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Self-regulation of phenotypic noise synchronizes
emergent organization and active transport in
confluent microbial environments

Jayabrata Dhar’, Anh L. P. Thai', Arkajyoti Ghoshal', Luca Giomi

2 and Anupam Sengupta ®1

The variation associated with different observable characteristics—phenotypes—at the cellular scale underpins homeostasis
and the fitness of living systems. However, if and how these noisy phenotypic traits shape properties at the population level
remains poorly understood. Here we report that phenotypic noise self-regulates with growth and coordinates collective struc-
tural organization, the kinetics of topological defects and the emergence of active transport around confluent colonies. We do
this by cataloguing key phenotypic traits in bacteria growing under diverse conditions. Our results reveal a statistically precise
critical time for the transition from a monolayer biofilm to a multilayer biofilm, despite the strong noise in the cell geometry and
the colony area at the onset of the transition. This reveals a mitigation mechanism between the noise in the cell geometry and
the growth rate that dictates the narrow critical time window. By uncovering how rectification of phenotypic noise homogenizes
correlated collective properties across colonies, our work points at an emergent strategy that confluent systems employ to tune
active transport, buffering inherent heterogeneities associated with natural cellular environment settings.

icrobial life, at the level of individual cells, is inherently

noisy due to the intrinsic stochasticity of gene expres-

sions'”, compounded by variations in the biotic and
abiotic components in microbial habitats**. In bacteria, hetero-
geneity in phenotypic traits, including cell geometry, motility and
surface association, enhance fitness and functionality’~’, modulate
chemotactic attributes'®'’, support homeostasis'>"> and regulate
bet-hedging strategies'*'*. Whether the ramifications of related phe-
notypic noise, that is, cell-to-cell variability, on growing populations
are suppressed or reinforced have been studied in single phenotypic
contexts'®, yet, in nature, phenotypic traits can diversify concur-
rently'”'®. It thus remains to be understood how variability across
multiple phenotypes co-emerges and, crucially, if crosstalk therein
could rectify noisy effects to trigger emergent collective properties,
which are statistically deterministic in nature.

Recent experiments and modelling of growing bacterial colo-
nies—a focal point in ecology, medicine and industry—have indi-
cated the critical role of cell geometry and growth dynamics in
shaping the properties of growing bacterial layers'**. The emer-
gence of structural order and low-dimensional topological attri-
butes, including singularities (topological defects), are implicated in
the morphogenesis of two-dimensional (2D) sessile colonies to 3D
biofilms over longer timescales. Specifically, the mono-to-multilayer
transition (MTMT)—a critical step in biofilm development—initi-
ates due to a biomechanical interplay of geometry, order and topo-
logy***, as has also been observed in motile surface-associated
swarms**. The ability of bacteria to collectively exploit topological
properties for optimal navigation strategies®, localizing sporulation
sites’! and, potentially, for driving local nutrient fluxes’* showcases
emergent functionalities that bacteria can harness across a range of
physiological timescales.

Despite recent mechanistic insights, the consequence of pheno-
typic noise on population-scale attributes, specifically in the context
of emergent collective properties of microbial active matter, is yet

to be understood. In this Article we bridge this conspicuous gap by
combining single-cell time-lapse imaging, particle image velocimetry,
numerical simulations and continuum modelling to quantify pheno-
typic noise associated with key traits, and analyse the role of noise in
shaping two fundamental collective and correlated properties of con-
fluent colonies: structural organization driving MTMT, in spatial cor-
relation with the embedded topological defects, and the emergence
of active local transport. We study the bacterial species Escherichia
coli (strains C600-wt and NCM3722 delta-motA, hereafter Strain-1
and Strain-2, respectively) and Serratia marcescens (PCI 1107), grow-
ing under different conditions, allowing us to span a range of growth
rates underpinning the expansion of confluent colonies (Methods
section Bacterial cultures and bacteria-microparticle assays).

By tracking the expansion of confluent colonies through MTMT
(Methods sections Time-lapse imaging and Image analysis and
Fig. 1a,b), we quantify trait-specific phenotypic noise from the
distributions of phenotypic traits at the critical time, ., the onset of
the MTMT event (Supplementary sections Al and A2). Our results
reveal that trait-specific phenotypic noise autoregulates with growth
(that is, colony age), such that with increasing intra-colony vari-
ability in time, the inter-colony variability reduces (Supplementary
Fig. 1 and Supplementary section A3). At MTMT, phenotypic noise
terms can differ over two orders of magnitude relative to each other:
the cell aspect ratio (AR) and the critical colony area (A, colony
area at ) are highly noisy, but the noise associated with ¢, was the
least (two orders lower), rendering MTMT a statistically precise
event across all growth rates. We rationalize the emergence of the
narrow ¢, window—despite noisy phenotypic traits—with a con-
tinuum model of growing confluent colonies, uncovering a mitiga-
tion effect between the noise in the cell geometry and in the growth
rate that tightens the distribution of ¢. Spatially, the out-of-plane
extrusion occurs upon cell division, closer to the +1/2 than to the
—1/2 defects present in the colony. We use a combination of particle
tracking experiments and data-based theoretical computations over
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multiple layers to demonstrate that the structural dynamics in con-
fluent colonies drive active transport in the micro-environment in a
time-synchronous manner. By spanning diverse growth conditions
and species, our work captures how autoregulation of phenotypic
noise enables correlated collective phenomena—in structure, defect
kinetics and active hydrodynamics—thereby establishing a general
mechanistic framework to understand the emergence of statistically
precise collective events within active systems comprising individuals
that are intrinsically noisy or susceptible to systemic noise.

Critical time is deterministic despite high phenotypic noise.
Cellular phenotypic traits, including length at birth (#,) and AR
(=¢/w, where ¢ and w are the bacterial length and width, respec-
tively; Fig. 1c), show high variance at MTMT across all tempera-
tures, following log-normal distributions (Supplementary sections
Al and A2 and Supplementary Figs. 3a,e, 4 and 5), in agreement
with previous reports****. The log-normal nature of the £, and AR,
which we confirm theoretically (equation (10a)), is observed fre-
quently in natural systems and stems from the underlying indepen-
dent random variables*~*". This confirms that the distribution of
AR is ultimately determined by that of £, provided the variability
in growth rate remains low, as reported previously™.

Despite the high variability in cell- and colony-scale descriptors
at MTMT (Supplementary sections Al and A2 and Supplementary
Fig. 3), t_ is statistically precise, suggesting noise mitigation mecha-
nisms across the phenotypic variabilities. Although A, both mea-
sured and predicted, is randomly distributed, with an overall high
standard deviation (s.d.) across the growth temperatures (Fig. 1d),
the mean and variation of f, show an inverse relation with tem-
perature (Fig. le). In contrast, the log-normal distribution of AR
at MTMT suggests a high phenotypic noise across temperatures
(Fig. 1f and Supplementary Fig. 3a), species and nutrient conditions
(Supplementary Table 2 and Supplementary section B1). We discern
the emergent crosstalk between phenotypic noise using a simple
continuum model of an expanding colony, following ref. ** (Methods
section Hydrodynamic model and Supplementary Fig. 7), wherein
MTMT occurs when cells experience longitudinal forces larger than

Je = dokat, @

where d, is the cell diameter and k,Z, with k, a constant and ¢ the
cell length, is the total stiffness of the adhesion complex anchoring

>
>

Fig. 1] From noisy phenotypes to a statistically precise mono-to-multilayer
transition event. a, Cells streaked on nutrient-rich agar plate (1) are
transferred in the liquid medium (2), then seeded within the microfluidic
chamber, here C; denotes individual colonies (3), for phase-contrast
time-lapse imaging (4) in the swimming pool (S). b, Raw images of growing
colonies (1) are binarized to extract phenotypic traits (2) and colour-coded
to visualize local cell orientation (3,4). ¢, Single-cell geometric traits: AR
and #,. d.e, A_is independent of growth temperature (d), as revealed both
in our theory and experiments, whereas t. is temperature-dependent (e).
Blue and red points indicate distinct biological replicates (including multiple
technical replicates) for A. and t. experimental data. A has large variance
across all T, whereas t_ has low variance, which minimizes further with the
growth temperature. Dashed lines and shaded regions indicate the mean
and s.d. predicted using equations (5a) and (6a). Insets: the cell aspect

AR ratio follows a log-normal distribution regardless of T, fitted by the

LN, versus LN, curve (Supplementary Fig. 3a). f, Trait-specific phenotypic
noise, quantified as the normalized variance, F=var(---)/(::+)?, across

T: ¢, (blue squares), A, (red triangles), cell length doubling time 7. (black
diamonds), AR (magenta triangles) and t, (green circles). Despite the

high phenotypic noise at individual scales (#,, AR and z.)), t. is statistically
precise (corresponding noise is orders of magnitude lower across all T).
The error bar denotes the standard deviation of F across colonies.

a cell to the substrate. As a consequence, newly divided cells are
more likely to be extruded once the pressure in their surroundings
exceeds the threshold P.=f/A,,,, where Acp = nd2/2 is the area of
the cells’ spherical cap. The pressure field P=P(r, ), with r the dis-
tance from the centre and f time, varies across the colony propor-
tionally to the local packing fraction ¢p = ¢(r, t), that is, P=Py(¢p — 1),
where P, is a constant independent of the growth rate”. Specifically,
at the colony’s centre (the probable site for the MTMT)

$(0, 1) = —=, (2)

where A(f) = Agexpkat, with kg =7;'log2 and 7, the area
doubling time, is the colony’s area (the approximation holds for
long times; Methods section Hydrodynamic model). Thus, taking
P(0, t) = P. and solving for the area gives

Ac = Ao(U/ly + 1), (3a)
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tc = k;llog(f/fa + 1); (3b)

where £, =PA,/(k,d,) is a constant length scale, expressing the
typical extension of the adhesion molecules when stretched by
force PyA,,.

Equations (3a) and (3b) imply that the statistics of A, and ¢, are
entirely determined by the probability distribution of the cellular
length ¢, which, in turn, is log-normal as shown in Fig. 1f. Thus,
normalizing £ by £, and taking

B 1 (logt/ty — u)’
= Voo it Y {7 202 W

with u = (logl/l,) and o*=var(log¢/¢,), yields the approximation
for mean value and variance of A,

PDF((/(,)

(Ac) = Ao((0/82) + 1) (5a)
varA. = Aévar((/éa), (5b)
and time
(t) = ky 'log((¢/6:) + 1), (6a)
k! ?
varf. = <%>J’»l> Var(ﬁ/&,), (6b)

where we have expanded ¢, at the linear order about (£/¢,) to obtain
equations (6a) and (6b). Then, using equation (4) allows us to
explicitly compute the mean and variance of £/Z, in the form

(0/6) = T3, (72)

var /0, = e+’ (eﬂz — 1). (7b)

Finally, because the cellular length grows exponentially in time until
reaching twice the length £,:

ot) = 2"y, (8)

u and ¢ are, in principle, determined by the statistics of £, and 7,
and, for sufficiently long times, the distribution of the doubling
time is unimportant, because the mean and variance of the length
solely depend on £, statistics. Specifically, normalizing both sides of
equation (8) by £, and taking the logarithm gives

logt/ty = logly/ly + (t/74)log 2. 9)

Now, for t>>17,, the colony comprises a large number of cells,
whose age is sufficiently diversified, their lengths thereby span-
ning the entire range £, <¢ <27, and the time ¢ in equations (8)
and (9) can be treated as a uniformly distributed random variable
in the range 0 <t <7, Consequently, /7, is a uniformly distributed
random variable in the unit interval, from which (t/z;)=1/2 and
var(t/z;)=1/12. Hence

4= (logly/ba) + %log 2, (10a)

o* = varty/ts + %(log 22 (10b)
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In summary, our theoretical analysis reveals that the statistics
of A, and ¢ are ultimately determined by the distribution of £,
which, in turn, is log-normal, consistent with previous reports**.
Given that temperature mainly affects the cell growth rate, while
leaving the statistics of the length at birth essentially unaltered
(Supplementary Fig. 3a—e), we infer that, regardless of the strains,
both (A,) and v/varA. are independent of temperature, whereas (t.)
and +/vartc vary inversely with T, because k;~ T (Supplementary
Fig. 3d). By comparing the measured and predicted mean A_and ¢,
(Fig. 1d,e), we show that the blue (red) shaded regions are delimited
by the respective standard deviations, obtained from the square root
of equations (5b) and (6b). Consistent with our predictions, (A.) is
temperature-independent, whereas (t.) varies inversely with T.

The phenotypic noise, quantified as the normalized variance of
the measured parameters, F=var(-:-)/(:--)* (Fig. 1f), spans nearly
two orders of magnitude for a growth temperature. The noise is
maximum for A_ (red triangles, F~0.1), whereas f, (green circles)
shows the least noise, F~0.001. The noise associated with other
traits fall within these values (0.001 < F<0.1). Our experimental
data, supported by theory, suggest that the noise associated with cell
elongation rate (k,.) and the cell length distribution (£/¢,) crosstalk
to yield a mitigation effect, resulting in £/7,~f(k,) (see Methods
section Hydrodynamic model for the correlation between k; and
k,).The noise in A, and ¢, differing by two orders of magnitude, is
reasonably validated in our theoretical model (equation (18) and
Methods section Noise and activity underpin emergent trade-off).
The dependence of £ on k. reduces the variance in ¢, as the growth
rate increases, ultimately leading to a noise-mitigating effect that
regulates the precise timing of the MTMT events.

Bacteria extrude out of plane near +1/2 topological defects.
Topological defects nucleate at the intersection of nematic micro-
domains in expanding bacterial colonies due to the anisotropic cell
shape, AR>1 (refs. 2"2>*1) A snapshot of defects at the MTMT
is shown in Fig. 2a (right column) and Supplementary Fig. 8. The
out-of-plane extrusion of the bacterial monolayer is triggered by
freshly divided cells within the P-zone (Supplementary Fig. 7), a
region in confluent colonies where the growth-induced in-plane
active stresses and the surface-induced vertical restoring forces
favour extrusion®. Figure 2a (left column) shows that multiple
extrusion sites, lying in the vicinity of the topological defects, can
emerge in an expanding colony (indicated by yellow arrow heads).
Although all extrusion events were localized close to topological
defects, not every defect triggers extrusion. MTMT occurs close
to defects only when the defects lie within the P-zone (Fig. 2a
and Supplementary Fig. 7) at the instance of cell division, shown in
Fig. 2b. The probability of the out-of-plane extrusion decreases as
one moves away from the colony centre, because the critical stress
criterion is no longer fulfilled. So, despite cells dividing outside the
P-zone, they do not trigger extrusion. Spatially, the extrusion sites
are weakly correlated with the nature of the topological defects: the
probability of extrusion is slightly higher next to the +1/2 topo-
logical defects (Fig. 2c,d and Supplementary Fig. 9a,b). Overall, the
trend is comparable with other living systems®, but in confluent
bacterial colonies, the probabilities are not markedly different.

As the maximum AR varies with growth stage and conditions
(Supplementary Figs. 1, 3a and 6), the number of potential defect
sites—at the intersection of the domains—depends on the character-
istic size of the nematic microdomains within a colony”. At MTMT,
the number of defects, N, and the defect density (Cy=N,/A), did
not show a dependence on the growth rate, staying nearly uniform
(Fig. 2e,f and Supplementary Fig. 8). For Strain-1, Ny was in the
range 6 <N, <8, and for Strain-2 it was in the range 8 <N;<11. At
37°C, 30°C and 25 °C, the number of defects for Strain-1 (Strain-2)
varied, respectively, as (mean+s.d.) 6+1 (8+1), 7+2 (11+1) and
5+2 (10+3). In contrast, the rate of generation of defects at MTMT,
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Fig. 2 | Kinetics and distribution of topological defects during MTMT. a, Out-of-plane extrusion can occur at multiple sites, as indicated by yellow arrows
(left column). Distribution of topological defects at the onset of MTMT. False colours capture the orientation of nematic microdomains (right column).

b, Image sequence of cell division leading to MTMT at T=30 °C, capturing the bacterial monolayer (top), the instance of cell division (middle) and the
onset of MTMT (bottom). MTMT closely follows the cell division event because shorter cells are easily extruded out of plane. Multiple extrusion events
can occur simultaneously (cyan, yellow and white circles), if they are localized within the central P-zone. ¢,d, The probability of the location of an extrusion
event (x=0) in the vicinity of +1/2 and —1/2 topological defects for Strain-1 (¢) and Strain-2 (d). The probability of extrusion is marginally higher next

to a +1/2 defect than to a —1/2 defect. e f, The number of topological defects in the confluent colony at MTMT (e) and the corresponding defect density
normalized by the colony area (f). For a given strain, the number of topological defects at MTMT remains the same across all temperatures, but the rate of
defect generation at MTMT increases with temperature, that is, with the bacterial growth rate.

AN,/ At, increases with temperature. Because higher temperatures
accelerate the cascade of biophysical events, AN,/At shows a direct
dependence on both the population growth rate, k,, and the cell
elongation rate, k.. (Supplementary Figs. 3 and 9¢). Taken together,
our results demonstrate that, at MTMT, the kinetics of topological
defects is regulated weakly by the temperature-dependent activity
and more profoundly by the cell AR. This, thus allows for consider-
ing AR as a fundamental determinant of the topological manifesta-
tions in growing confluent colonies.

Emergent organization cascades to 3D active local transport. The
log-normal statistics, alongside anisotropic morphology, underpin
the statistically precise critical time of MTMT (t,), establish the
topological kinetics and regulate time-synchronous active trans-
port properties. The flow vorticity and divergence distributions
(Fig. 3a,b), extracted from time-lapse data (Methods and Supple-
mentary Figs. 11, 12 and 13), present the growth-mediated hydro-
dynamics of confluent colonies. Positive and negative vortices,
distributed equally (Fig. 3b, left and middle panel insets) alongside
flow divergence, gain strength with increasing activity, thus reaching
a maximum at 37°C (Supplementary Fig. 12). The mean absolute
vorticity (MAYV, Fig. 3b), equivalent to the normalized enstrophy*,
measures the growth-induced kinetic energy input to the expanding
colony. This, together with positive net mean divergence, suggests
that, post-MTMT, confluent colonies can activate transport in their
micro-environment. As growth temperature increases, the peaks
of MAV and vorticity frequency become increasingly correlated
with the MTMT event (Fig. 3b, right panel inset and Supplementary
Fig. 3f), and vice versa, confirming a time-synchronous cascade
from the structural transition to the emergent hydrodynamics in
confluent bacterial colonies.

Sessile bacteria lack motility, so emergent hydrodynamics can be
consequential for active transport in the colony micro-environment.
Using numerical modelling, we characterized local transport around
expanding colonies (Methods and Supplementary Figs. 14 and 15).

Figure 3b (right) presents the enhanced transport, (D/Dg),_, , as
the ratio of the effective and Brownian diffusion, simulated based
on our experimental data, shown here for Strain-1 (Supplementary
Fig. 12 presents the results for Strain-2). Despite lacking cellular
motility, remarkably, expanding colonies enhance local transport,
which increases with activity (here, T). For monolayers, the enhance-
ment (D/Dg),_, was approximately fourfold for 200-nm-diameter
micro-cargo and tunable via temperature-dependent growth.
Importantly, we captured a time-synchrony between the peak of
(D/Dg),_,, relative to t. (Fig. 3b, right, inset), suggesting temporal
programmability of the local transport properties mediated by the
structural changes.

At MTMT, the structural transition results in an out-of-plane
vertical speed W, that we obtain from the PIV analysis of multi-
layer confluent colonies (Fig. 4a,b, orange). The expansion of the
second layer contributes to the transport enhancement (D/Dg),_, ,
its magnitude set by the areal expansion rate of the second layer
(Methods section Bacterial cultures and bacteria-microparticle
assays and Supplementary Figs. 17 and 16). With active transport
generated by each of the subsequent layers, the cumulative trans-
port in the micro-environment becomes integrated as monolayers
transform into multiple layers (Supplementary Fig. 17). The choice
of viscosity (50 Pas) in our in silico experiments represents a con-
servative estimate, as mucilaginous and exopolymeric substances
associated with bacterial colonies can be as high as 10°Pas (ref. *').
Such viscous-dominated settings can amplify active transport non-
linearly, as demonstrated through the phase space of local viscosity
and micro-cargo size (Supplementary Fig. 15; see Methods section
Data-based transport simulations for details). For viscosity below
1Pas and for particles smaller than 100 nm in diameter, no effective
enhancement was measured.

We visualized the ramifications of activity-driven enhanced
transport using tracer experiments. The trajectories of tracers (mean
diameter of 2pm) suspended around confluent colonies reveal
micro-cargo transport. Remarkably, despite the low local viscosity
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Fig. 3 | Structural organization during MTMT drives active micro-environmental transport synchronously. a, An interplay of growth- and surface-induced
stresses drives emergent hydrodynamics in confluent colonies (shown here for Strain-1; corresponding Strain-2 data are presented in the Supplementary
Information). Left to right: emergent vorticity fields at t, strengthen as the temperature (and growth rate) increases from 25°C to 30 °C and to 37°C.
Supplementary Video 1and Supplementary Fig. 12 capture the evolution of the velocity fields and corresponding divergence fields. b, MAV (left) and the
number of unique vortices (middle) at MTMT (indicated by dashed vertical lines) show a clear dependence on the growth temperature. Positive and
negative vortices are distributed with equal probabilities (insets and Supplementary Fig. 13). Right: enhancement of transport above Brownian diffusion,
computed from the experimental data, captures the emergence of active transport due to the expansion of the bacterial monolayer (z=2z,). The effective

diffusion ratio, (D/Dg)

7=z

increases with the growth rate. Inset: the time difference between the peak of (D/DB)z:z1 and MTMT, t,—t.~0h, confirming a

strong temporal correlation (time-synchrony) between the peak of the active transport and MTMT across all temperatures.

(~0.25Pas), the expanding confluent colonies could substantially
displace tracers and their self-organized clusters (Fig. 4c for t=0
and 3.5h and Supplementary Figs. 18-21). The enhanced transport
de-clustered tracers over time, reducing the coordination number
CN, the number of direct neighbours with which each particle is
in contact (Fig. 4d, top inset). For the control case (without bacte-
ria), the CN remained constant over a long time (Supplementary
Video 2C). The rate of change of CN depends on the bacterial
activity (and hence growth temperature; Supplementary Figs. 19
and 20). Finally, variation of the area of ellipses bounding the
clusters (A,) over time gives a measure of the strength of the active
flows and their temperature-dependent modulation (Fig. 4d and
Supplementary Fig. 19 and 20). Here we would like to highlight
that Brownian diffusion of tracer clusters—orders of magnitude
lower than single tracer particles””—fails to break apart isolated
clusters (control case, Supplementary Video 2C). However, clusters
in the colony micro-environment were successfully de-clustered.
In view of the transport-driven de-clustering, our analytical model
(developed for single particles) under-predicts the strength of the
transport observed in our experiments, suggesting active transport
regimes that are potentially stronger than what we have predicted.
Experiments are underway to discern the nature of interactions
between the passive clusters and confluent colonies.

From noise-mediated active processes to biological functions.
By harnessing temperature as a tractable parameter for tuning
biophysical activity, we could control the emergent structure and
active transport in confluent bacterial colonies. We establish a gen-
eralized mechanistic link between biological activity and emergent
properties in noisy systems that is applicable for different growth
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conditions and species. The data-based continuum modelling,
combined with hydrodynamic simulations, quantifies how auto-
regulation of cellular phenotypic noise mitigates colony-scale vari-
ability, to ultimately drive structural transition, topological defect
kinetics and active transport at the onset of biofilm formation.
Time-synchrony, the specific temporal sequence of emergent struc-
ture and active flow phenomena, along with the activity-governed
ability of colonies to tailor local transport attributes—despite noisy
phenotypic traits—suggests potential physiological functions of
such active phenomena, including molecular and material cargo
transport at microscales. Expanding colonies exhibit strain- and
activity-dependent phenotypic noise, yet, crucially, we discover
that 2D to 3D morphological transitions are insulated from noise,
rendering MTMT a statistically precise process in the life of a con-
fluent colony. Downstream, MTMT triggers time-synchronized
active hydrodynamic properties, ultimately driving enhanced
transport in colony micro-environments. In natural settings, such
time-synchronized active phenomena could enable the extruded
cells forming the second layer (and beyond) to access resources,
as these cells lose direct access to nutrients through contact with
the nutrient-rich substrate. Interestingly, the high local viscosity
characteristic of exopolymeric substance-rich bacterial colonies
(10°Pas; ref. *') promotes enhancement of active transport non-
linearly, potentially enabling patchy-to-homogenized resource dis-
tribution (for example, molecular concentrations) at the onset of
the extrusion events. Further afar, confluent colonies can harness
active flows for shuttling sub-micrometre- to micrometre-sized
microbial cargo (fungal spores and bacterial cells), liposomes and
extracellular vesicles delivering genetic or biochemical cargo, hitch-
hiking bacteriophages and synthetic beads and capsules relevant
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(Methods section Image analysis and Supplementary Fig. 16) to extract the layer-wise diffusion coefficients. b, The out-of-plane vertical speed W;=, ,
obtained from the PIV analysis of confluent layers pre- and post-MTMT event reveals enhancement of vertical speed at the onset of MTMT, which persists
as the second layer expands (z=z,, top inset micrograph, shown for Strain-2 at 30 °C). With additional active transport generated by the expanding
second layer (bottom inset shows (D/DB)Z:ZZ), the net transport will amplify as multiple layers form (Supplementary Fig. 17). ¢, Harnessing active flows

in confluent colonies, demonstrated by de-clustering and transport of suspended tracers. The coordination number CN, the number of particles in contact
(red) with the particle of interest (yellow) drops as the colony expands (d, inset), in contrast to the control case (no bacteria), where the clusters persist.
d, The strength of de-clustering and transport, measured by the area of the bounding ellipse (A,), increases with growth temperature. See Supplementary
Section D, Supplementary Video 2 and Supplementary Figs. 19 and 20 for the de-clustering dynamics. Solid lines and shaded areas denote the mean and

s.d., respectively.

for drug delivery (see discussion in Supplementary section A4).
Confluent microbial active matter is a multifield topological sys-
tem* in which the topology of structure, active hydrodynamics and
microscale transport emerge sequentially with respect to the onset
of the MTMT. The geometric and topological interplay ultimately
translates into multifold enhancement of the transport in the colony
vicinity, despite the cells being non-motile. The multifield topological
facets uncovered here further our mechanistic understanding of
diverse confluent systems***-*°, extending our classical view of active
and emergent properties, specifically in the context of cell-scale
phenotypic noises and their mitigating effects on population-scale
variability, across geometric, topological and hydrodynamic prop-
erties. The biological significance of the time-synchronous nexus
of structure-flow—transport is multi-pronged: strict timing of the
extrusion events presents MTMT as a proxy to quorum-like sensing
between the colonies, with potential ramifications of and in synchro-
nous selection for resistant cells (for example, against antibiotics).
Disrupting the well-defined MTMT timing could offer future alter-
natives to inhibit quorum-sensing, and thereby tailor bacterial resis-
tance to antibiotics. Looking ahead, it will be critical to understand
how inter-colony communications emerge under stressful environ-
ments, in the parameter space of intrinsic noise and structure—flow
time-synchronicity. Finally, the noise-mediated spatio-temporal

phenomena presented here could provide key missing insights into
the biophysics of morphogenesis in systems with higher complexity,
including polymicrobial consortia observed in human and plant
microbiomes, and multicellular tissue systems relevant for embry-
onic and cancer development (Supplementary section A4).
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Methods

Bacterial cultures and bacteria-microparticle assays. Bacterial cultures. We

used two non-motile strains of E. coli bacteria, namely C600-WT and NCM3722
(Strain-1 and Strain-2, respectively). We considered a minimum of three biological
replicates for our bacterial experiments at each temperature and for each strain

in this study. As a first step, the cells were streaked on standard agar plates replete
with lysogeny broth (LB). The plated cells were grown for a day, after which
isolated cell colonies were identified and scraped using a sterile microbiological
loop. Depending on the downstream experimental requirements, the growth
temperature in each step of cell culturing was set to one of the temperatures
considered in this work (25°C, 30°C and 37 °C). The scraped cells were then
transferred to liquid LB medium, and allowed to divide in a shaker for ~12h.

The culture was subsampled at regular intervals to track the cell growth over

time, using the optical density (OD) measurement technique. After nearly 12h of
liquid culture growth, the cells were transferred into fresh LB medium at a 1:1,000
ratio of cells to fresh medium, then grown for ~2h, before they were introduced
onto the specially designed substrates (Fig. 1) for time-lapse imaging of the
colony expansion at 25°C, 30°C and 37 °C. We used growth temperature, a key
determinant of physiology, viability and pathogenicity of bacteria®~*', to regulate
the biophysical activity of the proliferating colonies. The effects of temperature on
bacterial metabolism are well supported by mathematical models and data-backed
empirical formulations™, yet temperature-dependent tuning of the biophysical
activity, at either individual or colony scales, has remained unexplored in bacterial
active matter. The single-cell-to-colony dynamics was observed using time-lapse
microscopy on a 2-mm-thick layer of agarose gel. The gel was uniformly mixed
with LB medium, a nutrient-rich medium commonly used for growing bacteria
under laboratory settings (Fig. 1a). This nutrient-rich layer was sandwiched
between two glass slides, and a 2-mm-thick Gene Frame (spacer) was used to
enclose the glass-agarose system. A time-lapse phase-contrast microscope was used
to image the cell dynamics from below. The protocols for the experiments with an
additional species (S. marcescens PCI1107) and nutrient-limited NCM3722 are
presented in Supplementary section B1.

Bacteria-particle assay for quantification of transport properties. To culture the
bacteria along with the microparticles we used 2-pm-sized polystyrene beads
(initial concentration of 98% vol/vol; Sigma-Aldrich). We first diluted the particles
in sterilized de-ionized (DI) water (50 pl of the 2-pm particle solution in 1 ml of
DI water). The mixture was vortexed and treated in a sonication bath for 2 min,
then centrifuged (at 600 r.p.m.) for another 2 min. The agglomerated beads were
separated and resuspended in DI water and the steps repeated, before introducing
the suspension into 1 ml of LB medium. The mixture was sonicated again and then
centrifuged for 2 min each, sequentially. The process was repeated three times to
ensure the beads were finally suspended in 1 ml of LB medium, to reach a low final
concentration of ~10° particles per ml. Finally, the 1 ml of LB medium + beads
mixture was mixed with 5ml of pure LB medium and sonicated for 2 min to hinder
flocculation or particle sedimentation. The bacterial strains were cultured in 6 ml
of LB + particle medium for each temperature used in the study. For propagation
of the bacterial culture at each temperature in the LB +beads medium, we followed
the same method as in the previous section. After an interval of 2 h, we observed
the growth of the bacterial strain under the microscope to ascertain its fitness

in the medium with beads. Our observations indicated that its fitness remained
unchanged in the presence of beads. Bio-compatibility was tested by allowing

the bacterial cells to grow in this dilute medium over multiple generations. We
compared the growth rate and the geometry of individual cells (microscopy)
across all temperatures, and compared them against the control data (cells grown
without the microparticles). No difference could be statistically measured between
the two sample sets, statistically ruling out cytotoxic effects due to the dilute
particle suspension. After fabrication of the agarose substrate (described earlier,
Fig. 1), growth of the colonies and concomitant particle transport were visualized
at X60 and x40 magnifications, while maintaining the sample at a particular
temperature (Time-lapse imaging). For visualization, we selected six colonies for
each temperature and noted the x-y coordinates of their initial positions. After

an interval of 30 min, the change in the positions of the beads was captured (an
example is shown in Supplementary Fig. 21). From the captured images, the
microparticles were identified and their centroids extracted using image analysis
tools. The evolution of the position of the centroid of the beads was extracted
using the Mosaic track package in Image]J. The trajectories of the beads for all the
captured colonies at each temperature provided us with the effective diffusion
coefficient from the mean-squared displacement analysis. The evolution of the
particle centroids was also used to quantify the coordination number, the bounding
elliptical area of particle locations and the circularity of the bounding ellipse (see
Supplementary Fig. 21 for details). For measurement of the coordination number,
two particles were considered to be in contact when the centre-to-centre distance
was less than the sum of the particle radii, with a tolerance of 10% of the particle
radius.

Time-lapse imaging. For experimentation at each particular temperature, we
cultured the cells overnight in LB medium and maintained the culture in a
temperature-controlled shaker. For the present study, we maintained the cultures

in 25°C, 30°C and 37°C. A dilute concentration was extracted from the culture
and placed on an agarose plate on which a single bacterium was spotted. The
subsequent growth of this single bacterium into colonies was imaged while
maintaining a temperature corresponding to the growth of the culture within the
microscope environment. Such a single bacterium acts as the nucleating site for
the growth of monoclonal colonies. For each strain and temperature we performed
three sets of experiments. The statistics of our analysis were measured over all
replicates. For the analysis of MTMT, we visualized more colonies in some cases to
ascertain its lower variance. We observed a variability in morphological parameters
such as length at birth and length at transition within colonies, even under similar
conditions potentially attributable to phenotypic heterogeneity.

The colony growth in two dimensions and subsequent penetration to the third
dimension was visualized using time-lapse phase-contrast microscopy. Images
were acquired using a Hamamatsu ORCA-Flash camera (1 pm = 10.55 pixels)
coupled to an inverted microscope (Olympus CellSense LS-IXplore) with a X60
oil objective. Overall, this gave a resolution of 0.11 pm. The microscope stage was
enclosed within a thermally insulated temperature-controlled incubator (Pecon),
which could be regulated precisely to set the temperature, and we monitored
the temperature at the sample with a resolution of 0.1 °C. Each experiment
typically lasted between 15h and 18h, allowing us to capture the mono- to bilayer
transitions (Supplementary Fig. 5) and further transitions from bi- to tri- and
quadri-layers. Before initiation of capturing the images, we identified and recorded
multiple locations on the agarose surface where a single bacterium was present.
The microscope was automated to scan these pre-recorded coordinates and
capture the images of the gradually increasing colonies at 3-min intervals while
maintaining the focus across all the colonies captured. The images captured and
saved over hours gave us the necessary data to analyse the MTMT, dynamics
and transport within the bacterial colonies. We extracted the dimensions (width
and length), position (centroid) and orientation of each bacteria from the
phase-contrast images using a combination of the open-source packages of Ilastik™
and Image] as well as MATLAB (MathWorks), as detailed in the next section.
Upon extraction of the cell morphological properties, we were able to generate the
orientation maps of the colony (Fig. 1b).

Image analysis. Image segmentation, cell geometry analysis and cell counting. The
counting process consisted of cell segmentation followed by counting the number
of individual entities. Cell segmentation was performed using a combination

of Ilastik-MATLAB coding that helped to extract the bacterial length and
orientation in the colony for each time frame of the bacterial colony growth. The
process was continued until the colony encountered MTMT, because after this the
image contrast and focus became too limited for subsequent segmentation to be
carried out (PIV analysis, described in the following, was still feasible). Initially,
pre-processing of the raw images was performed by a combination of background
filling and weighted bottom-hat and top-hat filter application Supplementary Fig.
S5. On the pre-processed image, Ilastik was trained for bacterial segmentation.
The training process involved iteration until a reasonably satisfactory extraction
was obtained. A labelled image was extracted from the segmentation process

and identified in MATLAB. A bacillus-shaped water-shedding technique

was performed to separate out joint bacterial cells. Finally, these individual
entities (segmented cells) were coloured (Supplementary Fig. 4f) or outlined
(Supplementary Fig. 6) for counting and analysis. The orientation of the individual
bacteria led to an effective director profile of the microdomains emerging with

the expanding colony (as shown in Fig. 1b). Details of the orientational analysis
for microdomain detection are presented in ref. . Once the microdomains were
tracked, the topological defects were identified as the intersection of three or more
microdomains, and further verified visually for all colony data. Depending on the
rotational nature of the change in the microdomain orientations at the intersection
(clockwise or counterclockwise, as for the polarization optics of topological defects
in ordered materials), the defect sign was assigned as (+)ve or (—)ve.

Colony extraction and PIV analysis. Image processing was carried out using
the MATLAB Image Processing module. In the following we describe the
image-processing steps we used to extract the bacterial colony (in sequence):
adaptive thresholding, image dilating and filling, then image labelling. The label
that coincides with a given centre, which is any point on the first bacterial cell, was
then extracted and dilated, again followed by image filling, then finally an image
erosion was applied. A Boolean intersection carried out between the image from
the last step and the original (raw) image satisfactorily extracted the outline of the
colony at each time frame. The colony outline gave an effective colony area that
changed with time and was tracked for each experiment.

PIV analysis was performed on the final extracted colony images (frames
that not only preclude background noise in the flow due to colony growth and
light interference, but also help focus on a single colony in cases where multiple
colony growths were captured in a single frame). For the PIV analysis, the
Contrast-Limited Adaptive Histogram Equalization (CLAHE) filter was initially
applied to each image for better contrast. The fast Fourier transform-based
cross-correlation algorithm was found to be optimal with a three-pass interrogation
area. Specifically, the desired outputs from the PIV analysis are the two velocity
components (U, V) and the vorticity field at each time frame, which is generated
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within the bacterial colony due to its spread. To capture the out-of-plane velocity,
multiple layers were captured by focusing on each bacterial plane. The individual
layers were then extracted and analysed using PIV, allowing us to extract the U, V'
velocity field for each plane (Supplementary Fig. 16). Applying a no-slip boundary
condition and continuity equation V - v, we obtained the out-of-plane velocity
field W. Knowing the velocity of the first layer and using the above constraints, the
velocity of the second layer (after MTMT), was computed, as presented in Fig. 4b.
The U, V velocity field was used to compute the local diffusion coefficient for each
layer (Fig. 4b). The PIV analysis with the processed images was carried out with
PIVlab—the particle image velocimetry (PIV) toolbox of MATLAB®*.

Hydrodynamic model. Next we provide a derivation of equation (2). The late
temporal dynamics of growing colonies can be conveniently described upon
modelling the colony as a 2D continuum, whose total mass M= /d2rp (p=p(r,t)
is the density) grows exponentially in time and whose momentum density pv
(v=v(r, 1) is the velocity) evolves under the combined effect of pressure gradients
and drag. The corresponding hydrodynamic equations are given by

%+ V - (¢v) = kaop, (11a)

pealdi(pv) + V - (pw)] = —=VP — {¢v, (11b)
where ¢ =p/p. (. is the average density of individual cells) is the local packing
fraction, kg = 7 log2 (z, is the area doubling time), P is the pressure and { is a

kinetic drag coefficient. On neglecting inertial effects, equation (11b) can be readily
solved to give a Darcy-like expression for the velocity field, namely

v = —%vzﬁ. (12)

Then, using the equation of state introduced in section Critical time is
deterministic despite high phenotypic noise, that is P=Py(¢ — 1), taking the
divergence of equation (12) and replacing the resulting expression in equation
(11a), yields a single partial differential equation for the packing fraction ¢, that is

dp = DV’ + kah, (13)
where D=P,/( is an effective diffusion coefficient. Equation (13) can be readily
solved with initial conditions ¢(r,0) = A;d(r), where A, is the initial area of the
colony. This gives

A(t) _ 2
y t) = Dt 14
B =20 (14)
where
AW = [Enpin 0 = an, as)

is the area of the colony at time £. Now, at the centre of the colony one can approximate

4nDt
#(0, 1) = exp (kdt - 10g;—> R ghat (16)
0
aslong as
4nD
ka < ;‘7 a”
0

Finally, dividing and multiplying the right-hand side of equation (16) by A, and
using equation (15) yields equation (2). Note that areal diffusion D and initial
area A, have orders of magnitudes of 10~*m?s~' and 107" m?. This makes the
right-hand side of the ratio in the above equation in the range of 0.1s~! to 0.01s7".
With doubling time being on the order of minutes, the corresponding value of
kybecomes 10~3s~! or less, thereby bringing about experimental agreement with
the above relation. We note that the relation z,~ 7,. holds strongly for colonies
with nearly perfect packing, that is, NA,.= A (where A, is the area of a single cell),
and constant bacterium width, as observed in the majority of our experiments
(Supplementary Fig. 3*). Note that k.. = 7, 'log2.

Noise and activity underpin emergent trade-off. To obtain the value F as
a function of temperature (that is, biophysical activity) and noting that
F(x) =var(x)/(x)? we recast equation (6a) as

F(t/t,) _ Fa)

F(t.) = = .
(e + D) kilte)?

(18)

A simplification of the above equation can be obtained by using equations (5a),
(5b) and (6a), (6b). We can relate the magnitude of noise associated with the critical
area and the time with that of the noise associated with the cell length, which in
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turn originates from the intrinsic randomness of the cell division process. Dividing
equation (5a) by equation (5a) and using the fact that #>>¢,, one readily finds
vart/l,

HA) = ey 117

~ F(0), (19)

F(£)

. 20
(ka(te))? 0

varé/l, N
e (ka{te))> (Wt + 12

Thus, although the critical area is affected by the same amount of noise as the cell
length, from which noise originates, the critical time is substantially less noisy. This
is by virtue of the fact that (t.) > 7, and thus ky(t.)> 1 and F(t) < F(¢).

Data-based transport simulations. To obtain a data-based effective diffusion
coefficient from the colony-mediated hydrodynamics, we used the particle
tracing approach, in which a certain number of particles are placed randomly

in the flow field induced by the expanding bacterial colony. The positions

of the particles are then tracked over time. Here the evolution of the particle
position is achieved by simplifying the generalized Langevin equations. The
force balance using 2D generalized Langevin equation formulations for massless

particles with a background flow field reads ¢ % = (v + {V4DW(t), where v

is the velocity field (induced due to the bacterial growth), W(¢) is a normally
distributed random noise satisfying <W> =0 (<> denotes a mean), { is the
fluid friction force coefficient, D is the diffusion coefficient and x is the particle
position. The velocity is applied to the equation depending on the position

the particle occupies at any particular time in the domain. The corresponding
probability density function PDF(x, t) as solved from the Fokker-Planck

\/ﬁ exp(— (x:&,)z ). The first and second

moments of the particle position are M, (x) = ff; xPDF(x, t) = <vt>and
M, (x) = ffoochPDF(X’ t) = <v*> + 4Dt (ref. ). The second moment equals

the MSD of the particle positions. The above relation subtly implies that the MSD
is no longer a linear function of time. The diffusion coefficient magnitude in the

second moment is replaced using the fluctuation-dissipation theorem, which
kT
6muay,

are the Boltzmann constant, absolute temperature, medium viscosity and particle
radius, respectively). Using the M, relation, we find the evolution of the particle
position with time. From these particle trajectories, we employ the MSD analysis
to obtain the effective diffusion coefficient for each bacterial layer (z=z,, ).

The diffusion coefficient is plotted normalized by the pure Brownian diffusion
(Dg) to get a measure of the enhancement in diffusion due to bacterial colony
growth, corresponding to the bacterial layers, (D/Dg), , . Besides the normalized

equation is given by PDF(x, t) =

states the classical Stokes—Einstein formulae as Dg =

(where ky, T, p and a,,

diffusion coefficient, we also plotted the change in the mean particle position
(MSD) and the velocity correlation (Supplementary Fig. 14) to quantify the nature
of the transport phenomena.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this Article.

Data availability
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provided with this paper.

Code availability
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available in the text. All codes that support the analyses and data generation of this
study are available from the corresponding author upon reasonable request.
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