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Abstract: Rényi entropy was originally introduced in the field of information theory as a parametric
relaxation of Shannon (in physics, Boltzmann-Gibbs) entropy. This has also fuelled different attempts
to generalise statistical mechanics, although mostly skipping the physical arguments behind this
entropy and instead tending to introduce it artificially. However, as we will show, modifications to
the theory of statistical mechanics are needless to see how Rényi entropy automatically arises as the
average rate of change of free energy over an ensemble at different temperatures. Moreover, this
notion is extended by considering distributions for isospectral, non-isothermal processes, resulting
in relative versions of free energy, in which the Kullback-Leibler divergence or the relative version
of Rényi entropy appear within the structure of the corrections to free energy. These generalisa-
tions of free energy recover the ordinary thermodynamic potential whenever isothermal processes
are considered.
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Entropy is one of the most important concepts in physics. It was defined in 1850 by
https:/ /doi.org/10.3390/ 24081080

Clausius [1] to refer to the thermodynamic change in the amount of heat dQ;., that is
Academic Editors: Philip transferred during a reversible process at temperature T. Yet, its significance in statistical
Broadbridge and Oleg Olendski mechanics belongs to a slightly deeper tier, where it is usually seen as a degree of uncertainty
around the state a physical system can reach; or as the bridge between microscopic and
macroscopic domains, given it estimates the number of states an atom or molecule shall
adopt to fulfil a macroscopic configuration. In addition, because entropy is directly coupled
to the second law of thermodynamics, its scope is not limited to statistical treatment but is
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where p = {p1,...,pa} is a discrete probability distribution defined for () microstates.
The particular case p = 1/() leads S to attain its maximum, thatis S = —log (2, which
corresponds to an equilibrium state. Boltzmann-Gibbs entropy is additive, since for two
non-interacting systems A and B adequately separated from one another with accessible
conditions of the Creative Commons _ iCrostates Q4 and Qp, respectively, it follows that S(Q4Qp) = S(Q4) + S(Qp). Sis also
Attribution (CC BY) license (https:/;  €xtensive provided the entropy of the composite system A + B does satisfy S(Qap) =
creativecommons.org/licenses /by / S(Q4) + S(Qp). Of note, the definition of entropy (1) is dimensionless, consequently,
40/). throughout this discussion, temperature is to have the dimensions of energy. Then, in
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order to recover the dimensions of temperature in absolute scale, one shall substitute T by
kgT into the subsequent formulas, where the conversion factor kg is the Boltzmann constant.

A number of generalisations to Boltzmann—-Gibbs entropy have been proposed with
a view to pushing the formulation of statistical mechanics to novel boundaries. Some of
these attempts have been motivated by deforming the structure of Equation (1), without
free parameters, in such a way that the thermodynamic limit remains unaffected [2—4].
Whereas other efforts have explored the relaxation of Equation (1) via the introduction of
free parameters [5,6]. Among those generalisations, we shall focus on the Rényi entropy,
originally introduced in the context of coding and information theory [7] as one of the firsts
attempts to broaden Shannon entropy [8], it reads:

— 1 2 o
S“_l—alog ;pi , 2)
where a € R is a deformation parameter, which in the limit « — 1 recovers the Boltzmann-
Gibbs case, i.e., lim,_,1 Sy = S. The logarithmic structure permits that Rényi entropy retains
the additive property independently of the value the free parameter assumes, although the
extensive property will cease to be preserved for any « # 1.

On account of its features, Rényi entropy has received significant focus in information
theory, classical and quantum [9-11], provided it is a powerful tool for quantifying quantum
entanglement and strong correlations in quantum communications [12]. In multi-partite sys-
tems, for instance, the special case « = 2 was found to be an intrinsic information measure
for the Gaussian states of quantum harmonic oscillators, leading automatically to strong
sub-additivity inequalities that entail generalised mutual information measures [13], which
computation is tractable through path regularisation schemes [14]. Further applications
of Rényi entropy in quantum information include generalisations of conditional quantum
mutual information and topological entanglement entropy [15]. As well, in dynamical
problems, Rényi entropy has been proposed as a resource to describe phase transitions
between self-assembled states, both in complex systems [16,17] and fuzzy systems [18],
closely related to the phenomenon of quantum fuzzy trajectories [19]. Still, the feasibility
of this entropy measure has even been accepted in other areas, such as molecular imaging
pursuing medical purposes [20], mathematical physics [21], and biostatistics [22].

Even though the motivations to introduce entropy (2) were originally nourished by
arguments devoid of all physical nature, we are to show that it arises in statistical mechanics
in the context of non-isothermal processes. For a system slightly out of thermal equilibrium,
the gradient of free energy with respect to the temperature difference may be directly
related to the Rényi entropy, see also [23]. In addition, we are to show that in the context
of isospectral, non-isothermal processes, it is possible to build relative free energies, both
in terms of (1) and (2). These relative free energies have as a special case the ordinary
Helmholtz thermodynamic potential whenever the temperatures coincide. In particular,
the relative free energy introduced by the relative form of entropy (2) exhibits an additional
feature: the parameter a will not only modify the structure of (1), it will also measure the
degree to which the probability distributions under consideration are similar.

The discussion will be developed as follows. In Section 2, we will survey fundamental
concepts from thermodynamics and statistical mechanics on free energy. In Section 3, we
will show that the variation of free energy with respect to temperature leads to Equation (2),
where « is defined as the ratio between two temperatures over the interval for which the
free energy is defined. In Section 4, we will show that the structure of free energy can be
generalised to relative versions by considering two isospectral distributions describing
the same system, but at different temperatures. These generalisations are not the result
of coincidence, but they follow as free energy is considered in systems out of thermal
equilibrium [24,25]. Finally, in Section 5, our conclusions and final thoughts are presented.
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2. Free Energy

It is well known from thermodynamics that a body subject to an external force field
may experience work W done on it, bringing the body to a change of its energy state or a
change in its configuration. The total change in the body’s energy dE is a conserved quantity
and will equal the change of work performed dW plus the heat dQ that the body absorbed
from (or transferred to) the medium, where the latter applies if the body is not thermally
isolated. Although dW and dQ are inexact differentials, the sum dE = dW + dQ is an
exact differential and, therefore, E is well-defined in any state, cf. Chapter 2 of Ref. [26].

When the body is confined to a change of state through a reversible process the
amount of energy added (or absorbed) in the form of heat dQ equals the infinitesimal
change in entropy dS times the temperature T (Clausius theorem). In this scenario, the
change of work done on a body at constant temperature obeys the equation of state
dW = dE — dQ = d(E — TS), where the scalar quantity

F=E-TS, 3)

is known as the Helmholtz free energy. This thermodynamic potential quantifies the
amount of work that can be obtained from an isothermal, closed process. Yet, this is not the
whole story, in the following sections we are to show that examination of non-isothermal
processes across Helmholtz free energy (3) discloses either parametric deformations of S in
terms of S, or measures of statistical divergence.

As well, from Equation (3) we can look at the infinitesimal change of work available
between F and F 4 dF, namely dF = —SdT — PdV, and taking us directly to the well-

known relations: oF oF
_S:(E)T)V and —P:(W>T. 4)

Instead, when the body is treated as a very large ensemble in terms of its internal
structure, the formulation of statistical mechanics will necessarily take central stage. Unlike
thermodynamics, where there is no probabilistic scheme underlying the theory, in statistical
mechanics any measurement to be performed will fetch the sole contribution of the most
probable state for which entropy attains its maximum. Thus, if we assume that the ensemble
has N particles occupying a volume V' and admits () states, then the probability with which
the ensemble lies in the energy state E; = E;(N, V) (i = 1,...,Q) at fixed temperature T is
given by

p(E;) = éexp(fi), ©)

where Z = Y exp(—E;/T) is the partition function, provided the number of particles
Zl-Q N; = N and the total energy Zl-Q N;E; = E are conserved. The explicit form of the
energy spectrum does not have any effect on the subsequent discussion.

At this point, it becomes convenient that the Gibbs distribution to be expressed in its
canonical form w; = exp(F — E;)/ T, such that from the normalisation condition we obtain

Q E Q —E;
Za}i = exp(T> lZexp( Tl> =1,

1

where the partition function is identified with Z~! = exp(F/T), therefore, by simply taking
logarithms we obtain the fundamental relation in statistical mechanics:

F=—-TlogZ. (6)
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3. Rényi Entropy from Helmholtz Free Energy

We are now in a place to show that the simple study of the partial derivative of
Equation (6) with respect to T, for fixed N and V, will lead to entropy (2). We shall start by
optimising with respect to the energy spectrum the functional of the form:

Q _F.
] = <E> +7Zp(Ei) = Zp(Ei)Ei+;ZexP< fl),

where (E) is the expected value of the total energy, which according to the Gibbs’ postulate
equals the thermodynamic energy E, and 7 is a Lagrange multiplier. To find the optimal
values of the energy spectrum, we differentiate | with respect to E; and equate to zero,
noting that each term must vanish independently, this yields

E;i = ~TlogZ — Tlog p(E;),

upon the identification v = T. Computing the expected value on both sides and dividing
by T,

E
<T"> =—logZ+S5,
using the left formula in (4) for entropy and rearranging terms, we find:
oF (E)
il = _logZ — =L
< aT) NV % T’ 7

This equation is the expression for free energy in the Gibbs distribution [26]. Of note, the
contribution of the expected value of energy in Equation (7) will only be meaningful at
temperatures that satisfy the differential inequality

dlogZ
—logZ < —T< 5T )N’V,

otherwise the behaviour of Equation (7) will be greatly dominated by —logZ. In that
regime of temperatures it is true that the inequality (0F/9T)yNy < —(E)/T holds; while at
very low temperatures Boltzmann statistics become ineligible, requiring Fermi-Dirac or
Bose-Einstein statistics for anti-symmetric or symmetric wave functions, respectively.

We shall assume that small changes in temperature do not give way to sudden jumps
in F. Such a condition will be fulfilled by demanding F to be differentiable at any point of
T, thus if (0F /0T)y,v exists at T then F is necessarily continuous at that point. This also
implies that F will be continuous for any temperature T’ arbitrarily close to T. Accordingly,
we can appeal to the approximation

aj NF(T)—F(T’) ®)
oT )y  T—-T '
then, introducing the so-called deformation parameter « = T/ T/, and substituting

Equation (6) into the right-hand side of the former expression brings the following outcome:
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F(T%:i/(T') _ _T—TT’ 1og<(:2exp<ff>> +Tilelog<(;ZeXp<T€i)>

— 1og<§;exp(_fi>> + ail log<iexp(_;&>>
eXP(_TEi)]“> Y

S log Z*(T) + ! lo 3
T Ta-1% a—1°8 -

_ 1 1 i “(E‘)
- a—1 Og - p 1
= _SD(/

which mirrors the left formula in Equation (4) in terms of the Rényi entropy (2). The
deformation parameter « enables upper and lower bounds on the Boltzmann-Gibbs entropy
S = S,4—1. This can be seen through differentiation of Equation (2) with respect to «,

S, 1 & pi
du (1—0()2;7[110‘%(71 =0,

1

for any « [16,27], where we have introduced escort probabilities 77; = pf / Z]Q p;?‘ and where

ZlQ mtjlog(p;/ m;) is known as the Kullback-Leibler divergence [28] (see Section 4). As a
consequence, S, decreases monotonically with respect to a, in other words S, < S for
B < a, which entails S,>1 < S < S,<1, or in terms of Equation (7):

1
Sazl < IOgZ + ?<E> < S,Xgl.

Furthermore, although we have imposed that T is arbitrarily close to T, the mean value the-
orem ensures that Rényi entropy will arise as well if (0F /9T) 1, exists at some temperature
T whenever it satisfies T' < 7 < T.

The interesting attribute of free energy shown in Equation (9) also came to Baez’s
attention [23], emphasising the unnecessary generalisation of the structure of statistical
mechanics for obtaining non-Boltzmannian measures of entropy out of equilibrium. Never-
theless, we shall not omit to say that Equation (9) is defined for non-isothermal processes,
in contrast to Equation (7) valid for isothermal processes. Even more, S, may experience
abrupt changes in its behaviour due to a lack of stability for any & # 1 given that S,
depends on two different temperatures simultaneously. In general, this also is reflected
in the impossibility of S, to have a definite thermodynamic limit [29,30], although there
exist regions where this entropy is stable [31]. Likewise, Equation (9) fuels further ques-
tions about the possibility of obtaining other parametric deformations of entropy without
introducing structural generalisations in statistical mechanics. We shall consider this in the
next section, but before there is another aspect that is worth commenting on.

Assume | Y p*(E;)|? < 1, the additive property furnished in S and S, will be au-
tomatically broken by taking the Mercator-Newton series to expand the logarithm in
Equation (2), that is

_ 1 S ey L Lo LU pNE) 1
S“_l,alog;p(]m_ a—1 +§

the first term in the series retrieves the Boltzmann-Gibbs entropy by letting « — 1. It
is a well-known, non-extensive entropy originally derived by Havrda-Charvét [32] in
the context of classificatory processes, and, subsequently, introduced by Daréczy [33] in
generalised information theory and years after by Tsallis [34] as a possible generalisation of
Equation (1) in statistical mechanics.
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4. Relative Free Energy

We have seen that applying the mean value theorem to the free energy via a deforma-
tion parameter that goes as the quotient between the equilibrium and the non-equilibrium
temperatures gives rise to Rényi entropy, thus proving that S, has also a direct physical
origin. Inherently, Equation (9) hauls the unavoidable question of whether other gener-
alisations are possible without inducing structural changes in the formalism of statistical
mechanics while addressing the need to account for phenomena beyond equilibrium [24,25].
This question admits an affirmative answer. As we are to show below, the free energy of a
system out of equilibrium can be expressed in terms of the Kullback-Leibler divergence [28]
defined as

S(p.q) = pr10g<pz>- (10)

Even more, when a deformation parameter « is introduced to distort the free energy
of a system out of equilibrium we will show that the Rényi relative entropy, which has the
form [35]

Q N
Su(p,q) = “il log [th(pv ] (11)

qi
1
will result in the expression of relative free energy. The statistical divergence (10) is a special

case of (11).

Definition 1. Let p and q be two isospectral, non-isothermal Gibbs distributions with respective
partition functions Z(T) and Z(T"). The relative free energy for this process is defined as:

T
F(T) = ~Tlog Z(T') + (1 - T,) (E)p — TS(p,q), (12)
where (E)p is the expected energy with respect to the distribution p.

Proof. Consider two Gibbs distributions that share the same energy spectrum, albeit at
different temperatures, namely p; = p(E;, T) and gq; = q(E;, T'), whose corresponding
partition functions are denoted as Z(T) and Z(T’). The quotient between these two

distributions reads 2(T) E. E
pi _ B |
5 = Z(T) exp( 7+ T’)' (13)

after taking logarithms we compute the expectation value on both sides with respect to p,
then by rearranging terms we obtain

log Z(T) = log Z(T') — (; — ;/> (E)p+S(p.q),

where the last term is the divergence in Equation (10). Finally, using Equation (6) we obtain
the formula we want in Equation (12), which is the free energy relative to a configuration
that deviates from the equilibrium temperature T in T’ units. That concludes the proof. [

When the two temperatures coincide, Equation (12) will reduce to Equation (6) since
the term of the expected value of energy and the relative entropy S(p, q) will vanish. Even
up to a good approximation a comparable regime will emerge for those large ensembles
at very near temperatures T ~ T’ for which the relative free energy shall behave closely
to Equation (6). As well, in the regime T < T’ the relative free energy will converge to
(E) — Tlog Q). Other expressions for relative free energy, but for isothermal processes were
studied in [36].

By unfolding these features of statistical mechanics, we shall now probe instances
beyond Equation (12). As we are to show, with the following definition, it is possible to
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obtain a variant of relative free energy but in terms of the Rényi relative entropy defined in
Equation (11).

Definition 2. Let p and q be two isospectral, non-isothermal Gibbs distributions, with partition

functions Z(T) and Z(T"), respectively. Let « = T /T be the deformation parameter, the relative
free energy for this process reads explicitly as:

F(T) = aF(T') + T'log [<exp<—ﬁ,(1 - a)) >q] — (1 —=a)T'S4(p, q). (14)

Proof. Beginning with elevating both sides of Equation (13) toa = T/T, gives

(3) - (@) erlalz-5)]

multiplying both sides by g; and summing over all accessible states yields

Bu(2) - 2ot ol -0)eu(5)

after taking logarithms and simplifying the expression, we obtain

illogZ(T') — illogZ(T)

illog [<exp(f’(1“))>q]' (15)

Sa(pr q) =

+
L4

where the left-hand side of the equation is the Rényi relative entropy. Finally, by substituting
Equation (6) into Equation (15) and reordering terms, we obtain the formula (14). We have
the definition. O

Equation (14) is the free energy at temperature T relative to a configuration at tem-
perature T’ in terms of the Rényi relative entropy (11). This expression can be seen as
a parameterised deformation of Equation (12), which cannot be directly recovered from
Equation (14) by simply taking the limit « — 1 given the structure of S, would be broken.
Certainly, in mathematics and statistics, the functional (11) is often used as a parametric
measure of the distance between two probability distributions, which generalises the rela-
tive entropy in Equation (10). In this context, nevertheless, Equation (11) will not retrieve
the Kullback-Leibler distance since p — q does immediately entail that both temperatures
shall coincide, i.e., T — T’ and, thus, « — 1. In other words, in this representation of
Equation (11), the construction of statistical divergence is directly intertwined with the
deformation parameter.

Still, in the energy regime E; < T’ ~ T Equations (12) and (14) shall behave roughly
in the same way. This can be ascertained by noting that in such a regime the expected value
of the exponential of energy in Equation (14) can be expanded at first order as

ol (ool £ 2) ] <20 e

while the divergences in Equations (12) and (14) shall approximate each other as

(), (),
gqq gqp

if p ~ g or, equivalently, & ~ 1.
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5. Conclusions

We intended this discussion to show that Rényi entropy appears in statistical me-
chanics without pursuing structural modifications to the theory but by following simple
physical arguments. Equations (9) and (14) illustrate the inherent involvement entropy (2)
has in statistical mechanics as a result of finding the adequate corrections to free energy
in the absence of thermal equilibrium. In general, however, Rényi entropy does not fulfil
Lesche’s criterion of stability [29,30], something that may question the physical validity of
the relative free energy (14) in that it demands to be well defined. Nonetheless, the observ-
ability of Equations (9) and (14) shall not be challenged for thermodynamic systems with a
finite number of microstates, as was nicely proved by Jizba and Arimitsu [31], provided
some of the instabilities of Rényi entropy are removable upon coarse-grained handling.

We regard Equations (12) and (14) the main contributions of the present discussion to
the extent they both reflect how free energy can be described for non-isothermal processes.
In particular, (14) takes special attention given that the generalised divergence (11) emerges
as a consequence of introducing a deformation parameter « = T/ T’ that distorts the relative
free energy (12). This parameterised deformation, however, is completely interrelated with
the structure of the relative free energy and Equation (12) shall not be seen as a limit case of
Equation (14).
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