function: for all ¢ > s and all y > x,

TH(S,t,ZL‘,y) = E [(Btl - B;)(B; - Bi)]

1
= 5 (= o s — P |5 — a2 — |t —y2H)

(v) the rate function at zero

Voo ifHE(33)
kp(v) =4 yJvlnl ifH=3 , ve(0,1]
w22 if e (3,1
(vi) the rate function at infinity
Vi ifHE5 )
va(n):=<¢ /n/lnn  ifH =3 , n>1.

n?72H fH e (3,1)

In addition, we assume that the process u considered in point (ii) satisfies
a structural condition, that we describe now. Set

[N

fl(87taxay) = ’t_SIZHillm_y’2H71TH(87taxay);
fg(s,t,x,y) = f1(37t7xay)"<'3H(’t_S’)/{H(‘x_y‘)'
We introduce the two following spaces C; and Cs of pseudo-controlled paths.

Definition 2.1.1. Fiz a € {1,2}. We say that the pair (u, P) belongs to C,

e P= (th)tE[O,T],lgigm,lgjgd is an (m x d)-dimensional process ;

° fst u,indBﬁ is well-defined for any 1 <i<m and 1 <j <d;
. ..
E[L3] L] = o(fuls,t,2,9) (2.3)

forall1 <i<m and1 < j <d, uniformly on (s,t,z,y) € [0, T]* such
that s <t and x <y as [t — s| + |z —y| — 0, where

e R ERTE LTl PR
S

k=1
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We note the obvious inclusion Co C C;. We give two examples to un-
derstand Definition For the first one, we consider the case where each
component u* of u is a “fractional semimartingale”, namely

d . t
d=ubr s [Lavam+ s tepT)
j=170 ’

Then, under certain assumptions on a and b (see Section for precise
statements), the pair (u,a) belongs to Cy with a = P.

For the second one, we assume that m = d = 1 (for simplicity) and
that u has the form of a multiple Wiener-It6 integral of order ¢ > 1; then,
with Ps = Dgus (where D indicates the Malliavin derivative) and under
some conditions, the pair (u, P) belongs to Ca, see Section for precise
statements.

We can now state our two main results. The framework of Theorem 2.1.2]
is general (assuming that the pair (u, P) belongs to C; and satisfies other
technical conditions) and concerns the convergence of M™%/ as n — oo in
probability, towards an identified limit. The situation where H > % differs
significantly from H = %, because in this latter case M™%J converges in law
(but not in probability, because of the creation of an independent alea, see

e.g. (2.1)).
Theorem 2.1.2. (First order convergence) Fix H € (%, 1) and let (u, P) €
2 < 4o for

some v > 0. (Here and throughout the paper, we write || - ||oo to indicate the
uniform norm over [0,T).) Then, uniformly on [0,T)] in probability,

. 1 /..
n,,J - ?,]
{M. }1§i§m,1§j§d n_)—go {2/0 P d8}1<i<m1<j<d. (2.5)

Moreover, this convergence also holds in L*(Q) for any fized t € [0,T).

Theorem m give sufficient conditions for (2.5 to take place. These
conditions are however not necessary: we develop in Section an exam-
ple where the assumptions of Theorem [2.1.2] are not satisfied whereas the

convergence ([2.5)) holds.

Let us now study the fluctuations of M™ around its limit.

Cy be such that P is a.s. continuous and satisfies E [HPH

Theorem 2.1.3 (Second order convergence). Fiz H € [3,1), and let Z =
(Zk’j)lgk,jgd (resp. W = (Wk’j)lgk,jgd) denote the matriz-valued Rosen-
blatt process measurable with respect to B (resp. the matriz-valued Brownian
motion independent from B) constructed in Section .
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(A) [non-Brownian case H > 3| Assume (u,P) € Cy, u is a-Hélder

continuous for some o > 1 — H and P is B-Hélder continuous over [0,T]
for some B > %

° If% <HL % then, stably in Crmxa([0,T]),

A T
{VH(n) <M_n’w - / P;st>}
2 Jo 1<i<m,1<j<d

d .
ik 117k
Ay ) /

1<i<m,1<j5<d

where the integrals in the right-hand side are understood as Wiener
integrals.

e If 2 < H < 1, assume in addition that Z?:l Z?;lEHPi’jH%—M < 00
for some v > 0 where, here and throughout the paper, || -||g indicates
the usual [-Hdélder seminorm (see also (@) Then, uniformly on
[0,T] in probability,

{Z/H(n) (M,”’i’j — 1/. Psi’jds>}
2 Jo 1<i<m,1<j<d

d .
ik 1k,

1<i<m,1<5<d

where the integrals in the right-hand side are understood as Young
integrals. Moreover, this convergence also holds in L*(S2) for any fived
te0,T].

(B) [Brownian case H = 1] Assume that (u,P) € Co, that u and P
are progressively measurable, and that P is a.s. piecewise continuous with

E [HPH?,SW} < 400 for some vy > 0. Then, stably in Crmxa([0,T]),

d ..
{VH(n)M~n”}1gi§m,1§j§d njo {Z/o Pyrdw ]} )
k=1

1<i<m,1<j<d
where the integrals in the right-hand side are understood as Wiener integrals.

In Theorem we could have considered non-uniform or even random
subdivisions (like done in [9] in the semimartingale context) but this would
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have led to significant technical complications due to the non-stationarity
of the resulting sequence of increments. Similarly, we could also have re-
place the fractional Brownian motion by a general Gaussian processes with
a covariance function assumed to behave locally as that of the fractional
Brownian motion.

The rest of the paper is organized as follows. Section 2 contains some
reminders and useful results about Malliavin calculus and fractional integra-
tion. In Section 3, we discuss in details some examples. Finally, the proofs
of the main results are given in Section 4.

2.2 Preliminaries

2.2.1 Notation

In the sequel, N (resp N*) will denote the space of nonegative (resp strictly
positive) integers, C¥([0,T]) (resp CF([0,71])) the space of k-times continu-
ously differentiable functions (resp k-times continuously differentiable with
bounded derivatives) over [0, 7], and C?([0,7T]) the space of §-Holder con-
tinuous functions (with # € (0,1)) endowed with the #-Holder seminorm,

ie
£ () = f(s)]
fllo= sup LY=L
I o<s<t<T [t — 5[’

We also consider the space Cre ([0, T) of functions [0, 7] — R? endowed with
the norm || - ||oo of uniform convergence over [0, 7], the space Dgy([0,7T]) of
cadlag functions endowed with the Skorokod topology J; and, for p > 0, the
space LP()) of random variables endowed with the LP(Q2)-norm || - [|,.

(2.6)

2.2.2 Reminders of Malliavin calculus

This section is a condensed summary of some notions presented in [26,27,30].

It is the occasion to fix the notation used in the paper. For more details or

missing proofs, we refer the reader to the aforementioned references.
Starting from now, we fix once for all an horizon time 7" > 0 and a

complete filtered probability space (Q, (t) te[0,T] g = ST,IP’). We consider
a d-dimensional fractional Brownian motion (By)iejo1] = (Bf, . .. ,Bf)te[o’ﬂ
defined on 2. We assume that the filtration (gt)te[O,T] is generated by B.

Let B be the Gaussian space spanned by the (one-dimensional) fractional
Brownian motion Bl. Let € be the linear space of step functions over [0, T'|
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and let ‘H be the Hilbert space obtained as the completion of £ with respect
to the inner product induced from B':

(Tjo.,Tjo,) ) = E[B{B], 0<s,t<T.

The linear map defined on & by ® : Ijg 4 — B} is an isometry from (&, (., .)%)
to (B,E[.,.]), and can thus be extended to an isometry from the whole space
H.

For H = §, we have # = L*([0,T]). When H > 1, it is well known that
‘H contains distributions, and therefore is not a subspace of some convenient
functional space, see [30]. This is why we introduce the subspace |H| of H,
which is defined as the set of measurable functions f : [0,7] — R such that

/[ 2 |f(@)|f ()| pa (dody) < +o0,

)

with

p (dzdy) = H(2H — 1))z — y|*2dzdy.
From [30], we have that (|H], || - [[3) is a Banach space with respect to the
norm || - [|1, defined as

1= [ 5@ lun(dody)
[0,7]?
We observe that || |l < || f]l# for all f € [H].

Still for H > %, we define |H|®P, p € N*| to be the Banach space of
measurable functions f : [0,7]? — R such that

p

i=1

and we observe that |H|®P C H®P.

Let n € N* and let S, be the space of infinitely differentiable func-
tions f : R™ — R such that f and all its derivatives have at most poly-
nomial growth. We consider the Schwartz space C composed of all cylin-
drical random variables, that is, of all random variables F' of the form
F = f(By,...,B,), withn e N*, f €S, and t1,...,t, € [0,T].

The pth-order Malliavin derivative of F' € C is the element

DPF = {D?Jl"l‘;ij N ST lp € [07 T]}lﬁjh---v]‘pﬁd

L1yeeey
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belonging to N,>1L"(Q, (H®P)®%P) defined as

Dpvjlv---yij _ Zn: apf (B B )ﬁH (l)
boalp 5 Bk gahedp Lt Pt) L1010
k1, kp=1 i=1

Since these operators are closable in L" (€, (H®P)®%) for all r > 1, we
can consider the Sobolev space DP" as the closure of C with respect to the
norm

p d
1Flnr =BIFFT+ 30 3 E[ID™ Flen]

In the same way, it is possible to define the Malliavin derivative for step
n—1

processes u of the form u = Y Filly, 4. 1 (Where n € N*, g = 0,t1,...,t, €
i=0

[0,T] and F1,...,F, € C), and to consider the associated spaces DP"(H).

In order to only deal with functions (and not distributions), we consider the

subspace DP"(|#H|) of DP"(H), which is by definition the set of u € DP"(H)

that are such that u € [H| a.s, D'u € (|H|®?)® ass, ..., DPu € (|H|®P+1)@dp

a.s. This subspace is endowed with the norm

p d
[l pe.r ey = Ellullf + E |[[D™ 0T[5 @ | -
(1) [H] [H]

m=1j1,....jm=1

Let u € L*(, H®?) be such that [E[(D'F, u)ye4]| < Ku/E[F?] for all
F € C, for some constant K, depending only on u. We then say that u
belongs to the domain Dom(§!), and we define the Skorohod integral §' as
the adjoint of D!, that is, §'(u) is the uniquely determined random variable
in L?(2) verifying the duality relationship:

E[(D'F,u)304] = E[FS§'(u)] for all F € D2, (2.7)

In the same way, if u is an element of L%(Q, (H®P)®P) (p > 2) we de-
fine 6P = ((5p’j1""’jp)1§jl7. <4 as the adjoint of DP = (Dp’jl""’jp)lgjl,m,jpgd
through the identity:

"7jp

E[(DP F, u) yeryoas] = E[F6?(u)] for all F' € DP?.

We can show that DP2(H) C Dom(6P).

The following two results will be also useful. The first one is a straightfor-
ward consequence of the Hardy-Littlewood-Sobolev inequality (see [3, The-
orem 6]), whereas the second one corresponds to [27, Proposition 1.3.1].
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Proposition 2.2.1. 1. Fiz an integer k > 1. There exists M > 0 such
that, for all u € L*(Q, L?([0,T]%)),

E [Jull3ger] < ME [Jul320 276 (2.8)

2. For all u,v € DY2(H) and j € {1,...,d}, we have

E[0" ()61 (v)] = E [(w, v) ] + E [(DMus, Do) yon] . (2.9)

2.2.3 Multiple Wiener-Ito6 integrals

Throughout all this section, we assume for simplicity that the underlying
fractional Brownian motion is one-dimensional, i.e. that d = 1. We write
D¥ (resp. §%) instead of D¥:L1 (resp. §%1r1).

When the process u is deterministic in H®¥, its Skorohod integral 6% (u)
is called the kth-order Wiener-1t6 integral of u. If u denotes the symmetriza-
tion of u (see the footnote , we have 6% (u) = §¥(u); we can therefore assume
without loss of generality that u is symmetric. In what follows, we denote
by H®% the set of symmetric elements in H®*.

The following statement summarizes what is needed about multiple Wiener-
Ito integrals in this paper. We refer e.g.to [26] for the proofs.

Proposition 2.2.2. 1. (Isometry) For all integers k,1 > 1, all f € HOF
and all g € H®!,

E[5k(f)5l(9>] = k[, 9>H®’“H{k:l}~

2. (Hypercontractivity) For all v > 2 and all integer k > 1, there exists
Crr > 0 such that, for all f € HOF,

E[105(NI] < BI85 (I,

3. (Malliavin derivative) If us = 68(f(.,s)) with f € HOFETD symmetric
in the k first variables, then u € DV2(H), with

Dguy = k68 L(f(.,t, 5)).

'If {e;};>1 denotes an orthonormal basis of H and if u is given by u =

~ ‘ o ‘
Zjl ,,,,, Ge>1 Q1,enik € @ B gy thenu = >, Zjl ..... Gr>1 TitseninCioay @« © €y
where the first sum runs over all permutation o of {1,...,
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4. (Product formula) Fiz f € H®% and g € HO' and, as usual, let ®,
(resp. (’8;) denote the contraction operator (resp. the symmetrization
of the contraction operator) of order r, see [20, Appendiz B] for a
precise definition. Then,

s =3 n(*) (1) s

r=0

2.2.4 Fractional Integration

This section gives a brief summary of the useful properties related to the
Young integral when the Hurst index H is strictly bigger than %, see [37.[39)
for more details.

The following result extends the Riemann integral to a larger class of
integrands and integrators. For p > 0, we use the classical notations
CP~v7(]0,T]) to denote the space of functions f : [0,7] — R with finite
p-variations. It is well known that #-Holder continuous functions have %—
finite variations.

Proposition 2.2.3. Suppose p,q > 0 are such that % —1—3 > 1. If f e

CP=v([0,T]) and g € CT"*([0,T)) (with g continuous), then the limit of
Riemann sums

() (5 a) ) o (( ) )

exists for all 0 < a < b < T, and is called the Young integral f: fdg of f
against g. It is compatible in the sense that, if 0 <a<c<d<b<T, then
fcd fdg = f; JTie,qdg. Moreover, it satisfies the chain rule and the change
of variable formula.

Moreover, if f (resp g) are %—H()'lder continuous (resp %—H()'lder continuous),
we have the Young-Loeve estimates:

n

e
Il

b 1 1
| s = o) (@) < sl lal o~ ol

b 1 1,1
[ fds] < (101l o= ¥+ 151 gl o - ol
a

where ¢, g s a constant depending only on p and q.
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When f:[0,T]? — R is such that f(t,t) = 0, we write f € C*([0,T]?) if

Fs D) (2.10)

£l : ogilgg)gT TR

Recall that, for each i, the fractional Brownian motion B? has a.s. k-
Holder continuous paths for every x < H. Therefore, if the process u has
a.s. finite p-variations for some % > 1—H, it is an immediate consequence of
Proposition that the Young integral fo udB' is well-defined pathwise
on [0, T7]; this makes the Young integral a suitable integral when H > % In
contrast, it is not a suitable integral when H = % because, for instance, we
cannot deal with integrals as simple as [ BIidB*.

Another way to define the Young integral is to make use of the forward
integration a la Russo-Vallois |33]. Their forward integral is defined, for
fixed j, as

/ wedBl = lim ~ [ (Bg+€A_ - Bg) ds, (2.11)
0

e—=0€ Jo

provided the limit exists uniformly in probability over the interval [0, T].

When H > 1 and u € C%([0,T)) with 6 > 1 — H, then the limit (2-11]) exists

and coincides with the Young integral. When H = % and u is progressively

measurable, then the limit (2.11]) exists and coincides with the It6 integral.
In [27], the following relationship between the forward and Skorohod
integrals is shown.

Proposition 2.2.4. Assume that H > 1, and let u € DY(|H|) be a scalar
process. In addition, suppose that u verifies the following condition:

T T
Vi edl,... ,d},/ / |DYu, g (dsdr) < 0o a.s.. (2.12)
0 0
Then, the limit (2.11)) exists and verifies the relation

T ‘ A T T
/ usdBI = 619 (u) —I—/ / DYy, g (dsdr), (2.13)
0 o Jo

where the integral in the left-hand side is in the Russo-Vallois sense.

2.2.5 Matrix-valued Brownian motion and matrix-valued Rosen-
blatt process

We introduce some probabilistic objects, taken from [13, Sections 2.4 and
2.5] when H > %, which we complete when H = % For more information
about the Rosenblatt process, one can e.g. refer to [34].
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(a) Assume first that H € [,3]. For H ¢ {3, 3}, define

1 rpt+1 t ps
qq = ZT4H// //MH(dvdu)uH(dsdt)
pEZ 0 Jp 0 Jp
1 pptl pl o ps
rH = ZT4H// //,uH(dvdu)uH(dsdt),
0 Jp t Jp

PEZL

and let q = ry = 0 and g =13 = L We have qg > rg by [13,

%7 3 2

Lemma 2.1]. Let {Wo’i’j}lgisjgd and {Wl’i’j}lgi,jgd be two independent
families of independent standard Brownian motions, both independent of
our underlying process B. We set W% = W3¢ for j < i. The matriz-

valued Brownian motion (W) <; i< is then defined as follows:

wii - Vam Frawh A T
\/mwl,z,j +0Hﬁwo,z,] if 4 7&] s .

with the convention that c1 = 1.
2

(b) Assume now that H € (23,1). For any fixed ¢ € [0, 7], the sequence
of (d x d)-matrix-valued processes

[nt]—1

h=0 ' 1<i,j<d
converges for all fixed ¢t € [0,7] to some Z;. The continuous version of
the process (Zt)te[o,T] is called the matriz-valued Rosenblatt proces of order
H. Each component of this matrix-valued process is a-Hoélder continuous
for every a < 2H — 1. Moreover, the diagonals elements are independent
Rosenblatt processes with selfsimilarity index 2H — 1.

2.3 Examples

We start by defining the notion of controlled process. This notion plays a
key role because such a process verifies the conditions of Definition We
then give two classes of examples: fractional semimartingales (i.e. processes
with decomposition ) and multiple Wiener-It6 integrals.
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2.3.1 Controlled process

Throughout all this section, we assume H > %

Recall that C®([0,7]) denotes the set of xk-Holder continuous functions f :
[0, 7] — R, whereas C*([0,T]?) denotes the set of k-Holder continuous func-
tions f : [0,T])?> — R such that f(t,t) = 0 for all ¢, see . The class
of controlled path, introduced first by Gubinelli in [12], is then defined as
follows.

Definition 2.3.1 (Controlled process). Consider r € (3,1). The set D*([0,T))
is defined as the set of pairs (u, P) with u (resp. P) an m-dimensional pro-
cess (resp. (m x d)-dimensional process) belonging a.s. to C*([0,T]) and
such that the m-dimensional remainder process R defined by

i,eu%u%ZP” ~Bl), 0<s<t<T, (2.15)

belongs a.s.to C**([0,T]?).

For all (u, P) € D?*([0,T)), for all s,t € [0,T] and all j € {1,...,d},
Theorem 4.10 in [8] implies:

L33l < C Bkl Rllaw + 1Pl IBllze) |t = s> (2.16)

where B is defined as B/ = [*(Bf—B¥)dB], Lis given by L%, = [! R ,dB]
(or equivalently by ), and C' is a constant depending only on s and T.
The following proposition gives an explicit link between the notion of con-
trolled path a la Gubinelli [12] (Definition and our notion of pseudo-
controlled path (Definition [2.1.1]).

Proposition 2.3.2. Assume that k > KHTN%)—F%, (u, P) € D*(]0,T)) and,
for some 6 >0 and all j € {1,---,d},

d
ZE IR15:7 + > 1P|

j=1
with R defined by (2.15). Then (u, P) € Co.

Proof. The proof is a straightforward combination of the identity (2.16)), the
Holder inequality and the forthcoming Lemmas [2.4.1] and [2.4.2] O

20 < o0, (2.17)

As a consequence of Theorem and Proposition 2.3.2] we deduce the
following statement.
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Proposition 2.3.3. Fix H > %, and let

d t t
u;_u5+2/ agdeg+/ bids, tel0,T],iec{l,...,m}, (2.18)
=170 0

- . ) 2(HA2
where the a*J are a.s. k-Holder continuous for some k > ( 3 3) + % and

the b are B-Hélder continuous for some 3 > H — % Assume moreover that
there exists 0 > 0 such that

Sk

Jj=1

m
e o T
169177 + V715 +lea”||i+] < 00,

=1

Then, with M™% defined by and W and Z the matriz-valued processes
of Section [2.2.

o if H <3, then, stably in Cymxa([0,T7)),

d
{I/H(n) <M,”’” - 2/0 a?st> } v {2 :/0 aé’def’j}
[2¥} k=1

o if H > %, then, uniformly on [0,T] in probability,

d
N o S
ng,J _ — ] Lkgzkg |~ i 1BJ
{UH(TL) (M, 2/0 a; ds) }ijn—> {g_l/o abtdzEI 4 2/0 bSst}' -

1’7]

7’7.7

Proof. Set v} = uj — fot bids = uf + Z;l:l gai’deg. For any i, j, we have
vir(n) (MM = o [ ads ) = AM 4 O
0

with, for t € [0,T7,

.. t . . ntn y ]
AT =y (n) {nQH_l (/ vedB) — ZUZE <B{“+1/\t - B
0 k=0 "

n

1 [t ..
—/ azs’jds},
2 Jo
g tops & : :
Cp = vy (n)n ! ( / / bidrdB] - / bi.dr (B{cHAt—BJk)>.
0 Jo =00 n n
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We will show that (v,a) € Cy and we will deduce from Theorem
the convergence of (A™7); ;. Then we will prove that (C™%7); ; converges
either to 0 in C"™*4([0,7]) (when H < 32) or uniformly in probability to
% Jo bsdBg (when H > %) The continuous mapping theorem will then allow

to conclude.
We start by showing that (v,a) € Ca. For 0 < s <t < T, set

i,tzvi—vi—za” BJ BY) Z/ b — ai)dBi.

j=1
Using the Young-Loeve inequality (Proposition , we have

d
Rl < lt=s™ x ey a7l B,
j=1

1B7],77)

M=

o'l <

(a7 looll B 1 + crilla™ |«

<.
Il
—

M=

< (<1 ) T 0 |+ [af? ) 187,

<.
Il
-

where the last inequality comes from the fact that ||a®/||o < \aé’j |+T% || a7 || -
Thus, v verifies the condition of Proposition with P = a7, We de-
duce that (v,a) € Cq, and we can apply Theorem to (v,a), after
observing that v is a-Holder continuous for all a = k > % > 1— H. This

shows the convergence of (A™%7); ;.
We now study the convergence of C™%J. Set s, = |ns|/n. We have

O = g (n)n?t- 1< / / bidrdBl — / / bldrdBJ)
= vy(n)n?! < / / (bl —b% ) drdB!
0 Jsn

ntn E+1 a4

+Zb@[€”
k=0 "%

n

(s — sn)dB§>

_. puid y pnid
—: RMY 4 pprta,

Lemma [2.4.11] provides the desired convergence for D™%/. It remains to
show that R™"J is negligible. We have

o ntn Bl Ay s
R = vy (n)n?H1 -1 Z/k (ﬁ (bt — ba)dr> dB’.
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Fix € > 0 small enough. We can write, using the Young-Loeve inequalities
(Proposition [2.2.3)) and denoting by ¢ a constant independent of n (whose
value can change from line to another)

LE2 YN s

/ < / (b — b, )dr) dBJ
k k n

ﬁ (b — b%))dr

n

—H+e¢

IN

HBjHH—a

k k+1
oo, [ 1. 255 ]

ﬁ (b — b% )dr

n

cn

+ enTlTHEE ]]BjHH_E

L[ s

< en I | 1B 1.

We deduce that

Ry | < v (=00 |6 1B -,

and then E [Supte[oyT](R?’i’j)Q} — 0 (chosing € small enough), proving the

convergence of this remainder to zero uniformly in probability. This con-
cludes the proof of Proposition [2.3.3] O

We now state a corollary of Proposition [2 Wthh extends to the case
H > 3 a similar statement proved in [18] When H=;

Corollary 2.3.4. Fiz H > %, and let F : R — R™ be a C%-function
satisfying the following growth condition: for some Ki,Ks > 0 and some
0 <~ <2, one has, for all x € R?,

OF"! O*F*
0. 9 | 5eram;
J kO

max max  max { |F ()], '
i€{1,....m} j,ke{l,...,d}

.
} < Kyl

(2.19)
Let uy = F(B). We have, with W and Z the matriz-valued processes of
Section [2.2.5:

o if H <3, then, stably in Crmxa([0,TY)),

COF! d (9FZ
n,i,j E ”/'k,J .
{VH(n) (M 0o O; (Bs)ds >}z oo { axk -)d } S

=1
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o if H > %, then, uniformly on [0,T)] in probability,

{ontn (s = [ e} | = {z [ 9 d}

5]

Proof. The change of variable formula for the Young integral leads to

; 0P papl 1<
ut F*( +Z 63: s)dBl, 1<i<m.
J

Then, u is of the type (2.18), with o’ gF;( .) and b* = 0. The regularity

condition (2.19) implies that a®/ is a-Holder continous for every o < H and
that

d

la* o < H KBS 7 | BE .

j=1 k=1

Lemma then guarantees the existence of moments of any order for this
random variable, so that the desired conclusion follows from Proposition

233 O

2.3.2 Multiple Wiener-It6 integrals

Assume H > % and, for simplicity, d = m = 1. Let £ > 1 be an integer

and let fp : [0,T]**! — R be measurable and symmetric in the first &
variables (this latter condition is of course immaterial when k£ = 1). Assume
finally that fi(z1,...,zE,s) =0 if x; > s for at least one [. In that setting,

Theorems 2.1.2] and 2.1.3 - apply.

Proposition 2.3.5. Let the previous notation prevail, as well as the nota-
tion from Section 2.2.

1. Assume that fr is a-Hélder continuous on
D= {(‘7:17 sy Ty 8) € [07T]k+17 S Z maX($1, s ,.’Ek)},

for some o > H. Set ug = 6* (f(-,5)). Then, uniformly on [0,T] in
probability,

n—o00 2

M" — /5k1fk ,8,8))ds
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2. Assume % < H < %. Assume moreover that the hypothesis of the

previous point holds, and that in addition
fk(l'l, ey Ty S) = gk(l‘l, e 7l'k)]1[0,s]k($17 v ,l’k)

with gi symmetric and B-Holder continuous for some > % Then,
stably in Cr([0,T]) and with W an independent standard Brownian

motion,
) (31 = § [ 81t ))ds)

—  H(2H - 1) m/ S (fr(y 5,5))dW,

n—o0

where qir and v as defined in Section [2.2.5,

Remark 2.3.6. Before making the proof of Proposition let us stress
that (u, P) with us = 6% (fx(-,s)) and P, = Dgsus does not a priori be-
long to D?¢ for some k > %, and therefore we cannot directly apply the
results of Section Indeed, assuming gp = 1, i.e fr(x1,...,2511) =

H[o,mkﬂ}k(ﬁ, ce ,:ck) we can write

Cyp =672 <H[O sr—2( / / 1 —r[27- 2dld7”> =r(0,5,5,)0" (I 0,5]5-2)-

Since (0, s,5,t) > s|t — s| thanks to Lemma [2.4.2, we have ‘W

s|6F=2(T _
% for any k > 3. We have 5’“_2(11[075}%2) = Hj_9(Bs) (with

Hj, the k-th Hermite polynomial). Since B as a Gaussian law, there is
a real number [ > 0 and a set Qy C Q such that P(Q) > 0 and Yw €

0, |6%2(Ijg y+—2)(w)| > L. Then (ﬁi;(‘?,?
w € Q.

— 400 for all fixed s > 0 and
s—t

Proof of Proposition . We only do the proof of point (2), since the proof
of point (1) (which requires to show that (u, P) with P, := Dgus verifies the
assumptions of Theorem is very similar and easier. Before going into
the details, let us explain the main steps we are going to follow:

e in the first step, we show that u and P are $’-Holder continuous for
someﬁ’>%>1—H;
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e in the second step, we provide a suitable decomposition of L ;L ,.
We recall that L, is defined as

t
Loi— / (uy — s — Dyuy(By — By)) dB; (2.20)

e finally, in the remaining steps, we analyze each term of the previous
decomposition and show that the stuctural condition (2.3)) is verified,
le,forall0<s<t<Tandall0<z<y<T,

E [Ls,tLI,y] = O\s—t|+|m—y|—>0(f2(57 t,x, y)) uniformly in s,¢ € [Oa T]
(2.21)

Step 1: Hélder continuity. The process u is adapted with respect to B and
belongs to DY2(|H|) with Dsuy = k6%~ (fx(., s,t)) Ls<; by Propostion m
Using the hypercontractivity and isometry properties (again Proposition

, we obtain, for a > 1 and s < t,
Ellus —w|*] < CraBl(us —u)??
= Ck,a||fk('73) - fk('?t)Hg-[@k
< Crallfils) = Sl gon,

thanks to the continuous embedding |H|®* € H®F in the last line.
Let Agtfu() = fu(-,t) — fu(-, s). We have

ka(7 S) - fk(?t)|||27-[‘®k

k
/[0 o s 8 i) TT )
) i

<
k
S /Ot]%n[st )y () 9@ g )] TT 1 (dmdyn)
1,j=1 m=1
s L B0l ) )
7 1
e

k
< | T wa(demdym) | o (dasdy) p (de;dy;)

m=1
m£i,J
K k
+Z/[0t]2k H[S,t](xi)]l[s,t](yi)’gk:(x)Hgk(y” H pr (dxmdym) | pm (de;dy;).
i=1 710 ot
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From Lemma |2.4.2] we have

| n(dedy) < Kt
[0,¢] X [s,t]

for some constant K. Note that we take the liberty to change the value of
K from line to line in the rest of the proof. We deduce, for i # j, that

k
/[0 o T, ()5 (U lgk (@) lge W) [ 1z (dmdym)

< lgelitt=of [ TT wudsndyn).

[Ovt]2k7 m:ll

As a result,
1o 8) = fCo ) [Bygen < KllgrllZe (k1) t—s[2 072 kg —s 24201 D))
Since |t — s| < K|t — s|* on [0,T)?, this leads to
Ellus — ue|*] < K|lgell %[t — s
We can show a similar bound for the derivative Du:
E[|Dsus — Dyug|*] < E[|Dsus — Dsug|*] + E[| Dsur — Dyug|®]

< Chmra (Ifir5.9) = FiCos, Ollgoncs + 1 1) = oot 1) [y

and

1feCos,8) = el s, ) gt + 1fr(5.8) = fr(o ta )17 00
| |
< K|l 2 (|t — sPHAAED 4 () — 1)22H 21— )2
+E g3l — s,

where ||gx||5 is the Holder seminorm of gj, over [0, T]*. Then,
E[|Dsus — Deurl®] < K(l|grllSolt — s1™® + llglI§lt — 57°).
Finally, for all a > 1 we have
Ellus — ugl” + |Dyuy = D] < C (|t = s + [t — 5|7

= (s =l
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with ' = aH —1,d” = a8 — 1 and the constant C depending on k, a, || gk ||co
and T.

Observe that % — H and %N — 6 when a = oo. The Kolmogorov-Censov
criterion applies and yields that v and s — Dgus verifies the Holder semi-
norm condition in Theorem namely: u and P are 3’-Holder continuous
for all ' such that BAH > ' >3 >1-H.

Step 2: Decomposition of LsLy, (recall the definition of L from )
The product formula (3.14) yields, for s <'t,

Dyug(B; — By) = kd* 1 (fi(,5,5)) 0(Ijs)
= koF (fk('737%ﬂ[s,t]("))
+ k(k—1)0%2 (fr(-,5,8) @1 Iey) -
Then, uy — us — Dsus(By — Bs) = Ast — Csp, with
{ Ay = 6 <fk( ) = [ s) — kfe( S:%ﬂ[s,t}(”ﬁ (2.22)
Cop = k(k—1)8"2(fi(s,8) @1 Isy) -

Notice that Cs; = 0 when £k = 1. We also use the convention that
Agy =Csy =01if s > ¢.

To prove that (u, P) € Co we will proceed as follows.

The hypothesis of Proposition are verified by A and C. Indeed,
As.,Cs. € DY2(|H]) for all s € [0,T]. Moreover, using the same arguments
as in Step 1, one can show that DA,. and DC,. have almost continuous
paths in [0, T)?, implying in turn that

T T
/ / (|DwAgs| + |DwCs|)pu(dldw) < oo a.s.
o Jo

for all s € [0,T7.
Formula (2.13) allows to write

t t t
/ Cs7ldBl =94 (057. X ]I[&t}(‘)) Jr/ / chs,l ,uH(dwdl) (2.23)
s s JO

as well as

t t t
/A&,dBl:é(As,. xﬂ[s,t](-))+/ / Dy As pp(dwdl). (2.24)
s s JO
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Forany 0 < s <t <Tand 0 <z <y < T, we can then write Ly L, , =
Zij:l R"(s,t,z,y), with

RY(s,t,2,y)
R1’2(S7 t’ x? y)

Rl’g(sa ta z, y)
R2’1(Sa ta z, y)
R272(87 ta z, y)

R273(87 ta z, y)

R371 (87 t? x? y)

R¥2(s,t,2,y)

R*3(s,t,2,y)

R (s,t,x,y)

0 (Cs, 15 ()) 8 (Cor Ty ()
//quldw//qurdzDClDCwT
RY(z,y,s,1)
5 (Co, T () //D Cppiz (duwdl)
6 (A T4 () 6 (Az, Tpp g ()
//MH dldw//uH (drdz)DyAs D, Ay,
R*(z,y,s,1)

3 (Antioa () [ / Doy A gpusy(duwd)
RY(z,y,s,t

(A Hst] )
RY(x,y,s,t

)
)
)6 (Co Tz ()
)
A ]Ist] )/ / D Ca:ZMH dwdl)
R (2,y,5.t)
()

(C ]I[st //D AEZ/LH(dwdl)

RY(z,y, s,1)

//MH dldw//uH (drdz)D,Cs D, Ay .

We can easily check that

E[R"Y] =E

[R*3] =E [R*'] =E [R**] =E[R*!] =0

Indeed, these expectations reduce to a sum of expectations of products of
two multiple Wiener integrals of different orders, which are orthogonal in
L?(2) by Proposition More precisely, Lemma allows to show
that all the expectations in play vanish. For example,

E[RY3] = / / §(Cs, 5,1 (-) DuyClyl i (dwdl),
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which corresponds exactly to a term of the form ([2.32)).
We will now apply Proposition together with several inequalities,
to show that all the remaining terms satisfy the condition (2.3)), namely

]E[Ri’j(s, t’ z, y)] = O|t—s‘+‘$_y‘—>0(f2(8’ t) €, y))

for all (4,7) € {(1,1),(1,2),(2,1),(2,2), (3,3), (4,3)} and uniformly in [0, T]?.
(Starting from now, note that every time we write o;,_g|4jo—y|—0(f2(s, 1, 7,9)),
it is implicitely assumed that it takes place uniformly in s,¢ € [0,77].)

Whatever the value of (i,7) € {(1,1),(1,2),(2,1),(2,2),(3,3),(4,3)},
deriving a bound for E[R%J] requires similar arguments. For this reason, in
what follows we will fully develop the cases (7,j) = (1,1), (i,7) = (1,2) and
(1,7) = (2,1), then we will only explain the differences for the remaining
cases.

For notational simplicity, we will also write R*/ instead of R (s, t,x,y).

Step 3: Bound on E[R'?]. First, we give an upper bound for E[(D,,Cs;)?]:
for all w € [0,t] and [ € [s, 1],

E|[(DuCor)?| = K (k=1)(k - 2)°E [(5k_3 (filw,5,8) @1 H[s,ll))Q]
= Klk(k — 1)(k = 2) || fu(-rw, 5, 5) ®1Hsl]Hi®k ;

k(k — 1)k~ 2) gl [T pe-2 @1 T

IN

pjen=s’

where, in the last inequality, we have used that |h1 ®1 ha| < |h1| ®1 |heo| for
all hy, hy € DY2(|H]). Moreover, according to Lemma

T 72 1 I gy| = [E[Br(Bs — Bi)|ljg 13| < Kls — |Ijg 7pe-s.
Plugging this identity into (2.25)) leads to
E [(DuCar)?] < Kls— 1.

As a result, and using the Holder inequality, we have, for all s <t and x <y,

’E [ / t / Dy Cospuzs(duwdl) / ’ /0 ’ chx,luH(dde)H
/// / D wCs1) }1E[(DZC’M)Q]%uH(dzdr)uH(dwdl)

< K|t - S| ‘iL‘ - y‘ - O|t—8|+\x—y|—>0(f2(87t7x>y))

IN
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where, in the last identity, we made use of the following two facts: on one

hand |t — s||z — y| < ru(s,t,x,y) according to Lemma on the other
hand, and since H < %,

[t = slle =yl = Op—sfro—yimo (It = s Mo =y e (o — yDrn (|t - ).

Step 4: Bound on E[R%!]. This term can be handled similarly, with the
help of Proposition [2.2.1}

|E [6(Cs, Tis,(-))0(Cor, Tz ()]
< / Ty (D) ()ECidCor ] pizs ()
[s,t]x [x,y]

—I-/ / |E[DwCsD.Co | prr (dzdl) pup (drdw)
(0,8] % [z,y] / [5,] x [0,3]

< KllgellZ[t — s

z—yl(It = sllz —yl+ruls,t, z,y)),

where E[C;;C; ;] and E[D,C;;D,C, ] are computed by means of Proposi-
tion Again,

|t - SHZE - y|(|t - SHI’ - y’ + TH(’S’ta m?@/)) = 0|t—s\+|x—y\—>0(f2(5a t,:c,y)).

Step 5: Bound on E[R*!']. Using Proposition we can write

E[R*1]] = [E [0(As, Ijs())0( Az, i) ()] |

< / por (dldr )T g (DT 41 (1) ‘IE[ASJAI,TH
[s,t] % [z,y]

+ / ,uH(dwdT)/ pr (dldz) |E[DyAg D: Ay ]|
[0,t]x[z,y] [s,£]x[0,9]

Let us define the following function:
hi(xi,...,z,1)

k
= ZH[O7S}1@71($1, ey Li—1, Lj41y - - - 7-7519)]1[3,[] ($z)
=1

X (gk(xla e ,Zli'k;) - gk(xla sy L1, Tty - - oy Ty S))
k
—|—gk(:c1, ‘e ,wk) Z ]I[s,l] (wi)ﬂ[o’l]k_1\[07s}k—1(.’L’l, ey Li—1, Lj41y - - - ,xn).
=1
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Since s < [, we have:
fk(‘rl?- . kanl) - fk(a:l) cee 7:1;1675)

= gk(xl, ce ,l’k) ZH[S,Z] (:L'i)]l[o’s}kf1($1, ey Lj—1y Li41y - ,:L'k)
1=1

k
(@, wk) Y T (@) ge-1yo,e-1 (L1, - i1, Tig1, - -, Tp)
=1

and

—_

kfi(-,s,8)® H[s,l] (z1,...,xk)

ZH[‘S?” (l‘i)ﬂ[07s}kf1gk(x1, e s Lj—1y Li41y -5 L, S).
1=1

We obtain, for all z1,...,z; € [0,T], that

—_—~—

fk(.%'l, ey Tk, l) — fk<l‘1, ey Tk, 8) — kfk(, S, S) X ]I[s,l] (1‘1, .

= hZ(iﬁl, ey Ty l)

7$k)

Then, Ay = 6%(hi (1)), Az, = 6F(hE(-,7)) and, by Propositionm (isom-

etry),

/ T (Dl (P)[E[As 1A o ]| |1 = 7272 drdl
5.1 X[.9]

< k"/ / /,LH dld?“ / HMH dxzdyz)
[0,¢] x[0,y]*

‘hk(xla"wmka )‘ |hk(y17'-'ayk7 )|

On the other hand, observe the following facts:
o hi(wy,...,xx) = 0if (z1,...,7) € [0,5]%;

e if there is a unique index 7 such that x; € [s, (], then

\hi(x1, .. xe)| = lgk(z1, - oo o) — gp (21, - oo, Tie1, Tig1, - - -

< Algrllsls =117
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e if there is more than one index i such that x; € [s, ], then

k
g (@1, D] < Ngrlloli e (@1, -y 2r) Y T ye (@i, ).
i#j=1
As a result,
‘hZ(qf.h <oy Ty l)’
k-1
<O T (@ ity ity ) gy ()2 — s|%|gells
=1

k
Hlgrlloo D lgr(mr .. wr) [T g2 (@i, )T e (1 - 2p).
i#j=1
We then have

k

t ry
| [ wntaray | [T et (dwidys) i 1, ., oxs 1)
s Jx [0,0]k x[0,v]k

i=1
><| |hi(yla cee aykar)|
< (A+B+C+ D)ry(s,t,z,y),

with

k k
A= fgulBle = sle—ol” 3 [ IT st dvmdyin)

1/7]:1 [Ovt]kx[ovy]k m=1
X (i) [ 4 (y5)
k k
B= ol > TT s (dmcyn)
1;7£12,J1#£j2=1 0.7 x[0,y]* ;=1
><H[s,t}? (@iy, Tiy )H[ac,yP (Y515 Usa)
k k
C= lz—yl’lgrlsllgllc > I ra(dzmdym)
iiin,g=1" 0 x0y1% p 2y
><]I[s,t}2 (xh y Lig )]I[a:,y} (y])
k k
D = ’t - S‘BHngﬁHngoo Z H ,UJH(dxmdym)
ij1#ge=1" 0> 0" 1 =

><]I[s,t} (xi)ﬂ[x,y}z (yjl ’ yjz)'
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We only write down the details for the upper bound of A, since the technique
is similar for the three other terms.
Two cases should then be analyzed to handle the integral A:

. itj
k
\/[07t]k><[07y}k [,t]( ) [ 7y}( ]) H H( )

m=1

= E[B:B,)* E[B(B; — By)[E[By(By — B,)] < KiT* "Dt — s|x —y,

where the last inequality follows from Lemma [2.4.2

[ ] Z :j:
k
/[;)7t]k><[0,y]k [,t]( ) [ 7y](yj) H MH( Y )

m=1
= E[B.B,* 'E[(B; — B,)(B: — By)]
S T2H(k71)rH(87 t) x7 y) S T2H(k71)|t - 8|H‘I o y‘H’

where the last inequality comes from Lemma We then have
A< K (|t = sllz =yl + |t — s e =yt — s|"|z —y|".
Similar arguments for handling the integrals B, C, D lead to
B < K(|t—s* |z —yP" + [t = s|"e —y|"[t - s|lz — yl + [t — s]*le —y]*)

C < Klz—yl?(lz —yl"[t = s + |z —yllt — )
D < Klt—s°(|t = s|"|z =y + |t = s|lz — y).
Since 8, H > %, we have
| By Ol (B A, (drdl)
[s,t]x[y]
< TH(Sa l,x, y)(A +B+C+ D) = O\tfs|+|zfy|~>0(f2(57 t,x, y))
We have Dy, Ag; = 6°71(hi (21, ..., 2k-1,u,1)). Similar computations allow

to treat the trace term:

/ ,uH(dwdr)/ wp(dldz) {E[DwASJDZAI,TH
[0,8] % [y] [s,t][0,9]

= Op—s|+|e—y|—0(f2(8: 1,2, 9)).
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Putting all these facts together, we obtain

E[RQVI] = 0\t—s|+|m—y|—>0(f2(s7 l,z, y))

Step 6: Bound on E[R*? + R3? + R*3]. We use similar arguments here as
in Step 5: we can obtain trough easy but tedious computations, and distin-
guishing again several cases,

E[R*? + B 4 RY] = o gy oy (fa(s,t, 2, 9)).

Step 7: Conclusion. We have shown that

E[LsiLzyl = 0p—s| jo—y|—0(f2(5,, 7, 7))
implying that (u, P) € C,. O

2.3.3 Examples in the Brownian motion case

Since this section only concerns the standard Brownian motion case, in the
following H = % We give below a criterion which generalizes the examples
developped in [32].

In Proposition we considered fractional semimartingales of the
form . Here, we take advantage of the standard Brownian framework,
to COIlSldeI‘ processes of the form l-b Note that the integrand V.7 i is
allowed to depend on t in , making useless to consider a drift term as
in .

Let ((Ui)te[O,T])l <i<m be a collection of square integrable and progres-
sively measurable processes, i.e. E[(uf)?] < oo for all i and ¢. According to
the representation theorem for square integrable random variables, for all
¢ and t there exists progressively measurable processes ((Vj”t])()gsgt)l <j<d
such that, for all ¢ and ¢:

:E[u§]+2/ Vi/dB! as., (2.25)
j=1"0

and E[ fo 2ds] < 0o. We assume moreover:

(91) (V3 )0<5<t<T is measurable for all ¢ and j, and (i) (s,t) — Vs has
a progressively measurable version, (i1) E[|Vid — VS”g\Q] + E[|V& —
V2] —y 0 for all 4, j uniformly in s < t € [0, T] and (i77) (Vsi,gj)se[o 1]

’ s—t— ’

is piecewise continuous.
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($2) For all 7, 7, the family <|V;tj |) o is bounded by a square integrable
’ s,te|0,
random variable S such that E[S?*7] < oo for some vy > 0.

($3) One has, forall 0 < s <t <T and all i <m and j <d
S
B | [ O - Vi Pt + (Bl - i) < 1o - duds. ),
where 1 is a bounded function which is continuous on [0, 7]? and such
that u(s,s) =0 for all s € [0,T].
As an application of Theorem (with Py = V), we can state the
following proposition.

Proposition 2.3.7. Assume (91) — (93) and recall that H = % Then,
stably in Crmxa([0,T7]),

d .
(VaM" Y imn<jea — {Z/ V‘Z’dek’j(S)} ’

1<i<m,1<j<d
where W is the independent matriz-valued Brownian motion of Section|2.2.5,

Proof. To simplify, without loss of generality we assume that m = 1. We
then write P/ = P1J, Vi =V and L/ = L% for all 1 < j < d.

Given ($1), (iii) and ($)2), we have that s — P is piecewise continuous
over [0,7], with E [HP Hij”} < +00. Thus, it remains to check that (u, P) €

Cy. Since we are dealing with the standard Brownian case and since s < ¢
and = <y, we note that ry(s,t,z,y) = (t Ay) — (s Vx))4+. Thanks to the
independence of increments, we are then left to check that Vj € {1...,d},

E[L], L3 ,) = V]t = sllz =yl X op—g iy (A Y) = (s Va))s).
We have, for all 1 < j < d and with B} = [1(B} — B!)dBj,

d

Ly = [ wdB] (5] - B) - Y PiB]
5 i=1
t
— [ ®lu)-Ef)dB]
s [ (0= Vi) T r) + (G = Vi) T () a5 |
$ i=1
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Let s < t and z < y be such that s Va <t Ay. The hypothesis (93)
allows us to write

. ) tA\y
E[LYLb) = / Efu — ws]Efu; — ugld!

\//My (Efu; — u])* dl /My (Efu; — ug])? di

< (tAy)—(sVa))s/|t —s|lx—y| [sup p(s,l) sup wu(2:206)

l€[s,t] le[z,y]

IN

We also have:

o thy 4 P A , . .
E[I2]12] = / _ayE [ /0 (Vi = Vi Yo () + (Vi — V2 )y (r))dB:
svVE i=1

Yy . . . . .
[ = Vi) + (V= Vi T <r>>dB:} .

Moreover, thanks to the isometry property, the Cauchy-Schwarz inequality
and the assumption (£)3), we can write, for all i < d,

t
E [ /0 (Viy = Vi)l (7) + (Vi — Vi )T () B

4 ) . ) ) .
X/O (Vi = Vea)Tpo,s (r) + (Vi _V;,x)ﬂ[s,l}(r))dB:}

< \/It— s|p(s,t) + sup E[V, \/Ix—ylu z,y) + sup E[Vi — Vi ]2.
re(s,l] r€(z,l] ’

(2.27)

Using the Cauchy-Schwarz inequality and then (2.26)) and (2.27]), we finally
obtain

E[L;{L%) + L2] 1Y)
< ((tAy)—(sV ﬂf))+\/lt —sl(u(s,t) +  sup  E[V! —Vi]?)

l€[s,t],re(s,l]

x\/]w—y[ sup p(z,l)

USERT)

+((tAyY) - (Sva))+\/!t—8\(u(87t)+ sup B[V, = Vi]?)

l€[s,t],re[s,l]

84



Thanks to (3) we have that the function (s,t) — sup,eqq p(s,t) is uni-
formly continuous on [0, T])? and since yu(t,t) = 0 for all ¢,

sup sup pu(s,t) — 0.
$,t€[0,T),|s—t|<6 z€[s,1] 6—0

On the other hand, we have thanks to ($1),

sup sup E[(Vy, — Vi)?] — 0.
5,t€[0,T),8<t,|s—t|<8 z€[s,t] 60

Finally, (u, P) € Cs. O

We obtain a result analogous to Proposition [2.3.3] for semimartingale
processes but with weaker hypotheses on the volatility a and the drift b.

Corollary 2.3.8. Assume m =1, and consider

d ot t
W=%+ZM@M&+/@“
=170 0

Assume that a’ is progressively measurable and piecewise continuous for any

J, that b is progressively measurable, that g(s,t) = ZZ:1E [(afs€ - af)Q] is

continuous as a function of two variables, that ug is independent of B and
that for some v > 0,

E J||2+y E 2+ .
o 27| + D7) < +oc

Then, with M™% defined by , we have, stably in Cgra(]0,T))

d .
{\/EM.n’l’jhgjgd v {Z/o aidWsi’j}
i=0

where W is the independent matriz-valued Brownian motion of Section|2.2.
see .
Proof. We have that the function f : ¢t — fot bsds is a.s. continuous and

satisfies E[|| f]|%7] < co. Using Jensen inequality and the isometry property,
we easily see that

B[ ([ o ([ )]

<lz—vyllt—sl(tAy—sva)y sup Elbf,
1€[0,T]

1<j<d
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that is, (J, bsds,0) € Cy. Then, Theorem applies, and

t l . DM ok ; - c([0,1Y)
vie{l...,d}, [ dl [ bydBi-> [ bdi(BL, —BL) 0.
0 0 ° 170 e n

n—oo
Moreover, we can apply Proposition [2.3.7|to [; asdBs with V;;j = agﬂ[oyt](s)
(all its assumptions are satisfied). Slutsky’s lemma allows finally to conclude.
O

Unlike the case H > %, here we can allow the volatility process a to
be discontinuous. An illustration of this fact is given by choosing d = 1,
(T;)i>1 a sequence of increasing stopping times such that 7; — oo a.s, a

- 12— 00
sequence (z');>1 € RV" of progressively measurable processes on [0, 7] such
that Y, [|z%)|%, < oo, and

tAT;
up = Z/ xydBs.
0

1>1

We then have, stably in Cgr(]0,77),

1 ’ ,
\/ﬁM'ﬂ —_ ﬁ/(; ZfCi:H[O,Ti](S)dW&

2.3.4 Irregular processes

In this section, H € (%, %) We state a first order convergence for a general

class of processes possessing mild regularity properties. Notice that related
problems have been studied in the papers [2] and [6] (the latter establish-
ing existence of Local time and Tanaka’s formula for fractional Brownian
motion).

Although the process u considered in Proposition [2.3.9] is of the form
us = F(Byg), the fact that F' is supposed to be convex allows potential
discontinuities for F’, and it becomes hopeless to expect a second order
result as obtained in Corollary in a seemingly similar framework.

Proposition 2.3.9. Let us = F(Bs), s € [0,T], with F a real convex func-
tion such that, for some K >0 and v € (0,2),

||

|F(z)| + |F' ()| +/ (la| + 1)dF"(a) < Kel*I",  z e R,

— x|
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where F' is the right derivative of F and F" denotes its second derivative in
the distributional sense (a simple ‘non-smooth’ example is given by x — |z|).
Then, for all t € [0,T],

t
MP o= pPHl /F(BS)dBS—E F(Bk)(Bgsa ,, — Bx)
0 k.io n n n
2 1 [t
Lﬂ)/ F'(By)ds.
n—oo 2 0

Proof. The proof is divided into two steps: in the first one, we will first
show that us = F(B;) belongs to DY2(|H|) and give a suitable expression
for its Malliavin derivative. This is then in Step 2 that we will show the
L?(2)-convergence of M™, with the help of Proposition and of Lemma
2.4.0l

Step 1: u belongs to DY2?(|H]). Consider the truncated function

F" 2 — F(o)ly<, + F(n)lespn + F(=n)lc—p.

Every convex function is locally Lipschitz continuous so the previous se-
quence is Lipschitz continuous. Then, by a slight extention of [26, Propo-
sition 2.3.8], we know that the process u? = F"(Bs) belongs to DV2(]§]),
and Dgup = (F")(By)ls<;. Moreover, F" — F and (F™) — F’ point-
wise as n — oo, and the growth condition on F and F’ ensures that, for
all p > 2, the sequences F"(B;) and (F™)(B;) are bounded in LP(Q, |H|)
and LP(Q, |H| x |H|) respectively. Then, these sequences are both uniformly
integrable in L2, and the bounded convergence theorem ensures that, as
n — 0o,

u = u in LP(Q,|H|)
H{S*} Duf — H{S*} F/(B*) in LP(Q, |fH‘ X ”HD

Then, u € DY2(|H|), with Dsu; = I« F'(B;). Since F' is locally bounded,
the process u verifies the assumptions of Proposition

Step 2: L* convergence. By e.g. |31, page 224], we know that, for all
k € N*, there exist ag, 8r € R such that

1 k
Fa)=au+ Gty [ o= aldF'(a), w € [-hH|
k
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Then, for all z € R,

Fr) = F0)g ()

too k+1

1

+ ) <Oék:+1 +Bene + 5 /1C 1 |z — a|dF”(a)> [ =1, =) Uk, k1] (T)-
k=0 -

Since F' is convex, dF” can be identified with a Radon measure, which is
o-finite. This allows us to interchange the integrals and derivatives. Since
D.u, = F'(B,)L<, we can then rewrite Du as:

+oo k+1

1 .
Dgus = Ii>s E <ﬁk+1 + 2/ sign(B; — a)dF"(@)> k=1, k)0 k1] (Bt),
— k-1

(2.28)
where sign is the left derivative of x — |z|.
Let 0 <t <T. We have, thanks to Proposition and recalling that

Sp = %ULSJ,

1 t
—= / F'(By)ds
2 Jo

tn
_ ;/0 (F/(B,,) - F'(B)) ds

1 t t— t 2H-1 t
—2/ F(By)ds + " LZD /F’(Bsn)ds
tn tn

4t [ t [ B - 7 5.) putaas
st [ [ (B F8,)) it
+n?ft /0 t(F(Bs) — F(B,,))dBs,

where we used the fact that f(kﬂ)/" f,:/n pr(dlds) = in=2H,

k/n 2
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We can see easily that for all 0 <t < T,

E [(; /t "R (Bds + T Lgﬂ)m—l /t t F'(Bsn)ds>2

We also have

1

. [(w [ [ - r,) uH<dus>)2]
([ @ r@.s) ] ,

where we used the fact that

< Kn*i-2R

/ ' [l —s72dl < (2 — 2H)s*H~1 < (2 — 2H) T,
0

and

B [<n2H—1 /t / (F’(BS)—F’(Bsn))uH(dlds)>2]
= 4H2//,qu0ds//,quudx

F(B,,)(F'(B,) — F(By,)]
( /0 (F(B,) - F’(BS,J)ds)

where we used that [° |l — s|?#72dl < |s — s,|, thanks to Lemma [2 ,
Sn

n2H—2E

IN

)
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and finally
B [(n”“ [ - r, )
Kn*H—2E [/t(F(B)—F(Bsn))st]
25 [ [ G D]
K2 | / <F(Bs>—F<Bsn>>2ds]
sontn (s [ [ [ - ]
{E { /0 / F'<35)2dzdsD

with K depending only on 7. We used ([2.8]) then (2.9)) in Proposition m
and the fact that Djus — Djus, = F'(Bs)j<s — F'(Bs, )li<s, to obtain the
last inequality.

We have

n4H—3 t
ntl 2R [// dlds] < EU F’(BS)st] — 0
2 0 n—o00

(because H < 2). We have

E Uot /OS"(F’(BS) - F’(Bsn))leds]
el [ [ @ - P ), ]

t Sn
+E [/ / (F'(Bs) —F’(Bsn))QHLstyéLBandlds] .
0o Jo
Using (12.28), we have:

t Sn
E[ [ <F’<Bs>—F’<Bsn>>2HLBSJLB_ganlds]
0 0

1 0 t Sn
= 421[*3[/0/0 dldsT_g—1,—kyo(kp+1)(Bs)
k=0

(/k+1 (sign(Bs — a) — sign(Bs, — OL))aZF”(a)>2 HLBSJLBSnj] .

IN

IN

—k—1
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Moreover, since dF" is o-finite, we can use Fubini’s theorem and Jensen’s
inequality to get that

E [/Ot/osn(F’(B — F'(B, ))leds} < H(CP + DP),

with

“+oo

or = ZF”([—k —1,k+1))

/k+1 / (sign(Bs — a) — sign(Bs, — a))2

—k—1,—k)U(k, k1] (B s)HLBSJ:LBsnﬂ dsdF" (a);

Dy =E [/O (F'(Bs) — F,(Bsn))Q]I\_BSJ#\_BandS} '

Let v > 0 and let p,q > 0 be two conjugate exponents such that ? >

4H — 2. (Notice that v, p, ¢ exist if and only if H < %) We apply Hélder’s
inequality to obtain:

E [(sign(Bs — a) — sign(B,, — a))’ ]I[fkfl,fk)u(k,k+1](BS)HLBSJ:LBMJ}

3=

1
< E[|sign(B, — o) — sign(Bs, — )| " E [I_s_1 gyuersn)(Bs)] T
K%
We know that E []I[,k,l,,k)u(k’kﬂ](Bs)] = Okoole 2727 for all s €
[0,T]. We also have that (by hypothesis on F”),

Q=

12

o0
Y F'([—k—1,k+1])e 2077 < o0,

By Lemma for all a € R,

1

t =
/ E [(sign(BS —a) —sign(By, — a))*?|” ds = 0n_ye (n2~4H),
0

where the o does not depend on t.
We then obtain:
=201 = 0, oo (1). (2.29)
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A similar use of Lemma shows that, for all ¢,

n4H—2D;L + n4H_2E

(/Ot(F(Bs) - F(Bsn))ds> 2] — onso(1).

Putting these facts together leads to:

2 1 [t
My S / F'(By)ds.
0

n—oco 2

O

2.4 Proofs of the main Theorems and other results

Throughout all this section, we denote by B a fractional Brownian motion
of Hurst index H.

2.4.1 Miscellaneous

We start by giving a collection of technical results that are used throughout
the paper.

The following lemma is an easy consequence of Fernique’s theorem (see
e.g. |38] and the references therein), and represents a very useful tool for
proving the existence of moments for Holder modulus of Gaussian function-
als.

Lemma 2.4.1. (Fernique) Assume that H > 5 and let B be the associ-
ated Lévy area of B, defined as Blsg = fst(Blk — Bf)dBlj. For all v € (0,2)
and all k € (0,H), and for all function f satisfying the growth condition
|f(z)] < explz|?, we have

ELf(I1Blls + V/IBl2x)] < oo,

where || - ||g is the Hélder seminorm, see and .

We also have the following elementary lemma.

Lemma 2.4.2. Assume H > % There exists a constant kp > 0 such that,
for all x,y,s,t € [0,T]* such thatt > s and y > z,

kT’t - SHy - .73‘| < TH(‘S?tuxay) < |t - 5’H|x - y|H7 (230)

[E[Bi(B: — By)| < |z —yl. (2.31)
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Proof. For the sake of simplicity, we will consider T" = 1 (which only modifies
the constants). In the expression , the right inequality is a simple
consequence of the Cauchy-Schwarz inequality. For the proof of the left
inequality, six cases must be analyzed carefully.

(i) case where t > s >y > x. For fixed s, y, z, let
f(t)=(2H - 1)(t —s)(y —x) and g(t) =ru(s,t z,y).
We have f(s) = g(s) = 0 and
g(t) = f'(t)=2H (=t —y)* "+ (¢t = 2)*1) = 2H — 1) (y — 2).

We see that —(t —y)2# ! 4 (¢t — 2)?H~1 > (2H — 1)(y — z) thanks to
an elementary function study, so

gt~ f'(t) = 2H - 1)*(y —x) 2 0,
so g(t) > f(t) and then (2H — 1)|t — s||ly — z| < ru(s,t,z,y).
(ii) case where t > y > s > z. For fixed ¢,y,z, we see (thanks to an
elementary function study) that the quantity rg (s, ¢, x,y) — (t—s)(y—

x) decreases with s and then reaches its minimum for s = y. Assume
then s =y and let 6 =t — 2 and a = y — . Then

TH(Sataxvy) - (t - S)(y - CL')
> h(a) = 6*H — (a®" 4 (6 — a)*" + a(6 — a)).

We have h(§) = h(0) = 0, and the function A is increasing over (0, g)
then decreasing, so is always positive.
(iii) case y >t > x > s. This is similar to (ii).

(iv) case y > x >t > s. This is similar to (i).

(v) caset >y >z >s. Write B;— Bs; = (B;— By) + (By— By) + (B, — By)
and then combine the inequalities from (i) and (iv).
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(vi) case y >t > s > x. This is similar to (v).

Finally, the proof of inequality (2.31]) can be found in [24, Lemma 6]. O
The following lemma is used in Step 2 of the proof of Proposition [2.3.5

Lemma 2.4.3. Let m,n € N with m > n, f € HOm Q@ H, g € HO",
heH"@H. Let x € [0,T], Fp =5 (f(-,x)),G = 6"(g), Hy = §"(h(-,)).
Then, for all s <t and u <w,

E[5(FI},4(-)G] = 0 (2.32)
E[(F Ty ()3(HLjy ()] = 0. (2.33)

Proof. If n = 0, the result is immediate. Otherwise, thanks to Proposition

2:2.0] we can write:
E[0(F I 4(1)G]

_ / E[FuLjs (2)0" (g, )] n (davdy)
(0,77
- / E[Du (Foljs () D=(0" (g, )l (drdy) porr (dwdz).
(0,77

Thanks to Proposition we have, for all z,y € [0,7],
E[F,0" (g(-y))] = 0.
Moreover, Dw(Fx]I[S,t] (x)) = m(sm—l(f(.7 w, x))]l[s,t] (.’,U), and
D.(6"1)(g(y)) = (n—=1)6"2(g(-, 2,y)) if n > 2 and D, (6" (g(-,y))) = 0
otherwise. In any case, we have thanks to Proposition
E[Du (Felis () D2 (6" (g(-,)))] = 0.
Equality (2.33) can be obtained by the same way. O

The following lemma provides a tightness criterion for two sequences of
processes in D([0,T]) whose sum belongs to C([0,7]). Recall the notation
sn = 1|ns] and t,, = 1 |nt].

Lemma 2.4.4. Let (X™) C Cr([0,T]) be a sequence of continous stochas-
tic processes such that X]' = A} + Cf* for all t € [0,T], where A™,C" €
Dr([0,T]). Assume also the existence of ag, Sy > 0 such that

E [yA? - Ag|ﬂ0] < Kty —sp|'T, 0<s,t<T, (2.34)
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and .
sup |C{| — 0. (2.35)
t€[0,7 n—0o0

Then the sequence X" is tight in Cr([0,T]).

Proof. In [7], it is proved that the sequence (A") is tight in Dg([0,T]).
Moreover, the sequence (C™) is also tight in Dr([0,T7]). by [25, Lemma 2.2],
the sequence (A", C") is tight in Dg2(]0,7]) and since the map (x,y) = z+y
is continuous from Dg2 ([0, 1) to Dr([0,T7]), the sequence (X™),, is then tight
in Dg([0,77]). Since the uniform and the Skorohod topologies coincide on
Cr([0,T]), we deduce that (X™) is tight in Cr([0,T]). O

The following lemma is used in the proof of the forthcoming (2.41]).

Lemma 2.4.5. Let (X"™) C Cgr([0,T]) be a tight sequence of continous
stochastic processes such that ¥t € [0,T], X} L0 asn = oo Then,
asn — oo,
sup |X7| — 0. (2.36)
te[0,7]
Proof. Let 1 > ¢ > 0. Since the function defined by x — 1 Asupyco 7} |¢| on

Cr([0,T7]) is continuous and bounded, we deduce that E [1 A SUDyefo, 7] |XZ‘|] —
0 as n — oo. Then, by Markov’s inequality and as n — oo,

1
<=

P[sup | X7 > €
€

t€[0,T]

sup |[X[|A1l| — 0.
te[0,7

=P | sup |X/|A1l>¢€
te[0,7

O
The following lemma gives technical estimates used in the proof of Propo-
sitions 2.3.7 and 2.3.91

Lemma 2.4.6. Assume H > % Then, for all0 <t <T,a € R, ~v >0,
p>0and 8 > 1, we have

—H

¢
/ E [|sign(Bs — a) — sign(Bs, — (1)]10]é ds < Kn GM, (2.37)
0

and
/0 P(|Bs]| # LBSnJ)% ds < Kn=o" (where s, = L |ns]), (2.38)

with K depending only on T,p,0 and where sign is the left derivative of the
function x — |z|.
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Proof. We only do the proof of the first inequality, the proof of the second
one being similar. Moreover, for simplicity we reduce to a =0 and 6 = 1.
We have

sign(B;) — sign(Bs,,) = 2l1p,>0,8,, <0y — 2I(B.<0,B., >0}-
Plugging this identity into the integral yields

t t
/ E [|sign(Bs) — sign(Bs,)|P] ds < 2P / P (Bs > 0, Bs, < 0)ds.
0 0

On the other hand, for all k € {2,...,nT,} and s € [, EL A T),
o if s=% then P[B, >0,B,, <0/ =0

e else,

L

= ZE[{Ble S E— kH)}H{B?—B»nl_;m}}

(usmg the self—81milarity of B)

ne—1)2H

T o, 7 Cs k
= Z/k " /k e 2dt® xQ*2de1t(z)yz+det<2>°””ydydx
27r\/m

1
with ¢sp = E [31 (Bm — B1>] >0and X = e Cak om | .
g Cs,k (? - )

Since ﬁ&)x‘y < 0 for all (z,y) € [kH ey kHZJrzll H] X (—oo, Mﬁ}’ we
deduce

IP’[B >0, B, < 0] (2.39)

I kH Ha wHn — 7 (ne-12H 1 9
Z e 2dei(® ¥ T 2der(m) Y dydz.
27r\/det

Let us now estimate the three terms appearing in the right-hand side of
the previous inequality.
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1st term: We have det(X) = (28 — 1)2H — cik. According to Lemma
csp <P — L Ifk>2,wehave%—1§%andthen

<%_1>2H > det(E)z(%—Qm (1_(7;8_1>2—2H)
> ()" (1)

1 < 1 )
27r\/det(2) QW\/(I_QQH—2)(%_1)2H

That is,

2nd term: We have

i+1 ns 2H
Hpi-H  _ -7 o 1 Sl i )2
e 2det(®) dr < — ¢ 2\RH,I-H/
- 1-1 - — nl_HkH
kHnt—

3rd term: We have, using that s € [%, kzl AT),

—i —i y —i
H,i-H __ y> H,1-H  ns \2H H,i-H
/k e 2det(2)dy§/k e 2% 1) dy < /k e_kQH?fdy
—0oQ — 00 — 00
1 nlizH 2
-y
= — e 7 dy.
KA /_oo Y

By plugging these three estimates into (2.39) and by using the fact that

1-HH\a n;j’H 1—-H
(n ) and / e*dey < n ,
—00

7

_l( i )2
e 2‘\pHpl-H <

ia
for all € N* and all a € (0, 1), we get, by choosing « so that «(2— H) < v,

na(l—H) o 1

P[B, > 0,B,, <0] <

= — = Tra”
Irk2H - /(1 _ 92H 2)(% _ 1)H ; 1+

el

< 2rtl <2 +
n

Finally,

sign(Bs) — sign(BM)m ds

t

—

P[B, > 0, B,, < 0]d5>

3
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and

t
/ P[B;, > 0, B,, < 0]ds
2

ntn k+1 A 00
n

1 1 1 1
- R d a(1-H)
ot ; k‘2H—O‘ k (1 - 22H—2)(% _ 1)H o Z Z'l—i-an

n =1

1 (t — o)1 1 &= 1 e
o7 (1 — 22H—2) ((ntn)2Ha + 1— H Z nkH—« Z i1+an

IA

< Kp-Hte(2-H)

This provides the desired estimate. O

Remark 2.4.7. In [2], the author obtained for all s < ¢ € [0,7] and for all
a € R the following bound:

P[Bs > a, By < a] < C(a)(t — s)H s,

for some constant C'(a) > 0. On the other hand, the computations in the
proof of Lemma [2.4.6| give the estimate

P[Bs > a, By < a] < C(a,v)(t — s)At7s7H,

which is weaker when s > 1 but better when s << 1 (this improvement is
necessary for the inequalities and to hold).

2.4.2 Weighted quadratic variations of the fractional Brow-
nian motion

In the proofs of Theorems [2.1.2] and 2.1.3] we will see that the announced
convergences are determined by the asymptotic behaviour of the weighted
quadratic variations of the fractional Brownian motion. These variations
have already been extensively studied, for example in [13}[24] and especially
in [5]. In the next three lemmas, we gather the results that are relevant to
us, and we extend them when necessary.

Lemma 2.4.8. Let x be a scalar process over [0,T], and assume it is a.s.
continuous and satisfies E [Hng;W} < 400 for some v > 0. Let H > 1.
Then,
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1. For all j <d, for allt € [0,T]

[nt] 2 t
’J 2H 1 Z Tk (B]k+1 - Bjk> Lg) / -Tsds' (2'40)
n n—=cc Jo

2. For alli# j,

[nt]

. 2
2= 1Za; gL (( B@)H[ﬁv,ﬁw(» "o 24

These two convergences also holds UCP as a process over [0,T].

Proof. Step 1: Proof of (2.40]). It is well known that is true in the
a.s. sense if x = Ijgy (see e.g [15]) and then (by substraction) for every
process of the type x = H[s,t] for s <t. Now, consider 0 =ap <...<a, <T
and let (o, ..., a,—1) be a collection of §-measurable random variables. For
all 1 < i < p, let Q; be the subset of  on which (2.40)) holds true for the
process a;lljg, q,,,)- Then P(N{_;€;) = 1, and (2.40) holds (pointwise) for
the step process x = Zf;ol illlg, a5y, 00 NE_ Q.

Moreover, if a process f is bounded for || - ||oo in L2*7 then the sequence
{(S™7)2}% | is uniformly integrable. Indeed, let 0 < p < . We have,

t.f
thanks to the Minkowski inequality,

Lnt]

2
1770 <02 s (B, - L)
k=0 "

L2+n
Then, using the Holder inequality, we have

2+

2

n

L2+w

N\ 29(2+p)
(Biﬂm Bi>

| 127 55 n2H ),

1
q

IN

2
Ef|f[7)75 R

IN

with ¢ the conjugate of 2+7 This implies that sup,, E [\S?}ﬂ%#} < 0o, and

then the sequence {(.5; f) }?:1 is uniformly integrable.

99



Back to the initial process x, we know, by uniform continuity of x on
[0,T], that ||x —2™||x — 0 a.s. (where 2™ is the sampled process & |m.| ).
m—r0o0 e

As a result,
E (ngg —/ 3:st>
’ 0
) ) ) t t t 2
= E ((S,ZLIJ — Sy 0m) + <Sf;cjm —/ a;Z”ds) + </ x;"ds—/ :csds>>
’ ’ ’ 0 0 0
ntn 9 2
< C 7”L4H_2E <Z ||.1' — ZCm”OO (Bw/\t — Bﬁ) )
kZO n n

+E

. t 2
<sf;gm - / x;nds>
’ 0

+TE [llz — 2™[I3] } :

where C is a positive constant. The previous arguments, an appropriate

L2 (Q
choice of n,m € N* and the fact that ||z — 2™ || % )0 allow to conclude.
n—oo

Step 2: UCP convergence of S.%j. According to Lemma

2.4.5

. the UCP

convergence of S I to Jo zsds follows from the convergence in probability of

Sy 7 for fixed t and the tightness of the sequence (S), in C([0,T]). The
convergence in probability for fixed ¢ is shown in Step 1. For the tightness,
this can be checked with Lemma applied to Sy = Af + Cp', with

ntp,—1 2
n __ 2H-1 J J
Al =n E Tk <B(k:1)/\t—B:)

k=0
. .\ 2
CT' = ’I’ZQH_lﬂftn (B;(/7 - Bgn)
g = 1,50 = 2.

Indeed, using the Holder inequality, we have for s < ¢:

E[lA7 — A¢P

ntyp—1 1
WY (B [2]37]) (E

kJ=nsp

IN

n

J J
’BkH — By
n

1 1
7

IN
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with p" the conjugate of 14+ 3 and K some constant depending only on ~y
and x.

On the other hand, B has (H — €)-Holder continuous paths for every
€ > 0, so that, for all ¢ € [0,T], |CP| < Kn* 1|z« a.s. for some random

variable K¢ > 0. Taking € small enough, we have sup;¢(o 1) |CY )
’ n—00

Step 3: Proof of (2.41]). We now turn to the case i # j. Similarly to the
proof of (2.40) (Step 1), we first show ([2.41]) for = the function identically
one, in other words:

ntn
k=0

Using Proposition and taking into account that DM BJ = 0 if i # j,
we have:

E [(Sg,li,jﬂ

ntn
—  pAH=2 Z E K(BJ —Bi) ]Imﬂm](.), <B.j —B%) LI H'l/\t](')> ]
kl_o n n n n n’n H

nin LAt pHEL A

A2 Z / / E[(B; — B%)(By - B%)]MH(dydx)

. 2

n

k,l=0 n
ntn
2H 2
< A 5% g O O

where the last inequality follows from the fact that: for all x € [5 %} and
all y € [fw 121]’

[EI(B, — B)(B, - B.)]| < (E[(B; — Bx)¥)
We also have

N[
/N
=
—
us!
g
|
‘U:J
S
N—
D=
IA
-

n’ n

ntn
Z <]I[E M/\t](')vﬂ[L7ﬂ/\t](')>H = tzHa
ke 1=0 o

U=

and then E [(Sn’“)Q] = Opsoo(n?72), implying (2.42). To prove ({2.41
in the general case for x, we can then proceed exactly as in the proof of
, that is, we show first that holds true for step processes and
then, by an approximation argument, to x. Tightness in C([0,7]) can also
be obtained as for . By Lemma this proves the UCP convergence
to 0 of each S";" with i # j. O
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The study of the fluctuations (which are required for the proof of Theo-
rem being more delicate, more stringent assumptions on the process
x are required (except when H = %, see the first point in the proposition
below).

Lemma 2.4.9. Let z = (2%%)1<i<m.1<e<a be an (mxd)-dimensional process,
and recall the matriz-valued processes W and Z from Section|2.2.5. For any
1<i<mand1l<e,j<d, set

. ntno o pEELA .
n,?,7,€ 2,€e e e ]
A / (BS Bﬁ) §BI.
n

k
k=0 " Yn
We have

1. IfH = % and if, for all (i,€), x¢ is adapted to B, piecewise continuous

z‘,eHgg"Y]

and satisfies E[sup; . ||z < oo for some v > 0, then, stably in

CRdQXm([()? T])7

V) e ([ oieawss) e
27]76

2. [f% < H< % and if x is B-Holder continuous for some 8 > %, then,
stably in Cpa2vm ([0,T1),

(o (n) ST — < / wi’edeJ‘) - (249)
0 i,7,e

:,,€ n—o00

5. If H > 3 and if x verifies that E [HJUHZM} < +00 for some B> % and

v > 0 then, in probability uniformly on [0,T] (and also in L*(Q) for
fized t),

(nQHflyH(n)Sf}i’j’e) s </ xi’ede’j> . (2.45)
0 ige

,7,€ n—o00

Proof. Even if they are not stated in exactly the same way, the limits
and follow from [5,(13] (see especially |13, Sections 4,5,7]) by means
of fractional integration techniques. This is why we only concentrate on the
case H = % and the proof of , not covered by [5,(13].

Proof of (2.45). We divide the proof into three steps. In the sequel,
'f.d.d.” is shorthand for finite dimensional distributions.
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Step 1: Convergence of the f.d.d. when x is a step process: Let us first
sketch the proof in the case where x is constant over an interval, without
going too much into the details, since the approach is very similar to that in
[13, Section 5]. Let 0 < s <t <T,letge N*,let 0 =ap <a; <...<ay <t
and let x be the matrix function whose entries are all equal to Ij, . It is

immediate that the R¥™_valued random vector
X3 = (VnSgile — /nSu7)ijeiefo, a1
has independent entries. We can also check that
E[(Xn)§17j1751 (Xn);27j27€2] -0
x x

for all 41,19, all (j1,€1) # (J2,e2) and all [ € {0,...,q — 1}. Finally, we can
easily show that

o \4
E[((XQ)?’]““) ] — z(al+1 Vs —aVs)2.

n—oo

Peccati and Tudor’s fourth moment theorem |28] applies, and shows the
stable convergence

L e,j e,j
Xz S (Wedva-Weda) )
T o aj+1Vs al\/s) ide .

Since the increments are independent, this gives the convergence of the finite
dimensional distributions in (2.43) when z = I, ;.

Now, let [a1,b1],. .., [aq, by] be ¢ mutually disjoint intervals. Due to the
independence of Brownian increments, the process

(Vasmiae . vasie )
’ i7j7e

May bq1’ aqbq]

has independent entries, so we have the stable convergence of its f.d.d. to the
f.d.d. of the process (fOT Tiy p) AW, fT ]I[aq’bq}dWse’J) . This implies

0 .
ij.e
in turn the convergence of the f.d.d. of \/nS", for processes x of the form:

q—1
T = Z EH[al,al+1]7
=0

where ¢ € N* and Fj is a R™*4 yalued and Sq,-measurable random variable.
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Step 2: Convergence of the f.d.d in the general case: We now turn to the
general case. Let x be an adapted, almost surely piecewise continuous pro-
cess such that E[sup; . [|#"¢[|%)] < oo, and set

LAy

Acjin(t) = ﬁ " (Bﬁ—B%)éBg.

n

As is the proof of Lemma we can rely on the small blocks / big blocks
technique by considering the approximation

VRS = VRSLES 4 i (S — SEHT) = VRS + R
(2.46)
with m < n and 2™ the sampled process & |m| .

Fix m € N*. Since = is a step process, we have by Step 1 that
f.dd — lim (fS" )= </ (xm)i’edwf’j>
n—00 ij.e 0
Morever, for all ¢ € [0, T,
t . .
L*(Q) — lim </ (xm)?edW:’J)
m—0o0 0

thanks to the isometry property of Ito integral. Putting these two facts
together , we deduce that

fdd — lim lim (\F S"’W) - ( / x@edwg’j)
m—00 Nn—00 i,7,e 0 .

z’j’e

Z7‘77e

t
— i’e e:j
- ( / abedVe ) ,
Zj7e 0 i’j’e

)

To conclude that f.d.d. — limy,_ye (ﬁsf}ﬂe) B
Z7]7e
given the decomposition (2.46)), it remains to show that

_ ( I xé’edW§’j> ~,and

1,7,€
lim sup sup E[(Rt’%’lnz)Q] =0, (2.47)
M=% n>m te[0,T]

which we do now.
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We have, for all t,

E[(Ry5e 0 2)?]
ntn
= nY E ka - (afn)zf> <a:l - (xm)’;e> Acjkn®)Aeiin(t)
l,k:l n n n n
[nt]

2
(mzzée - (xm)zée> Ae,j,k,n(t)zl

n

= nZE
k=1

(since x is adapted and the increments of the

Brownian motion are independent)

[nT] 2
< nY E (x:e—(a;m)zf> E [Acjin(®)]
k=1 " n
T S\ 2
< = e (. m\ie .
S S e (xii (@ ),ﬁ)]

Let
N#¢ = Card {t € [0,T7, |zy© — x| + |op — xyp| > 0} ,

which is almost surely finite because z is piecewise continuous. Let Tli’e be
the I-th (random) discontinuity of 2%¢ (Tlle(w) = +o0 if #%¢(w) has less than
[ discontinuities over [0, 7). It is clear that le‘,e is measurable as a stopping
time. Let B = Uien+ (T} — L, 7° + ) N[0, 7). Then,

' Card{k, & € E"} . 2N
lim sup — = lim (
m—00 n>m n m—oo M

Al)=0 as.

Observe that 2%¢ is a.s.uniformly continuous on [0, 7] \Ul{Tli’e}. Moreover,

if s € (E])° for some m, then there is no discontinuities between s, = Lm—mSJ

and s. Then,
|25 — (25)"°] < X5 e () + 2[l2"|loo Ly (),

with
i,e
Sm |*

Xp¢= sup |z —=z
se(E]",)e

Note that X5¢ is a sequence of square integrables random variables, which
converges a.s. to 0 as m — oo and is bounded by the square integrable
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random variable 2||z"¢||s. Finally, we can write

g T . AN .
E[(Ripne)’] < SE [(Xf{ff +( A D)% -
The sequence ((Xf,’f)z + (% A 1)Hx”HC2>O) converges to 0 as m — oo,

and is bounded by a square integrable random variable. The conclusion
(2.47)) then follows by dominated convergence.

Step 3: Tightness. Let 0 < u < . We have, for all ,j, e, all s <t and
all n € N*,

?|

where the first inequality is obtained by applying the Burkholder and Jensen
inequalities, and the second inequality is obtained by applying the Holder
inequality. This prove the tightness in Cg([0,7]) of each component of S,
and conclude the proof of .

Sn’1’7]76 J— Snvizj7e
t,x S,x

2+ t S .
S

IN

.. 2+
K|t — s|"FSR[||z |27 25w

g

Remark 2.4.10. In the case H = %, notice that the hypothesis ]E[||x||§:f'y] <
oo is only needed to obtain the tightness of the process. For the convergence
of the f.d.d., the hypothesis E[||z||%,] < oo is sufficient.

Finally, the following lemma is used in the proof of Proposition [2.3.3

Lemma 2.4.11. Letb be a piecewise continuous process such that E[||b]|3d7] <
oo for some v > 0. Then:

o For H> 3

1, in probability uniformly on [0,T7],

kt1 5

] k1 :
0 . 1 :
2H—-1 % %
vi(n)n ,;0 b% ﬁ (s — sp)dB. — 2/0 bsdB..

n

e For % <HC< %, in probability uniformly on [0,T],
LnJ m/\.
vi(n)n?H-1 Z b% . (s — sp)dBy; — 0.
k=0 n

Proof. The proof in the case b = [[gy is done in [13]. Similar arguments as
in Lemma [2.4.8 allow to conclude. O
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2.4.3 Proof of Theorem [2.1.2] and [2.1.3]
Proof of Theorem : For s € [0,T], recall that s,, = Ins] SJ and

[nt]

. t .
MY = n?f=1 / Usg dBJ § uﬁ < EEL g BJk)
We have

t
nij _ 2H—1 i i Ji
M, = n /0 (ug — uy )dB]

t d
= n2H—1/ > Pi(BS - BE,)dB]
0 e=1
d

t
421 / <u —ul =Y Pi(BS - B;n)> dBJ
0

e=1
— A?’Z’] + ZRlue —i—R?’Z’],
e#j

with
o 1 nin ) 2
A = e ST e (Bl - B )

k=0 "
ntn k+1 5y

R = nQH—lzPEeﬁ (Bj—B%) dB], e#j
k=0 n
RY = 2ol / ( —uy, = Y P(B - BS,J) dB].
e=1

Lemma, implies the L2(Q)-convergence of A"/ to 3 fot Pids. We
show that all the additional terms converge to 0 in L?(£2)-norm as n — oc.
If e # j, DY B® = 0, so according to Proposition

E+1 ay L=\
/q (Bg— iﬂ)ng:/k (Bg— 3@)53;

Lemma then implies the L?(Q2) and UCP convergence of every R} to
0 for all e # j and ¢t € [0,T]. Moreover, (u, P) € Cy, so the equation (2.3)
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implies that

N2 nin 2
()] = (S

n’ n

ntn, ntp
S V] [
1=0 k=0 e
ntn nt
e k k+1 I 1+1
= ZZTH( i Nt —, e /\t>§T2H6(n),
=0 k=0 " "

with €(n) — 0.
Thanks to Lemma |2 we can now show that, for all 4,7 € {1,...,d},

the sequences (R;" ’])n converges UCP to 0 as n — oo, by checking their
tightness in Cgr([0, 7). We have

ntp—1
Rn l,] _ ,’,LQH 1 Z L Ve + n?H—lLi;it (248)
Thanks to (2.3]), we have
a1 ’ a1 Ek+1 11+1
S o e S o =)
k=nsn noon l,k=nsn
= K(tn - sn)QHa

for some K > 0. Moreover, let € € (0, — (1 — H)) be small enough (let
us recall that « (resp () is the Holder exponent of u (resp P)). The second
term in the right-hand side of verifies (due to the regularity and inte-
grability assumptions on v and P, as well as the Young-Loeve inequality):

sup <n2H I‘Ltm D
t€[0,T]
< Comg g I OB g

e g TP || B} — 0 as.

Then, the sequence R}” "I verifies the assumptions of Lemma |2 with
An V6,7 — 2H 1Zntn—1 Llé] iy sz V6J — 2H lL;g,tv ag = 2°0H — 1750 — 27

n’n

which proves the tightness. U
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Proof of Theorem : 1. Let H > % Again, we can write

o1t o o o .
M = o /0 Polds = M+ M + Rip? + Ry
e#£j
where, for 1 <i<mand 1 <j+#e <d,

Nty k+1 Ay 2H
y 5 o 1 (k+1 k
A _ 2H—1 )
M}?t” = n kg_o P;j </€ <B§ — Bf'§> dB! — 3 <n ANt — n> )

n
n

ntn k+l a4
7'7' 2H—-1 ‘7 " ]
O Y R G AT
k=0 n
1 (1™t 1 t
mi = 3 (1 A L - [ i)
k=0
.. t . . d . .
50 = [ -, = Y Pl - B | dBL
0 e=1
C . 12(Q
Since (u, P) € Cy, we have that vg(n)Ry,” @y by using again the
) n—00

formula (2.3). The tightness of the sequence (VH(n)Rg”t” )n can be proved
by using the same argument as in the previous proof.

On the other hand, since P is S-Hélder continuous for some 5 > % we

have that sup,¢(o 7 ‘I/H(’I’L)R?Z J ‘ — 0 a.s., which guarantees the convergence

of vy (n)R?” to 0 in Cr([0,T]). When H > 3, since we have the additional
hypothesis that >, ; E[|| P"I ||2+7] < oo for some vy > 0, we can further prove

.72
the L%(Q2) convergence: for each t < T, vy (n)Ry’,” 9.
’ n—oo

Finally, using Proposition [2.2.4] we observe that

SN N ey N
[ - [ -
and, if e # 7,

/ (B:-Bi.)ng:/ (B:—B‘,i)éBg.
k n k n

Since P verifies the regularity assumptions of Lemma[2.4.9] we get the stated
convergence for all values of H > %:
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o If J <H<CSZ,

vi(n) [ MT — = / PiHids — / Phedwed
2.Jo ij " Lo ¢/irj

where the convergence holds in Cgaxm ([0, t]).

oIfH>%,

v (n) [ MM — = / Piids — / Piedzed
2.Jo ij " Lo e/isj

’,

where the convergence holds UCP (and in L?(f2) for fixed t).

2. Once the necessary modifications are made, the proof is the same for
Brownian motion. O

Acknowledgements. 1. Nourdin and V. Garino are supported by the FNR
OPEN grant APoGEe at Luxembourg University. We heartily thank the
editorial board and the two reviewers, whose comments and careful reading
led to a drastic change from the original version and significantly improved
the readability of the article.

110



Bibliography

1]

E. Alos and M. Fukasawa: The asymptotic expansion of the regular
discretization error of It6 integrals. Math. Finance 31 (2021), pp. 323-
365.

E. Azmoodeh and L. Viitasaari: Rate of convergence for discretization
of integrals with respect to fractional Brownian motion. Journal of
Theoretical Probability 28 (2015), no. 1, pp. 396-422.

W. Beckner: Geometric inequalities in Fourier analysis. In Essays on
Fourier Analysis in Honor of Elias M. Stein, Princeton University
Press, Princeton, NJ (1995), pp. 36-68.

F. Comte and E. Renault. Long memory in continuous-time stochastic
volatility models. Math. Finance 8 (1998), no. 4, pp. 291-323.

J.M Corcuera, D. Nualart and M. Podolskij: Asymptotics of weighted
random sums Communications in Applied and Industrial Mathematics
6, no. 1 (2014).

L. Coutin, D. Nualart and C.A. Tudor: Tanaka formula for the frac-
tional Brownian motion. Stochastic processes and their applications 94
(2001), no. 2, pp. 301-315.

C. Dobler, M. Kasprzak and G. Peccati: Functional Convergence of U-
processes with Size-Dependent Kernels Ann. Appl. Probab., to appear.

P. K. Friz and M. Hairer: A course on rough paths Universitext.
Springer, Cham, 2014. With an introduction to regularity structures.

M. Fukasawa: Discretization error of stochastic integrals. Ann. Appl.
Probab. 21 (2011), no. 4, pp. 1436-1465.

111



[10]

[11]

[12]

[13]

[14]

A. Garsia, E. Rodemich, H. Rumsey and M. Rosenblatt: A real vari-
able lemma and the continuity of paths of some Gaussian processes
Indiana University Mathematics Journal 20 (1970) no 6, pp. 565-578.

E. Gobet and E. Temam: Discrete time hedging errors for options
with irregular payoffs. Finance and Stochastics 5 (2001), no. 3, pp.
357-367.

M. Gubinelli: Controlling rough paths Journal of Functional Analysis
216 (2004) no 1, pp. 86-140

Y. Hu, Y. Liu and D. Nualart: Rate of convergence and asymptotic
error distribution of Euler approximation schemes for fractional diffu-
sions. Ann. Appl. Probab. 26 (2016), no. 2, pp. 1147-1207.

J. Jacod and P. Protter: Asymptotic error distributions for the Euler
method for stochastic differential equations. Ann. Probab. 26 (1998),
no. 1, pp. 267-307.

R. Klein and E. Gine: On quadratic variation of processes with Gaus-
sian increments. Ann. Probab (1975) pp. 716-721.

A.N. Kolmogorov: The Wiener spiral and some other interesting
curves in Hilbert space. Dokl. Akad. Nauk SSSR 26 (1940), no. 2,
pp. 115-118.

W.E. Leland, M.S. Taqqu, W. Willinger and D.V. Wilson: On the
self-similar nature of ethernet traffic (extended version). IEEE/ACM
Transactions on networking 2 (1994), no. 1, pp. 1-15.

C. Lindberg and H. Rootzén: Error distributions for random grid
approximations of multidimensional stochastic integrals. Ann. Appl.
Probab. 23 (2013), no. 2, pp. 834-857.

Y. Liu and S. Tindel: Discrete rough paths and limit theorems. Ann.
Inst. H. Poincaré Probab. Statist. 56, no. 3 (2020), pp. 1730-1774.

B.B. Mandelbrot and J.W. Van Ness: Fractional Brownian motions,
fractional noises and applications. STAM Rev. 10 (1968), pp. 422-437.

T. Mikosch, S. Resnick, H. Rootzén and A. Stegeman. Is network
traffic approximated by stable Lévy motion or fractional Brownian
motion? Ann. Appl. Probab. 12 (2002), no. 1, pp. 23-68.

112



[22]

[27]

[28]

F.J. Molz, H.H. Liu and J. Szulga: Fractional Brownian motion and
fractional Gaussian noise in subsurface hydrology: A review, presen-
tation of fundamental properties, and extensions. Water Resources
Research 33 (1997), no. 10, pp. 2273-2286.

A. Neuenkirch and I. Nourdin: Exact rate of convergence of some ap-
proximation schemes associated to SDEs driven by a fractional Brow-
nian motion. J. Theoret. Probab. 20 (2007), no. 4, pp. 871-899.

I. Nourdin, D. Nualart and C.A. Tudor: Central and non-central limit
theorems for weighted power variations of fractionnal Brownian mo-
tion Ann. Inst. H. Poincaré Probab. Statist. 46 (2010), no 4, pp 1055—
1079 .

I. Nourdin, A. Réveillac and J. Swanson: The weak Stratonovich inte-
gral with respect to fractional Brownian motion with Hurst parameter
1/6. Electronic Journal of Probability 15 (2010), pp. 2117-2162.

I. Nourdin and G. Peccati: Normal approximation with Malliavin cal-
culus:  from Stein’s method to universality Volume 192. Cambridge
University Press, 2012.

D. Nualart: The Malliavin calculus and related topics Volume 1995.
Springer, 2006.

G. Peccati and C. A. Tudor: Gaussian limits for vector-valued multiple
stochastic integrals. In Séminaire de Probabilités XXXVIII, pp. 247—
262, Springer, 2005.

B. Pesquet-Popescu: Modélisation bidimensionnelle de processus non
stationnaires et application a ’étude du fond sous-marin. PhD thesis,
ENS de Cachan (1998).

V. Pipiras and M.S Taqqu: Are classes of deterministic integrands
for fractional Brownian motion on an interval complete? Bernoulli T

(2001), no 6, pp. 873-897.

D. Revuz and M. Yor: Continuous martingales and Brownian motion
Volume 293. Springer Science & Business Media, 2013.

H. Rootzén: Limit distributions for the error in approximations of
stochastic integrals. Ann. Probab. 8 (1980), no. 2, pp. 241-251.

113



[33]

[34]

[35]

[36]

[37]

[38]

[39]

F. Russo and P. Vallois: Forward, backward and symmetric stochastic
integration Probability theory and related fields 97 (1993), no 3, pp.
403-421.

C.A. Tudor: Analysis of the Rosenblatt process ESAIM: Probability
and Statistics 12 (2008), pp. 230-257.

D. Veneziano, R.L. Bras and J.D. Niemann: Nonlinearity and self-
similarity of rainfall in time and a stochastic model. J. Geophysic.
Research: Atmospheres 101 (1996), pp. 26371-26392.

T. Vojta, S. Halladay, S. Skinner, S. Janusonis, T. Guggenberger and
R. Metzler. Reflected fractional Brownian motion in one and higher
dimensions. Phys. Rev. E. 102 (2020), 032108.

L.C. Young: An inequality of the Holder type, connected with Stieltjes
integration Acta Mathematica 67 (1936), no 1, pp. 251-282.

M. Talagrand: Sur lintgrabilité des vecteurs gaussiens. Z.
Wahrscheinlichkeitstheorie verw. Gebiete 68 (1984), pp. 1-8.

M. Zahle: Integration with respect to fractal functions and stochastic
calculus. 1 Probability theory and related fields (1998), no 3, pp.333—
374.

114



Chapter 3

Limit theorem for integral
functionals of Hermite driven
processes

Reproduction of the paper [15], entitled ”Limit theorem of integral func-
tionals of Hermite-driven process” and written in collaboration with Ivan
Nourdin, David Nualart and Magjid Salamat. Bernoulli 27 (2021), no. 3,
pp. 1764—-1788.

3.1 Introduction

Hermite processes occur naturally when we consider limits of partial sums
associated with long-range dependent stationary series. They have become
increasingly popular in the recent literature, see for example the book [16]
by Pipiras and Taqqu, in particular section 4.11, which contains bibliograph-
ical notes on their history and recent developments. They form a family of
stochastic processes, indexed by an integer ¢ > 1 and a self-similarity index
He (%, 1), called the Hurst parameter, that contains the fractional Brown-
ian motion (¢ = 1) and the Rosenblatt process (¢ = 2) as particular cases.
We refer the reader to Section and the references therein for a precise
definition of the Hermite processes. Of primary importance in the sequel is
the parameter Hy, given in terms of H and g by

1-H 1

€ (1

Hy=1- -
q 2q

,1). (3.1)
The goal of the present paper is to investigate the fluctuations, as T —
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00, of the family of stochastic processes
Tt
t |—>/ P(X(s))ds, te]0,1] (say), (3.2)
0

in the case where P(z) is a polynomial function and X is a moving average
process of the form

t

X0 = [ et-wize tz0 (3.3)
— 00

with Z a Hermite process and ¢ : Ry — R a sufficiently integrable function.

We note that integral functionals such as (3.2) are often encountered in the

context of statistical estimation, see e.g. [21] for a concrete example.

Let us first consider the case where ¢ = 1, that is to say the case where Z
is the fractional Brownian motion. Note that this is the only case where Z is
Gaussian, making the study a priori much simpler and more affordable. By
linearity and passage to the limit, the process X is also Gaussian. Moreover,
it is stationary, since the quantity E[X (¢)X (s)] =: p(t — s) only depends on
t — s. For simplicity and without loss of generality, assume that p(0) = 1,
that is, X (¢) has variance 1 for any ¢t. As is well-known since the eighties
(see [5,18,/19]), the fluctuations of heavily depends on the centered
Hermite rank of P, defined as the integer d > 1 such that P decomposes in
the form

P =E[P(X(0))] + > arHy, (3.4)
k=d

with Hy, the kth Hermite polynomials and ag # 0. (Note that the sum
is actually finite, since P is a polynomial, so that #{k : ax # 0} < c0.)
The first result of this paper concerns the fractional Brownian motion.
Even if it does not follow directly from the well-known results of Breuer-
Major [5], Dobrushin-Major [§] and Taqqu [19], the limits obtained are
somehow expected. In particular, the threshold H =1 — ﬁ is well known
to specialists. However, the proof of this result is not straightforward, and

requires several estimations which are interesting in themselves.

Theorem 1. Let Z be a fractional Brownian motion of Hurst index H €
(3,1), and let o € LY(Ry) N L%(RJ'_). Consider the moving average process
X defined by and assume without loss of generality that Var(X(0)) =
1 (if not, it suffices to multiply ¢ by a constant). Finally, let P(x) =
Zflvzo anx™ be a real-valued polynomial function, and let d > 1 denotes its
centered Hermite rank.
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1. Ifd>2 and H € (3,1 — o) then

D=

[T (po) — mipOeas 35

te(0,1]

converges in distribution in C([0,1]) to a standard Brownian motion
W, up to some multiplicative constant C1 which is explicit and depends
only on ¢, P and H.

2. If H € (1— 55,1) then

Tt
w001 [ (P - BIPOE ) s (36)

te(0,1]

converges in distribution in C([0,1]) to a Hermite process of index d
and Hurst parameter 1 —d(1 — H), up to some multiplicative constant
Cy which is explicit and depends only on ¢, P and H.

Now, let us consider the non-Gaussian case, that is, the case where g > 2.
As we will see, the situation is completely different, both in the results
obtained (rather unexpected) and in the methods used (very different from
the Gaussian case). Let L > 0. We define Sy, to be the set of bounded
functions [ : Ry — R such that y*I(y) — 0 as y — oo. We observe that
S, C L'(Ry) N L%(RJ’_) for any L > 1. We can now state the following
result.

Theorem 2. Let Z be a Hermite process of order g > 2 and Hurst parameter
H € (%,1), and let ¢ € Sy, for some L > 1. Recall Hy from and
consider the moving average process X defined by . Finally, let P(x) =
Zivzo anx™ be a real-valued polynomial function. Then, one and only one of
the following two situations takes place at T — oo:

(1) If q is odd and if an, # 0 for at least one odd n € {1,..., N}, then
Tt

T Ho {/ (P(X(s)) —E[P(X(s))])ds}

0 te[0,1]

converges in distribution in C([0,1]) to a fractional Brownian motion
of parameter Hy := Hy, up to some multiplicative constant K, which
is explicit and depends only on ¢, P, q and H, see Remark[]]
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(i) If q is even, or if q is odd and a, =0 for all odd n € {1,..., N}, then

Tt {/OTt (P(X(s) - E[P(X(S))])dS}

tel0,1]

converges in distribution in C([0,1]) to a Rosenblatt process of Hurst
parameter Ho := 2Hy—1, up to some multiplicative constant Ko which
is explicit and depends only on ¢, P, q and H, see Remark[]]

Remark 3. Whether in Theorem [l| or Theorem [2| the multiplicative con-
stants appearing in the limit can be all given explicitly by following the
respective proofs. For example, the constant K7 and K9 of Theorem [2| are
given by the following intricate expressions:

N

K1 = E anc%yqK%ml
n=3,n odd

N
Ky, = ZanCTI{I’qKSO’n,Q_’_a]_H{q:Q}/ o(v)dv
n=2 R+

with

C.K
Kpni= Z w’ i=1,2,

CFH. 4
Q€A qng—2]al=i Hisi

where the sets and constants in the previous formula are defined in Sections

B2 3:3] and [3-4

Remark 4. Note that, unlike the case of a fractional Brownian motion X,
where the limit depends on the Hermite rank of the polynomial P, here
the Hermite rank of P plays no role and the limit depends on the parity
of the nonvanishing coefficients of P. This is not really surprising in our
non-Gaussian context, since the Hermite rank of P is defined by means of
its decomposition into Hermite polynomials, and these latter polynomials
only have good probabilistic properties when evaluated in Gaussian random
variables.

We note that our Theorem [2| contains as a very particular case the main
result of [21], which corresponds to the choice P(x) = 22 and thus situation
(ii). Moreover, let us emphasize that our Theorem [2| not only studies the
convergence of finite-dimensional distributions as in [21], but also provides
a functional result.

Because the employed method is new, let us sketch the main steps of the
proof of Theorem |2 by using the classical notation of the Malliavin calculus

118



(see Section 2 for any unexplained definition or result); in particular we
write If (h) to indicate the pth multiple Wiener-It6 integral of kernel h with
respect to the standard (two-sided) Brownian motion B.

(Step 1) In Section we represent the moving average process X as
a gqth multiple Wiener-It6 integral with respect to B:

X(t) = cug 17 (9(t, ),

where cp 4 is an explicit constant and the kernel g(t, ) is given by

t q
g(t7§17"'7§q)_/_ t—?} Hv_gj v, (37)

for &1,...,&§ € R, ¢ > 0. Thanks to this representation, we compute in
Lemma [5| the chaotic expansion of the nth power of X (¢) for any n > 2 and
t > 0, and obtain an expression of the form

_CHq Z C nq 2\a| (g(t,-),...,g(t,-))),

aeAn »q

where we have used the novel notation ®4(g(t,-),...,g(t,-)) to indicate it-
erated contractions whose precise definition is given in Section and
where C, are combinatorial constants and the sum runs over a family A, ,
of suitable multi-indices a = (o;,1 <@ < j < n). As an immediate con-
sequence, we deduce that our quantity of interest can be decomposed as
follows:

Tt

Tt
| (Pexes) - ElPCe@)ds = ao [ X(e)is 55)

N Tt
Sk, X Caf I (@ala(s).as)ds
n=2

a€An,q,nq—2la|>1

(Step 2) In Proposition @ we compute an explicit expression for the
iterated contractions ®4(g(t,-),...,g(t,-)) appearing in the right-hand side

of (3.8), by using that g is given by (3.7).

To ease the description of the remaining steps, let us now set

Tt
Fn,q,a,T(t)Z/O Ly—ja/(®alg(s, "), -, g(s,)))ds. (3.9)
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(Step 3) As T' — oo, we show in Propositionthat, if ng—2|a| < 457,
then T—1+(1-Ho)(na=2lel p (1) converges in distribution to a Hermite
process (whose order and Hurst index are specified) up to some multiplica-
tive constant. Similarly, we prove in Proposition |§| that, if ng — 2|a| > 3,
then T F, , o 7(t) is tight and converges in L?(2) to zero, where oy is given

in (529).

(Step 4) By putting together the results obtained in the previous steps,
the two convergences stated in Theorem [2] follow immediately.

To illustrate a possible use of our results, we study in Section [3.6] an
extension of the classical fractional Ornstein-Uhlenbeck process (see, e.g.,
Cheridito et al [7]) to the case where the driving process is more generally a
Hermite process. To the best of our knowledge, there is very little literature
devoted to this mathematical object, only [11}/17].

The rest of the paper is organized as follows. Section presents some
basic results about multiple Wiener-I1t6 integrals and Hermite processes, as
well as some other facts that are used throughout the paper. Section |3.3
contains preliminary results. The proof of Theorem (1| (resp. Theorem

is given in Section (resp. Section [3.4)). In Section we provide a
complete asymptotic study of the Hermite-Ornstein-Uhlenbeck process, by

means of Theorems [I] and 2] and of an extension of Birkhoff’s ergodic The-
orem. Finally, Section contains two technical results: a power counting
theorem and a version of the Hardy-Littelwood inequality, which both play
an important role in the proof of our main theorems.

3.2 Preliminaries on multiple Wiener-1to integrals
and Hermite processes
3.2.1 Multiple Wiener-It6 integrals and a product formula

A function f : RP — R is said to be symmetric if the following relation holds
for all permutation o € S(p):

f(t,.. .,tp) = f(tg(l), e ,ta(p)), t1,...,tp € R.

The subset of L?(RP) composed of symmetric functions is denoted by L?(RP).
Let B = {B(t)}«cr be a two-sided Brownian motion. For any given
f € L2(RP) we consider the multiple Wiener-Ité integral of f with respect
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to B, denoted by
I5(f) = X f(t,...,tp)dB(t1)---dB(tp).
p

This stochastic integral satisfies E[I”(f)] = 0 and

E[I7 ()17 (9)] = 1ipeqyPX(f, 9) L2(Re)

for f € L2(RP) and g € L2(RY), see [10] and [13] for precise definitions and
further details.

It will be convenient in this paper to deal with multiple Wiener-1t6 in-
tegrals of possibly nonsymmetric functions. If f € L?(RP), we put If( f) =

If( f), where f denotes the symmetrization of f, that is,

1
f(xb- . 'axp> - E Z f(xa(l)v" . 7xa(p))'

" 0€S(p)

We will need the expansion as a sum of multiple Wiener-It6 integrals for
a product of the form
n
B
H Iq (hk)7
k=1

where ¢ > 2 is fixed and the functions hy, belong to L2(R?) for k =1,...,n.
In order to present this extension of the product formula and to define the
relevant contractions between the functions h; and h; that will naturally
appear, we introduce some further notation. Let A, , be the set of multi-
indices a = (a;5,1 < i < j <n) such that, for each k =1,...,n,

> ailiepg <@

1<i<j<n
Set |or] = D21 <icj<n g

Br=aq- Z Qijlrefigy 1<k<n

1<i<j<n
and

m :=m(a) :262 =nqg — 2|a|. (3.10)
k=1

For each 1 <14 < j < n, the integer «;; will represent the number of variables
in h; which are contracted with h; whereas, for each k = 1,...,n, the integer

121



5,2 is the number of variables in hy which are not contracted. We will also
write B = Z§=1 ﬁ? for k=1,...,n and By = 0. Finally, we set

C a" (3.11)
o = . .
[Ti=1 5/2! H1§i<j§n ij!

With these preliminaries, for any element a € A, , we can define the
contraction ®q(h1,...,hy) as the function of ng — 2|a| variables obtained
by contracting «;; variables between h; and h; for each couple of indices
1 <¢ < j < n. Define the collection (ui’j)1§i7j§n7#j in the following way:

(2 — C ..
U™ = Qmin(i,j),max(i,j) -

We then have

@ (hh )(fb cee 7§nq72|a|)

oY

n
k,1 k,n k,n
/ H 31 7"'73uk,17"'a81 a'-'7suk,n7£1+ﬁk,17"-7£ﬁk) (312)
Rlel
k=1
x H dsid .. .ds',
utJ
<i<j

When n = 2, o has only one component oy and ®q(h1,h2) = h1 ®@a, , b2
is the usual contraction of a2 indices between hy and ha. Notice that the
function ®q(h1,...,hy) is not necessarily symmetric.

Then, we have the following result.

Lemma 5. Let n,q > 2 be some integers and let h; € L*(R%) for i =
1,...,n. We have

[T1220) = > Call go(@alhn,. .. hn)). (3.13)
k=1

OleAn »q

Proof. The product formula for multiple stochastic integrals (see, for in-
stance, [14, Theorem 6.1.1], or formula (2.1) in [3] for n = 2) says that

H I‘? Z B+--+89 < ®Z:1hk)fp’¢> s (314)
k=1

where P denotes the set of all partitions {1,...,¢} = J; U (Up=1,.._nkzilik)
where for any 4,5 = 1,...,n, I;; and I;; have the same cardinality o;;, ¥;;
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is a bijection between I;; and I;; and 3 = |Jx|. Moreover, (i) p

denotes the contraction of the indexes ¢ and 1;;(¢) for any ¢ € I;; and any
i,j = 1...,n. Then, formula (3.13) follows form (3.14)), by just counting

the number of partitions, which is

n

q
Loy 0101
k—1 L1liorj#k = Mk

and multiplying by the number of bijections, which is [ [, <i<j<n ajl. g

Notice that when n = 2, formula (3.13) reduces to the well-known for-
mula for the product of two multiple integrals. That is, for any two sym-
metric functions f € L2(RP) and g € L2(R?) we have

L (NI (9) = mqu) r! <p> (q) L (f @1 9).

T T
r=0

where, for 0 < r < min(p, q), f ®, g € L?>(RP*972") denotes the contraction
of r coordinates between f and g.

3.2.2 Hermite processes

Fix ¢ > 1 and H € (%, 1). The Hermite process of index ¢ and Hurst
parameter H can be represented by means of a multiple Wiener-It6 integral
with respect to B as follows, see e.g. [9]:

q 3
ZMa(t) = CH,q/ / IIGs - ;) 2 dsdB(x1) - dB(z,), tER.
Ra J[0,¢] j=1

(3.15)
Here, ;. = max{z, 0}, the constant cp 4 is chosen to ensure that
Var(Z14(1)) = 1, and

Note that ZH:4 is self-similar of index H. When ¢ = 1, the process
ZH:1 is Gaussian and is nothing but the fractional Brownian motion with
Hurst parameter H. For ¢ > 2, the processes Z4 are no longer Gaussian:
they belong to the gth Wiener chaos. The process ZH2 is known as the
Rosenblatt process.
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Let |H| be the following class of functions:

H={r R R /R/Ryf(u)uf(v)uu—vy?ff2dudu<oo}.

Maejima and Tudor [9] proved that the stochastic integral [, f(u)dZ™(u)
with respect to the Hermite process ZH+ is well defined when f belongs to
|%|. Moreover, for any order ¢ > 1, index H € (1,1) and function f € |H],

/R Fu)dz™(u) (3.16)
— e [ |/ fo [T | aster) --apicy)

As a consequence of the Hardy-Littlewood-Sobolev inequality featured in [1],
we observe that L}(R) N L# (R) C |].

. o s Tt
3.3 Chaotic decomposition of [, P(X(s))ds

Assume ¢ € |H| and ¢ > 1. Using (3.16|) and bearing in mind the notation
and results from Section it is immediate that X can be written as

X(t) = cmgly (9(t,)), (3.17)

where g(t,.) is given by

_ ¢ d Ho 3/2
gt &1, 8) = p(t—v) [J(v— &) v, (3.18)
_ o

and cp 4 is defined as in (3.15)).

3.3.1 Computing the chaotic expansion of X (¢)" when n > 2

Let us denote by A?L’q the set of elements a € A, ; such that ng — 2|a| =0
and A}, | will be the set of elements a € Ay, 4 such that ng—2|a| > 1. Notice
that when nq is odd, A%q is empty. Using , we obtain the following
formula for the expectation of the nth power (n > 2) of X given by (3.3):

E[X(t) ch Z Cal q 2|a| ®a( ( ')v"'?g(tv')»' (3'19)

a6A07

124



We observe in particular that E[X (¢)"] = 0 whenever nq is odd. From ({3.13))
and (3.19), we deduce for n > 2 that

X" ~EX(1)"] = (eng)" Y Colpyoja(@alglt, ). g(t,))- (3.20)

acAl ,

To clarify this formula, let us write down detailed a expression in the
cases n = 2 and n = 3. When n = 2, the right-hand side of (3.20) is

q—1 2
(e S (*) iy anta(t) or e, )

because o has just one component a2 =: r and condition a € A}%q means
0<r<qg—1. For n =3, we have

Az ={(a12,013,003) rip+a13 < qa12+ 003 < q, 13+ a3 < q}

and the right-hand side of (3.20) is

(CH#I)?’ Z CaI3q—2\o¢|(®a(.g(t7 ')a g(ta ')7 g(tv ))7

a€A3,4:3¢—2|a|>1
where

o — (a!)°
arplarslago!(g— a2 —a13)l(q¢ — a12 — az3)! (g — arz —ar3)!

In this case, the contraction ®q(g(t,-),g(t, ), g(t,-)) is the function of 3¢ —
2|«r| variables defined by

/ g(e, s,u)g(x,s,v))g(o, u,v)dsdudv,
Rlel

with 8 = (51,...,8a15); U = (U1, ..., Uqay 3) a0 V = (V1,...,Vay3)-
From (3.20|) we obtain
Tt Tt
/ (P(X(s)) — E[P(X(s))])ds = a1 X(s)ds (3.21)
0 0

N
+Zan(CHq Z C/ IT?(172|04\(®O¢<9(37’)7'~-7g(3a‘)))ds'
n=2

acAl .
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3.3.2 Expressing the iterated contractions of ¢

We now compute an explicit expression for the iterated contractions appear-
ing in (321).

Proposition 6. Fixn>2,q¢>1 and o € A, 4. We have

S (90t ) 9(0))(€) = B(Hy — 5,2 2H)"

X / dvy .. .dv, H go(t — 'Uk) H ‘Ui _ vj’(QH()_?)Olij
(—oont]? k=1

1<i<j<n
n Bk o8
0—3
<IT II (- 2,
k=10=14P_1

with the convention By = 0.

Proof. The proof is a straightforward consequence of the following identity
Ho—3/2 Ho—3/2 1 _
/ (0= (w =) 7 de = B(Ho — 5, 2- 2Hy)v - w|*T), (3.22)
R

whose proof is elementary, see e.g. [4]. O

3.4 Proof of Theorem 2

We are now ready to prove Theorem To do so, we will mostly rely
on the forthcoming Proposition [7] which might be a result of independent
interest by itself, and which studies the asymptotic behavior of Ff% a1 8lven
by . We will denote by f.d.d. the convergence in law of the finite-
dimensional distributions of a given process. Notice that the hypothesis on
@ is a bit weaker than the one in the main theorem, the fact that ¢ € S,
being required in the forthcoming Proposition [9}

Proposition 7. Fixn > 2, g > 1 and a € A, ,. Assume the function ¢

,q
belongs to LY(R,) N L%(]Rg), recall Hy from and let m be defined as
mn . Finally, assume that 2m < 25 (which is automatically satisfied
when m =1 or m =2). Then, as T — oo,

- - m -d.d. COCK ) m),m
(O () oy 2 (Mzm ) <t>) ,
CH(m),m te[0,1]

(3.23)
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where ZH(M)™ denotes the mth Hermite process of Hurst index H(m) =
1 —2(1— H) and the constants Co, and K, o m, are defined in and
3.24)), respectively. Furthermore, {T‘1+(1_H0)m(Fn,%a,T(t))te[O’H, T > 0}
is tight in C([0,1]).

Remark 8. Note that for m; < mo the chaos of order m; dominates the
chaos of order mso.

Proof of Proposition[7. Let n>2,¢>1and a € A, 4.

Step 1: We will first show the convergence (3.23). We will make several
change of variables in order to transform the expression of Fj, 4o 7(t). By
means of an application of stochastic’s Fubini’s theorem, we can write

Fn,q,a,T(t) = Ca \PT(gla s 7£m)dB(£1) e dB(gm),

Rm

where

Tt n
‘IIT(é.l? s 7{77‘&) = T_1+m(1_HO) / dS/ d?)l to dvn H SO(S - Uk)
0 (—o0,s]™

n Ho—3
X H |vi _UJ|2H02a”H H Uk—fe .

1<i<j<n k=1/0=1+8p_1

Using the change of variables s — T's and vy — T's — v, 1 < k < n, we
obtain

t n
Up(Er, ..., &p) = Tm0H0) / ds/ dvy - - - doy, H o(T's — v)
0 (—o0,T's]™

n Ho—3
< I o — vl ®Fo2eu I H (op — &)

1<i<j<n k=16=1+84_1

t n
:T_ﬂ;/ds/ dvy - - - duy (v
0 [0,00)™ H ( )
(2Ho—2)ov; - §e \Ho—3
X H |vi — UJ| H H - ? - f)+ :

1<i<j<n k=10=1+8k_1

By the scaling property of the Brownian motion, the processes
(Frg.01(t))acA, 4 2<n<Nt€0,1]
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and
(Frg.a,7(t))acA, 4,2<n<N,te[0,1]

have the same probability distribution, where

ﬁn,q,a,T(t) =Cq o (I;T(gly cee ’fm)dB(fl) e dB(ém)

o~ t n
\I’T(gl,...,fm) ::/Ods/ O]ndul-.-dvnH(p(Uk)
T e [T (s — 2% g2,

1<i<j<n k=10=148j_1
Set
~ ¢ e Hy—2
\I/(fl,...,fm) = Kga,a,Ho/ dSH(8_§Z)+ %,
0 =1
where

n
Ko, = / dvy - - - doy, H o(vg) H lv; — Uj|(2HO_2)O‘”. (3.24)
RY k=1

1<i<j<n

Notice that, by Lemma K, o H, is well defined. We claim that

lim Uy =0, (3.25)

T—o0

where the convergence holds in L?(R™). This will imply the convergence in
L*(Q) of Fy, ga1(t), as T — oo to a Hermite process of order m, multiplied
by the constant Co Ky, o, 1, -

Proof of .' It suffices to show that the inner products (@T, @T)Lz(Rm)
and (\TIT, W) 12mm) converge, as T' — oo, to

~ 1
19172 @my = Ko a,1,8(Ho — 512 QHO)m/[otP dsds'|s — §'|2Ho=2m

which is finite because m < 2(13 o) = 2(13 o We will show the conver-

gence of <\TIT, \TIT> r2(®m) and the second term can be handled by the same
arguments. We have

17132 o) = / dsds' / doy - dvndd, - du,
[0,t]2 Ri’n
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n
< JTewoeh) T o -yl H02oujo] - o 2Ho=2e

k=1 1<i<j<n
- Uk — Vi (2Ho—2
H/B(H[)—* 2—2H0)Bk|8—3 T|( 0~ )Bk
k=1
Let us first show that given wp € R, 1 < k < n,
lim dsds’ H |s — s 2H0 2B = / dsds’|s — s’|(2H°*2)m
T—00 J[0,42 [0,¢)2
(3.26)
and, moreover,
n
sup / dsds' H s — 5 — wy,|PHo=DB < o0, (3.27)
wi €R,1<k<n J[0,]

k=1
By the dominated convergence theorem and using Lemma (3.26]) and

imply (525).

To show (3.26)), choose € such that |wg|/T < €, 1 < k < n, for T large
enough (depending on the fixed wy’s). Then, we can write

/ dsds’

0,t]2

St/ N e
j€]>2 kHl T

n
+ 2t sup / d¢ H € — wy|(2Ho=2)Bk
|€]1<2€ k=1

|’wk|<6

H s — & _ Wk ’(2H072)Bk |5 — §/|(2Ho=2)m

:= B1 + Bs.

The term Bj tends to zero a T — oo, for each € > 0. On the other hand,
the term Bs tends to zero as € — 0. Indeed,

n
Bt sup [ ae][ e w0
lonl<1/jEl<2 3oy

Note that the above supremum is finite because the function (ws, ..., wy) —
f\§|<2 de TR, 1€ — wi|BHo=2)Bx ig continuous.
Property (3.27] - follows immediately from the fact that the function

(wi,...,wg) — dsds'H s — s’ _wk|(2H0—2)ﬁk
[O’t}2 kil
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is continuous and vanishes as |(w1, ..., w;)| tends to infinity.
We have Hy = 1 — % =1- %(m) with H(m) as above. As a re-
sult, we obtain the convergence of the finite-dimensional distributions of

T I+(1- Ho)m g, an(t) to those the mth Hermite process Z(™):™ multi-
a gp a,Hp
CH(m),m ’

plied by the constant

Step 2: Tightness. Fix 0 < s <t < 1. To check that tightness holds in
C([0,1)), let us compute the squared L?(2)-norm

Q7 = T_1+(1_HO)mE(‘Fn,q,a,T(t) - Fn,q,a,T(S)F)‘

Proceeding as in the first step of the proof, we obtain

\IIT:E< /mdB(fl §m/du/ndv1 dvanovk
n 32
o UEEE | R )

1<i<j<n k=14=1+Bk_1
t n
R™ s T

N VR | g G

1<i<j<n k=10=14+8,_1

Using ((3.22) yields

U < m!/ dudu'/ dvy - - - dvpdv) - - - dv),
[8 t]2 R2n

X

—=

plonp(eh) T fos — g CHom2u]of — o CHo- 2y
1<i<j<n

1 3 Uk — U 2He-2)3
B — 5,2~ 2Ho)Pfu — o — 2k -5

b
Il
—

=

£
Il
—

1
gm!(t—s)/ d¢ dvy -+ dvpdv} - - - dvl,
-1

R3"
n
> H o(vg)p(vh,) H lv; — vj‘(QHo—Q)Oéij v} — v;‘(?Ho—?)Oéij
k=1 1<i<j<n
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n
1 v — U, B
Ho — = 9 _ 9H)\Br|e — k |(2Ho—2) By
Xk|_|1ﬁ( 0= 5 0)€ = =1

< C(t—s).

Then the equivalence of all LP(2)-norms, p > 2, on a fixed Wiener chaos,
also known as the hypercontractivity property, allows us to conclude the
proof of the tightness. O

We will make use of the notation

ap = (1 - 2H0)1{nq is eveny — Holing is oddy- (3.28)

Proposition 9. Fiz n,q > 2 and o € A, 4, assume that the function ¢
belongs to Sy, for some L > 1 and that m > 3. Then for any t € [0,1],
TF, 4.a1(t) converge in L*(Q) to zero as T — oo; furthermore, the family
{(Fug.ar(t))iejon), T > 0} is tight in C([0,1]).

Proof. If (2Hy —2)m > —1, we know that T-1+m0-Ho)E ©(t) converges
to zero in L?(Q) as T'— oo (by Proposition @ This implies the convergence
to zero in L?(2) as T — oo of T~ F,, , o 7(t) because —1+m(1— Hp) > ay.
We should then concentrate on the case (2Hy — 2)m < —1. Once again, we
shall divide the proof in two steps:

Step 1: Let us first prove the convergence in L?(f2). Fix a € A, ,. We are
going to show that

lim T**°E (|F g0, (t)) = 0.

T—oo

We know that
2

T8 (|Fygoir(OF) = T2ml x| [ dsa (g5, 905.0)
[0,T%]

L2 (R'm )

In view of the expression for the contractions obtained in Proposition [7} it
suffices to show that

lim 72 / dsds’ / / / dvy -+ dopdvf - - dv)déy - - - dém
T—=o0 [0,T)2 m J(—o0,s]" J (—00,s/|"

n
< [Lots —vnols' —vp) T o= vyl@Fom2u]) — o (2H0=20
k=1 1<i<j<n

131



B;

XH H Uk—& Ho-3 H (Uilg—ﬁe)fo_%:o-

k=10=14+8j_1 {=14+B;_1

Integrating in the variables &’s and using (3.22), it remains to show that

lim 720 / dsds’/ / dvy -+ - dvpdvy - - - dvy,
T—o0 [0,T¢]2 (—00,5]" J (—o0,s']”

n
X H p(s —ve)p(s' —vp) [ o — vy G072 |y — o PHo=2)s
1<i<j<n

Set

Oy 1= T30 / dsds'/ / dvy - - - dvpdv} - - ~dv;
[0,Tt)2 (—o0,s]™ J (—o0,s’]™

—=

x [T ots ool —h) TT for — wylCHomDeof — o GHa=2k
k=1 1<i<j<n
n
% H vy, — v} |2H0=2)Bx
k=1
Making the change of variables wy = s — v, w, = —v) for k=1,...,n,

yields

O = T2 / dsds’/ / dwy - - - dwpdw - - - dw,
(0,72 n J[0,00)

n
< [ etwoptuh) T s =y G020 ] — w220
1<i<j<n

n
X H s — 8" — wy, + w)|2Ho=2)Bx
k=1
Now we use Fubini’s theorem and make the change of variables s — s’ = £

to obtain

n

Oy = 720+ /2 dwy -+ - dwpdw} -+ - dw!
R n

n
< [T letwnoui)l TT s — g 2H020%0 | 2Ho=20s
k=1

1<i<j<n
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tT n
) / dé TT 1€ = wp + wy,| P20,
—tT k

=1
We shall distinguish again two subcases:
Case (2Hy — 2)m < —1: Notice that the exponent 2ag + 1 is negative:
(i) If ng is even, then oy = 1 — 2Hp and
200+1=3—-4Hy <0
because Hy > %.
(ii) If ng is odd, then oy = —Hy and

200+ 1=1-2H, < 0.

Therefore, in order to show that limp_.,, ®7 = 0, it suffices to check that

J o= / dwy - - - dwpdw) - - - dw), H lo(wi)(wy,)|
R2n k=1

x H |wz o wj|(2H0—2)ai]- ‘w; o ’w;-|(2HO_2)aij

1<i<j<n

X / d [T 1€ — wy + wp|2Ho=2P < o0, (3.29)
R k=1

where, by convention ¢(w) = 0 if w < 0. We will apply the Power Counting
Theorem [14] to prove that this integral is finite. We consider functions on
R?"1 with variables {(wg)k<n, (W},)k<n,&}. The set of linear functions is

T = {wg,wy, 1 §k§n}u{wi—wj,wl'-—w;,1 <i<j<n}
U{& —wg +wg,1 <k<n}
The corresponding exponents (s, vas) for each M € T are (0, —L) for the
linear functions wy, and wj, (taking into account that ¢ € S, (2Hop — 2)a;
for each function of the form w; —wj; or w; — wj and (2Ho — 2)B for each

function of the form & — wy, + wy.
Then J < oo, provided conditions (a) and (b) are satisfied.

e Verification of (b): Let W C T be a linearly independent proper subset of
T, and

doo = 2n+ 1 — dim(Span(WW)) + Z VM-
MeT\(Span(W)NT)
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Let S be the following subset of T: S = {wy,w),1 < k < n}. Let e =
Card(S N Span(WV)). Consider the following two cases:

(i) There exists k& < n such that £ — wy + w), € Span(W) N T. Then
dim(Span(W)) > e + 1. As a consequence,

doo <2n+1—(e4+1)—(2n—e)L <0,

because L > 1 and in this case, we should have e < 2n because W is
a proper subset of T.

(ii) Otherwise,
doo <2n+1—e—(2n—e)L+ (2Hy —2)m < 0,
because L > 1 and (2Hp — 2)m < —1.

e Verification of (a): A direct verification would require to solve a seem-
ingly difficult combinatorial problem. We can simply remark that

/ dwy - - - dwpdw - - - dw),
[_171}271

X H |w1 _ wj|(2H()—2)O¢ij |w; _ w9|(2H0_2)aij

1<i<j<n

1 n
x/ de TT 1€ — wy, 4 wp,|Ho=2)5%
- k=1

1

1 ' i
:m!lB(HO — %,2—2H0)‘O‘|E [(/O 175172|a\(f(37‘)7"‘7f<37 ))) ] < o0

where f(s,&1,...&,) = fj;o [_1 (s —v) 3:1(1) — fj)fofgpdv. Since ¢ €
S1, ¢ is bounded on [—1, 1]. This implies that (a) is verified by the converse
side of the Power Counting Theorem.

Case (2Hyp — 2)m = —1: In this case, we can apply Holder and Jensen
inequalities to ®7 in order to get

€ 1
Op < T2 AT BTe

with 200 +1 <0, A= ([ ]go(w)|dw)2n and

B= [ dw - dw,dw - dw, [] le(we)e(w;)]
R2n k=1
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1<i<j<n

< [ g TLI€ - wn + w62,
R p=1

where H) = Hy(1 +€) —e. If € is small enough, H|, can still be expressed as
1-— % for some § < H' < H. Moreover, in this case (2H} — 2)m < —1
so we are exactly in the situation of the previous case, and the integral B is
finite.

Step 2: Using the same arguments as previously and the hypercontractivity
property, we deduce that there exists a constant K > 0 such that for all
0<s<t<,

E (|Fogar(t) = Fagar(s)|!) < K[t — s,

which proves the tightness in C([0, 1]).
g

It remains to study what happens when n = 1. The proof of Proposition
is very similar to that of Proposition m (although much simpler) and
details are left to the reader.

Proposition 10. Fiz ¢ > 1 and assume the function ¢ belongs to L' (R )N
L%(RQ. Then the finite-dimensional distributions of the process

Tt
Gr(t)i= 101 [ astPgs, ). te 0.1, (330)
0

where g(s,-) is defined in (3.18)), converge in law to those of a qth Her-
mite process of Hurst parameter 1 — q(1 — Hy) multiplied by the constant
—1 [ele] .

CHo Jo~e(w)dw, and the family

{(Gr())iep,1), T > 0} is tight in C([0,1]).

We are now ready to make the proof of Theorem [2]

Proof of Theorem @ It suffices to consider the decomposition (3.21]) and to
apply the results shown in Propositions [7] and [9} O
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3.5 Proof of Theorem [

Let Z be a fractional Brownian motion of Hurst index H € (%, 1), and let

peLY(Ry)N Lu (R4). Consider the moving average process X defined by

X(t):/t ot — u)dZu, >0,

—0oQ
which is easily checked to be a stationary centered Gaussian process. Denote
by p : R — R the correlation function of X, that is, p(t — s) = E[X (¢) X (s)],
s,t > 0. By multiplying the function ¢ by a constant if necessary, we can
assume without loss of generality that p(0) = 1(= Var(X(¢)) for all ¢). Let
P(z) = YN a,z" be a real-valued polynomial function, and let d denotes
its centered Hermite rank.

3.5.1 Proof of (3.6

In this section, we assume that d > 1 and that H € (1 — ﬁ, 1), and our goal
is to show that

Tt { /0 (P - E[P<X<s>>1)ds}

te(0,1]

converges in distribution in C([0,1]) to a Hermite process of index d and
Hurst parameter 1 —d(1 — H), up to some multiplicative constant Cy. Since
P has centered Hermite rank d, it can be rewritten as

N
P(x) = E[P(X(s)] + ) biHi(x),
I=d

for some by,...,by € R, with by # 0 and H; the [th Hermite polynomial.
As a result, we have

Tt N Tt
/ (P(X(s) ~ E[P(X(s))ds = > benn)’ / 1P (g(s,) ™) ds,

and the desired conclusion follows thanks to Propositions [7] and

3.5.2 Proof of (3.5

In this section, we assume that d > 2 and that H € (%, 1— i), and our goal
is to show that

[NIE

[ " Pl - EIPCE(s))ds

te(0,1]
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converges in distribution in C([0, 1]) to a standard Brownian motion W, up
to some multiplicative constant C7. To do so, we will rely on the Breuer-
Major theorem, which asserts that the desired conclusion holds as soon as

/R\p(s)wds < 00, (3.31)

where p(s) = E[X(s)X(0)] (see, e.g., [6] for a continuous version of the
Breuer-Major theorem).

The rest of this section is devoted to checking that holds true. Let
us first compute p:

p(t = 5) X(s)]
= H((2H —-1) //]R2 (t =)L (oo (V)p(s — u)L(_oo g (u)|v — ul 2 2 dudv

= 2H—1// )|t — s — v + u* 2dudv,
with the convention that ¢(u) = 0 if w < 0. This allows us to write

p(s) = cul@+ (I 10)|(s),

where @¢(u) = o(—u), I*'~1 is the fractional integral operator of order

2H — 1 and ¢y is a constant depending on H. As a consequence, applying
Young’s inequality and Hardy-Littlewood’s inequality (see [18, Theorem 1])
yields

ol Ly < crllellr@ I~ ol Loy < caplleliom

Where%z;—i—a—land%:];—(QH—l) This implies p = (H +

and we have |¢||1»r) < 00, because p € (1, ) and ¢ € LY(R) N L
The proof of (3.5]) is complete.

2)

(R)

11\“ w

3.6 The Stationary Hermite-Ornstein-Uhlenbeck
process

We dedicate this section to the study of the extension of the Ornstein Uh-
lenbeck process to the case where the driving process is a Hermite process.
To our knowledge, there is not much literature about this object. Among
the few existing references, we mention |17] and [11]. The special case in
which the driving process is a fractional Brownian motion has been, in con-
trast, well studied, see for instance [7]. In what follows, we will prove a
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first-order ergodic theorem for the stationary Hermite-Ornstein-Uhlenbeck
process. Then, we will use Theorem [2|to study its second order fluctuations.

Let o > 0. Consider the function ¢(s) = e *I;~q and let Z7? be a
Hermite process of order ¢ > 1 and Hurst index H > % Then ¢ € St for
all L > 0, and we can define the stationary Hermite-Ornstein-Uhlenbeck
process as:

(U)o = /t o(t — s)dzHa. (3.32)

—00
As its name suggests, this process is strongly stationary, that is, for any
h > 0 the processes (U)i>0 and (Uptn)e>0 have the same finite-dimensional
distributions. We then state the following general ergodic type result.

Proposition 11. Let (u)i>0 be a real valued process of the form u; =
If(ft), where f; € L2(RY) for each t > 0. Assume that u is strongly sta-
tionary, has integrable sample paths and satisfies, for each 1 < r < gq,

1fo @r foll L2 @2a—2ry —= 0

Then, for all measurable function such that E[|f(ug)|] < +oo0,

T
7 s 25 Bl

Proof. According to Theorem 1.3 in [12], the process u is strongly mixing if
forall t > 0 and 1 < r < ¢, the following convergence holds

1 ft ®r frtsllp2rea-2ry =20
Taking into account that wu is strongly stationary, we can write

1 ft ®r frasllL2mza—2ry = [[fo ®r fs]lL2(mza—2r),

and the conclusion follows immediately from Birkhoff’s continuous ergodic
theorem. O

We can now particularize to the Hermite-Ornstein-Uhlenbeck process.

Theorem 12. Let U be the Hermite-Ornstein-Uhlenbeck process defined by
(3-32). Let f be a measurable function such that |f(z)| < exp(|z|?) for some
v < %. Then,
1 /T
lim — f(Us)ds =E[f(Uy)] a.s.
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Proof. We shall prove that the process U verifies the conditions of Proposi-
tion [11] We have U, = IP(f;) with

t

q 9
—u) H(u—xi)H‘)*%du.

i=1

ft<$1, N ,{L'q) = CH7q]I[,oo7t}q(x1, e ,acq) /

1V Vg
Step 1. Let us first show the mixing condition, that is

Jim | fo @ foll 22 (oa—2r) = 0
for all r € {1,...,q}. We can write

fo®r fs(y1, .-, Y2g—2r)

0 r q-—r

1V VT VY1 --Vyg—r i=1j=1
S
% / e—a(s—u)
1V VTrVYg—r+1-VY2q—2r
r  2q—2r
_3 _3
XH H u—:c, 2(u—yj)H° 2du |dzy - - - dx,
i=1j=q—r+1

0 s ( )
_ 2 au —a(s—v
= CH,q/ e / &

Y1V Vyqg—r Yq—r+1V--VYy2q—2r

X </ (u—:v)HO_g(v—a:)Ho_gdm>
(—o0,unv]

q—r 2q—2r
<1 TI (u—u)™ % —u) ™ 2dvdu
Jj=ll=q—r+1
1 0 s
= c%{’q,é’(Ho — 3 2 — 2H0)T/ e‘“’“/ eo(s—v)
Yy1V--Vyg—r Yg—r+1V:VY2q—2r
q—r 2q—2r )
X |u — v|"(Ho= 2)H H (u— y;) ™ (U—yl)HO_%dvdu,
Jj=ll=q—r+1

where we used again the identity (3.22)). We then have

1
l|.fo ®r fs”?’ﬂ([mq—zr) = C%{’qﬂ(Ho — 5 2 — 2H0)2q
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x / / () (2 —(+01)) |y, _ gy ) (a=r)(2Ho=2)
(70070}2 (70075]2

X |0 — g |G @HO=2) gy | mCHo=2) g — g [7CHO=2) gy dvrduy du

1
< CirgB(Ho — 5,2 = 2Ho)* Ao A R?,

Q=

A, = (/ efqa(2xf(u+u1))|u _ u1|Q(2H02)dudu1>
(7007112
1

0 s 5
RSZ< / / eqo‘(s(“”))\u—v\q(zHO2>dvdu>b,

where we used the Holder inequality with a = ﬁ,b = 4. Making the
change of variable © — u = v, * — u; = v1, we obtain

and

/ o—qa(2z—(utu1)) |lu — uy |q(2H0_2)dUdU1
(—o0,z]?
- / e~90 V) |y gy [1C2HO=D) gy gy < oo
[0,00)2

On the other hand, we have q(2Hy —2) = 2H — 2, so

Rb = Cov(ULT,UH)

S

where UH is a stationary Ornstein Uhlenbeck process driven by a fractional
Brownian motion of index H (and with a* = ga). According to [7, Lemma
2.2], one has Rg = Os_00(s7H), implying in turn that lims ,o, Rs = 0 and
concluding the proof of the mixing condition.

Step 2. We now show the integrability condition E[|f(Up)|] < co. From the
results of [7], we have E[UJ] = QQLHI‘@H ). A power series development
yields

E[fo)l] < 3 ZEITo™),
k=0 """

where Up is an element of the gth Wiener chaos. By the hypercontractivity
property, for all k£ > %,

~k

B[] < 9(8) = (- % ( greem)
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Stirling formula allows us to write

. 1k
g(k) (k=1 (Gl (H)* e
and the associated series converges if vq < 2. O

The next result analyzes the fluctuations in the ergodic theorem proved
in Theorem [12

Theorem 13. (A) [Case ¢ = 1] Let f be in L*(R,~) for v = N(0, O;II;I)).
We denote by (ai)i>o the coefficients of f in its Hermite expansion, and we
let d be the centered Hermite rank of f. Then,

) zf <H<1- 2d’
Tt
.d.d
—= [ G =By s 2 o
o if H=1-— 2d’

Tt rad
\/CTgT/O (f(Us) = E[f(Uo)]) ds e cpuWs,

o ZfH > 1 2d7
T
ra-n- W)~ Bl ds P ez,
0

where Z%H s o Hermite process of order d and index d(H —1)+1, W is a
Brownian motion and

\/Zk>dk!ai f]R lp(s)|Fif H<1—5

1
d

CfH = aqy/d' 7z if H=1- % (3.34)
1
d

d .
ay/ VLG if H>1- 4

with

( ) UU() / / —a(s— (u+v)| —v[2H_2dudv.
Moreover, if f € LP(R,~) for some p > 2, the previous convergences holds
true in the Banach space C([0,1]).

(B) [Case ¢ > 1] Let P be a real valued polynomial. Then, the conclusions
of Theorem[3 apply to U.
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Proof. Except for H = 1 — ﬁ in Part A, this is a direct consequence of

Theorems [1| and The convergence in the critical case can be checked
through easy but tedious computations, by reducing to the case where f is
the dth Hermite polynomial. Details are left to the reader. O

3.7 Appendix

In this section we present two technical lemmas that play an important role
along the paper. First, we shall reproduce a very useful result from [20]:

Theorem 14 (Power Counting Theorem). Let T'= {Mi, ..., Mk} a set of
linear functionals on R™, {f1,..., fK} a set of real measurable functions on

R™ such that there exist real numbers (a;, bi, i, Vi)1<i<k , satisfying for each
1=1,..., K,

0< a; < b,;,

|fi(@)] < |z if |z] < a,
| fi(@)] < |z[" if 2] > by,
fi is bounded over [a;, b;].

For a linearly independent subset of W of T, we write Sp(W) = Span(M) N
T. We also define

do(W) = dim(Span(W)) + > i,
©:M; €S (W)
doo (W) = n — dim(Span(W)) + Z v;.
M, eT\ST (W)
Assume dim(Span(T")) = n. Then, the two conditions (a) : do(W) > 0 for
all linearly independent subsets W C T, (b) : doo(W') < 0 for all linearly
independent proper subsets W' C T, imply

K
| Tl < o0 (3.35)

" =1

Moreover, assume that |f;(x)| = |z|" if |x| < a;, Then
f[_l 1 Hfil | fi(M;(x))|dx < oo, if an only if for any linearly independent
subset W C T condition (a) holds.

The next lemma is an application of the Hardy-Littlewood-Sobolev in-
equality,
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Lemma 15. Fix n,
Assume p € LY(R) N

q > 2and o € Ayy. Recall H and Hy from .
L%(R) Then

[ TLletml TT o202y . < .

" =1 1<i<j<n

Proof. We are going to use the multilinear Hardy-Littlewood-Sobolev in-
equality, that we recall here for the convenience of the reader (see [1, The-
orem 6]): if f: R — R is a measurable function, if p € (1,n) and if the
7ij € (0,1) are such that >y, ;. 7i; =1 — %, then there exists ¢, > 0
such that

/Rﬂlf(uk) 11 |Ui—uj|_%jdul---dunSCp,'y</R|f(u)|pdu>p.

" k=1 1<i<j<n
(3.36)

Set p = 1/(1 — (1 — H)%) Since 2|a| < ng, we have that p > 1.
On the other hand, since H > %, one has nH > § > 1; this implies that
(1-— H)# < (1 —-H)n < n—1, that is, p < n. Moreover, set v;; =
(2 - 2Hp)ay; = (1— H)22 € (0,1); we have Yy, vij = 2(1 — H) 12 <
(1 - H)n <n—1. We deduce from (3.36]) that

n 00 %
/ [T1e)l TT  Imi—n|@Ho2idn, .. dn, < ¢, </ Ix(U)Ide)
R™ k=1 1<i<j<n o
But p € (1,%) and z € L'(R) N L%(R), so the claim follows. O
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Chapter 4

Fluctuation of the
Hadwiger-Wills information
content

This chapter is based on a work in progress in collaboration with Tvan Nour-
din.

4.1 Introduction

4.1.1 Convex body and intrinsic volumes

Throughout this paper, K denotes a non-empty convex body in R?. Its
dimension, noted dimK and taking values in {0,1,2,...,d}, is the dimension
of the affine hull of K. When K has dimension j, we define the j-dimensional
volume Vol;(K) to be the Lebesgue measure of K, computed relative to its
affine hull. We also write B/ for the Euclidean unit ball of R7. The Steiner
formula (e.g. [10, Section 1]) asserts that Voly(K + rB%) is a polynomial in
r > 0 given by

Voly(K + rB?) = Zmd KRV (K, (4.1)
. 1
where the multiplicative constant x; = Vol;(B’) = - (Tlrj_j) are here to guar-
2

antee that the kth intrinsic volume Vi (K) is really intrinsic to K, in the
sense that it does not depend on the dimension of the underlying space.
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4.1.2 Hadwiger-Wills information content

In [8, Corollary 2.5] the following link between the intrinsic volumes of K and
a distance integral was established as a consequence of the Steiner formula
(4.1): for any absolutely integrable function g : R;. — R, we have

/ g(m dist?(, K))e_“diStQ(z’K)dx (4.2)
R4

)+ dzl ( d 72 /Oog(r)rH(dj)/Qerdr) Vi(K).

Jj=

In particular, taking ¢ = 1 in (4.2)) yields that the Wills functional [12]
defined as

W(K) ::/ e_ﬂdiSt2(x’K)d1‘,
Rd

is equal to the total intrinsic volume, that is, W(K) = Z;l:o Vi(K).
Consider now the log-concave density

1 —m dist?(z
pr(x) = W(K)e dist™(#.K) g e RY, (4.3)

that we name Hadwiger- Wills density associated to K, in honor of the influ-
ential papers [7] and [12]. Let Xk : © — R? be a random vector distributed
according to ug. It follows from with g(r) = e(1=2)" that the real-
valued random variable

Hy := mwdist?(Xg, K)

satisfies

E[S(I—AQ)HK] —

for all A > 0, and thus its distribution is intimately related and fully char-
acterized by the intrinsic volumes of K.

To explain the title of this section and of our paper, and although we
will not follow an information-theoretic approach in this paper, we call Hg
the Hadwiger- Wills information content to highlight that Hg represents the
information content (also called Shannon entropy) of Xy, a property that
was crucially used by Lotz et al [8] to prove that Hg displays a form of
concentration.
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4.1.3 Our main result

In [§], concentration properties for Hx have been investigated. In the
present paper, we study the fluctuations of Hx around its mean. Let F
and G denote two rel valued random variables. The total variation distance
between F' and G is defined as

drv(F,G) = sup [P(G) - P(F)|.
AeB(R)

Our main result is the following statement.

Theorem 4.1.1. Consider a sequence (Kp)p>1 of non-empty convez bodies
and suppose, for each n, that

o K, C R%™ with d, — oo;
e the boundary 0K, of K, is C?;

o K, is symmetric in the sense that there exists y € K, such that x© €
K,=2y—z€ K,;

e the quantity N} := mingepr, A" (), where N () denotes the min-
imal principal curvature of 0K, at x (see Section , satisfies
0 < A! <1 (in particular, K, is strictly convezr) and ﬁ = O(d})

as n — 0o, for some % > v > 0 independent of n.

Then, there exists o, 8 > 0 independent of n such that

Hy, —EHg o
d “Sn —n N(0,1) | = Onosee (d2 70 4.4
Tv< e N >) oo (@217 (4.4)

as n — 0o. In particular, Hg, satisfies a central limit theorem:

Hy, — EHy,

— N(0,1) asn — oc.
Var(HKn)

We note that Theorem [.1.1] parallels recent fluctuation results proved in
the context of conic intrinsic volumes, see [5] and more precisely Theorems
1.1, 2.1 and 3.1 therein.

In section we will show that a weaker version of Theorem
can be obtained relatively easily by exploiting the formula (4.2)). The main
improvement of Theorem is to demonstrate the convergence in the
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total variation metric, which is notoriously difficult to obtain. Theorem
provide an example of central limit theorem in total variation for a
dependant, non stationary sequence whose representation in the Wiener
chaos is not known, thus falling outside the scope of the existing references
such as [1] or [9]. Theorem is also an illustration of the flexibility
of Stein’s method, a powerful tool in quantitative Gaussian approximation
which is actually the main ingredient of the proof.

Our method does not allow to prove a central limit theorem for the
intrinsic volumes of the sequence K, themselves, in variance with the setting
of conic intrinsic volumes studied in [5]. However, it is likely that this central
limit theorem holds at least in some circumstances. This could be a further
interesting question to study.

4.1.4 Case where K, is an hypercube

To better understand the scope of Theorem let us analyze for the
sake of comparison the case where K, is a hypercube. Even if it does not
verify the hypotheses of Theorem m (as it is not regular and therefore
we cannot speak of its principal curvatures), it seems to be the onlyE| case
where the fluctuations of Hg, can be analyzed by hand (thanks to the
induced independence), helping us to better understanding the structure of
this random variable in general.

More specifically and for simplicity, assume that K, is a hypercube of
the form [T, T,,]9 with T,, > 0. It is immediate to check that

dn
dist®(z, Kp) = Y _(lzkl — Tn)% (4.5)
k=1
for all z = (z1,...,74,) € R%, where (...)% is shorthand for [(...)4]?. By
plugging (4.5)) into (4.3)), we deduce that the marginals of Xk, are indepen-
=7 (lul=Tn)3
dent, with a common density given by u — %
The simplest case is when we choose T}, = 1, that is, K,, = [—1,1]%. The
Hy, —EHx,

usual CLT then applies and yields that — N(0,1), in agreement

V Var(HKn)
with the conclusion of Theorem [£.1.11
At the opposite, let us now choose d,, = T,, = n, that is, K, = [-n,n|™.

Straightforward calculations show that EHg, = Eg‘n — mand Var(Hg, ) =

8m’n(143n) 2 Hiycp—EH,
Gron? . 67° as n — oo. If we had V) — N(0,1), we would

More precisely, we could have considered hyperrectangles as well.
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deduce that Hg, — N(m,672) and in particular P(Hg, = 0) — 0. But

P(Hy, = 0) = (H%)" — -, meaning that % 4 N(0,1).
2n n

We learn from this analysis in the easy case where K, is a hypercube
that ZEn"HKn may or may not satisfy a CLT, and that is seems to depend

v/ Var(Hg,,)

on the asymptotic size of K. It therefore does not appear unreasonable to
impose a condition on the minimal principal curvature for the conclusion of

Theorem A.1.1] to be valid.

4.1.5 Sketch of the proof

To prove Theorem we rely on several steps.

The first step is to show (see Proposition by means of Stein’s
method the following bound on the total variation distance between Hg
properly normalized and the standard Gaussian distribution:

Hy —EH Var(Ug (X
dry (KK’N( 71)) < ar(Ux (Xx)) + remainder. (4.6)

\/ Var(Hp) mVar(Hg)

In (4.6), Uk : R? — R is the smooth function given by 4.17).
A second step is then to bound Var(Uk (X)) in (4.6). For this, we rely

on the classical Brascamp-Lieb inequality, according to which

Var(V(¥)) < ZE[IVV ()] (4.7
when V : R? — R is smooth enough and Y : @ — R¢ admits a density of
the form e~ where @ is k-strongly convex (that is, satisfies ((Hess 6)u,u) >
kllul|? for all w € R?). But wdist?(-, K) being convex but not strongly
convex, we cannot apply directly toV = Ug and Y = Xg. This
is why we first approximate Xg by a strongly convex random variable Y
(with density given in Definition and we then estimate the difference
between Var(Ug (Xk)) and Var(Uk (Y )) (see Proposition [1.4.5)).

Finally, in a third step we control the remainder term of , before
concluding that takes place.

4.1.6 Organisation of the paper

The rest of the paper is organised as follows. In Section we prove a
weaker version of Theorem [4.1.1] Section [4.3] contains a few preliminaries
to prepare the proof of Theorem which is finally done in Section [£.4]
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4.2 Theorem without bounds

Theorem 4.2.1. Consider a sequence (Ky)n>1 of non-empty convex bodies
such that K, C R for all n, with d,, — oo. To each K, let us associate
the discrete random variable Ik, defined, for any j € {0,...,d,}, as

Pk, =) = ).

Assume that E(Ik,) — oo and Var(Ik,) = o(E(Ik,)) as n — oco. Then
Var(Hg, ) — oo and Hy, satisfies a central limit theorem:
Hy, —EHp,

— N(0,1) asn — oo.
Var(HKn)

Proof. We deduce from 1) that Hy, 'aw Z;Kﬁ 7;, where the v; ~ I'(3, 1)
are independent copies, also independent from I, . In particular,

1

EHg, = 3El, (4.8)
1 1
Var(H,) = 5El, +Var(lx,) = . (4.9)

Writing 02 = Var(Hp, ) for simplicity, we deduce that

1 EI R,
— (Hy, —EHg,) = # Sp + =2, (4.10)
On n On
where
|Elk, |
S, =
VIEIx.| EIKn Z
I .
X Z]KTEIK 1% if |Elg, | < Ik,
R, = i(LEIKnJ —EIKTL) + 0 if |Elg, | = Ik,
EI .
- ZJL:[II({ZJH oo i Bk, ] > Ik,

Since E(Ig, ) — oo and Var(Ig, ) = o(E(Ik,)), we have that UEiié(”J — 2
and S, — N(0, 3) (by the usual CLT). Moreover,

d l
1
BRJ < 5+ Y PUk,=0) Y By
IZLEIKnJ+1 j:LEIKnJ‘i’l
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|Elk,, ]—1 |Elk,, |

+ > Pk, =1) Y Ey;
=0

Jj=l+1

so that, using that Ev; <1,
1 3
E|R,| < §+E\1Kn — |EIg, || < §+E\IKH—IEIKH\

< g ++/Var(Ig,).

As a consequence,

Bl o 3 7\/?1"([}(”) 0.
on 20, 5EIK,

The desired conclusion follows by plugging [E K"J — 2,5, — N(0, 7) and

EAal 0 (4.10). 0
We now give a sufficient condition implying both that E(Ix, ) — oo and
Var(Ig,) = o(E(Ik,))-

Proposition 4.2.2. Let v < % and let us assume that for all n € N*, K,
belongs to the scaled ball BY(0,d,). Then,

1. liminf, > 0
2. ]E(IKn) — oo and Var(Ik, ) = o(E(Ik,)) as n — oo.

Proof. Tt is well known that intrinsic volumes form an ultra log-concave
distribution, see e.g. 3] for a proof of this fact. In [6], it was shown in
Theorem 1.5 and Lemma 5.3 that ultra-log concave random variables X
valued in N verifies Var(X) < 2 with

PUX =1} 1
X =0y oo )

Moreover we have, thanks to (4.9), that

with V3(B) is the first intrinsic volume of the unit ball in R% (given by

Vi(BY) = d% see [8]), and where the last inequality follows from the
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fact that for all 7, V;(K) < V;(C) for any convex bodies such that K C C,
and Vp(K) = 1.

We have Vi(B) = (4) puicks with Vol(B) given in Section [1.3.1 We

have Vi (B) = Oy_yoed? (see ({11)) and then & > 51 E[Ix,] — §, which

proves item (1). Moreover, we have

1y

Var(IKn) = Op—ooln = Op—sooln = OnE[IKn]v

which proves item (2). O

4.3 A few preliminaries

This section gathers a few preliminaries, to prepare the proof of Theorem
4.1.1} In what follows, we note || - || (resp. (:,-)) the Euclidean norm (resp.
scalar product) in RY.

4.3.1 Volume of the unit ball and of the unit sphere

Let us recall the classical expressions for the volumes of the unit ball B¢ and
of the unit sphere S 1:

[SI[oH

d
2

3

27
VolyBY) = —— and  Voly_; (S 1) =
Od( ) F(%+1) an Olg 1( ) F(

V]I

Since T'(m) ~ /2= ()™ as m — oo, we deduce that

Volg(B%) + Voly_1(S4) = O(d*p%d=2) as d — oo,

for some «, 8 > 0, whose value is not important and can change from one
line to another in what follows. We also have that

Voly_1 (B41)

Vol (B~ OdsouVd (4.11)

4.3.2 A useful lemma

The following easy lemma will be used in the proof of the forthcoming
Lemma [£.4.4] We prove it for completeness.
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Lemma 4.3.1. Let ¢ € [0,1] and let A be a d x d real symmetric matric
satisfying || Az|| < c||z| for all z € R%. Then

((Ia = A)u,u) > (1= c)l|ul|?
for all uw € RY, with I the d x d-identity matriz.

Proof. Since A is real symmetric, there is an orthonormal basis ey, ..., eq
of R consisting of eigenvectors of A. Let p,..., g be the corresponding
eigenvalues. Fix u € R?. We can write u = uje; + ... + ugeq, and thus

d

(Ta = Aywyu) = (1= oy

=1

But |u;| < ¢ for all i given the assumption on A, so the desired conclusion

follows.
O

Starting from now, we let the notation of Sections[d.1.1]and [£.1.2] prevail.

4.3.3 In Theorem |4.1.1, the symmetry center of K, can be
assumed to be zero

The following lemma justifies why, without loss of generality, we may and
will assume that the symmetry center of K,, is 0 € R% in Theorem

Lemma 4.3.2. The law of Hg is invariant by translation. In other words,

we have Hy . law Hy for any c € R,

Proof. For any bounded Borel function h : R — R, we can write

Eh(Hgte) = Eh(rdist*(Xgie, K +¢))
) e—frdistQ(z,K—&-c)
= h(m dist K ——d
/]Rd (mdist”(z, K + ¢)) WK T o x
6—7rdist2(ac+c,K+c)

= h(r dist? K d
/]Rd (mdist*(z + ¢, K +¢)) WETo x

) e~ dist?(z,K)

where in the last line we have used that dist?(z + ¢, K + ¢) = dist?(z, K).
The desired conclusion follows. |
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4.3.4 Nearest point projection

To each € R? one can associate a unique point IIx(x) of K such that
|z — Hg(z)|| = dist(z, K). The map H : R — K is called the nearest
point projection. If © € K then Ilx(x) = x. The map Ilx is 1-Lipschitz.
We also have

Vdist?(z, K) = 2(z — g (z)), =z € RY, (4.12)

see e.g. |5, Lemma 2.2].
When z € 0K, we denote by n(z) the outward pointing unit normal to
OK at x. We have, for all z € R,

x =g (x) + dist(z, K) n(Illg(z)).
We deduce that ® : 9K x (0,00) — R?\ K defined as
O(z,r) =z +rn(x)
is a homeomorphism, whose inverse is given by

o (y) = (g (y), dist(y, K)).

4.3.5 Principal curvatures

The Gauss map of OK is the map G : 0K — S ! defined by the inward

unit normal, that is, G(x) = —n(x). The shape operator of 0K at x is
S, = —DG,, where DG, : T,0K — T(;(x)Sd_l is the differential of the
Gauss map at . The eigenvalues of S;, denoted A\ (z),..., A\ | (x) are the

principal curvatures of 0K at x. It is the usual convention to order them so
that 0 < A(z) < ... < A (%), and to say that Ai(z) (vesp. Ag_1(7)) is
the minimal (resp. mazximal) principal curvature of 0K at x.

Lemma 4.3.3. For all y € R?, we have

< . -
dist(y, K) A\ (IIx (y)) + 1

VI ()] (4.13)

Proof. Let x € K. The shape operator S, being selfadjoint, there is an or-
thonormal basis e = (e1,...,e4_1) of T,0K in which the matrix representing
S, is diagonal with entries M<(z),..., AKX  (z). Then, in the orthonormal
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basis (e1,...,eq4—1,n(z)) the matrix of the differential of ® at (z,r) is given
by
L+rAE(x) 0 e 0
Vo(r,r) = 0
: L+rAE (z) 0
0 . 0 1

Ify € K, (4.13]) is obviously satisfied because Il is 1-Lipschitz. Consider
now y € R?\ K. We can write

Ik (y) =70 @7 (y),
with v the projection

[ 0K xR — 0K
N (x,7) — x

We deduce that the matrix of the gradient of I at y in the basis (eq, ..., eq_1,n(x))
is given by

1
ErsvarP v 0
_ 0
VIk(y) = V(@oyod ')(y) = X
TEAE, (Tx ()

The conclusion (4.13]) follows from the fact that r = dist(y, K) and that
MOk (y) < ... <A [k (y).
O

4.3.6 Blaschke’s Rolling Theorem

Set
M= min MS(z) > 0. (4.14)

From Blaschke’s Rolling Theorem [4], we have that K is entirely contained

in a ball (not necessarily centered at 0) of radius /\LK By Lemma 4.3.2 we
1

can assume without loss of generality that 0 € K; if so, we get that

K c B%(0, TK)’ (4.15)

1
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a fact that we label as it will be used many times in the sequel. We also

deduce from (4.15)) that

2
2| < Ve dist(z, K), z€R< (4.16)
1

4.4 Proof of Theorem 4.1.1

We are now ready to proceed with the proof of Theorem It is decom-
posed into several steps. By Lemma [4.3.2] we assume that 0 € K, for all
n.

4.4.1 Step 1: Stein’s method

As stated in the introduction, the central ingredient of the proof is Stein’s
method. Introduced first in |11], this method relies on astute integration by
parts formulas to bound the total variation distance between any given ran-
dom variables and the standard normal law (although other target variables
and other distances can also be considered).

We write K for K, in this step to simplify the notation. We also let
the notation introduced in Sections and prevail, in particular the
definition of Xx and Hyx. We start by applying Stein’s method to prove

the following estimate for the distance in total variation between Ih{v_i%
ar(H g

and the standard Gaussian distribution.

Proposition 4.4.1. Write ¢(x) = wdist?(z, K), € R?, set
Uk (z) = < / e ME[Ve(e lz + V1 — e 2 X)|dt, v¢(x)> . (417)
0

set Fre = A qpd Jet N ~ N(0,1). We have

Var(Hg)
drv (Fie, N) < YTE*V;U};;K” Vaf’(HK) sup [Bi(h) — Ba(h)|, (4.18)
where
Bi(h) = /Oooe—tE[<V¢(XK¢),HK(XK)>h(FK)]dt (4.19)

[e'e) e—2t Y
Bat) = | B (VX M (Rih(Fic) | i, (4.20)
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with X ¢ = et Xg+V1— e_%)?K and )?K an independent copy of X, and
where the supremum in the right-hand side of (4.18) runs over the functions
h:R — R that are C', 2-Lipschitz and such that \h(z)| < /T + |zl

Proof. To simplify the presentation of the proof, we remove the subscript
K from the quantities considered, that is, we write F' for Fg, H for Hg, X
for Xr, X; for Xg 4, U for Uk, etc. Let g : R — R be C' and Lipschitz. We
can write, using V¢(z) = 2m(z — H (z)) (see (4.12)) in the last equality,

BFy(F) = B (600 — ()P

_ —Tfr 7B | x| a
W / eE[(Vo(X,), X) g(F)] dt
i B [(Vo(x), D)g(r)]

- V;(H)<A1<g> — 4s(g) + Bi(g) — Balg),

where
1 (>
Mlo) = g [ ELTO). Vo) ()

1 o t ~
aole) = g | =B [(Ve(x), To( ()] a
and Bj(g) and Bs(g) are given by and respectively. We have
E[(Ve(Xt), Vo(X))g(F)]

d
= T T ¢e_tx — e 2tX
= ;E!/Rdlnd]/dz (e7'z+ V1 —e2X)
99 o (W) —EHY o
3%‘()9( Var(H)) ]
d
= ;E[/}Rdlnd%/dmz (e7tz + V1 — e 2X)

e é(x) —EH
"o, (=) ( Var(H)>
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. 99 . ¢(X) —EH —
aﬂ?i( )g( Var(H) ) ]

o~ _
L0 | (x)g(¢(X) IEH)

d
= V1—e2 ZE [/ 62¢(6_tX +V1—e2x)
i=1 R

2
4 0x;

g <¢(X) - EH) e—qﬁ(:c)dx]
Var(H)

= V1I-e*E[Ad(Xy) g(F)].

We deduce that

BFG(F) ~ ()] = 5B [(V(X) = 20Var() ()]

1
Var(H)

+

(Bi(g) — Ba(g))
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and (with g(z) = = the identity function)

2nVar(H) = E[U(X)] + 2m+/Var(H)(B1(id) — Ba(id)).
By combining the two previous identities, we get
1

EFG(F) ¢/ (F)] = g [(U(X) ~ EU(X) /()
_WE“&(M) ~ By(id))g/(F))
+V;(H)<Bl<g> ~ Balg)).

The desired conclusion then follows from Stein’s lemma, according to which
drv(F,N) < sup [E[Fg(F) — ¢'(F)]

where the supremum runs over the functions g : R — R that are C' and
such that [|¢'[|oc <2 and [|g]lee < /3 O

Remark 4.4.2. To keep things simple, the previous result was stated in the
particular case of the information content of the distance law Hy. However,
using exactly the same proof technique, it is actually possible to generalize
this result to the case where the random variable F' can be expressed as
f(X) —E[f(X)]

g

)

F =

)

with f : R? — R an absolutely continuous and sufficiently integrable func-
tion, X is a R? valued random vector with density proportional to e~? with ¢
an absolutely continuous, sufficiently integrable function (continuous Gibbs
measure) and 02 = var(f(X)). In this case, with the same notations as in
the statement of Proposition we have for all v > 0:

dTV(Fa N)

2
o?

IN

var </OOO e UV f(X), Eoo[Vf(Xt)])dt)

[l (22 (vrm.etoe - Lvocn

3
+—sup

o g o

e—2t

_ﬁ(f( - iv¢(X))>] dt‘.

where E is the expectation with respect to X and E := E® E.

Taking ¢(z) = @ and with an easy approximation argument, we ac-
tually recover the result of Theorem A.1 in [5)].

160



4.4.2 Step 2: Preparation to the use of the Brascamp-Lieb
inequality

In this step again, we let the notation introduced in Sections and
prevail.
First, we note that

d
W(K) > / e el g = (/ e”“Qdu> =1
R4 R

The polynomial P(z) = (1—10x3+152%—62°)? satisfies P > 0, P(0) = 1,
P(1) =0 and P'(0) = P"(0) = P'(1) = P"(1) = 0. Let x € (0,1) be such
that inf,c(o ) P(y) > 5 and supyeio.q 1P ()| + 1P (y)] < > Existence of
is ensured by a continuity argument and its exact value is not important for
the sequel. Recall the definition of A\ from (4.14)), define ¢ : RY — [0, 00)

as

1 1 1
() = Loy (A llel) + PG Nl = D1y (A )

and let C' > 0 be given by

12 3
C=— P P —.
< (P01 P00 5

Definition 4.4.3. The modified distance law with respect to K is the density
o (m dist? (2, K)+ € () [[]|)

T — — , J:G]Rd,
W(K)

with T (K) = fpq e~ (T8 @E+5E@21?) gy

Note that

W(K) > W(K) > 1.

We have the following lemma, justifying in part why we introduced this
modified distance law.

Lemma 4.4.4. The modified distance law is strongly log-concave. More

precisely, with k = U‘t”;lrigz“)'f A 5 and P(z) = mdist?(z, K) + £&(2)]|z]%,

we have, for all u,z € RY,

(Hess(¥(x))u, u) = klful|*.
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Proof. Using we can write
Hess(1/(x)) = A(z) + B(a),

A(.CC) = 27T(Id — VHK(JI)) + %ﬁ(az)Id
AP o] 1)y
Cll]l

Ml ]| P (G |z — 1)1 N (MOZPY (M ||| — l)mT
20 d 4C ’

1
B(z) = 1[1,2](5/\{(||1L“||)

with Iy the d x d identity matrix.

Fact 1. We claim that (A(z)u, u) > 2&(2)|ul/? for all u,z € RY. Indeed,
from Vg (z)y = limy—o 3 (Ix(z + ty) — g (z)) and g (z) — g (y)]| <
|z — ||, we deduce that ||VIIx(z)y|| < |ly|| for all y € RY. Using Lemma
with ¢ = 1, we get that ((I; — VIIx(x))u,u) > 0 for all u,z € R and
the claim follows from the definition of A(x).

Fact 2. We claim that |(B(z)u,u)| < x||u||? for all u,z € R Indeed,

[(B(z)u, u)]
1 SAKP/(INK |z — 1)
- 1 I\K 1 2 2
1.2 2l ] (u. )
MUeIP GM el = 1), o | PP G2l = 1) s
20 4C ’
1 2K |z, -, 1
< LugGA el (FF= P GAF el - )] (4.21)
A2 L
+ﬂT!P”(5A{(HmH = D)) full?
(4.22)
< sl

where, in the last line, we used that M ||z|| < 4 and that |P'(y)], |P"(y)| <
G5 for y € [0,1] by definition of C.
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Fact 3. We claim that [(B(z)u,u)| < 5|ull? for all u € R? and all
z € R? such that 2A||z| € [1,1+ k. It is indeed an immediate conse-
quence of (4.22) and the fact that [P'(y)|, |P"(y)| < o for all y € [0, K].

Fact 4. We claim that ((I4—VIIg(z))u,u) > 11’;{ ||u||? for all u € R and

all z € R such that 2A||z|| € [1 + &, 00). Indeed, we deduce from (4.16)
that d(x, K) > f—lﬁ, implying in turn from Lemma (4.3.3| that | VIIg(z)|| <

ﬁ. Finally, the claim follows from Lemma 4.3.1}

We are now ready to prove Lemma We have, for all u,z € R?,
(Hess(yp(z))u, u) = (A(z)u, u) + (B(z)u, u).
First case: 1A ||z|| < 1. We have £(z) = 1 and we deduce from Facts 1
and 2 that
(Hess( (@) ) > ( 2= ) Jull > o lul® > klul?
A\ - 2C - ’
Second case: 2MS||z| € [1,1 + k]. In this case, {(z) > 1 and we get,
from Facts 1 and 3,

1 1

1
(tess(oa))u) = (& = 5 ) P = gl = Kl

Third case: MK ||z| > 1+ k. We can write, using Facts 2 and 4,

(Hess((x))u,u) > 2m((Iqg — VIIg(z))u, u) — &lu?
> (e~ )l 2 K.

The proof is complete.
O

Proposition 4.4.5. Fiz~ € (0, %), ¢, q, M > 0 and an integer p > 1, all in-
dependent of d. Assume that 1 < /\% <ed. Let Y : Q — R be distributed
according to the modified distance law with respect to K, see Definition[{.4.3
Let F: R — Ry be a positive map such that |F(x)| < M(||z||9 + 1) for all
x € R%. We then have the existence of o, 3 > 0 (independent of d) such that

(E[F(XK)))P — (E[F(Yi)])| = O(d*B%d"z=2)) 50 as d — oo.
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Proof.
First case: p=1. We can write

[E[F(X)] ~ E[F(V)]| < A+ B,
with

A = ‘E [F(X)lnxnsfj_E[F(Y)l”y”ffl”

B = ‘E [F(X)1”X”>dE[F(X)1|Y>fl]

Now, the proof is divided into three steps.
Step 1: Upper bound for A. We have ¢, > 1 and ¢, > (1 + %)_%.

Thanks to a polar change of coordinates, we can then write, for some a and
B whose value can change from one line to another,

A = / F(x)e—ﬂdQ(x,K) <1 _ 1€—é€(x)||x2> dx
lall< 2 G o

< {1+ (1+ ”f‘(‘f)g}M ((£) +1) vaiz. 2

= 0(d"ptd—G=)).

Step 2: Upper bound for B. Since ¢, > 1 and ¢, > (1 + HP&?")‘ , We
have

o1 Cu =
Cu Cy Cy
Joa @ K) (] _ eféi(x)llw\\Q)dx
— .
2 | Plloc \—d
< Vol(B4(0, —))(1
< Vol(B(0, ) (1 + )

= O(d*pd~4z),

Since K C B(0, /\%) and ¢(x) =0 for ||z| > )\%, we deduce

B = ‘(1—1>/ F(x)e_”d2(x’K)dx
Cu v/ x>
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d —m(r—-%)2
\/Ol(Sdfl(O7 1))/ e X (1+7’q)7“d71d7’.

2

1 1

Cu  Cy

< M

A1

Now, we observe that

A IN
N
o
o\. ?

3 ®

®© =‘
3 =
—~

-~
+

+ —~

o =
8 +

\f >’

i N—
a =

| =
- Y
I8 |
= =
QU

3

IN

+d—1 2 —mr? +d R +d—1
2(4ed™)? e ™ dr + 29 e dr
0 2

cdY

= O(d*pd?),

The proof of the proposition when p = 1 is complete, by putting together
the estimates for A and B.

Second case: p > 1. In the general case for p, it suffices to use the
inequality

|BIPCON? - BIFX)P
< p[E[F(X)] = E[FO]|(|EIFCODP| + [EIFO)])H).

The result obtained in the case p = 1 plus similar computations allow then
to conclude. O

4.4.3 Step 3: Upper bound for Var(Uk(Xk))

We can write, thanks to Proposition and with ¥ ~ v(dzx) =

e Y@ dz, with v and ¢ as in Definition

Var(U¢(X)) = Var(U¢(Y)) + O(daﬁddfd(%,Qw))

LE[|TU(¥)]2] + 0@ g3 =2)

IN

IN

E[|VU4(X)|?] + O(d*pld—4z=21),

| = T
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Now, let us estimate E[[|VU4(X)|?]. We have
VUs()
- E /0 " e 2 (Hessg) (et + V1 — e 2LX) V() dt
+E /OOO e ' (Hessg)(z)Vp(e 'x + /1 — e 2 X)dt
= 27°E /OOO 2% (I — VlIg (e 'z + V1 — e 2X)) (z — Ik (x))dt

+47°E /000 e (I - VIk(2))((I —Og)(e "z + V1 — e 2X))dt.

We deduce from Jensen and the feact that VIIx(-) are contracting operators
that

VU, ()]*
2(2%2)2/ 2e 2 dt ||z — Tg ()|
0

+2(47r2)2/ e 'Elle !z + V1 — e 2X|2dt
0

2(27°)° |l — Tk (2)|1” + 4(47°)* (| =]|* + E|| X ||*)
72t |z]|? + 647 E| X ||2.

IN A

As a result,

1367%

Var(Us(X)) < E||X|[2 + O(d* 8%~z ~27),

4.4.4 Step 4: Upper bound for sup ’Bl(h) — BQ(h)’
Using that Vo (z) = 2n(x — g (z)), we can write
Bi(h) — Ba(h) = 27 / B (X,, i (X)) h(F)dt
° 00 e—2t R
_or /0 S B (R ()i
—27r/ e "B (Xy), Mg (X)) h(F)dt
0
00 67215 R
2 ——E(Ig(Xy), U (X)) Yh(F)dt.
H/O Bk (X)) T (X))h(F)
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Since K C B%(0, )\%), we have ||IIx(x)| < )\—21 for all 2 € R%. In particular,
using also that E[h(F)?] <7 +1,

S 8 +1 52
e tE<HK<Xt>,nK<X>>h<F>dt‘ JRULERES:

o e PN 8ry/m+1 _ 52
— Kl (Xy), g (X )DHA(F)dt] < ————- < —

On the other hand, since K is symmetric with respect to 0, the function
x — g (z) is antisymmetric and X Y _ X and X & —X. We deduce that
E(X, g (X)h(F) = e "E(X,Ix(X))h(F)
(X, Hx(RNA(F) = V1— e ¥E(X, I (X))ER(F).
We deduce that

|B1(h) — Ba(h)|

2

2T

< 7 |E[((X, k(X)) — B(X, T (X)) h(F)]| + ff
< 7\/Var((X,HK(X)>)+1)\O2:L.

To bound Var((X,IIx(X))), as in Step 1 we will rely on the Brascamp-Lieb
inequality. Set H(z) = (z,IIx(x)). We have, thanks to Proposition [£.4.F]
and with Y ~ v(dz) = e Y@ dz, with v and ¢ as in Definition

Var(H(X)) = Var(H(Y))+ O(daﬁdd*d(%*%))
= %E[HVH(Y)HQ] + O(dogld—1G=2)

LE[IVH(X)|] + 0@ ptd-1a=2),

IN

Since VH (z) = (z, VIIg (z)) + g (), we deduce
Var(H (X))

= %E[”<X7VHK(X)>HQ]+%E[|]HK(X)H2]+O(da5dd,d(%,2w)'

Again, K C IB%d(O,)%), implying |[IIx(x)| < /\% for all # € R? so that
E[|Ik(X)|?] < %. On the other hand, by Lemma{.3.3/we have || VIIx (z)| <
1

1 .
T AR leading to

X2
(1 + A d(, K))?

E[|(X, VIIk(X)|?] <E

167



But ||z]] < /\% +d(z, K) for all z € R? (by inclusion of K in B(0, )\%)), S0
<

E[|l(X, VIIg (X))[?] < 5% Finally, we get that
1
16 104
|Bi(h) — Ba(h)| < 7y g + O(dogdd= G20y 4 =%,
kXY A2

4.4.5 Step 5: Conclusion

Putting the results of Steps 3 and 4 together, we deduce that

1
dry (F,N) = Opsoe [ ————
TV( 3 ) — (0_()\1_’_)\%))

Thanks to the facts that /\% < d’, K C B(0,2d”) and thanks to item 1
in Proposition [4.2.2, we have that % = Opn—oo (#> This concludes the

Vidn

proof.
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