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Abstract—High-throughput satellite communication systems
are growing in strategic importance thanks to their role in
delivering broadband services to mobile platforms and residences
and/or businesses in rural and remote regions globally. Although
precoding has emerged as a prominent technique to meet ever-
increasing user demands, there is a lack of studies dealing with
congestion control. This paper enhances the performance of
multi-beam high throughput geostationary satellite systems under
congestion, where the users’ quality of service (QoS) demands
cannot be fully satisfied with limited resources. In particular, we
propose congestion control strategies, relying on simple power
control schemes. We formulate a multi-objective optimization
framework balancing the system sum-rate and the number of
users satisfying their QoS requirements. Next, we propose two
novel approaches that effectively handle the proposed multi-
objective optimization problem. The former is a model-based
approach that relies on the weighted sum method to enrich the
number of satisfied users by solving a series of the sum-rate
optimization problems in an iterative manner. The latter is a
data-driven approach that offers a low-cost solution by utilizing
supervised learning and exploiting the optimization structures as
continuous mappings. The proposed general framework is evalu-
ated for different linear precoding techniques, for which the low
computational complexity algorithms are designed. Numerical
results manifest that our proposed framework effectively handles
the congestion issue and brings superior improvements of rate
satisfaction to many users than previous works. Furthermore, the
proposed algorithms show low run-time and make them realistic
for practical systems.

Index Terms—Multi-beam high throughput satellite commu-
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I. INTRODUCTION

Multi-beam high throughput satellite (MB-HTS) systems
have been acknowledged as an efficient solution providing
ubiquitous high-speed broadband services to users in a large
coverage area, especially for inaccessible or insufficiently
covered places by current terrestrial networks [2]. Current
broadband satellite communication systems make use of a
multi-beam footprint, which boosts the frequency reuse im-
proving spectral efficiency as well as system capacity [3]–[5].
Due to low-cost and low-interference designs, an MB-HTS
system may allocate limited radio resources uniformly across
beams with the merits of simple procedures and inexpensive
operating expenditure [6]. Notwithstanding, the uniform re-
source allocation combined with the limited available spectrum
may be inefficient in facing the rapid growth of traffic demands
[7]–[9]. In this context, full frequency reuse across satellite
beams has stood up as a promising alternative boosting spectral
efficiency and system capacity [10], [11].

There is a vast literature related to precoded MB-HTS,
many of them including Quality of Service (QoS) constraints
in terms of minimum Signal-to-Noise Ratio or minimum
throughput per user [12], [13]. However, the uneven QoS
requests pose a constant challenge to such works particularly
for high QoS scenarios and limited satellite resources. To
maintain the individual QoS requirement of each user, the
authors in [14] formulated and solved a precoding design in
a multi-beam satellite system by the use of an alternating
optimization algorithm. Despite the data throughput improve-
ment over the proposed iterative procedure, the solution in
[14] is not scalable since the max-min fairness optimization
framework is not able to guarantee an acceptable QoS level
for a large-scale system with many users. A precoding de-
sign targeting the system energy efficiency maximization is
presented in [15] under practical total power constraint and
QoS requirements. Nevertheless, this framework requires time-
consuming optimization, which greatly limits its applicability
to real-world systems. Linear precoding [16], e.g., zero-forcing
(ZF) or regularized zero-forcing (RZF), has demonstrated
good performance with low complexity in MB-HTS systems
[8], [17], [18]. However, the aforementioned works relied on
non-empty feasible regions to make sure that the proposed
optimization can reach a solution. For a complex system with
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significant number of users with divergent QoS requirements,
there is an overwhelming probability that at least one user
is in an extreme adverse channel condition or the requested
QoS is too high under the limited radio resources. The existed
solutions will, therefore, be unattainable due to congestion
resulting in an infeasible problem. No known works have
studied how to detect unsatisfied users and operate MB-
HTS systems with a linear precoding technique under harsh
optimization conditions, where the congestion appears. In this
paper, we address this gap by formulating a multi-objective
optimization framework balancing the system sum-rate and the
number of users satisfying their QoS requirements. To solve
this, we pursue two methodologies: (i) model-based approach,
and (ii) data-driven approach. While model-based methods are
known to provide accurate solutions, data-driven approaches
have shown to speed up the convergence towards close-to-
optimal solutions [19], [20] that are motivated by advances in
machine learning as presented subsequently.

Machine learning has demonstrated its potential in con-
structing data-driven algorithms for engineering problems in
signal processing and resource allocation via the use of neural
networks [19], [21]. Rather than requesting humans to identify,
formulate, and solve a system-level model as in traditional-
based optimization theories, neural networks make efforts in
wireless communications to learn the essential features of a
data set, then use such information for predicting and decision
making. One critical role is to design low complexity neural
networks in which machine learning is applied for approximat-
ing high-cost optimization algorithms. In contrast to the ma-
turity of machine learning developed for terrestrial networks,
learning-based approaches applied to satellite communications
and performance evaluations are in their infancy [22]. To
name a few, the inherent NP-hard issues of different beam
hopping optimization problems were effectively handled with
high accuracy in [23]. Moreover, channel allocation strategies
under the viewpoints of mixed-integer programming were
studied in [24], where authors exploited reinforcement learning
to minimize the service blocking probability and enhance the
data throughput. Regarding the power allocations, the authors
in [25] optimized the transmit power coefficients subject to
the traffic demands for a multi-beam satellite network without
considering precoding. Furthermore, the work in [26] proposed
a deep learning model for power allocation with a simplified
rate expression. We emphasize that these related works only
studied single-objective optimization problems without raising
concerns on the congestion controls that cannot be avoided in
practical systems. For future MB-HTS systems, the applica-
tions of machine learning for multi-objective signal processing
optimization are promising to balance conflicting metrics and
to ensure the individual QoS requirements with a tolerable
computational complexity towards online resource allocation.

The congestion problem was investigated and handled in
[27]–[30] and references therein in the terrestrial networks.
In particular, the authors in [27] considered a primal-dual
decomposition to determine and withdraw users interfering the
most with other users until the remaining spectral efficiency
demands can be satisfied. However, no power constraints were
considered in [27]. By using a limited power budget, a game-

theoretic formulation of the power control issue was developed
in [28] to guarantee users’ information rates. Also, a power
allocation policy to decrease the requested throughput of users
with poor channel conditions was proposed in [29]. Besides,
in [30], the congestion issue was handled by maximizing the
minimum spectral efficiency of the users and neglecting the
users’ demands, which is a distinct issue that could result in
none of the QoS requirements being met. Different solutions
to handle the total energy minimization optimization problem
under congestion was introduced in [31]. Nonetheless, all
these related works considered the congestion control by
formulating single objective optimization problems and using
a traditional model-based optimization theory to obtain the
solution. To the best of the authors’ knowledge, the transmit
power allocation and the QoS satisfactions for the multi-
objective optimization to tackle the joint maximization of
both the sum rate and demand-based constraints subject to
the limited power budget has never been considered before.
This paper considers MB-HTS systems under multiple-access
scenarios where many users with individual data throughout
requirements share the same time and frequency resource.
Congestion may appear for different reasons. For example,
congestion may occur when one of the users has a sudden
peak of demand (i.e. high QoS constraint), when their channel
condition is not good, and/or when he is receiving too strong
interference. We handle the congestion issue that appears when
solving the sum data throughput maximization due to the
practical aspects such as the weak channel conditions and
limited power budget at the satellite. Thanks to the European
Space Agency (ESA) [32], the proposed algorithms are tested
with a practical beam pattern. Our main contributions are
summarized as follows:

• We formulate a new multi-objective optimization problem
for the MB-HTS systems to maximize the number of
users served satisfying their QoS requirements and the
sum rate of the entire network. Even though the problem
is a non-smooth nonlinear program, it effectively handles
the congestion issue by splitting the scheduled user set
into the satisfied and unsatisfied user sets and combining
both of them into the multi-objective optimization frame-
work.

• We propose a general model-based solution that exploits
the weighted sum method to transfer the original multi-
objective problem to a single-objective maximization with
a balance between the utility metrics. Conditioned by the
total transmit power limit, a heuristic algorithm iteratively
solves the single-objective problem by prioritizing the
number of satisfied users. This proposed algorithm then
allocates the remaining power to maximize the sum rates.
The generality of the model-based approach lets room
for network operators to design a sum rate maximization
solver.

• Next, we propose a general data-driven methodology
where a neural network is used to predict the transmit
power coefficients and satisfied-user set solutions with
low computational complexity. It is achieved by exploit-
ing supervised learning and based on the solution from
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the model-based approach. From a series of continuous
mappings, the neural network only requires the channel
gains as input. The generality of the data-driven approach
is a consequence of the model-based approach and the
network can opt for an arbitrary type of neural network
architectures.

• By the convenience of the semi-closed form solution to
the power allocation from the water-filling method, we
typically design the low-cost algorithms for the MB-HTS
systems by adapting the general model-based approach.
The channel orthogonality can effectively contribute to
reducing the computational complexity, even though the
water filling method needs to be applied in an iterative
manner. The power solutions can be effectively used for
training fully connected neural networks.

• By using a practical satellite beam pattern provided by
ESA, the performance of the proposed algorithms is
evaluated by extensive numerical results. The solution is
compared with the benchmarks [8], [9], [33] in the litera-
ture in terms of both sum rate and users’ QoS satisfaction.
Meanwhile, the neural network achieves the solution with
high prediction accuracy in a few milliseconds.

Notation: The upper and lower bold letters are used to de-
note the matrix and vectors, respectively. The notation CN (·, ·)
denotes the circularly symmetric Gaussian distribution and
E{·} is the expectation operator. The notation ∥ · ∥ is the
Euclidean norm and |K| is the cardinality of the set K. The
superscripts (·)H and (·)T are the Hermitian transpose and
regular transpose, respectively. The element-wise inequality is
denoted as ⪰. A unit vector of length K is denoted as 1K . The
trace of a matrix is denoted as tr(·). The complex, real, non-
negative real, extended non-negative real field is C, R, R+,
and R++ = R+ ∪ ∅, respectively. To the end, the imaginary
unit of a complex number is j with

√
j = −1.

The rest of this paper is organized as follows: Section II
presents in detail the satellite system model and formulates a
category of multi-objective optimization problems jointly op-
timizing the sum rate and individual QoS per user. Section III
describes the model-based and data-driven approaches to solve
the above optimization problem in polynomial time. The
practical applications of our framework are demonstrated by
the state-of-the-art practical communication satellite systems
with a linear precoding technique and the water-filling method.
Section V gives extensive numerical results, while the main
conclusions are finally drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first introduce the MB-HTS system archi-
tecture, where the full available bandwidth is simultaneously
used by all beams and, within each beam, the multiple users
are multiplexed in a Time Division Multiple (TDM) manner in
the forward link on a DVB-S2X carrier from the Gateway to
the user beams. Meanwhile, Time Division Multiple Access
(TDMA) is used on the return link. Next, motivated by the
shortcomings of previous works in handling the demand-based
constraints, a new multi-objective optimization framework is
proposed.

A. System Model & Channel Capacity

We consider the forward link of a broadband MB-HTS
system that aggressively reuses the user link frequency to
simultaneously serve multiple users sharing the same time
and frequency plane as schematically shown in Fig. 1(a),
with the overlapping beam pattern depicted in Fig. 1(b).1

Assuming N overlapping beams, a maximum of N users
in the coverage area can be scheduled and served in each
scheduling instance by the satellite. We assume that the actual
scheduled users per scheduling instance is K, as illustrated
by the black-colored users in Fig. 1(a). In this paper, the
system operates in a unicast mode, i.e., K ≤ N . We denote
UEk the scheduled user k with k ∈ K ≜ {1, 2, . . . ,K}
and |K| = K. Let us define hk ∈ CN the channel vector
between the satellite and UEk, then the channel matrix H is
defined as H = [h1,h2, . . . ,hK ] ∈ CN×K . In particular,
the channel is modeled in LOS link [34], [35], and collects
the channel state information (CSI) and phase rotations from
the over-air propagation in the forward link, which is split
into the two components as H = H̄Φ, where H̄ ∈ RN×K

+

indicates the practical features involving the satellite antenna
radiation pattern, thermal noise, received antenna gain, and
path loss. The (n, k)-th element of H̄ is concretely computed
as [H̄]nk = (λ

√
GRGnk)/(4πdk

√
KBTB), where λ is the

wavelength of a plane wave; dk is the distance from UEk to
the satellite; GR and Gnk are the receiver antenna gain and the
gain from the n-th satellite feed towards UEk, ∀n = 1, . . . N ;
KB is the Boltzmann constant; T is the receiver noise tem-
perature. The diagonal matrix Φ ∈ CK×K indicates the signal
phase rotations owing to different propagation paths, whose the
(k, l)-th component is given as [Φ]kl = ejϕk if k = ℓ, where
ϕk is a residual random phase component introduced by the
satellite payload [32]. Otherwise, [Φ]kl = 0.

Let us define sk the data symbol that the system transmits to
UEk with E{|sk|2} = 1 and its allocated transmit power pk ∈
R+. A predetermined precoding technique is implemented at
the gateway to eliminate mutual interference among users and
boost the system performance. Denoting wk ∈ CN as the
normalized precoding vector for UEk with ∥wk∥ = 1, then
the transmitted signal to all the K scheduled users, denoted
by x ∈ CN , is x =

∑
k∈K

√
pkwksk. For practical satellite

systems, the following system transmit power constraint must
be satisfied:

E{∥x∥2} ≤ Pmax

⇒
∑

k∈K
pk∥wk∥2E{|sk|2}

(a)
=

∑
k∈K

pk ≤ Pmax, (1)

where (a) is obtained assuming that the data symbols are mu-
tually independent and the precoding vectors are normalized.
Moreover, Pmax is the maximum power that the satellite can
allocate to the data transmission. By exploiting the transmitted

1The capacity of multi-beam GEO systems allow multiple users to simul-
taneously access the network. The considered multiple-access scenarios bring
superior improvements of the sum rate by serving more users and exploiting
a proper precoding technique to mitigate mutual interference. However, the
congestion will be problematic if, for example, each user is associated with
its individual QoS demand and a limited power budget at the satellite. The
present paper will address this raising issue by using both the model-based
and data-driven approaches.
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Fig. 1. The precoded multi-beam multi-user satellite system model: (a) Schematic diagram of our considered system model with one single scheduled user
per beam; and (b) The considered overlapping beam pattern.

signal notation x, the received signal at UEk, denoted by
yk ∈ C, is a projection of the transmitted signal onto its
propagation channel as

yk = hH
k x+ nk, (2)

=
√
pkh

H
k wksk +

∑
ℓ∈K\{k}

√
pℓh

H
k wℓsℓ + nk,∀k ∈ K,

where nk denotes the additive noise at the receiver with nk ∼
CN (0,σ2). In the last equality of (2), the first part contains the
desired signal for UEk, while the remaining parts are mutual
interference and noise. Assuming the availability of perfect
channel state information (CSI) available at the gateway side,2

the channel capacity of UEk is computed as follows

Rk({pk′}) = B log2 (1 + γk({pk′})) , [Mbps], ∀k ∈ K,
(3)

where {pk′} = {p1, . . . , pK} is the set of all the transmit
power coefficients, and B [MHz] is the overall bandwidth
used for the user link. The signal-to-interference-and-noise
ratio (SINR), γk({pk′}), is

γk({pk′}) = pk|hH
k wk|2∑

ℓ∈K\{k} pℓ|hH
k wℓ|2 + σ2

, ∀k ∈ K. (4)

We emphasize that the SINR expression (4) can be applied to
an arbitrary channel model and precoding technique. In this
paper, we exploit (4) to formulate and solve the demand-based
optimization problems with the practical constraints that arise
in the future satellite communications.

B. Single-Objective Optimization With QoS Constraints

For MB-HTS systems, conventional power allocation prob-
lems focus on maximizing a utility function while maintaining
the QoS requirements of the scheduled users under a limited

2This paper assumes perfect CSI with the purpose of validating our robust
congestion control as an initial framework focused on static users. The impact
of imperfect CSI besides channel aging problems and many issues are left for
future work.

power budget. By taking the sum-rate as an objective function
example, a popular optimization formulation [36]–[38] is

maximize
{pk′∈R+}

f0({pk′}) ≜
∑

k∈K
Rk({pk′}) (5a)

subject to Rk({pk′}) ≥ ξk, ∀k ∈ K, (5b)∑
k∈K

pk ≤ Pmax, (5c)

where ξk [Mbps] corresponds the QoS requested by UEk.
In (5), the objective function f0({pk′}) can be an arbitrary
utility function in satellite communications [39], [40]. Even
though all the constraints are affine, solving problem (5) is
still challenging when the objective function is non-convex.
However, the feasible domain is a convex set, thus if f0 ({pk′})
is continuous and bounded from below, the global optimum
to problem (5) always exists by means of the Weierstrass’
theorem [41].

Problem (5) optimizes the transmit powers to simultane-
ously satisfy the QoS requirements of all the K scheduled
users conditioned on the power limitation. Indeed, if the
system is able to provide the QoS requirements simultaneously
to all the users, problem (5) has a non-empty feasible set and it
can be solved to obtain the global optimal solution. However,
for many unfortunate users’ locations and channel conditions,
as well as for systems with strict power limitations, the system
cannot provide the QoS requirements to every scheduled user
that results in the congestion issue, where at least one user is
served less data throughput than requested. This is because,
in many user locations, one or more scheduled users are
located in places where the propagation channels are inferior
with the dramatically small channel gains. Furthermore, the
interference-limited scenario considered herein may further
enlarge the infeasible cases. The congestion issue makes it
challenging for the satellite to meet the requested demands
simultaneously. In other words, this leads problem (5) to be
infeasible with high probability due to an empty feasible
domain, i.e. problem (5) has no solution. For tractability,
we can formulate an optimization without the demand-based
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Fig. 2. A scheduling instance where each beam serves one scheduled user: (a) the user locations; (b) the effective channel gains, i.e., defined as |hH
k wk|2, ∀k ∈

K; and (c) the served rate [Mbps] by utilizing the ZF precoding technique

constraints as follows

maximize
{pk′∈R+}

∑
k∈K

Rk({pk′}) (6a)

subject to
∑

k∈K
pk ≤ Pmax, (6b)

which was considered in [42] and references therein. Fig. 2(a)
shows an example of N = 7 beams with K = 7 scheduled
users. Fig. 2(c) plots the achievable rates for each of the
scheduled users by considering problem (6) as a consequence
of their effective channel gains, which are depicted in Fig. 2(b)
for completeness. The detailed parameter settings are given in
Section V. For this particular realization of user locations,
there are two users with unfortunate effective channel con-
ditions, which combined with the limited power budget will
make it challenging for the satellite to ensure the users to be
simultaneously serve with the same individual QoS require-
ment (say 500 [Mbps]). However, the remaining scheduled
users would still get their requested QoS or even better data
throughput if some demand-based constraints would have been
relaxed (such that the ones of user 1 and 2). It is because those
users are located at the extreme locations as the boundary
of the beams. Not shown here, but the harsh situation also
comes from the fact that the QoS requirements are too high
and the system cannot meet their services even consuming
the entire power budget. Motivated by the results in Fig. 2,
a practical solution for power allocation is developed in this
paper where QoS requirement satisfaction for the majority of
the users is sought. For those users who cannot satisfy the QoS
constraints, it may be sufficient to relax their QoS constraints
or skip them for these particular scheduling instances. For
such, we propose to convert (5) from an infeasible problem
to a feasible one. However, the identification of the users who
are not able to reach their QoS requirements is not trivial. This
paper investigates a class of power allocation problems whose
objective function includes both the sum-rate and the total
number of satisfied users, which can effectively cope with such
infeasible instances due to the network dimension whenever

the congestion issue appears.3

C. Proposed Multi-Objective Optimization

To deal with congestion scenarios, we propose to split the
K scheduled users into two sets: Q with Q ⊆ K being the
satisfied-user set that contains users served by the system with
data throughput equal or greater than their QoS requirements.
The remaining users belong to the unsatisfied-user set K \Q.
Our goal is to maximize the cardinality of the satisfied-user
set Q and also to seek for the maximal value of the sum-rate
metric

∑
k∈K Rk({pk′}). The ultimate goal is introduced as

g ({pk′},Q) =
[∑

k∈K
Rk({pk′}), |Q|

]T
, (7)

which should be categorized as a multi-objective function,
where the two performance metrics are optimized in a single
framework. Motivated by the use of (7), we study a joint
design of the power allocation and the satisfied-user selection
to optimize the multi-objective function g ({pk′},Q)

maximize
{pk′∈R+},Q

g ({pk′},Q) (8a)

subject to Rk({pk′}) ≥ ξk,∀k ∈ Q, (8b)∑
k∈K

pk ≤ Pmax, (8c)

Q ⊆ K. (8d)

The key distinction from previous works in the literature is
that problem (8) is always feasible since the satisfied-user set
Q can span from an empty set, i.e., no user satisfies its QoS
demand; to the scheduled-user set K, i.e., all the K scheduled
users satisfy their QoS requirement. The proposed formulation
is very convenient in practice as problem (8) can provide a

3The congestion is a complex issue in satellite communications. One
potential solution for this issue is based on the user scheduling over the
time and frequency plane. However, for a given set of scheduled users, the
congestion may still appear when allocating the limited power budget to
maximize the total sum rate of the entire network and satisfy the individual
QoS demands. Since user scheduling may help mitigating partially the
congestion, the combination of the proposed power and congestion control
approach with more advanced user scheduling is left for future work.
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power allocation solution in any channel conditions whilst
still ensuring the system’s performance in some extended
aspect. Expressly, the objective function (8a) indicates that
we find an optimal set of the transmit power coefficients
that simultaneously maximizes the utility function f0({pk′})
and the satisfied-user set Q. We stress that thanks to the
constraint (8b), problem (8) only guarantees the individual
QoS requirements of the satisfied-user set Q. Different from
a single objective function in (5), the decision space of
problem (8) is defined by

D =
{
{pk′},Q

∣∣Rk({pk′}) ≥ ξk,∀k ∈ Q,

Pmax ≥
∑

k∈K
pk,Q ⊆ K

}
,

(9)

which is a non-convex set. The data of problem (8) con-
sists of the decision space D, the objective function vector
g ({pk′},Q), together with the objective space R2

++. In prin-
ciple, g ({pk′},Q) is mapped from the objective space to an
ordered space, say (R2

++,≥,⊆), in which the feasibility is
testified along with iterations by the order relations ≥ and
⊆. This mapping is referred to as the θ model that depicts
a relation between the objective space and the order space,
where the maximization in (8) is determined. Alternatively
speaking, problem (8) should be completely defined by the
data (D,g({pk′},Q),R2

++), the model map θ, and the or-
der space R2

++. We now characterize an ϵϵϵ-Pareto optimal
solution {{p∗k′},Q∗} ∈ D to problem (8), if there exists no
{{pk′},Q} ∈ D such that

g ({pk′},Q) + ϵϵϵ ⪰ g ({p∗k′},Q∗) , (10)

where ϵϵϵ = [ϵ1, ϵ2]
T with ϵ1, ϵ2 ∈ R+ are the tolerance

corresponding to the two objective functions. The property
(10) implies no other solutions {{pk′},Q} ∈ D fulfilled the
coexisted conditions: f0 ({pk′},Q) + ϵ1 ≥ f0 ({p∗k′},Q∗),
and |Q| + ϵ2 ≥ |Q∗|, which unveils a balance between the
two objective functions at the optimum. We observe that if
ϵ1 = ϵ2 = 0, the above definition reduces to an ϵϵϵ-Pareto
optimal solution, which can be only improved by upgrading
one objective function and scarifying the other. Thus, an ϵϵϵ-
properly Pareto optimal solution is introduced as an ϵϵϵ-Pareto
optimal solution with a bound trade-off between the two
objectives defined in (7). An ϵϵϵ-Pareto dominant vector is
derived as the objective function vector g({pk′},Q) at the
corresponding ϵϵϵ-properly Pareto optimal solution. We notice
that the ϵϵϵ-Pareto frontier collects all the properly ϵϵϵ-Pareto
optimal vectors.

Remark 1. Problem (8) jointly optimizes the sum rate and
the total number of satisfied users subject to the limited
transmit power constraint under the viewpoints of multi-
objective optimization. The proposed problem (8) is a gener-
alized version of previous works on a single-objective function
with/without demand-based constraints as [39], [42] and
references therein. Problem (8) can effectively handle the
congestion issue appearing when some users do not meet their
QoS requirements. This practical matter in multiple access
communications originates from the limited power budget, the
channel conditions, and the individual QoS requirements. An

extension to a multiple-objective optimization framework with
more than two objective functions or with different metrics
should be interesting for a future work.

By exploiting either the scalarization or nonscalarization
approach to handle the multiple objective functions, we may
attain an ϵϵϵ-properly Pareto optimal solution to problem (8),
following by the ϵϵϵ-Pareto frontier. If the nonscalarization
approach is employed, there is no prior information about the
objective functions available in advance. For this direction,
natural inspired algorithms that simultaneously optimize all
the objective functions are often exploited to attain the ϵϵϵ-
Pareto frontier [43]. The nonscalarization approach requires
significantly high computational complexity since the Pareto
frontier is obtained by directly solving the multiple-objective
optimization problem. Once the scalarization approach is
utilized by exploiting the preferential information from the de-
cision maker about the objective functions, we can transfer the
multi-objective optimization problem (8) to a single-objective
optimization problem. The scalarization approach obtains the
ϵϵϵ-Pareto frontier by iteratively solving some single objective
optimizations, each concentrating on a given set of priorities
between the objective functions. Consequently, the scalar-
ization approach usually offers the solution to problem (8)
with lower computational complexity than the nonscalarization
approach [44].

III. MODEL-BASED AND DATA-DRIVEN APPROACHES

This section presents the model-based approach to obtain
an ϵϵϵ-properly Pareto optimal solution to problem (8) in poly-
nomial time by exploiting the scalarization approach. The
obtained solution is then utilized in Section III-B for training
a neural network that can predict a solution to problem (8)
with extremely low computational complexity and tolerable
accuracy.

A. Model-based Approach

In this section, we proceed with problem (8) by exploiting
the weighted sum method [44]. Specifically, we define the
weights µ1 ≥ 0 and µ2 ≥ 0 with µ1 + µ2 = 1 that re-
spectively stand for the priority of the two objective functions
in g({pk′},Q). If {{p∗k′},Q∗} is an optimal solution to the
single-objective optimization problem:

maximize
{pk′∈R+},Q

µ1

∑
k∈K

Rk({pk′}) + µ2|Q| (11a)

subject to Rk({pk′}) ≥ ξk,∀k ∈ Q, (11b)∑
k∈K

pk ≤ Pmax, (11c)

Q ⊆ K, (11d)

with an ϵϵϵ-accuracy, then {{p∗k′},Q∗} is an ϵϵϵ-properly Pareto
optimal solution to problem (8). We emphasize that in (11),
the weights µ1 and µ2 are flexibly designed by the decision
maker. By adjusting these two values, an ϵϵϵ-Pareto frontier to
problem (8) is obtained. After that, the most desirable solution
to the decision maker is chosen from the ϵϵϵ-Pareto frontier.
Even though (11) is a single-objective problem, it is still non-
convex due to a hybrid between the continuous and discrete
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feasible domains of the optimization variables. We, therefore,
make an assumption follow the trends in QoS satisfaction in
future satellite communications [45].

Assumption 1. In order to offer the QoS requirements for a
maximum number of users in the coverage area with a finite
transmit power level, we focus on a scenario that the decision
maker selects µ1 and µ2 to obtain the largest cardinality of
the satisfied-user set Q before paying attention to maximize
the sum-rate for a given assigned bandwidth. The channel
conditions may lead to some scheduled users not reaching
their QoS requirements. One can improve the QoSs for those
unsatisfied users by subtracting the power leftover, which is
allocated to the satisfied users with a higher served rate than
requested.

A priority on the QoSs of the scheduled users has been
claimed by Assumption 1 and is effectively achieved by the
satisfied-user set Q. The limited power budget is therefore
utilized in a strategy to maximize the rate demands for
all the scheduled users in the network instead of focusing
on an individual entity. The remaining power, if possible,
will be dedicated to maximizing the sum rate. Motivated
by the Perron-Frobenius theorem [46], [47], we observe the
conditions required to all the scheduled users with their rate
satisfactions as shown in Theorem 1.

Theorem 1. If UEk requests a non-zero QoS, i.e., ξk > 0, then
all the K scheduled users can be served with at least their
individual QoS requirements as the following conditions hold

λ(RQ) < 1, (12)

1TK(IK −RQ)−1ννν ≤ Pmax, (13)

where ννν = [ν1, . . . , νK ]T ∈ RK
+ with νk = αkσ

2/((αk +
1)|h2

kwk|2) and αk = 2ξk/B − 1, ∀k ∈ K. The matrix
R ∈ RK×K has the (k, k′)−th element defined as [R]kk′ =

αk

(αk+1)|hH
k wk|2

if k = k′. Otherwise, [R]kk′ = 0. The (k, k′)-
th element of matrix Q ∈ RK×K is [Q]kk′ = |hH

k wk′ |2. In
(12), λ(RQ) = max{|λ1|, . . . , |λK |} is the spectral radius of
RQ, whose eigenvalues are denoted as λ1, . . . ,λK .

Proof. See Appendix A.

Theorem 1 gives the necessary and sufficient conditions for
the satellite to serve all the K scheduled users with the QoS
requirements in an MB-HTS system, while still maximizing
a utility function f0({pk′}). Unlike previous works, the con-
ditions (12) and (13) explicitly represent the existed unique
power solution for a precoded satellite system, which point
out the power allocation solution as a multi-variate function
of many variables such as the propagation channels, the
precoding vectors, the noise power, the QoS requirements, and
the power budget. More precisely, the necessary condition in
(12) ensures a unique power solution. The sufficient condition
(13) ensures the satellite having enough power to provide
the demand to each user. Though Theorem 1 assumes that
Q = K, it gives an efficient way to testify if all the K
scheduled users can be served with their QoSs, and thus
facilitates the reformulation of problem (11) in an efficient
fashion by removing the optimization variable Q. Conditioned

on the power budget of the satellite, the total transmit power
needed to satisfy the QoS requirements can be bounded from
below as shown in Corollary 1.

Corollary 1. For a given realization of users’ locations and
QoS requirements, the total transmit power is lower bounded
by ∑

k∈K
pk ≥ 1TKννν/∥IK −RQ∥2. (14)

Proof. From (49) in Appendix 1, the total transmit power
that the K scheduled users need to satisfy the individual
rate demand is reformulated as

∑
k∈K pk

(a)
= tr((IK −

RQ)−1ννν1TK)
(b)

≥ tr(ννν1TK)/∥IK−RQ∥2
(c)
= 1TKννν/∥IK−RQ∥2,

where (a) and (c) is obtained by utilizing the identity
tr(XY) = tr(YX) with the two matched-size matrices X and
Y; (b) is because IK −RQ is a positive semidefinite matrix
and then using [48, Lemma B.8]. We conclude the proof.

The lower bound in (14) is two-fold: First, the total transmit
power is always positive if each scheduled user requires a
non-zero rate due to the mutual interference and the thermal
noise. Second, it unveils the effectiveness of the precoding
technique. A good selection should effectively mitigate the
mutual interference among the scheduled users to attain the
large spectral norm of matrix IK −RQ.

Motivated by the aforementioned discussions, we next pro-
pose an algorithm to effectively address problem (8) and
achieve a good local solution by solving the weighted sum
optimization problem (11). The satisfied-user set Q is initial-
ized as an empty set due to no prior information. For given
precoding vectors {wk′}, the conditions (12) and (13) result
in two possible cases:

i) If those conditions hold, then all the K scheduled users
achieve (at least) their individual QoS requirements.
Therefore, Rk({pk′}) ≥ ξk,∀k ∈ K, and Q = K.
From Theorem 1 and Assumption 1, problem (11) is
mathematically equivalent to (5). This case always offers
a nonempty feasible set and corresponds to a system with
no congestion.

ii) As one of those conditions is not satisfied, at least one
scheduled user does not satisfy its QoS requirement
(unsatisfied user), and therefore congestion appears. A
special mechanism needs to handle this case if one
considers the traditional sum-rate optimization (5) due
to an empty feasible set. However, it is not such the case
for problem (11).

We stress that the first case maximizes the sum rate that
satisfies the demand-based constraints of all the K scheduled
users by a limited power budget. Since the feasible region must
have an interior point, we can apply an interior-point method
to obtain the solution to problem (5), e.g., [49], which may be
implemented by a general-purpose toolbox such as CVX [50].
However, it is a high computational complexity solution and
does not work for the second case when at least one unsatisfied
user gets a lower data throughput than the requirement. In
this case, to solve problem (11), the priority is to maximize
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the number of satisfied users. Mathematically, we optimize the
cardinality of Q as follows

maximize
{pk′∈R+}

|Q| (15a)

subject to Rk({pk′}) ≥ ξk,∀k ∈ Q, (15b)∑
k′∈K

pk′ ≤ Pmax, (15c)

Q ⊆ K. (15d)

Since problem (15) is a non-convex and non-smooth problem,
it is not trivial to obtain the global optimum of the transmit
powers. We now propose an iterative low-cost solution to get
rid of this issue with a good local solution for problem (15).
As an effective way to initialize the satisfied-user set Q, we
solve the sum-rate maximization problem without the demand
constraints in (6) to obtain an initial set of the power allocation
coefficients {p∗,(0)k′ }. Next, we use these power allocation
coefficients to define the initial satisfied-user set Q∗,(0) as
shown below,

Q∗,(0) =
{
k
∣∣Rk

(
{p∗,(0)k′ }

)
≥ ξk, k ∈ K

}
, (16)

where Rk{p∗,(0)k′ } is given in (3) but with pk′ = p
∗,(0)
k′ ,∀k.

We numerically observe that the scheduled users that typically
satisfy its QoS requirements are those with good effective
channel gains and/or those suffering less mutual interference.
Those scheduled users contribute significantly to the objective
function of problem (6).

In the following, we exploit the fact that we can move a
portion of the power that is assigned to scheduled users that are
getting more than what they actually requested to improve the
conditions of less fortunate users. In more details, we design
an iterative approach that enables to expand the set Q after
each iteration. The main idea is that the satisfied users in Q are
only served by the exact QoS requirements, all the remaining
power budget of the satellite should be allocated to the other
scheduled users to enhance their data throughput such that
there is an opportunity to join the satisfied-user set Q. To find
new users to be added to Q at iteration n, we focus on the
following optimization problem:

maximize
{p(n)

k′ ∈R+}

∑
k∈K

Rk

(
{p(n)k′ }

)
(17a)

subject to Rk({p(n)k′ }) = ξk,∀k ∈ Q∗,(n−1), (17b)∑
k∈K

p
(n)
k ≤ Pmax, (17c)

with the optimal power solution {p∗,(n)k′ }. Different from afore-
mentioned problems, it is worth noting that the constraints
(17b) target the satellite to serve the satisfied users in Q with
only their QoS demands. With a finite power level Pmax, the
remaining satellite energy should be allocated to the scheduled
users with bad channel conditions by expecting that they are
potential candidates to join the satisfied-user set Q. If there are
scheduled users served equal to or greater than their demands
at iteration n, they will be added to the satisfied-user set Q
by

Q∗,(n) =
{
k
∣∣Rk

(
{p∗,(n)k′

)
≥ ξk, k ∈ K

}
, (18)

Algorithm 1 An iterative algorithm to obtain a local solution
to problem (8)
INPUT: Channel vectors {hk}; Maximum power Pmax; QoS

requirement set {ξk}.
1: Compute the precoding vectors {wk′} based on the chan-

nel vectors {hk′}.
2: Compute the matrices R,Q, and the vector ννν.
3: if Conditions (12) and (13) are satisfied then
4: Update Q∗ = K and solve problem (5) to obtain {p∗k′}.
5: else
6: Solve problem (6) to obtain {p∗,(0)k′ } and update Q∗,(0)

as in (16).
7: Initialize the accuracy δ = |Q∗,(0)| and set n = 0.
8: while δ ̸= 0 do
9: Set iteration index n = n+ 1.

10: Solve problem (17) to obtain {p∗,(n)k′ } and then
update Q∗,(n) as in (18).

11: Update the accuracy δ = |Q∗,(n)| − |Q∗,(n−1)|.
12: end while
13: end if
OUTPUT: The satisfied-user set Q∗ = Q∗,(n) and the opti-

mized power coefficients {p∗k′} = {p∗,(n)k′ }.

where Rk{p∗,(n)k′ } is given in (3) but with pk′ = p
∗,(n)
k′ ,∀k.

After that the iteration index is increased as n = n+1, which
leads to an iterative approach. Notice that it should maximize
the number of scheduled users that satisfy their requirements
in each iteration with the objective to maximize the sum rate
of all the K scheduled users. We emphasize that the second
case is only executed after checking that conditions (12) and
(13) are not satisfied, so the cardinality of the satisfied-user
set is less than the number of scheduled users along iterations,
i.e., |Q∗,(n)| < K,∀n. Our proposed approach is summarized
in Algorithm 1 with its convergence given in Theorem 2.

Theorem 2. If all the K scheduled users cannot be served
with their QoS requirements under a given power budget Pmax

and the obtained optimized power coefficients at each iteration
by solving (17), the following convergence properties hold and
therefore Algorithm 1 converges to a fixed point solution,

. . . ≥ |Q∗,(n)| ≥ |Q∗,(n−1)| ≥ . . . ≥ |Q∗,(0)|, (19)

. . . ≤
∑

k∈K
Rk

(
{p∗,(n)k′ }

)
≤

∑
k∈K

Rk

(
{p∗,(n−1)

k′ }
)

≤ . . . ≤
∑

k∈K
Rk

(
{p∗,(0)k′ }

)
, (20)

Proof. See Appendix B.

Theorem 2 indicates an improvement of the satisfied-user set
after each iteration by sacrificing an amount of the sum-data
throughput that is aligned with the ϵϵϵ-properly Pareto optimal
solution in Section II-C. When the congestion issue appears,
the K scheduled users are split into two sets: the satisfied-user
set Q containing the users served by the data throughput at
least their demands, and the unsatisfied-user set K\Q with the
other users served by the throughput less than their demands.

Remark 2. Algorithm 1 prioritizes on maintaining the QoS
requirement for every user in multi-access scenarios. A fi-
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nite power budget is strategically allocated to maximize the
number of satisfied users before the sum-rate maximization
is implemented. When the congestion appears, Algorithm 1
still provides service to unsatisfied users for the fairness
enhancement. Even though the proposed algorithm cannot
guarantee a global optimum due to the inherent nonconvexity
of problem (11) as jointly optimizing the satisfied-user set Q
and the power coefficients pk,∀k, it provides a good prelimi-
nary mechanism to investigate the demand-based optimization
with realistic conditions where the satellite simultaneously
serves many users with the same radio resources.
B. Data-Driven Approach

In spite of an effective solution to handle the multi-objective
problem (8) by solving an alternative version in (11), Algo-
rithm 1 must update the power coefficients and the satisfied-
user set after many iterations until reaching a fixed point
solution. The matter might be, therefore, still burdensome
for certain practical scenarios. In this subsection, we propose
to use a neural network model that can learn the features
of Algorithm 1, and then predict the power coefficients for
each realization of user locations in the satellite system with
extremely low computational complexity. We assume that the
power solution obtained by Algorithm 1 is available for the
following series of the continuous mappings:

wℓ =f̃ℓ({hk}), ∀ℓ ∈ K, (21)

µkl =|hH
k wℓ|2, ∀k, ℓ ∈ K, (22)

α∗
k =

p∗kµkk∑
ℓ∈K\{k} p

∗
ℓµkl + σ2

, k ∈ K, (23)

p∗k =fk(a
∗
k, {µkℓ}) (24)

=α∗
k

σ2

µkk
+ α∗

k

∑
ℓ∈K\{k}

p∗ℓ
µkl

µkk
, k ∈ K,

where f̃ℓ({hk}) : CM×K → CM is a multivariate function
utilized to construct a precoding vector for user ℓ from the
instantaneous channels. After (21), the set of the K precoding
vectors is constructed, which are the input to compute the
channel gains in the mapping (22) if k = ℓ. Otherwise, (22) is
used to compute the strength of the mutual interference. The
continuous mapping in (23) evaluates the SINR level for an
arbitrarily scheduled user. The optimized satisfied-user set Q∗,
which is discrete on the definition, can be reformulated by the
optimized power coefficients {p∗k} via utilizing {α∗

k} in (23),
which is continuous. It is of paramount importance to design
a low-cost machine learning framework and guarantee the
existence of a neural network with a finite number of neurons
for our considered framework. Finally, the last mapping (24)
points out a way to update the power coefficient of UEk in
relation to the offered rate to this user and the power allocation
to the other scheduled users in a multi access scenario. Since a
composition of the continuous mappings is also a continuous
mapping [51], Lemma 1 hereby approves the existence of a
unique mapping that characterizes all the above procedures.

Lemma 1. The power coefficients obtained by Algorithm 1 are
characterized by {pk} = F({hk}), where F({hk}) represents
the series of the continuous mappings in (21)–(24). It implies

that there exists at least a neural network to learn and predict
F({hk}).

Proof. See Appendix C.

As the key point from Lemma 1, a neural network only
distills useful information from the instantaneous channels
to learn the continuous mapping F({hk}) and predict the
power coefficients with low computational complexity since
the satisfied-user set Q can be expressed as in (23), by means
of supervised learning. More precisely, different from previous
works [52], [53], this paper only makes use of the channel
gains to learn a fully-connected neural network as the benefits
of (22) conditioned by the precoding vectors as sketched in
Fig. 3.4

Forward propagation: We denote h̃k =
[|hk1|, . . . , |hkN |]T ∈ RN

+ the channel gain vector, with
hkn denoting the n-th element. After that, each given
realization of those channel gains are stacked into a vector
as x = [h̃T

1 , . . . , h̃
T
K ]T ∈ RKN

+ . The law of conservation
of energy indicates that the channel gain should be in
a closed set, but their values might be extremely small
due to deep fading. Subsequently, the channel gains are
normalized to reducing fluctuations from the propagation
environment before utilizing them as the input to train the
neural network. We numerically observe that this procedure
will speed up the training phase and moderate the gradient
vanishing problem. The normalized vector xin ∈ RKN is
mathematically formulated from x as follows

[xin]m = ([x]m − [xmin]m)/([xmax]m − [xmin]m), (25)

where [x]m is the m-th element of vector x; xmin,xmax ∈
RKN

+ with the m-th element [xmin]m, [xmax]m is respec-
tively defined as [xmin]m = min {[x]m} and [xmax]m =
max {[x]m}, where {[x]m} contains all the realizations of
[x]m in the training data set. In the considered framework,
both the channel gains and the optimized power coefficients
are normalized by applying the same methodology as in (25),
and hence the data set is a compact set. The normalized data
xin is now considered to be the input of the neural network for
learning the set of weights and biases over some hidden layers.
Activation functions are executed at neurons of each hidden
layer to imitate nonlinear properties in the data set. In detail,
if xuv denotes the input vector of the u-th neuron at the v-th
hidden layer, then the corresponding output value is defined
as yuv = fuv(w

T
uvxuv + buv), where wuv and buv represent

the weights and bias associated with this neuron; fuv(·) is the
activation function that imitates the nonlinear properties in a
data set. After passing through the hidden layers, the output
signal of the neural network block is denoted by p̃ ∈ RK

+ .
The forward propagation is deployed for both the training and

4According to the universal approximation theorem [21], [51], an ad-
equately neural network can approximate a continuous mapping from a
provided-input and designed-output data set. For a given accuracy, there
may exist more than one neural network structures to learn the series of
continuous mappings in (21)–(24). The proof-of-concept idea in this paper is
to demonstrate the effectiveness of neural networks in predicting the solution
to a multi-objective optimization problem with low computational complexity.
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Fig. 3. The considered neural network architecture to learn and predict the solution to problem (11).

testing phases. Furthermore, for the testing phase, the predicted
data power vector p̂ ∈ RK

+ is obtained by denormalizing as

[p̂]k = [p̃]k ([p̃max]k − [p̃min]k) + [p̃min]k, (26)

where [·]k is the k-th element of power vectors, while [p̃max]k
and [p̃min]k are the maximum and minimum value of the
power coefficient for UEk in the data set. Due to the lo-
cal normalization that has generated a compact set for the
power coefficient of each user, a neural network with a finite
number of neurons may not guarantee the limited power
budget constraint (11c). To get rid of this issue, the following
mapping is made as [p̂∗]k = Pmax[p̂]k

/∑
k′∈K[p̂]k′ , then∑

k∈K[p̂
∗]k = Pmax aligning with the full power consumption

to maximize the sum rate [36].
Back propagation: It is only exploited in the training phase

with the supports of the optimized power coefficients from
Algorithm 1. The mean squared error (MSE) metric is adopted
as the loss function for the training phase, which is defined as
LMSE(Θ) = E{∥p̃ − p̃∗∥22}, where Θ is the set comprising
all the weights and biases used in the neural network; p̃∗

is the vector with the optimized power coefficients obtained
from Algorithm 1 and after normalization. The loss function
LMSE(Θ) is expected over many realizations of different user
locations and possible combinations over the N overlapping
beams. From a set of initial values, the weights and bias are
iteratively updated by minimizing LMSE(Θ) with the backward
propagation of the data set [19]. Thanks to the benefits
of supervised learning in training a neural network and to
learn the multi-objective problem as analyzed in (21)–(24),
Algorithm 1 is utilized to generate the training data. The
Adam optimization is used for backpropagation [54]. The
momentum and babysitting the learning rate are exploited to
reduce training time and get the best performance [21].

IV. SATELLITE COMMUNICATIONS WITH LINEAR
PRECODING AND WATER FILLING

This section presents an application of our framework with
a concrete linear precoding technique. Thanks to the semi-
closed form power solution, a fine-tuning should be made to
integrate the water filling method into Algorithm 1 on a case-
by-case basis.

Algorithm 2 An algorithm to obtain a local solution to
problem (8) with the ZF precoding technique
INPUT: Channel vectors {hk}; Maximum power Pmax; QoS

requirement set {ξk}.
1: Compute the precoding vectors {w̄zf

k } as wzf
k =

w̄zf
k /∥w̄zf

k ∥.
2: Compute the minimum power levels {p∗min,k} as in (28).
3: if Condition (13) is satisfied then
4: Solve problem (29) to obtain {p̃∗k} by utilizing (30).
5: Update p∗k = p̃∗k + p∗min,k,∀k ∈ K and Q∗ = K.
6: else
7: Solve problem (31) with the order in (32) to obtain Q∗

as in (33) and p∗k = p∗min,k,∀k ∈ Q∗.
8: Solve problem (33) to obtain p∗k,∀k ∈ K \ Q∗ as in

(34).
9: end if

OUTPUT: The satisfied-user set Q∗ and the optimized power
coefficients {p∗k′}.

A. Demand-based Optimization with Zero Forcing Precoding

We now apply the ZF precoding technique to our frame-
work, which effectively cancels out all mutual interference
[16].5 Precisely, for a given channel matrix H, the precoding
matrix Wzf ∈ CN×K is formulated as Wzf = H(HHH)−1,
and the precoding vector wzf

k defined for UEk is calculated by
wzf

k = w̄zf
k /∥w̄zf

k ∥, where w̄zf
k is the k-th column of the matrix

Wzf . The channel capacity of UEk is reformulated from (3)
to an equivalent form as

Rzf
k (pk) = B log2

(
1 +

pk
∥w̄zf

k ∥2σ2

)
, [Mbps], ∀k ∈ K,

(27)
which demonstrates that all mutual interference from the other
users to UEk is completely eliminated and the channel capacity
is only the function of its own power coefficient. We now
apply the classical water filling technique to tackle the joint
power allocation and demand-based control as presented in
Algorithm 2. Specifically, we first compute the precoding

5In this paper, the scheduled users are selected to ensure that the channel
matrix is not ill-conditioned for effectively cancelling out mutual interference
once the ZF precoding technique is utilized.
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vectors {wzf
k }. From the channel capacity (27), the minimum

required power p∗min,k allocates to UEk with its demand is

Rzf
k (pk) = ξk ⇔ p∗min,k = αk∥w̄zf

k ∥2σ2, ∀k ∈ K. (28)

Thanks to the closed-form expression in (28), after obtain-
ing {p∗min,k}, we only need to testify the condition (13)
to identify if the system can offer the QoS requirements
to all the K scheduled users. Inspirited by Algorithm 1,
qualifying (13) by using

∑
k∈K p∗min,k leads to the two pos-

sible cases with separated consequences. In the former case,
where

∑
k∈K p∗min,k ≤ Pmax, problem (5) should be solved

to the optimal solution by the interior-point methods and a
successive convex approximation in polynomial time [55].
However, to avoid a high cost of computing the first and
second derivatives required by the interior-point methods, we
propose a low computational complexity algorithm that can
apply for practical satellite communications. Motivated by
the fact that a certain amount of the power budget will be
dedicated to guaranteeing all the scheduled users’ demands
while the remaining power should spend on maximizing the
sum rate, the following optimization problem is considered as

maximize
{p̃k′∈K}

∑
k∈K

Rzf
k (p̃k) (29a)

subject to
∑

k∈K
p̃k ≤ Pmax −

∑
k∈K

p∗min,k. (29b)

The constraint (29b) implies that the satellite only utilizes
the remaining power after consuming a portion of the power
budget to ensure the K scheduled users served by their QoS
requirements. From the water filling, the optimal solution to
p̃k is computed in a semi-closed form as follows

p̃∗k = max

(
0,

1

λ∗ ln 2
− ||w̄zf

k ||2σ2

)
, ∀k ∈ K, (30)

where λ is the optimal solution to the Lagrange multiplier
associated with the power constraint (29b). The transmit power
solution {p∗k} to problem (11) is attained by combining the
solution {p̃∗k} to problem (29) and the required powers {p̂k′}
as p∗k = p̃∗k + pmin,k,∀k. For the latter, if the condition (13)
is not satisfied, i.e.,

∑
k∈K p∗min,k > Pmax, we construct a

heuristic mechanism to conquer problem (11) with the inter-
ference cancellation property of the ZF precoding technique.
Accordingly, the satisfied-user set Q∗ can be attained by
solving the problem

maximize
Q

|Q| (31a)

subject to
∑

k∈Q
p∗min,k ≤ Pmax. (31b)

From the benefits of the ZF precoding technique in mitigating
mutual interference, an scheduled user with better the spectral
norm of the precoding vector than the other, i.e., computing as
w̄zf

k ,∀k, will consume less power, and therefore having con-
structive a contribution to the power resource as demonstrated
in (28). Hence, one can attain the solution to problem (31) by,
first, sorting {p∗min,k} in ascending order as

p∗min,π1
≤ p∗min,π2

≤ . . . p∗min,πK
, (32)

where {π1, . . . ,πK} is a permutation of {1, . . . ,K}. The
satisfied-user set Q∗ includes satisfied users, taken one by one,
in the sorted-order list (32) such that

Q∗ =

{
k
∣∣∣∑|Q∗|

k=1
p∗min,πk

≤ Pmax,∑|Q∗|+1

k=1
p∗min,πk

> Pmax, k ∈ K
}
.

The following power budget of the satellite after allocating
to the satisfied users in Q∗ with their QoS requirements
P̃max = Pmax −

∑|Q∗|
k=1 p

∗
min,πk

is dedicated to enhancing
the data throughout for the remaining users. It results in
p∗k = p∗min,k,∀k ∈ Q∗. The optimal power allocation to the
unsatisfied users in K\Q∗ is attained by performing the water
filling method for the optimization problem as

maximize
{pk′≥0,k′∈K\Q∗}

∑
k∈K\Q∗

Rzf
k (pk′) (33a)

subject to
∑

k∈K\Q∗
pk ≤ P̃max. (33b)

We emphasize that the water filling method can be applied
to obtain the global solution to problem (33), for which the
optimal power p∗k of UEk is computed in a semi closed form
as

p∗k = max

(
0,

1

λ̃∗ ln 2
− ||w̄zf

k ||2σ2

)
, ∀k ∈ K \ Q∗, (34)

where λ̃∗ is the optimal solution to the Lagrange multiplier
associated with the constraint (33b). By completely mitigating
mutual interference among the K scheduled users, Algo-
rithm 2 has the main computational complexity on searching
for the optimal Lagrangian multipliers λ∗ and λ̃∗.
B. Demand-based Optimization with Regularized Zero-
Forcing Precoding

We now inherit the major benefits of the water filling
method to design a heuristic algorithm for the RZF technique.
From the channel matrix H, the precoding matrx is formulated
as Wrzf = H(HHH+ Kσ2

Pmax
IK)−1, where IK is the identity

matrix of size K ×K and the RZF precoding vector defined
for UEk is wrzf

k = w̄rzf
k /∥w̄rzf

k ∥, where w̄rzf is the k-th
column of matrix Wrzf . The RZF precoding technique does
not entirely mitigate mutual interference with regard to its
own benefits. Precisely, it balances the transmit power and
mutual interference up to a level [16]. Hence, the network
should utilize (3) to evaluate the channel capacity. To exploit
the water-filling method for the power control, with ∀k ∈ K,
(3) is upper bounded by

Rk({pk′}) ≤ B log2

(
1 +

pk|hH
k wrzf

k |2

σ2

)
, [Mbps],

≜ R̃k(pk) (35)

by neglecting mutual interference from the other scheduled
users. We stress that the upper bound on the channel capacity
in (35) aligns with the standard form that the water filling
method can perform as shown in Algorithm 3. Because of
the mutual interference, we should introduce a tolerable rate
accuracy for UEk, denoted by ωk ≥ 0. Alternatively, the
relaxed-QoS requirement of UEk should be ξk+ωk. Similar to
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Algorithm 3 An algorithm to obtain a local solution to
problem (8) with the RZF precoding technique
INPUT: Channel vectors {hk}; Maximum power Pmax; QoS

requirement set {ξk}; Tolerable rate accuracy set {ωk}.
1: Compute the precoding vectors {wrzf

k } as wrzf
k =

w̄rzf
k /∥w̄rzf

k ∥.
2: Compute {p∗min,k|k ∈ K,Rk({pk′}) = ξk + ωk}; the

matrices R,Q, and the vector ννν.
3: if Conditions (12) and (13) are satisfied then
4: Solve problem (36) to obtain {p̃∗k}.
5: Update p∗k = p̃∗k + p∗min,k,∀k ∈ K and Q∗ = {k|k ∈

K,Rk({pk′}) ≥ ξk}.
6: else
7: Solve (6) with the upper bounded channel capacity

in (35) to obtain {p∗,(0)k } and Q̃∗,(0) = {k|k ∈
K,Rk({p∗,(0)k′ }) ≥ ξk + ωk}.

8: Initial the accuracy δ = |Q̃∗,(0)| and set n = 0.
9: while δ ̸= 0 do

10: Set iteration index n = n+ 1.
11: Compute p

∗,(n−1)
k for user k ∈ Q̃∗,(n−1) as in (38).

12: Solve problem (39) to obtain {p∗,(n)k },∀k ∈
K\Q̃∗,(n−1).

13: Update Q̃∗,(n) = Q̃∗,(n−1) ∪ Q̃∗,(n)
1 .

14: Update the accuracy δ = |Q̄∗,(n)| − |Q̄∗,(n−1)|.
15: end while
16: Update {p∗k} = {p∗,(n)k }, and Q∗ = {k|Rk({p∗k′}) ≥

ξk,∀k ∈ Q̄∗,(n)}.
17: end if
OUTPUT: The satisfied-user set Q∗ and the optimized power

coefficients {p∗k}.

(28), we thus compute the minimum required power p∗min,k by
using (35) as p∗min,k = (2(ξk+ωk)/B − 1)∥wrzf

k ∥2σ2,∀k ∈ K,
then if the conditions (12) and (13) hold, Algorithm 3 solves
the sum-rate optimization problem as

maximize
{p̃k′∈K}

∑
k∈K

R̃k(p̃k) (36a)

subject to
∑

k∈K
p̃k ≤ Pmax −

∑
k∈K

p∗min,k. (36b)

Let us denote {p̃∗k} the solution to problem (36) that is
concretely expressed in a semi-closed form as

p̃∗k = max

(
0,

1

µ∗ ln 2
− σ2

|hH
k wrzf

k |2

)
, ∀k ∈ K, (37)

where µ∗ is the optimal Lagrange multiplier associated with
the constraint (36b), then we obtain the optimized power
coefficient of UEk as p∗k = p̃∗k + p∗min,k and the satisfied-
user set Q∗ = {k|k ∈ K,Rk({p∗k′}) ≥ ξk} (Step 5 of
Algorithm 3). If the conditions (12) and (13) are not satisfied,
then the congestion issue appears. Algorithm 3 initially solves
problem (6) by applying the water filling method to obtain the
optimized power coefficients {p∗,(0)k } and the relaxed satisfied-
user set Q̃∗,(0) = {k|k ∈ K,Rk({p∗,(0)k′ }) ≥ ξk + ωk}. At
iteration n, let us decompose Q̃∗,(n−1) = Q̃∗,(n−2)∪Q̃∗,(n−1)

1

where Q̃∗,(n−2) and Q̃∗,(n−1) contains the users satisfied
their relaxed-QoS requirements up to iteration n − 2 and

the new ones at iteration n − 1, respectively. Notice that
p
∗,(n−1)
k = p

∗,(n−2)
k if k ∈ Q̃∗,(n−2) and Q̃∗,(n−2) = ∅

as n = 1. From the optimized power solution {p∗,(n−1)
k }

to problem (39), we can truncate the transmit power of new
satisfied user k to as

p
∗,(n−1)
k = (2

(ξk+ωk)

B − 1)

∑
ℓ∈K\{k} p

∗,(n−1)
ℓ |hH

k wrzf
ℓ |2 + σ2

|hkwrzf
k |2

,

k ∈ Q̃∗,(n−1)
1 , (38)

and the dedicated power P̃ (n)
max = Pmax−

∑
k∈Q̃∗,(n−1) p

∗,(n−1)
k

are utilized to improve the remaining scheduled users by
solving the following optimization problem

maximize
{p(n)

k′ ≥0,k′∈K\Q̃∗,(n−1)}

∑
k∈K\Q̃∗,(n−1)

R̃k(p
(n)
k′ ) (39a)

subject to
∑

k∈K\Q̃∗,(n−1)
p
(n)
k ≤ P̃ (n)

max. (39b)

By denoting {p∗,(n)k },∀k ∈ K \ Q̃∗,(n−1), the solution to
problem (39), which is computed in a semi-closed form as

p
∗,(n)
k = max

(
0,

1

µ∗,(n) ln 2
− σ2

|hH
k wrzf

k |2

)
, (40)

where µ∗,(n) is the optimal Lagrange multiplier associated
with the constraint (39b), then the algorithm enables to boost
data throughput for the unsatisfied users. Algorithm 3 termi-
nates as the cardinality of the satisfied-user set retains, i.e.,
|Q̄∗,(n)| = |Q̄∗,(n−1)|.

V. NUMERICAL RESULTS

We consider a GEO satellite system consisting of N = 7
beams that serve at most K = 7 scheduled users in each
coherence time interval.6 Specifically, in the simulation sec-
tion, we investigate a satellite system with a total of 35000
users evenly distributed across beams, i.e., with approximately
5000 users laying on each beam coverage region. At each time
slot, a random user per beam selected for consideration in the
power allocation problem (unicast user scheduling). For sake
of the simplicity, there is no user mobility. The parameters
associated with the satellite and the beam radiation patterns
are provided by ESA in the context of [32]. In detail, the
radiation patterns are based on a Defocused Phased Array-
Fed Reflector (PAFR), with reflector size of 2.2m and an
array diameter of roughly 1.2m. The antenna array before
the reflector is a circular array with the space of 2× carrier
wavelength and 511 elements. The satellite location is at
13◦ E, and the system operates at Ka band, for which the
carrier frequency is 20 [GHz] [56]. The system bandwidth
is 500 [MHz] and the satellite height is 35, 786 [km]. The
maximum transmit power is Pmax = 23.37 [dBW] corre-
sponding to the average beamforming gain 44.4 [dBi] and
the effective isotropic radiated power (EIRP) −27 [dBW/Hz].
The receive antenna diameter is 0.6 m and the noise power

6In practice the entire system is split in terms of geographical coverage
or carriers due to the limited feeder link bandwidth and each part is handled
by a different gateway. This practical constraint makes our numerical results
reasonable in terms of a single gateway managing a cluster of beams.
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Fig. 4. A snapshot of the served rate per user [Mbps] with the ZF precoding technique for the different benchmarks and the QoS requirement per user
500 [Mbps]: (a) the users’ locations; (b) the effective channel gains; (c) the equal power allocation (EqualPower); (d) the sum rate maximization (SumOpt);
(e) the satisfied-user set maximization (SatisSetOpt); and (f) the joint sum rate and satisfied-user set maximization (JointOpt).

per user is −118.3 [dB]. For the data-driven approach, we
construct a fully-connected neural network comprising hidden
layers with 128 and 64 neurons, respectively. The rectified
linear unit (ReLU) is used as the activation function. The
25000 realizations of different user locations are captured
for the training phase to learn the continuous mappings in
Section III-B. We also use 10000 realizations for the testing
phase to demonstrate the effectiveness of our proposed data-
driven approach. Simulation results are implemented by using
MATLAB on a personal Dell Latitude 5510 laptop with CPU
Intel Core(TM) i7-10610U @ 1.8-2.3 [GHz], and 16 [GB]
RAM. By exploiting the ZF and RZF precoding, the following
benchmarks are involved for comparison:

i) Joint sum rate and satisfied-user set maximization is
presented by Algorithm 1 for a general framework, and
by Algorithm 2 and 3 for the ZF and RZF precoding
technique, respectively. This benchmark is denoted as
“JointOpt” in the figures.

ii) Satisfied-user set maximization is a relaxation of Join-
tOpt that only focuses on maintaining users’ demand,
especially users with bad channel conditions. If all the
K scheduled users are served with their demands, the

remaining power budget is equally assigned to every
user. This benchmark is denoted as “SatisSetOpt” in the
figures.

iii) Sum rate maximization has been previously demonstrated
in [33], which only maximizes the total data throughput
for which users with extreme channel conditions may be
out of service to dedicate the power budget to other users.
This benchmark is denoted as “SumOpt” in the figures.

iv) Equal power allocation serves as a baseline to demon-
strate the benefits of power allocation and satisfied-
user set optimization [8], [9]. The transmit power level
14.92 dB is assigned to each user without a guaran-
tee on users’ demand. This benchmark is denoted as
“EqualPower” in the figures.

In Fig. 4, we plot the served rate [Mbps] for every user
relying on (27) by a given realization of user locations
(see Fig. 4(a)). Fig 4(b) shows the effective channel gains,
with users 2 and 4 as the worst who are located near the
boundary of the overlapping beams. For a fixed power level,
EqualPower cannot guarantee the QoS requirements and those
users get lower data throughput than their requests, which is
500 [Mbps]. If the system deploys the sum-rate optimization
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Fig. 5. The probability of congestion appearance
versus the QoS requirement.
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Fig. 6. The probability of satisfied users versus the
QoS requirement.
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Fig. 7. The sum rate versus the QoS requirement.
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obtained by JointOpt.
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Fig. 10. The Jain’s index versus the QoS require-
ment.

to maximize the total data throughput of the entire network,
users 2 and 4 even get 1.5× to 2× lower data throughput
than that of EqualPower. Both SatisSetOpt and JointOpt offer
satisfactory data throughput to all the users. Nonetheless, Join-
tOpt gives 200 [Mbps] higher the sum rate than SatisSetOpt,
corresponding to the 4.8% improvement. In the following,
we report the average system performance over 200 different
realizations of users’ locations.

In Fig. 5, we evaluate the probability of congestion ap-
pearance, which is defined for time instances when at least
one scheduled user does not satisfy its QoS requirement.
If the QoS requirement increases, our proposed algorithms
provide the lowest probability of congestion appearance for
both the ZF and RZF precoding techniques, especially at a low
QoS regime. By maximizing the total system sum rate only,
SumOpt always causes the highest congestion since scheduled
users with lower channel gains are allocated less power since
there is no QoS guarantee. In Fig. 6, the probability of satisfy-
ing demand-based constraints is defined as a ratio between the
number of satisfied users and the total users in the networks,
i.e., E{|Q|}/K. When the QoS requirement per user increases,
the satisfaction reduces since the network faces difficulties in
maintaining the demands for many users with a limited power
budget. If each user requires a QoS requirement level less than
400 [Mpbs], SumOpt offers the lowest probability of satisfying
demand-based constraints. After the effort to maximize the

number of satisfied users, our proposed approaches allow
some users served by a data throughput less than requested to
maximize the sum rate. Another possible option is to schedule
these unsatisfied users later in the next time slots. The joint
congestion control and sum-rate maximization over multiple
time slots are left for future work.

Besides, Fig. 7 demonstrates the scarification of the sum rate
to improve the number of satisfied users. Both EqualPower and
SumOpt allocate the transmit powers to the users without any
guarantee of the individual QoSs, thus they should provide the
constant sum rate of 5618 [Mbps] and 5467 [Mbps] on average
by exploiting the RZF precoding technique. Meanwhile, the
system with the ZF precoding technique is 4346 [Mbps]
and 4670 [Mbps]. By using the RZF precoding technique,
SatisSetOpt needs to lower the sum rate 420 [Mbps] compared
with SumOpt to enhance the QoS, while the reduction is only
about 177 [Mbps] if the network deploys JointOpt. In Fig. 8,
we explain the features of the sum rate [Mbps] when the
demand-based constraints are involved by utilizing JointOpt
with the different sets, including the set of all scheduled users
K, the satisfied-user set Q, and the unsatisfied-user set K\Q.
The sum rate of all the users is synthesized from the sum
rate of satisfied- and unsatisfied-user sets as a consequence of
problem (8).

For evaluating the balance between the sum rate and the
satisfied-user set, we now define a specific case of objective
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Fig. 11. The cumulative distribution function (CDF) of the different metrics provided by the model-based and data-driven approaches with the individual
QoS requirement 250 [Mbps]: (a) the served rate per user; (b) the power allocation to each user; (c) the sum rate.

TABLE I
THE PERFORMANCE AND RUN TIME (MILLISECONDS) COMPARISON OF

THE MODEL-BASED AND DATA-DRIVEN APPROACHES

QoS
require.
[Mbps]

Time
[ms]

Sum
rate
[Mbps]

Percentage of
satisfactions
[%]

Model-based (ZF) ξk = 250 17.38 4054 92.14
ξk = 300 19.97 4048 91.27

Model-based (RZF) ξk = 250 19.26 5542 99.86
ξk = 300 20.15 5483 99.83

Data-driven (ZF) ξk = 250 2.0 4260 82.38
ξk = 300 2.2 4248 79.82

Data-driven (RZF) ξk = 250 1.3 5545 98.47
ξk = 300 2.1 5491 97.64

function as

Λ ≜ Ω

(
|Q|
K

+

∑
k∈K Rk({p∗k′})∑

k∈K RSumOpt
k ({p∗k′})

)
, (41)

where Ω =
K

∑
k∈K RSumOpt

k ({p∗
k′})

K+
∑

k∈K RSumOpt
k ({p∗

k′})
stands for the normalized

factor and RSumOpt
k ({p∗k′}) is the channel capacity of UEk

obtained by solving problem (6). We compare the performance
of all the benchmarks versus the different QoS requirements
as in Fig. 9. JointOpt gives the highest performance as the
individual QoS requirement {ξk} varies. Algorithms 2 and
3 can handle the conflict utility met rices well. The other
benchmarks, i.e., EqualPower and SumOpt, give significantly
lower performance due to ignoring the users’ demands. More-
over, the higher QoS requirements expand the gap between
EqualPower and SumOpt and our proposed algorithms. If
UEk requests ξk = 200 [Mbps] and the system uses the ZF
precoding technique, JointOpt and EqualPower is almost over-
lapped. However, the gap expands 10× when the individual
QoS requirement is 1200 [Mbps].

The Jain’s fairness index is a good metric to measure
how the offered data throughput matches the demands at the
user levels [57]. By computing the satisfaction demand of
each user, i.e., denoted by ok as a ratio between the offered
data throughput and the QoS requirement of user k,∀k, then
the Jain’s index is J = (

∑
k∈K ok)

2/(K
∑

k∈K o2k), which
varies from 1/K to 1. Fig. 10 plots the Jain’s index for all

the benchmarks as a function of the QoS requirement. To
maximize the sum rate, the power should be dedicated to
users with good channel conditions. This unfair policy leads
SumOpt to a very low Jain’s index. Consequently, an equal
power allocation strategy offers a better fairness level with the
Jain’s index 1.2× and 1.1× higher than SumOpt by utilizing
the ZF and RZF precoding techniques, respectively. The two
conflict objective functions, i.e., the satisfied-user set and the
sum rate, results in the second-best Jain’s index with up to
1.23× better than SumOpt with the RZF precoding.

Figure 11 shows the CDF of some metrics for both
the model-based and data-driven approaches. The continu-
ous mappings in (21)–(24) may not be isomorphisms since
the codomains are non-smooth functions, especially for the
achievable rates in (23) (see Figs. 11(a) and (c)). The fact
manifests difficulties in training and predicting the joint power
allocation and satisfied-user set optimization. However, the
neural network learns pretty well for some regimes with
smooth CDFs. Fig 11(b) shows that the power allocation dif-
ference between the data-driven and model-based approaches
are 30.16% and 12.35% on average with the ZF and RZF
precoding techniques, respectively. Furthermore, we show in
detail the performance and run time of those two approaches
in Table I. Although there is a slightly increasing the run
time when the individual QoS requirement increases, all the
proposed approaches yield the results in milliseconds (ms).
Specifically, the data-driven approach reduces run times up to
about 14× compared with the model-based approach.

In Fig. 12, we show the impact of the atmosphere loss
including rain and cloud attenuation on the system perfor-
mance. In particular, rain fading model can be modeled by a
log-normal distribution, whose parameters such as mean and
variance have been selected according to the European climate
[58]. Salonen-Uppala model [59], [60] is used for modeling
cloud attenuation, which depends on several features, i.e., the
elevation angle toward the satellite, user’s location and the
carrier frequency. Particularly, the channel model from the
satellite to UEk is formulated as h̃k = hk

√
rk/

√
ck, k ∈ K,

where rk and ck is the rain fading and cloud attenuation at UEk,
respectively. Herein, rk is modeled as a lognormal random
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Fig. 12. The performance evaluation under the propagation environments including the rain and cloud attenuation: (a) the probability of congestion appearance
versus the QoS requirement.; (b) the CDF of the sum rate [Mbps] provided by the model-based and data-driven approaches with the QoS requirement per
user 250 [Mbps].

variable with mean −2.6 [dB] and variance 1.63 [dB] [58]. ck
is mathematically defined as

ck =
0.819fWred

ε′′(1 + ζ2)

1

sin(Ek)
, k ∈ K, (42)

where f [GHz] is the carrier frequency, Wred = 0.6 [kg/m2]
is the statistics for the integrated reduced liquid water content,
Ek denotes the elevation angle between UEK and the satellite.
We define ζ = (2 + ε′)/ε′′ with ε′ and ε′′ present the real
and imaginary parts of the permittivity of water, which is
calculated as [60]

ε′ = ε2 +
ε0 − ε1

1 + ( f
fp
)2

+
ε1 − ε2

1 + ( f
fs
)2
, (43)

ε′′ =
f(ε0 − ε1)

fp
(
1 + ( f

fp
)2
) +

f(ε1 − ε2)

fs
(
1 + ( f

fs
)2
) , (44)

with ε0 = 77.66 + 103.3(ϑ − 1), ε1 = 5.48, ε2 = 3.51.
fp = 20.09 − 142(ϑ − 1) + 294(ϑ − 1)2 [GHz] and fs =
590 − 1500(ϑ − 1) [GHz] are the principal and secondary
relaxation frequencies, respectively. Finally, ϑ = 300/T with
T = 273.15 is temperature measured in Kevin. In Fig. 12(a),
it is numerically observed that even though the congestion
probability increases in all algorithms because of the con-
sideration of the atmosphere loss, our proposed algorithms
still outperforms other benchmarks. Furthermore, Fig. 12(b)
manifests that the data-driven approaches work well with the
updated channel models.

VI. CONCLUSIONS

This paper has investigated the congestion issue in the
demand-based optimization for multi-beam multi-user satellite
communications. Two for one, under the methodology of
multi-objective optimization, we jointly maximized the sum
rate and satisfied-user set with all the channel conditions
when many users share the same time and frequency resource
plane. Conditioned on maintaining the QoS requirements as
the priority, we have designed the heuristic algorithms that
can effectively solve the optimization problem and operate in
both feasible and infeasible domains under the limited power
budget and the individual QoS requirements. By exploiting

the water filling method and the linear precoding technique,
numerical results confirmed that the number of satisfied users
is significantly increased by utilizing our framework compared
with the state-of-the-art benchmarks. Furthermore, the run
time by deploying a neural network reduces to be far away
to 10 ms enabling real-time power allocation and satisfied-
user control in satellite systems where the solution needs to
be updated even at the millisecond time sale because of variety
in the user scheduling decisions or individual user demands.

APPENDIX

A. Proof of Theorem 1

From Assumption 1, the system first prioritizes on max-
imizing the number of satisfied users with the minimum
transmit power consumption. This priority will lead to the
maximum amount of the remaining power budget for the
objective function f0({pk′}). By assuming that the solution
to power control is available and Q = K, the total transmit
power minimization problem is formulated as follows

minimize
{pk′∈R+}

∑
k∈K

pk, (45a)

subject to Rk({pk′}) ≥ ξk,∀k ∈ K, (45b)∑
k∈K

pk ≤ Pmax. (45c)

We notice that problem (45) has a non-empty feasible set, and
it is indeed a convex problem. By denoting αk = 2ξk/B −
1,∀k, (45) is converted from the demand-based constraints to
the SINR requirements as

minimize
{pk′∈R+}

∑
k∈K

pk, (46a)

subject to γk({pk′}) = αk,∀k ∈ K, (46b)∑
k∈K

pk ≤ Pmax. (46c)

The equality constraints in (46) is obtained by the fact that
problems (45) and (46) share the same global optimum.
By exploiting the SINR expression in (4) for UEk into the
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corresponding SINR constraint in (46), we now recast this
SINR constraint into an equivalent form as

pk|hH
Kwk|2 = αkσ

2 + αk

∑
ℓ∈K\{k}

pℓ|hH
k wℓ|2

(a)⇔ pk =
αkσ

2

(αk + 1)|hH
Kwk|2

+
αk

(αk + 1)|hH
k wk|2

∑
ℓ∈K

pℓ|hH
k wℓ|2,

(47)

where (a) is obtained by adding the extra term αkpk|hH
k wk|2

into both sides of the first equality in (47), then doing some
algebraic manipulation. Repeating the same steps for the SINR
constraints of all the K−1 scheduled users and then stacking
them in the matrix form, we obtain the linear equation as

(IK −RQ)p = ννν, (48)

where R,Q, and ννν are given in the theorem. In (48), p =
[p1, . . . , pK ] ∈ RK

+ . We observe that RQ has nonnegative
elements. By applying the Perron-Frobenius theorem [46],
the spectral radius of matrix RQ should satisfy ρ(RQ) =
max{|λ1|, . . . , |λK |} < 1. After that, the unique solution to
(48) exists since (RQ)m → 0 as m → ∞, which implies that
(IK −RQ)−1 =

∑∞
m=0(RQ)m converges, and each element

is nonnegative. Consequently, the first condition as shown in
the theorem. The minimum power solution that the satellite
spends on serving all the K scheduled users with the QoS
requirements is

p∗ = (IK −RQ)−1ννν. (49)

Combining the power solution and the limited power budget
constraint in (45), we obtain the second condition as shown
in the theorem.

B. Proof of Theorem 2

Let us define Q(n) a feasible satisfied-user set to prob-
lem (17) that contains all the scheduled users with at least their
QoS requirements at iteration n, which is defined as follows

Q(n) =
{
k|Rk({p(n)k′ }) = ξk,∀k ∈ Q∗,(n−1),

Rk({p(n)k′ }) ≥ ξk, k ∈ K \ Q∗,(n−1)
}
.

(50)

We further introduce Q̃(n) being the feasible region that
contains all the possibilities Q(n), then we obtain the follow-
ing properties Q∗,(n−1) ∈ Q̃(n) and |Q∗,(n−1)| ≤ |Q∗,(n)|,
where the first property is attained by the fact that Q∗,(n−1)

is involved in the demand-based constraint at iteration n.
The second property is because problem (17) should give a
solution to the satisfied-user set not worse than the previous
one. This establishes the monotonically increasing property in
(19). We only consider a finite set of scheduled users, i.e.,
|Q(n)| < K,∀n, thus (19) should be bounded from above. If
the convergence holds at iteration n, then the optimal satisfied-
user set must be also a solution to iteration n+1. Otherwise,
it results in |Q∗,(n+1)| ≥ |Q∗,(n)|. Algorithm 1 ensures the
cardinality of the satisfied-user set Q∗ non-decreasing along
with iterations and converges to a fixed point.

We prove the monotonic decreasing function of the sum
rate in (20) by induction. Indeed, the first inequality holds,
i.e.,

∑
k∈K Rk({p∗,(0)k′ }) ≥

∑
k∈K Rk({p∗,(1)k′ }) since the

feasible domain of problem (6) corresponding to the weight
values µ1 = 1 and µ2 = 0 that provides a better sum rate
solution than that of problem (17). Assume that the inequal-
ity holds up to iteration n, i.e.,

∑
k∈K Rk({p∗,(n−1)

k′ }) ≥∑
k∈K Rk({p∗,(n)k′ }), and the proof should confirm that it also

holds at iteration n+ 1:∑
k∈K

Rk

(
{p∗,(n)k′ }

)
≥

∑
k∈K

Rk

(
{p∗,(n+1)

k′ }
)
. (51)

We reformulate the left-hand side of (51) by decomposing
the scheduled -user set K into the satisfied-user set and the
unsatisfied-user set as follows∑

k∈K
Rk

(
{p∗,(n)k′ }

)
=

∑
k∈Q∗,(n)

Rk

(
{p∗,(n)k′ }

)
+

∑
k∈K\Q∗,(n)

Rk

(
{p∗,(n)k′ }

)
=

∑
k∈Q∗,(n−1)

ξk +
∑

k∈Q̄∗,(n−1)
Rk

(
{p∗,(n)k′ }

)
+
∑

k∈K\Q∗,(n)
Rk

(
{p∗,(n)k′ }

)
,

(52)
with noting that Q∗,(n) = Q∗,(n−1) ∪ Q̄∗,(n−1), where
Q̄∗,(n−1) is the satisfied-user set at iteration n−1 consisting of
users with better data throughput than requested. Since the first
part of (52) provides users with rates equal to their demands,
we can formulate an optimization problem to maximize the
left-hand side of (51) with the feasible domain D(n) defined
as follows

D(n) =
{
p
(n)
k ,∀k ∈ K

∣∣Rk({p(n)k′ }) = ξk,∀k ∈ Q∗,(n−1),∑
k∈K

p
(n)
k ≤ Pmax

}
. (53)

Next, we recast the right-hand side of (51) to an equivalent
form as∑

k∈K

Rk

(
{p∗,(n+1)

k′ }
)

=
∑

k∈Q∗,(n+1)
Rk

(
{p∗,(n+1)

k′ }
)

+
∑

k∈K\Q∗,(n+1)
Rk

(
{p∗,(n+1)

k′ }
)

=
∑

k∈Q∗,(n)
ξk +

∑
k∈Q̄∗,(n)

Rk

(
{p∗,(n+1)

k′ }
)

+
∑

k∈K\Q∗,(n+1)
Rk

(
{p∗,(n+1)

k′ }
)

=
∑

k∈Q∗,(n−1)
ξk +

∑
k∈Q̄∗,(n−1)

ξk

+
∑

k∈Q̄∗,(n)
Rk

(
{p∗,(n+1)

k′ }
)

+
∑

k∈K\Q∗,(n+1)
Rk

(
{p∗,(n+1)

k′ }
)
.

(54)

where Q∗,(n+1) = Q∗,(n) ∪ Q̄∗,(n), and (54) is obtained since
(20) holds until iteration n by induction. By observing (54),
an optimization problem is formulated to maximize the right-
hand side of (51) with the feasible domain D(n+1) defined as
follows

D(n+1) =
{
p
(n+1)
k ,∀k ∈ K

∣∣Rk({p(n+1)
k′ }) = ξk, (55)

∀k ∈ Q∗,(n−1) ∪ Q̄∗,(n−1),
∑

k∈K
p
(n+1)
k ≤ Pmax

}
.
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Combining (53) and (55), it holds that D(n+1) ⊆ D(n) since
∅ is a subset of Q̄∗,(n−1). Hence, (51) holds and we conclude
the proof.

C. Proof of Lemma 1

From the given optimized power coefficients {p∗k} to the
K scheduled users, the satisfied-user set Q∗ is defined as
Q∗ =

{
k
∣∣Rk({p∗k′}) ≥ ξk, k ∈ K

}
, where Rk({p∗k′}) is given

as in (3) with pk′ = p∗k′ ,∀k ∈ K. The result indicates that the
discrete set Q is explicitly characterized by the propagation
channels and the power coefficients, which are continuous
variables. This result is obtained by noting that the precoding
vectors are defined by the instantaneous channel state informa-
tion. Let us define τk = ∥hk∥ and the law of conservation of
energy points out that 0 ≤ τk ≤

√
N , which is bounded from

above. We observe that 0 ≤ |hH
k wℓ|2

(a)

≤ ∥hH
k ∥2∥wℓ∥2

(b)
= τ2k ,

where (a) is obtained by the Cauchy-Schwarz inequality and
(b) is due to each precoding vector having the unit norm. From
this, the channel capacity of UEk is a continuous function and
its feasible set is compact, which fulfill all the conditions of the
universal approximation theorem [21], [51]. Consequently, we
can construct a neural network with a finite number of neurons
to learn the sum-rate optimization problem respect to both the
power coefficients and satisfied user set.
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