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Organisation of the manuscript

This PhD dissertation is organized in the following way.

In Chapter 1, we give an overview of the main topics we will adress. Sec-
tions 1.1 and 1.2 consist in a detailed presentation of the fractional Brownian
motion and Hermite processes. These processes are the main focus of the
two articles [14] and [15].

In Section 1.3, we gather some relevant facts about Stein’s method, Malli-
avin calculus, and the way to combine them to build the so-called Malliavin-
Stein’s approach. This recent and flourishing topic provides us a with a set
of tools which is used in the three research articles that constitutes this the-
sis, by allowing us to prove normal and non-normal convergences in different
settings. In Section 1.4 we give a summary of the three articles on which
constitute this dissertation is based.

Finally, Chapters 2, 3 and 4 will consist in a copy of the three articles
aformentioned.
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Chapter 1

Introduction

1.1 Fractional Brownian motion

1.1.1 Historical background

In 1951, Hurst released his paper [24] describing the fluctuations of the levels
of the Nile river. The observations did not appear to verify the independence
assumption; instead, they turned out to be positively correlated, with the
variance of their (renormalized) partial sum behaving like n0.72 (with n the
sample size). This phenomenon was surprising at the time, because scientists
were more used to the ”

√
n-type behaviour” observed for the variance of the

sum in case of independent summands. More details on this can be found
in [56] and [59]. A few years later, Mandelbrot had the idea to utilize a
then relatively overlooked object introduced by Kolmogorov [27] to model
such phenomenon. Together with Van Ness, they popularized the name
”fractional Brownian motion” in a seminal paper [34].

Since its introduction in [34], the popularity and range of applications
of the fractional Brownian motion has literaly exploded. What makes this
mathematical object beautiful is that it can model numerous phenomena
with very different behaviours, simply by fitting its self-similarity exponent
H (called ”Hurst exponent”). For instance, it can be used to describe highly
irregular, negatively correlated observations, such as the time series of the
log-volatility of some financial assets, see [16], as well as phenomena exhibit-
ing long range dependence, such as the example of the Nile river’s fluctua-
tions described above. The fractional Brownian motion also plays a pivotal
role in the rough path theory introduced by Lyons in [31], which studies
differential equations perturbed by irregular noises.
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In the present dissertation, we exclusively work with the case H ≥ 1
2

(which encompass both the ”standard Brownian case” (H = 1
2) and the

”regular case” (H > 1
2)), which is already a very rich object from which a

whole range of remarkable mathematical phenomena can be derived.

1.1.2 Definition

We start with the following proposition.

Proposition 1.1.1. Let H ∈ (0,∞). The function F defined on R+ × R+

by: ∀s, t ∈ R+,

F (s, t) =
1

2

(
t2H + s2H − |t− s|2H

)
(1.1)

is positive semidefinite if and only if H ≤ 1.

For a proof of this fact, the reader is refered to e.g [36], Proposition 1.6.
The fractional Brownian can be defined in the following way.

Definition 1.1.2. Let H ∈ (0, 1]. We call fractional Brownian of index H
any centered Gaussian process B = (Bt)t≥0 such that

• B0 = 0;

• B has almost surely continuous sample paths;

• ∀t, s ∈ R+, Cov(Bt, Bs) = 1
2

(
t2H + s2H − |t− s|2H

)
.

H is called the Hurst index of B.

Remark 1.1.3. When H = 1, we have (Bt)t≥0
law
= (tG)t≥0 where G ∼

N (0, 1). Since this case is too simple to be interesting, we will exclude it
from now on.

Remark 1.1.4. When H = 1
2 , we can notice that

∀t, s > 0, Cov(Bt, Bs) =
1

2
(t+ s− |t− s|) = min(t, s).

Then, it turns out that the standard Brownian motion is the fractional
Brownian motion of index 1

2 .
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1.1.3 Some basic properties

In the following statement, we gather some elementary properties of the
fractional Brownian motion which are useful throughout this dissertation
and may help the reader to get a better grasp of this object.

Proposition 1.1.5. Let B be a fractional Brownian motion with Hurst
index H ∈ (0, 1).

(a) B is H-self similar, i.e. ∀c > 0, (Bct)t≥0
law
= (cHBt)t≥0.

(b) B has stationary increments, i.e., ∀h ≥ 0,

(Bt+h −Bh)h≥0
law
= (Bt)t≥0.

(c) If H > 1
2 , disjoint increments are positively correlated, i.e.

E[(Bt1 −Bs1)(Bt2 −Bs2)] ≥ 0

for all 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2. If H < 1
2 , disjoint increments are

negatively correlated, i.e.

E[(Bt1 −Bs1)(Bt2 −Bs2 ] ≤ 0

for all 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2. If H = 1
2 , disjoint increments are

independent.

(d) Let (r(k))k∈N be the sequence defined as r(k) = E[(Bk+1 −Bk)B1].

• (long memory) if H > 1
2 ,∑
k∈N
|r(k)| =∞;

• (short memory) if H < 1
2 ,∑
k∈N
|r(k)| <∞.

(e) Increments of B have finite moments, which are controlled in the fol-
lowing way: ∀s, t ≥ 0, ∀p > 0,

E[|Bt −Bs|p] ≤ K|t− s|pH ,

with K = E[|B1|p] = 2p
Γ( p+1

2 )√
π

.
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(f) For any 0 ≤ α < H, B admits an α-Hölder continuous version on
each compact interval [0, T ].

Proof. Points (a)-(c) can be proved through easy computations, using the
covariance function (1.1). The proof of (d) follows from the fact that
r(k) ∼k→∞ H(2H − 1)k2H−2. Finally, ∀s, t ≥ 0,

Bt −Bs
law
= |t− s|HG

with G ∼ N (0, 1). From this, we have that E[|Bt − Bs|p] = E[|G|p]|t −
s|pH and E[|G|p] = 2p

Γ( p+1
2 )√
π

, by [63]. This proves (e). Then, (f) follows

immediately from the Kolmogorov-Censov criterion. �

Another important property of the fractional Brownian motion is that it
can be represented as a Volterra process, i.e a sequence of Wiener integrals
with respect to a standard Brownian motion.

Proposition 1.1.6. For H ∈ (0, 1), we have that:

(Bt)t≥0
law
=

(∫ t

0
KH(t, s)dWs

)
t≥0

, (1.2)

where W is a standard Brownian motion and

KH(t, s) =
c(H)

Γ
(
H − 1

2

)s 1
2
−H
∫ t

s
uH−

1
2 (u− s)H−

3
2du

(
if H >

1

2

)
,

KH(t, s) =
c(H)

Γ
(
H − 1

2

) ( t
s

)H− 1
2

(t− s)H−
1
2

− c(H)

Γ
(
H − 1

2

)s 1
2
−H
∫ t

s
uH−

3
2 (u− s)H−

1
2du

(
if H <

1

2

)
,

with

c(H) =

(
2HΓ

(
H + 1

2

)
Γ(3

2 −H)

Γ(2− 2H)

) 1
2

.

A proof of this fact can be found in either [11, Corollary 3.1] or [45,
Proposition 5.1.3]. Another useful representation due to Mandelbrot and
Van Ness involves a two-sided Brownian motion (see [34]); we will discuss it
later in Section 1.2.

Except when H = 1
2 , B does not verify the properties required to be

an integrand in an Itô-type integral, because it is not a semimartingale,

8



as explained in e.g [50, Section 2]. To build an integral with respect to
the fractional Brownian motion, in the present thesis we will use either
the divergence operator of Malliavin calculus or the Young integral (when
H > 1

2).

1.1.4 Isonormal Gaussian process and Malliavin derivative

Malliavin calculus is a powerful set of tools first introduced by Paul Malliavin
in [33] in order to give a probabilistic proof of Hormander’s theorem for
parabolic SDEs. It can be thought of as an infinite dimensional integro-
differential calculus operating on Gaussian fields (although it has also been
extensively studied in the setting of Poisson processes, see e.g [28]). In
the three following sections, we give a brief introduction to this topic and
some relevant applications in the fractional Brownian motion setting. For
more details, the reader is refered to the seminal monography [45] or to [41],
Chapter 1-2 for a more compact presentation.

The framework for (Gaussian) Malliavin calculus is a general object
called isonormal Gaussian field. For simplicity, we restrict the presentation
to the case of R-valued fields (one can also consider Rd-valued fields). Fix
an Hilbert space H endowed with a scalar product 〈·, ·〉H and a probability
space (Ω,F ,P).

Definition 1.1.7. An isonormal Gaussian field over H is a centered Gaus-
sian family X = {X(h), h ∈ H} defined on Ω such that

∀f, g ∈ H, Cov(X(f), X(g)) = 〈f, g〉H.

Let T > 0. If H = L2([0, T ]) is endowed with its usual scalar product,
and if X is the associated isonormal Gaussian process, then the (standard)
Brownian motion B over [0, T ] can be embedded in X:

(Bt)t∈[0,T ]
law
= {X(I[0,t]), t ∈ [0, T ]}. (1.3)

Moreover, (1.3) provides a convenient representation of the Wiener integral
with respect to B.

If f ∈ L2([0, T ]), then the Wiener integral of f with respect to B has
the same law as X(f). Fortunately, such a representation also exists for the
fractional Brownian motion of any index H ∈ (0, 1), but the procedure to
obtain it is not trivial, see Section 1.1.6.

With these definitions in mind, we are now ready to define the main
operators of Malliavin calculus.
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Definition 1.1.8. Let X be an isonormal Gaussian process over H. We
define S as the class of functions f ∈ ∪m∈NC∞(Rm,R) such that f and its
derivatives have at most polynomial growth.

Definition 1.1.9 (Malliavin derivative). Let X be an isonormal Gaussian
process, f ∈ S and F = f(X(h1), . . . , X(hm)) with h1, . . . , hm ∈ H. Let
p ∈ N∗. Then, the p-th Malliavin derivative of F with respect to X is the
element of L2(Ω,H�p) defined by

DpF =
m∑

i1,...,ip=1

∂pf

∂xi1 . . . ∂xip
(X(h1), . . . , X(hp))hi1 ⊗ . . .⊗ hip .

(Here, H�p denotes the subset of the tensor product space H⊗p formed of
the elements which are symmetric, see Definition 1.1.14).

The Malliavin derivative can then be extended to the whole space H in
the following way.

Proposition 1.1.10. Let the notations of Definition 1.1.9 prevail. For any
p ∈ N∗, the operator Dp defined above is closable with respect to the norms

‖F‖p,q =

(
E[|F |q] +

p∑
k=1

E[‖DkF‖qH⊗k ]

) 1
q

for any q ≥ 1. The closure of S with respect to ‖ · ‖p,q is denoted Dp,q.

Hence, the Malliavin derivative can be viewed as an infinite dimensional
derivative operator.

1.1.5 The Skorokhod integral

Let us now explain how to build an integral with respect to an isonormal
Gaussian process.

Let X be an isonormal Gaussian process, let p ∈ N∗ and let u ∈
L2(Ω,H⊗p). If there is a constant K > 0 such that E[〈DpF, u〉H⊗p ] ≤
K
√
E[F 2] for all cylindrical functional F ∈ S, it means that the linear oper-

ator F → E[〈DpF, u〉H⊗p ] is continuous, and then, by Riesz Theorem, there
is a unique element δp(u) ∈ L2(Ω) such that E[〈DpF, u〉H⊗p ] = E[Fδp(u)].
We then say that u belongs to the domain of δp.

Definition 1.1.11 (Skorokhod integral). The operator δp is called the p-th
multiple Skorokhod integral with respect to X. By construction, it is the
adjoint of the p-th Malliavin derivative Dp. Its domain (consisting of the
elements described above) is denoted by Domδp.
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Let us gather some important properties of Skorokhod integrals.

Proposition 1.1.12. (a) If p < q, then Domδq ⊂ Domδp.

(b) If u, v ∈ Domδ1, then

E[δ1(u)δ1(v)] = E[〈u, v〉H] + E[〈D·u··, D··v·〉H⊗H]. (1.4)

(c) If u ∈ Domδ1, then

E[(δ1(u))2] ≤M
(
E[‖u‖2H] + E[‖Du‖2H⊗H]

)
. (1.5)

Point (c) is a particular case of the more general Meyer’s inequalities
and will be used in Chapter 2, as well as Point (b).

Notice that ifB is a standard Brownian motion (that is, ifH = L2([0, T ]))
and if u, v are two processes in D1,2 that are progressively measurable with
respect to B, then Dsut = 0 if s > t. From (1.4), we deduce that

E[δ1(u)δ1(v)] =

∫ T

0
E[usvs]ds,

and we recover the isometry property of the Itô integral. Actually, the
Skorokhod integral coincides with the Itô integral when H = 1

2 and the
integrand is progressively measurable.

Proposition 1.1.13. Let B be a standard Brownian motion and u be a
square integrable, progressively measurable process over [0, T ]. Then, u ∈
Domδ1. Moreover, δ1(u) coincides with the Itô integral of u with respect to
B over [0, T ]:

δ(u) =

∫ T

0
uxdBx, (1.6)

and ∀s, t ∈ [0, T ],

δ(uI[s,t]) =

∫ t

s
uxdBx. (1.7)

We end this section with a discussion about multiple Wiener-Itô inte-
grals.

Definition 1.1.14 (Symmetric elements). Let e = (ei)i∈N be an orthonor-
mal basis of the Hilbert space H. Let p ∈ N∗. Every element h ∈ H⊗p can
be written as

h =
∑

i1,...,ip∈N
ai1,...,ipe1 ⊗ . . .⊗ ep,
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with ai1,...ip ∈ R.
The symmetrization of h is the element:

h̃ :=
1

p!

∑
σ∈Sq

∑
i1,...,ip∈N

ai1,...,ipeσ(1) ⊗ . . .⊗ eσ(p).

The space H�p is the space of elements h ∈ H⊗p such that h = h̃.

Definition 1.1.15. Let p ∈ N∗ and consider an element fp ∈ H�p. We have
that fp ∈ Domδp. The multiple Wiener-Itô integral of fp with respect to X
is the Skorokhod interal δp(fp). In this case, we will use the more classical
notation Ip(fp) := δp(fp).

Remark 1.1.16. When p = 1, we have I1(f1) = X(f1), so the Wiener-Itô
integrals of order 1 are Gaussian.

Remark 1.1.17. When H = L2([0, T ]) (so that X generates a Brownian
motion B), multiple Wiener-Itô integrals coincide with iterated Itô integrals.
Indeed, if fp ∈ H�p, we have:

Ip(fp) = p!

∫ T

0

∫ t1

0
. . .

∫ tn

0
fp(t1, . . . , tn)dBtn . . . dBt1

(see [41], Exercice 2.7.6 for a proof of this fact).

Multiple Wiener integrals are fundamental because they form a ”basis”
of L2(Ω,F) (where F is the σ-algebra generated by X) as shown by the
following proposition.

Theorem 1.1.18 (Chaotic decomposition). Let F ∈ L2(Ω,F). Then, there
is a unique sequence of elements fp ∈ H�p such that

F = E[F ] +

∞∑
p=1

Ip(fp),

where the previous series converges in L2(Ω).

Multiple Wiener-Itô integrals possess rich properties that we enumerate
below.

Proposition 1.1.19. (a) (Isometry) For all integers k, l ≥ 1, all f ∈ H�k
and all g ∈ H�l,

E[δk(f)δl(g)] = k!〈f, g〉H⊗kI{k=l}.

12



(b) (Hypercontractivity) For all r ≥ 2 and all integer k ≥ 1, we have that
for all f ∈ H�k,

E
[
|δk(f)|r

]
≤ (r − 1)

rk
2 E[|δk(f)|2]

r
2 . (1.8)

(c) (Malliavin derivative) If us = δk(f(., s)) with f ∈ H⊗(k+1) symmetric
in the k first variables, then u ∈ D1,2(H), with

Dsut = kδk−1(f(., t, s)).

(d) (Product formula) Fix f ∈ H�k and g ∈ H�l and, as usual, let ⊗r
(resp. ⊗̃r) denote the contraction operator (resp. the symmetrization
of the contraction operator) of order r, see [41, Appendix B] for a
precise definition. Then,

δk(f)δl(g) =

k∧l∑
r=0

r!

(
k

r

)(
l

r

)
Ik+l−2r(f⊗̃rg).

We will provide further properties of multiple Wiener-Itô integrals in
the forthcoming Section 1.2.2. Before, we end this section dedicated to the
fractional Brownian motion with a description of the space H associated to
it, followed by a short discussion on the Young integral.

1.1.6 The spaces H and |H| in the case of the fractional Brow-
nian motion.

Let B be a fractional Brownian motion with index H ∈ (0, 1)\{1
2}. Similarly

to Brownian motion, the fractional Brownian motion can be represented by
means of an isonormal Gaussian field. The most comprehensive survey on
this subject is the paper [48], from which we extract the following relevant
facts.
• When H < 1

2 , let us define

H :=

{
f : ∃φf ∈ L2([0, T ]),∀u ∈ [0, T ], f(u) = u

1
2
−H
(
I

1
2
−H

T− sH−
1
2φf (s)

)
(u)

}
(1.9)

endowed with the scalar product:

〈f, g〉H :=
2πH(H − 1

2)

Γ(2− 2H) sin(π(H − 1
2))

∫ T

0
φf (s)φg(s)ds.
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Here, IαT− stands for the fractional integration operator, i.e.

IαT−f(s) =
1

Γ(α)

∫ T

0
f(u)(u− s)α−1du.

Then, (Bt)t∈[0,T ]
law
= {X(I[0,t]), t ∈ [0, T ]}, with X an isonormal Gaussian

process with respect to H.

• When H > 1
2 , let us define first the scalar product

〈f, g〉H := cH

∫ T

0

∫ T

0
f(u)g(s)|u− s|2H−2duds

with cH = H(2H − 1). Let ‖.‖H be the norm induced by 〈·, ·〉H and let
H1 be the space of measurable functions f over [0, T ] such that ‖f‖H <∞.
Finally, let H be the completion of H1 with respect to 〈·, ·〉H, that is,

H = H1
〈·,·〉H . (1.10)

Then, if X is an isonormal Gaussian process with respect to H, we have

that (Bt)t∈[0,T ]
law
= {X(I[0,t]), t ∈ [0, T ]}.

In the case H > 1
2 , complications arise from the fact that H contains

distributions (i.e, H1 is not complete). This fact was proven in [48]. In order
to only work with functions, one often introduces the following subspace |H|
of H1:

|H| =

{
f, ‖f‖2|H| := H(2H − 1)

∫
[0,T ]2

|f(u)||f(v)||u− v|2H−2dudv <∞

}
.

It turns out that (|H|, ‖ · ‖|H|) is a Banach space.

For the fractional Brownian motion B, the Malliavin derivative and Sko-
rokhod integrals defined above are obtained by taking H as in (1.9) (when
H < 1

2) or as in (1.10) (when H > 1
2). In Chapter 2, we often restrict the

domain of these operators in order to always work with elements in |H|.
This discussion provides the first type of integrals with respect to the

fractional Brownian motion B that we shall use in this dissertation. The
case H < 1

2 will not be used further and was only given for informative
purpose. Finally, for convenience, notice that we will sometimes use the
notation ∫

f(x1, . . . , xq)dBx1 . . . dBxq := Iq(f)

in the sequel (with f any element in H�q).
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1.1.7 The Young integral

We now turn to the second type of integral (beside the Skorokhod inte-
gral) commonly used in the fractional Brownian motion setting, and also
throughout this dissertation, the Young integral. It was introduced first
in [64]. Contrary to the Skorokhod integral, it is obtained through a deter-
ministic procedure, and can be seen as a generalization of the usual Riemann
integral. Its existence is in general not guaranteed, especially when H ≤ 1

2
(see Remark 1.1.25). A nice overview of this topic (as well as an introduction
to the more advanced theory of rough paths) can be found in [2].

Definition 1.1.20 (p-variation). Let p > 0 and fix an horizon T > 0. A
function f : [0, T ]→ R is said to have finite p-variation if the quantity:

‖f‖p−var :=

(
sup

0=t0≤...≤tn=T

n∑
k=1

|f(ti)− f(ti−1)|p
) 1

p

is finite (where the supremum is taken over all subdivisions of the interval
[0, T ]). The space of functions with finite p-variations over [0, T ] is de-

noted by Cp−var([0, T ]). Endowed with the norm f 7→ ‖f(0)‖ + ‖f‖p−var,
Cp−var([0, T ]) is a Banach space.

A classical example of functions with finite p-variations is the class of
Hölder continuous functions.

Proposition 1.1.21. Let f : [0, T ]→ R be an α-Hölder continuous function

for some α ∈ (0, 1]. Then, f belongs to C
1
α
−var.

Proof. Let {0 = t0 ≤ . . . ≤ tn = T} be a subdivision of [0, T ]. Then,

∀i ∈ {1, . . . , n}, |f(ti) − f(ti−1)|
1
α ≤ K

1
α (ti − ti−1), where K is the Hölder

modulus of f . Then,
‖f‖ 1

α
−var ≤ KT

α <∞.

�

Theorem 1.1.22. Let f ∈ Cp−var([0, T ]) and g ∈ Cq−var([0, T ]) with

1

p
+

1

q
> 1.

Let 0 ≤ a ≤ b ≤ T . Then, the sequence (Sn)n∈N of weighted Riemann sums

Sn :=
n∑
k=0

f

(
a+ (b− a)

k

n

)(
g

(
a+ (b− a)

k + 1

n

)
− g

(
a+ (b− a)

k

n

))
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converges to a quantity that is denoted
∫ b
a fdg and called the Young integral

of f against g.

The Young integral possesses the following properties.

Proposition 1.1.23. Let f, g be as in Theorem 1.1.22.

• (Chasles relation): Let 0 ≤ a ≤ b ≤ c ≤ T . We have∫ c

a
fdg =

∫ b

a
fdg +

∫ c

b
fdg.

• (change of variables): Let 0 ≤ t ≤ T . Assume that f ∈ C2, and that
q < 2. Then, f ′ ◦ g ∈ Cq−var([0, T ]) and

f(g(t)) = f(g(0)) +

∫ t

0
f ′ ◦ g dg. (1.11)

• (differentiable case): If g is an absolutely continuous function, then∫
fdg =

∫
fg′dλ,

with λ the usual Lebesgue measure.

Recall now that the fractional Brownian motion B of index H ∈ (0, 1) is
(H − ε)-Hölder continuous for every ε > 0. Then, we can define the Young
integral ∫

udB

as long as the process u has finite p−variation with p such that 1
p > 1−H+ε

for some ε > 0 (for example, when u is (1 −H + ε)-Hölder continuous). In
particular, if H > 1

2 and f is Lipschitz, we can define in this way the integral∫
f(B)dB.

Remark 1.1.24. The Young integral behaves in a very different way com-
pared to the Itô integral or to the Skorokhod integral defined above. Indeed,
it is actually a pathwise integral, and verify as such a first order Taylor ex-
pansion (instead of the Itô formula, which also involves the second order
derivative)

Remark 1.1.25. The Young integral is of little use when H ≤ 1
2 . Indeed, it

is impossible to define simple expressions such as
∫
f(B)dB. When H ≤ 1

2 ,
one can instead relies on the rough path theory, which involves a more
complicated approximation scheme. Although we will briefly make use of
the notions of Lvy area and controlled path in Chapter 2, the rough path
theory itself will not be used in this dissertation.

16



1.2 Hermite processes

1.2.1 Historical motivation

Hermite processes form a relatively recent addition to the field of stochastic
analysis. This family of processes share a lot of similarities with the frac-
tional Brownian motion (which is actually the simplest example of Hermite
process) except a crucial one: they are in general not Gaussian. Historically,
they have been discovered in [13] and [18] as the limiting process arising in
a functional central limit theorem in the context of long-range dependence
(although Rosenblatt was the first to observe such phenomenon in [52]).
More precisely, let us consider (Xn)n∈N, a centered Gaussian stationary (i.e
∀k ∈ N, ∀p ∈ N, E[Xp+kXk] = E[XpX0]) sequence, with E[X2

0 ] = 1 and
such that X has long-range dependence, i.e. there is α ∈ (0, 1) and a slowly
varying function L : R+ → R such that

∀n ∈ N, r(n) := E[X0Xn] = n−αL(n).

Let us now consider the sequence

Yn :=
1

An

n∑
k=0

f(Xk), (1.12)

where An is an appropriate renormalization constant (which we will make
explicit later) and where f ∈ L2(R, γ) with γ the standard Gaussian mea-
sure, that is, f : R→ R satisfies

1√
2π

∫
R
|f(x)|e−

x2

2 dx <∞.

Then, depending on α and some properties of the function f , the limit may
or may not be Gaussian, see Theorem 1.2.7 for a more precise statement. A
functional version of this result also provides a counterpart to the Donsker
theorem. In the non-Gaussian case, the limit has been called a Hermite
process.

Hermite processes have been the object of a growing interest in the recent
literature, as they provide an interesting non-Gaussian alternative to the
fractional Brownian motion. Among the relevant works, one can mention
the aforementioned pioneering papers by Dobrushin, Major and others (
[13], [18], [52]) as well as various recent additions, see for instance [1], [8],
[32], [44], [53] or [60].
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We would also like to mention the recent PhD dissertation [61] which
has been an important source of material for the present section.

In the forthcoming sections, we introduce more rigorously the Hermite
processes and review their main properties, as well as some connections with
the fractional Brownian motion. We also give a short introduction to the
stochastic calculus with respect to the Hermite processes.

1.2.2 Hermite polynomials

Hermite polynomials form an infinite family of polynomials of increasing
degrees. They can be defined as below (both definitions given here are
equivalent).

Definition 1.2.1 (Hermite Polynomials). 1. The Hermite polynomial of
order k is given by the Rodrigues formula:

∀x ∈ R, Hk(x) = (−1)ke
x2

2
dk

dxk
e−

x2

2 .

2. Alternatively, the Hermite polynomials are the only polynomials veri-
fying the following recursive relationship:

H0(X) = 1
H1(X) = X

∀k ≥ 2, Hk(X) = XHk−1(X)− (k − 1)Hk−2(X).

Since the Hermite polynomials are graduated, they define a basis of R[X].
More remarkably, if X is an isonormal Gaussian field with respect to a
Hilbert space H, and if F denotes the σ-algebra generated by X, then it
is possible to build an orthonormal basis of L2(Ω,F) with the help of the
Hermite polynomials. As a result, we can reformulate Theorem 1.1.18 in
the following way.

Theorem 1.2.2 (Chaotic decomposition revisited). Let F ∈ L2(Ω,F). Let
Lk be the closed linear subspace of L2(Ω,F) generated by the family

{Hk(X(h)), h ∈ H, ‖h‖H = 1}

(with Hk the Hermite polynomial of order k). Then, there is a unique se-
quence of random variables Fk ∈ Lk such that:

F = E[F ] +

n∑
k=1

Fk

with the above serie converging in L2(Ω).
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A proof of this theorem can be found in [41, Section 2.2]. Notice that an
equivalent decomposition exists in the one dimensional case, see the following
proposition.

Proposition 1.2.3. Let γ be the standard Gaussian measure over R, i.e∫
R hdγ = 1√

2π

∫
R h(x)e−

x2

2 dx for all positive Borel function h : R → R+.

Let f ∈ L2(γ). Then, there is a unique sequence (ak)k∈N such that:

f =
∞∑
k=0

akHk,

where the above serie converges in L2(γ).

Finally, Hermite polynomials are directly connected to multiple Wiener
integrals introduced above in Section 1.1.5.

Proposition 1.2.4. Let h ∈ H and p ∈ N. Then,

Ip(h
⊗p) = Hp(X(h)). (1.13)

A direct consequence of the equation (1.13) is the following formula,
which is immediate but will be used many times in Chapter 2.

Corollary 1.2.5. Let B be a fractional Brownian motion of Hurst index
H ∈ (0, 1), and let s ≤ t. Then,

I2(I⊗2
[s,t]) = (Bt −Bs)2 − 1. (1.14)

1.2.3 Definition of Hermite processes

With the definition of Hermite polynomials at hands, we are now ready to
introduce the Hermite processes, using the notion of Hermite rank. There
are more general ways to introduce the Hermite processes (e.g, by using the
sequence (1.12) and the notion of slowly varying functions), but the defini-
tion we give here is more in line with the general spirit of this dissertation.

Definition 1.2.6. Let f ∈ L2(γ) (where once again, γ is the standard
Gaussian measure). Let (ak)k∈N be the sequence involved in the Hermite
decomposition of f given in Proposition 1.2.3. The Hermite rank of f is the
integer k0 = inf{k > 0, ak 6= 0}.

Hermite processes are then obtained as follows.
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Theorem 1.2.7. [Dobrushin-Major, 1979] Let B be a fractional Brownian

motion of index H ′ ∈ (0, 1) and let f ∈ L2(γ) be such that
∫
R f(x)e−

x2

2 dx =
0. For all n ∈ N∗, let us define the process (Y n

t )t>0 as:

Y n
· := nq(1−H

′)−1

bn·c∑
k=0

f(Bk+1 −Bk). (1.15)

Assume that the Hermite rank q of f verifies H ′ > 1− 1
2q . Then, the sequence

Y n converges in DR(R+) to a process with values in the q-th Wiener chaos.

Definition 1.2.8. The limiting process of Theorem 1.2.7 is called Hermite
process of order q and self-similarity parameter H = 1 − q(1 − H ′). It is
denoted by Zq,H .

Here DA(B) is the Skorokhod space of càdlàg functions f : B → A (for
more information, see the forthcoming Section 1.3.1).

We end this section with a couple of important remarks, as well as a
further definition.

Remark 1.2.9. In the case where q = 1, it turns out that H = H ′ and that
the Hermite process Zq,H is actually a fractional Brownian motion of Hurst
index H. This is the only case where Zq,H is Gaussian.

Remark 1.2.10. Due to the condition on H ′ imposed in Theorem 1.2.7, the
Hurst parameter H belongs to (1

2 , 1). In particular, a fractional Brownian
motion of Hurst index H ≤ 1

2 is not a Hermite process.

Definition 1.2.11 (Rosenblatt process). Let q = 2 and let H ∈ (1
2 , 1). The

Hermite process Z2,H is called the Rosenblatt process.

The Rosenblatt process was actually discovered before the seminal works
by Dobrushin, Major and others. This name was used for the first time
in [58] as a tribute to Murray Rosenblatt.

After the fractional Brownian motion, the Rosenblatt process is the sec-
ond most well known among the Hermite processes. In particular, the fact
that the Rosenblatt process belongs to the second Wiener chaos make it
more practical to study than the higher order Hermite processes (second
order iterated integrals possess useful properties which are lost at higher
orders, se e.g [41], Section 2.7.4). For a thorough review of the properties
of the Rosenblatt process, we refer the reader to the paper [62] and to the
dedicated section in the dissertation [61].
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1.2.4 Properties of Hermite processes

Hermite processes differ significantly from the fractional Brownian motion
in one regard: as soon as q ≥ 2, their marginals laws are no longer Gaus-
sian. Aside from this important caveat, Hermite processes share most of
their properties with the fractional Brownian motion. Here is a list of such
properties, which is very similar to Proposition 1.1.5.

Proposition 1.2.12. Let (Zq,H)t∈[0,T ] be a Hermite process of order q ∈ N∗

and self-similarity parameter H ∈ (1
2 , 1).

(a) Zq,H is H-self similar.

(b) ∀t, s ≥ 0, E[Zq,Hs ] = 0 and E[Zq,Hs Zq,Ht ] = 1
2(t2H + s2H − |t− s|2H).

(c) Zq,H has stationary increments.

(d) (long memory) Let (r(k))k∈N be the sequence defined as

r(k) = E[(Zq,Hk+1 − Z
q,H
k )Zq,H1 ].

Then, ∑
k∈N
|r(k)| =∞.

(e) The increments of Zq,H have finite moments, which are controlled in
the following way: ∀s, t ≥ 0, ∀p > 0,

E[|Zq,Ht − Zq,Hs |p] ≤ (p− 1)
pq
2 |t− s|pH .

(f) For any 0 ≤ α < H, Zq,H admits an α-Hölder continuous version on
each compact interval [0, T ].

(g) Let t > 0. There is a constant ct > 0 such that E[|f(Zq,Ht )|] < ∞ for
all measurable function f : R → R satisfying that there exists K > 0

such that ∀x ∈ R, |f(x)| ≤ Ke−ct|x|
2
q

.

Proof. The items (a)-(c) can be proved by means of the forthcoming integral
representation given in Proposition 1.2.14, the details have been written
down in [61], Proposition 1.1.2.

For the item (d), the proof is exactly the same as in the fractional Brow-
nian motion case (because the sequence (r(k))k∈N is identical).

21



For all 0 ≤ s, t, the difference Zq,Ht − Zq,Hs is a multiple Wiener integral
of order q (thanks to Proposition 1.2.14) so we can use the self-similarity

property and hypercontractivity property to obtain that Zq,Ht − Zq,Hs
law
=

|t− s|HZq,H1 , and that

E[|Zq,Ht − Zq,Hs |p] ≤ E[(Zq,H1 )2]
p
2 (p− 1)

pq
2 |t− s|pH .

The proof of (e) then follows from the fact that E[(Zq,H1 )2] = 1, and the
proof of (f) follows from the Kolmogorov-Censov criterion.

Finally, let us prove (g). A power series developement provides

E[|f(Zq,Ht )|] ≤
∞∑
k=0

1

k!
E[ckt |Z

q,H
t |

2
q
k
].

Since Zq,Ht is an element of the q− th Wiener chaos, the hypercontractivity
property yields: ∀k ≥ q

2 ,

E[|Zq,H |
2
q
k
] ≤ g(k) = (k − 1)kt

H 2
q
k
.

The Stirling formula then provides:

(ct)
kg(k)

k!
∼k→∞ (ct)

k (k − 1)k

kk
t
H 2
q
k
ek√

2πk
, (1.16)

and the associated series converges if ct < e
−H 2

q
log(t)−1

. �

Remark 1.2.13. The item (g) is linked to a very important property of the
Hermite processes: the law Zq,H1 is uniquely characterised by its moments if
and only if q ≤ 2. In the case q = 1, (g) is also a direct consequence of the
more general Fernique’s theorem for Gaussian measures, see [57].

Similarly to the fractional Brownian motion case, it is possible to repre-
sent Hermite processes as stochastic integrals with respect to the Brow-
nian motion. The most common (and useful) representation makes use
of a two-sided Brownian motion (Wt)t∈R (i.e, (W 1

t )t>0 := (Wt)t≥0 and
(W 2

t )t≥0 := (W−t)t≥0 are two independant standard Brownian motions).
In this case, the Skorokhod and multiple Wiener integrals with respect to
W can be obtained by specializing to the case H = L2(R).
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Proposition 1.2.14. Let (Wt)t∈R be a two sided Brownian motion, and for
all p ∈ N and fp ∈ L2(R)�p, let Ip(fp) be the multiple Wiener integral of fp
with respect to W . Then, the Hermite process (Zq,H) has the same law as
the process

(Iq (fq(t)))t≥0 (1.17)

with

fq(t, ·) : (x1, . . . , xq) 7→ c(H, q)

∫ t

0
(s− xi)

H0− 3
2

+ ds,

H0 = 1− 1−H
q

,

c(H, q) =

√
H(2H − 1)

q!β(H0 − 1
2 , 2− 2H0)q

.

When q = 1, Proposition 1.2.14 provides an alternative ”spatial” repre-
sentation for the fractional Brownian motion, thus completing Proposition
1.1.6.

Another integral representation exists, which only involves a one sided
Brownian motion (see e.g. [49]) but it won’t be utilized in this thesis.

1.2.5 Wiener integral with respect to Hermite processes

It is possible to build a Skorokhod-type integral with respect to Hermite pro-
cesses. It was done in [62, Section 6] in the specific case of the Rosenblatt
process. In this thesis, we will only need to work with Wiener integrals, that
we introduce now very briefly.

Let us extend the class |H| already introduced in Section 1.1.6 for func-
tions defined on [0, T ] to functions f : R → R. We say that f : R → R be-
longs to |H| if ‖f‖2|H| := H(2H − 1)

∫
R
∫
R |f(u)||f(v)||u− v|2H−2dudv <∞.

As noted above, (|H|, ‖ · ‖|H|) is a Banach space. In [32], the authors con-
sidered integrals of simple functions, i.e∫

R

(
f :=

p−1∑
i=0

aiI[ti,ti+1]

)
(s)dZq,Hs =

p−1∑
i=0

ai(Z
q,H
ti+1
− Zq,Hti ).

The Hermite process Zq,H itself can be viewed as a multiple Wiener integral,
see Proposition 1.2.14, so the previous expression can be rewritten as:∫

R
f(s)dZq,Hs = Iq(F )
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with Iq the q-th multiple Wiener integral with respect to the two sided
Brownian motion W and

F : (x1, . . . , xq)→ c(H, q)

∫
R
f(u)

q∏
i=1

(u− xi)
H0− 3

2
+ du.

Finally, using a classic isometry extension procedure, it is shown in [32] that
the above integral (defined for simple functions) can be extended to the
whole space |H|, as a L2(Ω)-limit of integrals of simple functions. Further-
more, it coincides with the following multiple integral with respect to the
two-sided Brownian motion W : ∀f ∈ |H|,∫
R
f(s)dZq,Hs = c(H, q)

∫
Rn

(∫
R
f(u)

q∏
i=1

(u− ξi)
H0− 3

2
+ du

)
dW (ξ1) . . . dW (ξq).

(1.18)

1.3 Stein’s method, Malliavin-Stein approach and
other convergence results

This dissertation is all about establishing probabilistic convergence results
for sequences of functionals of Gaussian fields (or, in Chapter 4, for func-
tionals of log-concave distributions). In the previous two sections, we gave
some background about the fractional Brownian motion and the Hermite
processes. In the present section, we will review some of the techniques
that we will use in order to establish these convergence results. We will
first start by providing some reminders about the functional convergence
of stochastic processes. We will then review the basics of Stein’s method,
before introducing the more recent Malliavin-Stein approach.

1.3.1 Convergence of processes

Let ((Xn
t )t∈I)n∈N be a sequence of stochastic processes (where I is either

R+ or an interval of the form [0, T ] for some T > 0) whose marginals are
Rd-valued for some d ∈ N∗. Assume further that both Xn and X take values
in a complete metric space X . We say that the sequence Xn converges in
law to X in the space X if

E[φ(Xn)] −→
n→∞

E[φ(X)] (1.19)

for all functionals φ : X → R which are bounded and continuous with respect
to the topology induced by the distance on X . When dealing with stochastic
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processes, the two most commonly used spaces are the Wiener space and
the Skorokhod space. A useful reference about the Skorokhod space is the
short note [26].

Definition 1.3.1 (Wiener space). Let us denote by CRd(I) the space of
continuous functions f : I → Rd. Let ‖ · ‖∞ be the uniform norm over I, i.e

∀f ∈ CRd(I), ‖f‖∞ = sup
x∈I
‖f(x)‖

(where ‖·‖ is the usual Euclidian norm on Rd). Then, (CRd(I), ‖‖∞) is called
the Wiener space. It is a vector space and a Polish space.

Definition 1.3.2 (Skorokhod space). Let DRd(I) be the space of cádlág
functions f : I → Rd (i.e, the functions which are right continuous and
admit a left limit in every point x ∈ I). Let us define the following map on
(DRd(I))2:

σ : (f, g) 7→ inf
λ∈Λ
{‖λ− Id‖∞ + ‖f − g ◦ λ‖∞} ,

where Λ is the set of all continuous and increasing bijections λ : I → I.
Let J1 be the topology generated by the metric σ. Then, the space DRd(I)
endowed with the J1 topology is called the Skorokhod space. It is a vector
space and a Polish space.

We endow the space DRd(I) with the topology J1 rather than the topol-
ogy of uniform convergence, because otherwise it wouldn’t be a Polish space.
That said, we have the following result, which will be useful in Chapter 2.

Lemma 1.3.3. The topology J1 and the topology of uniform convergence
coincide on CRd(I).

To establish the convergence (1.19) in the Wiener space, we will mainly
rely on the following classic result, which is an easy consequence of the
Prokhorov’s Theorem.

Proposition 1.3.4. Let (xn)n∈N∗ be a sequence of processes in X (here X
is the Wiener space CRd(I)). Then the sequence (Xn)n∈N∗ converges (for the
topology of X ) to a process X ∈ X if and only if the two following conditions
holds.

(1) The finite dimensionals distributions of the processes Xn converge to
the finite dimensional distributions of the process X.
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(2) The sequence (Xn)n∈N∗ is tight, that is, for all ε > 0, there is compact
Kε of X such that ∀n ∈ N∗,

P[Xn ∈ X \Kε] ≤ ε.

Proof. The implication ”⇐” is immediate. Let us now assume that both
conditions (1) and (2) hold true. By condition (2) and thanks to the fact
that X is a Polish space, the Prokhorov theorem implies that there is a sub-
sequence (Xφ(n))n∈N∗ such that (Xφ(n))n∈N∗ converges weakly to a process
Xφ ∈ X . Thanks to (1) (and the fact that the finite dimensional projections
are continuous in X ), we have that the finite-dimensional distributions of
the process Xφ are the finite dimensional distributions of X. By the unique-

ness part in the Kolmogorov extension theorem, Xφ
law
= X (and the limit

does not depends on the extraction function φ). This prove the implication
”⇒”. �

Remark 1.3.5. The case of the Skorokhod space is more delicate because
the finite dimensional projections are not continuous. More information on
this can be found in [3, Section 13]

It is in general very inconvenient to directly verify the condition (2).
Fortunately, in the case where I is a compact interval (I = [0, T ] in our
case), (2) follows from criterions which are much easier to check. Below are
the two criterions that will be used in this thesis.

Lemma 1.3.6. Let X be either DR([0, T ]) or CR([0, T ]) and let (Xn)n∈N∗ ∈
XN∗. Then, we have the two following sufficient conditions.

(a) If X = CR([0, T ]), and if there is α, β > 0 and a constant K (depending
only on α, β and T ) such that

∀n ∈ N∗, ∀ 0 ≤ s, t ≤ T, E [|Xn
t −Xn

s |α] ≤ K|t− s|1+β, (1.20)

then the sequence is tight in CR([0, T ]).

(b) If X = DR([0, T ]), and if there is α, β > 0 and a constant K (depending
only on α, β and T ) such that

∀n ∈ N∗, ∀ 0 ≤ s, t ≤ T, E [|Xn
t −Xn

s |α] ≤ K|tn − sn|1+β (1.21)

(where tn = bntc
n , sn = bnsc

n ), then the sequence is tight in DR([0, T ]).
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The first criterion (a) is the classic and well known result proved by
Billingsley in the seminal book [3]. A proof of (b) can be found in [12]

Finally, we provide a way to check the tightness for a sequence Xn ∈
CR([0, T ]), which will prove particularly convenient in Chapter 2. It consists
in decomposing the sequence X into two sequences of processes belonging
to DR([0, T ]) and checking the tightness of each separate sequence.

Lemma 1.3.7. Let (Xn)n∈N∗ ∈ CR([0, T ])N
∗
. Assume that for all n ∈ N∗,

we can write Xn = An + Cn, with

1. ∀n ∈ N∗, An, Cn ∈ DR([0, T ])

2. (An)n∈N∗ verifies the criterion (b) from Lemma 1.3.6 for some α, β >
0.

3. limn→∞ ‖Cn‖∞ = 0.

Then, the sequence (Xn)n∈N∗ is tight in CR([0, T ])

Proof. By Lemma 1.3.6, the sequence (An)n is tight in DR([0, T ]). By hy-
pothesis, (Cn)n is also tight in DR([0, T ]) and converges in DR([0, T ]) to 0,
which is a continuous process. By [25, Lemma 2.2], the sequence (An, Cn)n
is tight in DR2([0, T ]) and since the map (x, y) → x + y is continuous from
DR2([0, T ]) to DR([0, T ]), the sequence (Xn)n is then tight in DR([0, T ]).
Finally, by Lemma 1.3.3, the sequence (Xn)n is tight in CR([0, T ]). �

1.3.2 Distances between probability laws

Let µ, ν be two probability measures on Rd for some d ∈ N∗. In this section,
we are interested in quantifying the discrepancy between the laws µ and ν.
More precisely, we want to endow the spaceM of probability measures over
Rd with a distance, in order to make it a complete metric space.

There are several options which are commonly used in the litterature. A
review can be found in [41, Appendix C].

Definition 1.3.8 (Fortet-Mourier distance). The application

(µ, ν) 7→ sup
f

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ,
where the supremum runs over all Lipschitz functions f : Rd → R such that
‖f‖∞+ ‖f‖Lip ≤ 1, is a distance onM, called the Fortet-Mourier distance.
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Definition 1.3.9 (Kolmogorov distance). The application

(µ, ν) 7→ sup
x1...,xd∈R

∣∣µ((−∞, x1]×. . .×(−∞, xd])−ν((−∞, x1]×. . .×(−∞, xd])
∣∣

is a distance on M, called the Kolmogorov distance.

Definition 1.3.10 (Total variation distance). The application

(µ, ν) 7→ sup
A∈B(Rd)

|µ(A)− ν(A)|

is a distance on M, called the total variation distance.

Proposition 1.3.11. Let µ, ν be two probability measures on Rd. The three
distances defined above are related as follows:

dFM (µ, ν) ≤ dKol(µ, ν) ≤ dTV (µ, ν). (1.22)

Remark 1.3.12. An important feature of the Fortet-Mourier is that it
metrizes the convergence in law. In other words, a sequence (µn)n∈N con-
verges weakly to a measure µ if and only if dFM (µn, µ) −→

n→∞
0. A con-

sequence of this fact and the inequalities (1.22) is that the convergence of
a sequence of measures for the Kolmogorov and total variation distances
implies the weak convergence of this sequence.

1.3.3 The basics of Stein’s method

Introduced first in the seminal work [54], Stein’s method is a set of tools
aiming at quantifying the distance between probability measures. It has
been the object of a wide number of subsequent investigations generalizing
it in various settings. An extensive presentation with references can be
found in the book [6] for the topic of Stein’s method with Gaussian target
law (which is the only setting we consider in the present dissertation). A
more compact and simplified presentation can be found in [41, Chapters
3-4], which already encompass all the material we need for this dissertation.
Although it is not limited to it, Stein’s method is mostly known for its
contributions to normal approximation. The root of Stein’s method is the
following simple lemma, also known as Stein’s lemma, which establishes an
integration by part formula with respect to the Gaussian measure.

Lemma 1.3.13. Let N be a real valued random variable. Let again γ be
the standard Gaussian measure. Then, N follows the standard Gaussian
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distribution γ if and only if, for all absolutely continuous functions f ∈ L1(γ)
such that f ′ ∈ L1(γ),

E[|f ′(N)|] + E[|Nf(N)|] <∞

and
E[Nf(N)] = E[f ′(N)].

A multidimensional counterpart of Lemma 1.3.13 exists, this time in-
volving second order differential operators.

Lemma 1.3.14. Let C be a d × d non-negative definite matrix, and let N
be a random vector with values in Rd. Then, N has the N (0, C) distribution
if and only if

E[|〈N,∇f(N)〉Rd |] + E[|〈C,Hessf(N)〉HS |] <∞

and
E[〈N,∇f(N)〉Rd ] = E[〈C,Hessf(N)〉HS ],

for every function f ∈ C2
b (Rd,R), where Hess f is the Hessian matrix of f

and 〈·, ·〉HS is the Hilbert-Schmidt scalar product on the d× d square matrix
space, i.e

∀A,B ∈M(Rd), 〈A,B〉HS = Tr(ABT ).

Proof of these results can be found in [41], p. 60 and pp. 80–81. It should
be noted that similar results can be obtained in non-Gaussian settings as
long as the target law possess a suitable form. In Chapter 4, we will make
use of the following variation in the case of regular Gibbs measure.

Lemma 1.3.15. Let µ be a probability law whose density is given by

gµ :=
1

K
e−Φ, (1.23)

with Φ ∈ C1(Rd,R) such that

K =

∫
Rd
e−Φ(x)dx <∞.

Then, for all absolutely continuous function f : Rd → Rd such that

Eµ[|f |] + Eµ[|〈f,∇Φ〉Rd |] + Eµ[|Tr(∇f)|] <∞, (1.24)

we have
Eµ[〈f,∇Φ〉Rd ] = Eµ[Tr(∇f)]. (1.25)
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Proof. We start the proof with the case where f has compact support. We
have, thanks to Fubini’s theorem and the fact that |fi(x)|e−Φ(x) −→

‖x‖→∞
0 for

all i ∈ {1, . . . , n},

Eµ[〈f,∇Φ〉Rd ] =

∫
Rd

(
d∑
i=1

fi(x)
∂Φ

∂xi
(x)

)
e−Φ(x)dx

=
n∑
i=1

∫
Rd−1

(∫
R
fi(x)

∂Φ

∂xi
(x)e−Φ(x)dxi

)∏
j 6=i

dxj

=

n∑
i=1

∫
Rd−1

(∫
R

∂fi
∂xi

(x)e−Φ(x)dxi

)∏
j 6=i

dxj

= Eµ[Tr(∇f)].

Let now f be a function satisfying the hypotheses of Lemma 1.3.15, and
let (pn)n∈N∗ be a sequence of smooth functions from Rd to Rd such that
pn(x) = 1 if ‖x‖ ≤ n, pn(x) = 0 if ‖x‖ ≥ n + 1 and supn ‖∇pn‖∞ < ∞.
Then, the sequence un = (fpn)n∈N∗ verifies

Eµ[〈un,∇Φ〉Rn ] = Eµ[Tr(∇un)].

Thanks to (1.24), we can apply the dominated convergence theorem from
which the desired conclusion follows. �

The other main ingredient of Stein’s method is the utilization of the
following diffential equation, known as Stein’s equation of unknown f (here
stated in the one dimensional setting)

f ′(x)− xf(x) = h(x)− E[h(N)], (1.26)

where N is a standard Gaussian random variable and h : R→ R is a given
Borel function in L1(γ).
It is not difficult to show that (1.26) admits a unique solution f = fh ∈ L1(γ)

verifying the decay condition fh(x)e−
x2

2 −→
‖x‖→∞

0. By Stein’s lemma 1.3.13,

we also know that E[f ′h(N)−Nfh(N)] = 0. Putting these two facts together
leads to the identity

E[h(F )− h(N)] = E[f ′h(F )− Ffh(F )], (1.27)
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for every real valued random variable F such that E[|h(F )|] <∞.

Crucially, the identity (1.27) means that the distance between any ran-
dom variable F and the standard Gaussian distribution can be bounded by
a quantity which does not depend on the Gaussian distribution γ. More
formally, let us observe that the total variation distance between F and N
given in Definition 1.3.10 can be expressed as

dTV (F,N) = sup
h
|E[h(N)− h(F )]| ,

where the supremum is taken over the set G = {IA, A ∈ B(R)}. We deduce
from (1.27) that

dTV (F,N) = sup
h∈G

∣∣E[f ′h(F )− Ffh(F )]
∣∣ ,

where the supremum is taken on the same set G. To bound the total variation
distance, it is then enough to find the ”image” of the set G in the space of
the solutions to the Stein’s equation.

Proposition 1.3.16. Let F be a real valued random variable. The total
variation distance between F and N can be bounded as follows:

dTV (F,N) ≤ sup
f
|E[f ′(F )− Ff(F )]|, (1.28)

where the supremum runs over the set of absolutely continuous functions f
such that ‖f‖∞ ≤

√
π
2 , ‖f

′‖∞ ≤ 2.

Similar estimates also exist for the Fortet-Mourier and Kolmogorov dis-
tances, but they will not be used in this thesis.

In order to establish a bound on dTV (F,N) or to prove convergence in
total variation, it remains to exhibit a bound on the quantity

STV (F ) := sup
f
|E[f ′(F )− Ff(F )]|,

known as the Stein’s discrepancy. There is no general way to establish such
a bound, so the method has to be taylored on the type of random variables
studied. A well known tool is the method of exchangeable pairs used first
in [10]. Another method, mostly used in the multidimensional setting, is to
use Stein’s kernel as a way to minimize Stein’s discrepancy, see [55, Lecture
6] for an introduction. When the random variable F can be represented
as a functional of a Gaussian field, a powerful tool is the Malliavin-Stein
approach, which we will introduce in the forthcoming section.
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1.3.4 The Malliavin-Stein approach

The Malliavin-Stein approach is a recent and active topic of research. Its
foundations rests on two important articles: the paper [46] establishing the
fourth moment theorem and the paper [37] linking for the first time Stein’s
method and Malliavin calculus for functionals of a Gaussian field. The
main reference on this topic is the dedicated book [41] and particularly the
chapters 5-6. The basic idea is that when the random variable G belongs
to a space Dp,q, integration by parts formulas involving the operators of
Malliavin calculus can be used to bound the Stein’s discrepancy for the
total variation distance. This approach has been succesfully used, among
other examples, to study universality phenomenons (see [38]), to extend the
central limit theorem in total variation (see [42]), to obtain a central limit
theorem for the solution of the stochastic heat equation (see [23]) and have
been extended in the Poisson setting in e.g. [29]
We need first to introduce two additional operators.

Definition 1.3.17. Let X be an isonormal Gaussian process on a Hilbert
spaceH. Let F ∈ L2(Ω,F) with chaotic expansion F = E[F ]+

∑∞
k=1 Ip(fp(F ))

for a unique sequence of elements fp(F ) ∈ H�p. Then, the Ornstein-
Uhlenbeck semigroup (Pt)t≥0 is defined as

∀t ≥ 0, PtF =

∞∑
p=0

e−ptIp(fp+1(F )).

Its infinitesimal generator L is defined by

LF = −
∞∑
p=1

pIp(fp(F ))

for all variables F ∈ Dom(L), with

Dom(L) :=

F,
∞∑
p=1

p2E[Ip(fp(F ))2] <∞

 .

Lemma 1.3.18. Let F ∈ D1,2 with chaotic expansion as above and E[F ] =
0. Let us define L−1F as

L−1F :=
∞∑
p=1

−1

p
Ip(fp(F )).
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Then, L−1F ∈ D1,2 and

−DL−1F =

∫ ∞
0

e−tPtDFdt. (1.29)

We are now ready to present the main result of this section, which was
obtained first by Nourdin and Peccati in [37].

Theorem 1.3.19. Let F ∈ D1,2 with E[F ] = 0 and V ar(F ) = σ2 > 0.
Then, with N ∼ N (0, σ2)

dTV (F,N) ≤ STV (F ) ≤ 2

σ2
E[|σ2 − 〈DF,−DL−1F 〉H|]. (1.30)

To get a better understanding of this formula in a less abstract setting,
we can look at the particular (and easier) case when F is a functional of
a Gaussian vector. This case has been investigated in [19, Theorem A.1],
and will be extended in Chapter 4 to a non Gaussian setting. The proof is
similar in spirit (but simpler) to that of Theorem 1.3.19, so we will reproduce
it almost to the identical to illustrate the type of techniques utilized.

Proposition 1.3.20. Let g be a standard normal vector in Rd and let
H : Rd → R be square integrable with respect to γ the d-dimensional Gaus-
sian measure. Assume further that H ∈ D1,2. Set m = E[H(g)], σ2 =
V ar(H(g)) and

F =
H(g)−m

σ
.

Moreover, for t ≥ 0, set ĝt = e−tg+
√

1− e−2tĝ with ĝ an independent copy
of g. Let Ê be the expectation with respect to ĝ and E = E⊗ Ê. Then,

dTV (F,N) ≤ 2

σ2
E
[∣∣∣∣σ2 −

∫ ∞
0

e−t〈DH(g), Ê[DH(ĝt)]〉Rddt
∣∣∣∣] . (1.31)

Remark 1.3.21. The Mehler formula gives an equivalent characterisation
of the Ornstein-Uhlenbeck semigroup in the d-dimensional setting as follows:
Let F = H(g), then ∀t ≥ 0,∀x ∈ Rd,

(PtF )(x) =

∫
Rd
H(e−tx+

√
1− e−2ty)dγ(y).

Combining this representation with the equation (1.29) ensures that the
formula (1.31) indeed coincide with (1.30).
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Proof of Proposition 1.3.20: Without loss of generality, we may assume
that m = 0 and σ2 = 1. The random vector gt =

√
1− e−2tg − e−tĝ is an

independant copy of ĝt, and g = e−tĝt +
√

1− e−2tgt.
By a standard approximation argument, it is sufficient to show the result for
H ∈ C1 with H and its derivatives having subexponential growth at infinity.
Let E = E⊗Ê. If φ : R→ R is C1, then using the growth conditions imposed
on H to carry out the interchange of expectation and integration-by-parts,
one has

E[Fφ(F ]

= E[(H(g)−H(ĝ))φ(H(g))] = −
∫ ∞

0

d

dt
E[H(ĝt)φ(H(g))]dt

=

∫ ∞
0

(
e−tE〈∇H(ĝt), g〉φ(H(g))− e−2t

√
1− e−2t

E〈∇H(ĝt), ĝ〉φ(H(g))

)
dt

=

∫ ∞
0

e−t√
1− e−2t

E〈∇H(ĝt), gt〉φ(H(e−tĝt +
√

1− e−2tgt))dt

=

∫ ∞
0

e−tE〈∇H(ĝt),∇H(e−tĝt +
√

1− e−2tgt)〉

×φ′(H(e−tĝt +
√

1− e−2tgt))dt

=

∫ ∞
0

e−t〈∇H(g), Ê(∇H(ĝt))〉φ′(H(g))dt. (1.32)

Applying the identity (1.32) to (1.28) yields the stated result. �

1.3.5 Fourth moment and Breuer-Major theorems

Another milestone of the Malliavin-Stein approach is the fourth moment the-
orem initially proved in [46] in a one dimensional setting and then extended
to multivariate setting in [47].
A usual method to prove the convergence in distribution of a sequence of
random variables to a Gaussian distribution is to use the method of mo-
ments (i.e, checking the convergence of every moment of the elements of the
sequence to those of a Gaussian random variable). This method might be
overly tedious in some instances. If the elements of the sequence belongs to
a fixed Wiener chaos, the fourth moment theorem states that one only has
to check the convergence of the second and fourth moments of each element
of the sequence to the second and the fourth moments of a Gaussian random
variable. We state the multi-dimensional version below:
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Theorem 1.3.22 (Peccati-Tudor, [47]). Let X be an isonormal Gaussian
field (with respect to H), fix d ≥ 2 and let q1, . . . , qd be a family of fixed
integers. Consider the random vector

Fn = (Iq1(fn1 ), . . . , Iqd(f
n
d )),

with fnqi ∈ H
�qi for all i ∈ {1, . . . , d} and all n ∈ N∗. Assume that

∀1 ≤ i, j ≤ d,
Cov(Fni , F

n
j ) −→

n→∞
C(i, j),

where C is a covariance matrix. Then, the two following statements are
equivalent:

(1) For all i ∈ {1, . . . , d}, E[(Fni )4] −→
n→∞

3C(i, i)2.

(2) (Fn)n∈N∗ converges in law to a Gaussian vector F ∼ N (0, C).

The most celebrated application of this result is a modern proof of the
Breuer-Major theorem. Initially proved in [5] using the method of moments,
this result establishes a Gaussian counterpart to the non-central limit the-
orem mentioned in Section 1.2.1 in the case where the stationary sequence
(Xn)n∈N∗ possesses short-range memory. The fourth moment theorem dras-
tically simplify the proof, and allowed to improve the result in several direc-
tions.

Another application is the following result which is of foremost impor-
tance in Chapter 2, where we investigate the asymptotic behaviour of the
quadratic variation of the multidimensional fractional Brownian motion.
The proof in the case H = 1

2 is done in Chapter 2, the case H > 1
2 was

already studied in [22, Section 5] and is much more intricate. Reading the
already very computational proof given in [22] gives a sense of how incredibly
hard it would be to try to establish the result with the method of moments!

Definition 1.3.23 (matrix-valued Brownian motion). Assume that
H ∈

[
1
2 ,

3
4

]
. For H 6∈ {1

2 ,
3
4}, define

qH =
∑
p∈Z

∫ 1

0

∫ t

0

∫ p+1

p

∫ v

p
|s− u|2H−2|v − t|2H−2dsdvdudt,

rH =
∑
p∈Z

∫ 1

0

∫ 1

t
intp+1

p

∫ v

p
|s− u|2H−2|v − t|2H−2dsdvdudt,

and let q 1
2

= 1
2 , r 1

2
= 0 and q 3

4
= r 3

4
= 1

2 . We have qH ≥ rH by [22,

Lemma 2.1]. Let {W 0,i,j}1≤i≤j≤d and {W 1,i,j}1≤i,j≤d be two independent
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families of independent standard Brownian motions, both independent of
our underlying process B. We set W 0,i,j = W 0,j,i for j < i. The matrix-
valued Brownian motion (W i,j)1≤i,j≤d is then defined as follows:

W i,j =

{
cH
√
qH + rHW

1,i,j if i = j,
cH
√
qH − rHW 1,i,j + cH

√
rHW

0,i,j if i 6= j,
(1.33)

with the convention that c 1
2

= 1.

Proposition 1.3.24. Let B be a d-dimensional fractional Brownian motion

of Hurst index H ∈ [1
2 ,

3
4 ]. Let νH(n) =

√
n if H < 3

4 and ν 3
4
(n) =

√
n

ln(n)

for all n ≥ 2. For all n ≥ 2, 1 ≤ i, j ≤ d, let us consider the process

Θi,j
·,n :=

bn·c−1∑
k=0

∫ k+1
n
∧·

k
n

(Bi
s −Bi

k
n

)δBj
s

(here, the integral is understood as a Skorokhod integral with respect to the
field generated by the d-dimensional Brownian motion B). Then, for any
B-measurable random variable F , the following convergence holds in the
Wiener space CRd×d([0, T ]):

(F, (Θn)n≥2) −→
n→∞

(F,W ) (1.34)

where W is the independent matrix-valued Brownian motion defined above
in Definition 1.3.23.

1.4 Overview of Chapters 2 to 4, which constitutes
the new results obtained in this thesis

1.4.1 Chapter 2

Work based on the paper [14], currently in revision for the Electronic Journal
of Probability, entitled ”Asymptotic error distribution for the Riemann ap-
proximation of integrals driven by fractional Brownian motions” and written
in collaboration with Ivan Nourdin and Pierre Vallois.

Let B = (B1, . . . , Bd) be a d-dimensional fractional Brownian motion
with Hurst index H ∈ [1

2 , 1) over [0, T ] and let u = (u1, . . . , um) be a B-
measurable stochastic process. We assume that the integral

∫ ·
0 udB is well

defined (either as an Itô integral if H = 1
2 or as a Young integral if H > 1

2).
In [14], we investigate the following problem: under which conditions over
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the process u does the approximation of
∫
udB by its Riemann sum verifies

a limit theorem? More precisely, is there a sequence (an)n∈N, a process X
and a mode of convergence −→ such that:

an

∫ ·
0
uisdB

j
s −

bn·c∑
k=0

uik
n

(
Bj
k+1
n
∧·
−Bj

k
n

)
i≤m,j≤d

−→
n→∞

(Xi,j
· )i≤m,j≤d?

(1.35)
Since computing stochastic integrals requires this kind of approximation
schemes, the problem (1.35) is natural from a practical point of view. The
first paper to tackle this problem was [51] in the (standard, one dimensional)
Brownian setting for processes u of the form us = f(Bs), with f a regular
enough function. It established the following convergence result.

Theorem 1.4.1.

√
n

∫ ·
0
f(Bs)dBs −

bn·c∑
k=0

f(B k
n

)
(
B k+1

n
∧· −B k

n

) C([0,T ])−→
n→∞

1√
2

∫ ·
0
f ′(Bs)dWs,

(1.36)
with W a Brownian motion independent of B.

Surprisingly, the problem (1.35) has received relatively little attention
after [51] (especially in the fractional Brownian motion case), even though
a substantial amount of litterature has been dedicated to the related ques-
tion of error quantification for approximation schemes of SDEs, both in
the Brownian motion setting (e.g [25]) and, more recently, in the fractional
Brownian motion setting (see e.g [22] and [35]).

In Chapter 2, we establish a general framework to tackle the problem
(1.35), which we summarize below (without entering too much here into the
technical details).
Inspired by the notion of controlled paths, we define a notion of pseudo
derivative P for the process u, whose role is to mimick the process f ′(Bs)
which appear in the specific case described by Theorem 1.4.1. This process
P naturally appears in the limit, provided we can bound the quantity ut −
us − Ps(Bt −Bs) for all s, t ∈ [0, T ].

Definition 1.4.2 (See Definition 2.1.1). Fix a ∈ {1, 2}. We say that the
pair (u, P ) belongs to Ca if

• P = (P i,jt )t∈[0,T ],1≤i≤m,1≤j≤d is a σ{B}-measurable m× d-dimensional
process ;
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•
∫ t
s u

i
rdB

j
r is well-defined for any 1 ≤ i ≤ m and 1 ≤ j ≤ d;

•
E
[
Li,js,t L

i,j
x,y

]
= o(fa(s, t, x, y)) (1.37)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ d, uniformly on (s, t, x, y) ∈ [0, T ]4 such
that s ≤ t and x ≤ y as |t− s|+ |x− y| → 0,

where

Li,js,t =

∫ t

s

{
uir − uis −

d∑
k=1

P i,ks (Bk
r −Bk

s )

}
dBj

r . (1.38)

Here, f1, f2 are two functions from [0, T ]4 to R+ whose precise definition
will be given in the introduction of Chapter 2.

We also rely on (and extend when necessary) various results established
regarding the weighted power variations of the fractional Brownian in order
to establish the limit X. These results describe the asymptotic behaviour
of the quantity

an

bn·c∑
k=0

x k
n
f
(
B k+1

n
∧· −B k

n

)
,

where x is a stochastic process, (an)n∈N∗ a normalization sequence and f a
suitable function (most of the time a polynomial).

For n ∈ N∗, let (Mn,i,j
t )t∈[0,T ],i≤m,j≤d be the matrix-valued process whose

entries are

Mn,i,j
t := n2H−1

∫ t

0
uisdB

j
s −

bntc∑
k=0

uik
n

(
Bj
k+1
n
∧t
−Bj

k
n

) .

In [14], we establish the following two results:

Theorem 1.4.3 (See Theorem 2.1.2). Fix H ∈ (1
2 , 1) and let (u, P ) ∈ C1

be such that u and P are σ{B}-measurable, where P is a.s. continuous and

satisfies E
[
‖P‖2+γ

∞
]
< +∞ for some γ > 0. Then, uniformly on [0, T ] in

probability,

{
Mn,i,j
·

}
1≤i≤m,1≤j≤d −→n→∞

{
1

2

∫ ·
0
P i,js ds

}
1≤i≤m,1≤j≤d

. (1.39)

Moreover, this convergence also holds in L2(Ω) for any fixed t ∈ [0, T ].
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Let us define the function νH by:

νH(n) :=


√
n if H ∈ [1

2 ,
3
4)√

n/ lnn if H = 3
4

n2−2H if H ∈ (3
4 , 1)

, n ≥ 1.

Theorem 1.4.4 (See Theorem 2.1.3). Fix H ∈ [1
2 , 1), and let Z = (Zk,j)1≤k,j≤d

(resp. W = (W k,j)1≤k,j≤d) denote the matrix-valued Rosenblatt process mea-
surable with respect to B (resp. the matrix-valued Brownian motion inde-
pendent from B) constructed in the Section 2.2.5 in Chapter 2 (see also the
Section 1.3.5 above).

(A) [non-Brownian case H > 1
2 ] Assume (u, P ) ∈ C2 is such that u is

α-Hölder continuous for some α > 1−H and P is β-Hölder continuous over
[0, T ] for some β > 1

2 .

• If 1
2 < H ≤ 3

4 then, stably in CRm×d([0, T ]),{
νH(n)

(
Mn,i,j
· − 1

2

∫ ·
0
P i,js ds

)}
1≤i≤m,1≤j≤d

−→
n→∞

{
d∑

k=1

∫ ·
0
P i,ks dW k,j

s

}
1≤i≤m,1≤j≤d

,

where the integrals in the right-hand side are understood as a Wiener
integrals.

• If 3
4 < H < 1, assume in addition that

∑d
j=1

∑m
i=1 E‖P i,j‖

2+γ
β < ∞

for some γ > 0. Then, uniformly on [0, T ] in probability,{
νH(n)

(
Mn,i,j
· − 1

2

∫ ·
0
P i,js ds

)}
1≤i≤m,1≤j≤d

−→
n→∞

{
d∑

k=1

∫ ·
0
P i,ks dZk,js

}
1≤i≤m,1≤j≤d

,

where the integrals in the right-hand side are understood as Young
integrals. Moreover, this convergence also holds in L2(Ω) for any fixed
t ∈ [0, T ].

(B) [Brownian case H = 1
2 ] Assume (u, P ) ∈ C2 is such that u and

P are progressively measurable, and P is a.s. piecewise continuous with
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E
[
‖P‖2+γ

∞
]
< +∞ for some γ > 0. Then, stably in CRm×d([0, T ]),

{
νH(n)Mn,i,j

·
}

1≤i≤m,1≤j≤d −→n→∞

{
d∑

k=1

∫ ·
0
P i,ks dW k,j

s

}
1≤i≤m,1≤j≤d

,

where the integrals in the right-hand side are understood as Wiener integrals.

From a heuristic point of view, the threshold H = 3
4 appearing above was

somehow expected, as it already appears when dealing with the quadratic
variation of the fractional Brownian motion, see the paper [39] for a synthe-
sis. The main innovation of our work is the introduction of the more general
framework defined above, with the spaces C1 and C2.

We then explore various illustative examples.

• We use an estimate taken from [20] to prove that processes of the form

ui· =
∑
i=

∫ ·
0
ai,js dB

j
s +

∫ ·
0
bjsds, i ∈ {1, . . . ,m}

verifies the hypothesis of Theorem 1.4.4 with P i,j = ai,j (provided that
a is regular enough). Depending on the value of H, an additional term
involving bj might also appear in the limit. As a particular case, we
recover the case u = F (B) where F is a regular function Rd → Rm.

• We use Malliavin calculus to tackle the case where the marginals of u
can be expressed as multiple Wiener integrals.

• We establish a sufficient criterion for Theorem 1.4.4 to be verified in
the specific case where B is a standard Brownian motion.

• Finally, we study the ”limit” case us = F (Bs) where F is a convex
function (so not necessarily C1). Although we can not directly use
Theorems 1.4.3 and 1.4.4 to study this case, we were able to prove the
following result.

Proposition 1.4.5 (See Proposition 2.3.9). Fix H ∈ (1
2 ,

2
3). Let us =

F (Bs), s ∈ [0, T ], with F a real convex function such that, for some
K > 0 and γ ∈ (0, 2),

|F (x)|+ |F ′(x)|+
∫ |x|
−|x|

(|a|+ 1)dF ′′(a) ≤ Ke|x|γ , x ∈ R,
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where F ′ is the right derivative of F and F ′′ denotes its second deriva-
tive in the distributional sense (a simple ‘non-smooth’ example is given
by x→ |x|). Then, for all t ∈ [0, T ],

Mn
t := n2H−1

∫ t

0
F (Bs)dBs −

bntc∑
k=0

F (B k
n

)(B k+1
n
∧t −B k

n
)


L2(Ω)−→
n→∞

1

2

∫ t

0
F ′(Bs)ds.

1.4.2 Chapter 3

Work based on the paper [15], entitled ”Limit theorem of integral functionals
of Hermite-driven process” and written in collaboration with Ivan Nourdin,
David Nualart and Majid Salamat. Bernoulli 27 (2021), no. 3, pp. 1764–
1788.

We consider the following moving average process

X(t) :=

∫ t

−∞
x(t− u)dZu, t ≥ 0, (1.40)

where x is a sufficiently integrable function and Z is a Hermite process of
parameter q ≥ 1 and Hurst index H ∈ (1

2 , 1). Here, the integral should
be understood in the sense defined in Section 1.2.5. We are interested in
studying the fluctuations as T →∞ of the sequence

t→
∫ tT

0
P (X(s))ds, t ∈ [0, 1] (1.41)

when P is a polynomial. The study of these fluctuations are useful, from a
statistical point of view, in order to derive parameter estimation methods.
For example, the paper [44] establishes the consistency of estimators of the
parameters of a Hermite-driven generalization of the Vasicek model. Our
work [15] is a continuation of the particular case of (1.41) studied in the
paper [60] with P (x) = x2. When general polynomials are considered, and
depending on the parity of the coefficients of P , a rather surprising behavior
arises, which contrasts with the ”Breuer-Major” type behavior observed in
the Gaussian case. We also establish convergence in C([0, 1]) whereas [60]
only looked at finite dimensional distributions.

Let d be the centered Hermite rank of P (see Section 1.2.3) and

H0 = 1− 1−H
q

.
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The following three theorems are the main results established in this part
of the thesis.

Theorem 1.4.6 (See Chapter 3, Proposition 11). Let Z be a fractional

Brownian motion of Hurst index H ∈ (1
2 , 1) and let x ∈ L1(R+) ∩ L

1
H (R+).

Consider the moving average process X defined by (1.40) and assume without
loss of generality that V ar(X(0)) = 1 (if not, it suffices to multiply x by a
constant). Assume that q ≥ 2 and the following condition holds: ∀r ∈
{1, . . . , q − 1}, lims→∞ ‖f0 ⊗r fs‖L2(R2q−2r) = 0, with

fs(y1, . . . , yq) := I(−∞,s]q(y1,...,yq)

∫ s

y1∨...∨yq
x(s− u)

q∏
i=1

(u− xi)H0− 3
2du.

Then, for every measurable function f such that E[|f(X0)|] <∞,

1

T

∫ Tt

0
f(X(s))ds −→

T→∞
tE[f(X0)] a.s.

Theorem 1.4.7 (See Chapter 3, Theorem 1). Let Z be a fractional Brow-

nian motion of Hurst index H ∈ (1
2 , 1) and let x ∈ L1(R+) ∩ L

1
H (R+).

Consider the moving average process X defined by (1.40) and assume with-
out loss of generality that V ar(X(0)) = 1 (if not, it suffices to multiply x by
a constant).

(1) If d ≥ 2 and H ∈ (1
2 , 1−

1
2d) then

T−
1
2

{∫ Tt

0
(P (X(s))− E[P (X(s))])ds

}
t∈[0,1]

converges in distribution in C([0, 1]) to a standard Brownian motion
W , up to some multiplicative constant C1 which is explicit and depends
only on x, P and H.

(2) If H ∈ (1− 1
2d , 1) then

T d(1−H)−1

{∫ Tt

0
(P (X(s))− E[P (X(s))])ds

}
t∈[0,1]

converges in distribution in C([0, 1]) to a Hermite process of index d
and Hurst parameter 1− d(1−H), up to some multiplicative constant
C2 which is explicit and depends only on x, P and H.
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Theorem 1.4.8 (See Chapter 3, Theorem 2). Let Z be a Hermite process
of order q ≥ 2 and Hurst parameter H ∈ (1

2 , 1). Let x ∈ SL for some
L > 1 (where SL is the set of bounded functions l such that yLl(y) −→

|y|→∞
0). Consider the moving average process X defined by (1.40). Finally, let
P (x) =

∑N
n=0 anx

n be a real valued polynomial function. Then, one and
only one of the following two situations takes place as T →∞:

(1) If q is odd and if an 6= 0 for at least one odd n ∈ {1, . . . , N}, then

T−H0

{∫ Tt

0
(P (X(s))− E[P (X(s))])ds

}
t∈[0,1]

converges in distribution in C([0, 1]) to a fractional Brownian motion
of parameter H1 := H0, up to some multiplicative constant K1 which
is explicit and depends only on x, P, q and H (the constant possesses
an intricate expression and is explicitely computed in the paper).

(2) If q is even, or if q is odd and an = 0 for all odd n ∈ {1, . . . , N}, then

T 1−2H0

{∫ Tt

0
(P (X(s))− E[P (X(s))])ds

}
t∈[0,1]

converges in distribution in C([0, 1]) to a Rosenblatt process of Hurst
parameter H2 := 2H0−1, up to some multiplicative constant K2 which
is explicit and depends on x, P, q and H (similar remark as above).

The proof technique relies on a fine study of the chaotic decomposition
of the process X viewed as a multiple Wiener integral. As a by-product
of this analysis, we introduce the novel notation ⊗α(h1, . . . , hn) for multi
index contractions of symetric elements (hi)i∈N∗ of L2(Rq), and establishes
the following multi-index version of the product formula.

Lemma 1.4.9 (See Chapter 3, Lemma 5). Let n, q ≥ 2 be some integrers
and let hi ∈ L2

s(Rq) for i = 1, . . . , n. We have

n∏
k=1

Iq(hK) =
∑

α∈An,q

CαInq−2|α|(⊗α(h1, . . . , hn)),

where Iq is the q-th multiple Wiener integral with respect to the standard
Brownian motion, Cα is a constant which depends on α ∈ An,q and An,q
is a suitable set of multi-index α = (αi,j , 1 ≤ i < j ≤ n) which is made
explicit in Chapter 3.
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Finally, we apply our result to a generalized version of the stationary
Ornstein-Uhlenbeck process, i.e. the case where the driving function x can
be written as x : s → e−αsIR+(s) for some α > 0. This process, relatively
well studied in the case where the driving process is a fractional Brownian
motion (see [7] or the seminal paper [9]) had received a lot of attention
attention very recently, with papers initiating a study about parameter es-
timation (see [1], [44] or [60]). We also combine the well-known Birkhoff
ergodic theorem with a criterion established in [43] to prove a first order
ergodic theorem for the Hermite-Ornstein-Uhlenbeck process.

Remark 1.4.10. Shortly after the release of our paper, the paper [17]
was also released, independantly proving similar results in a more general
(though also more abstract) setting. This paper also contain a nice ap-
plication to homogeneization of differential equations, thus illustrating the
potential scope of this result.

1.4.3 Chapter 4

Work in progress currently titled ”fluctuation of the Hadwiger-Wills infor-
mation content”, written in collaboration with Ivan Nourdin.

In this study, as a departure from the aforementioned works, we no
longer investigate the asymptotic behaviour of a functional of a Gaussian
field. Rather, we focus on a log-concave functional which was introduced by
Hadwiger in [21] in a geometric context.

Definition 1.4.11 (Distance law). Let K be a convex body in Rd (i.e a
convex compact set) for some d ∈ N∗. The distance law with respect to K
is then the probability measure µK on Rd with density given by

fµK : x→ 1

W (K)
e−πd

2(x,K),

where

W (K) =

∫
Rd
e−πd

2(x,K)dx,

and d(·,K) is the Euclidian distance with respect to K.

Definition 1.4.12 (Information content). If X is a Rd valued random vari-
able with density fµK , its information content is the random variable

HµK = − log(fµK (X)).
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The notion of information content is of particular interest in information
theory. In this paper, we will study the information content of the distance
law with respect to a convex body K, that is, the random variable
HµK := πd2(X,K) + ln(W (K)) with X ∼ µK . The functional HK := HµK

is of particular interest for its connections with geometric invariants of the
body K. Indeed, there is a correspondance between HµK and the distribu-
tion of the intrinsic volumes of the body K through the Steiner formula.
This fact is in particular used in the paper [30] to establish concentration
bounds for the variance of the intrinsic volumes distribution of the convex
body K.

In our work, we establish a central limit theorem for the information
content of the distance law HµK (as the dimension d of the space goes to
infinity). The main result is a quantitative bound on the total variation
distance obtained with the use of Stein’s method. Although in some par-
ticular case (for example, when K is a cube), the central limit theorem can
be obtained through elementary computations, the general case requires a
more sophisticated methodology.

Theorem 1.4.13 (See Theorem 4.1.1). Consider a sequence (Kn)n≥1 of
non-empty convex bodies and suppose, for each n, that

• Kn ⊂ Rdn with dn →∞;

• the boundary ∂Kn of Kn is C2;

• Kn is symmetric in the sense that there exists y ∈ Kn such that x ∈
Kn ⇒ 2y − x ∈ Kn;

• the quantity λn1 := minx∈∂Kn λ
Kn
1 (x), where λKn1 (x) denotes the min-

imal principal curvature of ∂Kn at x (see Section 4.3.5), satisfies
0 < λn1 ≤ 1 (in particular, Kn is strictly convex) and 1

λn1
= O(dγn)

as n→∞, for some 1
4 > γ > 0 independent of n.

Then, there exists α, β > 0 independent of n such that

dTV

(
HKn − EHKn√

Var(HKn)
, N(0, 1)

)
= On→∞

(
d2γ−dn
n

)
(1.42)

as n→∞. In particular, HKn satisfies a central limit theorem:

HKn − EHKn√
Var(HKn)

→ N(0, 1) as n→∞.
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The proof of the above theorem is inspired by the paper [19], which es-
tablished, among other results, a central limit theorem for the projection of a
Gaussian vector over a convex cone using Stein’s method. Though, the non-
Gaussian character of our setting involves different and more complicated
techniques.

The proof of Theorem 1.4.13 relies on the following ingredients.

(1) We establish a generalization of the Malliavin-Stein formula (1.31) to
the case where the target random variable F can be expressed as a
functional of a continuous Gibbs measure. This formula applies in
particular to the functional HK .

Proposition 1.4.14 (See Proposition 4.4.1 and Remark 4.4.2). Let
d ∈ N∗ and let X be a random variable with values in Rd. Assume
further that X has a density satisfying

fX(x) =
1

K
e−Φ(x),

with Φ a twice differentiable, absolutely continuous function such that
e−Φ is integrable.

Let F = f(X)−µ
σ with σ2 = V ar(f(X)) > 0, µ = E[f(X)] and f ∈

C1(Rd,R) a function such that ∇f is absolutely continuous and

E[f(X)4 + ‖∇f(X)‖4] ≤ ∞.

Let X̂ be an independent copy of X, Ê the expectation with respect to
X̂ and E = E⊗ Ê. Finally, for all t ∈ R+, define

Xt = e−tX +
√

1− e−2tX̂.

Then, we have, for all γ > 0:

dTV (F,N) (1.43)

≤ 2

γσ2

√
V ar

(∫ ∞
0

e−t〈∇f(X), Ê[∇f(Xt)]〉dt
)

+
3

σ
sup
g∈G

∣∣∣∣∫ ∞
0

E

[
g

(
f(X)

σ

)〈
∇f(Xt), e

−t(X − 1

γ
∇φ(X))

− e−2t

√
1− e−2t

(X̂ − 1

γ
∇φ(X̂))

〉]
dt

∣∣∣∣ ,
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where N ∼ N (0, 1), dTV is the total variation distance and

G :=

{
g ∈ C1(R)|∀x ∈ R, |g(x)| ≤ |x|+

√
π

2
, |g′(x)| ≤ 2

}
.

(2) We then use the Brascamp-Lieb inequality from [4] to bound the vari-
ance in the expression (1.43).

(3) Since the Brascamp-Lieb inequality only applies to strongly log-concave
random variables (which is not the case of a random vector X follow-
ing the distance law as soon as K 6= {0}), we need to introduce a
modified version X̄ of X which is strongly log-concave, and such that

dTV (d2(X,Kn), d2(X̄,Kn)) −→
dn→∞

0.

We then prove that the log-concavity index of the random vector X̄ is
tied to the curvature properties of the boundary ∂K of K, hence the
condition in Theorem 1.4.13.
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[12] C. Döbler, M. Kasprzak and G. Peccati: Functional Conver-
gence of U-processes with Size-Dependent Kernels arXiv preprint
arXiv:1912.02705 (2019)

[13] R.L. Dobrushian and P. Major: Non-central limit theorems for non-
linear functional of Gaussian fields. Zeitschrift für Wahrscheinlichkeit-
stheorie und verwandte Gebiete 50 (1979), no. 1, pp. 27–52.

[14] V. Garino, I. Nourdin and P. Vallois: Asymptotic error distribution for
the Riemann approximation of integrals driven by fractional Brownian
motion. arXiv preprint arXiv:2005.02621 (2020).

[15] V. Garino, I. Nourdin, D. Nualart and M. Salamat: Limit theorems for
integral functionals of Hermite-driven processes. Bernoulli 27 (2021),
no. 3, pp. 1764–1788

[16] J. Gatheral, T. Jaisson and M. Rosenbaum: Volatility is rough. Quan-
titative finance 18 (2018), no. 6, pp. 933–949.

[17] R. Gehringer: Functional limit theorems for power series with rapid
decay of moving averages of Hermite processes. Stochastics and Dy-
namics 21 (2021), no. 7.

[18] L. Giraitis and D. Surgailis: CLT and other limit theorems for func-
tionals of Gaussian processes. Zeitschrift für Wahrscheinlichkeitstheo-
rie und verwandte Gebiete 70 (1985), no. 2, pp. 191–212.

[19] L. Goldstein, I. Nourdin and G. Peccati: Gaussian phase transitions
and conic intrinsic volumes: Steining the Steiner formula. Annals of
Applied Probability 27 (2017), no 1, pp. 1–47.

[20] M. Gubinelli: Controlling rough paths Journal of Functional Analysis
216 (2004) no 1, pp. 86–140

[21] H. Hadwiger: Das Will’sche Funktional M onatshefte für Mathematik
79 (1975), no 3, pp. 213–221

49



[22] Y. Hu, Y. Liu and D. Nualart: Rate of convergence and asymptotic
error distribution of Euler approximation schemes for fractional diffu-
sions. Ann. Appl. Probab. 26 (2016), no. 2, pp. 1147–1207.

[23] J. Huang, D. Nualart and L. Viitasaari: A central limit theorem for the
stochastic heat equation. Stochastic Processes and Their Applications
130 (2020), no. 12, pp. 7170–7184.

[24] H.E. Hurst: Long-term storage capacity of reservoirs. Transactions of
the American society of civil engineers 116 (1951), no. 1, pp. 770–779.

[25] J. Jacod and P. Protter: Asymptotic error distributions for the Euler
method for stochastic differential equations. Ann. Probab. 26 (1998),
no. 1, pp. 267–307.

[26] A. Jakubowski. The Skorokhod Space in functional convergence: a
short introduction, in Skorokhod Space: 50 years on,17-23 June 2007,
Kyiv, Ukraine, Abstracts, Part I, pp. 11-18.

[27] A.N. Kolmogorov: The Wiener spiral and some other interesting
curves in Hilbert space. Dokl. Akad. Nauk SSSR 26 (1940), no. 2,
pp. 115–118.

[28] G. Last: Stochastic analysis for Poisson point processes, Springer,
2016

[29] G. Last, G. Peccati and M. Schulte: Normal approximation on Pois-
son spaces: Mehlers formula, second order Poincaré inequalities and
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[59] M.S. Taqqu: Benôıt Mandelbrot and fractional Brownian motion. Sta-
tistical Science 28 (2013), no. 1, pp. 131–134.

[60] D. Tran (2018): Non-central limit theorems for quadratic functionals
of Hermite-driven long memory moving average processes, Stoch. Dyn,
8, no. 4.

[61] T. Thanh Diu Tran: Contributions to the asymptotic study of Her-
mite driven processes. eprint arXiv:1802.05626, Ph. D dissertation,
University of Luxembourg (2018)

[62] C.A. Tudor: Analysis of the Rosenblatt process ESAIM: Probability
and Statistics 12 (2008), pp. 230–257.

[63] A. Winkelbauer: Moments and absolute moments of the normal dis-
tribution. arXiv preprint arXiv:1209.4340 (2012).

[64] L.C. Young: An inequality of the Hölder type, connected with Stieltjes
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Chapter 2

Asymptotic error
distribution for the Riemann
approximation of integrals
driven by fractional
Brownian motion

Reproduction of the paper [14], currently in revision for the Electronic Jour-
nal of Probability, entitled ”Asymptotic error distribution for the Riemann
approximation of integrals driven by fractional Brownian motions” and writ-
ten in collaboration with Ivan Nourdin and Pierre Vallois

2.1 Introduction

Fractional Brownian motion was introduced by Kolmogorov [16] in the 40’s.
Mandelbrot and Van Ness [20] popularized it and gave some quantitative
properties. Since then, its range of applications has been steadily grow-
ing: for example, nowadays it can serve to recreate certain natural land-
scapes (such as submarine floors, see [29]) or to model rainfalls (see [35]).
It also often serves as a model in hydrology (e.g. [22]), telecommunications
(e.g. [17,21]), finance (e.g. [4]) or physics (e.g. [36]), to name but a few. Since
the explicit calculation of stochastic integrals driven by fractional Brownian
motion is impossible except in very particular cases, it is natural to try to
approximate these integrals by Riemann sums and to study their conver-
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gence.

In [32], Rootzén considered the Itô integral
∫ t

0 usdBs of an adapted inte-
grand u with respect to a standard Brownian motion B, and investigated the
asymptotic behavior of the approximation error

∫ t
0 usdBs −

∫ t
0 u

n
s dB when

un are approximating integrands (for instance, we can choose un so that∫ t
0 u

n
s dBs corresponds to the Riemann sum associated with

∫ t
0 usdBs). Us-

ing Itô stochastic calculus, Rootzén [32] exhibits after proper normalisation
a stable limit of the form

∫ t
0 asdWs, with W a Brownian motion independent

of B. As an illustration, he applied his abstract result to prove a func-
tional central limit-type theorem in the space DR([0, T ]) of càdlàg functions
equipped with the Skorohod topology, and with us = f(Bs) (provided f is
smooth and bounded enough):

√
n

∫ t

0
f(Bs)dBs −

bntc−1∑
k=0

f(B k
n

)(B k+1
n
−B k

n
)


t∈[0,T ]

stably−→
n→∞

(√
1

2

∫ t

0
f ′(Bs)dWs

)
t∈[0,T ]

. (2.1)

Rootzén’s work [32] paved the way for a new area of research on the
subject and related topics. For example, we can mention multidimensional
extensions (see [18]), generalizations to the case of random discretisation
times (see [9]), applications in finance (see [11]) and approximation schemes
of stochastic differential equations (SDEs) driven by semimartingales (see
[14]). The recent paper [1] provides an asymptotic expansion for the weak
discretization error of Itô’s integrals.

Approximation schemes for SDEs driven by a fractional Brownian mo-
tion has been addressed in [13, 23]. But Riemann sums approximations of
stochastic integrals with respect to fractional Browian motion, as done by
Rootzén [32] in the case of the standard Brownian motion, had not yet been
studied; the aim of this article is to fill this gap.

In the present paper, we deal with a fractional Brownian motion B of
Hurst index H ∈

[
1
2 , 1
)
. All the processes considered in this paper will

always be implicitly assumed to be measurable with respect to B. Also,
note that the range of H includes 1

2 (corresponding to Brownian motion),
which will allow us to compare our results with those of [32]. Our goal is
to analyze the fluctuations around the approximation by Riemann sums of
stochastic integrals with respect to a fractional Brownian motion. We will
set up an approach based on two main steps.
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• Step 1: weighted limit theorem. Let (un) be a sequence of processes of

the form un =
∑bn·c

k=1X
n
k for which a functional convergence un → w

holds. We extend this convergence to

bn·c∑
k=1

h k
n
Xn
k −→

∫ ·
0
hsdws

for a given class of appropriate random processes h, and where the
nature of the integral with respect to w (Itô, Young, etc.) is chosen
according to the features of w. When the sequence (Xn

k ) is built from
the increments of a fractional Brownian motion, this type of questions
has received some important contributions in recent years, see e.g. [19]
and the references therein. We also mention [13], which was actually
our main inspiration for this step.

• Step 2: Taylor expansion. To perform Step 1, we assume that our
integrand u is ‘controlled’ by the increments of the integrator B, in the
sense that there is a process h and a remainder r such that ut = us +
hs(Bt−Bs) + rs,t for any t ≥ s. These types of Taylor-like expansions
are strongly related with the notion of controlled paths studied in the
rough path theory, see [12]. We will characterize precisely the set of
such processes below.

The statement of the two main Theorems 2.1.2 and 2.1.3 require the
introduction of notations:

(i) a d-dimensional fractional Brownian motion B = (B1, . . . , Bd) of
Hurst index H ∈

[
1
2 , 1
)

(as already mentioned, all the processes considered
in this paper are implicitly assumed to be measurable with respect to B);

(ii) an m-dimensional process u, with the property that the stochastic
integrals

∫ t
0 u

i
sdB

j
s , 1 ≤ i ≤ m, 1 ≤ j ≤ d, are well-defined. At this stage,

we note that the integrals
∫
uidBj must be understood in the Young sense

when H > 1
2 and in the Itô sense when H = 1

2 . Precise statements will be
given later on.

(iii) our quantity of interest: for t ∈ [0, T ], 1 ≤ i ≤ m, 1 ≤ j ≤ d,

Mn,i,j
t = n2H−1

(∫ t

0
uisdB

j
s −

ntn∑
k=0

uik
n

(
Bj
k+1
n
∧t
−Bj

k
n

))
(2.2)

= n2H−1

∫ t

0
(uis − uisn)dBj

s .
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In (2.2) and in all what follows, we write tn = bntc
n when t ∈ R+ and

n ∈ N \ {0}.
(iv) the correlation function: for all t ≥ s and all y ≥ x,

rH(s, t, x, y) = E
[
(B1

t −B1
s )(B1

y −B1
x)
]

=
1

2

(
|t− x|2H + |s− y|2H − |s− x|2H − |t− y|2H

)
;

(v) the rate function at zero

κH(v) :=


√
v if H ∈ [1

2 ,
3
4)√

v ln 1
v if H = 3

4

v2−2H if H ∈ (3
4 , 1)

, v ∈ (0, 1];

(vi) the rate function at infinity

νH(n) :=


√
n if H ∈ [1

2 ,
3
4)√

n/ lnn if H = 3
4

n2−2H if H ∈ (3
4 , 1)

, n ≥ 1.

In addition, we assume that the process u considered in point (ii) satisfies
a structural condition, that we describe now. Set

f1(s, t, x, y) = |t− s|2H−1|x− y|2H−1rH(s, t, x, y);

f2(s, t, x, y) = f1(s, t, x, y)κH(|t− s|)κH(|x− y|).

We introduce the two following spaces C1 and C2 of pseudo-controlled paths.

Definition 2.1.1. Fix a ∈ {1, 2}. We say that the pair (u, P ) belongs to Ca
if:

• P = (P i,jt )t∈[0,T ],1≤i≤m,1≤j≤d is an (m× d)-dimensional process ;

•
∫ t
s u

i
rdB

j
r is well-defined for any 1 ≤ i ≤ m and 1 ≤ j ≤ d;

•
E
[
Li,js,t L

i,j
x,y

]
= o(fa(s, t, x, y)) (2.3)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ d, uniformly on (s, t, x, y) ∈ [0, T ]4 such
that s ≤ t and x ≤ y as |t− s|+ |x− y| → 0, where

Li,js,t =

∫ t

s

{
uir − uis −

d∑
k=1

P i,ks (Bk
r −Bk

s )

}
dBj

r . (2.4)

57



We note the obvious inclusion C2 ⊂ C1. We give two examples to un-
derstand Definition 2.1.1. For the first one, we consider the case where each
component ui of u is a “fractional semimartingale”, namely

uit = ui0 +
d∑
j=1

∫ t

0
ai,js dB

j
s +

∫ t

0
bisds, t ∈ [0, T ].

Then, under certain assumptions on a and b (see Section 2.3.1 for precise
statements), the pair (u, a) belongs to C2 with a = P .

For the second one, we assume that m = d = 1 (for simplicity) and
that u has the form of a multiple Wiener-Itô integral of order q ≥ 1; then,
with Ps = Dsus (where D indicates the Malliavin derivative) and under
some conditions, the pair (u, P ) belongs to C2, see Section 2.3.2 for precise
statements.

We can now state our two main results. The framework of Theorem 2.1.2
is general (assuming that the pair (u, P ) belongs to C1 and satisfies other
technical conditions) and concerns the convergence of Mn,i,j as n → ∞ in
probability, towards an identified limit. The situation where H > 1

2 differs
significantly from H = 1

2 , because in this latter case Mn,i,j converges in law
(but not in probability, because of the creation of an independent alea, see
e.g. (2.1)).

Theorem 2.1.2. (First order convergence) Fix H ∈ (1
2 , 1) and let (u, P ) ∈

C1 be such that P is a.s. continuous and satisfies E
[
‖P‖2+γ

∞
]
< +∞ for

some γ > 0. (Here and throughout the paper, we write ‖ · ‖∞ to indicate the
uniform norm over [0, T ].) Then, uniformly on [0, T ] in probability,{

Mn,i,j
·

}
1≤i≤m,1≤j≤d −→n→∞

{
1

2

∫ ·
0
P i,js ds

}
1≤i≤m,1≤j≤d

. (2.5)

Moreover, this convergence also holds in L2(Ω) for any fixed t ∈ [0, T ].

Theorem 2.1.2 give sufficient conditions for (2.5) to take place. These
conditions are however not necessary: we develop in Section 2.3.4 an exam-
ple where the assumptions of Theorem 2.1.2 are not satisfied whereas the
convergence (2.5) holds.

Let us now study the fluctuations of Mn,i,j
· around its limit.

Theorem 2.1.3 (Second order convergence). Fix H ∈ [1
2 , 1), and let Z =

(Zk,j)1≤k,j≤d (resp. W = (W k,j)1≤k,j≤d) denote the matrix-valued Rosen-
blatt process measurable with respect to B (resp. the matrix-valued Brownian
motion independent from B) constructed in Section 2.2.5.
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(A) [non-Brownian case H > 1
2 ] Assume (u, P ) ∈ C2, u is α-Hölder

continuous for some α > 1 − H and P is β-Hölder continuous over [0, T ]
for some β > 1

2 .

• If 1
2 < H ≤ 3

4 then, stably in CRm×d([0, T ]),{
νH(n)

(
Mn,i,j
· − 1

2

∫ ·
0
P i,js ds

)}
1≤i≤m,1≤j≤d

−→
n→∞

{
d∑

k=1

∫ ·
0
P i,ks dW k,j

s

}
1≤i≤m,1≤j≤d

,

where the integrals in the right-hand side are understood as Wiener
integrals.

• If 3
4 < H < 1, assume in addition that

∑d
j=1

∑m
i=1 E‖P i,j‖

2+γ
β < ∞

for some γ > 0 where, here and throughout the paper, ‖ · ‖β indicates
the usual β-Hölder seminorm (see also (2.6)). Then, uniformly on
[0, T ] in probability,{

νH(n)

(
Mn,i,j
· − 1

2

∫ ·
0
P i,js ds

)}
1≤i≤m,1≤j≤d

−→
n→∞

{
d∑

k=1

∫ ·
0
P i,ks dZk,js

}
1≤i≤m,1≤j≤d

,

where the integrals in the right-hand side are understood as Young
integrals. Moreover, this convergence also holds in L2(Ω) for any fixed
t ∈ [0, T ].

(B) [Brownian case H = 1
2 ] Assume that (u, P ) ∈ C2, that u and P

are progressively measurable, and that P is a.s. piecewise continuous with

E
[
‖P‖2+γ

∞
]
< +∞ for some γ > 0. Then, stably in CRm×d([0, T ]),

{
νH(n)Mn,i,j

·
}

1≤i≤m,1≤j≤d −→n→∞

{
d∑

k=1

∫ ·
0
P i,ks dW k,j

s

}
1≤i≤m,1≤j≤d

,

where the integrals in the right-hand side are understood as Wiener integrals.

In Theorem 2.1.3, we could have considered non-uniform or even random
subdivisions (like done in [9] in the semimartingale context) but this would
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have led to significant technical complications due to the non-stationarity
of the resulting sequence of increments. Similarly, we could also have re-
place the fractional Brownian motion by a general Gaussian processes with
a covariance function assumed to behave locally as that of the fractional
Brownian motion.

The rest of the paper is organized as follows. Section 2 contains some
reminders and useful results about Malliavin calculus and fractional integra-
tion. In Section 3, we discuss in details some examples. Finally, the proofs
of the main results are given in Section 4.

2.2 Preliminaries

2.2.1 Notation

In the sequel, N (resp N∗) will denote the space of nonegative (resp strictly
positive) integers, Ck([0, T ]) (resp Ckb ([0, T ])) the space of k-times continu-
ously differentiable functions (resp k-times continuously differentiable with
bounded derivatives) over [0, T ], and Cθ([0, T ]) the space of θ-Hölder con-
tinuous functions (with θ ∈ (0, 1)) endowed with the θ-Hölder seminorm,
i.e

‖f‖θ = sup
0≤s<t≤T

|f(t)− f(s)|
|t− s|θ

. (2.6)

We also consider the space CRp([0, T ]) of functions [0, T ]→ Rp endowed with
the norm ‖ · ‖∞ of uniform convergence over [0, T ], the space DRp([0, T ]) of
càdlàg functions endowed with the Skorokod topology J1 and, for p > 0, the
space Lp(Ω) of random variables endowed with the Lp(Ω)-norm ‖ · ‖p.

2.2.2 Reminders of Malliavin calculus

This section is a condensed summary of some notions presented in [26,27,30].
It is the occasion to fix the notation used in the paper. For more details or
missing proofs, we refer the reader to the aforementioned references.

Starting from now, we fix once for all an horizon time T > 0 and a

complete filtered probability space
(

Ω, (Ft)t∈[0,T ] ,F = FT ,P
)

. We consider

a d-dimensional fractional Brownian motion (Bt)t∈[0,T ] = (B1
t , . . . , B

d
t )t∈[0,T ]

defined on Ω. We assume that the filtration (Ft)t∈[0,T ] is generated by B.
Let B be the Gaussian space spanned by the (one-dimensional) fractional

Brownian motion B1. Let E be the linear space of step functions over [0, T ]
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and let H be the Hilbert space obtained as the completion of E with respect
to the inner product induced from B1:

〈I[0,t], I[0,s]〉H = E[B1
tB

1
s ], 0 ≤ s, t ≤ T.

The linear map defined on E by Φ : I[0,t] → B1
t is an isometry from (E , 〈., .〉H)

to (B,E[., .]), and can thus be extended to an isometry from the whole space
H.

For H = 1
2 , we have H = L2([0, T ]). When H > 1

2 , it is well known that
H contains distributions, and therefore is not a subspace of some convenient
functional space, see [30]. This is why we introduce the subspace |H| of H,
which is defined as the set of measurable functions f : [0, T ]→ R such that∫

[0,T ]2
|f(x)||f(y)|µH(dxdy) < +∞,

with
µH(dxdy) = H(2H − 1)|x− y|2H−2dxdy.

From [30], we have that (|H|, ‖ · ‖|H|) is a Banach space with respect to the
norm ‖ · ‖|H|, defined as

‖f‖2|H| =
∫

[0,T ]2
|f(x)||f(y)|µH(dxdy).

We observe that ‖f‖|H| ≤ ‖f‖H for all f ∈ |H|.
Still for H > 1

2 , we define |H|⊗p, p ∈ N∗, to be the Banach space of
measurable functions f : [0, T ]p → R such that∫

[0,T ]2p
|f(x1, . . . , xp)||f(y1, . . . , yp)|

p∏
i=1

µH(dxidyi) < +∞,

and we observe that |H|⊗p ⊂ H⊗p.
Let n ∈ N∗ and let Sn be the space of infinitely differentiable func-

tions f : Rnd → R such that f and all its derivatives have at most poly-
nomial growth. We consider the Schwartz space C composed of all cylin-
drical random variables, that is, of all random variables F of the form
F = f(Bt1 , . . . , Btn), with n ∈ N∗, f ∈ Sn, and t1, . . . , tn ∈ [0, T ].

The pth-order Malliavin derivative of F ∈ C is the element

DpF = {Dp,j1,...,jp
l1,...,lp

F : l1, . . . , lp ∈ [0, T ]}1≤j1,...,jp≤d
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belonging to ∩r≥1L
r(Ω, (H⊗p)⊗dp) defined as

D
p,j1,...,jp
l1,...,lp

F =

n∑
k1,...,kp=1

∂pf

∂xk1,j1 . . . ∂xkp,jp
(Bt1 , . . . , Btn)

p∏
i=1

I[0,tki ](li).

Since these operators are closable in Lr(Ω, (H⊗p)⊗dp) for all r ≥ 1, we
can consider the Sobolev space Dp,r as the closure of C with respect to the
norm

‖F‖rDp,r = E[|F |r] +

p∑
m=1

d∑
j1,...,jm=1

E
[
‖Dm,j1,...,jmF‖rH⊗m

]
.

In the same way, it is possible to define the Malliavin derivative for step

processes u of the form u =
n−1∑
i=0

FiI[ti,ti+1] (where n ∈ N∗, t0 = 0, t1, . . . , tn ∈

[0, T ] and F1, . . . , Fn ∈ C), and to consider the associated spaces Dp,r(H).
In order to only deal with functions (and not distributions), we consider the
subspace Dp,r(|H|) of Dp,r(H), which is by definition the set of u ∈ Dp,r(H)
that are such that u ∈ |H| a.s., D1u ∈ (|H|⊗2)⊗d a.s., . . ., Dpu ∈ (|H|⊗p+1)⊗dp

a.s.. This subspace is endowed with the norm

‖u‖rDp,r(|H|) = E‖u‖r|H| +
p∑

m=1

d∑
j1,...,jm=1

E
[
‖Dm,j1,...,jmu‖r|H|⊗m+1

]
.

Let u ∈ L2(Ω,H⊗d) be such that |E[〈D1F, u〉H⊗d ]| ≤ Ku

√
E[F 2] for all

F ∈ C, for some constant Ku depending only on u. We then say that u
belongs to the domain Dom(δ1), and we define the Skorohod integral δ1 as
the adjoint of D1, that is, δ1(u) is the uniquely determined random variable
in L2(Ω) verifying the duality relationship:

E[〈D1F, u〉H⊗d ] = E[Fδ1(u)] for all F ∈ D1,2. (2.7)

In the same way, if u is an element of L2(Ω, (H⊗p)⊗dp) (p ≥ 2) we de-
fine δp = (δp,j1,...,jp)1≤j1,...,jp≤d as the adjoint of Dp = (Dp,j1,...,jp)1≤j1,...,jp≤d
through the identity:

E[〈DpF, u〉(H⊗p)⊗dp ] = E[Fδp(u)] for all F ∈ Dp,2.

We can show that Dp,2(H) ⊂ Dom(δp).
The following two results will be also useful. The first one is a straightfor-

ward consequence of the Hardy-Littlewood-Sobolev inequality (see [3, The-
orem 6]), whereas the second one corresponds to [27, Proposition 1.3.1].
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Proposition 2.2.1. 1. Fix an integer k ≥ 1. There exists M > 0 such
that, for all u ∈ L2(Ω, L2([0, T ]k)),

E
[
‖u‖2|H|⊗k

]
≤ME

[
‖u‖2L2([0,T ]k)

]
. (2.8)

2. For all u, v ∈ D1,2(H) and j ∈ {1, . . . , d}, we have

E[δ1,j(u)δ1,j(v)] = E [〈u, v〉H] + E
[
〈D1,j
· u∗, D

1,j
∗ v·〉H⊗H

]
. (2.9)

2.2.3 Multiple Wiener-Itô integrals

Throughout all this section, we assume for simplicity that the underlying
fractional Brownian motion is one-dimensional, i.e. that d = 1. We write
Dk (resp. δk) instead of Dk,1,...,1 (resp. δk,1,...,1).

When the process u is deterministic in H⊗k, its Skorohod integral δk(u)
is called the kth-order Wiener-Itô integral of u. If ũ denotes the symmetriza-
tion of u (see the footnote 1), we have δk(u) = δk(ũ); we can therefore assume
without loss of generality that u is symmetric. In what follows, we denote
by H�k the set of symmetric elements in H⊗k.

The following statement summarizes what is needed about multiple Wiener-
Itô integrals in this paper. We refer e.g.to [26] for the proofs.

Proposition 2.2.2. 1. (Isometry) For all integers k, l ≥ 1, all f ∈ H�k
and all g ∈ H�l,

E[δk(f)δl(g)] = k!〈f, g〉H⊗kI{k=l}.

2. (Hypercontractivity) For all r ≥ 2 and all integer k ≥ 1, there exists
Ck,r > 0 such that, for all f ∈ H�k,

E
[
|δk(f)|r

]
≤ Ck,rE[|δk(f)|2]

r
2 .

3. (Malliavin derivative) If us = δk(f(., s)) with f ∈ H⊗(k+1) symmetric
in the k first variables, then u ∈ D1,2(H), with

Dsut = kδk−1(f(., t, s)).

1If {ej}j≥1 denotes an orthonormal basis of H and if u is given by u =∑
j1,...,jk≥1 aj1,...,jkej1 ⊗ . . .⊗ ejk , then ũ = 1

k!

∑
σ

∑
j1,...,jk≥1 aj1,...,jkejσ(1) ⊗ . . .⊗ ejσ(k) ,

where the first sum runs over all permutation σ of {1, . . . , k}.
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4. (Product formula) Fix f ∈ H�k and g ∈ H�l and, as usual, let ⊗r
(resp. ⊗̃r) denote the contraction operator (resp. the symmetrization
of the contraction operator) of order r, see [26, Appendix B] for a
precise definition. Then,

δk(f)δl(g) =
k∧l∑
r=0

r!

(
k

r

)(
l

r

)
fδk+l−2r(f⊗̃rg).

2.2.4 Fractional Integration

This section gives a brief summary of the useful properties related to the
Young integral when the Hurst index H is strictly bigger than 1

2 , see [37,39]
for more details.

The following result extends the Riemann integral to a larger class of
integrands and integrators. For p > 0, we use the classical notations
Cp−var([0, T ]) to denote the space of functions f : [0, T ] → R with finite
p-variations. It is well known that θ-Hölder continuous functions have 1

θ -
finite variations.

Proposition 2.2.3. Suppose p, q > 0 are such that 1
p + 1

q > 1. If f ∈
Cp−var([0, T ]) and g ∈ Cq−var([0, T ]) (with g continuous), then the limit of
Riemann sums

n−1∑
k=0

f

(
kT

n

)(
g

((
(k + 1)T

n
∨ a
)
∧ b
)
− g

((
kT

n
∨ a
)
∧ b
))

exists for all 0 ≤ a < b ≤ T , and is called the Young integral
∫ b
a fdg of f

against g. It is compatible in the sense that, if 0 ≤ a < c < d < b ≤ T , then∫ d
c fdg =

∫ b
a fI[c,d]dg. Moreover, it satisfies the chain rule and the change

of variable formula.
Moreover, if f (resp g) are 1

p -Hölder continuous (resp 1
q -Hölder continuous),

we have the Young-Loeve estimates:∣∣∣∣∫ b

a
fdg − f(a)(g(b)− g(a))

∣∣∣∣ ≤ cµ,β‖f‖ 1
p
‖g‖ 1

q
|b− a|

1
p

+ 1
q ,∣∣∣∣∫ b

a
fdg

∣∣∣∣ ≤ cµ,β (‖f‖∞‖g‖ 1
q
|b− a|

1
q + ‖f‖ 1

p
‖g‖ 1

q
|b− a|

1
p

+ 1
q

)
,

where cµ,β is a constant depending only on p and q.
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When f : [0, T ]2 → R is such that f(t, t) = 0, we write f ∈ Cκ([0, T ]2) if

‖f‖κ := sup
0≤s 6=t≤T

|f(s, t)|
|t− s|κ

<∞. (2.10)

Recall that, for each i, the fractional Brownian motion Bi has a.s. κ-
Hölder continuous paths for every κ < H. Therefore, if the process u has
a.s. finite p-variations for some 1

p > 1−H, it is an immediate consequence of

Proposition 2.2.3 that the Young integral
∫ ·

0 udB
i is well-defined pathwise

on [0, T ]; this makes the Young integral a suitable integral when H > 1
2 . In

contrast, it is not a suitable integral when H = 1
2 because, for instance, we

cannot deal with integrals as simple as
∫
BjdBi.

Another way to define the Young integral is to make use of the forward
integration à la Russo-Vallois [33]. Their forward integral is defined, for
fixed j, as ∫ ·

0
usdB

j
s = lim

ε→0

1

ε

∫ ·
0
us

(
Bj
s+ε∧· −Bj

s

)
ds, (2.11)

provided the limit exists uniformly in probability over the interval [0, T ].
When H > 1

2 and u ∈ Cθ([0, T ]) with θ > 1−H, then the limit (2.11) exists
and coincides with the Young integral. When H = 1

2 and u is progressively
measurable, then the limit (2.11) exists and coincides with the Itô integral.

In [27], the following relationship between the forward and Skorohod
integrals is shown.

Proposition 2.2.4. Assume that H > 1
2 , and let u ∈ D1,2(|H|) be a scalar

process. In addition, suppose that u verifies the following condition:

∀j ∈ {1, . . . , d},
∫ T

0

∫ T

0
|D1,j

s ur|µH(dsdr) <∞ a.s.. (2.12)

Then, the limit (2.11) exists and verifies the relation∫ T

0
usdB

j
s = δ1,j(u) +

∫ T

0

∫ T

0
D1,j
s urµH(dsdr), (2.13)

where the integral in the left-hand side is in the Russo-Vallois sense.

2.2.5 Matrix-valued Brownian motion and matrix-valued Rosen-
blatt process

We introduce some probabilistic objects, taken from [13, Sections 2.4 and
2.5] when H > 1

2 , which we complete when H = 1
2 . For more information

about the Rosenblatt process, one can e.g. refer to [34].
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(a) Assume first that H ∈
[

1
2 ,

3
4

]
. For H 6∈ {1

2 ,
3
4}, define

qH =
∑
p∈Z

T 4H

∫ 1

0

∫ p+1

p

∫ t

0

∫ s

p
µH(dvdu)µH(dsdt)

rH =
∑
p∈Z

T 4H

∫ 1

0

∫ p+1

p

∫ 1

t

∫ s

p
µH(dvdu)µH(dsdt),

and let q 1
2

= 1
2 , r 1

2
= 0 and q 3

4
= r 3

4
= 1

2 . We have qH ≥ rH by [13,

Lemma 2.1]. Let {W 0,i,j}1≤i≤j≤d and {W 1,i,j}1≤i,j≤d be two independent
families of independent standard Brownian motions, both independent of
our underlying process B. We set W 0,i,j = W 0,j,i for j < i. The matrix-
valued Brownian motion (W i,j)1≤i,j≤d is then defined as follows:

W i,j =

{ √
qH + rHW

1,i,j if i = j√
qH − rHW 1,i,j + cH

√
rHW

0,i,j if i 6= j
, (2.14)

with the convention that c 1
2

= 1.

(b) Assume now that H ∈ (3
4 , 1). For any fixed t ∈ [0, T ], the sequence

of (d× d)-matrix-valued processesn bntc−1∑
k=0

δ1,i

((
Bj
. −B

j
k
n

)
I[ kn , k+1

n ](.)

)
1≤i,j≤d

converges for all fixed t ∈ [0, T ] to some Zt. The continuous version of
the process (Zt)t∈[0,T ] is called the matrix-valued Rosenblatt proces of order
H. Each component of this matrix-valued process is α-Hölder continuous
for every α < 2H − 1. Moreover, the diagonals elements are independent
Rosenblatt processes with selfsimilarity index 2H − 1.

2.3 Examples

We start by defining the notion of controlled process. This notion plays a
key role because such a process verifies the conditions of Definition 2.1.1. We
then give two classes of examples: fractional semimartingales (i.e. processes
with decomposition (2.18)) and multiple Wiener-Itô integrals.
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2.3.1 Controlled process

Throughout all this section, we assume H > 1
2 .

Recall that Cκ([0, T ]) denotes the set of κ-Hölder continuous functions f :
[0, T ]→ R, whereas Cκ([0, T ]2) denotes the set of κ-Hölder continuous func-
tions f : [0, T ]2 → R such that f(t, t) = 0 for all t, see (2.10). The class
of controlled path, introduced first by Gubinelli in [12], is then defined as
follows.

Definition 2.3.1 (Controlled process). Consider κ ∈ (1
2 , 1). The set D2κ([0, T ])

is defined as the set of pairs (u, P ) with u (resp. P ) an m-dimensional pro-
cess (resp. (m × d)-dimensional process) belonging a.s. to Cκ([0, T ]) and
such that the m-dimensional remainder process R defined by

Ris,t = uit − uis −
d∑
j=1

P i,js (Bj
t −Bj

s), 0 ≤ s ≤ t ≤ T, (2.15)

belongs a.s. to C2κ([0, T ]2).

For all (u, P ) ∈ D2κ([0, T ]), for all s, t ∈ [0, T ] and all j ∈ {1, . . . , d},
Theorem 4.10 in [8] implies:

|Li,js,t| ≤ C (‖B‖κ‖R‖2κ + ‖P‖κ‖B‖2κ) |t− s|3κ (2.16)

where B is defined as Bk,js,t =
∫ t
s (Bk

l −Bk
s )dBj

l , L is given by Li,js,t =
∫ t
s R

i
s,rdB

j
r

(or equivalently by (2.4)), and C is a constant depending only on κ and T .
The following proposition gives an explicit link between the notion of con-
trolled path à la Gubinelli [12] (Definition 2.3.1) and our notion of pseudo-
controlled path (Definition 2.1.1).

Proposition 2.3.2. Assume that κ >
2(H∧ 3

4
)

3 + 1
6 , (u, P ) ∈ D2κ([0, T ]) and,

for some θ > 0 and all j ∈ {1, · · · , d},

m∑
i=1

E

‖Ri‖2+θ
2κ +

d∑
j=1

‖P i,j‖2+θ
κ

 <∞, (2.17)

with R defined by (2.15). Then (u, P ) ∈ C2.

Proof. The proof is a straightforward combination of the identity (2.16), the
Hölder inequality and the forthcoming Lemmas 2.4.1 and 2.4.2. �

As a consequence of Theorem 2.1.3 and Proposition 2.3.2, we deduce the
following statement.
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Proposition 2.3.3. Fix H > 1
2 , and let

uit = ui0 +
d∑
j=1

∫ t

0
ai,js dB

j
s +

∫ t

0
bisds, t ∈ [0, T ], i ∈ {1, . . . ,m}, (2.18)

where the ai,j are a.s. κ-Hölder continuous for some κ >
2(H∧ 3

4
)

3 + 1
6 and

the bj are β-Hölder continuous for some β > H − 1
2 . Assume moreover that

there exists θ > 0 such that

d∑
j=1

E

[
|bj0|

2+θ + ‖bj‖2+θ
β +

m∑
i=1

‖ai,j‖2+θ
κ

]
<∞.

Then, with Mn,i,j defined by (2.2) and W and Z the matrix-valued processes
of Section 2.2.5,

• if H ≤ 3
4 , then, stably in CRm×d([0, T ]),{

νH(n)

(
Mn,i,j
· − 1

2

∫ ·
0
ai,js ds

)}
i,j

−→
n→∞

{
d∑

k=1

∫ ·
0
ai,ks dW k,j

s

}
i,j

.

• if H > 3
4 , then, uniformly on [0, T ] in probability,{

νH(n)

(
Mn,i,j
· − 1

2

∫ ·
0
ai,js ds

)}
i,j

−→
n→∞

{
d∑

k=1

∫ ·
0
ai,ks dZk,js +

1

2

∫ ·
0
bisdB

j
s

}
i,j

.

Proof. Set vit = uit −
∫ t

0 b
i
sds = ui0 +

∑d
j=1

∫ t
0 a

i,j
s dB

j
s . For any i, j, we have

νH(n)

(
Mn,i,j
· − 1

2

∫ ·
0
ai,js ds

)
= An,i,j· + Cn,i,j·

with, for t ∈ [0, T ],

An,i,jt = νH(n)

{
n2H−1

(∫ t

0
visdB

j
s −

ntn∑
k=0

vik
n

(
Bj
k+1
n
∧t
−Bj

k
n

))

−1

2

∫ t

0
ai,js ds

}
,

Cn,i,jt = νH(n)n2H−1

(∫ t

0

∫ s

0
birdrdB

j
s −

ntn∑
k=0

∫ k
n

0
birdr

(
Bj
k+1
n
∧t
−Bj

k
n

))
.
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We will show that (v, a) ∈ C2 and we will deduce from Theorem 2.1.3
the convergence of (An,i,j)i,j . Then we will prove that (Cn,i,j)i,j converges
either to 0 in Cm×d([0, T ]) (when H ≤ 3

4) or uniformly in probability to
1
2

∫ ·
0 bsdBs (when H > 3

4). The continuous mapping theorem will then allow
to conclude.

We start by showing that (v, a) ∈ C2. For 0 ≤ s ≤ t ≤ T , set

Ris,t = vit − vis −
d∑
j=1

ai,js (Bj
t −Bj

s) =

d∑
j=1

∫ t

s
(ai,jr − ai,js )dBj

r .

Using the Young-Loeve inequality (Proposition 2.2.3), we have

|Ris,t| ≤ |t− s|2κ × cκ
d∑
j=1

‖ai,j‖κ‖Bj‖κ,

‖vi‖κ ≤
d∑
j=1

(
‖ai,j‖∞‖Bj‖κ + cκ,κ‖ai,j‖κ‖Bj‖κT κ

)
≤

d∑
j=1

(
(1 + cκ,κ)T κ‖ai,j‖κ + |ai,j0 |

)
‖Bj‖κ,

where the last inequality comes from the fact that ‖ai,j‖∞ ≤ |ai,j0 |+T κ‖ai,j‖κ.
Thus, v verifies the condition of Proposition 2.3.2, with P i,j = ai,j . We de-
duce that (v, a) ∈ C2, and we can apply Theorem 2.1.3 to (v, a), after
observing that v is α-Hölder continuous for all α = κ > 1

2 > 1 − H. This
shows the convergence of (An,i,j)i,j .

We now study the convergence of Cn,i,j . Set sn = bnsc/n. We have

Cn,i,jt = νH(n)n2H−1

(∫ t

0

∫ s

0
birdrdB

j
s −

∫ t

0

∫ sn

0
birdrdB

j
s

)
= νH(n)n2H−1

(∫ t

0

∫ s

sn

(
bir − bisn

)
drdBj

s

+

ntn∑
k=0

bik
n

∫ k+1
n
∧t

k
n

(s− sn)dBj
s

)
=: Rn,i,jt +Dn,i,j

t .

Lemma 2.4.11 provides the desired convergence for Dn,i,j . It remains to
show that Rn,i,j is negligible. We have

Rn,i,jt = νH(n)n2H−1
ntn∑
k=0

∫ k+1
n
∧t

k
n

(∫ s

k
n

(bir − bik
n

)dr

)
dBj

s .
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Fix ε > 0 small enough. We can write, using the Young-Loeve inequalities
(Proposition 2.2.3) and denoting by c a constant independent of n (whose
value can change from line to another)∣∣∣∣∣

∫ k+1
n
∧t

k
n

(∫ s

k
n

(bir − bik
n

)dr

)
dBj

s

∣∣∣∣∣
≤ c n−H+ε

∥∥∥∥∥
∫ ·
k
n

(bir − bik
n

)dr

∥∥∥∥∥
∞,
[
k
n
, k+1
n
∧t
] ‖Bj‖H−ε

+ c n−1−H+ε

∥∥∥∥∥
∫ ·
k
n

(bir − bik
n

)dr

∥∥∥∥∥
1,
[
k
n
, k+1
n
∧t
] ‖Bj‖H−ε

≤ c n−1−H−β+ε ‖bi‖β ‖Bj‖H−ε.

We deduce that ∣∣Rn,i,jt

∣∣ ≤ c νH(n)nH−1−β+ε ‖bi‖β ‖Bj‖H−ε,

and then E
[
supt∈[0,T ](R

n,i,j
t )2

]
→ 0 (chosing ε small enough), proving the

convergence of this remainder to zero uniformly in probability. This con-
cludes the proof of Proposition 2.3.3. �

We now state a corollary of Proposition 2.3.3, which extends to the case
H > 1

2 a similar statement proved in [18] when H = 1
2 .

Corollary 2.3.4. Fix H > 1
2 , and let F : Rd → Rm be a C2-function

satisfying the following growth condition: for some K1,K2 > 0 and some
0 < γ < 2, one has, for all x ∈ Rd,

max
i∈{1,...,m}

max
j,k∈{1,...,d}

max

{
|F i(x)|,

∣∣∣∣∂F i∂xj
(x)

∣∣∣∣ , ∣∣∣∣ ∂2F i

∂xk∂xj

∣∣∣∣} ≤ K1e
K2‖x‖γRd .

(2.19)
Let ut = F (Bt). We have, with W and Z the matrix-valued processes of
Section 2.2.5:

• if H ≤ 3
4 , then, stably in CRm×d([0, T ]),

{
νH(n)

(
Mn,i,j
· − 1

2

∫ ·
0

∂F i

∂xj
(Bs)ds

)}
i,j

−→
n→∞

{
d∑

k=1

∫ .

0

∂F i

∂xk
(Bs)dW

k,j
s

}
i,j

;
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• if H > 3
4 , then, uniformly on [0, T ] in probability,

{
νH(n)

(
Mn,i,j
· − 1

2

∫ ·
0

∂F i

∂xj
(Bs)ds

)}
i,j

−→
n→∞

{
d∑

k=1

∫ .

0

∂F i

∂xk
(Bs)dZ

k,j
s

}
i,j

.

Proof. The change of variable formula for the Young integral leads to

uit = F i(0) +

d∑
j=1

∫ t

0

∂F i

∂xj
(Bs)dB

j
s , 1 ≤ i ≤ m.

Then, u is of the type (2.18), with ai,j· = ∂F i

∂xj
(B·) and bi ≡ 0. The regularity

condition (2.19) implies that ai,j is α-Hölder continous for every α < H and
that

‖ai,j‖α ≤ K1

d∏
j=1

eK2T γ(‖Bj‖α)γ
d∑

k=1

‖Bk‖α.

Lemma 2.4.1 then guarantees the existence of moments of any order for this
random variable, so that the desired conclusion follows from Proposition
2.3.3. �

2.3.2 Multiple Wiener-Itô integrals

Assume H > 1
2 and, for simplicity, d = m = 1. Let k ≥ 1 be an integer

and let fk : [0, T ]k+1 → R be measurable and symmetric in the first k
variables (this latter condition is of course immaterial when k = 1). Assume
finally that fk(x1, . . . , xk, s) = 0 if xl > s for at least one l. In that setting,
Theorems 2.1.2 and 2.1.3 apply.

Proposition 2.3.5. Let the previous notation prevail, as well as the nota-
tion from Section 2.2.

1. Assume that fk is α-Hölder continuous on

D = {(x1, . . . , xk, s) ∈ [0, T ]k+1, s ≥ max(x1, . . . , xk)},

for some α > H. Set us = δk (fk(·, s)). Then, uniformly on [0, T ] in
probability,

Mn
· −→n→∞

k

2

∫ ·
0
δk−1(fk(., s, s))ds.
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2. Assume 1
2 < H ≤ 3

4 . Assume moreover that the hypothesis of the
previous point holds, and that in addition

fk(x1, . . . , xk, s) = gk(x1, . . . , xk)I[0,s]k(x1, . . . , xk)

with gk symmetric and β-Hölder continuous for some β > 1
2 . Then,

stably in CR([0, T ]) and with W an independent standard Brownian
motion,

νH(n)

(
Mn
· −

k

2

∫ ·
0
δk−1(fk(·, s, s))ds

)
−→
n→∞

H(2H − 1)
√
qH + rH

∫ ·
0
δk−1(fk(·, s, s))dWs,

where qH and rH as defined in Section 2.2.5.

Remark 2.3.6. Before making the proof of Proposition 2.3.5, let us stress
that (u, P ) with us = δk (fk(·, s)) and Ps = Dsus does not a priori be-
long to D2κ for some κ > 1

2 , and therefore we cannot directly apply the
results of Section 2.3.1. Indeed, assuming gk = 1, i.e fk(x1, . . . , xk+1) =
I[0,xk+1]k(x1, . . . , xk) we can write

Cs,t = δk−2

(
I[0,s]k−2(·)

∫ s

0

∫ t

s
|l − r|2H−2dldr

)
= rH(0, s, s, t)δk−2(I[0,s]k−2).

Since rH(0, s, s, t) > s|t − s| thanks to Lemma 2.4.2, we have
∣∣∣ Cs,t
|t−s|2κ

∣∣∣ ≥
s|δk−2(I

[0,s]k−2 )|
|t−s|2κ−1 for any κ > 1

2 . We have δk−2(I[0,s]k−2) = Hk−2(Bs) (with

Hk the k-th Hermite polynomial). Since B as a Gaussian law, there is
a real number l > 0 and a set Ω0 ⊂ Ω such that P(Ω0) > 0 and ∀ω ∈
Ω0, |δk−2(I[0,s]k−2)(ω)| > l. Then

∣∣∣Cs,t(ω)
|t−s|2κ

∣∣∣ −→
s→t

+∞ for all fixed s > 0 and

ω ∈ Ω0.

Proof of Proposition 2.3.5. We only do the proof of point (2), since the proof
of point (1) (which requires to show that (u, P ) with Ps := Dsus verifies the
assumptions of Theorem 2.1.2) is very similar and easier. Before going into
the details, let us explain the main steps we are going to follow:

• in the first step, we show that u and P are β′-Hölder continuous for
some β′ > 1

2 > 1−H;

72



• in the second step, we provide a suitable decomposition of Ls,tLx,y.
We recall that Ls,t is defined as

Ls,t =

∫ t

s
(ul − us −Dsus(Bl −Bs)) dBl; (2.20)

• finally, in the remaining steps, we analyze each term of the previous
decomposition and show that the stuctural condition (2.3) is verified,
i.e, for all 0 ≤ s ≤ t ≤ T and all 0 ≤ x ≤ y ≤ T ,

E [Ls,tLx,y] = o|s−t|+|x−y|→0(f2(s, t, x, y)) uniformly in s, t ∈ [0, T ].
(2.21)

Step 1: Hölder continuity. The process u is adapted with respect to B and

belongs to D1,2(|H|) with Dsut = kδk−1 (fk(., s, t)) Is≤t by Propostion 2.2.2.
Using the hypercontractivity and isometry properties (again Proposition
2.2.2), we obtain, for a > 1 and s ≤ t,

E[|us − ut|a] ≤ Ck,aE[(us − ut)2]
a
2

= Ck,a‖fk(·, s)− fk(·, t)‖aH⊗k
≤ Ck,a‖fk(·, s)− fk(·, t)‖a|H|⊗k ,

thanks to the continuous embedding |H|⊗k ⊂ H⊗k in the last line.
Let ∆s,tfk(·) = fk(·, t)− fk(·, s). We have

‖fk(·, s)− fk(·, t)‖2|H|⊗k

≤
∫

[0,t]2k
|∆s,tfk(x)||∆s,tfk(y)|

k∏
m=1

µH(dxmdym)

≤
k∑

i,j=1

∫
[0,t]2k

I[s,t](xi)I[s,t](yj)|gk(x)||gk(y)|
k∏

m=1

µH(dxmdym)

=
k∑

i,j=1
i 6=j

∫
[0,t]2k

I[s,t](xi)I[s,t](yj)|gk(x)||gk(y)|

×

 k∏
m=1
m6=i,j

µH(dxmdym)

µH(dxidyi)µH(dxjdyj)

+

k∑
i=1

∫
[0,t]2k

I[s,t](xi)I[s,t](yi)|gk(x)||gk(y)|

 k∏
m=1
m6=i

µH(dxmdym)

µH(dxidyi).

73



From Lemma 2.4.2, we have∫
[0,t]×[s,t]

µH(dxdy) ≤ K|t− s|

for some constant K. Note that we take the liberty to change the value of
K from line to line in the rest of the proof. We deduce, for i 6= j, that∫

[0,t]2k
I[s,t](xi)I[s,t](yj)|gk(x)||gk(y)|

k∏
m=1
m6=i,j

µH(dxmdym)

≤ ‖gk‖2∞|t− s|2
∫

[0,t]2k−2

k∏
m=1
m 6=i,j

µH(dxmdym).

As a result,

‖fk(·, s)−fk(·, t)‖2|H|⊗k ≤ K‖gk‖
2
∞
(
(k−1)2|t−s|2t2H(k−2)+k|t−s|2Ht2H(k−1)

)
.

Since |t− s| ≤ K|t− s|H on [0, T ]2, this leads to

E[|us − ut|a] ≤ K‖gk‖a∞|t− s|Ha.

We can show a similar bound for the derivative Du:

E[|Dsus −Dtut|a] ≤ E[|Dsus −Dsut|a] + E[|Dsut −Dtut|a]

≤ Ck−1,a

(
‖fk(·, s, s)− fk(·, s, t)‖a|H|⊗k−1 + ‖fk(·, s, t)− fk(·, t, t)‖a|H|⊗k−1

)
and

‖fk(·, s, s)− fk(·, s, t)‖2|H|⊗k−1 + ‖fk(·, s, t)− fk(·, t, t)‖2|H|⊗k−1

≤ K‖gk‖2∞(k|t− s|2Ht2H(k−1) + (k − 1)2t2H(k−2)|t− s|2)

+t2Hk‖gk‖2β|t− s|2β,

where ‖gk‖β is the Hölder seminorm of gk over [0, T ]k. Then,

E[|Dsus −Dtut|a] ≤ K(‖gk‖a∞|t− s|Ha + ‖gk‖aβ|t− s|βa).

Finally, for all a > 1 we have

E[|us − ut|a + |Dsus −Dtut|a] ≤ C
(
|t− s|aH + |t− s|aβ

)
= C

(
|t− s|a′+1 + |t− s|a′′+1

)
,
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with a′ = aH − 1, a′′ = aβ− 1 and the constant C depending on k, a, ‖gk‖∞
and T .
Observe that a′

a → H and a′′

a → β when a → ∞. The Kolmogorov-Censov
criterion applies and yields that u and s → Dsus verifies the Hölder semi-
norm condition in Theorem 2.1.3, namely: u and P are β′-Hölder continuous
for all β′ such that β ∧H > β′ > 1

2 > 1−H.

Step 2: Decomposition of Ls,tLx,y (recall the definition of L from (2.20)).

The product formula (3.14) yields, for s ≤ t,

Dsus(Bt −Bs) = kδk−1 (fk(·, s, s)) δ(I[s,t])

= kδk
(

˜fk(·, s, s)⊗ I[s,t](··)
)

+ k(k − 1)δk−2
(
fk(·, s, s)⊗1 I[s,t]

)
.

Then, ut − us −Dsus(Bt −Bs) = As,t − Cs,t, with{
As,t = δk

(
fk(·, t)− fk(·, s)− k ˜fk(·, s, s)⊗ I[s,t](··)

)
Cs,t = k(k − 1)δk−2

(
fk(·, s, s)⊗1 I[s,t]

)
.

(2.22)

Notice that Cs,t = 0 when k = 1. We also use the convention that
As,t = Cs,t = 0 if s > t.

To prove that (u, P ) ∈ C2 we will proceed as follows.
The hypothesis of Proposition 2.2.4 are verified by A and C. Indeed,

As,·, Cs,· ∈ D1,2(|H|) for all s ∈ [0, T ]. Moreover, using the same arguments
as in Step 1, one can show that DAs,· and DCs,· have almost continuous
paths in [0, T ]2, implying in turn that∫ T

0

∫ T

0
(|DwAs,l|+ |DwCs,l|)µH(dldw) <∞ a.s.

for all s ∈ [0, T ].
Formula (2.13) allows to write∫ t

s
Cs,ldBl = δ

(
Cs,· × I[s,t](·)

)
+

∫ t

s

∫ t

0
DwCs,l µH(dwdl) (2.23)

as well as∫ t

s
As,ldBl = δ

(
As,· × I[s,t](·)

)
+

∫ t

s

∫ t

0
DwAs,l µH(dwdl). (2.24)
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For any 0 ≤ s ≤ t ≤ T and 0 ≤ x ≤ y ≤ T , we can then write Ls,tLx,y =∑4
i,j=1R

i,j(s, t, x, y), with

R1,1(s, t, x, y) = δ
(
Cs,·I[s,t](·)

)
δ
(
Cx,·I[x,y](·)

)
R1,2(s, t, x, y) =

∫ t

s

∫ t

0
µH(dldw)

∫ y

x

∫ y

0
µH(drdz)DwCs,lDzCx,r

R1,3(s, t, x, y) = R1,4(x, y, s, t)

= δ
(
Cs,·I[s,t](·)

) ∫ y

x

∫ y

0
DwCx,lµH(dwdl)

R2,1(s, t, x, y) = δ
(
As,·I[s,t](·)

)
δ
(
Ax,·I[x,y](·)

)
R2,2(s, t, x, y) =

∫ t

s

∫ t

0
µH(dldw)

∫ y

x

∫ y

0
µH(drdz)DwAs,lDzAx,r

R2,3(s, t, x, y) = R2,4(x, y, s, t)

= δ
(
As,·I[s,t](·)

) ∫ y

x

∫ y

0
DwAx,lµH(dwdl)

R3,1(s, t, x, y) = R4,1(x, y, s, t)

= δ
(
As,·I[s,t](·)

)
δ
(
Cx,·I[x,y](·)

)
R3,2(s, t, x, y) = R4,2(x, y, s, t)

= δ
(
As,·I[s,t](·)

) ∫ y

x

∫ y

0
DwCx,lµH(dwdl)

R3,3(s, t, x, y) = R4,3(x, y, s, t)

= δ
(
Cs,·I[s,t](·)

) ∫ y

x

∫ y

0
DwAx,lµH(dwdl)

R3,4(s, t, x, y) = R4,4(x, y, s, t)

=

∫ t

s

∫ t

0
µH(dldw)

∫ y

x

∫ y

0
µH(drdz)DwCs,lDzAx,r.

We can easily check that

E
[
R1,3

]
= E

[
R2,3

]
= E

[
R3,1

]
= E

[
R3,2

]
= E

[
R3,4

]
= 0.

Indeed, these expectations reduce to a sum of expectations of products of
two multiple Wiener integrals of different orders, which are orthogonal in
L2(Ω) by Proposition 2.2.2. More precisely, Lemma 2.4.3 allows to show
that all the expectations in play vanish. For example,

E[R1,3] =

∫ y

x

∫ y

0
E[δ(Cs,·I[s,t](·))DwCx,l]µH(dwdl),
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which corresponds exactly to a term of the form (2.32).
We will now apply Proposition 2.2.4, together with several inequalities,

to show that all the remaining terms satisfy the condition (2.3), namely

E[Ri,j(s, t, x, y)] = o|t−s|+|x−y|→0(f2(s, t, x, y))

for all (i, j) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 3)} and uniformly in [0, T ]2.
(Starting from now, note that every time we write o|t−s|+|x−y|→0(f2(s, t, x, y)),
it is implicitely assumed that it takes place uniformly in s, t ∈ [0, T ].)

Whatever the value of (i, j) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 3)},
deriving a bound for E[Ri,j ] requires similar arguments. For this reason, in
what follows we will fully develop the cases (i, j) = (1, 1), (i, j) = (1, 2) and
(i, j) = (2, 1), then we will only explain the differences for the remaining
cases.

For notational simplicity, we will also write Ri,j instead of Ri,j(s, t, x, y).

Step 3: Bound on E[R1,2]. First, we give an upper bound for E[(DwCs,l)
2]:

for all w ∈ [0, t] and l ∈ [s, t],

E
[
(DwCs,l)

2
]

= k2(k − 1)2(k − 2)2 E
[(
δk−3

(
fk(·, w, s, s)⊗1 I[s,l]

))2
]

= k!k(k − 1)(k − 2)
∥∥fk(·, w, s, s)⊗1 I[s,l]

∥∥2

H⊗k−3

≤ k!k(k − 1)(k − 2)‖gk‖2∞
∥∥∥I[0,T ]k−2 ⊗1 I[s,l]

∥∥∥2

|H|⊗k−3
,

where, in the last inequality, we have used that |h1 ⊗1 h2| ≤ |h1| ⊗1 |h2| for
all h1, h2 ∈ D1,2(|H|). Moreover, according to Lemma 2.4.2,∣∣I[0,T ]k−2 ⊗1 I[s,l]

∣∣ =
∣∣E[BT (Bs −Bl)]I[0,T ]k−3

∣∣ ≤ K|s− l|I[0,T ]k−3 .

Plugging this identity into (2.25) leads to

E
[
(DwCs,l)

2
]
≤ K|s− l|2.

As a result, and using the Hölder inequality, we have, for all s ≤ t and x ≤ y,∣∣∣∣E [∫ t

s

∫ t

0
DwCs,lµH(dwdl)

∫ y

x

∫ y

0
DwCx,lµH(dwdl)

]∣∣∣∣
≤

∫ t

s

∫ t

0

∫ y

x

∫ y

0
E
[
(DwCs,l)

2
] 1

2 E
[
(DzCx,r)

2
] 1

2
µH(dzdr)µH(dwdl)

≤ K|t− s|2|x− y|2 = o|t−s|+|x−y|→0(f2(s, t, x, y))
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where, in the last identity, we made use of the following two facts: on one
hand |t − s||x − y| ≤ rH(s, t, x, y) according to Lemma 2.4.2; on the other
hand, and since H ≤ 3

4 ,

|t− s||x− y| = o|t−s|+|x−y|→0

(
|t− s|2H−1|x− y|2H−1κH(|x− y|)κH(|t− s|)

)
.

Step 4: Bound on E[R1,1]. This term can be handled similarly, with the
help of Proposition 2.2.1:∣∣E [δ(Cs,·I[s,t](·))δ(Cx,·I[x,y](·))

]∣∣
≤

∫
[s,t]×[x,y]

I[s,t](l)I[x,y](r)|E[Cs,lCx,r]|µH(drdl)

+

∫
[0,t]×[x,y]

∫
[s,t]×[0,y]

|E[DwCs,lDzCx,r]|µH(dzdl)µH(drdw)

≤ K‖gk‖2∞|t− s||x− y|(|t− s||x− y|+ rH(s, t, x, y)),

where E[Cs,lCx,r] and E[DuCs,lDvCx,r] are computed by means of Proposi-
tion 2.2.2. Again,

|t− s||x− y|(|t− s||x− y|+ rH(s, t, x, y)) = o|t−s|+|x−y|→0(f2(s, t, x, y)).

Step 5: Bound on E[R2,1]. Using Proposition 2.2.1, we can write

|E[R2,1]| =
∣∣E [δ(As,·I[s,t](·))δ(Ax,·I[x,y](·))

]∣∣
≤

∫
[s,t]×[x,y]

µH(dldr)I[s,t](l)I[x,y](r)
∣∣E[As,lAx,r]

∣∣
+

∫
[0,t]×[x,y]

µH(dwdr)

∫
[s,t]×[0,y]

µH(dldz)
∣∣E[DwAs,lDzAx,r]

∣∣.
Let us define the following function:

hsk(x1, . . . , xk, l)

:=

k∑
i=1

I[0,s]k−1(x1, . . . , xi−1, xi+1, . . . , xk)I[s,l](xi)

× (gk(x1, . . . , xk)− gk(x1, . . . , xi−1, xi+1, . . . , xk, s))

+gk(x1, . . . , xk)

k∑
i=1

I[s,l](xi)I[0,l]k−1\[0,s]k−1(x1, . . . , xi−1, xi+1, . . . , xn).
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Since s ≤ l, we have:

fk(x1, . . . , xk, l)− fk(x1, . . . , xk, s)

= gk(x1, . . . , xk)

k∑
i=1

I[s,l](xi)I[0,s]k−1(x1, . . . , xi−1, xi+1, . . . , xk)

+gk(x1, . . . , xk)
k∑
i=1

I[s,l](xi)I[0,l]k−1\[0,s]k−1(x1, . . . , xi−1, xi+1, . . . , xk)

and

k ˜fk(·, s, s)⊗ I[s,l](x1, . . . , xk)

=

k∑
i=1

I[s,l](xi)I[0,s]k−1gk(x1, . . . , xi−1, xi+1, . . . , xk, s).

We obtain, for all x1, . . . , xk ∈ [0, T ], that

fk(x1, . . . , xk, l)− fk(x1, . . . , xk, s)− k ˜fk(·, s, s)⊗ I[s,l](x1, . . . , xk)

= hsk(x1, . . . , xk, l).

Then, As,l = δk(hsk(·, l)), Ax,r = δk(hxk(·, r)) and, by Proposition 2.2.2 (isom-
etry), ∫

[s,t]×[x,y]
I[s,t](l)I[x,y](r)

∣∣E[As,lAx,r]
∣∣ |l − r|2H−2drdl

≤ k!

∫ t

s

∫ y

x
µH(dldr)

∫
[0,t]k×[0,y]k

k∏
i=1

µH(dxidyi)

×|hsk(x1, . . . , xk, l)| |hxk(y1, . . . , yk, r)| .

On the other hand, observe the following facts:

• hsk(x1, . . . , xk) = 0 if (x1, . . . , xk) ∈ [0, s]k;

• if there is a unique index i such that xi ∈ [s, l], then

|hsk(x1, . . . , xk)| = |gk(x1, . . . , xk)− gk(x1, . . . , xi−1, xi+1, . . . , xk, s)|
≤ ‖gk‖β|s− l|β;
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• if there is more than one index i such that xi ∈ [s, l], then

|hsk(x1, . . . , xk, l)| ≤ ‖gk‖∞I[0,l]k(x1, . . . , xk)
k∑

i 6=j=1

I[s,l]2(xi, xj).

As a result,

|hsk(x1, . . . , xk, l)|

≤
k−1∑
i=1

I[0,s]k(x1, . . . , xi−1, xi+1, . . . , xk)I[s,l](xi)|xi − s|β‖gk‖β

+‖gk‖∞
k∑

i 6=j=1

∣∣gk(x1 . . . , xk)
∣∣I[s,l]2(xi, xj)I[0,l]k(x1 . . . , xk).

We then have∫ t

s

∫ y

x
µH(drdl)

∫
[0,l]k×[0,v]k

k∏
i=1

µH(dxidyi)|hsk(x1, . . . , xk, l)

×| |hxk(y1, . . . , yk, r)|
≤ (A+B + C +D)rH(s, t, x, y),

with

A = ‖gk‖2β|t− s|β|x− y|β
k∑

i,j=1

∫
[0,t]k×[0,y]k

k∏
m=1

µH(dxmdym)

×I[s,t](xi)I[x,y](yj)

B = ‖gk‖2∞
k∑

ii 6=i2,j1 6=j2=1

∫
[0,t]k×[0,y]k

k∏
m=1

µH(dxmdym)

×I[s,t]2(xi1 , xi2)I[x,y]2(yj1 , yj2)

C = |x− y|β‖gk‖β‖gk‖∞
k∑

ii 6=i2,j=1

∫
[0,t]k×[0,y]k

k∏
m=1

µH(dxmdym)

×I[s,t]2(xi1 , xi2)I[x,y](yj)

D = |t− s|β‖gk‖β‖gk‖∞
k∑

i,j1 6=j2=1

∫
[0,t]k×[0,y]k

k∏
m=1

µH(dxmdym)

×I[s,t](xi)I[x,y]2(yj1 , yj2).
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We only write down the details for the upper bound of A, since the technique
is similar for the three other terms.

Two cases should then be analyzed to handle the integral A:

• i 6= j: ∫
[0,t]k×[0,y]k

I[s,t](xi)I[x,y](yj)
k∏

m=1

µH(dxmdym)

= E[BtBy]
k−2E[By(Bt −Bs)]E[Bt(By −Bx)] ≤ K2

TT
2H(k−2)|t− s||x− y|,

where the last inequality follows from Lemma 2.4.2.

• i = j: ∫
[0,t]k×[0,y]k

I[s,t](xi)I[x,y](yj)
k∏

m=1

µH(dxmdym)

= E[BtBy]
k−1E[(Bx −By)(Bt −Bs)]

≤ T 2H(k−1)rH(s, t, x, y) ≤ T 2H(k−1)|t− s|H |x− y|H ,

where the last inequality comes from Lemma 2.4.2. We then have

A ≤ K(|t− s||x− y|+ |t− s|H |x− y|H)|t− s|β|x− y|β.

Similar arguments for handling the integrals B,C,D lead to

B ≤ K(|t− s|2H |x− y|2H + |t− s|H |x− y|H |t− s||x− y|+ |t− s|2|x− y|2)

C ≤ K|x− y|β(|x− y|H |t− s|1+H + |x− y||t− s|2)

D ≤ K|t− s|β(|t− s|H |x− y|1+H + |t− s||x− y|2).

Since β,H > 1
2 , we have∣∣∣∣∣

∫
[s,t]×[x,y]

I[s,t](l)I[x,y](r)|E[As,lAx,r]|µH(drdl)

∣∣∣∣∣
≤ rH(s, t, x, y)(A+B + C +D) = o|t−s|+|x−y|→0(f2(s, t, x, y)).

We have DwAs,l = δk−1(hsk(x1, . . . , xk−1, u, l)). Similar computations allow

to treat the trace term:∫
[0,t]×[x,y]

µH(dwdr)

∫
[s,t]×[0,y]

µH(dldz)
∣∣E[DwAs,lDzAx,r]

∣∣
= o|t−s|+|x−y|→0(f2(s, t, x, y)).
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Putting all these facts together, we obtain

E[R2,1] = o|t−s|+|x−y|→0(f2(s, t, x, y)).

Step 6: Bound on E[R2,2 +R3,3 +R4,3]. We use similar arguments here as
in Step 5: we can obtain trough easy but tedious computations, and distin-
guishing again several cases,

E
[
R2,2 +R3,3 +R4,3

]
= o|t−s|,|x−y|→0(f2(s, t, x, y)).

Step 7: Conclusion. We have shown that

E [Ls,tLx,y] = o|t−s|,|x−y|→0(f2(s, t, x, y))

implying that (u, P ) ∈ C2. �

2.3.3 Examples in the Brownian motion case

Since this section only concerns the standard Brownian motion case, in the
following H = 1

2 . We give below a criterion which generalizes the examples
developped in [32].

In Proposition 2.3.3, we considered fractional semimartingales of the
form (2.18). Here, we take advantage of the standard Brownian framework,
to consider processes of the form (2.25). Note that the integrand V i,j

s,t is
allowed to depend on t in (2.25), making useless to consider a drift term as
in (2.18).

Let
(
(uit)t∈[0,T ]

)
1≤i≤m be a collection of square integrable and progres-

sively measurable processes, i.e. E
[
(uit)

2
]
<∞ for all i and t. According to

the representation theorem for square integrable random variables, for all
i and t there exists progressively measurable processes

(
(V i,j
s,t )0≤s≤t

)
1≤j≤d

such that, for all i and t:

uit = E[uit] +

d∑
j=1

∫ t

0
V i,j
s,t dB

j
s a.s., (2.25)

and E
[ ∫ t

0 (V i,j
s,t )2ds

]
<∞. We assume moreover:

(H1) (V i,j
s,t )0≤s≤t≤T is measurable for all i and j, and (i) (s, t) 7→ Vs,t has

a progressively measurable version, (ii) E[|V i,j
s,s − V i,j

s,t |2] + E[|V i,j
s,s −

V i,j
t,t |2] −→

s→t−
0 for all i, j uniformly in s ≤ t ∈ [0, T ] and (iii) (V i,j

s,s )s∈[0,T ]

is piecewise continuous.
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(H2) For all i, j, the family
(
|V i,j
s,t |
)
s,t∈[0,T ]

is bounded by a square integrable

random variable S such that E[S2+γ ] <∞ for some γ > 0.

(H3) One has, for all 0 ≤ s ≤ t ≤ T and all i ≤ m and j ≤ d

E
[∫ s

0
(V i,j
l,s − V

i,j
l,t )2dl

]
+
(
E[uis − uit]

)2 ≤ |s− t|µ(s, t),

where µ is a bounded function which is continuous on [0, T ]2 and such
that µ(s, s) = 0 for all s ∈ [0, T ].

As an application of Theorem 2.1.3 (with Ps = Vs,s), we can state the
following proposition.

Proposition 2.3.7. Assume (H1) − (H3) and recall that H = 1
2 . Then,

stably in CRm×d([0, T ]),

{
√
nM

n,(i,j)
· }1≤i≤m,1≤j≤d −→

n→∞

{
d∑

k=1

∫ ·
0
V i,k
s,s dW

k,j(s)

}
1≤i≤m,1≤j≤d

,

where W is the independent matrix-valued Brownian motion of Section 2.2.5.

Proof. To simplify, without loss of generality we assume that m = 1. We
then write P j = P 1,j , V j = V 1,j and Lj = L1,j for all 1 ≤ j ≤ d.

Given (H1), (iii) and (H2), we have that s 7→ Ps is piecewise continuous

over [0, T ], with E
[
‖P.‖2+γ

∞
]
< +∞. Thus, it remains to check that (u, P ) ∈

C2. Since we are dealing with the standard Brownian case and since s ≤ t
and x ≤ y, we note that rH(s, t, x, y) = ((t ∧ y)− (s ∨ x))+. Thanks to the
independence of increments, we are then left to check that ∀j ∈ {1 . . . , d},

E[Ljs,tL
j
x,y] =

√
|t− s||x− y| × o|t−s|+|x−y|→0

(
((t ∧ y)− (s ∨ x))+

)
.

We have, for all 1 ≤ j ≤ d and with Bi,js,t =
∫ t
s (Bi

l −Bi
s)dB

j
l ,

Ljs,t =

∫ t

s
uldB

j
l − us(B

j
t −Bj

s)−
d∑
i=1

P isB
i,j
s,t

=

∫ t

s
(E [ul]− E [us]) dB

j
l

+

∫ t

s

(
d∑
i=1

∫ l

0

((
V i
r,l − V i

r,s

)
I[0,s](r) +

(
V i
r,l − V i

s,s

)
I[s,l](r)

)
dBi

r

)
dBj

l

=: L1,j
s,t + L2,j

s,t .
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Let s ≤ t and x ≤ y be such that s ∨ x ≤ t ∧ y. The hypothesis (H3)
allows us to write

E[L1,j
s,tL

1,j
x,y] =

∫ t∧y

s∨x
E[ul − us]E[ul − ux]dl

≤

√∫ t∧y

s∨x
(E[ul − us])2 dl

∫ t∧y

s∨x
(E[ul − ux])2 dl

≤ ((t ∧ y)− (s ∨ x))+

√
|t− s||x− y|

√
sup
l∈[s,t]

µ(s, l) sup
l∈[x,y]

µ(x, l).(2.26)

We also have:

E[L2,j
s,tL

2,j
x,y] =

∫ t∧y

s∨x
dl

d∑
i=1

E
[∫ l

0
((V i

r,l − V i
r,s)I[0,s](r) + (V i

r,l − V i
s,s)I[s,l](r))dBi

r

×
∫ y

0
((V i

r,l − V i
r,x)I[0,x](r) + (V i

r,l − V i
x,x)I[s,l](r))dBi

r

]
.

Moreover, thanks to the isometry property, the Cauchy-Schwarz inequality
and the assumption (H3), we can write, for all i ≤ d,

E
[∫ t

0
((V i

r,l − V i
r,s)I[0,s](r) + (V i

r,l − V i
s,s)I[s,l](r))dBi

r

×
∫ y

0
((V i

r,l − V i
r,x)I[0,s](r) + (V i

r,l − V i
x,x)I[s,l](r))dBi

r

]
≤

√
|t− s|µ(s, t) + sup

r∈[s,l]
E[V i

r,l − V i
s,s]

2
√
|x− y|µ(x, y) + sup

r∈[x,l]
E[V i

r,l − V i
x,x]2.

(2.27)

Using the Cauchy-Schwarz inequality and then (2.26) and (2.27), we finally
obtain

E[L1,j
s,tL

2,j
x,y + L2,j

s,tL
1,j
x,y]

≤ ((t ∧ y)− (s ∨ x))+

√
|t− s|(µ(s, t) + sup

l∈[s,t],r∈[s,l]
E[V i

r,l − V i
s,s]

2)

×
√
|x− y| sup

l∈[x,y]
µ(x, l)

+((t ∧ y)− (s ∨ x))+

√
|t− s|(µ(s, t) + sup

l∈[s,t],r∈[s,l]
E[V i

r,l − V i
s,s]

2)

×
√
|x− y| sup

l∈[x,y]
µ(x, l).
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Thanks to (H3) we have that the function (s, t) → supx∈[s,t] µ(s, t) is uni-

formly continuous on [0, T ]2 and since µ(t, t) = 0 for all t,

sup
s,t∈[0,T ],|s−t|≤δ

sup
x∈[s,t]

µ(s, t) −→
δ→0

0.

On the other hand, we have thanks to (H1),

sup
s,t∈[0,T ],s≤t,|s−t|≤δ

sup
x∈[s,t]

E[(V i
x,l − V i

s,s)
2] −→

δ→0
0.

Finally, (u, P ) ∈ C2. �

We obtain a result analogous to Proposition 2.3.3 for semimartingale
processes but with weaker hypotheses on the volatility a and the drift b.

Corollary 2.3.8. Assume m = 1, and consider

ut = u0 +

d∑
j=1

∫ t

0
ajsdB

j
s +

∫ t

0
bsds.

Assume that aj is progressively measurable and piecewise continuous for any
j, that b is progressively measurable, that g(s, t) =

∑d
k=1 E

[
(aks − akt )2

]
is

continuous as a function of two variables, that u0 is independent of B and
that for some γ > 0,

E
[

max
1≤j≤d

‖aj‖2+γ
∞

]
+ E

[
‖b‖2+γ
∞
]
< +∞.

Then, with Mn,1,j defined by (2.2), we have, stably in CRd([0, T ])

{√
nMn,1,j

·
}

1≤j≤d −→n→∞

{
d∑
i=0

∫ ·
0
aisdW

i,j
s

}
1≤j≤d

where W is the independent matrix-valued Brownian motion of Section 2.2.5,
see (2.14).

Proof. We have that the function f : t →
∫ t

0 bsds is a.s. continuous and

satisfies E[‖f‖2+γ
∞ ] <∞. Using Jensen inequality and the isometry property,

we easily see that∣∣∣∣E [∫ t

s

(∫ l

s
budu

)
dBj

l

∫ y

x

(∫ l

x
budu

)
dBj

l

]∣∣∣∣
≤ |x− y||t− s|(t ∧ y − s ∨ x)+ sup

l∈[0,T ]
E[b2l ],
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that is, (
∫ ·

0 bsds, 0) ∈ C2. Then, Theorem 2.1.3 applies, and

∀j ∈ {1 . . . , d},
∫ t

0
dl

∫ l

0
bs dB

i
s −

ntn∑
k=1

∫ k
n

0
bldl(B

j
k+1
n
∧t
−Bj

k
n

)
C([0,T ])−→
n→∞

0.

Moreover, we can apply Proposition 2.3.7 to
∫ ·

0 asdBs with V 1,j
s,t = ajsI[0,t](s)

(all its assumptions are satisfied). Slutsky’s lemma allows finally to conclude.
�

Unlike the case H > 1
2 , here we can allow the volatility process a to

be discontinuous. An illustration of this fact is given by choosing d = 1,
(Ti)i≥1 a sequence of increasing stopping times such that Ti −→

i→∞
∞ a.s, a

sequence (xi)i≥1 ∈ RN∗ of progressively measurable processes on [0, T ] such
that

∑
i ‖xi‖2∞ <∞, and

ut =
∑
i≥1

∫ t∧Ti

0
xisdBs.

We then have, stably in CR([0, T ]),

√
nMn

· −→
1√
2

∫ ·
0

∑
i

xisI[0,Ti](s)dWs.

2.3.4 Irregular processes

In this section, H ∈ (1
2 ,

2
3). We state a first order convergence for a general

class of processes possessing mild regularity properties. Notice that related
problems have been studied in the papers [2] and [6] (the latter establish-
ing existence of Local time and Tanaka’s formula for fractional Brownian
motion).

Although the process u considered in Proposition 2.3.9 is of the form
us = F (Bs), the fact that F is supposed to be convex allows potential
discontinuities for F ′, and it becomes hopeless to expect a second order
result as obtained in Corollary 2.3.4 in a seemingly similar framework.

Proposition 2.3.9. Let us = F (Bs), s ∈ [0, T ], with F a real convex func-
tion such that, for some K > 0 and γ ∈ (0, 2),

|F (x)|+ |F ′(x)|+
∫ |x|
−|x|

(|a|+ 1)dF ′′(a) ≤ Ke|x|γ , x ∈ R,
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where F ′ is the right derivative of F and F ′′ denotes its second derivative in
the distributional sense (a simple ‘non-smooth’ example is given by x→ |x|).
Then, for all t ∈ [0, T ],

Mn
t := n2H−1

∫ t

0
F (Bs)dBs −

bntc∑
k=0

F (B k
n

)(B k+1
n
∧t −B k

n
)


L2(Ω)−→
n→∞

1

2

∫ t

0
F ′(Bs)ds.

Proof. The proof is divided into two steps: in the first one, we will first
show that us = F (Bs) belongs to D1,2(|H|) and give a suitable expression
for its Malliavin derivative. This is then in Step 2 that we will show the
L2(Ω)-convergence of Mn, with the help of Proposition 2.2.4 and of Lemma
2.4.6.

Step 1: u belongs to D1,2(|H|). Consider the truncated function

Fn : x→ F (x)I|x|≤n + F (n)Ix>n + F (−n)Ix<−n.

Every convex function is locally Lipschitz continuous so the previous se-
quence is Lipschitz continuous. Then, by a slight extention of [26, Propo-
sition 2.3.8], we know that the process uns = Fn(Bs) belongs to D1,2(|H|),
and Dsu

n
t = (Fn)′(Bt)Is≤t. Moreover, Fn → F and (Fn)′ → F ′ point-

wise as n → ∞, and the growth condition on F and F ′ ensures that, for
all p > 2, the sequences Fn(Bs) and (Fn)′(Bs) are bounded in Lp(Ω, |H|)
and Lp(Ω, |H|×|H|) respectively. Then, these sequences are both uniformly
integrable in L2, and the bounded convergence theorem ensures that, as
n→∞,

un → u in Lp(Ω, |H|)
I{·≤∗}D·un∗ → I{·≤∗} F ′(B∗) in Lp(Ω, |H| × |H|).

Then, u ∈ D1,2(|H|), with Dsut = Is≤tF ′(Bt). Since F ′ is locally bounded,
the process u verifies the assumptions of Proposition 2.2.4.

Step 2: L2 convergence. By e.g. [31, page 224], we know that, for all
k ∈ N∗, there exist αk, βk ∈ R such that

F (x) = αk + βkx+
1

2

∫ k

−k
|x− a|dF ′′(a), x ∈ [−k, k].
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Then, for all x ∈ R,

F (x) = F (0)I{0}(x)

+

+∞∑
k=0

(
αk+1 + βk+1x+

1

2

∫ k+1

−k−1
|x− a|dF ′′(a)

)
I[−k−1,−k)∪(k,k+1](x).

Since F is convex, dF ′′ can be identified with a Radon measure, which is
σ-finite. This allows us to interchange the integrals and derivatives. Since
D·u∗ = F ′(B∗)I·≤∗ we can then rewrite Du as:

Dsut = It≥s
+∞∑
k=0

(
βk+1 +

1

2

∫ k+1

−k−1
sign(Bt − a)dF ′′(a)

)
I[−k−1,−k)∪(k,k+1](Bt),

(2.28)
where sign is the left derivative of x→ |x|.

Let 0 ≤ t ≤ T . We have, thanks to Proposition 2.2.4 and recalling that
sn = 1

nbnsc,

Mn
t −

1

2

∫ t

0
F ′(Bs)ds

= n2H−1
[ ∫ t

0
(F (Bs)− F (Bsn))δBs

+

∫ t

0

∫ t

0

(
F ′(Bs)I[0,s](l)− F ′(Bsn)I[0,sn](l)

)
µH(dlds)

]
−1

2

∫ t

0
F ′(Bs)ds

=
1

2

∫ tn

0

(
F ′(Bsn)− F ′(Bs)

)
ds

−1

2

∫ t

tn

F ′(Bs)ds+
(nt− bntc)2H−1

2

∫ t

tn

F ′(Bsn)ds

+n2H−1

∫ t

0

∫ sn

0

(
F ′(Bs)− F ′(Bsn)

)
µH(dlds)

+n2H−1

∫ t

0

∫ s

sn

(
F ′(Bs)− F ′(Bsn)

)
µH(dlds)

+n2H−1

∫ t

0
(F (Bs)− F (Bsn))δBs,

where we used the fact that
∫ (k+1)/n
k/n

∫ s
k/n µH(dlds) = 1

2n
−2H .
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We can see easily that for all 0 ≤ t ≤ T ,

E

[(
1

2

∫ t

tn

F ′(Bs)ds+
(nt− bntc)2H−1

2

∫ t

tn

F ′(Bsn)ds

)2
]

= On→∞

(
1

n2

)
.

We also have

E

[(
n2H−1

∫ t

0

∫ sn

0

(
F ′(Bs)− F ′(Bsn)

)
µH(dlds)

)2
]

≤ Kn4H−2E

[(∫ t

0
(F ′(Bs)− F ′(Bsn))ds

)2
]
,

where we used the fact that∫ sn

0
|l − s|2H−2dl ≤ (2− 2H)s2H−1 ≤ (2− 2H)T 2H−1,

and

E

[(
n2H−1

∫ t

0

∫ s

sn

(
F ′(Bs)− F ′(Bsn)

)
µH(dlds)

)2
]

= n4H−2

∫ t

0

∫ s

sn

µH(dθds)

∫ t

0

∫ x

xn

µH(dµdx)

×E
[
(F ′(Bs)− F ′(Bsn)(F ′(Bx)− F ′(Bxn)

]
≤ n2H−2E

[(∫ t

0
(F ′(Bs)− F ′(Bsn))ds

)2
]
,

(where we used that
∫ s
sn
|l − s|2H−2dl ≤ |s − sn|, thanks to Lemma 2.4.2),
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and finally

E

[(
n2H−1

∫ t

0
(F (Bs)− F (Bsn))δBs

)2
]

≤ Kn4H−2E
[∫ t

0
(F (Bs)− F (Bsn))2ds

]
+Kn4H−2E

[∫ t

0

∫ t

0
(Dlus −Dlusn)2dlds

]
≤ Kn4H−2E

[∫ t

0
(F (Bs)− F (Bsn))2ds

]
+Kn4H−2

(
E
[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))2dlds

]
+E

[∫ t

0

∫ s

sn

F ′(Bs)
2dlds

])
with K depending only on T . We used (2.8) then (2.9) in Proposition 2.2.1,
and the fact that Dlus −Dlusn = F ′(Bs)Il≤s − F ′(Bsn)Il≤sn to obtain the
last inequality.

We have

n4H−2E
[∫ t

0

∫ s

sn

F ′(Bs)
2dlds

]
≤ n4H−3

2
E
[∫ t

0
F ′(Bs)

2ds

]
−→
n→∞

0

(because H < 2
3). We have

E
[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))2dlds

]
= E

[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))2IbBsc=bBsncdlds

]
+E

[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))2IbBsc6=bBsncdlds

]
.

Using (2.28), we have:

E
[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))2IbBsc=bBsncdlds

]
=

1

4

∞∑
k=0

E
[∫ t

0

∫ sn

0
dldsI[−k−1,−k)∪(k,k+1](Bs)(∫ k+1

−k−1
(sign(Bs − a)− sign(Bsn − a))dF ′′(a)

)2

IbBsc=bBsnc

]
.
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Moreover, since dF ′′ is σ-finite, we can use Fubini’s theorem and Jensen’s
inequality to get that

E
[∫ t

0

∫ sn

0
(F ′(Bs)− F ′(Bsn))2dlds

]
≤ t(Cnt +Dn

t ),

with

Cnt =
+∞∑
k=0

F ′′([−k − 1, k + 1))

×
∫ k+1

−k−1

∫ t

0
E
[
(sign(Bs − a)− sign(Bsn − a))2

× I[−k−1,−k)∪(k,k+1](Bs)IbBsc=bBsnc
]
dsdF ′′(a);

Dn
t = E

[∫ t

0
(F ′(Bs)− F ′(Bsn))2IbBsc6=bBsncds

]
.

Let γ > 0 and let p, q > 0 be two conjugate exponents such that H−γ
p >

4H − 2. (Notice that γ, p, q exist if and only if H < 2
3 .) We apply Hölder’s

inequality to obtain:

E
[
(sign(Bs − a)− sign(Bsn − a))2 I[−k−1,−k)∪(k,k+1](Bs)IbBsc=bBsnc

]
≤ E

[
|sign(Bs − a)− sign(Bsn − a)|2p

] 1
p E
[
I[−k−1,−k)∪(k,k+1](Bs)

] 1
q .

We know that E
[
I[−k−1,−k)∪(k,k+1](Bs)

] 1
q = Ok→∞(e

− k2

2qT2H ) for all s ∈
[0, T ]. We also have that (by hypothesis on F ′′),

∞∑
k=0

F ′′([−k − 1, k + 1])e
− k2

2qT2H <∞.

By Lemma 2.4.6, for all a ∈ R,∫ t

0
E
[
(sign(Bs − a)− sign(Bsn − a))2p

] 1
p
ds = on→∞(n2−4H),

where the o does not depend on t.
We then obtain:

n4H−2Cnt = on→∞(1). (2.29)

91



A similar use of Lemma 2.4.6 shows that, for all t,

n4H−2Dn
t + n4H−2E

[(∫ t

0
(F (Bs)− F (Bsn))ds

)2
]

= on→∞(1).

Putting these facts together leads to:

Mn
t
L2(Ω)−→
n→∞

1

2

∫ t

0
F ′(Bs)ds.

�

2.4 Proofs of the main Theorems and other results

Throughout all this section, we denote by B a fractional Brownian motion
of Hurst index H.

2.4.1 Miscellaneous

We start by giving a collection of technical results that are used throughout
the paper.

The following lemma is an easy consequence of Fernique’s theorem (see
e.g. [38] and the references therein), and represents a very useful tool for
proving the existence of moments for Hölder modulus of Gaussian function-
als.

Lemma 2.4.1. (Fernique) Assume that H > 1
2 and let B be the associ-

ated Lévy area of B, defined as Bk,js,t =
∫ t
s (Bk

l − Bk
s )dBj

l . For all γ ∈ (0, 2)
and all κ ∈ (0, H), and for all function f satisfying the growth condition
|f(x)| ≤ exp |x|γ, we have

E[f(‖B‖κ +
√
‖B‖2κ)] <∞,

where ‖ · ‖θ is the Hölder seminorm, see (2.6) and (2.10).

We also have the following elementary lemma.

Lemma 2.4.2. Assume H > 1
2 . There exists a constant kT > 0 such that,

for all x, y, s, t ∈ [0, T ]4 such that t ≥ s and y ≥ x,

kT |t− s||y − x| ≤ rH(s, t, x, y) ≤ |t− s|H |x− y|H , (2.30)

|E[Bt(Bx −By)]| ≤ |x− y|. (2.31)
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Proof. For the sake of simplicity, we will consider T = 1 (which only modifies
the constants). In the expression (2.30), the right inequality is a simple
consequence of the Cauchy-Schwarz inequality. For the proof of the left
inequality, six cases must be analyzed carefully.

(i) case where t ≥ s ≥ y ≥ x. For fixed s, y, x, let

f(t) = (2H − 1)(t− s)(y − x) and g(t) = rH(s, t, x, y).

We have f(s) = g(s) = 0 and

g′(t)− f ′(t) = 2H
(
−(t− y)2H−1 + (t− x)2H−1

)
− (2H − 1)(y − x).

We see that −(t− y)2H−1 + (t− x)2H−1 ≥ (2H − 1)(y − x) thanks to
an elementary function study, so

g′(t)− f ′(t) ≥ (2H − 1)2(y − x) ≥ 0,

so g(t) ≥ f(t) and then (2H − 1)|t− s||y − x| ≤ rH(s, t, x, y).

(ii) case where t ≥ y > s ≥ x. For fixed t, y, x, we see (thanks to an
elementary function study) that the quantity rH(s, t, x, y)−(t−s)(y−
x) decreases with s and then reaches its minimum for s = y. Assume
then s = y and let δ = t− x and a = y − x. Then

rH(s, t, x, y)− (t− s)(y − x)

≥ h(a) = δ2H − (a2H + (δ − a)2H + a(δ − a)).

We have h(δ) = h(0) = 0, and the function h is increasing over (0, δ2)
then decreasing, so is always positive.

(iii) case y > t ≥ x > s. This is similar to (ii).

(iv) case y ≥ x > t ≥ s. This is similar to (i).

(v) case t ≥ y ≥ x > s. Write Bt−Bs = (Bt−By)+(By−Bx)+(Bx−Bs)
and then combine the inequalities from (i) and (iv).
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(vi) case y > t ≥ s ≥ x. This is similar to (v).

Finally, the proof of inequality (2.31) can be found in [24, Lemma 6]. �

The following lemma is used in Step 2 of the proof of Proposition 2.3.5.

Lemma 2.4.3. Let m,n ∈ N with m > n, f ∈ H�m ⊗ H, g ∈ H�n,
h ∈ H�n ⊗H. Let x ∈ [0, T ], Fx = δm(f(·, x)), G = δn(g), Hx = δn(h(·, x)).
Then, for all s ≤ t and u ≤ v,

E[δ(F·I[s,t](·))G] = 0 (2.32)

E[δ(F·I[s,t](·))δ(H·I[u,v](·))] = 0. (2.33)

Proof. If n = 0, the result is immediate. Otherwise, thanks to Proposition
2.2.1, we can write:

E[δ(F·I[s,t](·))G]

=

∫
[0,T ]2

E[FxI[s,t](x)δn−1(g(·, y))]µH(dxdy)

+

∫
[0,T ]4

E[Dw(FxI[s,t](x))Dz(δ
n−1(g(·, y)))]µH(dxdy)µH(dwdz).

Thanks to Proposition 2.2.2, we have, for all x, y ∈ [0, T ],

E[Fxδ
n−1(g(·, y))] = 0.

Moreover, Dw(FxI[s,t](x)) = mδm−1(f(·, w, x))I[s,t](x), and
Dz(δ

n−1)(g(·, y)) = (n−1)δn−2(g(·, z, y)) if n ≥ 2 and Dz(δ
n−1(g(·, y))) = 0

otherwise. In any case, we have thanks to Proposition 2.2.2,

E[Dw(FxI[s,t](x))Dz(δ
n−1(g(·, y)))] = 0.

Equality (2.33) can be obtained by the same way. �

The following lemma provides a tightness criterion for two sequences of
processes in D([0, T ]) whose sum belongs to C([0, T ]). Recall the notation
sn = 1

nbnsc and tn = 1
nbntc.

Lemma 2.4.4. Let (Xn) ⊂ CR([0, T ]) be a sequence of continous stochas-
tic processes such that Xn

t = Ant + Cnt for all t ∈ [0, T ], where An, Cn ∈
DR([0, T ]). Assume also the existence of α0, β0 > 0 such that

E
[
|Ant −Ans |β0

]
≤ K|tn − sn|1+α0 , 0 ≤ s, t ≤ T, (2.34)
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and
sup
t∈[0,T ]

|Cnt |
P−→

n→∞
0. (2.35)

Then the sequence Xn is tight in CR([0, T ]).

Proof. In [7], it is proved that the sequence (An) is tight in DR([0, T ]).
Moreover, the sequence (Cn) is also tight in DR([0, T ]). by [25, Lemma 2.2],
the sequence (An, Cn) is tight in DR2([0, T ]) and since the map (x, y)→ x+y
is continuous from DR2([0, T ]) to DR([0, T ]), the sequence (Xn)n is then tight
in DR([0, T ]). Since the uniform and the Skorohod topologies coincide on
CR([0, T ]), we deduce that (Xn) is tight in CR([0, T ]). �

The following lemma is used in the proof of the forthcoming (2.41).

Lemma 2.4.5. Let (Xn) ⊂ CR([0, T ]) be a tight sequence of continous

stochastic processes such that ∀t ∈ [0, T ], Xn
t

P−→ 0 as n → ∞. Then,
as n→∞,

sup
t∈[0,T ]

|Xn
t |

P−→ 0. (2.36)

Proof. Let 1 > ε > 0. Since the function defined by x→ 1∧supt∈[0,T ] |xt| on

CR([0, T ]) is continuous and bounded, we deduce that E
[
1 ∧ supt∈[0,T ] |Xn

t |
]
→

0 as n→∞. Then, by Markov’s inequality and as n→∞,

P

[
sup
t∈[0,T ]

|Xn
t | > ε

]
= P

[
sup
t∈[0,T ]

|Xn
t | ∧ 1 > ε

]
≤ 1

ε
E

[
sup
t∈[0,T ]

|Xn
t | ∧ 1

]
−→ 0.

�

The following lemma gives technical estimates used in the proof of Propo-
sitions 2.3.7 and 2.3.9.

Lemma 2.4.6. Assume H > 1
2 . Then, for all 0 ≤ t ≤ T , a ∈ R, γ > 0,

p > 0 and θ ≥ 1, we have∫ t

0
E [|sign(Bs − a)− sign(Bsn − a)|p]

1
θ ds ≤ Kn

−H+γ
θ , (2.37)

and ∫ t

0
P (bBsc 6= bBsnc)

1
θ ds ≤ Kn

−H+γ
θ (where sn = 1

nbnsc), (2.38)

with K depending only on T, p, θ and where sign is the left derivative of the
function x→ |x|.
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Proof. We only do the proof of the first inequality, the proof of the second
one being similar. Moreover, for simplicity we reduce to a = 0 and θ = 1.

We have

sign(Bs)− sign(Bsn) = 2I{Bs>0,Bsn≤0} − 2I{Bs≤0,Bsn>0}.

Plugging this identity into the integral yields∫ t

0
E [|sign(Bs)− sign(Bsn)|p] ds ≤ 2p+1

∫ t

0
P (Bs > 0, Bsn ≤ 0) ds.

On the other hand, for all k ∈ {2, . . . , nTn} and s ∈ [ kn ,
k+1
n ∧ T ),

• if s = k
n , then P [Bs > 0, Bsn ≤ 0] = 0

• else,

P [Bs > 0, Bsn ≤ 0] = P
[
B k
n
≤ 0, Bs −B k

n
> −B k

n

]
≤

+∞∑
i=0

E

[
I{
B k
n
∈[− i+1

n
,− i

n
]

}I{
Bs−B k

n
> i
n

}
]

=

+∞∑
i=0

E
[
I{
B1∈

[
− i+1

n1−H kH
,− i

n1−H kH

)}I{
Bns
k
−B1>

i

n1−H kH

}]
(using the self-similarity of B)

=
1

2π
√

det(Σ)

+∞∑
i=0

∫ i+1

kH n1−H

i

kH n1−H

∫ −i
kHn1−H

−∞
e
−

(ns
k
−1)2H

2 det(Σ)
x2− 1

2 det(Σ)
y2+

cs,k
det(Σ)

xy
dydx

with cs,k = E
[
B1

(
Bns

k
−B1

)]
> 0 and Σ =

(
1 cs,k

cs,k
(
ns
k − 1

)2H) .

Since
cs,k

det(Σ)xy ≤ 0 for all (x, y) ∈
[

i
kH n1−H ,

i+1
kH n1−H

]
×
(
−∞, −i

kHn1−H

]
, we

deduce

P [Bs > 0, Bsn ≤ 0] (2.39)

≤ 1

2π
√

det(Σ)

+∞∑
i=0

∫ i+1

kH n1−H

i

kH n1−H

∫ −i
kHn1−H

−∞
e
−

(ns
k
−1)2H

2 det(Σ)
x2− 1

2 det(Σ)
y2

dydx.

Let us now estimate the three terms appearing in the right-hand side of
the previous inequality.
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1st term: We have det(Σ) = (nsk − 1)2H − c2
s,k. According to Lemma

2.4.2, cs,k ≤ ns
k − 1. If k > 2, we have ns

k − 1 ≤ 1
2 and then(ns

k
− 1
)2H

≥ det(Σ) ≥
(ns
k
− 1
)2H

(
1−

(ns
k
− 1
)2−2H

)
≥

(ns
k
− 1
)2H

(
1− 1

22−2H

)
.

That is, 1

2π
√

det(Σ)
≤ 1

2π

√
(1−22H−2)(nsk −1)

2H
.

2nd term: We have∫ i+1

kHn1−H

i

kHn1−H

e
−

(ns
k
−1)2H

2 det(Σ)
x2

dx ≤ 1

n1−HkH
e
− 1

2
( i

kHn1−H )2

.

3rd term: We have, using that s ∈ [ kn ,
k+1
n ∧ T ),

∫ −i
kHn1−H

−∞
e
− y2

2 det(Σ)dy ≤
∫ −i

kHn1−H

−∞
e
− y2

2(nsk −1)
2H

dy ≤
∫ −i

kHn1−H

−∞
e−k

2Hy2
dy

=
1

kH

∫ −i
n1−H

−∞
e−y

2
dy.

By plugging these three estimates into (2.39) and by using the fact that

e
− 1

2
( i

kHn1−H )2

≤ (n1−HkH)α

iα
and

∫ −i
n1−H

−∞
e−y

2
dy ≤ n1−H

i

for all i ∈ N∗ and all α ∈ (0, 1), we get, by choosing α so that α(2−H) < γ,

P [Bs > 0, Bsn ≤ 0] ≤ nα(1−H)

2πk2H−α
√

(1− 22H−2)(nsk − 1)H

∞∑
i=1

1

i1+α
.

Finally, ∫ t

0
E
[∣∣∣sign(Bs)− sign(B bnsc

n

)
∣∣∣p] ds

≤ 2p+1

(
2

n
+

∫ t

2
n

P[Bs ≥ 0, Bsn < 0]ds

)
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and ∫ t

2
n

P[Bs > 0, Bsn ≤ 0]ds

≤ 1

2π

ntn∑
k=1

1

k2H−α

∫ k+1
n
∧t

k
n

1√
(1− 22H−2)(nsk − 1)H

ds
∞∑
i=1

1

i1+α
nα(1−H)

≤ 1

2π
√

(1− 22H−2)

(
(t− tn)H

(ntn)2H−α +
1

1−H

ntn∑
k=2

1

nkH−α

) ∞∑
i=1

1

i1+α
nα(1−H)

≤ Kn−H+α(2−H)

This provides the desired estimate. �

Remark 2.4.7. In [2], the author obtained for all s ≤ t ∈ [0, T ] and for all
a ∈ R the following bound:

P[Bs > a,Bt ≤ a] ≤ C(a)(t− s)Hs−2H ,

for some constant C(a) > 0. On the other hand, the computations in the
proof of Lemma 2.4.6 give the estimate

P[Bs > a,Bt ≤ a] ≤ C(a, γ)(t− s)H+γs−H ,

which is weaker when s ≥ 1 but better when s << 1 (this improvement is
necessary for the inequalities 2.37 and 2.38 to hold).

2.4.2 Weighted quadratic variations of the fractional Brow-
nian motion

In the proofs of Theorems 2.1.2 and 2.1.3, we will see that the announced
convergences are determined by the asymptotic behaviour of the weighted
quadratic variations of the fractional Brownian motion. These variations
have already been extensively studied, for example in [13,24] and especially
in [5]. In the next three lemmas, we gather the results that are relevant to
us, and we extend them when necessary.

Lemma 2.4.8. Let x be a scalar process over [0, T ], and assume it is a.s.

continuous and satisfies E
[
‖x‖2+γ

∞
]
< +∞ for some γ > 0. Let H > 1

2 .

Then,
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1. For all j ≤ d, for all t ∈ [0, T ]

Sn,jt,x = n2H−1

bntc∑
k=0

x k
n

(
Bj
k+1
n
∧t
−Bj

k
n

)2
L2(Ω)−→
n→∞

∫ t

0
xsds. (2.40)

2. For all i 6= j,

n2H−1

bntc∑
k=0

x k
n
δ1,i

((
Bj
. −B

j
k
n

)
I[ k
n
, k+1
n
∧t](·)

)
L2(Ω)−→
n→∞

0. (2.41)

These two convergences also holds UCP as a process over [0, T ].

Proof. Step 1: Proof of (2.40). It is well known that (2.40) is true in the
a.s. sense if x = I[0,t] (see e.g [15]) and then (by substraction) for every
process of the type x = I[s,t] for s ≤ t. Now, consider 0 = a0 ≤ . . . ≤ ap ≤ T
and let (α0, . . . , αp−1) be a collection of F-measurable random variables. For
all 1 ≤ i ≤ p, let Ωi be the subset of Ω on which (2.40) holds true for the
process αiI[ai,ai+1]. Then P(∩pi=1Ωi) = 1, and (2.40) holds (pointwise) for

the step process x =
∑p−1

i=0 αiI[ai,ai+1] on ∩pi=1Ωi.
Moreover, if a process f is bounded for ‖ · ‖∞ in L2+γ then the sequence

{(Sn,jt,f )2}∞n=1 is uniformly integrable. Indeed, let 0 ≤ µ ≤ γ. We have,
thanks to the Minkowski inequality,

‖Sn,jt,f ‖L2+µ ≤ n2H−1

bntc∑
k=0

∥∥∥∥∥f kn
(
Bj
k+1
n
∧t
−Bj

k
n

)2
∥∥∥∥∥
L2+µ

.

Then, using the Hölder inequality, we have∥∥∥∥∥f kn
(
Bj
k+1
n
∧t
−Bj

k
n

)2
∥∥∥∥∥

2+µ

L2+µ

≤ E[|f k
n
|2+γ ]

2+µ
2+γE

[(
Bj
k+1
n
∧t
−Bj

k
n

)2q(2+µ)
] 1
q

≤ E[‖f‖2+γ
∞ ]

2+µ
2+γ n2H(2+µ),

with q the conjugate of 2+γ
2+µ . This implies that supn E

[
|Sn,jt,f |

2+µ
]
<∞, and

then the sequence {(Sn,jt,f )2}∞n=1 is uniformly integrable.
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Back to the initial process x, we know, by uniform continuity of x on
[0, T ], that ‖x−xm‖∞ −→

m→∞
0 a.s. (where xm is the sampled process x bm·c

m

).

As a result,

E

[(
Sn,jt,x −

∫ t

0
xsds

)2
]

= E

[(
(Sn,jt,x − S

n,j
t,xm) +

(
Sn,jt,xm −

∫ t

0
xms ds

)
+

(∫ t

0
xms ds−

∫ t

0
xsds

))2
]

≤ C

n4H−2E

(ntn∑
k=0

‖x− xm‖∞
(
B k+1

n
∧t −B k

n

)2
)2


+E

[(
Sn,jt,xm −

∫ t

0
xms ds

)2
]

+ T 2E
[
‖x− xm‖2∞

]}
,

where C is a positive constant. The previous arguments, an appropriate

choice of n,m ∈ N∗ and the fact that ‖x−xm‖∞
L2+γ(Ω)−→
n→∞

0 allow to conclude.

Step 2: UCP convergence of Sn,j·,x . According to Lemma 2.4.5, the UCP

convergence of Sn,j·,x to
∫ ·

0 xsds follows from the convergence in probability of

Sn,jt,x for fixed t and the tightness of the sequence (Sn,j·,x )n in C([0, T ]). The
convergence in probability for fixed t is shown in Step 1. For the tightness,
this can be checked with Lemma 2.4.4 applied to Sn,jt,x = Ant + Cnt , with

Ant = n2H−1
ntn−1∑
k=0

x k
n

(
Bj

( k+1
n

)∧t
−Bj

k
n

)2

Cnt = n2H−1xtn

(
Bj
t −B

j
tn

)2

α0 = 1, β0 = 2.

Indeed, using the Hölder inequality, we have for s ≤ t:

E[|Ant −Ans |2]

≤ n4H−2
ntn−1∑
k,l=nsn

(
E
[
‖x‖2+γ

∞
]) 1

1+
γ
2

(
E

[∣∣∣∣Bj
k+1
n

−Bj
k
n

∣∣∣∣2p′ ∣∣∣∣Bj
l+1
n

−Bj
l
n

∣∣∣∣2p′
]) 1

p′

≤ n4H |tn − sn|2
(
E
[
‖x‖2+γ

∞
]) 1

1+
γ
2

(
E
[
|B 1

n
|4p′
]) 1

p′ ≤ K|tn − sn|2
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with p′ the conjugate of 1 + γ
2 and K some constant depending only on γ

and x.
On the other hand, B has (H − ε)-Hölder continuous paths for every

ε > 0, so that, for all t ∈ [0, T ], |Cnt | ≤ Kεn
2ε−1‖x‖∞ a.s. for some random

variable Kε > 0. Taking ε small enough, we have supt∈[0,T ] |Cnt |
P−→

n→∞
0.

Step 3: Proof of (2.41). We now turn to the case i 6= j. Similarly to the
proof of (2.40) (Step 1), we first show (2.41) for x the function identically
one, in other words:

Sn,i,jt,1 = n2H−1
ntn∑
k=0

δ1,i

((
Bj
. −B

j
k
n

)
I[ k
n
, k+1
n
∧t](·)

)
L2(Ω)−→ 0. (2.42)

Using Proposition 2.2.1 and taking into account that D1,iBj = 0 if i 6= j,
we have:

E
[
(Sn,i,jt,1 )2

]
= n4H−2

ntn∑
k,l=0

E
[〈(

Bj
. −B

j
k
n

)
I[ k
n
, k+1
n
∧t](.),

(
Bj
· −B

j
l
n

)
I[ l
n
, l+1
n
∧t](.)

〉
H

]

= n4H−2
ntn∑
k,l=0

∫ k+1
n
∧t

k
n

∫ l+1
n
∧t

l
n

E[(Bx −B k
n

)(By −B l
n

)]µH(dydx)

≤ n2H−2
ntn∑
k,l=0

〈I[ k
n
, k+1
n
∧t](.), I[ l

n
, l+1
n
∧t](·)〉H,

where the last inequality follows from the fact that: for all x ∈
[
k
n ,

k+1
n

]
and

all y ∈
[
l
n ,

l+1
n

]
,

|E[(Bx −B k
n

)(By −B l
n

)]| ≤
(
E[(Bx −B k

n
)2]
) 1

2
(
E[(By −B l

n
)2]
) 1

2 ≤ 1
n2H .

We also have
ntn∑
k,l=0

〈I[ k
n
, k+1
n
∧t](·), I[ l

n
, l+1
n
∧t](.)〉H = t2H ,

and then E
[
(Sn,i,jt,1 )2

]
= On→∞(n2H−2), implying (2.42). To prove (2.41)

in the general case for x, we can then proceed exactly as in the proof of
(2.40), that is, we show first that (2.41) holds true for step processes and
then, by an approximation argument, to x. Tightness in C([0, T ]) can also
be obtained as for (2.40). By Lemma 2.4.5, this proves the UCP convergence
to 0 of each Sn,i,j·,x with i 6= j. �
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The study of the fluctuations (which are required for the proof of Theo-
rem 2.1.3) being more delicate, more stringent assumptions on the process
x are required (except when H = 1

2 , see the first point in the proposition
below).

Lemma 2.4.9. Let x = (xi,e)1≤i≤m,1≤e≤d be an (m×d)-dimensional process,
and recall the matrix-valued processes W and Z from Section 2.2.5. For any
1 ≤ i ≤ m and 1 ≤ e, j ≤ d, set

Sn,i,j,et,x =

ntn∑
k=0

xi,ek
n

∫ k+1
n
∧t

k
n

(
Be
s −Be

k
n

)
δBj

s .

We have

1. If H = 1
2 and if, for all (i, e), xi,e is adapted to B, piecewise continuous

and satisfies E[supi,e ‖xi,e‖
2+γ
∞ ] < ∞ for some γ > 0, then, stably in

CRd2×m([0, T ]),

(√
nSn,i,j,e·,x

)
i,j,e
−→
n→∞

(∫ .

0
xi,es dW

e,j
s

)
i,j,e

. (2.43)

2. If 1
2 < H ≤ 3

4 and if x is β-Hölder continuous for some β > 1
2 , then,

stably in CRd2×m([0, T ]),

(
n2H−1νH(n)Sn,i,j,e·,x

)
i,j,e
−→
n→∞

(∫ ·
0
xi,es dW

e,j
s

)
i,j,e

. (2.44)

3. If H > 3
4 and if x verifies that E

[
‖x‖2+γ

β

]
< +∞ for some β > 1

2 and

γ > 0 then, in probability uniformly on [0, T ] (and also in L2(Ω) for
fixed t),

(
n2H−1νH(n)Sn,i,j,e·,x

)
i,j,e
−→
n→∞

(∫ ·
0
xi,es dZ

e,j
s

)
i,j,e

. (2.45)

Proof. Even if they are not stated in exactly the same way, the limits (2.44)
and (2.45) follow from [5, 13] (see especially [13, Sections 4,5,7]) by means
of fractional integration techniques. This is why we only concentrate on the
case H = 1

2 and the proof of (2.43), not covered by [5, 13].

Proof of (2.43). We divide the proof into three steps. In the sequel,
’f.d.d.’ is shorthand for finite dimensional distributions.
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Step 1: Convergence of the f.d.d. when x is a step process: Let us first
sketch the proof in the case where x is constant over an interval, without
going too much into the details, since the approach is very similar to that in
[13, Section 5]. Let 0 ≤ s ≤ t ≤ T , let q ∈ N∗, let 0 = a0 ≤ a1 ≤ . . . ≤ aq ≤ t
and let x be the matrix function whose entries are all equal to I[s,t]. It is

immediate that the Rd2m-valued random vector

Xn
x = ((

√
nSn,i,j,eal+1,x

−
√
nSn,i,j,eal,x

)i,j,e)l∈{0,...,q−1}

has independent entries. We can also check that

E[(Xn
x )i1,j1,e1l (Xn

x )i2,j2,e2l ] = 0

for all i1, i2, all (j1, e1) 6= (j2, e2) and all l ∈ {0, . . . , q − 1}. Finally, we can
easily show that

E[
(

(Xn
x )i1,j1,e1l

)4
] −→
n→∞

3

4
(al+1 ∨ s− al ∨ s)2.

Peccati and Tudor’s fourth moment theorem [28] applies, and shows the
stable convergence

Xn
x

L−→
n→∞

((
W e,j
al+1∨s −W

e,j
al∨s)

)
i,j,e

)
l

.

Since the increments are independent, this gives the convergence of the finite
dimensional distributions in (2.43) when x = I[s,t].

Now, let [a1, b1], . . . , [aq, bq] be q mutually disjoint intervals. Due to the
independence of Brownian increments, the process(√

nSn,i,j,e·,I[a1,b1]
, . . . ,

√
nSn,i,j,e·,I[aq,bq ]

)
i,j,e

has independent entries, so we have the stable convergence of its f.d.d. to the

f.d.d. of the process
(∫ T

0 I[a1,b1]dW
e,j
s , . . . ,

∫ T
0 I[aq ,bq ]dW

e,j
s

)
i,j,e

. This implies

in turn the convergence of the f.d.d. of
√
nSn·,x for processes x of the form:

x =

q−1∑
l=0

FlI[al,al+1],

where q ∈ N∗ and Fl is a Rm×d valued and Fal-measurable random variable.
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Step 2: Convergence of the f.d.d in the general case: We now turn to the
general case. Let x be an adapted, almost surely piecewise continuous pro-
cess such that E[supi,e ‖xi,e‖2∞] <∞, and set

∆e,j,k,n(t) =

∫ k+1
n
∧t

k
n

(
Be
s −Be

k
n

)
δBj

s .

As is the proof of Lemma 2.4.8, we can rely on the small blocks / big blocks
technique by considering the approximation

√
nSn,i,j,et,x =

√
nSn,i,j,et,xm +

√
n
(
Sn,i,j,et,x − Sn,i,j,et,xm

)
=
√
nSn,i,j,et,xm +Ri,j,et,m,n,x,

(2.46)
with m ≤ n and xm the sampled process x bm·c

m

.

Fix m ∈ N∗. Since xm is a step process, we have by Step 1 that

f.d.d.− lim
n→∞

(√
nSn,i,j,e·,xm

)
i,j,e

=

(∫ ·
0

(xm)i,es dW
e,j
s

)
i,j,e

.

Morever, for all t ∈ [0, T ],

L2(Ω)− lim
m→∞

(∫ t

0
(xm)i,es dW

e,j
s

)
i,j,e

=

(∫ t

0
xi,es dW

e,j
s

)
i,j,e

,

thanks to the isometry property of Itô integral. Putting these two facts
together , we deduce that

f.d.d.− lim
m→∞

lim
n→∞

(√
nSn,i,j,e·,xm

)
i,j,e

=

(∫ ·
0
xi,es dW

e,j
s

)
i,j,e

.

To conclude that f.d.d.− limn→∞

(√
nSn,i,j,e·,x

)
i,j,e

=
(∫ .

0 x
i,e
s dW

e,j
s

)
i,j,e

, and

given the decomposition (2.46), it remains to show that

lim
m→∞

sup
n≥m

sup
t∈[0,T ]

E[(Ri,j,et,m,n,x)2] = 0, (2.47)

which we do now.
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We have, for all t,

E[(Ri,j,et,m,n,x)2]

= n

ntn∑
l,k=1

E
[(
xi,ek
n

− (xm)i,ek
n

)(
xi,el
n

− (xm)i,el
n

)
∆e,j,k,n(t)∆e,j,l,n(t)

]

= n

bntc∑
k=1

E

[(
xi,ek
n

− (xm)i,ek
n

)2

∆e,j,k,n(t)2

]
(since x is adapted and the increments of the

Brownian motion are independent)

≤ n

bnT c∑
k=1

E

[(
xi,ek
n

− (xm)i,ek
n

)2
]
E
[
∆e,j,k,n(t)2

]
≤ T

2
max

k∈{1,...,bnT c}
E

[(
xi,ek
n

− (xm)i,ek
n

)2
]
.

Let
N i,e = Card

{
t ∈ [0, T ], |xi,et − x

i,e
t−|+ |x

i,e
t − x

i,e
t+| > 0

}
,

which is almost surely finite because x is piecewise continuous. Let T i,el be

the l-th (random) discontinuity of xi,e (T i,el (ω) = +∞ if xi,e(ω) has less than

l discontinuities over [0, T ]). It is clear that T i,el is measurable as a stopping

time. Let Emi,e = ∪l∈N∗(T i,el −
1
m , T

i,e
l + 1

m) ∩ [0, T ]. Then,

lim
m→∞

sup
n>m

Card{k, kn ∈ E
m
i,e}

n
= lim

m→∞
(
2N i,e

m
∧ 1) = 0 a.s..

Observe that xi,e is a.s.uniformly continuous on [0, T ] \ ∪l{T i,el }. Moreover,

if s ∈ (Emi,e)
c for some m, then there is no discontinuities between sm = bmsc

m
and s. Then,

|xi,es − (xms )i,e| ≤ Xi,e
m I(Emi,e)c(s) + 2‖xi,e‖∞IEmi,e(s),

with
Xi,e
m = sup

s∈(Emi,e)
c

|xi,es − xi,esm |.

Note that Xi,e
m is a sequence of square integrables random variables, which

converges a.s. to 0 as m → ∞ and is bounded by the square integrable
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random variable 2‖xi,e‖∞. Finally, we can write

E[(Ri,j,et,m,n,x)2] ≤ T

2
E
[
(Xi,e

m )2 + (
4N i,e

m
∧ 1)‖xi,e‖2∞

]
.

The sequence
(

(Xi,e
m )2 + (2N i,e

m ∧ 1)‖xi,e‖2∞
)
m

converges to 0 as m → ∞,

and is bounded by a square integrable random variable. The conclusion
(2.47) then follows by dominated convergence.

Step 3: Tightness. Let 0 < µ < γ. We have, for all i, j, e, all s ≤ t and
all n ∈ N∗,

E
[∣∣∣Sn,i,j,et,x − Sn,i,j,es,x

∣∣∣2+µ
]
≤ |t− s|

µ
2

∫ t

s
E
[∣∣xn,i,jsn (Bj,e

s −Bj,e
sn )
∣∣2+µ

]
ds

≤ K|t− s|1+µ
2 E[‖xi,j‖2+γ ]

2+γ
2+µ

where the first inequality is obtained by applying the Burkholder and Jensen
inequalities, and the second inequality is obtained by applying the Hölder
inequality. This prove the tightness in CR([0, T ]) of each component of Snx ,
and conclude the proof of (2.43).

�

Remark 2.4.10. In the case H = 1
2 , notice that the hypothesis E[‖x‖2+γ

∞ ] <
∞ is only needed to obtain the tightness of the process. For the convergence
of the f.d.d., the hypothesis E[‖x‖2∞] <∞ is sufficient.

Finally, the following lemma is used in the proof of Proposition 2.3.3.

Lemma 2.4.11. Let b be a piecewise continuous process such that E[‖b‖2+γ
∞ ] <

∞ for some γ > 0. Then:

• For H > 3
4 , in probability uniformly on [0, T ],

νH(n)n2H−1

bn·c∑
k=0

b k
n

∫ k+1
n
∧·

k
n

(s− sn)dBi
s −→

1

2

∫ ·
0
bsdB

i
s.

• For 1
2 ≤ H ≤

3
4 , in probability uniformly on [0, T ],

νH(n)n2H−1

bn·c∑
k=0

b k
n

∫ k+1
n
∧·

k
n

(s− sn)dBi
s −→ 0.

Proof. The proof in the case b = I[0,t] is done in [13]. Similar arguments as
in Lemma 2.4.8 allow to conclude. �
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2.4.3 Proof of Theorem 2.1.2 and 2.1.3

Proof of Theorem 2.1.2: For s ∈ [0, T ], recall that sn = bnsc
n and

Mn,i,j
t = n2H−1

∫ t

0
uisdB

j
s −

bntc∑
k=0

uik
n

(
Bj
k+1
n
∧t
−Bj

k
n

) .

We have

Mn,i,j
t = n2H−1

∫ t

0
(uis − uisn)dBj

s

= n2H−1

∫ t

0

d∑
e=1

P i,esn (Be
s −Be

sn)dBj
s

+n2H−1

∫ t

0

(
uis − uisn −

d∑
e=1

P i,esn (Be
s −Be

sn)

)
dBj

s

= An,i,jt +
∑
e 6=j

Rn,et +Rn,i,jt ,

with

An,i,jt =
1

2
n2H−1

ntn∑
k=0

P i,jk
n

(
Bj
k+1
n
∧t
−Bj

k
n

)2

Rn,et = n2H−1
ntn∑
k=0

P i,ek
n

∫ k+1
n
∧t

k
n

(
Be
s −Be

k
n

)
dBj

s , e 6= j

Rn,i,jt = n2H−1

∫ t

0

(
uis − uisn −

d∑
e=1

P i,esn (Be
s −Be

sn)

)
dBj

s .

Lemma 2.4.8 implies the L2(Ω)-convergence of An,i,jt to 1
2

∫ t
0 P

i,j
s ds. We

show that all the additional terms converge to 0 in L2(Ω)-norm as n→∞.
If e 6= j, D1,jBe = 0, so according to Proposition 2.2.4∫ k+1

n
∧t

k
n

(
Be
s −Be

k+1
n

)
dBj

s =

∫ k+1
n
∧t

k
n

(
Be
s −Be

k+1
n

)
δBj

s .

Lemma 2.4.8 then implies the L2(Ω) and UCP convergence of every Rn,et to
0 for all e 6= j and t ∈ [0, T ]. Moreover, (u, P ) ∈ C1, so the equation (2.3)
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implies that

E
[(
Rn,i,jt

)2
]

= n4H−2E

(ntn∑
k=0

Li,jk
n
, k+1
n
∧t

)2


= n4H−2
ntn∑
l=0

ntn∑
k=0

E
[
Li,jk
n
, k+1
n
∧t
Li,jl
n
, l+1
n
∧t

]

= ε(n)

ntn∑
l=0

ntn∑
k=0

rH

(
k

n
,
k + 1

n
∧ t, l

n
,
l + 1

n
∧ t
)
≤ T 2Hε(n),

with ε(n) −→
n→∞

0.

Thanks to Lemma 2.4.5, we can now show that, for all i, j ∈ {1, . . . , d},
the sequences (Rn,i,jt )n converges UCP to 0 as n → ∞, by checking their
tightness in CR([0, T ]). We have

Rn,i,jt = n2H−1
ntn−1∑
k=0

Li,jk
n
, k+1
n

+ n2H−1Li,jtn,t (2.48)

Thanks to (2.3), we have

E

n2H−1
ntn−1∑
k=nsn

Li,jk
n
, k+1
n

2 ≤ K

ntn−1∑
l,k=nsn

rH

(
k

n
,
k + 1

n
,
l

n

l + 1

n

)
= K(tn − sn)2H ,

for some K > 0. Moreover, let ε ∈ (0, α − (1 − H)) be small enough (let
us recall that α (resp β) is the Hölder exponent of u (resp P )). The second
term in the right-hand side of (2.48) verifies (due to the regularity and inte-
grability assumptions on u and P , as well as the Young-Loeve inequality):

sup
t∈[0,T ]

(
n2H−1

∣∣Li,jtn,t∣∣)
≤ cα− ε

2
,H− ε

2
n2H−1n−(H+α−ε)‖B‖H− ε

2
‖ui‖α− ε

2

+cH− ε
2
,H− ε

2
n−1+ε‖P i,j‖∞‖B‖2H− ε

2
−→
n→∞

0 a.s..

Then, the sequence Rn,i,jt verifies the assumptions of Lemma 2.4.4, with
An,i,jt = n2H−1

∑ntn−1
k=0 Li,jk

n
, k+1
n

, Cn,i,jt = n2H−1Li,jtn,t, α0 = 2H − 1, β0 = 2,

which proves the tightness. �
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Proof of Theorem 2.1.3: 1. Let H > 1
2 . Again, we can write

Mn,i,j
t − 1

2

∫ t

0
P i,js ds = Mn,i,j

j,t +
∑
e 6=j

Mn,i,j
e,t +Rn,i,j1,t +Rn,i,j2,t ,

where, for 1 ≤ i ≤ m and 1 ≤ j 6= e ≤ d,

Mn,i,j
j,t = n2H−1

ntn∑
k=0

P i,jk
n

(∫ k+1
n
∧t

k
n

(
Bj
s −B

j
k
n

)
dBj

s −
1

2

(
k + 1

n
∧ t− k

n

)2H
)

Mn,i,j
e,t = n2H−1

ntn∑
k=0

P i,ek
n

∫ k+1
n
∧t

k
n

(
Be
s −Be

k
n

)
dBj

s

Rn,i,j1,t =
1

2

(
1

n

ntn−1∑
k=0

P i,jk
n

+
1

n
P i,jtn (nt− ntn)2H −

∫ t

0
P i,js ds

)

Rn,i,j2,t = n2H−1

∫ t

0

(
uis − uisn −

d∑
e=1

P i,esn (Be
s −Be

sn)

)
dBj

s .

Since (u, P ) ∈ C2, we have that νH(n)Rn,i,j2,t

L2(Ω)−→
n→∞

0 by using again the

formula (2.3). The tightness of the sequence (νH(n)Rn,i,j2,t )n can be proved
by using the same argument as in the previous proof.

On the other hand, since P is β-Hölder continuous for some β > 1
2 we

have that supt∈[0,T ]

∣∣∣νH(n)Rn,i,j1,t

∣∣∣→ 0 a.s., which guarantees the convergence

of νH(n)Rn,i,j1,· to 0 in CR([0, T ]). When H > 3
4 , since we have the additional

hypothesis that
∑

i,j E[‖P i,j‖2+γ
β ] <∞ for some γ > 0, we can further prove

the L2(Ω) convergence: for each t ≤ T , νH(n)Rn,i,j1,t

L2(Ω)−→
n→∞

0.

Finally, using Proposition 2.2.4 we observe that∫ k+1
n
∧t

k
n

(
Bj
s −B

j
k
n

)
dBj

s −
(nt− ntn)

2n2H
=

∫ k+1
n
∧t

k
n

(
Bj
s −B

j
k
n

)
δBj

s

and, if e 6= j,∫ k+1
n
∧t

k
n

(
Be
s −Be

k
n

)
dBj

s =

∫ k+1
n
∧t

k
n

(
Be
s −Be

k
n

)
δBj

s .

Since P verifies the regularity assumptions of Lemma 2.4.9, we get the stated
convergence for all values of H > 1

2 :
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• If 1
2 < H ≤ 3

4 ,{
νH(n)

(
Mn,i,j
· − 1

2

∫ ·
0
P i,js ds

)}
i,j

−→
n→∞

{∫ ·
0
P i,es dW e,j

s

}
e,i,j

where the convergence holds in CRd×m([0, t]).

• If H > 3
4 ,{
νH(n)

(
Mn,i,j
· − 1

2

∫ ·
0
P i,js ds

)}
i,j

−→
n→∞

{∫ ·
0
P i,es dZe,js

}
e,i,j

where the convergence holds UCP (and in L2(Ω) for fixed t).

2. Once the necessary modifications are made, the proof is the same for
Brownian motion. �
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discretization error of Itô integrals. Math. Finance 31 (2021), pp. 323-
365.

[2] E. Azmoodeh and L. Viitasaari: Rate of convergence for discretization
of integrals with respect to fractional Brownian motion. Journal of
Theoretical Probability 28 (2015), no. 1, pp. 396–422.

[3] W. Beckner: Geometric inequalities in Fourier analysis. In Essays on
Fourier Analysis in Honor of Elias M. Stein, Princeton University
Press, Princeton, NJ (1995), pp. 36-68.

[4] F. Comte and E. Renault. Long memory in continuous-time stochastic
volatility models. Math. Finance 8 (1998), no. 4, pp. 291-323.

[5] J.M Corcuera, D. Nualart and M. Podolskij: Asymptotics of weighted
random sums Communications in Applied and Industrial Mathematics
6, no. 1 (2014).

[6] L. Coutin, D. Nualart and C.A. Tudor: Tanaka formula for the frac-
tional Brownian motion. Stochastic processes and their applications 94
(2001), no. 2, pp. 301–315.
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Chapter 3

Limit theorem for integral
functionals of Hermite driven
processes

Reproduction of the paper [15], entitled ”Limit theorem of integral func-
tionals of Hermite-driven process” and written in collaboration with Ivan
Nourdin, David Nualart and Majid Salamat. Bernoulli 27 (2021), no. 3,
pp. 1764–1788.

3.1 Introduction

Hermite processes occur naturally when we consider limits of partial sums
associated with long-range dependent stationary series. They have become
increasingly popular in the recent literature, see for example the book [16]
by Pipiras and Taqqu, in particular section 4.11, which contains bibliograph-
ical notes on their history and recent developments. They form a family of
stochastic processes, indexed by an integer q ≥ 1 and a self-similarity index
H ∈ (1

2 , 1), called the Hurst parameter, that contains the fractional Brown-
ian motion (q = 1) and the Rosenblatt process (q = 2) as particular cases.
We refer the reader to Section 3.2.2 and the references therein for a precise
definition of the Hermite processes. Of primary importance in the sequel is
the parameter H0, given in terms of H and q by

H0 = 1− 1−H
q
∈ (1− 1

2q
, 1). (3.1)

The goal of the present paper is to investigate the fluctuations, as T →
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∞, of the family of stochastic processes

t 7→
∫ Tt

0
P (X(s))ds, t ∈ [0, 1] (say), (3.2)

in the case where P (x) is a polynomial function and X is a moving average
process of the form

X(t) =

∫ t

−∞
ϕ(t− u)dZu, t ≥ 0, (3.3)

with Z a Hermite process and ϕ : R+ → R a sufficiently integrable function.
We note that integral functionals such as (3.2) are often encountered in the
context of statistical estimation, see e.g. [21] for a concrete example.

Let us first consider the case where q = 1, that is to say the case where Z
is the fractional Brownian motion. Note that this is the only case where Z is
Gaussian, making the study a priori much simpler and more affordable. By
linearity and passage to the limit, the process X is also Gaussian. Moreover,
it is stationary, since the quantity E[X(t)X(s)] =: ρ(t− s) only depends on
t − s. For simplicity and without loss of generality, assume that ρ(0) = 1,
that is, X(t) has variance 1 for any t. As is well-known since the eighties
(see [5, 8, 19]), the fluctuations of (3.2) heavily depends on the centered
Hermite rank of P , defined as the integer d ≥ 1 such that P decomposes in
the form

P = E[P (X(0))] +
∞∑
k=d

akHk, (3.4)

with Hk the kth Hermite polynomials and ad 6= 0. (Note that the sum (3.4)
is actually finite, since P is a polynomial, so that #{k : ak 6= 0} <∞.)

The first result of this paper concerns the fractional Brownian motion.
Even if it does not follow directly from the well-known results of Breuer-
Major [5], Dobrushin-Major [8] and Taqqu [19], the limits obtained are
somehow expected. In particular, the threshold H = 1 − 1

2d is well known
to specialists. However, the proof of this result is not straightforward, and
requires several estimations which are interesting in themselves.

Theorem 1. Let Z be a fractional Brownian motion of Hurst index H ∈
(1

2 , 1), and let ϕ ∈ L1(R+)∩L
1
H (R+). Consider the moving average process

X defined by (3.3) and assume without loss of generality that Var(X(0)) =
1 (if not, it suffices to multiply ϕ by a constant). Finally, let P (x) =∑N

n=0 anx
n be a real-valued polynomial function, and let d ≥ 1 denotes its

centered Hermite rank.
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1. If d ≥ 2 and H ∈ (1
2 , 1−

1
2d) then

T−
1
2

{∫ Tt

0

(
P (X(s))− E[P (X(s))]

)
ds

}
t∈[0,1]

(3.5)

converges in distribution in C([0, 1]) to a standard Brownian motion
W , up to some multiplicative constant C1 which is explicit and depends
only on ϕ, P and H.

2. If H ∈ (1− 1
2d , 1) then

T d(1−H)−1

{∫ Tt

0

(
P (X(s))− E[P (X(s))]

)
ds

}
t∈[0,1]

(3.6)

converges in distribution in C([0, 1]) to a Hermite process of index d
and Hurst parameter 1− d(1−H), up to some multiplicative constant
C2 which is explicit and depends only on ϕ, P and H.

Now, let us consider the non-Gaussian case, that is, the case where q ≥ 2.
As we will see, the situation is completely different, both in the results
obtained (rather unexpected) and in the methods used (very different from
the Gaussian case). Let L > 0. We define SL to be the set of bounded
functions l : R+ → R such that yLl(y) → 0 as y → ∞. We observe that

SL ⊂ L1(R+) ∩ L
1
H (R+) for any L > 1. We can now state the following

result.

Theorem 2. Let Z be a Hermite process of order q ≥ 2 and Hurst parameter
H ∈ (1

2 , 1), and let ϕ ∈ SL for some L > 1. Recall H0 from (3.1) and
consider the moving average process X defined by (3.3). Finally, let P (x) =∑N

n=0 anx
n be a real-valued polynomial function. Then, one and only one of

the following two situations takes place at T →∞:

(i) If q is odd and if an 6= 0 for at least one odd n ∈ {1, . . . , N}, then

T−H0

{∫ Tt

0

(
P (X(s))− E[P (X(s))]

)
ds

}
t∈[0,1]

converges in distribution in C([0, 1]) to a fractional Brownian motion
of parameter H1 := H0, up to some multiplicative constant K1 which
is explicit and depends only on ϕ, P , q and H, see Remark 4.
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(ii) If q is even, or if q is odd and an = 0 for all odd n ∈ {1, . . . , N}, then

T 1−2H0

{∫ Tt

0

(
P (X(s))− E[P (X(s))]

)
ds

}
t∈[0,1]

converges in distribution in C([0, 1]) to a Rosenblatt process of Hurst
parameter H2 := 2H0−1, up to some multiplicative constant K2 which
is explicit and depends only on ϕ, P , q and H, see Remark 4.

Remark 3. Whether in Theorem 1 or Theorem 2, the multiplicative con-
stants appearing in the limit can be all given explicitly by following the
respective proofs. For example, the constant K1 and K2 of Theorem 2 are
given by the following intricate expressions:

K1 =
N∑

n=3,n odd

anc
n
H,qKϕ,n,1

K2 =
N∑
n=2

anc
n
H,qKϕ,n,2 + a1I{q=2}

∫
R+

ϕ(ν)dν

with

Kϕ,n,i =
∑

α∈An,q ,nq−2|α|=i

CαKϕ,α,H0

cHi,i
, i = 1, 2,

where the sets and constants in the previous formula are defined in Sections
3.2, 3.3 and 3.4.

Remark 4. Note that, unlike the case of a fractional Brownian motion X,
where the limit depends on the Hermite rank of the polynomial P , here
the Hermite rank of P plays no role and the limit depends on the parity
of the nonvanishing coefficients of P . This is not really surprising in our
non-Gaussian context, since the Hermite rank of P is defined by means of
its decomposition into Hermite polynomials, and these latter polynomials
only have good probabilistic properties when evaluated in Gaussian random
variables.

We note that our Theorem 2 contains as a very particular case the main
result of [21], which corresponds to the choice P (x) = x2 and thus situation
(ii). Moreover, let us emphasize that our Theorem 2 not only studies the
convergence of finite-dimensional distributions as in [21], but also provides
a functional result.

Because the employed method is new, let us sketch the main steps of the
proof of Theorem 2, by using the classical notation of the Malliavin calculus
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(see Section 2 for any unexplained definition or result); in particular we
write IBp (h) to indicate the pth multiple Wiener-Itô integral of kernel h with
respect to the standard (two-sided) Brownian motion B.

(Step 1) In Section 3.3, we represent the moving average process X as
a qth multiple Wiener-Itô integral with respect to B:

X(t) = cH,q I
B
q (g(t, ·)),

where cH,q is an explicit constant and the kernel g(t, ·) is given by

g(t, ξ1, . . . , ξq) =

∫ t

−∞
ϕ(t− v)

q∏
j=1

(v − ξj)
H0− 3

2
+ dv, (3.7)

for ξ1, . . . , ξq ∈ R, t ≥ 0. Thanks to this representation, we compute in
Lemma 5 the chaotic expansion of the nth power of X(t) for any n ≥ 2 and
t > 0, and obtain an expression of the form

Xn(t) = cnH,q
∑

α∈An,q

CαI
B
nq−2|α|(⊗α(g(t, ·), . . . , g(t, ·))),

where we have used the novel notation ⊗α(g(t, ·), . . . , g(t, ·)) to indicate it-
erated contractions whose precise definition is given in Section 3.2.1, and
where Cα are combinatorial constants and the sum runs over a family An,q
of suitable multi-indices α = (αij , 1 ≤ i < j ≤ n). As an immediate con-
sequence, we deduce that our quantity of interest can be decomposed as
follows:∫ Tt

0

(
P (X(s))− E[P (X(s))]

)
ds = a0

∫ Tt

0
X(s)ds (3.8)

+
N∑
n=2

an c
n
H,q

∑
α∈An,q ,nq−2|α|≥1

Cα

∫ Tt

0
IBnq−2|α|(⊗α(g(s, ·), . . . , g(s, ·)))ds.

(Step 2) In Proposition 6, we compute an explicit expression for the
iterated contractions ⊗α(g(t, ·), . . . , g(t, ·)) appearing in the right-hand side
of (3.8), by using that g is given by (3.7).

To ease the description of the remaining steps, let us now set

Fn,q,α,T (t) =

∫ Tt

0
IBnq−2|α|(⊗α(g(s, ·), . . . , g(s, ·)))ds. (3.9)
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(Step 3) As T →∞, we show in Proposition 7 that, if nq−2|α| < q
1−H ,

then T−1+(1−H0)(nq−2|α|)Fn,q,α,T (t) converges in distribution to a Hermite
process (whose order and Hurst index are specified) up to some multiplica-
tive constant. Similarly, we prove in Proposition 9 that, if nq − 2|α| ≥ 3,
then Tα0Fn,q,α,T (t) is tight and converges in L2(Ω) to zero, where α0 is given
in (3.28).

(Step 4) By putting together the results obtained in the previous steps,
the two convergences stated in Theorem 2 follow immediately.

To illustrate a possible use of our results, we study in Section 3.6 an
extension of the classical fractional Ornstein-Uhlenbeck process (see, e.g.,
Cheridito et al [7]) to the case where the driving process is more generally a
Hermite process. To the best of our knowledge, there is very little literature
devoted to this mathematical object, only [11,17].

The rest of the paper is organized as follows. Section 3.2 presents some
basic results about multiple Wiener-Itô integrals and Hermite processes, as
well as some other facts that are used throughout the paper. Section 3.3
contains preliminary results. The proof of Theorem 1 (resp. Theorem 2)
is given in Section 3.5 (resp. Section 3.4). In Section 3.6, we provide a
complete asymptotic study of the Hermite-Ornstein-Uhlenbeck process, by
means of Theorems 1 and 2 and of an extension of Birkhoff’s ergodic The-
orem. Finally, Section 3.7 contains two technical results: a power counting
theorem and a version of the Hardy-Littelwood inequality, which both play
an important role in the proof of our main theorems.

3.2 Preliminaries on multiple Wiener-Itô integrals
and Hermite processes

3.2.1 Multiple Wiener-Itô integrals and a product formula

A function f : Rp → R is said to be symmetric if the following relation holds
for all permutation σ ∈ S(p):

f(t1, . . . , tp) = f(tσ(1), . . . , tσ(p)), t1, . . . , tp ∈ R.

The subset of L2(Rp) composed of symmetric functions is denoted by L2
s(Rp).

Let B = {B(t)}t∈R be a two-sided Brownian motion. For any given
f ∈ L2

s(Rp) we consider the multiple Wiener-Itô integral of f with respect
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to B, denoted by

IBp (f) =

∫
Rp
f(t1, . . . , tp)dB(t1) · · · dB(tp).

This stochastic integral satisfies E[IBp (f)] = 0 and

E[IBp (f)IBq (g)] = 1{p=q}p!〈f, g〉L2(Rp)

for f ∈ L2
s(Rp) and g ∈ L2

s(Rq), see [10] and [13] for precise definitions and
further details.

It will be convenient in this paper to deal with multiple Wiener-Itô in-
tegrals of possibly nonsymmetric functions. If f ∈ L2(Rp), we put IBp (f) =

IBp (f̃), where f̃ denotes the symmetrization of f , that is,

f̃(x1, . . . , xp) =
1

p!

∑
σ∈S(p)

f(xσ(1), . . . , xσ(p)).

We will need the expansion as a sum of multiple Wiener-Itô integrals for
a product of the form

n∏
k=1

IBq (hk),

where q ≥ 2 is fixed and the functions hk belong to L2
s(Rq) for k = 1, . . . , n.

In order to present this extension of the product formula and to define the
relevant contractions between the functions hi and hj that will naturally
appear, we introduce some further notation. Let An,q be the set of multi-
indices α = (αij , 1 ≤ i < j ≤ n) such that, for each k = 1, . . . , n,∑

1≤i<j≤n
αij1k∈{i,j} ≤ q.

Set |α| =
∑

1≤i<j≤n αij ,

β0
k = q −

∑
1≤i<j≤n

αij1k∈{i,j}, 1 ≤ k ≤ n

and

m := m(α) =

n∑
k=1

β0
k = nq − 2|α|. (3.10)

For each 1 ≤ i < j ≤ n, the integer αij will represent the number of variables
in hi which are contracted with hj whereas, for each k = 1, . . . , n, the integer
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β0
k is the number of variables in hk which are not contracted. We will also

write βk =
∑k

j=1 β
0
j for k = 1, . . . , n and β0 = 0. Finally, we set

Cα =
q!n∏n

k=1 β
0
k!
∏

1≤i<j≤n αij !
. (3.11)

With these preliminaries, for any element α ∈ An,q we can define the
contraction ⊗α(h1, . . . , hn) as the function of nq − 2|α| variables obtained
by contracting αij variables between hi and hj for each couple of indices
1 ≤ i < j ≤ n. Define the collection (ui,j)1≤i,j≤n,i 6=j in the following way:

ui,j = αmin(i,j),max(i,j).

We then have

⊗α (h1, . . . , hn)(ξ1, . . . , ξnq−2|α|)

=

∫
R|α|

n∏
k=1

hk(s
k,1
1 , . . . , sk,1

uk,1
, . . . , sk,n1 , . . . , sk,n

uk,n
, ξ1+βk−1

, . . . , ξβk) (3.12)

×
∏

1≤i<j≤n
dsi,j1 . . . dsi,j

ui,j

When n = 2, α has only one component α1,2 and ⊗α(h1, h2) = h1 ⊗α1,2 h2

is the usual contraction of α1,2 indices between h1 and h2. Notice that the
function ⊗α(h1, . . . , hn) is not necessarily symmetric.

Then, we have the following result.

Lemma 5. Let n, q ≥ 2 be some integers and let hi ∈ L2
s(Rq) for i =

1, . . . , n. We have

n∏
k=1

IBq (hk) =
∑

α∈An,q

CαI
B
nq−2|α|(⊗α(h1, . . . , hn)). (3.13)

Proof. The product formula for multiple stochastic integrals (see, for in-
stance, [14, Theorem 6.1.1], or formula (2.1) in [3] for n = 2) says that

n∏
k=1

IBq (hk) =
∑
P,ψ

IBβ0
1+···+β0

n

(
(⊗nk=1hk)P,ψ

)
, (3.14)

where P denotes the set of all partitions {1, . . . , q} = Ji ∪ (∪k=1,...,n,k 6=iIik),
where for any i, j = 1, . . . , n, Iij and Iji have the same cardinality αij , ψij
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is a bijection between Iij and Iji and β0
k = |Jk|. Moreover, (⊗nk=1hk)P,ψ

denotes the contraction of the indexes ` and ψij(`) for any ` ∈ Iij and any
i, j = 1 . . . , n. Then, formula (3.13) follows form (3.14), by just counting
the number of partitions, which is

n∏
k=1

q!∏
i or j 6=k αij !β

0
k!

and multiplying by the number of bijections, which is
∏

1≤i<j≤n αij !. �

Notice that when n = 2, formula (3.13) reduces to the well-known for-
mula for the product of two multiple integrals. That is, for any two sym-
metric functions f ∈ L2

s(Rp) and g ∈ L2
s(Rq) we have

IBp (f)IBq (g) =

min(p,q)∑
r=0

r!

(
p

r

)(
q

r

)
IBp+q−2r(f ⊗r g).

where, for 0 ≤ r ≤ min(p, q), f ⊗r g ∈ L2(Rp+q−2r) denotes the contraction
of r coordinates between f and g.

3.2.2 Hermite processes

Fix q ≥ 1 and H ∈ (1
2 , 1). The Hermite process of index q and Hurst

parameter H can be represented by means of a multiple Wiener-Itô integral
with respect to B as follows, see e.g. [9]:

ZH,q(t) = cH,q

∫
Rq

∫
[0,t]

q∏
j=1

(s− xj)
H0− 3

2
+ dsdB(x1) · · · dB(xq), t ∈ R.

(3.15)
Here, x+ = max{x, 0}, the constant cH,q is chosen to ensure that
Var(ZH,q(1)) = 1, and

H0 = 1− 1−H
q
∈
(
1− 1

2q
, 1
)
.

Note that ZH,q is self-similar of index H. When q = 1, the process
ZH,1 is Gaussian and is nothing but the fractional Brownian motion with
Hurst parameter H. For q ≥ 2, the processes ZH,q are no longer Gaussian:
they belong to the qth Wiener chaos. The process ZH,2 is known as the
Rosenblatt process.
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Let |H| be the following class of functions:

|H| =
{
f : R→ R

∣∣∣ ∫
R

∫
R
|f(u)||f(v)||u− v|2H−2dudv <∞

}
.

Maejima and Tudor [9] proved that the stochastic integral
∫
R f(u)dZH,q(u)

with respect to the Hermite process ZH,q is well defined when f belongs to
|H|. Moreover, for any order q ≥ 1, index H ∈ (1

2 , 1) and function f ∈ |H|,∫
R
f(u)dZH,q(u) (3.16)

= cH,q

∫
Rq

∫
R
f(u)

q∏
j=1

(u− ξj)
H0− 3

2
+ du

 dB(ξ1) · · · dB(ξq).

As a consequence of the Hardy-Littlewood-Sobolev inequality featured in [1],

we observe that L1(R) ∩ L
1
H (R) ⊂ |H|.

3.3 Chaotic decomposition of
∫ Tt

0 P (X(s))ds

Assume ϕ ∈ |H| and q ≥ 1. Using (3.16) and bearing in mind the notation
and results from Section 3.2, it is immediate that X can be written as

X(t) = cH,qI
B
q (g(t, .)), (3.17)

where g(t, .) is given by

g(t, ξ1, . . . , ξq) =

∫ t

−∞
ϕ(t− v)

q∏
j=1

(v − ξj)H0−3/2
+ dv, (3.18)

and cH,q is defined as in (3.15).

3.3.1 Computing the chaotic expansion of X(t)n when n ≥ 2

Let us denote by A0
n,q the set of elements α ∈ An,q such that nq − 2|α| = 0

and A1
n,q will be the set of elements α ∈ An,q such that nq−2|α| ≥ 1. Notice

that when nq is odd, A0
n,q is empty. Using (3.13), we obtain the following

formula for the expectation of the nth power (n ≥ 2) of X given by (3.3):

E[X(t)n] = (cH,q)
n
∑

α∈A0
n,q

CαI
B
nq−2|α|(⊗α(g(t, ·), . . . , g(t, ·))). (3.19)
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We observe in particular that E[X(t)n] = 0 whenever nq is odd. From (3.13)
and (3.19), we deduce for n ≥ 2 that

X(t)n−E[X(t)n] = (cH,q)
n
∑

α∈A1
n,q

CαI
B
nq−2|α|(⊗α(g(t, ·), . . . , g(t, ·))). (3.20)

To clarify this formula, let us write down detailed a expression in the
cases n = 2 and n = 3. When n = 2, the right-hand side of (3.20) is

(cH,q)
2
q−1∑
r=0

r!

(
q

r

)2

IB2q−2r(g(t, ·)⊗r g(t, ·)),

because α has just one component α1,2 =: r and condition α ∈ A1
n,q means

0 ≤ r ≤ q − 1. For n = 3, we have

A3,q = {(α1,2, α1,3, α2,3) : α1,2 + α1,3 ≤ q, α1,2 + α2,3 ≤ q, α1,3 + α2,3 ≤ q}

and the right-hand side of (3.20) is

(cH,q)
3

∑
α∈A3,q :3q−2|α|≥1

CαI3q−2|α|(⊗α(g(t, ·), g(t, ·), g(t, ·)),

where

Cα =
(q!)3

α1,2!α1,3!α2,2!(q − α1,2 − α1,3)!(q − α1,2 − α2,3)!(q − α1,3 − α1,3)!
.

In this case, the contraction ⊗α(g(t, ·), g(t, ·), g(t, ·)) is the function of 3q −
2|α| variables defined by∫

R|α|
g(•, s, u)g(?, s, v))g(◦, u, v)dsdudv,

with s = (s1, . . . , sα1,2), u = (u1, . . . , uα1,3) and v = (v1, . . . , vα2,3).
From (3.20) we obtain∫ Tt

0

(
P (X(s))− E[P (X(s))]

)
ds = a1

∫ Tt

0
X(s)ds (3.21)

+

N∑
n=2

an(cH,q)
n
∑

α∈A1
n,q

Cα

∫ Tt

0
IBnq−2|α|(⊗α(g(s, ·), . . . , g(s, ·)))ds.
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3.3.2 Expressing the iterated contractions of g

We now compute an explicit expression for the iterated contractions appear-
ing in (3.21).

Proposition 6. Fix n ≥ 2, q ≥ 1 and α ∈ An,q. We have

⊗α (g(t, .), . . . , g(t, .))(ξ) = β(H0 −
1

2
, 2− 2H0)|α|

×
∫

(−∞,t]n
dv1 . . . dvn

n∏
k=1

ϕ(t− vk)
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij

×
n∏
k=1

βk∏
`=1+βk−1

(vk − ξ`)
H0− 3

2
+ ,

with the convention β0 = 0.

Proof. The proof is a straightforward consequence of the following identity∫
R

(v−ξ)H0−3/2
+ (w−ξ)H0−3/2

+ dξ = β(H0−
1

2
, 2−2H0)|v−w|(2H0−2), (3.22)

whose proof is elementary, see e.g. [4]. �

3.4 Proof of Theorem 2

We are now ready to prove Theorem 2. To do so, we will mostly rely
on the forthcoming Proposition 7, which might be a result of independent
interest by itself, and which studies the asymptotic behavior of FBn,q,α,T given
by (3.9). We will denote by f.d.d. the convergence in law of the finite-
dimensional distributions of a given process. Notice that the hypothesis on
ϕ is a bit weaker than the one in the main theorem, the fact that ϕ ∈ SL
being required in the forthcoming Proposition 9.

Proposition 7. Fix n ≥ 2, q ≥ 1 and α ∈ An,q. Assume the function ϕ

belongs to L1(R+) ∩ L
1
H (R+), recall H0 from (3.1) and let m be defined as

in (3.10). Finally, assume that 2m < q
1−H (which is automatically satisfied

when m = 1 or m = 2). Then, as T →∞,

(T−1+(1−H0)mFn,q,α,T (t))t∈[0,1]
f.d.d.−→

(
CαKϕ,α,H0

cH(m),m
ZH(m),m(t)

)
t∈[0,1]

,

(3.23)
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where ZH(m),m denotes the mth Hermite process of Hurst index H(m) =
1 − m

q (1 −H) and the constants Cα and Kϕ,α,H0 are defined in (3.11) and

(3.24), respectively. Furthermore, {T−1+(1−H0)m(Fn,q,α,T (t))t∈[0,1], T > 0}
is tight in C([0, 1]).

Remark 8. Note that for m1 < m2 the chaos of order m1 dominates the
chaos of order m2.

Proof of Proposition 7. Let n ≥ 2, q ≥ 1 and α ∈ An,q.

Step 1: We will first show the convergence (3.23). We will make several
change of variables in order to transform the expression of Fn,q,α,T (t). By
means of an application of stochastic’s Fubini’s theorem, we can write

Fn,q,α,T (t) = Cα

∫
Rm

ΨT (ξ1, . . . , ξm)dB(ξ1) · · · dB(ξm),

where

ΨT (ξ1, . . . , ξm) := T−1+m(1−H0)

∫ Tt

0
ds

∫
(−∞,s]n

dv1 · · · dvn
n∏
k=1

ϕ(s− vk)

×
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
`=1+βk−1

(vk − ξ`)
H0− 3

2
+ .

Using the change of variables s → Ts and vk → Ts − vk, 1 ≤ k ≤ n, we
obtain

ΨT (ξ1, . . . , ξm) := Tm(1−H0)

∫ t

0
ds

∫
(−∞,T s]n

dv1 · · · dvn
n∏
k=1

ϕ(Ts− vk)

×
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
`=1+βk−1

(vk − ξ`)
H0− 3

2
+

= T−
m
2

∫ t

0
ds

∫
[0,∞)n

dv1 · · · dvn
n∏
k=1

ϕ(vk)

×
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
`=1+βk−1

(s− vk
T
− ξ`
T

)
H0− 3

2
+ .

By the scaling property of the Brownian motion, the processes

(Fn,q,α,T (t))α∈An,q ,2≤n≤N,t∈[0,1]
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and
(F̂n,q,α,T (t))α∈An,q ,2≤n≤N,t∈[0,1]

have the same probability distribution, where

F̂n,q,α,T (t) = Cα

∫
Rm

Ψ̂T (ξ1, . . . , ξm)dB(ξ1) · · · dB(ξm)

Ψ̂T (ξ1, . . . , ξm) :=

∫ t

0
ds

∫
(−∞,0]n

dv1 · · · dvn
n∏
k=1

ϕ(vk)

×
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
`=1+βk−1

(s− vk
T
− ξ`)

H0− 3
2

+ .

Set

Ψ̂(ξ1, . . . , ξm) := Kϕ,α,H0

∫ t

0
ds

m∏
`=1

(s− ξ`)
H0− 3

2
+ ,

where

Kϕ,α,H0 =

∫
Rn+
dv1 · · · dvn

n∏
k=1

ϕ(vk)
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij . (3.24)

Notice that, by Lemma 15, Kϕ,α,H0 is well defined. We claim that

lim
T→∞

Ψ̂T = Ψ̂, (3.25)

where the convergence holds in L2(Rm). This will imply the convergence in
L2(Ω) of F̂n,q,α,T (t), as T →∞ to a Hermite process of order m, multiplied
by the constant CαKϕ,α,H0 .

Proof of (3.25): It suffices to show that the inner products 〈Ψ̂T , Ψ̂T 〉L2(Rm)

and 〈Ψ̂T , Ψ̂〉L2(Rm) converge, as T →∞, to

‖Ψ̂‖2L2(Rm) = K2
ϕ,α,H0

β(H0 −
1

2
, 2− 2H0)m

∫
[0,t]2

dsds′|s− s′|(2H0−2)m,

which is finite because m < 1
2(1−H0) = q

2(1−H) . We will show the conver-

gence of 〈Ψ̂T , Ψ̂T 〉L2(Rm) and the second term can be handled by the same
arguments. We have

‖Ψ̂T ‖2L2(Rm) =

∫
[0,t]2

dsds′
∫
R2n

+

dv1 · · · dvndv′1 · · · dv′n
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×
n∏
k=1

ϕ(vk)ϕ(v′k)
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij |v′i − v′j |(2H0−2)αij

×
n∏
k=1

β(H0 −
1

2
, 2− 2H0)βk |s− s′ −

vk − v′k
T

|(2H0−2)βk .

Let us first show that given wk ∈ R, 1 ≤ k ≤ n,

lim
T→∞

∫
[0,t]2

dsds′
n∏
k=1

|s− s′ − wk
T
|(2H0−2)βk =

∫
[0,t]2

dsds′|s− s′|(2H0−2)m

(3.26)
and, moreover,

sup
wk∈R,1≤k≤n

∫
[0,t]2

dsds′
n∏
k=1

|s− s′ − wk|(2H0−2)βk <∞. (3.27)

By the dominated convergence theorem and using Lemma 15, (3.26) and
(3.27) imply (3.25).

To show (3.26), choose ε such that |wk|/T < ε, 1 ≤ k ≤ n, for T large
enough (depending on the fixed wk’s). Then, we can write∫

[0,t]2
dsds′

∣∣∣∣∣
n∏
k=1

|s− s′ − wk
T
|(2H0−2)βk − |s− s′|(2H0−2)m

∣∣∣∣∣
≤ t
∫
|ξ|>2ε

dξ

∣∣∣∣∣
n∏
k=1

|ξ − wk
T
|(2H0−2)βk − |ξ|(2H0−2)m

∣∣∣∣∣
+ 2t sup

|wk|<ε

∫
|ξ|≤2ε

dξ
n∏
k=1

|ξ − wk|(2H0−2)βk

:= B1 +B2.

The term B1 tends to zero a T → ∞, for each ε > 0. On the other hand,
the term B2 tends to zero as ε→ 0. Indeed,

B2 = 2tε(2H0−2)m+1 sup
|wk|<1

∫
|ξ|≤2

dξ

n∏
k=1

|ξ − wk|(2H0−2)βk .

Note that the above supremum is finite because the function (w1, . . . , wk)→∫
|ξ|≤2 dξ

∏n
k=1 |ξ − wk|(2H0−2)βk is continuous.

Property (3.27) follows immediately from the fact that the function

(w1, . . . , wk)→
∫

[0,t]2
dsds′

n∏
k=1

|s− s′ − wk|(2H0−2)βk
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is continuous and vanishes as |(w1, . . . , wk)| tends to infinity.

We have H0 = 1 − 1−H
q = 1 − 1−H(m)

m with H(m) as above. As a re-
sult, we obtain the convergence of the finite-dimensional distributions of
T−1+(1−H0)mFn,q,α,T (t) to those the mth Hermite process ZH(m),m multi-

plied by the constant
CαKϕ,α,H0
cH(m),m

.

Step 2: Tightness. Fix 0 ≤ s < t ≤ 1. To check that tightness holds in
C([0, 1]), let us compute the squared L2(Ω)-norm

ΦT := T−1+(1−H0)mE(|Fn,q,α,T (t)− Fn,q,α,T (s)|2).

Proceeding as in the first step of the proof, we obtain

ΨT = E

(∣∣∣∣∣
∫
Rm

dB(ξ1) · · · dB(ξm)

∫ t

s
du

∫
Rn+
dv1 · · · dvn

n∏
k=1

ϕ(vk)

×
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
`=1+βk−1

(u− vk
T
− ξ`)

H0− 3
2

+

∣∣∣∣∣
2)

≤ m!

∫
Rm

dξ1 · · · dξm

∣∣∣∣∣
∫ t

s
du

∫
Rn+
dv1 · · · dvn

n∏
k=1

ϕ(vk)

×
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
`=1+βk−1

(u− vk
T
− ξ`)

H0− 3
2

+

∣∣∣∣∣
2

.

Using (3.22) yields

ΨT ≤ m!

∫
[s,t]2

dudu′
∫
R2n

+

dv1 · · · dvndv′1 · · · dv′n

×
n∏
k=1

ϕ(vk)ϕ(v′k)
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij |v′i − v′j |(2H0−2)αij

×
n∏
k=1

β(H0 −
1

2
, 2− 2H0)βk |u− u′ −

vk − v′k
T

|(2H0−2)βk

≤ m!(t− s)
∫ 1

−1
dξ

∫
R2n

+

dv1 · · · dvndv′1 · · · dv′n

×
n∏
k=1

ϕ(vk)ϕ(v′k)
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij |v′i − v′j |(2H0−2)αij
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×
n∏
k=1

β(H0 −
1

2
, 2− 2H0)βk |ξ −

vk − v′k
T

|(2H0−2)βk

≤ C(t− s).

Then the equivalence of all Lp(Ω)-norms, p ≥ 2, on a fixed Wiener chaos,
also known as the hypercontractivity property, allows us to conclude the
proof of the tightness. �

We will make use of the notation

α0 = (1− 2H0)1{nq is even} −H01{nq is odd}. (3.28)

Proposition 9. Fix n, q ≥ 2 and α ∈ An,q, assume that the function ϕ
belongs to SL for some L > 1 and that m ≥ 3. Then for any t ∈ [0, 1],
Tα0Fn,q,α,T (t) converge in L2(Ω) to zero as T →∞; furthermore, the family
{(Fn,q,α,T (t))t∈[0,1], T > 0} is tight in C([0, 1]).

Proof. If (2H0−2)m > −1, we know that T−1+m(1−H0)Fn,q,α,T (t) converges
to zero in L2(Ω) as T →∞ (by Proposition 7). This implies the convergence
to zero in L2(Ω) as T →∞ of T−α0Fn,q,α,T (t) because −1+m(1−H0) > α0.
We should then concentrate on the case (2H0 − 2)m ≤ −1. Once again, we
shall divide the proof in two steps:

Step 1 : Let us first prove the convergence in L2(Ω). Fix α ∈ An,q. We are
going to show that

lim
T→∞

T 2α0E
(
|Fn,q,α,T (t)|2

)
= 0.

We know that

T 2α0E
(
|Fn,q,α,T (t)|2

)
= T 2α0m!×

∥∥∥∥∥
∫

[0,T t]
ds⊗α (g(s, ·), . . . , g(s, ·))

∥∥∥∥∥
2

L2(Rm)

.

In view of the expression for the contractions obtained in Proposition 7, it
suffices to show that

lim
T→∞

T 2α0

∫
[0,T t]2

dsds′
∫
Rm

∫
(−∞,s]n

∫
(−∞,s′]n

dv1 · · · dvndv′1 · · · dv′ndξ1 · · · dξm

×
n∏
k=1

ϕ(s− vk)ϕ(s′ − v′k)
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij |v′i − v′j |(2H0−2)αij
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×
n∏
k=1

βj∏
`=1+βj−1

(vk − ξ`)
H0− 3

2
+

βj∏
`=1+βj−1

(v′k − ξ`)
H0− 3

2
+ = 0.

Integrating in the variables ξ’s and using (3.22), it remains to show that

lim
T→∞

T 2α0

∫
[0,T t]2

dsds′
∫

(−∞,s]n

∫
(−∞,s′]n

dv1 · · · dvndv′1 · · · dv′n

×
n∏
k=1

ϕ(s− vk)ϕ(s′ − v′k)
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij |v′i − v′j |(2H0−2)αij

×
n∏
k=1

|vk − v′k|(2H0−2)βk = 0.

Set

ΦT := T 2α0

∫
[0,T t]2

dsds′
∫

(−∞,s]n

∫
(−∞,s′]n

dv1 · · · dvndv′1 · · · dv′n

×
n∏
k=1

ϕ(s− vk)ϕ(s′ − v′k)
∏

1≤i<j≤n
|vi − vj |(2H0−2)αij |v′i − v′j |(2H0−2)αij

×
n∏
k=1

|vk − v′k|(2H0−2)βk .

Making the change of variables wk = s − vk, w′k = s′ − v′k for k = 1, . . . , n,
yields

ΦT = T 2α0

∫
[0,T t]2

dsds′
∫
Rn+

∫
[0,∞)n

dw1 · · · dwndw′1 · · · dw′n

×
n∏
k=1

ϕ(wk)ϕ(w′k)
∏

1≤i<j≤n
|wi − wj |(2H0−2)αij |w′i − w′j |(2H0−2)αij

×
n∏
k=1

|s− s′ − wk + w′k|(2H0−2)βk .

Now we use Fubini’s theorem and make the change of variables s − s′ = ξ
to obtain

ΦT = tT 2α0+1

∫
R2n

+

dw1 · · · dwndw′1 · · · dw′n

×
n∏
k=1

|ϕ(wk)ϕ(w′k)|
∏

1≤i<j≤n
|wi − wj |(2H0−2)αij |w′i − w′j |(2H0−2)αij
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×
∫ tT

−tT
dξ

n∏
k=1

|ξ − wk + w′k|(2H0−2)βk .

We shall distinguish again two subcases:

Case (2H0 − 2)m < −1: Notice that the exponent 2α0 + 1 is negative:

(i) If nq is even, then α0 = 1− 2H0 and

2α0 + 1 = 3− 4H0 < 0

because H0 >
3
4 .

(ii) If nq is odd, then α0 = −H0 and

2α0 + 1 = 1− 2H0 < 0.

Therefore, in order to show that limT→∞ΦT = 0, it suffices to check that

J :=

∫
R2n

dw1 · · · dwndw′1 · · · dw′n
n∏
k=1

|ϕ(wk)ϕ(w′k)|

×
∏

1≤i<j≤n
|wi − wj |(2H0−2)αij |w′i − w′j |(2H0−2)αij

×
∫
R
dξ

n∏
k=1

|ξ − wk + w′k|(2H0−2)βk <∞, (3.29)

where, by convention ϕ(w) = 0 if w < 0. We will apply the Power Counting
Theorem 14 to prove that this integral is finite. We consider functions on
R2n+1 with variables {(wk)k≤n, (w′k)k≤n, ξ}. The set of linear functions is

T = {ωk, ω′k, 1 ≤ k ≤ n} ∪ {wi − wj , w′i − w′j , 1 ≤ i < j ≤ n}
∪ {ξ − wk + w′k, 1 ≤ k ≤ n}.

The corresponding exponents (µM , νM ) for each M ∈ T are (0,−L) for the
linear functions wk and w′k (taking into account that ϕ ∈ SL), (2H0 − 2)αij
for each function of the form wi − wj or w′i − w′j and (2H0 − 2)βk for each
function of the form ξ − wk + w′k.

Then J <∞, provided conditions (a) and (b) are satisfied.

• Verification of (b): Let W ⊂ T be a linearly independent proper subset of
T , and

d∞ = 2n+ 1− dim(Span(W )) +
∑

M∈T\(Span(W )∩T )

νM .
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Let S be the following subset of T : S = {wk, w′k, 1 ≤ k ≤ n}. Let e =
Card(S ∩ Span(W )). Consider the following two cases:

(i) There exists k ≤ n such that ξ − wk + w′k ∈ Span(W ) ∩ T . Then
dim(Span(W )) ≥ e+ 1. As a consequence,

d∞ ≤ 2n+ 1− (e+ 1)− (2n− e)L < 0,

because L > 1 and in this case, we should have e < 2n because W is
a proper subset of T .

(ii) Otherwise,

d∞ ≤ 2n+ 1− e− (2n− e)L+ (2H0 − 2)m < 0,

because L > 1 and (2H0 − 2)m < −1.

• Verification of (a): A direct verification would require to solve a seem-
ingly difficult combinatorial problem. We can simply remark that∫

[−1,1]2n
dw1 · · · dwndw′1 · · · dw′n

×
∏

1≤i<j≤n
|wi − wj |(2H0−2)αij |w′i − w′j |(2H0−2)αij

×
∫ 1

−1
dξ

n∏
k=1

|ξ − wk + w′k|(2H0−2)βk

=m!
1

β(H0 − 1
2 , 2− 2H0)|α|

E

[(∫ 1

0
IBnq−2|α|(f(s, ·), . . . , f(s, ·))

)2
]
<∞

where f(s, ξ1, . . . ξq) =
∫ +∞
−∞ I[−1,1](s − v)

∏q
j=1(v − ξj)H0−3/2

+ dv. Since ϕ ∈
SL, ϕ is bounded on [−1, 1]. This implies that (a) is verified by the converse
side of the Power Counting Theorem.

Case (2H0 − 2)m = −1: In this case, we can apply Hölder and Jensen
inequalities to ΦT in order to get

ΦT ≤ T 2α0+1A
ε

1+εB
1

1+ε ,

with 2α0 + 1 < 0, A =
(∫

R |ϕ(w)|dw
)2n

and

B =

∫
R2n

dw1 · · · dwndw′1 · · · dw′n
n∏
k=1

|ϕ(wk)ϕ(w′k)|
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×
∏

1≤i<j≤n
|wi − wj |(2H

′
0−2)αij |w′i − w′j |(2H

′
0−2)αij

×
∫
R
dξ

n∏
k=1

|ξ − wk + w′k|(2H
′
0−2)βk ,

where H ′0 = H0(1 + ε)− ε. If ε is small enough, H ′0 can still be expressed as
1 − 1−H′

q for some 1
2 < H ′ < H. Moreover, in this case (2H ′0 − 2)m < −1

so we are exactly in the situation of the previous case, and the integral B is
finite.

Step 2 : Using the same arguments as previously and the hypercontractivity
property, we deduce that there exists a constant K > 0 such that for all
0 ≤ s < t ≤ 1,

E
(
|Fn,q,α,T (t)− Fn,q,α,T (s)|4

)
≤ K|t− s|2,

which proves the tightness in C([0, 1]).
�

It remains to study what happens when n = 1. The proof of Proposition
10 is very similar to that of Proposition 7 (although much simpler) and
details are left to the reader.

Proposition 10. Fix q ≥ 1 and assume the function ϕ belongs to L1(R+)∩
L

1
H (R+). Then the finite-dimensional distributions of the process

GT (t) := T q(1−H0)−1

∫ Tt

0
dsIBq (g(s, ·)), t ∈ [0, 1], (3.30)

where g(s, ·) is defined in (3.18), converge in law to those of a qth Her-
mite process of Hurst parameter 1 − q(1 − H0) multiplied by the constant
c−1
H0,q

∫∞
0 ϕ(w)dw, and the family

{(GT (t))t∈[0,1], T > 0} is tight in C([0, 1]).

We are now ready to make the proof of Theorem 2.

Proof of Theorem 2. It suffices to consider the decomposition (3.21) and to
apply the results shown in Propositions 7 and 9. �
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3.5 Proof of Theorem 1

Let Z be a fractional Brownian motion of Hurst index H ∈ (1
2 , 1), and let

ϕ ∈ L1(R+) ∩ L
1
H (R+). Consider the moving average process X defined by

X(t) =

∫ t

−∞
ϕ(t− u)dZu, t ≥ 0,

which is easily checked to be a stationary centered Gaussian process. Denote
by ρ : R→ R the correlation function of X, that is, ρ(t− s) = E[X(t)X(s)],
s, t ≥ 0. By multiplying the function ϕ by a constant if necessary, we can
assume without loss of generality that ρ(0) = 1(= Var(X(t)) for all t). Let
P (x) =

∑N
n=0 anx

n be a real-valued polynomial function, and let d denotes
its centered Hermite rank.

3.5.1 Proof of (3.6)

In this section, we assume that d ≥ 1 and that H ∈ (1− 1
2d , 1), and our goal

is to show that

T d(1−H)−1

{∫ Tt

0

(
P (X(s))− E[P (X(s))]

)
ds

}
t∈[0,1]

converges in distribution in C([0, 1]) to a Hermite process of index d and
Hurst parameter 1−d(1−H), up to some multiplicative constant C2. Since
P has centered Hermite rank d, it can be rewritten as

P (x) = E[P (X(s)] +
N∑
l=d

blHl(x),

for some bd, . . . , bN ∈ R, with bd 6= 0 and Hl the lth Hermite polynomial.
As a result, we have∫ Tt

0

(
P (X(s))− E[P (X(s))]

)
ds =

N∑
l=d

bl(cH,1)l
∫ Tt

0
IBl (g(s, ·)⊗l)ds,

and the desired conclusion follows thanks to Propositions 7 and 10.

3.5.2 Proof of (3.5)

In this section, we assume that d ≥ 2 and that H ∈ (1
2 , 1−

1
2d), and our goal

is to show that

T−
1
2

{∫ Tt

0

(
P (X(s))− E[P (X(s))]

)
ds

}
t∈[0,1]
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converges in distribution in C([0, 1]) to a standard Brownian motion W , up
to some multiplicative constant C1. To do so, we will rely on the Breuer-
Major theorem, which asserts that the desired conclusion holds as soon as∫

R
|ρ(s)|dds <∞, (3.31)

where ρ(s) = E[X(s)X(0)] (see, e.g., [6] for a continuous version of the
Breuer-Major theorem).

The rest of this section is devoted to checking that (3.31) holds true. Let
us first compute ρ:

ρ(t− s) = E[X(t)X(s)]

= H(2H − 1)

∫∫
R2

ϕ(t− v)1(−∞,t](v)ϕ(s− u)1(−∞,s](u)|v − u|2H−2dudv

= H(2H − 1)

∫∫
R2

ϕ(u)ϕ(v)|t− s− v + u|2H−2dudv,

with the convention that ϕ(u) = 0 if u < 0. This allows us to write

ρ(s) = cH [ϕ̃ ∗ (I2H−1ϕ)](s),

where ϕ̃(u) = ϕ(−u), I2H−1 is the fractional integral operator of order
2H − 1 and cH is a constant depending on H. As a consequence, applying
Young’s inequality and Hardy-Littlewood’s inequality (see [18, Theorem 1])
yields

‖ρ‖Ld(R) ≤ cH‖ϕ‖Lp(R)‖I2H−1ϕ‖Lq(R) ≤ cH,p‖ϕ‖2Lp(R),

where 1
d = 1

p + 1
q − 1 and 1

q = 1
p − (2H − 1). This implies p = (H + 1

2d)−1

and we have ‖ϕ‖Lp(R) < ∞, because p ∈ (1, 1
H ) and ϕ ∈ L1(R) ∩ L

1
H (R).

The proof of (3.5) is complete. �

3.6 The Stationary Hermite-Ornstein-Uhlenbeck
process

We dedicate this section to the study of the extension of the Ornstein Uh-
lenbeck process to the case where the driving process is a Hermite process.
To our knowledge, there is not much literature about this object. Among
the few existing references, we mention [17] and [11]. The special case in
which the driving process is a fractional Brownian motion has been, in con-
trast, well studied, see for instance [7]. In what follows, we will prove a
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first-order ergodic theorem for the stationary Hermite-Ornstein-Uhlenbeck
process. Then, we will use Theorem 2 to study its second order fluctuations.

Let α > 0. Consider the function ϕ(s) = e−αsIs>0 and let ZH,q be a
Hermite process of order q ≥ 1 and Hurst index H > 1

2 . Then ϕ ∈ SL for
all L > 0, and we can define the stationary Hermite-Ornstein-Uhlenbeck
process as:

(Ut)t≥0 =

∫ t

−∞
ϕ(t− s)dZH,qs . (3.32)

As its name suggests, this process is strongly stationary, that is, for any
h > 0 the processes (Ut)t≥0 and (Ut+h)t≥0 have the same finite-dimensional
distributions. We then state the following general ergodic type result.

Proposition 11. Let (ut)t≥0 be a real valued process of the form ut =
IBq (ft), where ft ∈ L2

s(Rq) for each t ≥ 0. Assume that u is strongly sta-
tionary, has integrable sample paths and satisfies, for each 1 ≤ r ≤ q,

‖f0 ⊗r fs‖L2(R2q−2r) −→
s→∞

0.

Then, for all measurable function such that E[|f(u0)|] < +∞,

1

T

∫ T

0
f(us)ds

a.s−→
T→∞

E [f(u0)] .

Proof. According to Theorem 1.3 in [12], the process u is strongly mixing if
for all t > 0 and 1 ≤ r ≤ q, the following convergence holds

‖ft ⊗r ft+s‖L2(R2q−2r) −→
s→∞

0.

Taking into account that u is strongly stationary, we can write

‖ft ⊗r ft+s‖L2(R2q−2r) = ‖f0 ⊗r fs‖L2(R2q−2r),

and the conclusion follows immediately from Birkhoff’s continuous ergodic
theorem. �

We can now particularize to the Hermite-Ornstein-Uhlenbeck process.

Theorem 12. Let U be the Hermite-Ornstein-Uhlenbeck process defined by
(3.32). Let f be a measurable function such that |f(x)| ≤ exp(|x|γ) for some
γ < 2

q . Then,

lim
T→∞

1

T

∫ T

0
f(Us)ds = E [f(U0)] a.s.
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Proof. We shall prove that the process U verifies the conditions of Proposi-
tion 11. We have Ut = IBq (ft) with

ft(x1, . . . , xq) = cH,qI[−∞,t]q(x1, . . . , xq)

∫ t

x1∨···∨xq
e−α(t−u)

q∏
i=1

(u−xi)H0− 3
2du.

Step 1. Let us first show the mixing condition, that is

lim
s→∞

‖f0 ⊗r fs‖L2(R2q−2r) = 0

for all r ∈ {1, . . . , q}. We can write

f0 ⊗r fs(y1, . . . , y2q−2r)

= c2
H,q

∫
(−∞,0]r

∫ 0

x1∨···∨xr∨y1···∨yq−r
eαu

r∏
i=1

q−r∏
j=1

(u− xi)H0− 3
2 (u− yj)H0− 3

2du


×

(∫ s

x1∨···∨xr∨yq−r+1···∨y2q−2r

e−α(s−u)

×
r∏
i=1

2q−2r∏
j=q−r+1

(u− xi)H0− 3
2 (u− yj)H0− 3

2du

)
dx1 · · · dxr

= c2
H,q

∫ 0

y1∨···∨yq−r
eαu

∫ s

yq−r+1∨···∨y2q−2r

e−α(s−v)

×

(∫
(−∞,u∧v]

(u− x)H0− 3
2 (v − x)H0− 3

2dx

)r

×
q−r∏
j=1

2q−2r∏
l=q−r+1

(u− yj)H0− 3
2 (v − yl)H0− 3

2dvdu

= c2
H,qβ(H0 −

1

2
, 2− 2H0)r

∫ 0

y1∨···∨yq−r
eαu

∫ s

yq−r+1∨···∨y2q−2r

e−α(s−v)

× |u− v|r(2H0−2)
q−r∏
j=1

2q−2r∏
l=q−r+1

(u− yj)H0− 3
2 (v − yl)H0− 3

2dvdu,

where we used again the identity (3.22). We then have

‖f0 ⊗r fs‖2L2(R2q−2r) = c4
H,qβ(H0 −

1

2
, 2− 2H0)2q
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×
∫

(−∞,0]2

∫
(−∞,s]2

eα(u+u1)e−α(2s−(v+v1))|u− u1|(q−r)(2H0−2)

× |v − v1|(q−r)(2H0−2)|u− v|r(2H0−2)|u1 − v1|r(2H0−2)dv1dvdu1du

≤ c4
H,qβ(H0 −

1

2
, 2− 2H0)2qA0AsR

2
s,

with

Ax =

(∫
(−∞,x]2

e−qα(2x−(u+u1))|u− u1|q(2H0−2)dudu1

) 1
a

and

Rs =

(∫ 0

−∞

∫ s

−∞
e−qα(s−(u+v))|u− v|q(2H0−2)dvdu

) 1
b

,

where we used the Hölder inequality with a = q
q−r , b = q

r . Making the
change of variable x− u = v, x− u1 = v1, we obtain∫

(−∞,x]2
e−qα(2x−(u+u1))|u− u1|q(2H0−2)dudu1

=

∫
[0,∞)2

e−qα(v+v1)|v − v1|q(2H0−2)dudu1 <∞.

On the other hand, we have q(2H0 − 2) = 2H − 2, so

Rbs = Cov(UH0 , U
H
s )

where UH is a stationary Ornstein Uhlenbeck process driven by a fractional
Brownian motion of index H (and with αH = qα). According to [7, Lemma
2.2], one has Rbs = Os→∞(s−H), implying in turn that lims→∞Rs = 0 and
concluding the proof of the mixing condition.

Step 2. We now show the integrability condition E[|f(U0)|] <∞. From the

results of [7], we have E[U2
0 ] = 1

α2H Γ(2H). A power series development
yields

E[|f(U0)|] ≤
∞∑
k=0

1

k!
E[|U0|γk],

where U0 is an element of the qth Wiener chaos. By the hypercontractivity
property, for all k ≥ 2

γ ,

E[|U0|γk] ≤ g(k) := (k − 1)
γqk
2

(
1

α2H
Γ(2H)

) γk
2

.
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Stirling formula allows us to write

g(k)

k!
∼k→∞

(k − 1)
γqk
2

kk

(
1

α2H Γ(2H)
) γk

2 ek
√

2πk
, (3.33)

and the associated series converges if γq < 2. �

The next result analyzes the fluctuations in the ergodic theorem proved
in Theorem 12.

Theorem 13. (A) [Case q = 1] Let f be in L2(R, γ) for γ = N (0, Γ(2H)
α2H ).

We denote by (ai)i≥0 the coefficients of f in its Hermite expansion, and we
let d be the centered Hermite rank of f . Then,

• if 1
2 < H < 1− 1

2d ,

1√
T

∫ Tt

0
(f(Us)− E[f(U0)]) ds

f.d.d−→
T→∞

cf,HWt,

• if H = 1− 1
2d ,

1√
T log T

∫ Tt

0
(f(Us)− E[f(U0)]) ds

f.d.d−→
T→∞

cf,HWt,

• if H > 1− 1
2d ,

T q(1−H)−1

∫ Tt

0
(f(Us)− E[f(U0)]) ds

f.d.d−→
T→∞

cf,HZ
d,H
t ,

where Zd,H is a Hermite process of order d and index d(H − 1) + 1, W is a
Brownian motion and

cf,H =


√∑

k≥d k!a2
k

∫
R+
|ρ(s)|k if H < 1− 1

2d

ad

√
d! 3

16α2 if H = 1− 1
2d

ad

√
d!H

dΓ(2H)d

α2Hd if H > 1− 1
2d

(3.34)

with

ρ(s) = E[UsU0] =

∫ 0

−∞

∫ s

−∞
e−α(s−(u+v))|u− v|2H−2dudv.

Moreover, if f ∈ Lp(R, γ) for some p > 2, the previous convergences holds
true in the Banach space C([0, 1]).
(B) [Case q > 1] Let P be a real valued polynomial. Then, the conclusions
of Theorem 2 apply to U .
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Proof. Except for H = 1 − 1
2d in Part A, this is a direct consequence of

Theorems 1 and 2. The convergence in the critical case can be checked
through easy but tedious computations, by reducing to the case where f is
the dth Hermite polynomial. Details are left to the reader. �

3.7 Appendix

In this section we present two technical lemmas that play an important role
along the paper. First, we shall reproduce a very useful result from [20]:

Theorem 14 (Power Counting Theorem). Let T = {M1, . . . ,MK} a set of
linear functionals on Rn, {f1, . . . , fK} a set of real measurable functions on
Rn such that there exist real numbers (ai, bi, µi, νi)1≤i≤K , satisfying for each
i = 1, . . . ,K,

0 < ai ≤ bi,
|fi(x)| ≤ |x|µi if |x| ≤ ai,
|fi(x)| ≤ |x|νi if |x| ≥ bi,
fi is bounded over [ai, bi].

For a linearly independent subset of W of T , we write ST (W ) = Span(M)∩
T . We also define

d0(W ) = dim(Span(W )) +
∑

i:Mi∈ST (W )

µi,

d∞(W ) = n− dim(Span(W )) +
∑

i:Mi∈T\ST (W )

νi.

Assume dim(Span(T )) = n. Then, the two conditions (a) : d0(W ) > 0 for
all linearly independent subsets W ⊂ T , (b) : d∞(W ′) < 0 for all linearly
independent proper subsets W ′ ⊂ T , imply∫

Rn

K∏
i=1

|fi(Mi(x))|dx <∞ (3.35)

Moreover, assume that |fi(x)| = |x|µi if |x| ≤ ai, Then∫
[−1,1]n

∏K
i=1 |fi(Mi(x))|dx < ∞, if an only if for any linearly independent

subset W ⊂ T condition (a) holds.

The next lemma is an application of the Hardy-Littlewood-Sobolev in-
equality,
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Lemma 15. Fix n, q ≥ 2 and α ∈ An,q. Recall H and H0 from (3.1).

Assume ϕ ∈ L1(R) ∩ L
1
H (R) Then∫

Rn

n∏
k=1

|ϕ(ηk)|
∏

1≤i<j≤n
|ηi − ηj |(2H0−2)αijdη1 . . . dηn <∞.

Proof. We are going to use the multilinear Hardy-Littlewood-Sobolev in-
equality, that we recall here for the convenience of the reader (see [1, The-
orem 6]): if f : R → R is a measurable function, if p ∈ (1, n) and if the
γij ∈ (0, 1) are such that

∑
1≤i<j≤n γij = 1 − 1

p , then there exists cp,γ > 0
such that∫

Rn

n∏
k=1

|f(uk)|
∏

1≤i<j≤n
|ui − uj |−γijdu1 . . . dun ≤ cp,γ

(∫
R
|f(u)|pdu

)n
p

.

(3.36)

Set p = 1/(1 − (1 − H)2|α|
nq ). Since 2|α| ≤ nq, we have that p > 1.

On the other hand, since H > 1
2 , one has nH > n

2 ≥ 1; this implies that

(1 − H)2|α|
q < (1 − H)n < n − 1, that is, p < n. Moreover, set γij =

(2− 2H0)αij = (1−H)
2αij
q ∈ (0, 1); we have

∑
1≤i<j≤n γij = 2(1−H) |α|q ≤

(1−H)n < n− 1. We deduce from (3.36) that∫
Rn

n∏
k=1

|ϕ(ηk)|
∏

1≤i<j≤n
|ηi−ηj |(2H0−2)αijdη1 . . . dηn ≤ cp,γ

(∫ ∞
−∞
|x(u)|pdu

)n
p

.

But p ∈ (1, 1
H ) and x ∈ L1(R) ∩ L

1
H (R), so the claim follows. �
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Chapter 4

Fluctuation of the
Hadwiger-Wills information
content

This chapter is based on a work in progress in collaboration with Ivan Nour-
din.

4.1 Introduction

4.1.1 Convex body and intrinsic volumes

Throughout this paper, K denotes a non-empty convex body in Rd. Its
dimension, noted dimK and taking values in {0, 1, 2, . . . , d}, is the dimension
of the affine hull of K. When K has dimension j, we define the j-dimensional
volume Volj(K) to be the Lebesgue measure of K, computed relative to its
affine hull. We also write Bj for the Euclidean unit ball of Rj . The Steiner
formula (e.g. [10, Section 1]) asserts that Vold(K + rBd) is a polynomial in
r > 0 given by

Vold(K + rBd) =

d∑
k=0

κd−kr
d−kVk(K), (4.1)

where the multiplicative constant κj = Volj(Bj) = π
j
2

Γ(1+ j
2

)
are here to guar-

antee that the kth intrinsic volume Vk(K) is really intrinsic to K, in the
sense that it does not depend on the dimension of the underlying space.
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4.1.2 Hadwiger-Wills information content

In [8, Corollary 2.5] the following link between the intrinsic volumes of K and
a distance integral was established as a consequence of the Steiner formula
(4.1): for any absolutely integrable function g : R+ → R, we have∫

Rd
g(π dist2(x,K))e−π dist2(x,K)dx (4.2)

= g(0)Vd(K) +

d−1∑
j=0

(
1

Γ((d− j)/2)

∫ ∞
0

g(r)r−1+(d−j)/2e−rdr

)
Vj(K).

In particular, taking g ≡ 1 in (4.2) yields that the Wills functional [12]
defined as

W (K) :=

∫
Rd
e−π dist2(x,K)dx,

is equal to the total intrinsic volume, that is, W (K) =
∑d

j=0 Vj(K).
Consider now the log-concave density

µK(x) :=
1

W (K)
e−π dist2(x,K), x ∈ Rd, (4.3)

that we name Hadwiger-Wills density associated to K, in honor of the influ-
ential papers [7] and [12]. Let XK : Ω→ Rd be a random vector distributed
according to µK . It follows from (4.2) with g(r) = e(1−λ2)r that the real-
valued random variable

HK := π dist2(XK ,K)

satisfies

E[e(1−λ2)HK ] =
1

W (K)

d∑
j=0

λj−dVj(K)

for all λ > 0, and thus its distribution is intimately related and fully char-
acterized by the intrinsic volumes of K.

To explain the title of this section and of our paper, and although we
will not follow an information-theoretic approach in this paper, we call HK

the Hadwiger-Wills information content to highlight that HK represents the
information content (also called Shannon entropy) of XK , a property that
was crucially used by Lotz et al [8] to prove that HK displays a form of
concentration.
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4.1.3 Our main result

In [8], concentration properties for HK have been investigated. In the
present paper, we study the fluctuations of HK around its mean. Let F
and G denote two rel valued random variables. The total variation distance
between F and G is defined as

dTV (F,G) = sup
A∈B(R)

|P(G)− P(F )|.

Our main result is the following statement.

Theorem 4.1.1. Consider a sequence (Kn)n≥1 of non-empty convex bodies
and suppose, for each n, that

• Kn ⊂ Rdn with dn →∞;

• the boundary ∂Kn of Kn is C2;

• Kn is symmetric in the sense that there exists y ∈ Kn such that x ∈
Kn ⇒ 2y − x ∈ Kn;

• the quantity λn1 := minx∈∂Kn λ
Kn
1 (x), where λKn1 (x) denotes the min-

imal principal curvature of ∂Kn at x (see Section 4.3.5), satisfies
0 < λn1 ≤ 1 (in particular, Kn is strictly convex) and 1

λn1
= O(dγn)

as n→∞, for some 1
4 > γ > 0 independent of n.

Then, there exists α, β > 0 independent of n such that

dTV

(
HKn − EHKn√

Var(HKn)
, N(0, 1)

)
= On→∞

(
d2γ−dn
n

)
(4.4)

as n→∞. In particular, HKn satisfies a central limit theorem:

HKn − EHKn√
Var(HKn)

→ N(0, 1) as n→∞.

We note that Theorem 4.1.1 parallels recent fluctuation results proved in
the context of conic intrinsic volumes, see [5] and more precisely Theorems
1.1, 2.1 and 3.1 therein.

In section 4.2, we will show that a weaker version of Theorem 4.1.1
can be obtained relatively easily by exploiting the formula (4.2). The main
improvement of Theorem 4.1.1 is to demonstrate the convergence in the
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total variation metric, which is notoriously difficult to obtain. Theorem
4.1.1 provide an example of central limit theorem in total variation for a
dependant, non stationary sequence whose representation in the Wiener
chaos is not known, thus falling outside the scope of the existing references
such as [1] or [9]. Theorem 4.1.1 is also an illustration of the flexibility
of Stein’s method, a powerful tool in quantitative Gaussian approximation
which is actually the main ingredient of the proof.

Our method does not allow to prove a central limit theorem for the
intrinsic volumes of the sequence Kn themselves, in variance with the setting
of conic intrinsic volumes studied in [5]. However, it is likely that this central
limit theorem holds at least in some circumstances. This could be a further
interesting question to study.

4.1.4 Case where Kn is an hypercube

To better understand the scope of Theorem 4.1.1, let us analyze for the
sake of comparison the case where Kn is a hypercube. Even if it does not
verify the hypotheses of Theorem 4.1.1 (as it is not regular and therefore
we cannot speak of its principal curvatures), it seems to be the only1 case
where the fluctuations of HKn can be analyzed by hand (thanks to the
induced independence), helping us to better understanding the structure of
this random variable in general.

More specifically and for simplicity, assume that Kn is a hypercube of
the form [−Tn, Tn]dn with Tn > 0. It is immediate to check that

dist2(x,Kn) =

dn∑
k=1

(|xk| − Tn)2
+ (4.5)

for all x = (x1, . . . , xdn) ∈ Rdn , where (. . .)2
+ is shorthand for [(. . .)+]2. By

plugging (4.5) into (4.3), we deduce that the marginals of XKn are indepen-

dent, with a common density given by u 7→ e
−π (|u|−Tn)2+

1+2Tn
.

The simplest case is when we choose Tn = 1, that is, Kn = [−1, 1]dn . The

usual CLT then applies and yields that
HKn−EHKn√

Var(HKn )
→ N(0, 1), in agreement

with the conclusion of Theorem 4.1.1.
At the opposite, let us now choose dn = Tn = n, that is, Kn = [−n, n]n.

Straightforward calculations show that EHKn = 2πn
1+2n → π and Var(HKn) =

8π2n(1+3n)
(1+2n)2 → 6π2 as n → ∞. If we had

HKn−EHKn√
Var(HKn )

→ N(0, 1), we would

1More precisely, we could have considered hyperrectangles as well.
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deduce that HKn → N(π, 6π2) and in particular P(HKn = 0) → 0. But

P(HKn = 0) =
(

1
1+ 1

2n

)n
→ 1√

e
, meaning that

HKn−EHKn√
Var(HKn )

6→ N(0, 1).

We learn from this analysis in the easy case where Kn is a hypercube
that

HKn−EHKn√
Var(HKn )

may or may not satisfy a CLT, and that is seems to depend

on the asymptotic size of Kn. It therefore does not appear unreasonable to
impose a condition on the minimal principal curvature for the conclusion of
Theorem 4.1.1 to be valid.

4.1.5 Sketch of the proof

To prove Theorem 4.1.1, we rely on several steps.
The first step is to show (see Proposition 4.4.1) by means of Stein’s

method the following bound on the total variation distance between HK

properly normalized and the standard Gaussian distribution:

dTV

(
HK − EHK√

Var(HK)
, N(0, 1)

)
≤
√

Var(UK(XK))

πVar(HK)
+ remainder. (4.6)

In (4.6), UK : Rd → R is the smooth function given by (4.17).
A second step is then to bound Var(UK(XK)) in (4.6). For this, we rely

on the classical Brascamp-Lieb inequality, according to which

Var(V (Y )) ≤ 1

k
E
[
‖∇V (Y )‖2

]
(4.7)

when V : Rd → R is smooth enough and Y : Ω → Rd admits a density of
the form e−θ where θ is k-strongly convex (that is, satisfies 〈(Hess θ)u, u〉 ≥
k‖u‖2 for all u ∈ Rd). But π dist2(·,K) being convex but not strongly
convex, we cannot apply directly (4.7) to V = UK and Y = XK . This
is why we first approximate XK by a strongly convex random variable YK
(with density given in Definition 4.4.3) and we then estimate the difference
between Var(UK(XK)) and Var(UK(YK)) (see Proposition 4.4.5).

Finally, in a third step we control the remainder term of (4.6), before
concluding that (4.4) takes place.

4.1.6 Organisation of the paper

The rest of the paper is organised as follows. In Section 4.2, we prove a
weaker version of Theorem 4.1.1. Section 4.3 contains a few preliminaries
to prepare the proof of Theorem 4.1.1, which is finally done in Section 4.4.
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4.2 Theorem without bounds

Theorem 4.2.1. Consider a sequence (Kn)n≥1 of non-empty convex bodies
such that Kn ⊂ Rdn for all n, with dn → ∞. To each Kn let us associate
the discrete random variable IKn defined, for any j ∈ {0, . . . , dn}, as

P(IKn = j) =
Vdn−j(Kn)

W (Kn)
.

Assume that E(IKn) → ∞ and Var(IKn) = o(E(IKn)) as n → ∞. Then
Var(HKn)→∞ and HKn satisfies a central limit theorem:

HKn − EHKn√
Var(HKn)

→ N(0, 1) as n→∞.

Proof. We deduce from (4.2) that HKn
law
=
∑IKn

j=1 γj , where the γj ∼ Γ(1
2 , 1)

are independent copies, also independent from IKn . In particular,

EHKn =
1

2
EIKn (4.8)

Var(HKn) =
1

2
EIKn +

1

4
Var(IKn)→∞. (4.9)

Writing σ2
n = Var(HKn) for simplicity, we deduce that

1

σn

(
HKn − EHKn

)
=

√
bEIKnc
σ2
n

Sn +
Rn
σn
, (4.10)

where

Sn =
1√
bEIKnc

bEIKnc∑
j=1

(
γj −

1

2

)

Rn =
1

2

(
bEIKnc − EIKn

)
+


∑IKn

j=bEIKnc+1 γj if bEIKnc < IKn
0 if bEIKnc = IKn

−
∑bEIKnc

j=IKn+1 γj if bEIKnc > IKn

.

Since E(IKn)→∞ and Var(IKn) = o(E(IKn)), we have that
bEIKnc
σ2
n
→ 2

and Sn → N(0, 1
2) (by the usual CLT). Moreover,

E|Rn| ≤
1

2
+

d∑
l=bEIKnc+1

P(IKn = l)
l∑

j=bEIKnc+1

Eγj
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+

bEIKnc−1∑
l=0

P(IKn = l)

bEIKnc∑
j=l+1

Eγj .

so that, using that Eγj ≤ 1,

E|Rn| ≤
1

2
+ E

∣∣IKn − bEIKnc∣∣ ≤ 3

2
+ E

∣∣IKn − EIKn
∣∣

≤ 3

2
+
√

Var(IKn).

As a consequence,

E|Rn|
σn

≤ 3

2σn
+

√
Var(IKn)

1
2EIKn

→ 0.

The desired conclusion follows by plugging
bEIKnc
σ2
n
→ 2, Sn → N(0, 1

2) and
E|Rn|
σn
→ 0 in (4.10). �

We now give a sufficient condition implying both that E(IKn)→∞ and
Var(IKn) = o(E(IKn)).

Proposition 4.2.2. Let γ < 1
2 and let us assume that for all n ∈ N∗, Kn

belongs to the scaled ball Bd(0, dγn). Then,

1. lim infn
σ2

dn
> 0

2. E(IKn)→∞ and Var(IKn) = o(E(IKn)) as n→∞.

Proof. It is well known that intrinsic volumes form an ultra log-concave
distribution, see e.g. [3] for a proof of this fact. In [6], it was shown in
Theorem 1.5 and Lemma 5.3 that ultra-log concave random variables X
valued in N verifies Var(X) ≤ 1

c with

P[{X = 1}]
P[{X = 0}]

=
1

c
≥ E[X].

Moreover we have, thanks to (4.9), that

σ2 ≥ 1

2
E[IKn ] ≥

d− V1(K)
V0(K)

2
≥ d− dγV1(Bd)

2
,

with V1(B) is the first intrinsic volume of the unit ball in Rd (given by

V1(Bd) = dV old(Bd−1)
V old(Bd)

, see [8]), and where the last inequality follows from the
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fact that for all i, Vi(K) ≤ Vi(C) for any convex bodies such that K ⊂ C,
and V0(K) = 1.

We have V1(B) =
(
d
1

) V ol(Bd)
V ol(Bd−1)

with V ol(Bd) given in Section 4.3.1. We

have V1(Bd) = Od→∞d
1
2 (see (4.11)) and then σ2

dn
≥ 1

2dn
E[IKn ] −→

n→∞
1
2 , which

proves item (1). Moreover, we have

Var(IKn) = On→∞d
1
2

+γ
n = on→∞dn = onE[IKn ],

which proves item (2). �

4.3 A few preliminaries

This section gathers a few preliminaries, to prepare the proof of Theorem
4.1.1. In what follows, we note ‖ · ‖ (resp. 〈·, ·〉) the Euclidean norm (resp.
scalar product) in Rd.

4.3.1 Volume of the unit ball and of the unit sphere

Let us recall the classical expressions for the volumes of the unit ball Bd and
of the unit sphere Sd−1:

Vold(Bd) =
π
d
2

Γ(d2 + 1)
and Vold−1(Sd−1) =

2π
d
2

Γ(d2)
.

Since Γ(m) ∼
√

2π
m

(
m
e

)m
as m→∞, we deduce that

Vold(Bd) + Vold−1(Sd−1) = O(dαβdd−
d
2 ) as d→∞,

for some α, β > 0, whose value is not important and can change from one
line to another in what follows. We also have that

Vold−1(Bd−1)

Vold(Bd)
= Od→∞

√
d (4.11)

4.3.2 A useful lemma

The following easy lemma will be used in the proof of the forthcoming
Lemma 4.4.4. We prove it for completeness.
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Lemma 4.3.1. Let c ∈ [0, 1] and let A be a d × d real symmetric matrix
satisfying ‖Ax‖ ≤ c‖x‖ for all x ∈ Rd. Then

〈(Id −A)u, u〉 ≥ (1− c)‖u‖2

for all u ∈ Rd, with Id the d× d-identity matrix.

Proof. Since A is real symmetric, there is an orthonormal basis e1, . . . , ed
of Rd consisting of eigenvectors of A. Let µ1, . . . , µd be the corresponding
eigenvalues. Fix u ∈ Rd. We can write u = u1e1 + . . .+ uded, and thus

〈(Id −A)u, u〉 =

d∑
i=1

(1− µi)u2
i .

But |µi| ≤ c for all i given the assumption on A, so the desired conclusion
follows.
�

Starting from now, we let the notation of Sections 4.1.1 and 4.1.2 prevail.

4.3.3 In Theorem 4.1.1, the symmetry center of Kn can be
assumed to be zero

The following lemma justifies why, without loss of generality, we may and
will assume that the symmetry center of Kn is 0 ∈ Rdn in Theorem 4.1.1.

Lemma 4.3.2. The law of HK is invariant by translation. In other words,

we have HK+c
law
= HK for any c ∈ Rd.

Proof. For any bounded Borel function h : Rd → R, we can write

Eh(HK+c) = Eh(π dist2(XK+c,K + c))

=

∫
Rd
h(π dist2(x,K + c))

e−π dist2(x,K+c)

W (K + c)
dx

=

∫
Rd
h(π dist2(x+ c,K + c))

e−π dist2(x+c,K+c)

W (K + c)
dx

=

∫
Rd
h(π dist2(x,K))

e−π dist2(x,K)

W (K)
dx = Eh(HK),

where in the last line we have used that dist2(x + c,K + c) = dist2(x,K).
The desired conclusion follows. �

154



4.3.4 Nearest point projection

To each x ∈ Rd one can associate a unique point ΠK(x) of K such that
‖x − ΠK(x)‖ = dist(x,K). The map ΠK : Rd → K is called the nearest
point projection. If x ∈ K then ΠK(x) = x. The map ΠK is 1-Lipschitz.
We also have

∇dist2(x,K) = 2(x−ΠK(x)), x ∈ Rd, (4.12)

see e.g. [5, Lemma 2.2].
When x ∈ ∂K, we denote by n(x) the outward pointing unit normal to

∂K at x. We have, for all x ∈ Rd,

x = ΠK(x) + dist(x,K)n(ΠK(x)).

We deduce that Φ : ∂K × (0,∞)→ Rd \K defined as

Φ(x, r) = x+ r n(x)

is a homeomorphism, whose inverse is given by

Φ−1(y) = (ΠK(y), dist(y,K)).

4.3.5 Principal curvatures

The Gauss map of ∂K is the map G : ∂K → Sd−1 defined by the inward
unit normal, that is, G(x) = −n(x). The shape operator of ∂K at x is
Sx = −DGx, where DGx : Tx∂K → TG(x)Sd−1 is the differential of the

Gauss map at x. The eigenvalues of Sx, denoted λK1 (x), . . . , λKd−1(x) are the
principal curvatures of ∂K at x. It is the usual convention to order them so
that 0 ≤ λK1 (x) ≤ . . . ≤ λKd−1(x), and to say that λ1(x) (resp. λd−1(x)) is
the minimal (resp. maximal) principal curvature of ∂K at x.

Lemma 4.3.3. For all y ∈ Rd, we have

‖∇ΠK(y)‖ ≤ 1

dist(y,K)λK1 (ΠK(y)) + 1
. (4.13)

Proof. Let x ∈ ∂K. The shape operator Sx being selfadjoint, there is an or-
thonormal basis e = (e1, . . . , ed−1) of Tx∂K in which the matrix representing
Sx is diagonal with entries λK1 (x), . . . , λKd−1(x). Then, in the orthonormal
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basis (e1, . . . , ed−1, n(x)) the matrix of the differential of Φ at (x, r) is given
by

∇Φ(x, r) =


1 + rλK1 (x) 0 · · · 0

0
. . .

. . .
...

...
. . . 1 + rλKd−1(x) 0

0 · · · 0 1


If y ∈ K, (4.13) is obviously satisfied because ΠK is 1-Lipschitz. Consider

now y ∈ Rd \K. We can write

ΠK(y) = γ ◦ Φ−1(y),

with γ the projection

γ =

{
∂K × R → ∂K

(x, r) 7→ x
.

We deduce that the matrix of the gradient of ΠK at y in the basis (e1, . . . , ed−1, n(x))
is given by

∇ΠK(y) = ∇(θ ◦ γ ◦ Φ−1)(y) =


1

1+rλK1 (ΠK(y))
0 · · · 0

0
. . .

. . .
...

...
. . . 1

1+rλKd−1(ΠK(y))
0

0 · · · 0 0

 .

The conclusion (4.13) follows from the fact that r = dist(y,K) and that
λK1 (ΠK(y)) ≤ . . . ≤ λKd−1(ΠK(y)).

�

4.3.6 Blaschke’s Rolling Theorem

Set
λK1 := min

x∈∂K
λK1 (x) > 0. (4.14)

From Blaschke’s Rolling Theorem [4], we have that K is entirely contained
in a ball (not necessarily centered at 0) of radius 1

λK1
. By Lemma 4.3.2, we

can assume without loss of generality that 0 ∈ K; if so, we get that

K ⊂ Bd(0,
2

λK1
), (4.15)
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a fact that we label as it will be used many times in the sequel. We also
deduce from (4.15) that

‖x‖ ≤ 2

λK1
+ dist(x,K), x ∈ Rd. (4.16)

4.4 Proof of Theorem 4.1.1

We are now ready to proceed with the proof of Theorem 4.1.1. It is decom-
posed into several steps. By Lemma 4.3.2, we assume that 0 ∈ Kn for all
n.

4.4.1 Step 1: Stein’s method

As stated in the introduction, the central ingredient of the proof is Stein’s
method. Introduced first in [11], this method relies on astute integration by
parts formulas to bound the total variation distance between any given ran-
dom variables and the standard normal law (although other target variables
and other distances can also be considered).

We write K for Kn in this step to simplify the notation. We also let
the notation introduced in Sections 4.1.1 and 4.1.2 prevail, in particular the
definition of XK and HK . We start by applying Stein’s method to prove
the following estimate for the distance in total variation between HK−EHK√

Var(HK)

and the standard Gaussian distribution.

Proposition 4.4.1. Write φ(x) = π dist2(x,K), x ∈ Rd, set

UK(x) =

〈∫ ∞
0

e−2tE
[
∇φ(e−tx+

√
1− e−2tXK)]dt,∇φ(x)

〉
, (4.17)

set FK = HK−EHK√
Var(HK)

, and let N ∼ N(0, 1). We have

dTV (FK , N) ≤
√

Var(UK(XK))

πVar(HK)
+

3√
Var(HK)

sup
∣∣B1(h)−B2(h)

∣∣, (4.18)

where

B1(h) =

∫ ∞
0

e−tE [〈∇φ(XK,t),ΠK(XK)〉h(FK)] dt (4.19)

B2(h) =

∫ ∞
0

e−2t

√
1− e−2t

E
[
〈∇φ(XK,t),ΠK(X̂K)〉h(FK)

]
dt, (4.20)
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with XK,t = e−tXK+
√

1− e−2tX̂K and X̂K an independent copy of XK , and
where the supremum in the right-hand side of (4.18) runs over the functions
h : R→ R that are C1, 2-Lipschitz and such that |h(x)| ≤

√
π
2 + |x|.

Proof. To simplify the presentation of the proof, we remove the subscript
K from the quantities considered, that is, we write F for FK , H for HK , X
for XK , Xt for XK,t, U for UK , etc. Let g : R→ R be C1 and Lipschitz. We
can write, using ∇φ(x) = 2π(x−ΠK(x)) (see (4.12)) in the last equality,

E[Fg(F )] =
1√

Var(H)
E
[
(φ(X)− φ(X̂))g(F )

]
= − 1√

Var(H)

∫ ∞
0

E
[
d

dt

(
φ(Xt)

)
g(F )

]
dt

=
1√

Var(H)

∫ ∞
0

e−tE [〈∇φ(Xt), X〉 g(F )] dt

− 1√
Var(H)

∫ ∞
0

e−2t

√
1− e−2t

E
[
〈∇φ(Xt), X̂〉g(F )

]
dt

=
1√

Var(H)
(A1(g)−A2(g) +B1(g)−B2(g)),

where

A1(g) =
1

2π

∫ ∞
0

e−tE [〈∇φ(Xt),∇φ(X)〉g(F )] dt

A2(g) =
1

2π

∫ ∞
0

e−2t

√
1− e−2t

E
[
〈∇φ(Xt),∇φ(X̂)〉g(F )

]
dt

and B1(g) and B2(g) are given by (4.19) and (4.20) respectively. We have

E [〈∇φ(Xt),∇φ(X)〉g(F )]

=

d∑
i=1

E

∫
Rd−1

∏
j 6=i

dxj

∫
R
dxi

∂φ

∂xi
(e−tx+

√
1− e−2tX̂)

× ∂φ
∂xi

(x) g

(
φ(x)− EH√

Var(H)

)
e−φ(x)

]

= −
d∑
i=1

E

∫
Rd−1

∏
j 6=i

dxj

∫
R
dxi

∂φ

∂xi
(e−tx+

√
1− e−2tX̂)

×∂e
−φ

∂xi
(x) g

(
φ(x)− EH√

Var(H)

)]
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= e−t
d∑
i=1

E

[∫
Rd

∂2φ

∂x2
i

(e−tx+
√

1− e−2tX̂)g

(
φ(x)− EH√

Var(H)

)
e−φ(x)dx

]

+
1√

Var(H)

d∑
i=1

E
[∫

Rd

∂φ

∂xi
(e−tx+

√
1− e−2tX̂)

∂φ

∂xi
(x)

× g′
(
φ(x)− EH√

Var(H)

)
e−φ(x)dx

]
= e−t E [∆φ(Xt) g(F )] +

1√
Var(H)

E
[
〈∇φ(Xt),∇φ(X)〉g′(F )

]
,

and

E
[
〈∇φ(Xt),∇φ(X̂)〉g(F )

]
=

d∑
i=1

E

∫
Rd−1

∏
j 6=i

dxj

∫
R
dxi

∂φ

∂xi
(e−tX +

√
1− e−2tx)

× ∂φ
∂xi

(x) g

(
φ(X)− EH√

Var(H)

)
e−φ(x)

]

= −
d∑
i=1

E

∫
Rd−1

∏
j 6=i

dxj

∫
R
dxi

∂φ

∂xi
(e−tX +

√
1− e−2tx)

× ∂e−φ

∂xi
(x) g

(
φ(X)− EH√

Var(H)

)]

=
√

1− e−2t

d∑
i=1

E
[∫

Rd

∂2φ

∂x2
i

(e−tX +
√

1− e−2tx)

× g

(
φ(X)− EH√

Var(H)

)
e−φ(x)dx

]
=

√
1− e−2t E [∆φ(Xt) g(F )] .

We deduce that

E[Fg(F )− g′(F )] =
1

2πVar(H)
E
[
(U(X)− 2πVar(H)) g′(F )

]
+

1√
Var(H)

(
B1(g)−B2(g)

)
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and (with g(x) = x the identity function)

2πVar(H) = E [U(X)] + 2π
√

Var(H)(B1(id)−B2(id)).

By combining the two previous identities, we get

E[Fg(F )− g′(F )] =
1

2πVar(H)
E
[
(U(X)− E[U(X)]) g′(F )

]
− 1√

Var(H)
E[(B1(id)−B2(id))g′(F )]

+
1√

Var(H)
(B1(g)−B2(g)).

The desired conclusion then follows from Stein’s lemma, according to which

dTV (F,N) ≤ sup
∣∣E[Fg(F )− g′(F )]

∣∣,
where the supremum runs over the functions g : R → R that are C1 and
such that ‖g′‖∞ ≤ 2 and ‖g‖∞ ≤

√
π
2 . �

Remark 4.4.2. To keep things simple, the previous result was stated in the
particular case of the information content of the distance law HK . However,
using exactly the same proof technique, it is actually possible to generalize
this result to the case where the random variable F can be expressed as

F =
f(X)− E[f(X)]

σ
,

with f : Rd → R an absolutely continuous and sufficiently integrable func-
tion, X is a Rd valued random vector with density proportional to e−φ with φ
an absolutely continuous, sufficiently integrable function (continuous Gibbs
measure) and σ2 = var(f(X)). In this case, with the same notations as in
the statement of Proposition 4.4.1, we have for all γ > 0:

dTV (F,N)

≤ 2

γσ2

√
var

(∫ ∞
0

e−t〈∇f(X),E∞[∇f(Xt)]〉dt
)

+
3

σ
sup
g

∣∣∣∣∫ ∞
0

E

[
g

(
f(Y )

σ

)〈
∇f(Xt), e

−t(X − 1

γ
∇φ(X))

− e−2t

√
1− e−2t

(X̂ − 1

γ
∇φ(X̂))

〉]
dt

∣∣∣∣ .
where Ê is the expectation with respect to X̂ and E := E⊗ Ê.

Taking φ(x) = ‖x‖2
2 and with an easy approximation argument, we ac-

tually recover the result of Theorem A.1 in [5].
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4.4.2 Step 2: Preparation to the use of the Brascamp-Lieb
inequality

In this step again, we let the notation introduced in Sections 4.1.1 and 4.1.2
prevail.

First, we note that

W (K) ≥
∫
Rd
e−π‖x‖

2
dx =

(∫
R
e−πu

2
du

)d
= 1.

The polynomial P (x) = (1−10x3+15x4−6x5)2 satisfies P ≥ 0, P (0) = 1,
P (1) = 0 and P ′(0) = P ′′(0) = P ′(1) = P ′′(1) = 0. Let κ ∈ (0, 1) be such
that infy∈[0,κ] P (y) ≥ 1

2 and supy∈[0,κ] |P ′(y)|+ |P ′′(y)| ≤ 1
24 . Existence of κ

is ensured by a continuity argument and its exact value is not important for
the sequel. Recall the definition of λK1 from (4.14), define ξ : Rd → [0,∞)
as

ξ(x) = 1[0,1](
1

2
λK1 ‖x‖) + P (

1

2
λK1 ‖x‖ − 1)1[1,2](

1

2
λK1 ‖x‖)

and let C > 0 be given by

C =
12

κ

(
max
y∈[0,1]

|P ′(y)|+ max
y∈[0,1]

|P ′′(y)|
)

+
3

2κ
.

Definition 4.4.3. The modified distance law with respect to K is the density

x 7→ e−(π dist2(x,K)+ 1
C
ξ(x)‖x‖2)

W (K)
, x ∈ Rd,

with W (K) =
∫
Rd e

−(π dist2(x,K)+ 1
C
ξ(x)‖x‖2)dx.

Note that
W (K) ≥W (K) ≥ 1.

We have the following lemma, justifying in part why we introduced this
modified distance law.

Lemma 4.4.4. The modified distance law is strongly log-concave. More

precisely, with k = (4π−1−2κ)κ
1+2κ ∧ 1

2C and ψ(x) = π dist2(x,K) + 1
C ξ(x)‖x‖2,

we have, for all u, x ∈ Rd,

〈Hess(ψ(x))u, u〉 ≥ k‖u‖2.
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Proof. Using (4.12) we can write

Hess(ψ(x)) = A(x) +B(x),

where

A(x) = 2π(Id −∇ΠK(x)) +
2

C
ξ(x)Id

B(x) = 1[1,2](
1

2
λK1 ‖x‖)

[
3λK1 P

′(1
2λ

K
1 ‖x‖ − 1)

C‖x‖
xxT

+
λK1 ‖x‖P ′(1

2λ
K
1 ‖x‖ − 1)

2C
Id +

(λK1 )2P ′′(1
2λ

K
1 ‖x‖ − 1)

4C
xxT

]
,

with Id the d× d identity matrix.

Fact 1. We claim that 〈A(x)u, u〉 ≥ 2
C ξ(x)‖u‖2 for all u, x ∈ Rd. Indeed,

from ∇ΠK(x)y = limt→0
1
t

(
ΠK(x+ ty)− ΠK(x)

)
and ‖ΠK(x)− ΠK(y)‖ ≤

‖x − y‖, we deduce that ‖∇ΠK(x)y‖ ≤ ‖y‖ for all y ∈ Rd. Using Lemma
4.3.1 with c = 1, we get that 〈(Id −∇ΠK(x))u, u〉 ≥ 0 for all u, x ∈ Rd and
the claim follows from the definition of A(x).

Fact 2. We claim that |〈B(x)u, u〉| ≤ κ‖u‖2 for all u, x ∈ Rd. Indeed,

|〈B(x)u, u〉|

= 1[1,2](
1

2
λK1 ‖x‖)

∣∣∣∣∣3λK1 P ′(1
2λ

K
1 ‖x‖ − 1)

C‖x‖
〈u, x〉2

+
λK1 ‖x‖P ′(1

2λ
K
1 ‖x‖ − 1)

2C
‖u‖2 +

(λK1 )2P ′′(1
2λ

K
1 ‖x‖ − 1)

4C
〈u, x〉2

∣∣∣∣∣
≤ 1[1,2](

1

2
λK1 ‖x‖)(

2λK1 ‖x‖
C

|P ′(1

2
λK1 ‖x‖ − 1)| (4.21)

+
(λK1 )2‖x‖2

4C
|P ′′(1

2
λK1 ‖x‖ − 1)|)‖u‖2

(4.22)

≤ κ‖u‖2,

where, in the last line, we used that λK1 ‖x‖ ≤ 4 and that |P ′(y)|, |P ′′(y)| ≤
Cκ
12 for y ∈ [0, 1] by definition of C.
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Fact 3. We claim that |〈B(x)u, u〉| ≤ 1
2C ‖u‖

2 for all u ∈ Rd and all
x ∈ Rd such that 1

2λ
K
1 ‖x‖ ∈ [1, 1 + κ]. It is indeed an immediate conse-

quence of (4.22) and the fact that |P ′(y)|, |P ′′(y)| ≤ 1
24 for all y ∈ [0, κ].

Fact 4. We claim that 〈(Id−∇ΠK(x))u, u〉 ≥ 2κ
1+2κ‖u‖

2 for all u ∈ Rd and

all x ∈ Rd such that 1
2λ

K
1 ‖x‖ ∈ [1 + κ,∞). Indeed, we deduce from (4.16)

that d(x,K) ≥ 2κ
λK1

, implying in turn from Lemma 4.3.3 that ‖∇ΠK(x)‖ ≤
1

1+2κ . Finally, the claim follows from Lemma 4.3.1.

We are now ready to prove Lemma 4.4.4. We have, for all u, x ∈ Rd,

〈Hess(ψ(x))u, u〉 = 〈A(x)u, u〉+ 〈B(x)u, u〉.

First case: 1
2λ

K
1 ‖x‖ ≤ 1. We have ξ(x) = 1 and we deduce from Facts 1

and 2 that

〈Hess(ψ(x))u, u〉 ≥
(

2

C
− κ
)
‖u‖2 ≥ 1

2C
‖u‖2 ≥ k‖u‖2.

Second case: 1
2λ

K
1 ‖x‖ ∈ [1, 1 + κ]. In this case, ξ(x) ≥ 1

2 and we get,
from Facts 1 and 3,

〈Hess(ψ(x))u, u〉 ≥
(

1

C
− 1

2C

)
‖u‖2 =

1

2C
‖u‖2 ≥ k‖u‖2.

Third case: 1
2λ

K
1 ‖x‖ ≥ 1 + κ. We can write, using Facts 2 and 4,

〈Hess(ψ(x))u, u〉 ≥ 2π〈(Id −∇ΠK(x))u, u〉 − κ‖u‖2

≥
(
2π

2κ

1 + 2κ
− κ)‖u‖2 ≥ k‖u‖2.

The proof is complete.
�

Proposition 4.4.5. Fix γ ∈ (0, 1
4), c, q,M > 0 and an integer p ≥ 1, all in-

dependent of d. Assume that 1 ≤ 1
λ1
≤ cdγ. Let YK : Ω→ Rd be distributed

according to the modified distance law with respect to K, see Definition 4.4.3.
Let F : Rd → R+ be a positive map such that |F (x)| ≤ M(‖x‖q + 1) for all
x ∈ Rd. We then have the existence of α, β > 0 (independent of d) such that∣∣∣(E[F (XK)])p − (E[F (YK)])p

∣∣ = O(dαβdd−d( 1
2
−2γ))→ 0 as d→∞.
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Proof.
First case: p = 1. We can write∣∣∣E[F (X)]− E[F (Y )]

∣∣ ≤ A+B,

with

A =

∣∣∣∣E [F (X)1‖X‖≤ 2
λ1

]
− E

[
F (Y )1‖Y ‖≤ 2

λ1

]∣∣∣∣
B =

∣∣∣∣E [F (X)1‖X‖> 2
λ1

]
− E

[
F (X)1‖Y ‖> 2

λ1

]∣∣∣∣ .
Now, the proof is divided into three steps.

Step 1: Upper bound for A. We have cµ ≥ 1 and cν ≥ (1 + ‖P‖∞
πC )−

d
2 .

Thanks to a polar change of coordinates, we can then write, for some α and
β whose value can change from one line to another,

A =

∣∣∣∣∣
∫
‖x‖≤ 2

λ1

F (x)e−πd
2(x,K)

(
1

cµ
− 1

cν
e−

1
C
ξ(x)‖x‖2

)
dx

∣∣∣∣∣
≤

{
1 +

(
1 +
‖P‖∞
πC

) d
2

}
M

((
2

λ1

)q
+ 1

)
Vol(B(0,

2

λ1
))

= O(dαβdd−d( 1
2
−γ))).

Step 2: Upper bound for B. Since cµ ≥ 1 and cν ≥ (1 + ‖P‖∞
πC )−

d
2 , we

have ∣∣∣∣ 1

cµ
− 1

cν

∣∣∣∣ ≤ cµ − cν
cν

=

∫
Rd e

−πd2(x,K)(1− e−
1
C
ξ(x)‖x‖2)dx

cν

≤ Vol(Bd(0,
2

λ1
))(1 +

‖P‖∞
πC

)−
d
2

= O(dαβdd−d( 1
2
−γ)).

Since K ⊂ B(0, 2
λ1

) and ξ(x) = 0 for ‖x‖ > 2
λ1

, we deduce

B =

∣∣∣∣∣
(

1

cµ
− 1

cν

)∫
‖x‖> 2

λ1

F (x)e−πd
2(x,K)dx

∣∣∣∣∣
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≤ M

∣∣∣∣ 1

cµ
− 1

cν

∣∣∣∣ Vol(Sd−1(0, 1))

∫ d

2
λ1

e
−π(r− 2

λ1
)2

(1 + rq)rd−1dr.

Now, we observe that∫ d

2
λ1

e
−π(r− 2

λ1
)2

(1 + rq)rd−1dr

≤
∫ ∞

0
e−πr

2
(1 + (r +

2

λ1
)q)rd−1dr

≤ 2

∫ ∞
0

e−πr
2
(r + 2cdγ)q+d−1dr

≤ 2(4cdγ)q+d−1

∫ 2cdγ

0
e−πr

2
dr + 2q+d

∫ ∞
2cdγ

e−πr
2
rq+d−1dr

= O(dαβddγd),

The proof of the proposition when p = 1 is complete, by putting together
the estimates for A and B.

Second case: p ≥ 1. In the general case for p, it suffices to use the
inequality ∣∣∣(E[F (X)])p − (E[F (Y )])p

∣∣
≤ p

∣∣E[F (X)]− E[F (Y )]
∣∣(∣∣(E[F (X)])p−1

∣∣+
∣∣(E[F (Y )])p−1

∣∣).
The result obtained in the case p = 1 plus similar computations allow then
to conclude. �

4.4.3 Step 3: Upper bound for Var(UK(XK))

.
We can write, thanks to Proposition 4.4.5 and with Y ∼ ν(dx) =

e−ψ(x)dx, with ν and ψ as in Definition 4.4.3,

Var(Uφ(X)) = Var(Uφ(Y )) +O(dαβdd−d( 1
2
−2γ))

≤ 1

k
E
[
‖∇Uφ(Y )‖2

]
+O(dαβdd−d( 1

2
−2γ))

≤ 1

k
E
[
‖∇Uφ(X)‖2

]
+O(dαβdd−d( 1

2
−2γ)).
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Now, let us estimate E
[
‖∇Uφ(X)‖2

]
. We have

∇Uφ(x)

= E
∫ ∞

0
e−2t(Hessφ)(e−tx+

√
1− e−2tX)∇φ(x)dt

+E
∫ ∞

0
e−t(Hessφ)(x)∇φ(e−tx+

√
1− e−2tX)dt

= 2π2E
∫ ∞

0
2e−2t

(
I −∇ΠK(e−tx+

√
1− e−2tX)

)
(x−ΠK(x))dt

+4π2E
∫ ∞

0
e−t
(
I −∇ΠK(x)

)(
(I −ΠK)(e−tx+

√
1− e−2tX)

)
dt.

We deduce from Jensen and the feact that ∇ΠK(·) are contracting operators
that

‖∇Uφ(x)‖2

≤ 2(2π2)2

∫ ∞
0

2e−2tdt ‖x−ΠK(x)‖2

+2(4π2)2

∫ ∞
0

e−tE‖e−tx+
√

1− e−2tX‖2dt

≤ 2(2π2)2‖x−ΠK(x)‖2 + 4(4π2)2
(
‖x‖2 + E‖X‖2

)
≤ 72π4‖x‖2 + 64π4E‖X‖2.

As a result,

Var(Uφ(X)) ≤ 136π4

k
E‖X‖2 +O(dαβdd−d( 1

2
−2γ)).

4.4.4 Step 4: Upper bound for sup
∣∣B1(h)−B2(h)

∣∣
Using that ∇φ(x) = 2π(x−ΠK(x)), we can write

B1(h)−B2(h) = 2π

∫ ∞
0

e−tE〈Xt,ΠK(X)〉h(F )dt

−2π

∫ ∞
0

e−2t

√
1− e−2t

E〈Xt,ΠK(X̂)〉h(F )dt

−2π

∫ ∞
0

e−tE〈ΠK(Xt),ΠK(X)〉h(F )dt

+2π

∫ ∞
0

e−2t

√
1− e−2t

E〈ΠK(Xt),ΠK(X̂)〉h(F )dt.
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Since K ⊂ Bd(0, 2
λ1

), we have ‖ΠK(x)‖ ≤ 2
λ1

for all x ∈ Rd. In particular,

using also that E
[
h(F )2

]
≤ π + 1,

2π

∣∣∣∣∫ ∞
0

e−tE〈ΠK(Xt),ΠK(X)〉h(F )dt

∣∣∣∣ ≤ 8π
√
π + 1

λ2
1

≤ 52

λ2
1

2π

∣∣∣∣∫ ∞
0

e−2t

√
1− e−2t

E〈ΠK(Xt),ΠK(X̂)〉h(F )dt

∣∣∣∣ ≤ 8π
√
π + 1

λ2
1

≤ 52

λ2
1

On the other hand, since K is symmetric with respect to 0, the function

x 7→ ΠK(x) is antisymmetric and X
law
= −X and X̂

law
= −X̂. We deduce that

E〈Xt,ΠK(X)〉h(F ) = e−tE〈X,ΠK(X)〉h(F )

E〈Xt,ΠK(X̂)〉h(F ) =
√

1− e−2tE〈X̂,ΠK(X̂)〉Eh(F ).

We deduce that ∣∣B1(h)−B2(h)
∣∣

≤ π |E [(〈X,ΠK(X)〉 − E〈X,ΠK(X)〉)h(F )]|+ 104

λ2
1

≤ 7
√

Var(〈X,ΠK(X)〉) +
104

λ2
1

.

To bound Var(〈X,ΠK(X)〉), as in Step 1 we will rely on the Brascamp-Lieb
inequality. Set H(x) = 〈x,ΠK(x)〉. We have, thanks to Proposition 4.4.5
and with Y ∼ ν(dx) = e−ψ(x)dx, with ν and ψ as in Definition 4.4.3,

Var(H(X)) = Var(H(Y )) +O(dαβdd−d( 1
2
−2γ))

≤ 1

k
E
[
‖∇H(Y )‖2

]
+O(dαβdd−d( 1

2
−2γ))

≤ 1

k
E
[
‖∇H(X)‖2

]
+O(dαβdd−d( 1

2
−2γ)).

Since ∇H(x) = 〈x,∇ΠK(x)〉+ ΠK(x), we deduce

Var(H(X))

≤ 2

k
E
[
‖〈X,∇ΠK(X)〉‖2

]
+

2

k
E
[
‖ΠK(X)‖2

]
+O(dαβdd−d( 1

2
−2γ)).

Again, K ⊂ Bd(0, 2
λ1

), implying ‖ΠK(x)‖ ≤ 2
λ1

for all x ∈ Rd, so that

E
[
‖ΠK(X)‖2

]
≤ 4

λ2
1
. On the other hand, by Lemma 4.3.3 we have ‖∇ΠK(x)‖ ≤

1
1+λ1 d(x,K) , leading to

E
[
‖〈X,∇ΠK(X)〉‖2

]
≤ E

[
‖X‖2

(1 + λ1 d(x,K))2

]
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But ‖x‖ ≤ 2
λ1

+ d(x,K) for all x ∈ Rd (by inclusion of K in Bd(0, 2
λ1

)), so

E
[
‖〈X,∇ΠK(X)〉‖2

]
≤ 4

λ2
1
. Finally, we get that

∣∣B1(h)−B2(h)
∣∣ ≤ 7

√
16

kλ2
1

+O(dαβdd−d( 1
2
−2γ)) +

104

λ2
1

.

4.4.5 Step 5: Conclusion

Putting the results of Steps 3 and 4 together, we deduce that

dTV (F,N) = On→∞

(
1

σ(λ1 + λ2
1)

)
Thanks to the facts that 1

λ1
≤ dγ , K ⊂ B(0, 2dγ) and thanks to item 1

in Proposition 4.2.2, we have that 1
σ = On→∞

(
1√
dn

)
. This concludes the

proof.
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