
Social Mobility and Inequalities in
Health.

Bayesian Perspectives on Mortality Risks and
Methodological Implications for Statistical

Inference.

Alessandro Procopio

2022



Abstract

Emerging and developed countries have experienced an unprecedented increase
in life expectancy and a rapid shrink in mortality rates in the last thirty
years. However, individuals at lower levels of socioeconomic status have
higher chances of early disease onset or even death at a younger age. This
association between individuals’ social position and health outcomes persists
in advanced welfare regimes and over time. Social science research has
put considerable effort into understanding the underlying mechanisms of
inequalities in health among individuals. In this Ph.D. thesis, I propose three
different perspectives to understand better the dynamics that interconnect
individuals’ social conditions and health status, from static to a dynamic
range of analysis. Chapter I analyzes the association between individuals’
social position and mortality risks due to cardiovascular disease in the United
Kingdom in 2012. I used the Bayesian framework to assess both inequalities
between socioeconomic groups and differentials within those groups in levels of
C-reactive protein (CRP) as a biological marker of cardiovascular disease and
mortality risks. Chapter II analyzes the methodological issues encountered
when studying social mobility, providing a deeper analysis of the Diagonal
Reference Model, a statistical tool designed to overcome the identification
problem. Lastly, Chapter III focuses on analyzing dropout processes in
longitudinal design and proposes the Joint Modeling approach as a reliable
tool for social scientists to gain additional insights on the issue of informative
dropout. The main contributions of this Ph.D. thesis regard the innovative
insight at the methodological level and an interdisciplinary view of inequalities
in health. A more advanced methodological toolset prevent analytical pitfalls
in social scientific research and statistical inference. The interconnections
between social and medical sciences are essential to address policymakers
better-refined policies to counteract the resurgence of health inequalities.
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1. Introduction

”Our knowledge about the world is never better than the data
on which it is based.”

Breen & Jonsson (2005:235)

Historical Evolution and Current Challenges

in the Health Inequality Field

From the beginning of the XXth century in the developed and emerging coun-
tries, individuals’ life expectancy considerably increased, and overall mortality
rates rapidly shrunk (Elo, 2009; Ho & Hendi, 2018). While this remarkable im-
provement has benefited the entirety of the population, individuals with lower
income, educational degree, or occupational status tend to experience health-
related problems or even die at a younger age (Elo, 2009; Feinstein, 1993).
This inequality in health between individuals in different social positions
seems to persist in countries with advanced welfare regimes, and it appears to
have widened (at least for some measures of health) over time (MacKenbach,
2020; Mackenbach, 2012). In the last three decades, social scientific literature
on stratification and health inequalities strove to assess potential pathways
that could explain the persistent association between socioeconomic status
(SES) and health. As an example, Adler et al. (1994) wrote: “Despite recogni-
tion for decades of this fundamental association, the reasons for its existence
remain largely obscure” (Adler et al., 1994, p. 613). In 2020, Yang et al.
(2020) stated that: “Despite strong evidence for the socioeconomic status
(SES) gradient in health, substantial gaps remain in understanding the social
and biological mechanisms underlying these disparities”” (Yang et al., 2020,
p. 15). Thus, the current challenge that social scientific research is coping
with concerns the thorough comprehension of the underlying mechanisms
and factors affecting this relationship (Elo, 2009; Wang & Hulme, 2021). To
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achieve this objective, one of the most promising tracks of research nowadays
regards the recent integration of biological processes into sociological inquiries
of individuals’ social conditions and health (Elo, 2009; Harris & Schorpp,
2018). Historically, social scientists tried to determine the association between
SES and health, focusing on the relationship between poverty and health. In
this research framework, the measurement of socioeconomic status consisted
of classifying individuals either above or below the poverty line (Adler &
Ostrove, 1999). This research framework assumed that the increasing wealth
of individuals below the threshold would correspond to a cumulative, positive
effect on health outcomes. On the contrary, increasing income for individuals
falling above the poverty line would not result in significant improvements in
health status.

From the seminal work of Marmot et al. (1991), social scientific research
recognized that inequality in health is a more complex social phenomenon.
It presents different complexities and non-linearities not captured by the
threshold model governing this well-known association. Marmot et al. (1991)
assessed, with the Whitehall Study1, that health-related outcomes improved
and mortality rate decreased at every higher occupational grade considered,
challenging the threshold model (Adler & Ostrove, 1999). Social science
shifted its focus, moving from a theoretical model that considered whether
the individuals were above or below the poverty line to elaborating on poten-
tial pathways underlying the social gradient of health. From this strand of
research, two main theories arose as conceptual guidance for the empirical
research on stratification and health. The social selection and the social
causation theories provided two competing explanations to assess the causal
direction of the link between socioeconomic status and health. Social causa-
tion theory assumes that SES influences health status (Link & Phelan, 1995;
Phelan et al., 2010).

In social selection theory, health status favors upward social mobility and
increases the chance of being in higher social classes (Blane et al., 1993).
Through the years, social causation theory seemed to be the most prominent
(Adler & Ostrove, 1999). However, from Lundberg (1991), social selection
regained interest among social scientists, specifically in its indirect form (Haas,
2006). The indirect form of social selection states that both health outcomes
and social mobility are affected by an antecedent, common factor (Lundberg,
1991). In the current research, indirect selection theory is carried forward to
the life-course perspective, which focuses on the detrimental effects of deprived
social conditions during early childhood of individuals on the observed health
outcomes at later life stages (Corna 2013; Ferraro et al. 2016; Ferraro and
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Shippee 2009; Haas 2006; Yang et al. 2020). The remarkable innovation that
both social selection and social causation theories have provided to the social
scientific community regards the paradigmatic shift that these theories have
imprinted. Social selection and social causation theories shifted the focus
to the potential mechanisms that social scientists could use to interpret and
explain the social gradient of health. A low but steadily increasing number
of investigations in the social sciences started to focus on the mechanisms
underlying the association between social stratification and health outcomes.

The Rise of the Biomarker Use in Social Science

Research

This section elaborates on the increasing use of biological markers in social
research as objective health measures because of their crucial role in detecting,
even at the pre-symptom stage, diseases that are associated with individuals’
social position (Davillas et al., 2019; Harris & Schorpp, 2018).
In the survey research field, biomarkers are collected and derived from the
gathering and analyzing different biospecimens (such as blood, saliva, or
urine samples) following standard procedures performed by trained personnel.
The biological markers signal the abnormal pathophysiological processes and
indicate potential health risks and the future insurgence of specific diseases.
For example, high C-reactive Protein levels indicate a state of chronic inflam-
mation and insurgence of cardiovascular disease. CD4 cells counts inform the
progression of AIDS disease. Low serum albumin levels, a nutritional marker
of malnutrition, indicate high chances of chronic kidney disease.

In recent years social science research progressively interested in the inter-
connections between the social environment and the physiological answers to
deprived social conditions. The intuition of exploring how social conditions
get under the skin has been established earlier in social sciences. Indeed,
social scientists started to claim the potential benefits during the same period
in which social selection and social causation theories arose in the sociological
literature. The potential advantages that social scientists may gain from the
integration of biological explanations into sociological research started to be
claimed in sociology (Udry 1995; Levine 1995; Freese, Li, and Wade 2003)
and in demography (National Research Council 2001; Crimmins, Kim, and
Vasunilashorn 2010). Specifically, these contributions claimed that the use of
objective measures of health (such as the collection and analysis of biospeci-
mens) would enable social scientists to thoroughly model the individual effects
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related to experienced life events and social environment throughout stages
of the life course (Harris and Schorpp 2018). For instance, with the inclusion
of biomarkers in sociological inquiry, researchers can deepen the scientific
understanding of how ”timing, duration, and magnitude of particular social
exposures such as poverty or social isolation uniquely shape physiological
states and health trajectories” (Harris and Schorpp 2018, p. 364). With the
expansion of biosocial surveys, social scientists nowadays can empirically test
hypotheses by analyzing socio-biological data. This expansion has been made
possible by technological advances in survey field collection of physiological
data, which has become more feasible due to noninvasive, low-cost procedures
for gathering specimens (such as saliva, blood, or urine samples) from the
respondents (National Research Council, 2008; Hobcraft, 2009; Harris and
Schorpp, 2018). Contemporaneously, social sciences progressively pushed for
a shift from uni- to an interdisciplinary perspective of understanding social
phenomena (Jacobs & Frickel, 2009).

Integrating physiological, objective health measures on social surveys has
a mutual benefit to both biomedical - such as social epidemiology and public
health research - and sociology - particularly medical sociology. The mutual
benefit mainly concerns data collection and sample representativeness on
which the study’s external validity relies. Biomedical studies are interested in
collecting thoroughly detailed biological measures; however, the study design
usually targets small or non-representative groups of participants in the clini-
cal trial. In this perspective, inference to the entire population and external
validity is limited to the case of the study. Additionally, in biomedical studies,
individuals’ SES has been commonly treated as a mere characteristic of the
participants in the trial, thus not considering the substantial importance of
social conditions as a driving force that shapes inequalities in health (Harris
& Schorpp, 2018; McEwen, 2015). Integrating biomarkers in social surveys
prioritizes the random sampling and representativeness of the drawn sample
from the population of interest. In this framework, the acquisition of relevant
physiological measures represents a secondary step through which it is possible
to expand the survey range. Hence, medical researchers might benefit from a
representative study design with the inclusion of a wide range of physiological
measures. From a sociological point of view, the advantage is the possibility
of mapping biological reactions to the social environment, social events, and
exposure to social conditions.

Even more, sociologists can signal to biomedical research that SES plays
a determinant role in shaping health inequalities (Harris & Schorpp, 2018).
The disadvantages related to the inclusion of biological measures in social
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science surveys can hit three main aspects of the survey design. Firstly, the
field collection of biospecimens and personnel training increases the costs of
surveys. Secondly, collecting biospecimens is an additional source of burden
for the respondent. Lastly, the advantage in prediction accuracy of individu-
als’ specific mortality can be achieved by considering one single biomarker
per biological system (such as C-reactive protein and fibrinogen for the car-
diovascular system or HDL levels for the metabolic functions) rather than
composite measures for mortality prediction (such as Allostatic Load; Glei
et al. 2014). Despite these costs, surveys that integrate biological measures
of individuals’ physiological functioning are increasing in number over time
(National Research Council 2008; Harris 2010; Harris and Schorpp 2018), as
the gains outpace the drawbacks.

Including biological markers in social science research can have theoretical
and methodological advantages. The theoretical advantage relies on the
possibility to analyze how the social environment can affect the physiological
functioning of individuals. The methodological advantage relies on avoiding
the inherent subjectivity of self-reported health measures and predicting
socially-graded disease insurgence before their symptomatic manifestation.

Literature Gaps

Even if the use of biomarkers as objective measures of health risks is growing
in the field of public health (Karimi et al., 2019; R. S. Liu et al., 2017) and
aging research (Ferraro et al., 2016; Ferraro & Shippee, 2009; Piazza et al.,
2010; Yang et al., 2020), social scientific literature lacks adequate analytical
strategies that involve biological pathways to explain the association between
social stratification and health outcomes. In particular, previous research
literature focuses on the differentials between groups categorized in the SES
scale, for instance, comparing individuals with different educational degrees,
occupational statuses, or income levels. That means social research focused
on the inter-group differences (or the contextual effects), while it lacked a
thorough insight into the intra-group differences or compositional effects, i.e.,
the differences among individuals within the same social group.

A second gap in the sociological literature outlined in this manuscript
regards how social stratification and, in a dynamic perspective, social mobility
are critical factors in an empirical model. It is practical, at this stage, to
distinguish between the concepts of social stratification and social mobility. In
examining the relationship between social stratification and health, researchers
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are interested in the static association between the differentials in health
outcomes according to individuals’ class position (Marmot et al., 1991, Adler
and Ostrove, 1999). Social researchers measure the differentials in health
outcomes among individuals according to their social position observed at a
specific point in time and context. Thus, it returns a static depiction of the
association as the researcher cannot ascertain the evolutionary trend of this
association. Conversely, investigating the relationship between social mobility
and health assumes a dynamic change perspective on the individuals’ class
position and the relative health outcome pattern (Power et al., 1996; Manor
et al., 2003). Even if the dynamic perspective of the association between
social position (and its evolution over time) and health might be appealing,
this approach introduces additional complexities at the empirical stage of the
research. Indeed, empirical social scientists have put a remarkable effort to
apply and test the theoretical frameworks using statistical models to analyze
the consequences of social mobility on health.

A particularly cumbersome problem relates to the identification problem.
The identification problem arises when the researcher includes indicators of
origin, destination, and mobility in the same regression model. Technically,
this analytical strategy introduces linear dependency (i.e., perfect collinearity)
between the covariates. Indeed, individuals’ social mobility (M) results in the
differential between the social origin (O) and social destination (D), such as
M = D - O. The proposed solutions to the identification problem by scholars
of social mobility dates back to the 1960s, such as the square additive model
by Duncan (1966), the halfway/difference model by Hope, 1971, 1975, and
more recently, the Diagonal Reference Model (DRM) by Sobel (1981, 1985).
Among these models, the Diagonal Reference Model gained particular interest
and is used in different fields, including health inequalities (Jonsson et al.,
2017; Missinne et al., 2015; Präg & Richards, 2019). However, the increasing
literature deploying the DRM seems not capable of clarifying the role of
mobility on health, as it evidenced several null or weak findings of mobility
effects, in stark contrast to the expectations derived from theory2.

The dynamic perspective on social mobility and health outcomes might
involve using longitudinal (or panel) data. Health and social research exten-
sively use panel data to study mortality rates (Arbeev et al., 2014; Haviland
et al., 2011; X. Liu, 2013; X. Liu et al., 2010; Stolz et al., 2018; Zarulli
et al., 2013; Zheng, 2020). Even if panel data are a powerful tool to assess
causal relationships (Halaby, 2004), this type of data collection suffers from
(unavoidable) dropout rate. The dropout rate might severely bias the sta-
tistical estimation of an outcome measured over time (such as health and
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social mobility) if it correlates with the longitudinal process. In this case,
the statistical literature classifies the phenomenon as informative dropout,
or Missing Not at Random (MNAR, Diggle and Kenward 1994; Little 1995;
Rubin 1976). In particular, MNAR introduces two sources of bias in estimat-
ing a longitudinal outcome. Endogeneity occurs as the longitudinal outcome
variable might influence and, at the same time, be influenced by the dropout
rate. Secondly, progressive MNAR leads to a sample in which the survival
of the fittest process dynamically selects individuals, thus homogenizing the
observation units according to key characteristics. For example, healthier
individuals have the lowest chances of dropout from the study. Suppose the
study focuses on trends among individuals on health inequalities. In that case,
the risk is to base the statistical model on the healthiest individuals, therefore
homogeneous in terms of the health outcome, and the model underestimates
the actual effect on the longitudinal outcome.

Research Questions and Analytical Strategies

This Ph.D. thesis has been motivated by the objective of answering three
interrelated main research questions. The first research question relates to the
substantive and empirical approach to studying inequalities in health. The
second and the third research questions are methodological by their nature.
The substantive research question regards the assessment of inequalities in
health between individuals with different social conditions and differentials
among individuals at the same level of SES. The second research question
relates to the efficiency of the DRM to capture social mobility effects and
distinguish them from the origin and destination effects. Lastly, the third
research question concerns the problem of informative missing data in longi-
tudinal design and how it can tackle this methodological problem.

The analytical strategies I have implemented in this Ph.D. are diverse
and specifically tailored to the relative research questions aforementioned. To
answer the first one, I used the Bayesian approach to assess inequalities in
health among and within groups. I capitalized on the opportunity given by
the Bayesian approach to set a hierarchical structure of the research ques-
tion. That means the analytical strategy for the first chapter conceives the
levels of SES as higher groups that embody the individuals. Therefore, the
effects of SES on health outcomes are population-level effects (or contextual
effects), and they relate to the macro-structure of inequality in health. To
assess the differentials within the macro-structures, I made use of a particular
specification of the Bayesian model. The distributional model differs from the
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more traditional statistical approaches because, alongside the group-specific
means, I could also specify the standard deviation of the dependent variable
as a linear function dependent upon the characteristics of interest. The
substantive advantage related to the simultaneous estimation of the mean
and the standard deviation relates to the capability to interpret the model as
between and within-group differences.

I implemented the second analytical strategy to design a statistical ex-
periment using the Monte Carlo simulation technique. The Monte Carlo
simulation had the objective of analyzing the behavior of the DRM in two
main scenarios: the first one involves a continuous dependent variable, while
the other is a dichotomous dependent variable. The analytical strategy focused
on examining the Diagonal Reference Model in these scenarios, particularly
on the capability of the model to detect the true magnitude effect of mobility
and the correct statistical significance hypothesis for these effects correctly.
The focus of the first aspect regards the unbiasedness of the estimates. The
second aspect concerns the correct computation of the statistical significance
of mobility effects.

The third analytical strategy uses the Monte Carlo simulation technique to
compare the behavior of three statistical models in a scenario of missing data
that are informative of a longitudinal process of interest. The three statistical
approaches are the Linear Mixed effect model, the Weibull regression model,
and the Joint Modeling (JM) approach. The aim was to assess the benefits
and the limitations of the JM, particularly with a comparative perspective on
the other two widely used approaches in the presence of informative dropout.
The comparison of the three statistical models involved two scenarios. The
first scenario considered the models’ behavior under unobserved heterogeneity.
The second scenario examines the models’ capability to correctly estimate
complex longitudinal trends, such as cubic nonlinear outcomes.

Structure of the Thesis

The outline of the Ph.D. thesis incorporates four main parts. The first part,
the Preamble, provides the Introduction section and a summary of the chap-
ters. The summary of the chapters highlights the main topics and the key
findings of each contribution. The second part, the core of this manuscript,
embodies the three main chapters of the Ph.D. Thesis. The third part draws
up the conclusive discussion of this manuscript, which sketches the limitations,
the contributions to the literature, and the suggestions for future research.
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The last part of the Ph.D. provides additional materials for each chapter of
the Chapters section.

The organization of the Chapters section provides a temporal order of the
chapters. The underlying reasoning that outlines the core part of the Ph.D.
thesis depends on the vision of health inequalities that stretches from a static
to a more dynamic perspective of the SES-health association. The first chapter
outlines a static, bounded picture of health inequalities in terms of time and
space. In this chapter, SES corresponds to the social stratification structure
that embeds individuals in that particular period and place. Individuals
might experience, throughout their life stages, shifts in their current social
position. That is to say, to capture one aspect of the dynamic characteristic
of the SES-health relationship, it is essential to include, in the theoretical
and the empirical model, also individuals’ social mobility. Indeed, I dedicated
the second chapter to the methodological problems the empirical researcher
might incur when including social mobility as a critical aspect of the social
gradient of health. The dynamic perspective of health inequalities can be fully
understood by considering the changes across the life course of social position
and measuring the longitudinal evolution of individuals’ health. In this regard,
panel data represent an invaluable resource for social scientists. However,
panel data introduce at the same time methodological issues of which social
scientists should be aware. The third chapter of this manuscript addresses the
problems that social scientists might face when looking at the full dynamics
(i.e., considering social mobility and longitudinal pattern of health) of the
social gradient of health using panel data. The third part, the Conclusions,
discusses the results presented in the chapter and their main implications
for social scientists. This section then tries to answer the research questions
discussed before. The Conclusions lastly elucidate the main contributions
and limitations of the contributions and addresses suggestions for further
research.
The main goal of this Ph.D. thesis is to innovate the current methodological
procedures to understand better the dynamics of health inequalities and the
mechanisms underlying this social phenomenon.

Notes
1The Whitehall Study consisted of a 10-year study focused on morbidity and mortality

among British civil servants.
2The identification problem involved here is similar to the age-period-cohort (APC)

literature, where one variable is a function of the others.
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2. Summary of the Chapters

In Chapter I, I tried to shed light on one of the potential mechanisms through
which health inequalities occur. Indeed, the aim of this study was to analyze
the association between SES, risks of mortality due to cardiovascular diseases
(CVD) and levels of chronic inflammation, measured through the biomarker
C-reactive protein (CRP). This pathway can be considered particularly im-
portant as CVD represents the leading cause of death in developed countries
(Brummett et al., 2014). In order to assess this mechanism, I used data
from the Understanding Society - United Kingdom Household Longitudinal
Study (UKHLS). These data have the advantage of having a wide range
of collected biomarkers. I have taken into account three measures of SES,
in order to capture the multidimensional characteristics of social position:
occupational status, educational levels and equalized household income. We
used the Bayesian Regression Model (BRM) in order to provide to the sci-
entific community a range of possible effect magnitudes related to SES on
CRP. The models I implemented aimed to analyze the differences between
the categories of the SES variables, and also the within SES group variance,
implementing the distributional model. The results suggest that, among
occupational groups, there is a remarkable difference between the highest
category in the social hierarchy and the lowest. It is worth to note that also
small employers have found to have similar levels of CRP, with respect to the
individuals hired in the highest management or large employers. The most
determinant SES dimension is educational level, in which we found the largest
differences. For what concerns the distributional model, interesting findings
suggest a strong similarity between individuals in the highest category of
occupational status, but individuals differ greatly within the lowest. Even
more interesting is that individuals within the same educational level do not
differ significantly, in terms of mortality risks due to CVD.

Chapter II is devoted to fulfill the gap concerning the linear dependence
between individuals’ social origin, destination and mobility. Through means
of Monte Carlo Simulation, I have tested the DRM in two main scenarios.
Firstly, I tested the model assuming a continuous dependent variable. Subse-
quently, I have analyzed the model behavior when the dependent variable is
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dichotomous. I have then assessed the performances of the DRM highlighting
the estimation bias and the Empirical Coverage Rate (ECR) in both the
scenarios. The results showed that the DRM is generally not affected by
bias. However, my attention shifted toward worrying levels of ECR. Indeed,
in many cases the model failed to statistically infer the mobility parameter,
which could explain why the social scientific literature on consequences of
social mobility hardly found statistically significant effects of mobility.

The last contribution, presented in Chapter III, proposed a relatively
new model to tackle informative dropout, that is the Joint Modeling (JM)
of longitudinal and survival data. The model originated in the end of the
twentieth century in the biomedical field. In fact, early developments of the
JM approach have been used to study HIV/AIDS progression and chances of
survival among patients. The model has been applied then in cancer studies,
where the main interest was in assessing the relationship between Quality-
of-Life (QOL) and survival. The JM approach uses a two-stage estimation
procedure: the first submodel grasps the longitudinal pattern under study;
secondly, the JM uses the estimated longitudinal pattern as time-varying
covariate in a survival regression model. This kind of estimation strategies
to account for MNAR is not new in the social sciences (see Heckman 1979).
However, this class of models only recently gained attention from the social
scientists (Li et al., 2020). In this contribution, I have compared the JM
approach against the Linear Mixed Model (LMM) for what concerns the
estimation of the longitudinal pattern and against the Weibull regression
model (WM) for the survival/dropout part. The scenarios in which I compared
the models have been theoretically founded by previous literature. In the first
scenario, I introduced unobserved heterogeneity as source of bias; the second
scenario concerned the appropriate modeling of more complex (i.e., cubic
shaped) longitudinal pattern. Both scenarios have been modeled so as the
association between the longitudinal pattern and the dropout rate would be
0, mildly associated (0.25) and strongly associated (0.5). The results suggests
that the LMM and the JM are pretty similar to each other. However, when
the JM approach takes considerable advantages in modeling the dropout
mechanism. In fact, in all scenarios the JM approach performed better than
the WM. This means that the JM is particularly useful for the fields of social
sciences that make of extensive use of survival analysis such as demography
and health research.
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Abstract

In the last two decades, social stratification research on health inequalities
has seen a steady increase of studies involving biological factors to measure
individuals’ health and to further understand the social gradient of health.
Concurrently, biomedical, epidemiological, and public health research into
the role of socioeconomic status (SES) in shaping health inequalities has been
fostering and inspiring sociological investigations.
In particular, the innovative use of biomarkers as measures of respondents’
health helped social researchers to address problems of endogeneity inher-
ent to subjective measures such as self-reported health. Additionally, the
inclusion of biological measures of health has the potential to identify causal
pathways by taking into consideration the intertwined biological and social
characteristics that affects individuals’ health and well-being.
Contributing to this emergent strand of research, our study investigates
how SES inequalities get under the skin. We are interested in the effect of
socioeconomic inequality on chronic inflammation, measured through the
C-reactive protein (CRP), a widely used biomarker for the immune function
of individuals. Drawing on cumulative inequality theory, our contribution
aims to elucidate how particular social conditions affect the immune function
across the life course and, thus, individuals’ health.
We use data from the Understanding Society Health Assessment Panel, wave
2012. We employ two Bayesian Regression Models (BRM) to account for dif-
ferences in between and within SES groups. The Bayesian framework further
allows us to calculate a range of likely parameters (e.g., effect magnitudes)
that best fit the data. We measured individuals’ SES in terms of level of
education, income and occupational status. This strategy allows us to assess
the specific effect of each of the measures on chronic inflammation. Our
results suggest an association between SES and CRP, indicating that SES
is not only related to the immediate social exposure to stressors (such as
deprived social conditions), but also to the healthy ageing of individuals. The
BRMs further reveal considerable heterogeneity in the likely parameters’ dis-
tributions relative to our SES measures. Our analysis highlights the benefits
of using C-reactive protein as a proxy for individuals’ health in a Bayesian
framework, especially if taken into account alongside self-reported health. In
conclusion, the study of mechanisms through which social conditions influence
the functioning of individuals’ biological systems appears to be a promising
avenue to advance our understanding of health inequalities.
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I.1 Introduction

In the biomedical and social scientific literature, a growing number of contri-
butions confirm the graded association between socioeconomic status (SES)
and mortality risks among individuals (Adler & Ostrove, 1999; Brummett
et al., 2014; K. M. Harris & Schorpp, 2018; House, 2002; Nazmi et al., 2010;
Winkleby et al., 1992; Yang et al., 2020). Although social scientists have a
well-established corpus of contributions that link individuals’ social conditions
and health outcomes (Adler et al. 1994; Adler and Ostrove 1999; Marmot et al.
1991; Ferraro and Shippee 2009; Elo 2009; Clark et al. 2009;Pudrovska 2014),
only recently scientific community turned the gaze to the mechanisms through
which we observe this relationship (Elo, 2009; Freese, 2018; K. M. Harris &
Schorpp, 2018). In particular, social scientists and epidemiologists focused
on the mediator role of chronic illness and inflammation on the association
between individuals’ SES and health disparities (Baum et al., 1999; Dowd
& Zajacova, 2007; Pudrovska, 2014), in the life course (Ben-Shlomo & Kuh,
2002; Corna, 2013; Ferraro & Shippee, 2009; Hallqvist et al., 2004; Pollitt
et al., 2008; Power et al., 1999).

This paper focuses on how individuals’ SES potentially shapes the dis-
tribution of mortality risks due to cardiovascular diseases (CVDs). CVD is
one of the leading causes of mortality and morbidity in high-income countries
(Brummett et al., 2014; Clark et al., 2009; Gruenewald et al., 2012; Kavanagh
et al., 2010; Liu et al., 2017; Loucks et al., 2010; Mitchell & Aneshensel, 2017).
Previous research has found the evidence concerning the socially patterned
onset of CVDs, in which individuals from a lower SES encountered higher
risks of mortality due to CVD (Goodman et al., 2005; Lubbock et al., 2005;
Winkleby et al., 1992), confirming the social causation theory (Link and Phe-
lan 1995; Phelan et al. 2010). Additionally, CVD causes a considerable burden
on individuals and public health. Therefore, biomedical and social science
research strove to understand and identify the principal physiological changes
that could signal the onset of CVD in individuals at the pre-symptom stage
of the disease (Davillas et al., 2019; Dowd & Zajacova, 2007; McEwen, 2015;
Mitchell & Aneshensel, 2017; Rosvall et al., 2008). In this sense, prevention
and identification of the population at most significant risk of CVD has been
a primary objective for social scientists, public health policy-makers, and
epidemiologists(Davillas et al., 2017; Herd et al., 2007; Mitchell & Aneshensel,
2017). Biomedical studies indicated as a reliable physiological marker of CVD
risk is the C-reactive Protein (CRP, T. B. Harris et al. 1999; Laaksonen et al.
2005). Specifically, CRP is an acute-phase protein produced by hepatocytes as
a response of the immune system to acute infection or systemic inflammation
(Alley et al., 2006; McDade et al., 2011). In the field of social inequalities in
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aging and mortality risks, accumulating evidence highlight the association
between CRP and individuals’ social conditions, where individuals in higher
SES position have lower levels of CRP and thus lower risks of CVD onset
(Brummett et al., 2014; Davillas et al., 2019; Gimeno et al., 2008; Jousilahti
et al., 2003; Karimi et al., 2019; Koster et al., 2006; Lubbock et al., 2005;
McDade et al., 2011).

Our study contributes to this emergent research strand. Our paper inves-
tigates how SES inequalities get under the skin, addressing the mechanism
that links individuals’ SES, CVD, and mortality risks and the role of CRP as
a mediator factor. The aim of this study is twofold. Firstly, the contribution
of our paper concerns the methodological paradigm deployed in this study,
which used two types of Bayesian Regression Model (BRM). To the best of
our knowledge, this is the first paper that evaluates this mechanism of health
inequality from a Bayesian perspective. Using the BRM, our focus of the
empirical analysis shifts from the conventional point estimates (and their
statistical significance) to a targeted distribution of likely parameters (thus,
assessing which coefficient magnitude is more likely than others). Secondly, we
did not limit the attention to SES group comparison concerning the mortality
risks due to CVD (i.e., comparing the means specific to each category of SES).
Still, we also explored the intra-group differences in CRP levels. In doing
so, we modeled the standard deviation of CRP as a function of individuals’
SES through a Bayesian distributional model (Umlauf & Kneib, 2018). We
used data from the wave 2012 (Health Assessment Panel) of the United
Kingdom Household Longitudinal Study (UKHLS), a nationally representa-
tive longitudinal survey set in the United Kingdom3. To take into account
the multidimensional characteristics of SES, we included in the empirical
analysis three measures of individuals’ social conditions: occupational status,
educational level, and household income (see Elo 2009; Goldthorpe 2010 for a
methodological discussion).

The remainder of the paper is as follows: the following section will review
the current state of the biomedical literature on risks of CVD and CRP
due to deprived social conditions. Next, we present the UKHLS and the
specifications of the Bayesian models we implemented. In the Results section,
we offer the empirical findings of the model. Finally, we discuss the potential
implications of this study and the limitations to be addressed to the social
scientific community.
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I.2 Data & Methods

Data

The data we used for the empirical analysis comes from the UK Household
Longitudinal Study (UKHLS), wave 2 (Health Assessment Panel, 2012). The
Understanding Society – UKHLS is a large and representative survey of
households sampled in the United Kingdom (UK), Scotland, Wales, and
Northern Ireland. Administration of the main survey interested the General
Population survey (GPS)4. The sampling procedure for the GPS consisted
of a two-stage step: the first primary sampling unit (PSU) consisted of a
sample of postcode sectors, within which the addresses were the sampling
units. The UKHLS provides a multi-purpose questionnaire to the respondents,
covering various topics relevant to social research. In 2010 and 2012, alongside
the main questionnaire, the survey design included questions on health and
collected blood samples from the respondents that provided their consent
to be part of the procedure. The eligibility criteria for the respondents to
take part in the nurse health assessment were completing the face-to-face
interview, aged 16 or older, living in England, Scotland or Wales, completing
the questionnaire in English, and lastly, for not pregnant women (Mcfall
et al., 2012). Excluded participants were individuals with HIV, hepatitis
A or B, and clotting or bleeding disorders. The aim of the collection of
biospecimens by registered nurses was to, on the one hand, collect information
on potential health risks. On the other hand, blood sample collection supports
genetic analyses and creates a genetic database. The nurse health assessment
interested a subsample of the GPS and included anthropometric measures
(such as height, weight, percent body fat, and waist circumference), blood
pressure, grip strength, lung function, and blood samples. The basis of the
biomarkers selection from the blood samples regards the environmental effect
(socioeconomic, physical, or psychosocial), the impact on the biospecimen, its
importance to essential health conditions, and the proportion of the population
affected by the disease. From the 9896 observations of the initial sample,
523 individuals recorded a CRP level higher than 10 mg/L. Thus, we deleted
those cases from the study. Individuals with inapplicable values (N=517)
have been set to missing values and excluded from the statistical analysis.
After deleting inapplicable values on the covariates, the total sample size was
N=8514.
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Measures

Dependent Variable

The dependent variable of the two BRMs is the recorded CRP in the Wave
2012 of the Understanding Society - UKHLS, measured in mg/L. We consider
at high risk of CVD individuals with a CRP level great than 3 mg/L, which
is the cut-off point for defining an individual affected by chronic inflammation
(Brummett et al., 2014; McDade et al., 2011). We dropped CRP levels higher
to 10 mg/L, as such values are indexes of temporary acute inflammation. As
the distribution of the recorded values among the individuals in the sample is
highly skewed, we log-transformed the variable to normalize the distribution.
Figure I.1 shows the distributions of the CRP as in the sample and after
log-transformation.
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Figure I.1: Distribution of C-reactive Protein in the sample. Panel (a) shows
the natural scale. Panel (b) the log-transformed distribution of CRP.

(a) Distribution of C-reactive Protein in the sample

(b) Distribution of the log-transformed CRP distribution

Covariates

SES Measures:
To capture the multidimensionality of SES (Elo, 2009; Goldthorpe, 2010),

34



we included in the statistical model three measures of SES: occupational
status, education, and income. Occupational status comprises eight categories
from the National Statistics Socio-economic Classification (NS-SEC): Large
employers & higher management (3.1%), Higher professional (4.4%), Lower
management & professional (16%), Intermediate (7.8%), Small employers
& own account (5.5%), Lower supervisory & technical (4.3%), Semi-routine
(9.4%), Routine (5.6%) and Not in LM (44.1%). The last category includes
retired individuals, students, and individuals that are not currently working
at that moment. The main reason is to compare individuals who have a job
(and within those, compare the occupational categories) vs. individuals who
do not currently.

Educational level has been measured in five categories: Degree (22.4%),
Other higher degree (13.5%), A-level(18.2%), GCSE(19.7%), Other Qualifica-
tions(11.6%) and No qualification(14.5%).

We have taken the gross household income registered the month before
the interview concerning the third SES measure. We have then equivalized
the scale, dividing the income scale by the equivalence scale set by the OECD,
returning the equivalized income scale for the number of household members.

Controllers:
The covariates we included to control the relationship between the SES
measures and the levels of CRP concern sociodemographic characteristics and
health behavior of the individuals.
Among the sociodemographic variables, we have considered in the analysis
the age (measured as a continuous scale from 16 to 102 years old) of the
individuals, gender (males are the 44.4% of the sample, while females are
the 55.5%), and house ownership (see McDade et al. 2011) as an indicator of
wealth (77.7% owned the house the household lives, the 21% has a house on
rent and the 1.27% has a mixed form of ownership). The health behavior of
individuals that might influence CRP levels (Dowd et al., 2009; Yang et al.,
2020) has been measured by taking into account: the level of sports activity
(scale from 0 - no activity - to 10 - very active), the Body Mass Index (BMI)
calculated as weight/(height/100)2 and smoking history: in the sample, 18.9%
reported to be a current smoker, while individuals that used to smoke are
the 41.5%; individuals that never tried smoking are the 39.6% of the sample.
Lastly, we included a measure of Self Rated Health (as it is associated with
CRP levels, see Shanahan et al. 2014, coded into five categories: excellent
(15.4%), very good (35.6%), good (28.9%), fair (15.2%), and poor health
(4.8%).
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Descriptive Statistics

Table I.1 provides an overview of the descriptive statistics (mean and standard
deviations) of the covariates included in the models.

Table I.1: Summary Statistics of the dependent variable and the covariates

Variables Mean St. Dev.

CRP (log scale) 0.323 0.930
Sport Activity 0.000 1.000
Age 0.000 1.000
Income −0.000 1.000
BMI 0.000 1.000
Occupation
Large employers & higher management 0.047 0.211
Lower management & professional 0.171 0.377
Intermediate 0.078 0.268
Small employers & own account 0.059 0.235
Lower supervisory & technical 0.042 0.202
Semi routine 0.089 0.285
Routine 0.052 0.222
Not in LM 0.427 0.495
Education
Degree 0.233 0.423
Other higher degree 0.143 0.350
A-level etc 0.168 0.373
GCSE etc 0.190 0.392
Other qualification 0.120 0.325
No qualification 0.147 0.354
Gender
Male 0.445 0.497
Female 0.555 0.497
House Ownership
Owned 0.777 0.416
Rent 0.210 0.408
Other 0.013 0.112
Self-rated Heath
Excellent 0.154 0.361
Very good 0.357 0.479
Good 0.288 0.453
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Fair 0.152 0.359
Poor 0.048 0.214
Smoking Behavior
Smoker 0.188 0.391
Ex smoker 0.415 0.493
Non smoker 0.397 0.489

Figure I.2 provides a graphical depiction of the bivariate association
between CRP levels and occupational status. The depiction shows the kernel
density distribution of CRP given the specific level of occupational status.
The vertical lines represent the group-specific means of the distributions.
Figure I.2 shows a clear graded association between CRP and occupational
status. Indeed, the lower bound of occupational status has a higher CRP
mean than individuals at the higher level. It is interesting to note that,
from this exploratory relationship, individuals not in the labor market have a
similar level of CRP, both nearby 2.5 mg/L.

37



Figure I.2: Kernel density estimates of CRP distribution according to the
levels of occupational status.

Figure I.3, similarly, depicts the kernel density estimates of CRP levels
according to the level of educational attainment. From figure I.3, the bi-
variate relationship provides a more straightforward depiction of the social
gradient of health. The mean of the CRP distribution for individuals with no
qualifications is substantially higher than for individuals with an educational
degree. Individuals who are not qualified tend to have a CRP level near the
cut-off level of 3 mg/L of blood, indicating low-grade systemic inflammation
and higher mortality risks due to CVD.
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Figure I.3: Kernel density estimates of CRP distribution according to the
levels of educational attainment.

Lastly, figure I.4 shows the relationship between CRP (on the y-axis) and
equivalized income (on the x -axis). Both variables have been log-transformed
in order to ease the depiction of the relationship. Figure I.4 shows the Locally
Weighted Scatterplot Smoothing (LOWESS)5 regression line and (in shaded
gray area) the 95% confidence interval. From figure I.4 it is possible to see a
slightly negative relationship, so as individuals with higher income tend to
have lower levels of CRP. However, outliers might influence the association,
in particular at the right tail of the equivalized income distribution.

39



Figure I.4: Scatter plot of (Logged) CRP on the y axis and (logged) equivalized
income on the x axis. Lowess relationship in blue and relative confidence
intervals in grey.
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Statistical Analysis

The Bayesian Regression Model aims to draw a posterior distribution from
all the possible values through Markov Chain Monte Carlo (MCMC) algo-
rithm (Lynch & Bartlett, 2019). Integrating MCMC algorithms into modern
Bayesian data analysis has been crucial to expanding such a class of models
in empirical research. To see why in the past, the implementation of Bayesian
models was almost practically impossible, we start with the fundamental
Bayes rule, which states:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(I.1)

where p(D) is

p(D) =
∑

p(D|θ)p(θ) (I.2)

Given the observed data D, the Bayesian framework aims to infer a likely
distribution of a determined parameter θ, given the observed data D. As
stated on the right-hand side of the Bayes’ rule, the posterior distribution is the
product of the data likelihood p(D|θ) and a prior distribution p(θ), divided by
the marginal likelihood. The prior term p(θ )is the distribution of credibilities
that θ could take a particular value without considering the observed data.
The denominator of the Bayes’ rule defines the data likelihood, and it tells us
the probability that the model with parameter generatesthedatatheta. The
marginal likelihood informs us about the overall probability of the data p(D|θ),
weighting these probabilities by the strength of their prior likelihood p(θ). In
the case the researcher is interested in drawing a posterior distribution from
a continuous variable, the marginal likelihood becomes:

p(D) =

∫
p(D|θ)p(θ)dθ (I.3)

In the context of the linear regression model, we can substitute the θ
parameter with the typical coefficients of Ordinary Least Square (OLS): β0

(the intercept), β1 (the slope of the regression line), σ (the variance). In this
context, the posterior distribution of the OLS parameters becomes:

p(β0, β1.σ|D) =
p(D|β0, β1.σ)p(β0, β1.σ)∫ ∫ ∫

p(D|β0, β1.σ)p(β0, β1.σ)dβ0dβ1dσ
(I.4)

Even when the sample size is small, the resolution of (in the simplest
case, as shown) three integrals was cumbersome and time-consuming. The
widespread use of MCMC algorithms in modern statistical analyses assisted
the increase of empirical studies deploying the Bayesian framework. The
Bayesian Regression models were performed through R, using as a backend
the Stan program. Specifically, Stan uses a particular algorithm of MCMC,
defined as Hamiltonian Markov Chain (HMC)6.
The empirical analysis provides two types of Bayesian regression models.
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Both models conceive a hierarchical structure of the statistical analysis.
That means, within the Bayesian framework, the first step is to apply a
determined distribution (a gaussian or t-student) that could best fit the
dependent variable7. Model 1 applies to the (log) CRP distribution a t-
student distribution. The choice of the t-student concerns the potential
outliers present in the observed data, thus providing a more robust model.
Model 1 sets the mean of the dependent variable as a linear function of
the covariates shown before. The model exploits the hierarchical features
of the Bayesian framework by calculating the deviations from the mean (as
population-level effects) of the groups outlined by the two categorical variables
representing individuals’ SES: occupation and education. The specification of
Model 1 takes the form of:

µy = β0 +
∑
j

βiXi + βjXj (I.5a)

p(β0) = N (µy, σy)

p(βi) = C(0, σy)

p(βj) = N (0, 1)

p(σ) = N (0, σy)

p(ν) = E(1/29)

The prior distributions of Model 1 and Model 2 follow the suggestions from
Gelman (2006), and Kruschke (2014). The hierarchical structure of Model
1 allows setting a prior distribution for the deviations from the mean of the
SES categorical variables p(βi). The prior distribution for the parameter βi,
as suggested by the previous literature, follows a (half-) Cauchy distribution
with shape and scale parameters 0, σy. The scale parameter at zero has a
twofold function. As the prior distribution should inform the likely parameter
regarding the deviations from the mean of the dependent variable of the
categories of the SES measures Occupation and Education, the average
deviation should be 0. Secondly, for efficiency reasons (i.e., the MCMC
would not sample from implausible values), we want the values sampled
from the MCMC to be not too far from the mean of the dependent variable.
The prior distribution for the equivalized income (and the other continuous
covariates) p(βj) informs model 1 which parameters (among all the possible
in the hyperparameter space) are more likely for the slope coefficients. As
we have centered the continuous variables as Xi(c) = Xi − X̄i, the prior
distribution for the slopes is normally shaped with mean 0 and a standard
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deviation of 1. Finally, p(ν) is the exponentially distributed prior for the ν
parameter of the t-student distribution. The ν parameter shapes the thickness
of the tails of the distributions, thus accommodating the outliers. Model 2
exploits the unique feature of the Bayesian framework, that is, the possibility
to model also the variance across groups through distributional models. The
difference between model 1 and model 2 is, thus, in model 1 only the mean
parameter can depend on predictors while σy is assumed to be constant across
observations. Conversely, in model 2 both µy and σy can be objective of the
statistical modeling, relaxing thus the assumption of homogeneity of variance.
Therefore, the specification of model 2 is:

µy = β0 +
∑
j

βiXi + βjXj (I.6a)

ln(σy) = β0 +
∑
j

βiXi + βjXj

p(σσ) = N (0, σy)

p(β0) = N (µy, σy)

p(σβi
) = N (0, 1)

p(βi) = C(0, σy)

p(βj) = N (0, 1)

p(ν) = E(1/29)

The difference between Model 1 and Model 2 is that in the latter, we apply
the same linear function also for the log-transformed8 standard deviation of
the dependent variable. The two new prior distributions are p(σσ) and p(σβi

).
The prior distribution p(σσ) defines the our expectations for the standard
deviation of the σ distribution of the dependent variable. The prior p(σβi

)
defines the a priori distribution for the deviations relative to the categories of
the occupational status and education. Lastly, we have performed 4 MCMC
chains, which included 2000 iterations. We set the burn-in (i.e., the number
of initial iterations not considered due to strong autocorrelation) as the first
1000 iterations.
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I.3 Results

Model 1

Beginning with the results provided by Model 1, table I.3 shows the summary
of the findings by Model 1. We focus on the results concerning the effects of
Occupation, Education, and income on the distribution of log-CRP. Figure I.5
shows the posterior distributions of contrasts against the reference category
(i.e., Large employers & higher management) drawn by the MCMC for what
concerns the occupational status. Under each distribution, the dot represents
the expected value (i.e., the mean) while the thicker lines around the 65%
of the posteriors’ probability density function (PDF). The dashed black line
serves as a reference for null-divergence of the distribution toward the grand
mean of the dependent variable. Figure I.5 shows that small employers, in
comparison with the other categories, have a lower concentration of CRP,
thus a less risk of CVD. Surprisingly, the lower categories of the occupational
status (Lower supervisory and technical staff, Semi-routine, Routine, and
individuals not in the labor market) do not show remarkable differences.
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Figure I.5: Posterior Distributions of the likely deviationsσβi
from the mean

according to occupational status.
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Table I.2: Bayesian Regression results, relaxing the assumption of homogeneity of variance

Parameter Rhat mean sd 2.5% 50% 97.5%

Intercept 1.0027 0.2890 0.0460 0.1987 0.2894 0.3766
σ Intercept 1.0000 -0.1890 0.0331 -0.2556 -0.1883 -0.1246
Gender: Female
Gender (female) 0.9997 0.1293 0.0189 0.0925 0.1295 0.1663
σ Gender (female) 0.9995 0.0096 0.0165 -0.0226 0.0096 0.0418
House Ownership: Owner
Rent 1.0004 0.0584 0.0248 0.0115 0.0588 0.1071
Other 1.0000 0.0647 0.0762 -0.0866 0.0643 0.2141
σRent 1.0001 0.0141 0.0213 -0.0267 0.0140 0.0571
σOther 0.9992 -0.0452 0.0717 -0.1798 -0.0481 0.0978
SRH: Excellent
Very good 1.0031 0.0661 0.0278 0.0138 0.0659 0.1213
Good 1.0017 0.0841 0.0298 0.0269 0.0845 0.1404
Fair 1.0016 0.1527 0.0351 0.0842 0.1520 0.2230
Poor 1.0015 0.2452 0.0501 0.1469 0.2459 0.3401
σVery good 1.0016 0.0139 0.0238 -0.0323 0.0142 0.0611
σGood 1.0021 0.0432 0.0249 -0.0051 0.0435 0.0911
σFair 1.0018 0.0402 0.0300 -0.0179 0.0396 0.0977
σPoor 1.0009 0.0097 0.0438 -0.0772 0.0104 0.0964
Smoking: Smoker
Ex smoker 1.0012 -0.1782 0.0278 -0.2321 -0.1781 -0.1226
Non smoker 1.0011 -0.2138 0.0274 -0.2675 -0.2137 -0.1609
σEx smoker 1.0006 -0.0321 0.0227 -0.0756 -0.0323 0.0130
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σNon smoker 1.0009 -0.0576 0.0226 -0.1025 -0.0575 -0.0144
Sport Activity 0.9996 -0.0625 0.0105 -0.0828 -0.0625 -0.0419
σSport Activity 0.9995 0.0046 0.0091 -0.0131 0.0047 0.0225
Age 0.9993 0.0805 0.0118 0.0573 0.0807 0.1034
σ Age 1.0000 -0.0228 0.0099 -0.0423 -0.0228 -0.0036
Income 0.9996 -0.0148 0.0104 -0.0349 -0.0148 0.0057
σ Income 0.9997 0.0031 0.0090 -0.0139 0.0030 0.0209
BMI 0.9997 0.3326 0.0094 0.3136 0.3327 0.3507
σBMI 0.9994 -0.0443 0.0083 -0.0603 -0.0443 -0.0281
Std Education (Intercept) 1.0015 0.0510 0.0316 0.0108 0.0446 0.1298
Std Occupation (Intercept) 1.0022 0.0404 0.0236 0.0060 0.0368 0.0971
σStd Education (Intercept) 1.0028 0.0171 0.0162 0.0007 0.0130 0.0586
σStd Occupation (Intercept) 1.0021 0.0312 0.0165 0.0044 0.0289 0.0705
ν 0.9992 177.1761 52.8198 97.2784 170.0995 296.5170
Education Intercepts
Degree 1.0025 -0.0370 0.0316 -0.1065 -0.0341 0.0161
Other higher degree 1.0006 -0.0143 0.0312 -0.0824 -0.0124 0.0429
A-level 1.0006 0.0040 0.0300 -0.0603 0.0039 0.0636
GCSE 1.0017 -0.0208 0.0308 -0.0886 -0.0186 0.0356
Other qualification 1.0009 0.0102 0.0318 -0.0515 0.0085 0.0770
No qualification 1.0019 0.0524 0.0349 -0.0049 0.0501 0.1283
Occupation Intercepts
Large employers & higher management 1.0004 -0.0325 0.0377 -0.1232 -0.0265 0.0268
Higher.professional 0.9999 0.0015 0.0306 -0.0592 0.0006 0.0663
Lower management & professional 0.9994 0.0005 0.0244 -0.0507 0.0003 0.0505
Intermediate 1.0006 -0.0208 0.0280 -0.0836 -0.0181 0.0274
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Small employers & own account 1.0006 -0.0291 0.0322 -0.1020 -0.0253 0.0239
Lower supervisory & technical 0.9993 -0.0007 0.0309 -0.0645 -0.0010 0.0647
Semi-routine 0.9998 0.0271 0.0305 -0.0224 0.0228 0.0962
Routine 1.0000 0.0247 0.0317 -0.0287 0.0205 0.0958
Not in LM 0.9997 0.0266 0.0255 -0.0166 0.0242 0.0812
σ Education, Intercepts
Degree 1.0003 0.0009 0.0137 -0.0260 0.0001 0.0312
Other higher degreee 1.0002 0.0037 0.0147 -0.0227 0.0016 0.0383
A-level 1.0013 0.0095 0.0163 -0.0155 0.0054 0.0510
GCSE 1.0002 -0.0090 0.0157 -0.0481 -0.0054 0.0151
Other qualification 1.0012 0.0032 0.0152 -0.0247 0.0011 0.0388
No qualification 0.9996 -0.0048 0.0154 -0.0411 -0.0021 0.0242
σ Occupation, Intercepts
Large employers.&.higher management 0.9995 -0.0038 0.0262 -0.0578 -0.0024 0.0487
Higher professional 1.0010 0.0194 0.0268 -0.0266 0.0155 0.0811
Lower management & professional 1.0000 -0.0257 0.0214 -0.0724 -0.0244 0.0113
Intermediate 0.9996 -0.0069 0.0220 -0.0521 -0.0054 0.0366
Small employers & own account 1.0002 -0.0188 0.0252 -0.0747 -0.0156 0.0252
Lower supervisory & technical 1.0005 -0.0073 0.0245 -0.0618 -0.0055 0.0388
Semi-routine 1.0010 0.0183 0.0233 -0.0223 0.0157 0.0704
Routine 0.9996 -0.0021 0.0236 -0.0506 -0.0016 0.0472
Not in LM 1.0003 0.0261 0.0203 -0.0082 0.0247 0.0708
log-posterior 1.0038 -10613.8337 7.0487 -10627.9000 -10613.7000 -10600.7000
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For what concerns the educational level and CRP concentration, the
second SES measure shows a clear higher level of CRP for individuals with
no educational qualification concerning the referent category (i.e., individuals
with educational degree), as depicted in figure I.6. On the opposite, individuals
with higher educational degrees (e.g., individuals with GCSE and higher
degrees) are more likely to have lower CRP concentrations in the blood, thus
fewer risks of CVD mortality.

Figure I.6: Posterior Distributions of the likely deviations from the mean
according to Educational levels. σβi

.

To depict the relationship between household income (equivalized) and
levels of CRP, we make use of scatterplots where the x -axis represents the
levels of household income (in the centered scale) and the levels of (log)
CRP on the y-axis. Figure I.7, shows this relationship. Conversely, to the
traditional frequentist approach, it is possible to visualize different likely
regression lines in the Bayesian framework, as the MCMC samples from the
posterior distribution of likely regression slopes. In figure I.7 we show 20
possible regression lines assessing the relationship between income and CRP.
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Figure I.7: Plot of Income distribution (on the x -axis) and log-CRP (on the
y-axis) and model fit of 20 possible regression lines sampled from the posterior
distribution β Income of Model 1.

From figure I.7, it is possible to recognize a general negative relationship
between equivalized income and levels of CRP. Thus, economic resources pos-
itively impact the risks of CVD measured through CRP. However, the slopes
of the regression lines are not relatively steep, suggesting a mild relationship.
Even more, from figure I.7, it seems that Model 1 is affected by the leverage
effect.

Model 2

In model 2, we relaxed the homogeneity of variance assumption among the
categories of occupational status and educational levels, thus predicting
the mean of the dependent variable µ and its standard deviation σ. This
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subsection shows the results from modeling the σ parameter. As in the
previous section, we firstly provide a tabular format of the results provided
by model 2 as in table I.2. The table makes it possible to find the results in
modeling the parameter µ and the σ parameters.
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Table I.3: Bayesian Regression results, assuming homogeneity of variance

Parameter Rhat mean sd 2.5% 50% 97.5%

Intercept 1.0024 0.2916 0.0470 0.1991 0.2918 0.3846
Gender: Female
Gender (Female) 1.0001 0.1226 0.0184 0.0875 0.1230 0.1581
House Ownership: Owner
Rent 0.9996 0.0594 0.0246 0.0123 0.0597 0.1065
Other 0.9995 0.0615 0.0810 -0.0984 0.0620 0.2232
SRH: Excellent
Very good 0.9997 0.0649 0.0281 0.0093 0.0647 0.1198
Good 1.0002 0.0828 0.0299 0.0216 0.0835 0.1408
Fair 0.9997 0.1544 0.0357 0.0834 0.1544 0.2246
Poor 1.0002 0.2478 0.0522 0.1485 0.2468 0.3527
Smoking: Smoker
Ex smoker 0.9997 -0.1796 0.0267 -0.2325 -0.1797 -0.1248
Non smoker 0.9998 -0.2081 0.0269 -0.2618 -0.2080 -0.1551
Sport Activity 0.9993 -0.0617 0.0102 -0.0817 -0.0617 -0.0418
Age 0.9996 0.0814 0.0118 0.0586 0.0813 0.1047
Income 0.9999 -0.0147 0.0101 -0.0342 -0.0150 0.0050
BMI 0.9998 0.3354 0.0095 0.3163 0.3355 0.3542
Std Education (Intercept) 1.0029 0.0566 0.0362 0.0135 0.0485 0.1528
Std Occupation (Intercept) 1.0007 0.0426 0.0241 0.0061 0.0392 0.0980
σ 0.9997 0.8330 0.0066 0.8201 0.8329 0.8461
ν 0.9996 176.4664 52.4283 96.4933 168.2630 297.1096
Education, Intercepts
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Degree 1.0069 -0.0401 0.0340 -0.1121 -0.0376 0.0168
Other higher degree 1.0060 -0.0167 0.0335 -0.0846 -0.0147 0.0454
A-level 1.0060 0.0030 0.0328 -0.0643 0.0039 0.0660
GCSE 1.0048 -0.0230 0.0325 -0.0915 -0.0215 0.0395
Other qualification 1.0050 0.0160 0.0353 -0.0496 0.0142 0.0932
No qualification 1.0030 0.0558 0.0376 -0.0061 0.0533 0.1380
Occupation, Intercepts
Large employers.& higher management 0.9999 -0.0348 0.0374 -0.1223 -0.0291 0.0239
Higher professional 0.9996 0.0068 0.0317 -0.0559 0.0053 0.0751
Lower management & professional 1.0006 -0.0010 0.0249 -0.0508 -0.0012 0.0509
Intermediate 0.9991 -0.0237 0.0291 -0.0868 -0.0209 0.0291
Small employers & own account 0.9995 -0.0319 0.0334 -0.1055 -0.0287 0.0243
Lower supervisory &.technical 0.9994 -0.0003 0.0317 -0.0671 -0.0007 0.0665
Semi-routine 1.0001 0.0301 0.0310 -0.0198 0.0268 0.0999
Routine 0.9999 0.0254 0.0327 -0.0278 0.0207 0.1004
Not in LM 0.9998 0.0273 0.0249 -0.0162 0.0251 0.0814
log-posterior 1.0004 -10611.3258 5.0972 -10622.2000 -10611.0000 -10602.5000
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Here we focus on the results produced by fitting the model in the σ of the
dependent variable. Similarly to the section dedicated to the results related
to model 1, we start with presenting the posterior distributions related to the
occupational status of individuals.
Figure I.8 shows the posterior distributions for each category of occupational
status and how they deviate according to the scale of the standard deviation
of the CRP levels.

Figure I.8: Posterior Distributions of the likely deviations from the mean
according to Occupational status. σ Occupation on the σy.

When the model relaxes the assumption of homogeneity of variance,
the findings suggest a rather clear difference of variance between the Large
employers and higher management category and individuals not in the labor
market. The in-between categories, however, show a similar pattern.
Moving to the effects of educational status on the variance between categories
on the variance of CRP observed through the data, figure I.9 shows the
findings of Model 2 focused on individuals’ education.
From figure I.9, the findings of Model 2 shows a surprising similarity between
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the educational levels, with the notable exception of the individuals with
an A-level. In fact, from Model 2, the variance for the individuals with an
A-level educational degree is stretched toward the right.

Figure I.9: Posterior Distributions of the likely deviations from the mean
according to Educational levels. σ Education on the σy.

Similar to Model 1, to present the findings from model 2 for what con-
cerns the relationship between equivalized income and logged CRP, figure
I.10 depicts 20 sampled regression lines from the posterior distribution of
the regression slopes. However, in this case, the intercepts and slopes are
computed according to σy. From figure I.10, findings suggested an even
weaker relationship between equivalized income and logged CRP, with the
homogeneity of variance assumption relaxed in the model.
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Figure I.10: Plot of Income distribution (on the x -axis) and log-CRP (on
the y-axis) and model fit of 20 possible regression lines sampled from the
posterior distribution β Income of Model 2.

In the Supplementary Materials, we provide the trace and the autocorre-
lation plots. These are valuable tools to assess the validity of the Bayesian
inference and the correct sampling of the algorithm from the posterior distri-
butions of the specific parameters.

I.4 Discussion & Conclusions

One of the main challenges currently in social stratification and health in-
equalities is to assess the mechanisms through which the well-documented
link between deprived social conditions and health worsening takes form.
The rising availability of social data that includes biological information of
individuals is rising as a propitious track of research, and it has a possible
double effect. On the one hand, social scientists acquire additional infor-
mation potentially helpful to studying the mechanisms through which the
social gradient of health occurs and socioeconomic status gets under the skin.
Secondly, sociologists inform the biomedical literature on the importance of
the social and economic environment individuals live in for health levels. This
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paper investigated one of the potential mechanisms that health inequalities
generate. Indeed, this study aimed to shed light on the connection between
socioeconomic status (SES), risks of mortality due to cardiovascular diseases
(CVD), and levels of chronic inflammation, measured through the biomarker
C-reactive protein (CRP). We consider this pathway particularly important as
mortality due to CVD represents the first cause of death among individuals in
developed countries (Brummett et al., 2014). We used data from the Under-
standing Society - United Kingdom Household Longitudinal Study (UKHLS),
a representative sample of the population living in England, Scotland, and
Wales. In 2012, the UKHLS collected voluntary individuals’ blood samples
to collect markers of socially relevant health risks factors and diseases. To
capture the multifaceted characteristics of individuals’ SES, we included three
measures of social conditions in the statistical analysis: occupational status,
educational levels, and equivalized household income. This paper provides a
Bayesian framework to assess the pathway that links individuals’ SES, mor-
tality risks to CVD, and levels of CRP. The first Bayesian regression model
(BRM) provides posterior distributions of likely effect magnitude parameters
assuming homogeneity of variance across occupational and educational groups.
The second step of the statistical analysis deploys a distributional model,
which allows for relaxing the assumption of homogeneity of variance through
modeling the standard deviation of CRP alongside its mean. Generally, both
Model 1 and Model 2 show no inference problems, meaning that the posterior
distributions computed by both models represent all possible distributions.
For what concerns findings provided by model 1, the educational gradient
is the most vital determinant of the risk of chronic inflammation, while
equivalized income is the weakest among the three SES measures. According
to Davillas et al. (2017), one potential explanation relies on the fact that
better-educated individuals tend to pursue a healthier lifestyle and be more
aware of health risks. The relationship between occupational status and levels
of CRP seems to be polarized. Indeed, the findings suggest a homogeneity of
CRP levels and lowest levels (and thus less risk of CVD) between individuals
with the highest occupational status and small employers. That means they
do not deviate remarkably from the grand mean of the dependent variable
among all the other categories. While the first findings are coherent with
previous literature (Marmot et al. 1991), we strongly suggest that future
research deepen scientific knowledge of what concerns small employers. For
what concerns the equivalized income measure, some lessons can be from
both the methodological and substantial perspective: the methodological
conclusion is that even in the Bayesian framework, the regression model
could suffer from leverage effects. The significant lesson is that economic
resources are somewhat the weakest determinants to drive health inequalities
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and mortality risks due to CVD.
Model 2 provided interesting results for what concerns how the individuals
differ from within each category of the SES measures. Indeed, the findings
suggest a strong cohesion in the highest class of occupational status, meaning
that inequalities in health are evident even when we consider the within
variance. Surprisingly, individuals with the same educational level are not
very dissimilar, except for individuals with an A-level degree.
It is worth to note that the meaning of income may change during the different
stages of the life course we considered in the analysis. We therefore suggest
to investigate further on this aspect by, for example, considering a more
homogenous sample in terms of age.
We would like to address some limitations of this study as inspiration for
future researchers. The first limitation is the lack of direct comparison be-
tween the posterior distributions explicitly drawn for the categories of income,
education, and occupational status. Further research could address this
problem ideally from a Bayesian perspective. The second limitation concerns
the model specification. Due to the already complex Bayesian models, we
did not test the models for nonlinearities in age patterns and CVD risks
through CRP. We believe it could be interesting to see whether the aging
process could take other, more complex ways. The last limitation concerns
robustness checks. Indeed, we have specified the models only with this set of
prior distributions. In this sense, we conclude with an invitation to the social
scientific community to use our results for better-refined models coherently
with the Bayesian philosophy. The Understanding Society data provides to
the empirical researcher a wide range of biological markers of (ab-) normal
physiological functioning. Future research could potentially exploits the bi-
ological information collected by empirically testing the social gradient of
health by using composite measures such as Allostatic Load, for instance. We
believe that future researchers could take advantage of this first Bayesian
implementation and use the results we provided as a starting point to define
a theoretically guided model to advance our knowledge concerning the social
gradient of mortality risks due to CVD.

Notes
3The UKHLS is a continuation and further evolution of the older British Household

Panel Study (BHPS).
4Alongside the GPS, the main survey target sample consisted of three additional

components: the Ethnic Minority Boost sample, the former BHPS sample, and the
Immigrant and Ethnic Minority Boost sample. See Lynn (2009) and Lynn et al. (2018) for
additional details.
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5LOWESS is a type non-parametric regression estimation
6More precisely, Stan’s specification of the HMC is the No-U-Turn Shape (NUTS)

algorithm.
7The choice of the distribution is dependent upon the type of variable the outcome is:

for instance, the Poisson distribution applies with count data; for instance, if the analysis
aims to model a dichotomous variable, then the bayesian framework will start with a
binomial distribution.

8We have transformed the standard deviation as recommended by the Stan Development
Team.
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Karimi, M., Castagné, R., Delpierre, C., Albertus, G., Berger, E., Vineis, P.,
Kumari, M., Kelly-Irving, M., Chadeau-Hyam, M., Lynch, S. M., &
Bartlett, B. (2019). Early-life inequalities and biological ageing: A
multisystem Biological Health Score approach in U nderstanding S
ociety. Journal of Epidemiology and Community Health, 73 (8), 693–
702.

Kavanagh, A., Bentley, R. J., Turrell, G., Shaw, J., Dunstan, D., & Subrama-
nian, S. V. (2010). Socioeconomic position, gender, health behaviours
and biomarkers of cardiovascular disease and diabetes. Social Science
and Medicine, 71 (6), 1150–1160.

Koster, A., Bosma, H., Penninx, B. W. J. H., Newman, A. B., Harris, T. B.,
Eijk, J. T. M. V., Kempen, G. I. J. M., Simonsick, E. M., Johnson,
K. C., Rooks, R. N., Ayonayon, H. N., Rubin, S. M., & Kritchevsky,
S. B. (2006). Association of Inflammatory Markers With Socioeconomic
Status. Journal of Gerontology, 61 (3), 284–290.

Kruschke, J. (2014). Doing bayesian data analysis: A tutorial with r, jags,
and stan. Academic Press.

Laaksonen, D. E., Niskanen, L., Nyyssönen, K., Punnonen, K., Tuomainen,
T. P., & Salonen, J. T. (2005). C-reactive protein in the prediction of
cardiovascular and overall mortality in middle-aged men: A population-
based cohort study. European Heart Journal, 26 (17), 1783–1789.

Link, B., & Phelan, J. (1995). Social conditions as fundamental causes of
health inequalities. Journal of Health and Social Behavior, 35, 80–94.

62



Liu, R. S., Aiello, A. E., Mensah, F. K., Gasser, C. E., Rueb, K., Cordell, B.,
Juonala, M., Wake, M., & Burgner, D. P. (2017). Socioeconomic status
in childhood and C reactive protein in adulthood: A systematic review
and meta-analysis. Journal of Epidemiology and Community Health,
71 (8), 817–826.

Loucks, E. B., Pilote, L., Lynch, J. W., Richard, H., Almeida, N. D., Benjamin,
E. J., & Murabito, J. M. (2010). Life course socioeconomic position
is associated with inflammatory markers: The Framingham Offspring
Study. Social Science and Medicine, 71 (1), 187–195.

Lubbock, L. A., Goh, A., Ali, S., Ritchie, J., & Whooley, M. A. (2005).
Relation of low socioeconomic status to C-reactive protein in patients
with coronary heart disease (from the Heart and Soul study). American
Journal of Cardiology, 96 (11), 1506–1511.

Lynch, S. M., & Bartlett, B. (2019). Bayesian Statistics in Sociology: Past,
Present, and Future. Annual Review of Sociology, 45, 47–68.

Lynn, P. (2009). Sample Design for Understanding Society - Understanding
Society Working Paper 2009-01.

Lynn, P., Nandi, A., Parutis, V., & Platt, L. (2018). Design and implemen-
tation of a high-quality probability sample of immigrants and ethnic
minorities: Lessons learnt. Demographic Research, 38 (1), 513–548.

Marmot, M. G., Stansfeld, S., Patel, C., North, F., Head, J., White, I.,
Brunner, E., Feeney, A., Marmot, M. G., & Smith, G. D. (1991).
Health inequalities among British civil servants: the Whitehall II
study. The Lancet, 337 (8754), 1387–1393.

McDade, T. W., Lindau, S. T., & Wroblewski, K. (2011). Predictors of C-
reactive protein in the National Social Life, Health, and Aging Project.
Journals of Gerontology - Series B Psychological Sciences and Social
Sciences, 66 B(1), 129–136.

McEwen, B. S. (2015). Biomarkers for assessing population and individ-
ual health and disease related to stress and adaptation. Metabolism:
Clinical and Experimental, 64 (3), S2–S10.

Mcfall, S. L., Booker, C., Burton, J., & Conolly, A. (2012). Implementing the
Biosocial Component of Understanding Society – Nurse Collection of
Biomeasures and Anne Conolly Nurse Collection of Biomeasures.

Mitchell, U. A., & Aneshensel, C. S. (2017). Social Inequalities in Inflammation:
Age Variations in Older Persons. Journal of Aging and Health, 29 (5),
769–787.

Nazmi, A., Oliveira, I. O., Horta, B. L., Gigante, D. P., & Victora, C. G.
(2010). Lifecourse socioeconomic trajectories and C-reactive protein
levels in young adults: Findings from a Brazilian birth cohort. Social
Science and Medicine, 70 (8), 1229–1236.

63



Phelan, J. C., Link, B. G., & Tehranifar, P. (2010). Social Conditions as
Fundamental Causes of Health Inequalities: Theory, Evidence, and
Policy Implications. Journal of Health and Social Behavior, 51, 28–40.

Pollitt, R. A., Kaufman, J. S., Rose, K. M., Diez-Roux, A. V., Zeng, D., &
Heiss, G. (2008). Cumulative life course and adult socioeconomic status
and markers of inflammation in adulthood. Journal of Epidemiology
and Community Health, 62 (6), 484–491.

Power, C., Manor, O., & Matthews, S. (1999). The duration and timing
of exposure: Effects of socioeconomic environment on adult health.
American Journal of Public Health, 89 (7), 1059–1065.

Pudrovska, T. (2014). Early-Life Socioeconomic Status and Mortality at Three
Life Course Stages: An Increasing Within-Cohort Inequality. Journal
of Health and Social Behavior, 55 (2), 181–195.

Rosvall, M., Engström, G., Berglund, G., & Hedblad, B. (2008). C-reactive
protein, established risk factors and social inequalities in cardiovascular
disease - The significance of absolute versus relative measures of disease.
BMC Public Health, 8, 1–10.

Shanahan, L., Freeman, J., & Bauldry, S. (2014). Is very high C-reactive
protein in young adults associated with indicators of chronic disease
risk? Psychoneuroendocrinology, 40 (1), 76–85.

Umlauf, N., & Kneib, T. (2018). A primer on Bayesian distributional regression.
Statistical Modelling, 18 (3-4), 219–247.

Winkleby, M. A., Jatulis, D. E., Frank, E., & Fortmann, S. P. (1992). Socioe-
conomic status and health: How education, income, and occupation
contribute to risk factors for cardiovascular disease. American Journal
of Public Health, 82 (6), 816–820.

Yang, Y. C., Schorpp, K., Boen, C., Johnson, M., & Harris, K. M. (2020).
Socioeconomic Status and Biological Risks for Health and Illness Across
the Life Course. The journals of gerontology. Series B, Psychological
sciences and social sciences, 75 (3), 613–624.

64



II. Origin, Destination or
Mobility? A Monte Carlo
Simulation of the Diagonal
Reference Model.

Outline

II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
II.2 The Roots of the Identification Problem . . . . . . . . . . . . 69
II.3 The Diagonal Reference Model . . . . . . . . . . . . . . . . . . 70
II.4 Simulation Design . . . . . . . . . . . . . . . . . . . . . . . . . 74
II.5 Discussion & Conclusions . . . . . . . . . . . . . . . . . . . . 85
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliographic Information

This chapter is work in progress.

Author’s contribution

I developed the methodology, writing preparation, interpretation of find-
ings, and the data generation and analysis. Robin Samuel conceptualized,
supervised, and reviewed the chapter.

65



Abstract

Statistical modeling on the net effects of socioeconomic origin, destination, and
mobility on sociologically highly relevant topics is affected by an identification
problem, which cannot be solved with traditional statistical techniques. In
current empirical research, Sobel’s classic diagonal reference model (DRM)
has (re)emerged as the most popular statistical tool to address this problem.
The appeal of DRM is twofold. First, the model is solidly built based
on theoretical considerations. Second, it is easy to interpret and provides
meaningful parametric weights to assess the salience of origin and destination
over the outcome variable. We attempt to contribute to a better understanding
of the model, using a Monte Carlo simulation. Our data generation process
employs a theoretically guided approach to generate a mobility table. The
design explores two different scenarios: a) when the dependent variable is
continuous and b) when the dependent variable is dichotomous. A particular
focus is on bias and coverage assessment of mobility estimates. Our findings
suggest that the DRM does not yield substantially biased estimates under the
generic scenarios studied here. However, the computation of the confidence
interval is problematic. We call for further research on the model’s behavior
in different sets, especially in longitudinal data.
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II.1 Introduction

The intuition that experiencing social mobility might influence the attitudes,
behaviors, and psycho-social conditions of individuals is firmly entrenched in
the social sciences. Over the last few decades, the literature has documented
the debate on the potential benefits, harms, and significance of social mobility
on the life chances and opportunities for individuals (see, e.g., Sorokin, 1927;
Tumin, 1957; Lipset, 1959; Goldthorpe, 1980; Simandan, 2018).

Many theorists associate upward social mobility with an increase in access
to resources resulting from occupying a more privileged position in society
(Goldthorpe, 1980; Ormel, Lindenberg, Steverink, and Verbrugge, 1999).
Others hold that the experience of social mobility can have hidden costs
(Friedman, 2014). Specifically, the costs of social mobility lie in the progres-
sive detachment from a set of values and beliefs that are characteristic of the
social class into which individuals were born, and an attachment to a new
set of values and beliefs embedded in the destination social class (Sorokin
1927; see Houle and Martin 2011, and Chan 2018 for recent empirical tests of
Sorokin’s dissociative theory). The empirical strategy employed by applied re-
searchers sees the socio-cultural identities of individuals as inherently affected
by the primary imprinting to social norms that individuals have learned in
their specific class of origin, and the acquisition of values and beliefs that
characterize their current class of destination, that is, the new social envi-
ronment to which they adapt. Social mobility can then be conceptualized
as the specific trajectory between a given class of origin and a given class of
destination.

However, sociologists struggled to translate their theoretical and con-
ceptual frameworks into statistical models that facilitate an analysis of the
consequences of social mobility. This is due to the identification problem that
arises when indicators of origin, destination, and mobility are simultaneously
entered into a regression model.

Since the 1960s at least, scholars of social mobility have suggested tools to
overcome the identification problem: for example, the square additive model
by Duncan, 1966, the halfway/difference model by Hope, 1971, 1975, and
the Diagonal Reference Model by Sobel, 1981, 1985; for a comparison of the
three, see Hendrickx et al., 1993.

Sobel’s Diagonal Reference Model (DRM) was widely applied in a first
phase in the 1980s and 1990s (see, e.g., Sorenson, 1989; Weakliem, 1992;
Dirk de Graaf and Heath, 1992; Clifford and Heath, 1993; Hendrickx et al.,
1993; Van Berkel and de Graaf, 1995; De Graaf, Nieuwbeerta, and Heath,
1995 Marshall and Firth, 1999) and has regained interest an on-going second
phase, starting in the late 2000s (Breen, 2001; Van der Slik, De Graaf, and
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Gerris, 2002; Tolsma, De Graaf, and Quillian, 2009; Houle and Martin, 2011;
Eeckhaut et al., 2013; Willekens, Daenekindt, and Lievens, 2014; Missinne,
Daenekindt, and Bracke, 2015; Daenekindt, 2017; Jonsson et al., 2017; Van der
Waal, Daenekindt, and de Koster, 2017; Billingsley, Drefahl, and Ghilagaber,
2018; Chan, 2018; Schuck and Steiber, 2018; Gugushvili, Zhao, and Bukodi,
2019; Präg and Richards, 2019). The DRM is now considered to be the first
choice in statistical methodology to study the potential consequences of social
mobility (e.g., Van der Waal et al., 2017). In comparison studies, the DRM
has been found to be more parsimonious than other models, mostly owing
to its capability to meaningfully disentangle the effects of social mobility,
from the part attributable to origin and destination (Hendrickx et al., 1993;
Eeckhaut et al., 2013; Van der Waal et al., 2017; Billingsley et al., 2018).

Although the model has been regaining interest, the DRM does not
seem to be able to clarify the role of mobility on the many facets that
compose the individual sphere, as the accumulation of null or weak evidence
of mobility effects is in stark contrast to the expectations derived from theory
(Lipset, 1959; Ellis and Lane, 1967; Kessin, 1971; Bean, Bonjean, and Burton,
1973; Friedman, 2014; Friedman, 2016) on consequences of social mobility
(Weakliem, 1992; De Graaf et al., 1995; Breen, 2001; Daenekindt, 2017; Houle
and Martin, 2011; Van der Waal et al., 2017; Schuck and Steiber, 2018;
Gugushvili et al., 2019; Präg and Richards, 2019). From a methodological
perspective, the null findings may suggest that the DRM is still unable to
solve the identification problem. Should the DRM, in principle, allow an
unbiased estimation of the effects of interest, the null and weak findings may
be taken as evidence against some of the expectations derived from theory.
However, there is a lack of systematic studies on model behavior to advance
our understanding of the statistical characteristics of the DRM and its ability
to disentangle origin, destination, and social mobility effects. Against this
backdrop, it is of specific importance to evaluate, first, whether the estimates
of the mobility coefficients are biased, and if so to what extent. Second, we
must evaluate the overall capability of the DRM to detect effects of various
sizes present in the population.

In our paper, we address these gaps and assess the potential benefits and
limitations of the DRM using Monte Carlo simulation. Our experimental
design is divided into two main sets: one scenario tested the DRM with
a continuous dependent variable, and the other included a model with a
dichotomous dependent variable. Our work has potential implications for
a wide range of applied sociological research: the first field relates to the
recent literature on social stratification and mobility on health inequalities
(Missinne et al., 2015; Jonsson et al., 2017; Van der Waal et al., 2017;
Präg and Richards, 2019; Gugushvili et al., 2019). In this type of study,
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the dependent variable may be measured as continuous, such as functional
somatic symptoms (Jonsson et al., 2017), depressive symptoms (Gugushvili
et al., 2019), biomarkers (Präg & Richards, 2019), or dummy/dichotomous
response variables, such as regular mammography screening (Missinne et
al., 2015) or at-risk/not-at-risk for obesity (Van der Waal et al., 2017). A
second application can be found in electoral studies, where a researcher can
operationalize political behavior as a continuous scale (De Graaf & Ultee, 1990)
or as a dichotomous indicator of left- or right-wing vote (Clifford & Heath,
1993). A third application is in demographic studies, where the dependent
variable is continuous on fertility (Sorenson, 1989), while mortality is often
operationalized as a dichotomy (e.g., survived/not survived) (Billingsley et al.,
2018). A fourth example can be found in research on status inconsistency
and attitudes: the applied researcher can think of a continuous dependent
variable as attitudes toward ethnic minorities (Tolsma et al., 2009) or as
a dichotomous indicator concerning the demand for redistribution (Jaime-
Castillo & Marqués-Perales, 2019).

Our contribution is organized as follows. First, we provide a review of
the roots of the identification problem and how the DRM addresses this
methodological issue. Second, we show our experimental design, specifically
the random data generating process (DGP), which is composed of the ran-
dom occupational table generation and the steps required to simulate the
dependent variables. Third, we extract the results of our study and discuss
their implications at an empirical level. We conclude with suggestions for
furthering the assessment and development of the DRM.

II.2 The Roots of the Identification Problem

Let us assume that we are interested in evaluating and disentangling the
effects of the social class of origin and destination, as well as the specific
effect of mobility between these classes on a given outcome, such as self-rated
health. The researcher may then think that the most intuitive approach to
empirically assess the effects of social origin (O), destination (D), and mobility
(M) is to incorporate these measurements into a linear model (Blalock 1966,
1967; Duncan 1966; Mason et al. 1973) of the form:

Y = µ+ αiO + βjD + γkM + ϵij (II.1)

where µ is the grand mean of the dependent variable Y , αi is the effect of the

ith origin class, βj is the effect of being currently in the jth destination class,
and γk is the effect of mobility. To avoid the overparameterization of the model,
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the parameters of the regression equation can be constrained to
∑I

i=1 α =∑J
j=1 β =

∑K
k=1 γ = 0. Even if we can deal with overparameterization, it is

evident that social mobility is a linear combination of origin and destination
as M = D −O in this case. Linear dependency can be considered as perfect
collinearity between explanatory covariates. This type of linear transformation
is familiar to many social scientists, as it relates to a similar problem that
occurs when trying to isolate age, period, and cohort effects (see, e.g., Yang,
Fu, and Land, 2004; for a more technical discussion, see Carstensen, 2007
and Kuang, Nielsen, and Nielsen, 2008). The use of conventional methods,
such as the generalized linear regression, will typically fail to yield a set of
coefficients that will uniquely identify the effects αi, βj, and γk.

To see this, we can rewrite the formula in matrix form as y = Xb,
where the dependent variable is yn×1 = (y1, y2, y3, . . . yn)

T , the regressor
matrix is Xn×p , and the matrix of coefficients is bp×1 = (α, β, γ)T . Recalling
the Gauss-Markov theorem, the best linear unbiased estimator (BLUE) in
ordinary least squares (OLS) is b̂ = (XTX)−1XTy. However, owing to the
linear dependency between O, D, and M, the rank (the number of linearly
independent rows/columns) of Xn×p is less than p (see Searle and Khuri
2017). If X is rank deficient, we cannot find the inverse of the square matrix:

XTX =

[
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x

2
i

]

In this case, the square matrix XTX is said to be singular or rank deficient
(less than full column rank). Consequently, the matrix of regressors can have
infinite possible solutions (Yang et al., 2004). In the next section, we will
demonstrate how the DRM addresses this problem.

II.3 The Diagonal Reference Model

The DRM is a theoretically founded model (Cox 1990; Yamaguchi 2002) in
that it draws on acculturation process theory, which states that individuals
tend to adopt the behaviors, beliefs, and values typical of the reference
aggregate when a status inconsistency occurs. In terms of social mobility,
individuals tend to conform to the social behavior typical of the class of
destination: that is, the referent aggregate. The difference between the
equation II.1 and the DRM lies in the decomposition of yijk. In the former,
yijk can be decomposed into two additive effects, αi for origin and βj for the
destination. The DRM decomposes yijk in µii, the population means specific
to the ith origin category, and µjj, the population means specific to the jth
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destination category. For immobile individuals, in the diagonal of the mobility
table, the equality µii = µjj holds. To construct a meaningful mobility model,
it is essential to quantify the acculturation process. This is achieved by the
choice of the referent group to which status inconsistents are assigned in a
mobility table i ∗ j, in which row i represents the origin status and column j
represents their destination classes. This can be defined as:

µ̂ij = ρµii + (1− ρ)µjj +
W∑
w=1

γwMijw + ϵijk (II.2)

ρ =
eδi

eδi + eδj
(II.2a)

(1− ρ) =
eδj

eδi + eδj
(II.2b)

The DRM is said to be a parametrically weighted regression model (Yam-
aguchi, 2002) as the means µii and µjj are weighted by ρ and (1− ρ). These
quantify the relative salience of origin, and the destination on off-diagonal
cells mean values µij. In model II.2, the referent values are taken as the
population means, µii and µjj , and estimated along the diagonal of the
mobility table. For people who are off the diagonal, there are two referent
values: the first represents the value found in the ith origin category µii; the
second is the value of the jth destination class, µjj. The last block of equation
II.1 refers to the inclusion of mobility covariates w = 1, 2, 3, . . .W that take
the value Mijw, and have effects quantified in γw. The mobility effects related
to the kth observation are not indexed, as they are constant across individuals,
clustering them over their origin or destination class. The parameter ϵijk
represents the stochastic error term and follows ϵijk ∼ N (0, σ2).

As mentioned before, the weight parameters ρ in equations II.2a and
(1− ρ) in equation II.2b quantify the relative salience of origin to the current
destination. The parameters are computed as the ratio of the weighted
effects of origin δi and destination δj (to be estimated by the model) to the
off-diagonal means and ranges in the interval 0 < ρ < 1.

When ρ = 0.5, the origin and destination have the same weight on the
dependent variable. If ρ > 0.5, then the effects of the ith class of origin, for
example, owing to socialization, are of greater importance than those of the
jth class of destination, for example, owing to the set of values dominant there.
If ρ < 0.5, the weighted parameter should be interpreted in the opposite
direction. The equality constraint ensures that the weights sum up to 1 and
enable a meaningful interpretation of the parameters.
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As Sobel, 1981 noted, the DRM uses non-linear least square estimation
(which is equivalent to maximum likelihood estimation; see the following
section for further details) because the model includes multiplicative effects,
specifically for the product of the weight parameters and the off-diagonal
averages. Table II.1 shows the parameterization applied by the DRM in
mobility contingency tables using an example where stratification variables
are cross-classified as the origin of individuals in the rows and their destination
in the columns, in four possible classes.9

Table II.1: Cells-Generating Mechanism of the DRM when there are Four
Classes of Origin and Destination (I—IV)

Destination

Origin I II III IV all

I µ1 ρµ1 + rµ2 ρµ1 + rµ3 ρµ1 + rµ4 ρµ1

II ρµ2 + rµ1 µ2 ρµ2 + rµ3 ρµ2 + rµ4 ρµ2

III ρµ3 + rµ1 ρµ3 + rµ2 µ3 ρµ3 + rµ4 ρµ3

IV ρµ4 + rµ1 ρµ4 + rµ2 ρµ4 + rµ3 µ4 ρµ4

all rµ1 rµ2 rµ3 rµ4 µ

r = 1− ρ

The cells shaded in gray along the diagonal of Table II.1 contain the
immobile individuals, who serve as the referent groups. In the off-diagonal
cells of Table II.1, the decomposition of the values of the dependent variable
is shown: for the ith origin category, the rows, and for the jth destination
category, the columns. The cells shaded in gray along the diagonal of the
contingency table are the intercepts, or main effects, while the off-diagonal cell
values are a weighted average (by the salience parameters ρ for the origin and
r for the destination) of the specific iith row and jth column main effects10.

Maximum Likelihood and Nonlinear Least Squares Esti-
mations

Following Sobel, 1981, the maximum likelihood estimation and the nonlinear
least square estimation of the parameters in the DRM model yielded equivalent
results. This section retakes the steps shown in Sobel, 1981 that demonstrate
this equivalence to present how the DRM derives the parameters of interest,
and to provide the computational methodology implemented in statistical
software such as R —with the gnm package —or in Stata —with the Diagref
package.
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Recall the formulation of the baseline DRM, in equation II.1, with the
mobility variables included. Following Sobel, 1981, equation II.1 can be
converted as a function of µ1 and µ2, which are the values of the dependent
variable along the diagonal of the squared table of means:

µ1 =
I∑

i=1

µiiX.i µ2 =
J∑

j=1

µjjX.j (II.3)

where x.i and x.j are a set of dummy variables for each factor of origin
and destination, where X = 1 if i = i, and 0 otherwise. Substituting equation
II.3 into II.1, we obtain

Yijk =
I∑

i=1

ρµiiX.i + (1− ρ)
J∑

j=1

µjjX.j +
W∑
w=1

γwMijw (II.4)

Equation II.4 can be rewritten using matrix notation:

y = (µ1, µ2, X)

 ρ
1− ρ
γ

 =⇒ (y − µ2) = (µ1 − µ2, X)

(
ρ
γ

)
(II.5)

where y, µ1, and µ2 are the column vectors of the dependent variable, and
the diagonal values (indicated by the vector X composed of 0s and 1s) of
origin and destination, respectively. Sobel, 1981 specifies that, as the vectors
µ1 and µ2 are unobserved, using the means ȳii and ȳjj as proxies for µ1 and
µ2 would yield biased but consistent parameter estimates. The alternative
approach proposed by Sobel, 1981 addresses the likelihood function under
random sampling of the form of:

Maximum Likelihood Estimation:

L(µ,ρ,γ,σ) =
∏
ijk

(
(2πσ2)−

1
2 exp

{
− (2σ2)−1 ×, (II.6)

(
yijk−

I∑
i=1

ρµiiX.i −
J∑

j=1

(1− ρ)µjjX.j −
W∑
w=1

γwXijw

)2
})

Nonlinear Least Squares:
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argmin
f(ρ,µ,γ,σ)

=
∑
ijk

yijk −
I∑

i=1

ρµiiXi. −
J∑

j=1

(1− ρ)µjjX.j −
W∑
w=1

γwXijw

2

(II.7)
The maximization of the likelihood function in equation II.6 with respect to

the parameters ρ, µii, γw, and σ2 are estimated to be equal to the choice of
these parameters to minimize the nonlinear least square parameters. This
condition ensures, following Sobel’s specification, that the estimates are
unbiased, consistent, and efficient.

II.4 Simulation Design

Following the above steps, our Monte Carlo simulation will have to consider
two main elements: a) the random generation of an occupational mobility
table of the form IxJ , in which rows I indicate the origin classes and columns
J the destination classes11; b) generation of the dependent variables. The
total sample sizes are N = {500, 750, 1000}. The performance measures
we are interested in are the bias of the estimators and their coverage. We
performed 2,000 repetitions to reduce the Monte Carlo standard error of
these performance measures, relying on Burton et al. (2006) and Morris,

White, and Crowther (2019), using the formula: Nsim =
(

Z1−(α/2)σ

δ

)2
, where

Nsim represents the total number of simulations, δ is the specified level of
accuracy (in empirical studies, it is usually set at 95%), σ2 is the variance
of the parameter to be simulated, and Z1−(α/2) is the 1− (α/2) quantile in a
standard normal distribution. To perform the Monte Carlo simulation, we
used R and the packages rTableICC (Demirhan, 2016) for the generation of
the mobility table and the gnm package for the computation of the DRM
estimates (Turner & Firth, 2015). The organization of the Monte Carlo coding
structure relied on the SimDesign package (Sigal & Chalmers, 2016).

The Data Generation Process

Generation of a random social mobility table

The Monte Carlo simulation relies on a square contingency table in which
R,C ∈ {1, 2, 3, 4} are the levels of the categorical responses. In the context of
social stratification research, one can consider the categorical responses as, for
example, the contracted Goldthorpe’s 4-classes schema (Erikson & Goldthorpe,
1992). The random generation process of the counts within each cell relied on
sampling from the multinomial distribution12 X ∼ Mult(n, π), where X is
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the random variable, n the number of trials (in our case, observations), and
π the within-cell probability. The crucial step, thus, was to create a matrix
of probabilities that would guide the counts, given π and n. To allow for
reasonably realistic and sociologically relevant scenarios, we draw on work by
Erikson and Goldthorpe, 1992. In particular, we used the topological model
as a reference occupational table hierarchy 1 (HI1). We chose four classes for
both the origin and destination categories. The first social class, the white
collars, comprises of classes I and II (higher technical, professional, managerial,
and administrative occupations) that are mainly in a service relationship.
The second social class, the intermediate class, comprises routine non-manual
workers (IIIa, IIIb) and lower technical occupations (V). The third social
class, the manual class, comprises skilled and unskilled manual workers (class
VI and VIIa) and unskilled manual workers in agriculture (class VIIb). The
bourgeoisie comprises the fourth social class in our simulation; these are large
and small employers (classes I, IVa, IVc) as well as the self-employed workers,
classes IVb and IVc (for further details, see Erikson and Goldthorpe, 1992).

Table II.2 shows the cell probabilities used to construct the counts within
the cells of the contingency table:

Table II.2: Square Matrix of Probabilities Used to Generate the Contingency
Table

I II III IV
I 0.08 0.02 0.01 0.01
II 0.02 0.26 0.04 0.01
III 0.01 0.04 0.35 0.04
IV 0.01 0.01 0.04 0.05

The joint multinomial sampling of count distribution within each cell has
been modeled to establish the probabilities πrc. The sum of all probabilities in
Table II.2 has the constraint to sum up to 1 as

∑r
r=1 πrc =

∑c
c=1 πrc = 1. That

is, the probabilities stated in Table II.2 determine the number of individuals
falling within a particular cell, given the total number of cases.

The Dependent Variables

We constructed two dependent variables. Reflecting typical applications of the
DRM, the first outcome variable was modeled as continuous, and the second
outcome variable was dichotomous. Substantive examples for the former
could, for example, include a specific biomarker (see Harris and Schorpp
2018 for a general discussion and Präg and Richards 2019 for a practical
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Table II.3: Population True Values for the Data Generating Process

ρ (1− ρ) γUp γDown

0.70 0.30 {−0.1, −0.5} {0.1, 0.5}
0.50 0.50 {−0.1, −0.5} {0.1, 0.5}
0.30 0.70 {−0.1, −0.5} {0.1, 0.5}

application), a political preferences scale, or a life satisfaction scale. Examples
of the latter could be voting vs. non-voting for a determined political party
or agreement vs. disagreement with a determined attitude or value. For our
purposes, we used an 11-point scale of self-rated health and a dichotomous
mortality variable (survived vs. not survived). 13 The variables were modeled
as follows:

Continuous Dependent Variable

yijk = ρµii + rµjj + γupUpward+ γdownDownward (II.8)

Dichotomous Dependent Variable

πij =
exp(ρµii + rµjj + γupUpward+ γdownDownward)

1 + exp(ρµii + rµjj + γupUpward+ γdownDownward)
(II.9)

The parameters of interest are γup and γdown. To keep the experimental
design manageable, we set the mobility variables as contrasts between immo-
biles vs. upwardly mobiles and immobiles vs. downwardly mobiles, where
mobile individuals are coded as 1, and otherwise as 0. The interpretation of
the coefficients is the same as in ordinary least square (OLS) regression. The
diagonal means for the continuous dependent variable are µii ∈ {2, 4, 6, 8}.
As a practical example, one can imagine that the diagonal means are the
different levels of self-rated health, where we observe the population means of
a 11-point scale, 0 for excellent health and 10 for very poor health, so as the
means are lower for the higher class and higher for the lower class.

The diagonal ratios we set for the logistic dependent variable are πii ∈
{−2,−1.5, .5, 1}. One might think of, as a practical example, the risk of
surviving or not surviving. In this example, the diagonal ratios observed are
the probabilities of not surviving, which are then lower for the higher classes
and higher for the lower classes. Table II.3 summarizes the population values
we have set to fix the parameters ρ, r, γUp and γDown:

We set negative effects for people experiencing upward mobility, one
moderate (−0.1) and one strong (−0.5). Conversely, experiencing downward
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mobility has negative effects with the same magnitudes but reversed sign-
positive effects on the simulated outcome. One might think, recalling the
preceding example, that experiencing upward social mobility may reduce
the risk of death, while experiencing downward mobility may increase it.
Concerning the class weights, we set the weighting parameters in the first
row of Table II.3 such that the origin of individuals has greater salience
than the destination class. The second row assumes that both the origin
and destination have equal salience. Lastly, the third row attributes greater
importance to the destination class than to the origin class. To keep the
experiment’s design focused on the mobility coefficients, we did not allow the
weighting parameters to vary across the categories of origin and destination.

We reported the standardized bias computed as

(
¯̂
β−β

SE(β̂)

)
, where

¯̂
β is the

average value of the simulated estimates and β is the true population value,
and the empirical coverage rate (ECR), computed as 1

Nsim

∑Nsim

i=1 1(β̂low ≤
β ≤ β̂up), which is the average number of times the true population values are
within the lower and upper boundaries of the estimated confidence interval
(CI). Following Burton et al., 2006 and Collins et al., 2001, as a rule of
thumb, a cut-off point of .40 was assigned to consider an estimate severely
biased, as “it has been shown to have a noticeable impact on the efficiency,
coverage, and error rate” (Burton et al. 2006, :4287). The ECR indicates the
proportion the 100(1−α) CIs contain the true population values, where the α
chosen is the canonical 0.05. The optimal value of ECR is 0.95; if it is lower,
the confidence intervals are said to be too permissive and the model will
incorrectly detect a significant result, leading to higher type I errors: that is,
the rejection of a true null hypothesis. If the ECR is higher than 0.95, the CIs
are said to be conservative, leading to a loss of statistical power and higher
chances of type II errors: that is, the non-rejection of a false null hypothesis.
Following Burton et al., 2006, to define the boundaries within which the
ECR can be considered acceptable, the estimate should not fall outside two
standard errors (SEs) of the nominal coverage probability p = 0.95. The SE
is calculated as SE(p) =

√
p(1− p)/Nsim, where p is defined as the nominal

coverage probability (i. e., p = 0.95) and Nsim represents the total number
of simulations performed. In our case, SE(p) ∗ 2 is equal to 9.747 × 10−3.
Adding and subtracting this quantity to and from .95 gives us (rounded)
lower and upper boundaries of 0.940 and 0.960, respectively. Tables in the
Appendix A and Appendix B show the standardized bias (γUp and γDown)
and ECR (100(1 − α)Up and 100(1 − α)Down) summary measures of the
2,000 repetitions for each scenario.
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Continuous Dependent Variable

Considering the continuous dependent variable scenario, we focused our
analysis of the performance measure on the standardized bias and the ECR
of the upward and downward mobility coefficients. The first aspect to be
highlighted is that there is no substantive bias δ affecting the parameters under
test. For what concerns the capability of the model to detect statistically
significant effects at the 95% level, the findings suggest that the DRM is
affected by under- and over-coverage in specific cases. Appendix A contains
a table with a complete summary of the performance measures.

Bias

Figure II.1 provides a visual representation of the bias of the estimates (full
results can be found in Appendix A). Panel II.1a shows the standardized
bias affecting the indicator of upward mobility. Panel II.1b depicts the
standardized bias affecting the dummy variable for downward mobility, where
the subgraphs are generated by combining the salience parameters that sum
up to 1 for the columns, and the true population values of the indicator for
upward mobility for the rows. The subgraphs are generated according to
the initial conditions of the experimental design: the columns are the true
weighting parameters combined, to sum up to 1, and the rows are the values
of the downward mobility indicator. The vertical axis shows the combinations
of the true upward mobility parameter value set and the total sample size
used for the DGP; the horizontal axis shows the degree of standardized bias.
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Figure II.1: Upward and Downward Mobility Bias Lollipop Plot for Linear Scenario

(a) Bias Upward Mobility (b) Bias Downward Mobility
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For the linear dependent variable scenario, panels II.1a and II.1b show
that the bias affecting the mobility estimates is well below the .40 threshold.
Considering the bias direction of the mobility indicators, panels II.1a and
II.1b show a tendency of the bias to move in opposite directions. For instance,
in the upper- and bottom-left and in the upper- and bottom-center subgraphs
of panels II.1a and II.1b, we see that the direction of the bias is negative for
the upward mobility indicator and vice versa.

Empirical Coverage Rates

Focusing on the capability of the model to detect the true population effect,
figures II.2a and II.2b depict the empirical coverage rates (ECR), according
to each true population value. The two panels are divided as before: the
columns are formed by the salience parameters (summing up to 1), and the
rows represent the true population values concerning the upward or downward
mobility variables. The dashed lines indicate the minimum and maximum
boundaries within which the ECR is considered acceptable.

Figure II.2: Upward and Downward Mobility ECR Plot for Linear Scenario

(a) ECR Upward Mobility (b) ECR Downward Mobility

Panels II.2a and II.2b show that almost all of the ECR computed are
within the lower and upper boundaries represented by the red dashed lines.
However, it is worth noting that in panel II.2a, when the salience of origin is
weaker and the mobility coefficients are weak (i.e., −0.1) for both upward and
downward mobility variables (upper-left subgraph of panel II.2b), the DRM
underestimated the true population value within the CI when the sample
size was set to 750 and 500 individuals. This means that, as the computed
ECR is lower than 0.95, the DRM yields CI that are too permissive when
both the true upward and downward mobility effects are weak, thereby losing
statistical power and increasing chances of type I errors. The same result
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can be found in the bottom-right subgraph of panel II.2a, in the case of
N = 1, 000 and γUp = −0.5, and N = 500 and γUp = −0.1.

Logistic Dependent Variable

As with the continuous dependent variable scenario, we focused our analysis
of the performance measure on the standardized bias and the ECR of the
upward and downward mobility coefficients. Appendix B contains a complete
overview of all results. We provide a visual representation of the results in
the next section.

Bias

Figure II.3 shows that, despite the increase in magnitude compared with the
continuous dependent variable scenario, the bias estimation should not affect
the efficiency, coverage, and error rate as it is below the 0.40 threshold.
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Figure II.3: Upward and Downward Mobility Bias Lollipop Plots for Logistic Scenario

(a) Bias Upward Mobility (b) Bias Downward Mobility
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As in the linear dependent variable scenario, panels II.3a and II.3b show
opposite directions of bias when we consider upward and downward mobility
variables concurrently. The only exception can be found in both columns
where the salience parameters are of equal importance: that is, when both
are set to 0.5.

Empirical Coverage Rate

We now consider the capability of the DRM to capture the true population
effect when the dependent variable is dichotomous. Figure II.4 depicts the
ECR computed for each true parameter. Panel II.4a shows the ECR for the
parameters set to model the effect of upward mobility, while II.4b shows the
ECR for the parameters related to the downward mobility variable included
in the true model.
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Figure II.4: Upward and Downward Mobility ECR Plot for Logistic Scenario

(a) ECR Upward Mobility (b) ECR Downward Mobility
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Panel II.4a shows under-coverage for both weak and strong upward mobility
effects, especially when the concomitant downward mobility coefficient is weak
(upper row of panel II.4a). This means that the DRM computes CI that
is too permissive, leading to higher chances of type I errors (rejection of
true null hypothesis). Panel II.4a shows further that when the weighting
parameters are of equal salience, the DRM correctly computes the confidence
intervals (center column of panel II.4a), although the degree is less severe.
When the origin of individuals has greater salience (upper and lower right
subgraphs), the ECR computed are under the lower boundary, especially
when the concomitant downward mobility effect is weak.

Panel II.4b shows that when the weighting parameter is weaker for social
origin, we found severe under-coverage, especially when the upward mobility
effect was strong and the downward mobility effect was weak. Surprisingly,
panel II.4b shows under-coverage when the sample size becomes larger (specif-
ically, N = 750 and N = 1,000) when the upward mobility coefficient is
weaker.

II.5 Discussion & Conclusions

In empirical research on the effects of social mobility, social scientists strive
to design a statistical model capable of disentangling the effects of origin,
destination, and mobility. The main methodological challenge has been the
identification problem: that is, the linear dependency of social origin, destina-
tion, and mobility. In recent literature, applied researchers rely increasingly
on Sobel’s Diagonal Reference Model, owing to its desirable property of
distinguishing the origin, destination, and mobility parsimoniously and with
interpretable parameters. However, the collection of weak or null findings
calls into question the supposed capability of the DRM to overcome the
identification problem. In this paper, we have tried to obtain a deeper under-
standing of the model through Monte Carlo simulation, testing how the DRM
behaves when dealing with the identification problem under common condi-
tions. The experimental design considered two types of scenarios: the first
tests the behavior of the DRM assuming the dependent variable is continuous,
while the second assumes a dependent variable that follows an inverse-logistic
function: that is, generating a dichotomous dependent variable. We also
tested the model for different sample sizes, specifically at 500, 750, and 1,000
individuals. Our measures of interest were the standardized bias, to see how
far the computed estimates departed from the population value, and the
empirical coverage rate, to assess how many times the computed confidence
intervals include the true parameter value.
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Overall, our results show that the DRM is not affected by severe bias,
although the standardized bias is greater: that is, the estimates depart further
from the true population value in the logistic scenario, but still at acceptable
levels. In this sense, we expected a degree of bias in the mobility estimates, as
we constructed the differences among categories in the main diagonal using a
determined set of means. This is in accordance with Sobel, 1981, who warned
that estimates obtained by the DRM would be biased but consistent as the
distribution of our computed estimates confirm (see Appendix C).

Although the magnitude of the standardized bias is not at a critical
level to affect efficiency, coverage, and error rate, our findings show that
the DRM tends to underestimate the effects of mobility. Specifically, as the
relative charts show (see Figures B.1, B.2, B.3 and B.4), the direction of the
standardized bias seems to go in opposite directions when compared to the
bias affecting upward and downward mobility indicators simultaneously. This
behavior of the DRM might partly explain why many empirical studies have
failed to detect mobility effects, even if they were to be expected by theory.
For applied researchers, this would translate to a bias toward zero that hides
the true effects of mobility in the outcome variables. For what concerns the
capability of the model to correctly capture the true population value, our
findings suggest that in both the linear and logistic scenarios the computed
ECR are affected by under- or over-coverage. The DRM failed to detect the
true population value correctly quite evidently in the logistic scenario, and
in specific cases when we set the dependent variable as continuous. Applied
researchers might hence want to exercise special care when the dependent
variable is dichotomous.

Our study has some limitations. First, as this paper relies on an experi-
mental design, the sets try to simplify the overarching complexity of the real
world. Although our random occupational mobility table was theory-driven
and we constructed the scenarios according to common types of data empirical
researchers usually encounter, the generalization of the results may be limited
in some cases. Second, our Monte Carlo simulation did not introduce any
source of ”disturbance” into the model. This is for two reasons: we aimed
to assess the behavior of the DRM in general, and its capability to detect
mobility effects in particular. That is to say, we wanted to test whether the
DRM is capable of simultaneously detecting origin, destination, and mobility
effects when they are present in the population, without other potential
confounding factors. The other reason focuses on the secondary aim of this
contribution: to provide input for further developments concerning the iden-
tification problem in social stratification and mobility research, particularly
on the DRM. The limitations of this study may serve to encourage future
contributions on the DRM. More specifically, future research should attempt
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to include a full-range mobility variable, for example, a variable that takes
into account the full range of social mobility trajectories to build up the
population model. To reduce the discrepancy between simulated datasets and
real-world data, the inclusion of unobserved heterogeneity would result in a
more realistic dataset. Another aspect that we did not cover in this study is
the behavior of the DRM to other types of non-normal distributions. We think
this is of particular interest in light of the findings related to the dichotomous
dependent variable. To enable causal inference in further applications, we
suggest that future research should address the implementation of the DRM
to simulated longitudinal data. In addition, recent research has started to
apply the DRM to panel data (Billingsley et al., 2018), specifically comparing
the efficiency of the DRM with traditional statistical models. The last point
is of particular importance, as current research has applied the DRM mainly
to cross-sectional data, with a few exceptions. In conclusion, we hope that
our contribution will help advance the study of the consequences of social
mobility. Our results show that the DRM is a helpful tool, but no silver
bullet. It is best used with careful consideration of the particular application
context.

Notes
9See Hendrickx et al., 1993 for a comparison between the Square Additive model, the

halfway/difference model, and the DRM.
10See also De Graaf and Ultee, 1990 and Van der Waal et al., 2017 for an explanation of

the parameterization of the DRM in the occupational mobility table.
11We follow the consolidated notation as introduced by Goodman, 1979.
12The random generation of the counts within each cell is p(y) = n!

y!(n−y)!πy(1− π)n−y

(Agresti, 2018)
13However, this choice is arbitrary, and readers are free to think of alternative outcomes

more related to their areas of interest.
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Abstract

Missing data due to panel attrition poses a serious challenge in longitudinal
survey analysis. Even if an unavoidable phenomenon, progressive dropout
affects sample representativeness over time and can limit causal inference
severely. The threats to causal inference due to attrition will intensify in case
the missing data mechanism is related to a longitudinal process, leading to
Missing Not at Random (MNAR). In this paper, we assess the Joint Modeling
(JM) approach as a promising tool to tackle threats to causal inference due to
MNAR dropout. The JM approach has been developed in the late 1990s in the
biomedical sciences, but has not received much attention in the social sciences.
Using simulated data, we examined how the JM performs under conditions
of dynamic informative dropout. We compared it to the Linear Mixed Model
(LMM) and the time-varying parametric (Weibull) survival regression model,
testing these models against two theoretically based scenarios. Our results
suggest that the JM performs better in terms of bias and efficiency of the
estimates, than the parametric time-to-event regression. Compared with
the LMM, the estimates of the longitudinal trend are similar. Concerning
a scenario investigating unobservable time trend bias, results show that the
JM approach provides correct estimates of the assumed longitudinal trend.
The comparison between the JM, the LMM, and the time-varying covariate
Weibull regression shows that the JM and LMM yield good approximations
of the true population values, while the Weibull clearly fails to do so. We
conclude that the JM approach can be of great use for social scientific research
with, for example, a focus on dynamics of social change and the life course,
where problems of attrition and MNAR are rampant in many of the widely
used panel datasets.
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Missing data due to panel attrition poses a severe challenge in longitudinal
survey analysis. Even if an unavoidable phenomenon, progressive dropout
affects sample representativeness over time and may limit causal inference
severely (Laird, 1988; Lugtig, 2014; Schifeling et al., 2015; Vandecasteele
& Debels, 2007). The threats to causal inference due to attrition might be
significantly exacerbated in the case the missing data mechanism is related
to a longitudinal process, leading to Missing Not at Random (MNAR, see
Appendix A for a formal review of missing data processes; Billingham and
Abrams, 2002; Diggle and Kenward, 1994; Stolz et al., 2018). In this scenario,
panel data analysis of the longitudinal outcome variable would return biased
and inconsistent estimates (Lugtig, 2014; Marini et al., 1980; Trappmann
et al., 2015; Vandecasteele & Debels, 2007). From a statistical perspective,
MNAR introduces two potential sources of bias: endogeneity and progressive
homogeneity of the sample. Firstly, endogeneity occurs as the pattern of the
longitudinal outcome variable is dependent upon and - at the same time - may
be influenced by the probability of dropout of the observation unit. Ignoring
the endogenous selection process leads to a problem of unobservables in the
causal estimation, as it is possible to observe the evolution of the longitudinal
variable only among units of observations that have not dropped out from
the study14 (Halaby, 2004; Little, 1995; Papageorgiou et al., 2019; Rubin,
1976). In terms of sample representativeness, informative dropout leads to
a ”survival of the fittest” process. That is, the observation units within the
sample tend to be more homogeneous over time according to determining key
characteristics. Abbring and Van Den Berg, 2007; Balan and Putter, 2019;
Haviland et al., 2011; Liu et al., 2010. This paper assesses the Joint Modeling
(JM) for longitudinal, and survival data approach as a promising tool to tackle
threats to causal inference due to MNAR dropout. Early developments of the
JM approach have been within the field of biomedical studies on HIV/AIDS15.
The main purpose that drove the development of the JM was to assess the
association between the survival of patients and the longitudinal trajectory
of the CD4 biomarker, which is related to AIDS progression (Wulfsohn and
Tsiatis 1997; Wang and Taylor 2001). The model was then further developed
in cancer studies and quality-of-life (QOL) studies (Chi and Ibrahim 2006
and in clinical trials in other fields (for instance, Xu and Zeger 2001 and
Henderson and Oman 1999; for a review, see Tsiatis and Davidian 2004).
Although the increasing interest and empirical applications of the JM in the
biomedical sciences, this approach has not yet received much attention in the
social sciences (only very recently did sociological literature start to provide
attention to the JM. See Li et al., 2020 for an example)16. The structure of the
JM approach combines two underlying submodels: the longitudinal component
(the outcomes measured over time) and the survival component (the time
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until an event occurs). In practical terms, the JM estimates simultaneously
a given longitudinal pattern employing a linear mixed model (LMM) and a
time-to-event regression model 17, thereby allowing to accommodate a given
MNAR process. The most common strategy to link the two sub-models is
the shared parameter framework, which joins the two components through
shared random effects. The main advantage of the JM approach lies in the
possibility of assessing the degree of association between the longitudinal and
the dropout pattern. These components then share part of the parameter
distribution through shared random effects (for details, see Rizopoulos 2011).
Additionally, the model allows for either fixed (such as class of origin or
gender) or time-varying (such as the age of individuals) covariates in the
longitudinal and the survival sub-models. This association makes it possible
to assess direct and indirect effects on the overall dropout mechanism (Ibrahim
et al., 2010). In this sense, the JM model allows the empirical researcher
to gain additional insights by modeling and quantifying the influence of the
missing data process on the longitudinal outcome of interest. Despite the
apparent advantages of the JM, its potential in a social scientific setting and
performance compared to other models remains unclear.
Addressing this research gap, we set out to examine how the JM performs
under conditions of dynamic informative dropout. To help contextualize our
findings, we compared them to the Linear Mixed Model and the time-varying
parametric (Weibull) survival regression model, both models widely used
in the social sciences. We tested all models against two theoretically-based
scenarios: first, we examined the models’ behavior in the case of omitted
variable bias; second, we focused on the specification of the assumed time
change. The problem of unobserved heterogeneity has been widely recognized
within both the biomedical (Liu, 2013; Liu et al., 2010; Zheng, 2020) and
the sociological literature (Blossfeld & Hamerle, 1989). We simulated the
longitudinal pattern as a linear trend adjusted for a binary and a time-varying
continuous covariate in the first scenario. The design of the dropout process
depended upon the same set of covariates plus the endogenous longitudinal
outcome. We then compared the models with and without the time-varying
regressor to evaluate the performance of the estimators. In the second
scenario, the simulated longitudinal data and the dropout follow a cubic spline
approximation probability function. This scenario examines the characteristics
of the models with and without the nonlinear terms (quadratic and cubic
parameters). Crowther et al. (2016) investigated the JM approach behavior
in the presence of time misspecification, comparing the efficiency of different
computational characteristics and association parameters. We generated
three simulation studies within each scenario with varying strengths of the
association between the longitudinal outcome variable and the dropout process.
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We performed 200 replications for each scenario and 1000 observation units
for each repetition. The remainder of the paper is as follows: the next section
provides an overview of the computational characteristics of the JM approach
and additional details on the estimation method deployed by the model.
Subsequently, we depict the Monte Carlo simulation design and a descriptive
overview of the simulated datasets. The following section describes the results
of the Monte Carlo simulation. The section will cover both scenarios by the
different association degrees set in the true population model. Finally, we
conclude with the implications for applied social researchers of this study.

III.1 The Joint Modeling Approach

In order to see how the JM models the association between longitudinal
measurements and chances of event occurrence (such as drop-out from the
study), assume that Ti is the observed drop-out time of the ith individual,
taken as the minimum of the time of drop-out T ∗

i , and Ci is then the censoring
time such that Ti = min(T ∗

i , Ci). Define δi = I(T ∗
i ≤ Ci) as the function of

the event indicator, which takes the value 1 if the drop-out occurs (that is,
T ∗
i ≤ Ci is true), 0 otherwise. The observed longitudinal outcome for the

individual can be conceived as a vector Yij = {yi(tij), j = 1, . . . j, ni} where
tij denotes the outcome at time measurement j (Rizopoulos 2011). The true
but unobserved longitudinal outcome can be denoted as mi. The standard
option to quantify the unobserved mi(t) and its effect on the risk that the
event occurs is to use a time-to-event regression model such as:

hi(t| Mi(t), wi) =

= lim
dt→0

Pr{t ≤ T ∗
i min t+ dt| T ∗

i ≥ t,Mi(t), wi}/dt

= h0(t)exp{γTwi + αmi(t)}, (III.1)

where h0(t) in equation III.1 represents the baseline hazard as a function of
time and Mi(t) denotes the history of the longitudinal unobserved outcome.
The baseline hazard function can be left unspecified, as in a semi-parametric
Cox regression, or be assumed to take a specific distribution, such as the
exponential, Weibull, or Gompertz distributions; γT represents the vector
of coefficients for the set of individual covariates wi. The parameter α
quantifies the association between the risk the event occurs and the true
longitudinal history of the covariate. In the biostatistical literature, there
are many ways in which this parameter is quantified (see Crowther et al.
2016) for a brief description). In our application, we will use the current
value association, as it is the most used in biostatistical and biomedical
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research. This parameter returns the hazard change due to a 1-unit change of
the longitudinal outcome variable. The term mi represents the longitudinal
trajectory of the ith individual as a function of time. To reconstruct the
unobserved mi trajectory, the observed yit can be used18. Assuming that the
longitudinal covariate is normally distributed, it is possible to model Mi(t)
using yit for each individual estimating a linear mixed effect model of the
form

yi(t) = mi(t) + ϵi(t)

mi = xT
i (t)β + zTi (t)bi + ϵi(t), (III.2)

where yi is the outcome of interest of random variable with normal distribution
N ∼ (µ, σ2). Equation III.2 shows that the true longitudinal pattern mi can
be decomposed in a vector of fixed effects of β parameters and a bi vector of
random effects. The associated xi(t) and zi(t) form the rows of the design
matrices for the fixed and random effects, respectively. The random effects
are to be distributed as bi ∼ N (0,Σ), where Σ is the covariance matrix:

Σ =

[
σ2
00

σ2
01 σ2

11

]
. (III.3)

The matrix states the covariance between the residuals of levels 2 (indi-
viduals) and 1 (repeated measurements or observations). That is, σ2

00 and
σ2
11 represent the variance components of the individuals’ specific intercepts

and the slopes, respectively, while the term σ2
01 represents the correlation

between the random intercept and the random slope for each individual in the
longitudinal study. As per Papageorgiou et al. (2019), the estimation methods
developed for the Joint Modelling approach in the biostatistical literature
follow both Bayesian and frequentist theories. Here, we will focus on the
frequentist approach (but see Hu et al., 2009 for the Bayesian alternative).
The common point of these paradigms is in the full joint likelihood from the
joint distribution of the longitudinal and the time-to-event outcomes. The
joint likelihood function is:
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L(θ | Dn) =
n∏

i=1

p(Ti, T
U
i , δi,y1i, . . . ,yKi; θ) (III.4)

=
n∏

i=1

∫
p(Ti, T

U
i , λi,y1i, . . . ,yKi; θ)dbi

=
n∏

i=1

∫ 
K∏
k=1

nki∏
l=1

p(ykil | bki; θ)

 p(Ti, T
U
i , δi | bi; θ)p(bi; θ)dbi.

Equation 4 can be re-expressed as in Crowther et al. (2016):

N∏
i=1

∫ ∞

−∞

(
ni∏

p(yi(tij) | bi)

)
p(bi | θ)p(Ti, di | bi, θ)dbi

 , (III.5)

where the longitudinal outcome is:

p(yi(tij) | bi) = (2πσ2
e)

−1/2exp

{
− [yi(tij)−mi(tij)]

2

σ2
e

}
, (III.6)

and the multivariate normally distributed random effects are:

p(bi | θ) = (2π|V |)−q/2exp

{
−b

′
iV

−1bi
2

}
. (III.7)

The survival outcome is:

p(Ti, di | bi, θ) = [h0(Ti)exp(αmi(t) + ϕvi)]
di (III.8)

× exp

{
−
∫ Ti

0

h0(u)exp(αmi(t) + ϕvi)du

}
.

In the frequentist approach, the estimates (represented by the vector θ of
equation 4) can be derived through Maximum Likelihood Estimation (MLE),
using the expectation-maximization (E-M) algorithm (Dempster, Laird, and
Rubin 1977; Wulfsohn and Tsiatis 1997) by maximizing the log-likelihood
using the Newton approach (Thiébaut and Bénichou 2004). The estimation,
however, is computationally demanding, as the integral over the random
effects does not have a closed-form solution. Crowther et al. (2013), Crowther
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et al. (2016) propose in their stjm package in Stata the Gauss–Hermite
quadrature to evaluate intractable integrals19. Nowadays, the concepts and
principles of equity in scientific health literature have further developed the
JM approach to accommodate different data and estimation methods. For
instance, the latent class specification Proust-Lima et al., 2014, recurrent
events Huang and Liu (2007), and Li et al. (2020) provides a theoretical
and empirical exposition. Concerning the longitudinal outcome, Viviani
et al. (2014) presented a specification of the JM to include dichotomous
and count data; finally, Hu, Li, and Li (2009) and Cremers, Mortensen, and
Ekstrøm (2021) developed a Bayesian framework for the specification of the
JM approach.

III.2 Simulation Design

The Monte Carlo Simulation consisted of two main scenarios, in which we
tested three statistical models: a) the Linear Mixed Model (LMM); b) the time-
to-event regression model (with Weibull distributed baseline hazard ratio),
and c) the JM approach. The first scenario aims to test the models’ behavior
in the presence of unobserved heterogeneity, specifically when omitted variable
bias is present. The second scenario tests the models’ performance in the
context of misspecification of the longitudinal outcome variable. The Data
Generating Process (DGP) for both scenarios relied on generating two data
types: firstly, we generated the dropout mechanism. Secondly, we generated
the longitudinal outcome variable, assuming its values as continuous and
normally distributed. To generate data in which the longitudinal outcome
and the dropout mechanism have different association degrees, we modeled
three DGPs within each scenario, where the α parameter (i.e., the parameter
quantifying the association) takes values 0, 0.25, 0.5. This setting is useful to
compare the statistical models under no association (α = 0, assuming thus
Missing at Random dropout mechanism), moderate association (α = 0.25),
and strong association (α = 0.5). The measures of performance through
which we compared the models are the bias from the population true value

and the coverage rate. The bias measurement is computed as
(
¯̂
β − β

)
, where

¯̂
β is the average value of the simulated estimates and β is the true population
value(Burton et al., 2006). In Appendix B, the reader can find the bias
summary, mean squared error (MSE), and coverage for the parameters of
interest. For the unobserved heterogeneity scenario, the parameters of interest
are the βX2 (i.e., the group comparison parameter) and α parameters. For
what concerns the time misspecification, the analysis focused on the cubic
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term of the longitudinal pattern (β(t)3) and the α parameter. The software
used for the generation, simulation, and analysis of the results is Stata, version
15.1. The packages used are: for the generation of the survival data, simsum
(Crowther and Lambert 2013); for the computation of Joint Modeling, stjm
(Crowther et al. 2013); and for the analysis of the simulated datasets, simsum
(White 2010). The tables and the graphs shown in the Results section with
R.

Data Generating Process

Unobserved heterogeneity

Schumacher, Olschewski, and Schmoor (1987) and Schmoor and Schumacher
(1997) have shown (analytically and by simulation) that the omission of
relevant explanatory variables could lead to a severe bias toward zero in the
estimates. The omission of explanatory variables, which leads to omitted
variable bias, can be translated into an unobserved heterogeneity issue. In this
data generation process, we want to test the three models over the presence
of unobserved heterogeneity in the sub-optimal model. This scenario aims to
assess how much we lose if a source of heterogeneity is left unspecified in the
model, given the specificity of the JM to exploit frailty in both longitudinal
and survival submodels. The true model, which generates the data, and
the fitted model (where we did not include the measurement of X2) can
respectively be expressed as:

True Model

mi = 1.5 + .5(t) + .9X1 + .05X2 + eij (III.9)

eij = N (0,Σ) = Σ =

[
σ2
00

σ2
01 σ2

11

]
σ2
00 = 2.5

σ2
11 = 1.5

σ2
01 = 0.3

h(t | βi) = .05 ∗ 1.25t.05−1 + exp[α ∗ (β0 + β1 + .9X1 + .05X2)]

Fitted Model
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mi = 1.5 + .5(t) + .05X2 + eij (III.10)

eij = N (0,Σ) = Σ =

[
σ2
00

σ2
01 σ2

11

]
σ2
00 = 2.5

σ2
11 = 1.5

σ2
01 = 0.3

h(t | βi) = .05 ∗ 1.25t.05−1 + exp[α ∗ (β0 + β1 + .05X2)]

The first equations of both the true and the fitted models represent the
DGP for what concerns the fixed effects of the longitudinal pattern. The
covariates included in the true population values are one time-varying (X1)
and dichotomous (X2). Between the categories of X2, we have let the dropout
rate be different to test the models’ capability to detect the true effect under
different dropout paces. Subsequently, the true random-effects population
values in the variance-covariance matrix are the random intercepts (σ2

00),
the random slopes (σ2

11), and their correlation to each other (σ2
01). The last

equation represents the true dropout mechanism of the simulated sample.
Figure III.1 shows graphically the simulated data. Figure III.1a shows the
longitudinal pattern across the follow-up years of study among individuals
that did not drop out (on the left) vs. the individuals that left prematurely
(on the right) when α = 0.5.

The sub-graph shows clearly that the two longitudinal patterns differ
substantially between the two groups due to informative dropout under
process. Figures III.1b and III.1c show the longitudinal gradient of the
longitudinal outcome and the Kaplan-Meier survival rates, respectively.

Time misspecification

In this data generation process, we want to test the LMM, JM, and Weibull
survival models in the presence of misspecification of the longitudinal pattern.
Suppose that the true but unobserved longitudinal history Mi of the longi-
tudinal outcome variable has a cubic shape. However, the researcher (who
can compute the model on the observed yit) is unaware of the more complex
pattern and estimates the longitudinal coefficient in a more straightforward
linear form.

True and Fitted Model
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Figure III.1: Descriptive graphs of the DGP. Panel (a) Shows the Differences
between the Stayers and the Dropped-out. Panel (b) Shows the Linear
Longitudinal Trend. Panel (c) Shows the Kaplan-Meier Estimates to Quantify
the Drop-Out Rate.

(a) Longitudinal Pattern by who remained in the study
(on the left) vs. who dropped-out (on the right).

(b) Simulated Longitudinal Pattern

(c) Simulated Survival Curves
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mi = 1.5 + .025(t)− .3(t)2 + .05(t)3 + eij (III.11)

eij = N (0,Σ) = Σ =

[
σ2
00

σ2
01 σ2

11

]
σ2
00 = 2.5

σ2
11 = 1.5

σ2
01 = 0.3

h(t | βi) = .05 ∗ 1.25t.05−1 + exp[α ∗ (1.5 + ..025(t)− .3(t)2 + .05(t)3)]
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Figure III.2: Descriptive graphs of the DGP. Panel (a) Shows the Differences
between the Stayers and the Dropped-out. Panel (b) Shows the Non-Linear
Longitudinal Trend. Panel (c) Shows the Kaplan-Meier Estimates to Quantify
the Drop-Out Rate.

(a) Longitudinal Pattern by who remained in the study
(on the left) vs. who dropped-out (on the right).

(b) Simulated Longitudinal Pattern

(c) Simulated Survival Curves
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Similarly to figure III.1, figure III.2 represents the simulated informative
dropout, the gradient of the longitudinal outcome, and the Kaplan-Meier
estimate of dropout. The subgraph a shows the different longitudinal trends
over time between individuals that did not drop out vs. those who had done
when α = 0.5. Subfigures b and c show the cubic pattern (i.e., the true
longitudinal trend) of the longitudinal outcome and the dropout rate from
the study.

III.3 Results

Considering the unobserved heterogeneity scenario, the figures in this section
show the distributions of the 200 parameters simulated through the Monte
Carlo technique. The figure shows the histogram and the computed density
plot of the parameter distributions. The dashed black line represents the
mean of the distribution, while the red line represents the true population
value. The degree of bias of the estimators of interest is the distance between
the dashed black line and the red line. Appendix B shows the results in
tabular format for both scenarios. Specifically, the performance measures
we assess the models’ behavior are: a) the degree of bias; b) the empirical
standard error; c) the mean squared error; d) the Root Mean Squared (RMS)
model-based standard error, and e) 95% coverage intervals.

No Association

We begin with the DGP constructed so that there is no association between the
longitudinal outcome and the dropout mechanism. Figure III.3 represents the
distributions of the group comparison parameter βX3 estimated by the LMM,
the JM, and the WM. In the left column, figure III.3 shows the distributions for
the models deployed to analyze the true DGP. In the right column, the figure
compares the same estimator but in the presence of unobserved heterogeneity.
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Figure III.3: Distribution of simulated group comparisons βX3 estimated by the LMM, JM and WM. In the left
column, the models are deployed to the true DGP. On the right column, the DGP is affected by unobserved
heterogeneity.

107



It is immediately clear from the graph that the LMM and JM are unbiased
estimators for what concerns the group comparison parameter β3X3, as the
true value and the mean of the distribution are very close. For what interests
the Weibull regression, also, in this case, the estimator is unbiased. However,
the distribution clearly shows the presence of outliers. This finding suggests
that, even if the dropout mechanism at this stage should not influence the
inference, the model does not return efficient estimations.

Considering the α parameters computed by the WM and the JM, figure
III.4 depicts the distributions of the simulated parameters. Figure III.4 shows
that, conversely to the βX3 estimations, the α parameters of both the models
are slightly affected by unobserved heterogeneity.
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Figure III.4: Distribution of simulated α parameters estimated by the LMM, JM and WM. In the left column, the
models are deployed to the true DGP. On the right column, the DGP is affected by unobserved heterogeneity.
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Specifically, the right column of figure III.4 shows evidence of bias toward
zero, as the mean of the distribution is on the left concerning the red line,
representing the true value set on the simulation scenario. The left column
depicted in the figure shows that, under no association between the longitudi-
nal outcome and the dropout process, both the models can detect the true
population value. It is worth noting that the WM can capture the true value
more efficiently than the previous comparison among the models.

Moderate Association

In this scenario, the association between the longitudinal outcome and the
dropout process is moderate. As in the previous part, where the Monte Carlo
simulation assumed MAR, the models’ comparison focuses on the dichotomous
variable coefficient β3 and the association α parameters.
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Figure III.5: Distribution of simulated group comparisons βX3 estimated by the LMM, JM and WM. In the left
column, the models are deployed to the true DGP.

111



The left column of figure III.5 shows that all the models under study
return an unbiased estimation of the coefficient βX3. When unobserved
heterogeneity is present, evidence suggests a different behavior between the
models. While the LMM and the JM return unbiased estimates and a similar
distribution, the WM performs worse in comparison. Indeed, figure III.5
shows that the Weibull regression returns upwardly biased estimations of βX3

coefficient.
Figure III.6 shows the distribution of the α parameter, comparing the

Wm vs. the JM estimations.
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Figure III.6: Distribution of simulated α parameters estimated by the LMM, JM and WM. In the left column, the
models are deployed to the true DGP. On the right column, the DGP is affected by unobserved heterogeneity.
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From the left column of the graph, it is possible to note that the WM
estimation of the effect of the longitudinal outcome on the dropout rate is
upwardly biased when the model is applied to the true DGP, while the JM can
correctly estimate this association. In the case of unobserved heterogeneity,
the column’s right column shows a similar pattern between the two models.
Indeed, both distributions of simulated parameters tend to underestimate the
association between the longitudinal outcome and the dropout mechanism.

Strong Association

The last DGP computed for the unobserved heterogeneity scenario strongly
correlates with the longitudinal pattern and the dropout rate. The results
generally show a similar depiction of the models’ behavior to the moderate
association scenario. Figure III.7 shows the distribution of the coefficients
βX3 estimated by the statistical models.
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Figure III.7: Distribution of simulated group comparisons βX3 estimated by the LMM, JM and WM. In the left
column, the models are deployed to the true DGP. On the right column, the DGP is affected by unobserved
heterogeneity.

115



As in the previous DGP, figure III.8 shows that both the JM and the
LMM provide unbiased estimates of the dichotomous variable βX3. Even
more, the right column indicates that the two models are quite robust against
omitted variable bias.

The figure, however, shows a different depiction of what concerns the
estimations computed by the WM. The true and the omitted variable models
are upwardly biased (more seriously biased when the omitted variable bias is
present).

Moving to the detection of the α parameter among the WM and the
JM models, figure III.8 shows the relative distributions of the parameters
computed by the models across the Monte Carlo repetitions.
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Figure III.8: Distribution of simulated α parameters estimated by the LMM, JM and WM. In the left column, the
models are deployed to the true DGP. On the right column, the DGP is affected by unobserved heterogeneity.
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The left column of the figure shows substantial differences between the two
models regarding the capability of detecting the effect of longitudinal effects
on dropout. Indeed, if the JM returns unbiased estimates for the population
generating process, the WM fails to do so, returning heavily upward biased
estimates. On the contrary, both models show similar behavior in the omitted
variable bias case, showing serious bias toward zero.

Time misspecification

The second scenario we implemented through Monte Carlo simulation aimed to
investigate the capabilities of the models to detect more complex longitudinal
patterns. This section shows the distributions of the parameters associated
with the cubic term of the longitudinal outcome of interest. We compare
the LMM and the JM for what concerns βt3. We compare the WM and
the JM concerning the α parameter. As in the previous section, we created
three DGPs according to the different degrees of association between the
longitudinal and the dropout mechanisms in this scenario.

No Association

The DGP assuming MAR sets the parameter that shapes the influence of the
longitudinal outcome on the drop out rate (the )α parameter) at zero. Figure
III.9 shows the distribution of the cubic term of the time of measurement
computed by the LMM and the JM.
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Figure III.9: Distribution of simulated cubic term βt3 estimated by the LMM an the JM and the α parameter by the
WM and JM.

(a) Distribution Parameter βt3. On the left: LMM. On the right: JM (b) Distribution Parameter α. On the left: WM. On the right: JM
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The graph shows that the two models behave similarly, as the distributions
are both unbiased. Regarding the αparameter, the JM and the WM are very
similar, presenting no bias.

Moderate Association

When we model a moderate association between the longitudinal outcome
and the dropout rate, figure III.10 shows that both the JM and the LMM
provide reasonable estimations of the cubic term related to the longitudinal
pattern.
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Figure III.10: Distribution of simulated cubic term βt3 estimated by the LMM an the JM and the α parameter by
the WM and JM.

(a) Distribution Parameter βt3 (b) Distribution Parameter α
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The bottom part of the figure, representing the α parameter, shows
evidence of upward bias for what concerns the WM estimator but no bias for
the JM.

Strong Association

The last DGP sets a strong association between the longitudinal and the
dropout mechanisms. Figure III.11 shows the results under this DGP specifi-
cation. The evidence suggests a different depiction than the previous findings.
Indeed, when the informative dropout is relatively strong, the LMM shows a
slight upward bias in detecting the cubic shape of the longitudinal pattern,
while the JM presents no bias at all.
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Figure III.11: Distribution of simulated cubic term βt3 estimated by the LMM an the JM and the α parameter by
the WM and JM.

(a) Distribution Parameter βt3 (b) Distribution Parameter α
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When we consider the α parameter, the findings suggest an exacerbation
of the upward bias of the WM estimator, while the JM is capable of correctly
detecting the parameter set in the Monte Carlo simulation.

III.4 Discussion & Conclusions

In the statistical literature, growing attention focused on the threats intro-
duced by missing data to the causal estimation of phenomena measured over
time. Specifically, the efforts of statisticians, medical and social scientists
regard proposing statistical models devoted to dealing with missing data that
are informative of an underlying longitudinal process, which might affect
correct survey data analysis. This striving effort among scholars of different
disciplines is due to informative dropout’s endogeneity and sample homog-
enization bias. This paper assessed the potential benefits and limitations
of a relatively new statistical model, the Joint Modeling (JM) approach.
The JM approach uses a two-stage estimation method to accommodate for
informative dropout. The approach simultaneously estimates a Linear Mixed
Model and survival analysis to account for the dropout mechanism. The
idea of a two-stage approach to deal with informative missing is not new
in statistics (see Little 1995) and in the social sciences (Heckman, 1979).
This study has compared the JM approach with the traditional linear mixed
model (LMM) and the Weibull regression model (WM). We have tested these
statistical models in two main scenarios, constructed through Monte Carlo
techniques: endogeneity (via omitted variable bias) and time specification of
the longitudinal pattern. The data generating process of the Monte Carlo
study provides three DGPs that are common to each scenario. The first DGP
assumes no association between the longitudinal and the dropout mechanisms.
The second DGP allows for a moderate association between the two simulated
mechanisms. Finally, the third DGP provides a strong association between
the longitudinal phenomenon and the dropout from the study. The unob-
served heterogeneity scenario included three covariates: one exogenous and
one endogenous time-varying covariate and one time-invariant dichotomous
factor. We then omitted the time-varying covariate from the less-than-optimal
models. In the time specification scenario, we created a longitudinal pattern
following a cubic spline approximation to see the models’ behavior when
dealing with more complex phenomena potentially found in the real-world
data analysis. The results suggest that the LMM provides robust estimations
of true differences set with the dichotomous covariate from the first scenario.
The omitted variable bias introduced does not significantly affect the esti-
mation. The findings suggest that the JM approach and the LMM return
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unbiased and robust estimates. These findings are quite surprising as these
findings are in contrast with Touloumi et al. (1999). However, a more recent
study from Stolz et al. (2018) confirms the similarity between the LMM and
the JM. In this sense, this is coherent with the estimation strategy of the JM,
which indeed uses a linear mixed model to detect the longitudinal pattern
and correct it through the analysis of the dropout rate with a survival model.
The findings clearly and constantly favor the JM regarding the α parameter.
Indeed, in some cases, the Weibull regression returned biased estimations
even n the case of no omitted variable bias. These findings are in line with the
previous biomedical literature, and it generally discourages the use of survival
analysis with time-varying covariates (see Prentice 1982 for a formal analysis).
In the second scenario, the findings depict a similar overview of the models’
behavior as we have found with the first scenario. Indeed, the LMM and the
JM can correctly model the more complex shape of the longitudinal outcome
variable. However, when the association between the longitudinal pattern and
the informative dropout is strong (i.e., with α = 0.5), the findings suggest a
slight upward bias of the cubic term for what concerns the LMM, while the
JM presents unbiased estimations. When comparing the WM and the JM,
the evidence highlights the JM’s capability to detect the proper association
parameter better than the WM. Indeed, as the association becomes more
robust, the bias of the WM estimations becomes wider. This study has several
implications for applied social scientists. The first implication concerns the
comparison between the LMM and the JM. We did not find good reasons
to discourage using the LMM, which proved to be a reliable and consistent
statistical model. However, with this study, we hope to have highlighted social
scientists of the potential threats of informative dropout to provide a starting
point for a methodological discussion. One point favoring the JM over the
LMM is detecting more complex longitudinal patterns. Indeed, only a few
phenomena follow linear trends but nonlinear and more complex patterns.
The second implication concerns the comparison between the WM and the
JM. It is of special interest to social scientists in the field of education (i.e.,
the dropout rate from the higher educational system, as an example), medical
sociologists, and demographers (especially for those dealing with datasets
presenting high mortality rates), and economists (e.g., scholars interested in
unemployment spells). From the findings we showed earlier, it is clear (and
consistent with the biomedical literature) that informative dropout heavily
biases the naive time-varying survival regression model, returning inconsistent
estimates. Our results suggest considering informative dropout when using
survival regression models.
We would like to address the limitations of our study as input for further
methodological research on this model. First, we did not test the model with
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simulated discrete-time survival data by using age as the timescale. This
approach could be of particular interest for sociologists and demographers
evaluating life-expectancy inequalities. Second, our study simulated mortality
rates using parametric Weibull distribution; an appealing alternative for
further researchers could be to use dropout rates from real-world databases.
Third, we considered only one specification of the association parameter: the
current value association. The biostatistical literature developed alternative
estimation methods to assess the association between the longitudinal outcome
variable and dropout mechanisms. We address this limitation as a suggestion
for comparing the efficiency, in particular sets, of these estimation methods.
We conclude that the JM model can be a valuable resource for social scientific
research. For example, the JM approach is beneficial to sociological fields in
which the focus is on dynamics of social change and the life course (which
typically deal with complex longitudinal patterns). The JM approach could
be even more beneficial for social scientists whose field uses time-to-event
regression for panel data, where attrition and MNAR are rampant.

Notes
14Rubin, 1976 and Little, 1995 classify three main dropout mechanisms which are well

established in the statistical literature.
15Ibrahim, Chu, and Chen (2010) and Asar et al. (2015) provide an accessible introduction

to the Joint Modeling approach.
16The JM approach, among other fields, has been used recently in aging research (Arbeev

et al. 2014; van den Hout and Muniz-Terrera 2016)
17The survival submodel can be either a parametric (Weibull, Gompertz, or exponential)

baseline hazard, semi-parametric or flexible parametric (see Royston and Parmar 2002)
18In this sense, equation III.1 shows the different assumption with the Two-Stage Model:

mi = yit while in the JM yit is the proxy to reconstruct the longitudinal history of mi.
19Nowadays statistical software such as R and Stata offer different packages to implement

this model (Crowther, Abrams, and Lambert 2013) for Stata; see Rizopoulos 2011) for an
application in R).
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4. Concluding Remarks

4.1 Key Findings and Implications

This Ph.D. thesis aimed to contribute to our understanding of the interplay
between social stratification, mobility, and health inequalities. Chapter I
addressed one of the underlying mechanisms that shape the social gradient of
health, highlighting how individuals’ social conditions get under the skin and
affect mortality risks due to cardiovascular disease. Chapter I tried to examine
the disparities in health between individuals with different socioeconomic
statuses and differentials among individuals related to differentials at the same
level of socioeconomic status. Chapters II and III provided methodological
insights to advance our current knowledge on potential threats and limitations
to statistical inference in empirical health and social research. Specifically,
Chapter II tackled the identification problem, which hampers the capability
of empirical models to correctly identify the unique effects of individuals’
social origin, destination, and mobility. To address the identification problem,
I tested the Diagonal Reference Model (DRM), a statistical model developed
with the specific intent to overcome the identification problem. Chapter III
engaged the methodological issue of informative dropout due to selective mor-
tality, affecting statistical inference based on longitudinal data. Chapter III
illustrates the potential advantages and the limitations of the Joint Modeling
(JM) approach, comparing it with the Linear Mixed Effect model and the
Weibull regression model.

This Ph.D. thesis examines individuals’ social conditions and health out-
comes in two mainframes. The first focuses on the association between social
stratification and mortality risks. Here, social stratification refers to dif-
ferentials between individuals in access to relevant resources that increase
opportunities to pursue and achieve a healthy life due to their social position.
Chapter I draws on this framework, and it assumes no change over time, as it
measures individuals’ socioeconomic status at a fixed point in time and space.
The second framework allows for a temporal change in social positions, namely
individuals’ social mobility and health outcomes. In Chapters II and III, I
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focused instead on the methodological issues that empirical researchers might
face when the analytical strategy considers social mobility as an explana-
tory factor and when the empirical analysis implies the use of longitudinal
data. These two frameworks have important implications, relevant for both
academics and policymakers to implement more effective policies to reduce
inequalities.

The first implication regards the differentials between individuals at the
same level of socioeconomic status. Chapter I uncovers inequalities in mortal-
ity risks due to cardiovascular disease even if individuals belong to the same
social position. This result indicates that other factors play a role in shaping
health inequalities, revealing the complexity of the social gradient of health.
These factors can mediate the relationship between socioeconomic conditions
and mortality risks and belong to the spheres of social, mental, behavioral,
or material resources that might influence the health outcomes. Therefore,
Chapter I highlights that belonging to the same social position does not
give individuals the same chances to access resources. Even more, early life
social conditions experienced by individuals could significantly impact the
availability and accumulation of these resources. The second implication of
Chapter I concerns using biological data as an objective measure of health.
Chapter I highlights the interplay between the social environment, the effects
on physiological functioning, and health inequalities. Thus, results suggest a
clear need to develop further our knowledge of how social conditions affect
physiological reactions, as they have a remarkable influence on individuals’
health and health inequalities.

The third implication regards the inclusion of social mobility as a crit-
ical factor to capture the dynamic influence of socioeconomic position on
health. The identification problem, which hinders the correct estimation of
the specific effects of individuals’ social origin, destination, and mobility, is
still unresolved. Thus, Chapter II provides the first step to revitalizing the
methodological discussion on the identification problem. Given the similar-
ity of the underlying problem, age-period-cohort literature has substantially
progressed in that sense. Therefore, this study aims to provide potentially
helpful input to facilitate further contributions that address the problem.

The last implication regards the threats to statistical inference due to
informative dropout. Chapter III highlighted that the Joint Modeling ap-
proach is a valid method to account for nonignorable dropouts. Although the
Linear Mixed model and the Joint Modeling perform quite similarly in the
scenarios that constitute the statistical experiment, the Joint Modeling shows

133



a slight improvement over the Linear Mixed model in complex, nonlinear,
longitudinal outcomes of interest. However, the Linear Mixed model is still
robust against nonignorable dropout. Conversely, using the time-to-event
regression framework comes with disadvantages. The first disadvantage of the
time-to-event regression framework is that it is hard to assume that missing
data are completely at random or ignorable. Unfortunately, no statistical
procedure can assess whether the missing data are ignorable or not ignorable.
Therefore, the Joint Modeling approach provides a valuable tool to handle
nonignorable missing data, thereby avoiding the threats of biased inference.
Secondly, even if the dropout rate has been simulated not to be endogenous
to the longitudinal outcome of interest, the time-to-event regression model
performed remarkably worse than the Joint Modeling approach. In the two
different degrees of endogeneity (i.e., the association between the longitudinal
outcome and the dropout rate), the Weibull regression model failed to infer
the true estimates correctly. Therefore, my study suggests that the Joint
Modeling approach is a reliable tool for analyzing panel data in the social
sciences. The Joint Modelling approach is advantageous in the case the focus
of the research relies on time-to-event panel data, but it comes with compu-
tational drawbacks. Indeed, the Joint Modeling approach is computationally
demanding, particularly for large datasets.

4.2 Contributions to the Literature

Ultimately, this Ph.D. thesis contributes to the literature by providing inno-
vative methodological tools to understand better the complexities inherent
to health inequalities in four different ways. Chapter I’s main contributions
to the literature regard the innovative use of Bayesian models to uncover
understated aspects of health inequalities and the innovative use of a biological
marker as an objective health measure. Conceivably, the Bayesian framework
(and the distributional model in particular) enhanced the range of the anal-
ysis by acknowledging the contextual and compositional aspects that affect
inequalities in mortality risks among individuals. In this regard, Chapter
I provides an alternative analytical strategy using the Bayesian framework
to examine social stratification, mobility, and health inequalities. Chapter
I contributes to the social scientific community regarding the measurement
method of health outcomes. Indeed, the use of biomarkers as an objective
measure of health can provide thorough information on how social conditions
affect health outcomes without the issue of the inherent subjectivity underly-
ing self-rated health measures.
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The primary intention of Chapter II is to recrudesce the methodologi-
cal discussion around the identification problem and the Diagonal Reference
Model. Chapter II’s contributions to further understanding the characteristics
of the Diagonal Reference Model relate to the methodological evaluation of
the model. That means the social scientific community might benefit from
acquiring an insight into the capabilities of the Diagonal Reference Model to
infer the effect of mobility on a particular outcome correctly(i.e., the degree
of unbiasedness). Chapter II provides further understanding by providing
evidence on the model’s capability to detect statistically significant effects by
including an analysis of the Empirical Coverage Rate.

From an empirical and substantial perspective, this Ph.D. thesis progresses
by proposing another statistical framework, the Joint Modeling approach
presented in Chapter III. With the Joint Modeling approach proposal, this
dissertation contributes to the literature focused on the issue of nonignorable
dropouts and puts it to the attention of empirical researchers. More advanced
methodological tools are vital to capitalize on panel data’s advantages to
causal analysis fully.
The four contributions I exposed provide the social scientific community with
alternative analytical strategies to tackle the potential pitfalls in the empirical
analysis of social inequalities in health.

4.3 Limitations of the Studies

In Chapter I, an aspect that bounded the analysis regards the type of data at
the basis of the analysis. Indeed, the analytical strategy in the first Chapter
relies on cross-sectional data, which limits the analysis to the depiction of a
static frame and thereby avoids the evolutionary aspect of health inequalities.
Another limitation concerns the measurement of individuals’ social conditions.
Indeed, the analytical strategy deployed through the Bayesian framework
has not considered early-life conditions. From a methodological perspective,
the first Chapter draws only one (informative) prior distribution for each
parameter, used to build up the Bayesian regressions.

The limitations of Chapter II rely on the set of the statistical experiment.
The parameters utilized for the generation of the data at the basis of the
Monte Carlo simulation do not rely on previous analysis of real-world data.
Instead, they are fictitious. Thus, arbitrary values create a discrepancy be-
tween the real world and the simulated dataset, limiting the external validity
of the results. Another limitation of the statistical experiment presented in
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Chapter II concerns the measurement of social mobility. Indeed, the analytical
strategy simulated two dichotomous variables, indicating whether upward,
downward, or immobility occurred between the simulated cases. The dichoto-
mous codification might influence the results of the statistical experiment.

Likewise, the limitations of Chapter III regard the construction of the
experimental set, specifically for what concerns the modeling of the dropout
phenomenon. Chapter II assumed that the dropout rate would be a con-
tinuous, Weibull distribution of events occurring (e.g., dropouts from the
simulated study). The dropout occurrence - assumed to be Weibull distributed
- admitted only one permanent exit from the study. However, the simulation
study presented in Chapter II has not considered standard methodological
procedures in survey design, such as sample refreshment or the phenomenon
of intermittent dropout. Chapter III does not cover the use of age as the
timescale, which is a common strategy in public health, demography, and
sociology. Another limitation that bounds the experimental set concerns
the simulation of only one pattern of dropout. Chapter III’s limitation to
the study’s external validity concerns the dropout process simulation with
fictitious true parameters rather than from previous real-world analysis.

4.4 Suggestions for Further Research

Further research might apply the Bayesian regression model and the distribu-
tional model to longitudinal data to expand our current knowledge on the
social gradient of mortality risks due to cardiovascular disease. This aspect
is particularly important to uncover how the compositional effects related
to individuals at the same level of socioeconomic status change over time.
Ideally, further research may use the results presented in Chapter I to refine
better the prior distribution of the Bayesian model, an essential component
of the Bayesian inference.

Further research that intends to expand our methodological knowledge
about the behavior of the Diagonal Reference Model could base the Data
Generating Process on previous analyses of real-world data. More realistic
starting values could potentially expand the external validity of the experi-
ment. Additionally, further research should develop statistical experiments
that explore the degree of identification problem with a full-range mobility
measure rather than indicator variables for upward and downward mobility.

To improve our understanding and contribute to the methodological lit-
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erature on missing data, suggestions for further research should focus on
analyzing different patterns of dropout rates. For instance, further research
might include dropout rate under refreshment sample, intermittent dropout
(such as exit and reentry to the study), or different severity of dropout. A
thorough analysis of the potential missing data patterns would further help em-
pirical researchers fully consider and appreciate threats to statistical inference.

This Ph.D. thesis benefited from an interdisciplinary perspective. Previ-
ous biomedical and public health knowledge has been essential to defining
the biological markers for socially-patterned diseases. The methodological
advances in biostatistics with the Joint Modelling approach are promising
and potentially helpful in understanding how health inequalities change over
time. The methodological insight I provided addresses academic research and
policymakers to counteract and determine effective policies for the worrying
resurgence of health inequalities in developed countries over time. Thus, it
will undoubtedly be promising to enhance the interconnections between the
different research fields to tackle health inequalities.
Interdisciplinarity is an invaluable resource to the sociological field to under-
stand the dynamics of social mobility and stratification in health. A thorough
understanding of the underlying mechanisms that link social position and
health disparities is vital because it heavily affects the quality of life and
well-being at every life stage.
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A. Supplementary Materials -
Chapter I

Model 1

Figure A.1: Panel (a): Trace plot of the occupational status parameter σβi
.

Panel (b): Autocorrelation plot of σβi
by number of chain of the MCMC.
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Figure A.2: Panel (a): Trace plot of the educational attainment parameter
σβi

. Panel (b): Autocorrelation plot of σβi
by number of chain of the MCMC.

Figure A.3: Panel (a): Trace plot of the β income parameter. Panel (b):
Autocorrelation plot of β by number of chain of the MCMC.
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Model 2

Figure A.4: Panel (a): Trace plot of the occupational status parameter σβi
on

σy. Panel (b): Autocorrelation plot of σβi
by number of chain of the MCMC.

Figure A.5: Panel (a): Trace plot of the educational attainment parameter
σβi

on σy. Panel (b): Autocorrelation plot of σβi
by number of chain of the

MCMC.
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Figure A.6: Panel (a): Trace plot of the β income parameter on σy. Panel
(b): Autocorrelation plot of β by number of chain of the MCMC.
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Appendix A - Summary Table of the Standard-

ized Bias and the Empirical Coverage Rate

of the Upward and Downward Mobility Coef-

ficients and the Weighting Parameters ρ and

(1− ρ) for the Continuous Dependent Variable

Scenario.

The columns ρ, r, γUp, γDown and N show the true population values. The
columns δρ, δr, δup, and δdown show the standardized bias for the popula-
tion parameters ρ, (1− ρ), and upward and downward mobility coefficients.
Columns (1− α)Up and (1− α)Down show the ECR relative to the upward
and downward mobility coefficients, respectively. To increase the readability
of the table, we subdivided the rows so that the salience parameters ρ and r
sum up to 1. The first four columns contain the true population parameters
that we have set to guide the data-generating process.

Table B.1: Summary Results for the Continuous Dependent Variable Scenario

ρ r γUp γDown N δρ δr δup δdown (1− α)Up (1− α)Down
1 0.7 0.3 −0.1 0.1 500 0.02774 −0.02774 −0.01998 0.01931 0.94400 0.95150
2 0.5 0.5 −0.1 0.1 500 0.01621 −0.01621 −0.02289 0.01476 0.95650 0.95050
3 0.3 0.7 −0.1 0.1 500 0.01989 −0.01989 −0.02763 0.00394 0.95650 0.95200
4 0.7 0.3 −0.5 0.1 500 0.00281 −0.00281 0.01108 −0.00336 0.94850 0.94900
5 0.5 0.5 −0.5 0.1 500 0.01264 −0.01264 −0.01098 0.01325 0.95250 0.95100
6 0.3 0.7 −0.5 0.1 500 −0.01230 0.01230 −0.00560 −0.00760 0.95650 0.93850
7 0.7 0.3 −0.1 0.5 500 −0.02278 0.02278 0.02449 −0.02263 0.93900 0.94400
8 0.5 0.5 −0.1 0.5 500 −0.00356 0.00356 0.00810 0.01720 0.95100 0.94450
9 0.3 0.7 −0.1 0.5 500 −0.00113 0.00113 −0.02311 −0.00680 0.94200 0.95150
10 0.7 0.3 −0.5 0.5 500 0.01454 −0.01454 −0.00845 −0.00905 0.94400 0.94450
11 0.5 0.5 −0.5 0.5 500 0.01622 −0.01622 −0.01287 −0.01041 0.95000 0.94300
12 0.3 0.7 −0.5 0.5 500 0.01085 −0.01085 −0.02006 −0.00438 0.94350 0.95000
13 0.7 0.3 −0.1 0.1 750 −0.00124 0.00124 −0.01223 −0.02100 0.94750 0.94650
14 0.5 0.5 −0.1 0.1 750 0.00367 −0.00367 −0.02641 0.00102 0.94900 0.94950
15 0.3 0.7 −0.1 0.1 750 −0.00652 0.00652 −0.00961 0.00843 0.93750 0.94650
16 0.7 0.3 −0.5 0.1 750 −0.00341 0.00341 −0.01929 −0.00582 0.94900 0.94700
17 0.5 0.5 −0.5 0.1 750 0.00082 −0.00082 −0.00848 0.01942 0.94700 0.94750
18 0.3 0.7 −0.5 0.1 750 0.02182 −0.02182 −0.02805 0.01622 0.94300 0.94700
19 0.7 0.3 −0.1 0.5 750 0.01170 −0.01170 −0.02164 0.03033 0.94700 0.94950
20 0.5 0.5 −0.1 0.5 750 −0.01387 0.01387 0.00303 −0.01679 0.95250 0.94950
21 0.3 0.7 −0.1 0.5 750 −0.02744 0.02744 0.02628 −0.04290 0.94700 0.95600
22 0.7 0.3 −0.5 0.5 750 −0.00813 0.00813 −0.00390 −0.02369 0.94650 0.95200
23 0.5 0.5 −0.5 0.5 750 −0.01246 0.01246 0.02768 −0.01811 0.94400 0.94700
24 0.3 0.7 −0.5 0.5 750 −0.00724 0.00724 0.00417 −0.00607 0.95000 0.95150
25 0.7 0.3 −0.1 0.1 1000 −0.02105 0.02105 0.02234 −0.02738 0.95100 0.95800
26 0.5 0.5 −0.1 0.1 1000 0.03539 −0.03539 0.00115 0.04738 0.95700 0.94750
27 0.3 0.7 −0.1 0.1 1000 −0.01023 0.01023 −0.02459 −0.03658 0.94900 0.95750
28 0.7 0.3 −0.5 0.1 1000 0.01425 −0.01425 −0.01218 0.01807 0.94400 0.96150
29 0.5 0.5 −0.5 0.1 1000 −0.00836 0.00836 0.01583 0.00754 0.94600 0.94000
30 0.3 0.7 −0.5 0.1 1000 −0.01300 0.01300 0.01598 −0.00074 0.94550 0.94550
31 0.7 0.3 −0.1 0.5 1000 0.01779 −0.01779 −0.00140 0.02561 0.95200 0.95000
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32 0.5 0.5 −0.1 0.5 1000 0.01253 −0.01253 0.01616 0.02180 0.95400 0.95450
33 0.3 0.7 −0.1 0.5 1000 −0.01539 0.01539 0.00792 −0.02631 0.95600 0.94200
34 0.7 0.3 −0.5 0.5 1000 0.01300 −0.01300 −0.00747 0.01349 0.93700 0.94100
35 0.5 0.5 −0.5 0.5 1000 0.00202 −0.00202 −0.01430 −0.01099 0.94000 0.94800
36 0.3 0.7 −0.5 0.5 1000 −0.01426 0.01426 0.00667 −0.00497 0.95300 0.94750
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Appendix B - Summary Table of the Standard-

ized Bias and the Empirical Coverage Rate

of the Upward and Downward Mobility Coef-

ficients and the Weighting Parameters ρ and

(1− ρ) for the Logistic Dependent Variable Sce-

nario.

The columns ρ, r, γUp, γDown and N show the true population values. The
columns δρ, δr, δup, and δdown show the standardized bias for the popula-
tion parameters ρ, (1− ρ), and upward and downward mobility coefficients.
Columns (1− α)Up and (1− α)Down show the ECR relative to the upward
and downward mobility coefficients, respectively. To increase the readability
of the table, we subdivided the rows so that the salience parameters ρ and r
sum up to 1. The first four columns contain the true population parameters
that we have set to guide the data-generating process.

Table B.2: Summary Results for the Logistic Dependent Variable Scenario

ρ r γUp γDown N δρ δr δup δdown (1− α)Up (1− α)Down
1 0.7 0.3 −0.1 0.1 500 −0.12426 0.12426 0.08899 −0.12033 0.94200 0.94900
2 0.5 0.5 −0.1 0.1 500 −0.01697 0.01697 −0.00733 −0.01813 0.94300 0.95500
3 0.3 0.7 −0.1 0.1 500 0.15197 −0.15197 −0.11176 0.12797 0.93800 0.94900
4 0.7 0.3 −0.5 0.1 500 −0.13650 0.13650 0.09226 −0.12281 0.93900 0.94800
5 0.5 0.5 −0.5 0.1 500 0.00196 −0.00196 −0.05770 0.02206 0.94550 0.94600
6 0.3 0.7 −0.5 0.1 500 0.17605 −0.17605 −0.18731 0.14244 0.94650 0.93500
7 0.7 0.3 −0.1 0.5 500 −0.14727 0.14727 0.09157 −0.10851 0.94200 0.94300
8 0.5 0.5 −0.1 0.5 500 −0.00606 0.00606 −0.00985 0.00437 0.94750 0.94500
9 0.3 0.7 −0.1 0.5 500 0.17250 −0.17250 −0.17398 0.13030 0.94000 0.94800
10 0.7 0.3 −0.5 0.5 500 −0.15231 0.15231 0.07243 −0.12726 0.94150 0.94200
11 0.5 0.5 −0.5 0.5 500 −0.02940 0.02940 −0.01316 0.00685 0.95600 0.95450
12 0.3 0.7 −0.5 0.5 500 0.13983 −0.13983 −0.15733 0.13777 0.95100 0.94500
13 0.7 0.3 −0.1 0.1 750 −0.07476 0.07476 0.06590 −0.05392 0.93850 0.93600
14 0.5 0.5 −0.1 0.1 750 −0.00936 0.00936 −0.02554 −0.03522 0.94200 0.94450
15 0.3 0.7 −0.1 0.1 750 0.06607 −0.06607 −0.07466 0.06743 0.94400 0.93600
16 0.7 0.3 −0.5 0.1 750 −0.08000 0.08000 −0.01237 −0.08248 0.93300 0.93150
17 0.5 0.5 −0.5 0.1 750 −0.01151 0.01151 −0.04016 −0.01199 0.94450 0.93700
18 0.3 0.7 −0.5 0.1 750 0.11285 −0.11285 −0.13256 0.07806 0.93950 0.92600
19 0.7 0.3 −0.1 0.5 750 −0.11322 0.11322 0.10219 −0.08297 0.93700 0.94750
20 0.5 0.5 −0.1 0.5 750 0.01004 −0.01004 −0.04258 0.02723 0.94300 0.94050
21 0.3 0.7 −0.1 0.5 750 0.06823 −0.06823 −0.03896 0.09521 0.94650 0.94300
22 0.7 0.3 −0.5 0.5 750 −0.03593 0.03593 0.00335 −0.00472 0.94150 0.94800
23 0.5 0.5 −0.5 0.5 750 −0.05449 0.05449 −0.00841 −0.01193 0.94350 0.94050
24 0.3 0.7 −0.5 0.5 750 0.09900 −0.09900 −0.10479 0.09666 0.95150 0.93950
25 0.7 0.3 −0.1 0.1 1000 −0.07458 0.07458 0.02166 −0.07888 0.93350 0.94200
26 0.5 0.5 −0.1 0.1 1000 0.01287 −0.01287 −0.02878 0.01285 0.94550 0.94900
27 0.3 0.7 −0.1 0.1 1000 0.03661 −0.03661 −0.04025 0.02851 0.94950 0.94300
28 0.7 0.3 −0.5 0.1 1000 −0.09584 0.09584 0.07256 −0.05399 0.93600 0.94500
29 0.5 0.5 −0.5 0.1 1000 −0.01313 0.01313 −0.02017 −0.03914 0.93650 0.94100
30 0.3 0.7 −0.5 0.1 1000 0.01219 −0.01219 −0.05022 0.01450 0.95100 0.93950
31 0.7 0.3 −0.1 0.5 1000 −0.00549 0.00549 −0.03228 0.01403 0.93900 0.94300
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32 0.5 0.5 −0.1 0.5 1000 0.00242 −0.00242 −0.01792 0.00738 0.94300 0.93500
33 0.3 0.7 −0.1 0.5 1000 0.03876 −0.03876 −0.03614 0.05901 0.94250 0.94700
34 0.7 0.3 −0.5 0.5 1000 −0.05648 0.05648 0.02067 −0.03271 0.94800 0.95000
35 0.5 0.5 −0.5 0.5 1000 −0.00107 0.00107 −0.03248 0.02831 0.94100 0.94400
36 0.3 0.7 −0.5 0.5 1000 −0.00646 0.00646 −0.03199 0.02669 0.95250 0.94300
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Appendix C: Histogram Distributions of Es-

timated Upward and Downward Mobility Pa-

rameters.

Linear Dependent Variable
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Figure B.1: Histogram of the 2,000 simulated estimates of γUp. Panel a) shows the distribution when γUp = −0.1,
Panel b) shows the distribution when γUp = −0.5

(a) γUp = −0.1 (b) γUp = −0.5

149



Figure B.2: Histogram of the 2,000 simulated estimates of γDown. Panel a) shows the distribution when γDown = 0.1,
Panel b) shows the distribution when γDown = 0.5

(a) γDown = 0.1 (b) γDown = 0.5
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Binomial Dependent Variable
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Figure B.3: Histogram of the 2,000 simulated estimates of γUp. Panel a) shows the distribution when γUp = −0.1,
Panel b) shows the distribution when γUp = −0.5

(a) γUp = −0.1 (b) γUp = −0.5
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Figure B.4: Histogram of the 2,000 simulated estimates of γDown. Panel a) shows the distribution when γDown = 0.1,
Panel b) shows the distribution when γDown = 0.5

(a) γDown = 0.1 (b) γDown = 0.5
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C. Supplementary Materials -
Chapter III

Appendix A: Review of the Missing Data Pro-

cesses

In this Appendix we review the statistical concepts behind the missing data
processes. The illustration relies on the work of Laird (1988), from which we
borrow the notation and the key aspects. In the longitudinal survey design,
the units included in the study are observed consequentially at different points
in time (Diggle & Kenward, 1994; Laird, 1988; Schifeling et al., 2015). From
a statistical perspective, the ideal outcome would be a T × 1 vector for each
unit of observation Yi = [Yi1, Yi2, . . . , Yit]

T of interest. The subject-specific
outcomes of interest can be combined in a unique vector Y = N{Xθ,Σ},
where Y can be conceived as multivariate normally distributed (assuming
that it is continuous), the mean will be defined by the product of X, a N × p
matrix of explanatory variables by θ, a 1× p vector of parameters of interest.
The variance-covariance matrix will be defined by Σ, which takes the form of

Σ =


σ2
1

0 σ2
2

...
...

. . .

0 0 . . . σ2
n

 The function Y = N{Xθ,Σ} defines then the data

model. In order to define the missing data processes we need to define also a
non-response model that is a statistical model that explain the missing data
pattern. An indicator variable R ∈ {0, 1} can be defined, where 0 indicates if
the datum is missing and 1 if it is observed. By using the indicator variable R
we can then decompose the vector Y = (Ym,Yo). The non-response model
is defined as R = f (Zϕ), where Z is a matrix of covariates that influence the
missing pattern and ϕ is the associated vector of parameters. As Schafer and
Graham (2002) noted, R is a random variable, therefore we need to define
its probability density function (p.d.f.), which indicates the distribution of
missingness or the probabilities of missingness (Schafer & Graham, 2002, p.
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151). The p.d.f. of R (and the observed data) can thus be defined as:

f
(
Yo,R | X,Z,θ,ϕ

)
=∫

R

f
(
Y | X,θ

)
f
(
R | Y,X,Z,ϕ

)
dYm

Where the integration has limits defined by R and then it is over Ym.
The p.d.f. of R considers the relationship between the function concerning
the data model and the same for the non-response model. From the works of
Diggle and Kenward (1994), Little and Rubin (1987), and Rubin (1976) we
can define three missing processes. Missing data are defined as Completely at
Random if f

(
R | Y,Z,X,ϕ

)
= f
(
R | Z,X,ϕ

)
. It is important to note that,

in the case, Dropout is completely at random, the non-response model is not
influenced by Y, but it can be by Z and X. A typical example of missing
completely at random is the scenario in which the investigator decides a priori
exclude respondents with specific characteristics by determining questions
(Marini et al., 1980).
The dropout mechanism can be defined as Random (or ignorable) if f

(
R | Y, ,ϕ

)
=

f
(
R | Yo,Z,X,ϕ

)
. The key difference is that the non-response model de-

pends on Yo, but not on Ym. In this case, the non-response mechanism
can be ignored. However, it is important to note that Yo and R are not
independent. This means that it is allowed to ignore the non-response model,
not the missing on the data.
Lastly, informative (non-ignorable) dropout can be defined as f

(
R | Y,Z,X,ϕ

)
=

f
(
R | Yo,Ym,Z,X,ϕ

)
. In this scenario, the analytical strategy cannot ignore

the non-response model, as endogeneity occurs.

Appendix B: Results in Tabular Format
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Unobserved Heterogeneity: No Association
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Table C.1: Performance Measure Table of the MC Simulation Assuming No Association between the Longitudinal
Outcome and the Dropout Rate.

UH Not Present UH Present

β3 α β3 α

Perfmeasnum LMM JM WM WM JM LMM JM WM WM JM

Bias in point estimate
0.0095
(0.0113)

0.0095
(0.0113)

1.0011
(0.0016)

0.0028
(0.0037)

7e−04

(0.0015)
0.0152
(0.0219)

0.0151
(0.0219)

0.0032
(0.0037)

0.9783
(0.0014)

−0.02
(0.0014)

Empirical standard error
0.1596
(0.008)

0.1596
(0.008)

0.0226
(0.0011)

0.0525
(0.0026)

0.021
(0.0011)

0.3083
(0.0155)

0.3083
(0.0155)

0.0527
(0.0027)

0.0199
(0.001)

0.0191
(0.001)

Mean squared error
0.0254
(0.0025)

0.0254
(0.0025)

1.0028
(0.0032)

0.0028
(5e−04)

4e−04

(1e−04)
0.0948
(0.0088)

0.0948
(0.0088)

0.0028
(5e−04)

0.9575
(0.0028)

8e−04

(1e−04)

RMS model-based
standard error

0.1522
(2e−04)

0.1522
(2e−04)

0.0532
(0.0024)

0.0532
(0.0024)

0.1522
(2e−04)

0.3227
(6e−04)

0.3229
(6e−04)

0.0536
(0.0024)

0.0536
(0.0024)

0.3229
(6e−04)

Relative % error
in standard error

−4.6781
(4.8046)

−4.6234
(4.8074)

135.1353
(15.9337)

1.4179
(6.8725)

623.96
(36.49)

4.6666
(5.2761)

4.7222
(5.2789)

1.7565
(6.8749)

170.0413
(18.2446)

1588.1
(85.094)

Coverage of nominal 95%
confidence interval

94.4444
(1.6279)

94.4444
(1.6279)

0
(0)

69.697
(3.266)

100
(0)

95.9596
(1.3993)

95.9596
(1.3993)

69.697
(3.266)

0
(0)

100
(0)
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Unobserved Heterogeneity: Moderate Association
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Table C.2: Performance Measure Table of the MC Simulation Assuming Moderate Association between the Longitu-
dinal Outcome and the Dropout Rate.

UH Not Present UH Present

β3 α β3 α

perfmeasnum LMM JM WM WM JM LMM JM WM WM JM

Bias in point estimate
−0.0068
(0.0114)

−0.002
(0.0114)

1.302
(0.0012)

0.0017
(8e−04)

0.2511
(9e−04)

0.0182
(0.0213)

0.0211
(0.0213)

0.0032
(0.0037)

1.1402
(7e−04)

0.1301
(6e−04)

Empirical standard error
0.1619
(0.0081)

0.1618
(0.0081)

0.0171
(9e−04)

0.0107
(5e−04)

0.0128
(6e−04)

0.3006
(0.0151)

0.3006
(0.0151)

0.0527
(0.0027)

0.0095
(5e−04)

0.0082
(4e−04)

Mean squared error
0.0261
(0.0028)

0.0261
(0.0028)

1.6955
(0.0032)

1e−04

(0)
0.0632
(5e−04)

0.0902
(0.0086)

0.0904
(0.0086)

0.0028
(5e−04)

1.3001
(0.0015)

0.017
(2e−04)

RMS model-based
standard error

0.152
(2e−04)

0.152
(2e−04)

0.0106
(1e−04)

0.0106
(1e−04)

0.152
(2e−04)

0.3221
(5e−04)

0.3224
(5e−04)

0.0536
(0.0024)

0.0261
(3e−04)

0.3224
(5e−04)

Relative % error
in standard error

−6.112
(4.7083)

−6.0757
(4.7101)

−37.8311
(3.2079)

−0.452
(5.1366)

1091.7
(59.764)

7.1709
(5.3748)

7.2286
(5.3777)

1.7565
(6.8749)

176.0681
(14.09)

3817.6
(196.47)

Coverage of nominal 95%
confidence interval

92.5
(1.8625)

93
(1.8042)

0
(0)

95.5
(1.4659)

100
(0)

96
(1.3856)

96
(1.3856)

69.697
(3.266)

0
(0)

100
(0)
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Unobserved Heterogeneity: Strong Association
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Table C.3: Performance Measure Table of the MC Simulation Assuming Strong Association between the Longitudinal
Outcome and the Dropout Rate.

UH Not Present UH Present

β3 α β3 α

perfmeasnum LMM JM WM WM JM LMM JM WM WM JM

Bias in point estimate
−0.0035
(0.0115)

0.0125
(0.0115)

0.0067
(5e−04)

1.6633
(0.0018)

0.4975
(0.0012)

−0.0158
(0.023)

−0.0087
(0.023)

0.2678
(0.0027)

1.1704
(7e−04)

0.1606
(6e−04)

Empirical standard error
0.1627
(0.0082)

0.1621
(0.0081)

0.0077
(4e−04)

0.0259
(0.0013)

0.0169
(8e−04)

0.3256
(0.0163)

0.3255
(0.0163)

0.0378
(0.0019)

0.0093
(5e−04)

0.0081
(4e−04)

Mean squared error
0.0264
(0.0029)

0.0263
(0.0029)

1e−04

(0)
2.7673
(0.0061)

0.2478
(0.0012)

0.1057
(0.0102)

0.1055
(0.0102)

0.0732
(0.0015)

1.37
(0.0015)

0.0258
(2e−04)

RMS model-based
standard error

0.1531
(3e−04)

0.1527
(3e−04)

0.0081
(1e−04)

0.0081
(1e−04)

0.1527
(3e−04)

0.3228
(6e−04)

0.323
(6e−04)

0.0343
(3e−04)

0.0343
(3e−04)

0.323
(6e−04)

Relative % error
in standard error

−5.9334
(4.7177)

−5.7746
(4.7257)

6.145
(5.3867)

−68.6609
(1.5904)

804.6801
(45.372)

−0.857
(4.9727)

−0.776
(4.9768)

−9.3833
(4.5927)

267.35
(18.618)

3900.8
(200.67)

Coverage of nominal 95%
confidence interval

92
(1.9183)

92.5
(1.8625)

93.5
(1.7432)

0
(0)

0
(0)

94
(1.6793)

94.5
(1.6121)

0
(0)

0
(0)

100
(0)
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Time Specification: No Association

Table C.4: Performance Measure Table of the Time Specification Scenario
Assuming No Association between the Longitudinal Outcome and the Dropout
Rate.

β3 α

perfmeasnum LMM JM WM JM

Bias in point estimate
0
(0)

0
(0)

1
(3e04)

0
(3e04)

Empirical standard error
4e−04

(0)
4e−04

(0)
0.0049
(2e−04)

0.0045
(2e−04)

Mean squared error
0
(0)

0
(0)

0.9999
(7e−04)

0
(0)

RMS model-based
standard error

4e−04

(0)
4e−04

(0)
0.0044
(0)

0.004
(0)

Relative % error in
standard error

−2.1888
(4.904)

−2.2513
(4.9009)

−10.0917
(4.5107)

−10.572
(4.4866)

Coverage of nominal 95%
confidence interval

96
(1.3856)

96
(1.3856)

0
(0)

91
(2.0236)

Time Specification: Moderate Association
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Table C.5: Performance Measure Table of the Time Specification Scenario
Assuming Moderate Association between the Longitudinal Outcome and the
Dropout Rate.

β3 α

Perfmeasnum LMM JM WM JM

Bias in point estimate
2e−04

(0)
0
(0)

1.0501
(8e−04)

7e−04

(6e−04)

Empirical standard error
5e−04

(0)
5e−04

(0)
0.0108
(5e−04)

0.0078
(4e−04)

Mean squared error
0
(0)

0
(0)

1.1028
(0.0016)

1e−04

(0)

RMS model-based
standard error

4e−04

(0)
4e−04

(0)
0.0108
(0)

0.0079
(0)

Relative % error in
standard error

−7.6005
(4.6332)

−8.2924
(4.5985)

0.3784
(5.0364)

0.8274
(5.057)

Coverage of nominal 95%
confidence interval

89
(2.2125)

90.5
(2.0733)

0
(0)

95.5
(1.4659)

Time Specification: Strong Association
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Table C.6: Performance Measure Table of the Time Specification Scenario
Assuming Strong Association between the Longitudinal Outcome and the
Dropout Rate.

β3 α

Perfmeasnum LMM JM WM JM

Bias in point estimate
2e−04

(0)
0
(0)

1.1352
(0.0015)

0.001
(0.001)

Empirical standard error
4e−04

(0)
4e−04

(0)
0.0214
(0.0011)

0.0136
(7e−04)

Mean squared error
0
(0)

0
(0)

1.2892
(0.0034)

2e−04

(0)

RMS model-based
standard error

4e−04

(0)
4e−04

(0)
0.0218
(1e−04)

0.0136
(0)

Relative % error in
standard error

9.8403
(5.5079)

10.396
(5.5358)

1.7669
(5.1075)

−0.2187
(5.0051)

Coverage of nominal 95%
confidence interval

94.5
(1.6121)

98
(0.99)

0
(0)

95.5
(1.4659)
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