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Abstract

We live in a world where the interaction of many different entities results in the formation
of complex systems. The communication between billions of smart devices, interactions of
millions of people in social networks, and the existence of our biological life, which is based on
seamless interactions between hundreds of genes and proteins within our cells, all are just a
few examples of the complex systems surrounding us. At the core of these complex systems,
there is clear evidence of a complex network, which symbolizes the interaction between the
system’s components. Analytical metrics and algorithms derived from graph theory are
used in network analysis to understand the functionality of complex systems, anticipate
system behavior, and control changes. Many of these global patterns in complex networks
are generally influenced by decisions made by communities.

Communities are a tightly connected group of nodes with sparse connections to the rest
of the network. These modular structures are crucial to understanding the complex network
due to being closely tied to the system’s functional and topological features. They can, for
example, represent modules of proteins with similar functionality in a protein interaction
network or influence dynamic network activities such as opinion and epidemic propagation.
Local community detection methods have gained popularity among other strategies to dis-
cover communities in a complex network. The traditional methods are based on a top-down
approach acquiring global information about the entire network; however, due to the growing
size and complexity of existing networks, they often result in tangled communities, hence not
providing functional information of the network.

The primary goal of this thesis is to provide methods and solutions for local network
analysis. The following components comprise the thesis contribution:

1) Introduce a transformation approach to construct networks from relational data and
describe how network structure affects community detection,

2) Provide a comprehensive evaluation of current local community detection techniques
and suggest a locality exploration scheme (LES) for community detection algorithms,

3) Develop a local community detection Algorithm (LCDA) and employ it on real-world
data,

4) Extend LCDA to LCDA-GO, which integrates biological functional information and
detects protein communities in the cell on the PPI network.

Thereby, this thesis proposes a novel community detection algorithm that addresses the
shortcomings of prior algorithms by presenting a local method. The applicability of the
suggested algorithm is investigated by running it on real-world PPI networks.
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Furthermore, this thesis contributes to industrial technical reports and whitepapers on
the standardization and regulation of big data and Artificial Intelligence (AI). The thesis
addresses the critical issues of digital trust in big data and AI by incorporating technical
standardization and cutting-edge research solutions. The key contributions include, but are
not limited to:

1) A comprehensive review of the state-of-the-art in numerous scientific and standard
materials regarding privacy and trustworthiness concerns, including the introduction of
privacy leaks and mitigation measures in big data and AI,

2) Investigating the societal implications of artificial intelligence standards in light of the
recently initiated worldwide and European standardized processes,

3) Design and implementation of a scheme that connects scientific contributions and stan-
dardization efforts in the direction of AI conformity assessment.

The contribution of the thesis to standards demonstrates an impact on both scientific
and standardization communities by contributing to both and offering recent outcomes from
each.
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Chapter 1
Introduction

This chapter introduces the problem of interest in this thesis. The primary focus of the thesis
is artificial intelligence (AI) and data analytics developments. This thesis consolidates data
science developments by introducing a community detection algorithm and addresses the data
protection, and trustworthiness of AI on the other hand. The background, motivation and
contributions, and organization of the thesis are presented in the subsequent sections.

1.1 Background

The rapid growth of data has triggered various fields to exploit analytical techniques on
large, diverse datasets that includes structural and non-structural data generated by different
sources. The importance of big data does not revolve solely on the volume, variety and
velocity [2], but mainly on what we can do with it. Data analytics, Machine Learning (ML)
and Artificial Intelligence (AI) combine different technologies to extract information from raw
data with the goals of increasing the efficiency and the accuracy of prediction and decision
making and also minimizing the risks and computational costs [3].

The developments of big data and AI thus could be paved from two perspectives: Facili-
tating the development of data analytics techniques by proposing advanced solutions on the
omnipresent data, and taking actions towards developing rules and standards to control and
harness AI and data analytics technologies against the yet-to-be-known risks.

Big data
Use cases

and
Applications

AI

Figure 1.1: Utilizing AI on various big data for data analytics, decision making and prediction in
different applications.
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Complex Networks and Graphs

Many systems that we are surrounded with in the 21st century are part of complex systems
that in fact are difficult to understand and infer knowledge. The underlying structure of
most of the complex systems is a complex network that represents the connection of system’s
components [4]:

• The cellular network of body that integrates the interactions between genes, proteins,
and metabolites into live cells.

• The connections between neurons, neuron network, derives functionality of the brain.

• The exchange of goods, services, and products are maintained through trade network.

• The social, family, and friend relationships are integrated in social networks representing
societies’ opinions.

• The connection and interaction of different devices through the internet connection in
communication networks shows the communication system

• The transmission lines between generators are described in power grid networks.

Thus, any interaction and connection between components of a complex system can be
encoded in a network which then represents a particular functionality of that complex system.

A network is an extract from graph introduced in graph theory. A network can be defined
as a graph consisting of a set of nodes (e.g., vertices) and links (e.g., edges). The study of
networks lies within graph theory and they have emerged in several disciplines. Networks are
attached to real-world complex systems, thus, regarding the application and the nature of the
nodes the represent different networks. While they can have the same graph representation
if the same edges are connected to the same vertices. This way networks and graphs are
distinguishable, however, they have been used interchangeably in the literature. Figure 1.2
shows graph representation of different networks that are extracted from real-world examples.

Networks are defined as G = (V,E) with V including the nodes of the network and E,
the list of links between each nodes of the network. Each network may represent different
characteristics that often depend on the network attributes such as network density, degree
centrality. Some of the attributes provide general information of the network by considering
it as one global structure. Other attributes, however, provide specific local perspectives by
spotlighting the nodes and links of a network. The use of these attributes play an important
role to first understand the network, and next, to gain a deeper knowledge on the performance,
structure, and connectivity of the network.

Community detection is part of the network analytics which provides information on
specific structures of the network known as community structure. A community is defined as
locally dense connected subgraphs in a network [4]. In a nutshell, nodes within a community
are densely intra-connected and loosely inter-connected. Many real-world networks contain
community structures. The social communities of social networks represents communities of
people who are interested in similar beliefs and opinions. Protein-protein interaction network
includes protein communities such that each community consists of set of proteins caring a
particular biological functionality of cells. Communities of different networks may represent
different insights and knowledge, however, they are all representing community structure
properties.
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1.1 Background

Collaboration network:

• Nodes: Projects done by different 
collaborators

• Links: If the similarity between the 
collabortaors lies within the threshold

Protein-protein Interaction (PPI) network:

• Nodes: Proteins

• Links: If proteins participated in the same 
cell functionality

Graphs Networks

Vertices: 5
Edges: 5

Nodes: 5
Links: 5

Figure 1.2: Graph and network representations.

The study of communities are important in several aspects. They often correspond to
functional units of the network and hence represent a functional map of the network. Exploit-
ing communities in large networks provides a meta-node information of the network that is
easier to study rather than studding each individual node. Insights on the correlation between
the topology of the network and its functionality is also often carried out by communities.
Moreover, communities assist the understanding of different processes in the network. For
instance, rumor spreading and epidemic spreading are such processes that are better under-
stood by detecting communities in the network and analysing the impact of communities in
such processes.

Data Privacy and AI Trustworthiness

The integration of AI in various domains [5] significantly increases concerns regarding the
privacy and security of data. The data that actuates AI includes various sensitive information,
particularly individuals’ information, including: images, speech, comments and posts on
social media [6,7], financial transactions, and health record information. Feeding such data in
AI systems, they become vulnerable to privacy and security attacks that are even significantly
increased recently [8, 9].

Standards and regulations are playing an important role to reduce the risks raised by AI.
In this thesis we also covered the technical standardization overview to provide additional
insights on the conducted studies. Standards Developing Organization (SDO) SDOs develop
technical standards and guidelines to address the needs and demands of particular adopters.
Standards act an important role in achieving interoperability and portability of complex ICT
technologies and platforms.
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International Organization for Standardization (ISO) is one of the well-known SDOs in
the world. Together with International Electrotechnical Commission (IEC), they initiated a
Joint Technical Committee (JTC) as ISO/IEC JTC 1 to cover smart ICT related domains.
AI, big data, privacy and data protection are among topics that are included in this TC. In
the European level, European Committee for Standardization (CEN) and European Com-
mittee for Electrotechnical Standardization (CENELEC) are involved in the development of
“Focus Group Artificial Intelligence" to provide standardization road-map for AI according
to the European requirements [10]. Moreover, European Telecommunications Standards In-
stitute (ETSI) has also initiated projects focused on the use cases, applications and security
challenges of AI. In this thesis, we consider on the resources produced by ISO sub commit-
tees of SC 27 – "Information Security, Cybersecurity and Privacy Protection", and SC 42 –
"Artificial Intelligence" and CEN and CENELEC AI working group, CEN/CLC/JTC 21 on
Artificial Intelligence.

In this thesis, we consider two directions: First, we propose an algorithm that locally
detects communities in big data and show its application on biological networks. Next, we
investigate on a global picture by describing digital trust in big data and AI from standards
and scientific research perspectives.

1.2 Motivation
The main motivations behind the work carried out in this thesis are explained in two main
parts, first, the research contribution in complex networks and community detection, and
then, the standardization collaboration in data protection and AI trustworthiness. Each
part, addresses different aspects and answers research questions.

Part I: Complex Networks and Community Detection

• Investigating on the network construction form relational data that are not presented
as networks, is there a unique solution and how would be the network representation
different from each other

• Impact of the network construction on the network analysis algorithms particularly on
community detection algorithms

• Investigated on community detection algorithms and dig into the taxonomies regarding
locality of the algorithm? what is locality and what are the different levels of locality
in community detection?

• Develop a local community detection algorithm and compare it with the existing algo-
rithms

• The advantage of local algorithms over global algorithms? What are the applications
and use cases?

• Developing a local community detection algorithm and its application on biological
networks

Part II: Data Protection and AI Trustworthiness

• The impact of standardization in AI and big data
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• Survey on the state-of-the-art scientific and standardization paper focusing on data
protection and AI trustworthiness

• Developing a standard framework to implement scientific measures and investigate on
the level of trustworthiness of different AI systems

1.3 Thesis Outline and Contributions
The contributions of this thesis can be categorized into two main parts, which are organized
into 8 chapters. Briefly speaking, in this thesis, we address two different challenges in data
analytics and AI. First, we focus on complex networks challenges and develop algorithms to
detect communities in networks. In the next part, we consider the global picture of AI and
big data and discuss data protection, and AI trustworthiness.

The organization of the thesis is structured as follows:

Part I: Complex Networks and Community Detection

Chapter 2: This chapter includes the discussion over the advantages of network analytics
over relational data analytics. A data-to-network transformation approach is proposed using
a real-world research collaboration data.

Chapter 3: The impact of network topology constructed from relational data is investi-
gated in this chapter. We perform network analytics on the network layers constructed from
research collaboration data to search for correlations between the level of data the needs to
be involved in generating the networks. We, particularly, studied the the performance of a
community detection algorithm on the generated networks.

Chapter 4: Focusing on community detection in complex networks, we notice a gap with
respect to the taxonomy of community detection algorithms. This chapter, describes the
difference between community detection algorithms in the literature from a different perspec-
tive. The global and local community detection algorithms are defined and discussed in this
chapter.

Chapter 5: In this chapter, we propose a local community detection algorithm (LCDA)
that relies on the information gathered from local neighbours of each node. Our algorithm
follows a set of principles and modifies the nodes within communities repeatedly. We imple-
ment and test the algorithm on both synthetic and real-world networks.

Chapter 6: In this chapter, we apply our proposed algorithm on a biological, protein-protein
interaction (PPI), network. We also define a new version of the previous LCDA algorithm
as LCDA-GO that includes biological functional information in the process of identifying
communities in the network.

Part II: Data Protection and AI Trustworthiness

Chapter 7: The vulnerability of big data and AI is discussed from two perspectives in this
chapter, research and standardization. We first surveyed an described the existing attacks
on big data and AI. Then, we investigated on the mitigation strategies proposed from both
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standardization and research references.

Chapter 8: This chapter focuses on the necessity of AI certification and assessments. It
provides a practice on analyzing the requirements for developing an AI assessment and gath-
ers information on the existing knowledge gaps. We develop a questionnaire base on the key
features of AI assessment and asked people with different backgrounds in AI and its applica-
tion to fill it. We analyze and report the results in this chapter.

Finally, Chapter 9 concludes the thesis and provides insights on the future work.
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Chapter 2
Transforming into Networks

Exploring and analyzing data through the lens of networks has gained significant momentum
in various domains from biology and neuroscience [11] (e.g., brain networks [12]) to modeling
geographical systems [13], analyzing galaxy distributions [14], and quantifying reputation in
art [15]. The popularity of using networks are due to the measurable properties networks
possess from graph theory to reveal the complex characteristics of the data. While networks
provide various advantages to analyze data the transformation from data to network is not
a trivial task since for each dataset there are multiple ways to construct a network [16].
Scientific collaboration data is a type of datasets that represent a network structure due to
the connectivity and the relationship between different co-authors that are collaborating on
various tasks. The study of collaboration data as networks permits to extract knowledge
on the structure and patterns of communities. Previous studies model the connectivity of
collaboration data considering it as a binomial problem with respect to the existence of a
collaboration between individuals [17]. However, such a data consists of a high diversity of
features that describe the quality of the interaction such as the contribution amount of each
individual.

In this chapter, we confronted with the challenge of network generation by proposing
an atomized data-to-network approach for inter-organizational research collaboration data.
The results of this contribution is published in a Springer chapter entitled as "Innovation
Networks from Inter-organizational Research Collaborations" [18].
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2.1 Introduction

Network structures are known to be essential in data analytics due to their potential to
describe the underlying relationship between entities. They also offer various ways to rep-
resent the correlations within dataset that is easier compared to the traditional relational
databases. Similar to graph theory, the study of networks (network science) relies on variety
of properties and techniques that are applied in many applications such as visualization, link
prediction, and clustering. One of the main concerns to study a relational data as a network
is to construct network from the dataset. Thus, the network construction from a dataset
plays an important role in data analytics. The step has been considered in various areas from
biology and neuroscience [11] (e.g., brain networks [12]) to modeling and analyzing galaxy
distributions [14], and quantifying reputation in art [15].

Transforming data to network often provides computationally efficient algorithms with
lower complexity in comparison to a relational data tables [19]. Moreover, networks represent
several properties that describes the data from different perspectives and different granular-
ity levels. Numerous algorithms can be applied directly on networks such as the Louvain’s
community detection algorithm [20] and Page Rank, that identifies the most influential ob-
ject within a network [18]. Furthermore, data transformed into network layers can provide
evidence for missing or omitted information [21, 22] as well as predicting the growth of the
network in terms of nodes and links [23,24].

With these advantages of networks at hand, we are confronted with the challenge of how
to transform relational data into appropriate networks [18]. The challenge is twofold: It
is not only on how to represent elements of a network but also the specific construction
principles, since, for each dataset, there are numerous ways how to transform data into
network [16]. Each network reveals a particular perspective on the input dataset - emphasizing
some characteristics while diminishing the dominance of others [18,25].

The state-of-the-art approaches are addressed the challenge of converting relational data
to network from different perspectives and most of the time based on the application domain
and type of the data. In a protocol-based approach, introduced by Karduni et al. [13], authors
developed a set of rules to tackle this challenge in spatial data of geographical systems. They
defined a protocol consisting of set of rules to extract the underlying network from the spatial
data. In a different approach, authors formulated the problem as a link prediction problem
to predict the links between entities of a relational data and constructed a network out of
relational data. Casiraghi et al. [26] developed a generalized hypergeometric ensembles algo-
rithm to predict and infer the connections within the objects in relational data. The study
represents the perspective of link prediction while applying predictive analysis. Likewise, Xi-
ang et al. [27] established a link-based latent variable model to infer the friendship relations
within a social interaction. In [28] authors exploited a model based on the tensor factoriza-
tion technique to exclude links from a dataset which consists different countries’ news [18].
Moreover, Akbas et al. [29] proposed a model to construct a social network. Their proposed
method is built on interactions between individuals, for instance phone calls. They defined a
weight to each type of interaction exist in the dataset, then, authors measure a value as the
combination of various interaction types and used it to construct a network. However, they
did not have a relational data to convert into network. Akbas et al. followed up their study
on network generation from interaction patterns by studying the social networks of animal
groups [30–32]. In a similar approach Hong et al. [14] develop a linkage model and convert
the cosmic web into three network models. The purpose of the study was to benefit from
network representations to investigate the architecture of the universe.
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In scientific collaboration data, the initiatives are taken by Newman [17] studies. He
established networks from scientific paper publication datasets data and convert the authors’
collaborations as links in the network. Thus, nodes act as the authors and two nodes are
connected if two authors had a collaboration in a scientific paper. The network modeling
introduced by Newman follows a binary approach when deciding on the links of the network.
Scientific collaboration networks are also studied as hypergraphs by Ouvrard et. al. [33]. The
authors emphasized on enhancing the visualization of these networks with respect to network
properties.

Our approach is slightly different than the state-of-the-art such that it atomizes the
process of network generation from the collaboration data. We also define a linkage measure
to utilize all data features defining that specific relationship between the nodes.

2.2 Data to Network with Linkage Threshold

We propose a data-to-network approach to construct networks from an inter-organizational
research collaboration dataset. The dataset contains information corresponding to various
outcomes that are delivered by contribution of researchers within various teams. However,
the data also includes features that represents the quality of contribution of researcher from
some aspects. For instance, the level of contribution that each researcher is dedicated to the
the delivery is one feature that is explained in the dataset. Thus, ignoring such features may
impact the representation of data as a network. Exploiting such features, we define a Linkage
Threshold measure to calculate the contribution strength between collaborators [18].

For this context we define network G as G = (V,E) such that V is the set of nodes,
and E is the list of tuples representing the link between each pair of nodes. Each node in
the network represents research teams and links illustrate the common contribution of teams
together. Each team (i.e., node) consists of a number of collaborators working within the
team to deliver an outcome. Each collaborator is contributed in the team with a contribution
level that may be different that his/her teammate. An illustration of the network structure
is shown in Fig. 2.1. As shown in this figure, two teams are connected if they have common
collaborators. Hence, if there is no collaboration between two teams no link will be presented
between the corresponding nodes.

To formulate the definition of link in the network, we leverage the participation level
represented as a percentage in the dataset. We define LT considering two features which
describe collaboration 1) the number of common collaborators within each pair of teams,
and 2) the contribution percentage of the common collaborators. Assume Teami and Teamj

have n common collaborators such that each collaborator contributes up to a certain level
within the team. We define pmi as the contribution percentage of collaborator m in Teami.
We determineM = {Teami∩Teamj} such that it identifies the list of common collaborators
between Teami and Teamj . We thus formalize LT between each Teami and Teamj as [18]

LT = 1
2n

∑
∀m∈M

pmi + pmj , (2.1)

where, LT is the Linkage Threshold which measures the contribution strength between two
teams. The value range of LT starts from 0% to 100%. Each value within this range represents
the average of contribution percentage of collaborators within a pair of teams. For instance,
with LT equals to 20%, two teams in the network are connected if the average contribution
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Figure 2.1: The network structure is identified by nodes (gray circles) which illustrate teams and
contain collaborators. The links are describing the collaboration between the nodes. Each pair of
teams may have common collaborators (illustrated as non-gray arrows) and other members who has
not collaborated (grey arrows) with other teams. In this example, Team i and Team j have two
common collaborators with different contribution levels (pi), and Team j and Team k have only one
collaborator in common. However, there is not a common collaborator between Team l and other
teams.

percentage of the common members between those projects is equal or greater than 20%.
Thus, those two teams are neighbors in the network. In other words, a particular LT identifies
teams who have the highest contribution of collaborators. In a nutshell, increasing LT results
in a sparse network since the teams are obliged to contain a high level of collaboration with
other teams, and lowering the LT range will increase the density of the network since naturally
people are collaborated within many teams but with lower contribution level in each. In a
few cases the defined threshold could not be met by the nodes, hence, there will be no links
between that node and the rest of the nodes and it remains as isolated node in the network.

Description of the algorithm

Let’s assume D as the relational collaboration dataset. We need to identify the nodesList
and linksList to construct network G = (nodeList, linkList). We first extract the research
teams from D and store it as node’s list (see line 2). For each tuple of the teams, LT is
calculated as described in Equation (2.1). Given the value of LT (see line 3), those links
that satisfy the condition specified in the algorithm (see line 6) are appended to the linkList
(see line 7). In this stage, we have extracted both lists of nodes and links for the network.
Finally, considering the different given values for LT , a set of networks are constructed and
stored in a vector G (see line 9) [18].

Complexity analysis

For constructing network G with n nodes andm links, our proposed algorithm, Algorithm 3.1
operates as follow. The complexity analysis depends mainly on two stages: 1) Comparing
each pair of nodes to find those that serves the identified condition for threshold. This is the
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most expensive part in case of computational costs with O(n2). 2) The complexity of the
network generation is linear such that for n nodes and m links the complexity is O(n+m).

Algorithm 2.1 Data-to-Network Layers
Input: D, a dataset of research collaboration.
Output: G, a vector of generated network layers.

1: procedure Data-to-Networks(D)
2: nodesList← teams within D
3: for each threshold in range(0, 100) do
4: for each tuple of team in nodesList do
5: LT ← LinkageThreshold(teami, teamj)
6: if LT ≥ threshold then
7: linksList← (teami, teamj)
8: Network G← GenerateNetwork(nodesList, linksList)
9: Insert G to G

10: return G

2.3 Experiment Setup

2.3.1 Dataset

We use collaboration data of researchers derived from the National Electronics and Com-
puter Technology Center (NECTEC) from Thailand. The organization consists of different
R&D departments and researchers from electronics and computer science topics (e.g., AI and
advanced electronic sensing, intelligent systems and networks). NECTEC is organized such
that experts collaborating within teams which may comprise various deliverables: intellectual
property (IP), papers, or prototypes. The information of collaborations and contributors has
stored in a relational database consisting of collaborations conducted between July 2013 and
July 2018 [18].

The dataset has been retrieved from NECTEC’s knowledge management system with two
key information: 1) the type of the deliverable, and 2) team contributors and contributions.
The dataset of combined deliverables consists of almost 8, 000 records for more than 3, 000
teams. Table 3.1 represents details regarding the statistics of the dataset [18].

Table 2.1: Detail of NECTEC collaboration dataset.

Deliverable Type # Researchers # Teams
Paper 576 1717
Prototype 524 539
IP 489 630

Overall, the dataset includes more than 1, 000 researchers contributing within different
teams to deliver various outcomes. NECTEC evaluates each collaborator with two parameters
defined internally: 1) contribution percentage, and 2) IC-score. The contribution percentage
describes a member’s contribution to the particular team of each member and varies from
0% to 100%. The IC-score is a measure defined based on the type of delivery. For instance,
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Table 2.2: Statistics from NECTEC dataset, mean (µ), standard deviation (σ) and variance (σ2)
of IC-score and contribution percentage is calculated.

Features µ σ σ2

IC-score 3.16 4.24 1.79
Contribution percentage 23.30 22.80 5.20

Figure 2.2: Histograms of IC-score and contribution percentage in the collaboration dataset. They
represent the number of members within a certain value of IC-score (or contribution percentage) in
the dataset.

an industrial-level prototype delivery of a team has a higher IC-score than a lab-level one.
To obtain the IC-score for a member, the total IC-score value of the deliverable has divided
to the contribution percentage of the member [18].

We perform data analytics on NECTEC dataset to acquire information regarding the
features describing the collaboration. We first explore the data by examining the statistical
details related to the features. The results are shown in Table 3.1. As shown in the table,
IC-score represents a small value in average that is equal to 3.16. Considering the definition
behind this value, IC-score relies highly on the type of deliverable (e.g., prototype) and
the contribution of members [18]. The contribution percentage of members, however, is
distributed with the mean value of 23.30.

We plot the distribution of the IC-score and contribution percentage (cf. Fig. 2.2) in a
histogram. Both histograms illustrate that a large number of members participated in teams
with lower IC-score and contribution percentage [18].

2.3.2 Network Metrics

Each network, G = (V,E), could be described by its properties representing its nodes and
links arrangement in the network. A set of measures are extracted from graph theory and
used in networks science to analyze the corresponding network. We discriminate the measures
in two categories of global and local based on the level of information they capture for the
computations. The global measures require a wider structure information and explore the

38



2.3 Experiment Setup

whole network, instead, the local metrics solely focus on the information obtained from an
individual node or its neighbours. Each category of metrics provides a different perspective
from the network and thus valuable to understand the network [18].

We choose a set of metrics both from local and global measures to analyzed the obtained
networks from the proposedData-to-Network algorithm in Section 3.3. We choose the network
density, centrality measures, and connected components to analyze the generated networks
both in global and local levels. The metrics are defined as the following.

Definition 1. Network density. The network density d of a network G is measured as

d = 2m
n(n− 1) ,

where, n is the number of nodes and m is the number of links in network G.

Network density describes the ratio of the existing links to the potential ones in the network
(i.e., the number of links in a complete graph with the same number of nodes). It varies form
0, if there is no link between the nodes, to 1, if all possible links exist in the network. Hence, a
network density close to 0 indicates a sparse network while a higher density describes a dense
network. Network density depends on the information form the whole network structure,
hence, it is a global metric.

Definition 2. Degree Centrality. Degree centrality is calculated for each node as:

CD(v) = deg(v),

where, deg(v) is the number of direct links connected to v from its neighbours in the network.

The degree centrality is the first centrality measure that explains the importance of a node
in the network. It simply calculates as the number of links connected to that node. Node
degree also implies the number v’s neighbours, and thus, the metric is local.

Definition 3. Closeness Centrality. The closeness centrality [34] of node v in network G is
calculated as

CC(v) =
∑
∀u∈V

1
d(v, u) ,

where, d(v, u) is the distance between to pairs of nodes, v and u. Hence, CC(v) is calculated
as the average shortest distance length from v to every other node in the network.

Closeness centrality also captures the importance of individual nodes in the network. It
explains how close a node is to all other nodes. Hence, the more central a node is, the closer
it is to all other nodes. Closeness centrality is measure for individual nodes in the network,
nevertheless, it requires information from the whole network. Thus, it is considered as a
global metric.
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Definition 4. Betweenness Centrality. The betweenness centrality [35] of node v in G is
measured as follows

CB(v) =
∑

s 6=v 6=t∈V

σst(v)
σst

,

where, σst total number of shortest paths length from node s to node t and σst(v) is the number
of those paths that pass through v.

Betweenness centrality indicates the importance of a node by describing how many times a
node acts as a bridge along the shortest path between two other nodes. Nodes with high
betweenness may have a significant influence in a network due to their control over the flow
of information passing between others through them. Similar to closeness centrality describes
an individual node’s influence in the network, however, it requires global network information.
Therefore, it is a global measure.

Definition 5. Clustering Coefficient. The clustering coefficient [36] of node v in network G
is formulated as

CC(v) = 2T (v)
deg(v)(deg(v)− 1)

where, T (v) identifies the number of triangles through node v and deg(v) is the degree of v.

The clustering coefficient represents the degree to which nodes are strongly grouped together.
The value of the clustering coefficient lies between 0 for a star network - in which a node’s
neighbors are not connected to each other, and 1 for a clique network - in which every two
distinct nodes are adjacent. Clustering coefficient is a local measure since it relies on the
local information of a node only.

Definition 6. Connected Components. The connected components of G are calculated as the
number of sub-networks including at least two directly connected nodes connected.

In a connected component, two nodes are in the same sub-network if there is a path be-
tween them in the network. The identification of connected components relies on the global
information of the network, hence, it is a global measure.

Exploiting the above-mentioned set of standard metrics, we are able to describe and
analyze the networks we constructed with different LinkageThresholds with the Data-to-
Network approach.

2.4 Network Analysis
We employ our Data-to-Network, on the NECTEC dataset to transform the collaboration
dataset to a set of network layers. As described in Section 3.3, our methodology provides
a team-based perspective where certain members are collaborating within. Hence, the gen-
erated networks illustrate teams that are connected if they satisfy the defined threshold of
LT . As a final result, we obtained a vector of network layers, each represents a certain level
of connection defined by LT . For each network we calculated the set of standard network
metrics as already described in Section 2.3.
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Figure 2.3: Visualization of the generated networks. In each network, the size of the nodes
represents the degree of a node and the color illustrates the components. Such that blue shows
components with the highest number of nodes, whereas gray represents the smallest components of
a network. Moreover, green and red describe components which have a number of nodes within the
range of previous cases. The networks are visualized using Gephi [1] and the Fruchterman-Reingold
layout.

We perform Data-to-Network approach on the NECTEC teams by defining 11 thresholds
for LT , starting from 0 to 100 percentage. We obtain one network for each LT . Fig.2.3
illustrates the final networks for some of LT thresholds. The networks are colored to show
the connected components. As we expected, increasing the threshold level highly impacts the
number of isolated nodes in the networks since the number of nodes in networks that could
fit in the high restricted conditions (LT > 80) was less than other cases with more relaxed
conditions. Therefore, we eliminate the isolated nodes during the experiments to analyze the
networks regardless of the influence of these nodes.

The LT controls the level of contribution and provides insights on different level of collab-
orations. The first network is generated by LT = 0 where the connections are created if there
is any collaboration between teams. In case of LT = 100, teams are only connected if they
have a full collaborations (i.e., contribution percentage). Therefore, this layer of network only
represents strong collaboration in which the members are fully participated in projects [18].

We first analyze the generated networks using the global metrics which provide a general
perspective about the networks. We, then, analyze networks by exploiting local measures for
a detailed perspective. The global metrics are explained in Table 2.3.

Table 2.3 provides general network information with respect to the number of nodes and
links and density of each networks. As shown in the table, the number of teams who can
satisfy the certain LT is decreased. In addition, the number of connected components has
first increased such that in LT = 50 the generated network is the most fragmented layer with
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Figure 2.4: Measuring a set of network metrics to analyze the nodes’ behavior from the generated
network layers.

112 components, and then it is degraded. The density of networks is also providing additional
information where the networks generated with higher LT (> 70) are shown to have a denser
structure compare to the lower LT s.

Fig. 3.2 provides a closer look on the networks by showing the results of centrality metrics
(betweenness, degree, and closeness), and clustering coefficient. As shown in the plot, the
values of betweenness centrality of nodes are quite low. This is expected from the datasets
because the teams of NECTEC are organized such that they work on certain domains of their
specialty. Hence, the number of teams that lie in the shortest path within other nodes are
very small. The degree centrality of the nodes have not changed dramatically while changing
the threshold. The network layers that are not constructed with the very small or high
value of LT are shown to be only collaborating with a consistent set of teams, although with
different level of collaboration. Besides in the both extreme cases where the collaboration
is very low, i.e., LT = 0, and very high, i.e., LT = 100, the maximum number of teams
that a particular team is in collaboration with is higher than the other the other networks.
The closeness centrality reveals another insight of nodes, where in our set of networks with
lower contribution level the maximum number of teams who are acting as broadcasters in the
network is relatively high. Clustering coefficient hast the most variant values in the networks,
where in LT = 50 it reveals a normal distribution covering the full spectrum. Even though
this network is the most fragmented layer within the set of network layers, there are well-
cluster shaped components within the network. Overall, all networks reveal a high clustering
coefficient which matches with the nature of the networks as collaboration data. In particular,
networks with LT < 30 and LT > 80 the clustering coefficients are considerably high (> 0.65)
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Table 2.3: Analyzing the generated networks for a global perspective. The number of nodes
(#Nodes), number of links (#Links), number of connected components (ncomp) as well as network
density (d) are calculated.

LT #Nodes #Links ncomp d

0 2334 65162 36 0.024
10 2330 43614 38 0.016
20 2228 19083 45 0.008
30 1960 10146 65 0.005
40 1631 6442 93 0.005
50 1282 4562 112 0.005
60 826 2950 99 0.009
70 526 1898 91 0.014
80 379 1299 77 0.018
90 298 1084 60 0.024
100 210 875 43 0.04

and the corresponding number of connected components and network density are small and
high respectively. Hence, among all network layers these networks present components in
which the teams are intended to have more stronger collaborations. The correlation between
the each metric and LT is well represented in Fig. 2.5 [18].
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Figure 2.5: The correlation between the measured metrics and LT values in the generated net-
works.

We also generate a correlation matrix, illustrated in Fig. 2.6, to investigate on the corre-
lation between the values of the metrics we have extracted from different generated network
layers. The high correlation between the metrics reveal that each network layer is informative
and reveals a particular aspect of the collaboration structure that we have constructed.

2.5 Conclusion

In this chapter, we introduced an approach that automatically transforms relational collabo-
ration data into network layers. In the network layers, nodes represent collaborative teams,
and connections are created under certain conditions that is defined in the approach. The
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Figure 2.6: The correlation matrix of the metrics from the generated networks with different LT s.

condition depends on the Linkage Threshold (LT ) parameter that is defined over the number
of collaborators in teams and their contribution percentage. LT control the level of contri-
bution in the process of constructing network such that we can evaluate different range of
contributions. As results, we present different network layers each presenting an organiza-
tional perspetive from the collaboration data. We conducted netwrok analysis using metrics
such as clustering coefficient, closeness and betweenness centrality, and illustrate their impact
on the different network layers. The network analysis on the generated network layers shows
different behaviour in each layer. We, then, utilize the results of the metrics as an important
input to visualize the generated graphs in each configuration. We conclude that the LT has
a crucial impact on the network properties and must be chosen with caution.

Our methodology reveals several optimization criteria. The influence of the LT on the
results of the metrics indicates that the network representation can be optimized. Moreover,
the LT can be generalized to a utility function to be performed on any given collaboration
dataset. In addition, deciding on an optimal LT based on predefined criteria and conditions
could further improve the performance, but also widen the applicability, of our algorithm.
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Chapter 3
Impact of Network Topology on
Community Detection

Transforming data into networks may have impacts in the results of network analysis. In
this chapter, we followed our investigation on generating the networks from the real-world
collaboration dataset. we investigated the definition of the fundamental research question of
how and which network representation to choose for a given set of data. The drawback of
previous studies is that they only consider the existence of a collaboration between individuals
to connect them in the network. However, our work proposes a standardized method to
produce networks from large and complex datasets.

In this chapter, we define a method to construct scientific collaboration networks from
the data considering different features describing the collaboration. Furthermore, we benefit
from the scientific collaboration dataset of National Electronics and Computer Technology
Center (NECTEC) to examine our method. Interestingly, our results indicate that identifying
a network construction model leads to a less noisy yet well–shaped community structure
network with high modularity score. These results are published in Frontiers journal as "Link
definition ameliorating community detection in collaboration networks" [25].
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3.1 Introduction

Collaboration networks are social structures which indicate the relationship between collabo-
rators who perform on the same tasks. Collaboration is an essential component to define the
success of today’s knowledge sharing ecosystem [37] and establishment of innovation.In col-
laboration networks, nodes represent individuals (aka collaborators) and links between them
imply a collaboration. The analysis of collaboration networks can reveal information about
the most likely behavior of individuals and groups in the network [38] such as discovering
the interaction patterns [39], the evolution of collaboration communities [40] and predictive
models on the productivity and longevity of collaborations [41].

One prominent property studied in the context of collaboration networks is the commu-
nity structure of nodes [42]. The discovery of communities, with dense intra-connections and
comparatively sparse inter-cluster, can be beneficial for various applications such as discover-
ing common research area of potential collaborators [43]. Various network-based community
detection algorithms are used for this purpose, e.g., Louvain’s algorithm [20], Label Propa-
gation Algorithm (LPA) [44].

Most collaboration data are stored in relational databases which are used to extract the
collaboration networks to perform network analysis. The context of scientific collaboration
networks has been initiated with the studies of [17], [45]. The network is defined such that the
researchers are represented as nodes and the links constructed if at least one paper happened
to be published by them. Other studies such as [41] have followed a similar generative
approach to construct the collaboration network from the dataset. In a recent study [46],
a weighted scientific collaboration network has been proposed such that links are weighted
by the number of papers. One drawback of previous studies is the elimination of other
potential features that represent the collaborations (e.g., date, number of citations). The
information which is attached to the data can substantially impact the underlying network
representation and, therefore, the outcomes of network analysis (e.g., community detection).
Thus the appropriate use of network analysis, substantially depends on choosing the right
network representation [47], i.e., the definition of nodes and links [16]. Besides, in some cases,
the definition of the link also requires determining a threshold which can significantly alter
the outcomes of network properties, e.g., network density [48].

3.2 Collaboration Dataset

We benefit from a particular collaboration database provided by the National Electronics and
Computer Technology Center (NECTEC) that presents different projects and collaborations
in the area of R&D1. The whole database is the knowledge management about projects
within distinct deliverables where the key information is to know project contributors and
contributions. The database consists of three datasets, each indicates a particular deliverable:
PAPER, PROTOTYPE, and IP (intellectual property) conducted between July 2013 and
July 2018.

The datasets of combined research teams information consist of approximately 8000
records which correspond to the information of more than 2300 projects. Detailed statis-
tical information regarding each dataset is provided in Table 3.1. Overall, NECTEC has
more than 1000 members who are contributing to different deliverables with certain features
that have been evaluated by the organization. For each researcher who collaborated on a

1National Electronics and Computer Technology Center (NECTEC) (https://www.nectec.or.th/en/)
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contribution, a contribution percentage has been recorded. Another feature named IC–score
which is designed by NECTEC, evaluates the scientific value and the outcome of contribu-
tions. For instance, producing a prototype in an industrial stage has a higher impact than
one in the laboratory stage. For each project, the IC–score is divided between each con-
tributor considering their individual participation in the project. Overall, each dataset of
the deliverables contains a) project ID, b) collaborator’s ID, c) contribution percentage of a
collaborator for each project d) IC–score of a collaborator for each project.

Deliverable Type # Researchers # Projects Cont. percentage IC–score
PAPER 576 1717 µ = 22.22, σ = 19.73 µ = 3.89, σ = 4.61
PROTOTYPE 524 539 µ = 15.54, σ = 13.73 µ = 9.41, σ = 10.75
IP 489 630 µ = 25.15, σ = 24.42 µ = 4.08, σ = 4.63
Total 1056 2347 µ = 20.78, σ = 19.82 µ = 5.81, σ = 7.73

Table 3.1: General overview of the datasets from NECTEC. Contribution percentage (Cont.
percentage) and IC–score are feature extracted from the dataset and describe the collaboration.

3.3 Methodology for Link Construction

We propose a collaboration score function that takes into account the combination of features extracted
from the dataset. The purpose is to quantify the contribution of researchers considering features
describing the collaborations. The collaboration score is the key element to define the link in the
network while nodes are co–authors. We introduce a linkage threshold (LT ) on obtained collaboration
scores. Thus, multiple networks are produced using various LT values.

We define the collaboration score function based on the features extracted from the NECTEC
datasets which includes a) the number of projects, b) the contribution percentage of researchers, and
c) the IC–score of researchers. Given two researchers i and j worked on a mutual project p, i.e.,
(i, j), let n be the number of projects that i and j have collaborated, and pk,i and pk,j represent the
contribution percentage of researcher i and j, respectively for the kth project. Likewise, sk,i and sk,j
indicate the IC–score of each researcher on the kth project. Hence, we determine the collaboration
score function as follows.

fi,j = 1
n

(1
2

n∑
k=1

(pk,i + pk,j) + 1
2

n∑
k=1

(sk,i + sk,j)
)

(3.1)

The function takes into account the average of IC–score and contribution percentage between any
tuple of collaborators. The LT , then, is defined such that it determines different levels of collaboration
score in the network. The range of LT varies from 0 to 1, which is the normalized range of collaboration
score. In a nutshell, increasing LT enlarges the number of collaborations.

The threshold values indicate links in the network between the nodes. We produce a set of
networks considering various LT s. Algorithm 3.1 shows the pseudocode of the data transformation
to networks. A relational dataset of collaborations is the input of the algorithm. The researchers are
determined as nodes of the network. For each tuple of researchers, the collaboration score is measured
(see line 4). In order to generate a network, links are produced considering a particular LT value.
All collaborations that are less or equal than the level of the chosen threshold are determined as links
in the network (see line 7). Considering various levels of LT , a set of networks are generated by the
algorithm which is examined in Sect. 3.4.
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Algorithm 3.1 Network Extraction from Data
Input: D, scientific collaboration dataset
Output: G, a vector of generated networks

1: procedure Transform-to-Network(D)
2: colList← researchers from D
3: for tuple(i, j) in colList do
4: f.append← collaborationScore(tuple(i, j))
5: collaboration.append← Concatenate tuple(i, j) and normalize(f)
6: for LT in range(normalize(f)) do
7: if collaboration.normalize(f) ≤ LT then
8: nodes.append([i, j])
9: links.append([tuple(i, j)])

10: G← Network(nodes, links)
11: G.append G
12: return G

3.4 Results
Our proposed method has been employed on different deliverable types of the previously described
NECTEC collaboration data. As a result of the extraction process, our method returns a set of
corresponding collaboration networks. In the first stage, we exploit the distribution of the collaboration
score (f) within each dataset. Next, we analyze the topology of the extracted networks given the
different values of LT by measuring a set of network metrics. Furthermore, for each generated network,
we identify the communities using the Louvain algorithm and evaluate their quality.

3.4.1 Data Processing
We exploit the histogram and cumulative distribution function (CDF) of f for each dataset of deliv-
erables from NECTEC. Figure 3.1 describes the frequency and distribution of the obtained f after
normalization. The average (µ) of f for PAPER, PROTOTYPE, and IP are 0.24 (standard deviation
(σ = 0.16)), 0.18 (σ = 0.12), and 0.3 (σ = 0.21) respectively. Furthermore, the figure also shows that
the majority of collaborators have relatively low number of contribution. Nevertheless a small number
of collaborators are highly collaborated in various projects.

3.4.2 Topological Analysis
We analyze the topology and structure of extracted networks from each dataset by calculating a set
of network metrics: degree, network density, transitivity, clustering coefficient, betweenness centrality,
and closeness centrality. Figure 3.2 describes the evolution of these metrics on a set of 41 networks
while increasing LT from 0 to 1 with the step of 0.025.

The degree of a node in collaboration networks represents the number of direct collaborations for
each individual. The average node degree of networks obtained from PAPER is 6.59, PROTOTYPE is
11.46, and IP is 5.71 which indicates that on average, teams in PROTOTYPE had significantly higher
collaborations compared to others. As illustrated in Figure 3.2, the degree of extracted networks does
not change significantly. The reason is after a certain threshold of LT , the number of new links which
have been added to the network does not grow significantly while the number of nodes stays constant.
A similar scenario occurs when measuring network density. The network density calculates the ratio
of existing links to the number of all possible links in a network such that a density close to 0 identifies
a sparse network while a density equal to 1 is a complete network. With LT close to zero, the network
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Figure 3.1: The histogram and cumulative distribution function (CDF) of generated collaboration
score (f).

Figure 3.2: Topological analysis of a set of 41 produced networks from each dataset while increas-
ing LT from 0 to 1 by 0.025.

mostly consists of isolated nodes which explains why in all three datasets the network density is close
to zero. Eventually, the density of the network increases slowly and remains steady. The reason is
due to the high number of nodes compared to the number of collaborations between the nodes. This
indicates the fact that in real-world collaboration networks each collaborator may only collaborate
with a small number of collaborators, hence, the networks are considered as rather sparse.

In order to get knowledge on the complexity of collaborations of each dataset, we calculate the
transitivity and clustering coefficient of networks. Transitivity refers to the extent to which the relation
that relates two nodes in a network that are connected by a link is transitive. Thus, it represents the
symmetry of collaborations in our networks and forms triangles of collaborations. Figure 3.2 illustrates
fluctuations for networks constructed with lower LT , however, quickly it approaches a consistent value.

On the other hand, clustering coefficient describes the likelihood of nodes in a network that tend
to cluster together [49]. The average clustering coefficient of produced networks is 0.44 for PAPER,
0.61 for PROTOTYPE, and 0.45 for IP. For a relatively high LT the clustering coefficient approaches
approximately to 0.7. A possible explanation can be that contribution of at least three people happens
often in scientific collaboration teams [50]. Therefore, every collaboration that has three or more co–
authors increases the clustering coefficient significantly.
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Centrality measures indicate the importance of nodes in the network. We measure betweenness
centrality and closeness centrality to analyze datasets. For a node, the betweenness is defined as the
total number of shortest paths between every pair of individuals in the network which pass through
the node [35]. In other terms, it highlights collaborators who act as a bridge between different groups
in a network.

Moreover, closeness centrality defines the closeness of a node to other nodes by measuring the
average shortest path from that node to all other nodes within the network. Hence, the more central
a node is, the closer it is to all other nodes [34]. All three datasets reach the highest closeness
centrality after a certain threshold. However, each dataset reflects a considerably different growth
function, such that IP follows a linear function after each evolution, PROTOTYPE, and PAPER are
growing exponentially.

3.4.3 Community Detection Analysis
We imply Louvain community detection algorithm to evaluate LT on collaboration score. We extract
communities of each network and measure the modularity and number of clusters. The modularity of
communities illustrates the strength of connected nodes inside the same community compare to the
community of a random graph (with the same size and average degree). The higher the modularity,
the more the network is closer to a well–shaped community structure.

Figure 3.3 shows the average results of 200 experiments on each dataset with the error bars which
are too small. The figure shows that the modularity of all three datasets converges to relatively
a high score of approximately 0.7 after a certain LT . It indicates that the produced collaboration
networks have well–defined community structure compare to the random network of the same size.
As illustrated in this figure, increasing LT does not affect the modularity after a particular point. For
the lower LT (< 0.4), as also shown in Figure 3.2 networks have a considerably lower density, thus,
they are sparse. However, the score increases exponentially and becomes steady for all three datasets
for LT > 0.4. On the other hand, increasing LT decreases the number of communities considerably.
When networks are sparse (i.e., LT ≤ 0.2) the number of communities is almost equal to the number
of nodes.

Moreover, as illustrated in Figure 3.3, the modularity score increases significantly even for the
low values of LT and reaches to its highest value before it decreases and becomes steady. On the
other hand, the number of communities exponentially decreases. Therefore, the network obtained
from LT < 0.2 has an extremely high number of communities. In a particular case for PROTOTYPE,
the modularity increases and becomes steady with LT > 0.4, and similarly the number of commu-
nities become constant (= 22) with LT > 0.5. Furthermore, considering the growth of metrics for
PROTOTYPE from Figure 3.2, all metrics are constant with LT > 0.4.

0.0 0.2 0.4 0.6 0.8 1.0
LT

0.0

0.2

0.4

0.6

0.8

M
od

ul
ar
ity

 o
f c

om
m
un

iti
es

0.0 0.2 0.4 0.6 0.8 1.0
LT

0

100

200

300

400

500

600

N
um

be
r o

f c
om

m
un

iti
es

PROTOTYPE
PAPER
IP

Figure 3.3: Community detection analysis after implying Louvain algorithm on networks produced
with different LT values. The Community modularity score, and the number of clusters are the average
of 200 experiments for 41 data points. The error bars are not visible because the standard error is
very small.
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3.5 Conclusion
The approach outlined in this chapter infers collaboration networks of researchers within projects of
an organization. Our method uses the features describing the collaborations of a research institute
and quantifies them by applying a proposed collaboration score function.

Our results show that the quality of the detection of communities from the extracted collaboration
networks can differ significantly by the choice of the linkage threshold. It turns out that a greedy
increase of links and connections can lead to a noisy network structure where the identity of nodes
could be affected by a large amount of superfluous connections. Consequently, our future work has
to focus on the understanding of a networks preference towards a rich network while avoiding a noisy
structure [51]. Moreover, our experiments on the execution time of community detection indicate
that increasing LT impacts the execution time of the algorithm. Hence, one option is to generate
the network choosing a considerably low threshold while the modularity of communities is still at the
highest possible value.

In this study we use a set of network metrics and the modularity score to evaluate communities
of obtained networks. However, as future work we are looking at advancing our collaboration score
model for network construction from relational data. Moreover, we consider identifying the optimum
LT in order to recognize high quality communities within the obtained networks.
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Chapter 4
Locality in Community Detection

Early approaches of community detection algorithms often depend on the network’s global structure
with a time complexity correlated to the network size. Local algorithms emerged as a more efficient
solution to deal with large-scale networks with millions to billions of nodes. This methodology has
shifted the attention from global structure towards the local level to deal with a network using only a
portion of nodes. Investigating the state-of-the-art, we notice the absence of a standard definition of
locality between community detection algorithms. Different goals have been explored under the local
terminology of community detection approaches that can be misunderstood.

This chapter probes existing contributions to extract the scopes where an algorithm performs
locally. Our purpose is to interpret the concept of locality in community detection algorithms. We
propose a locality exploration scheme to investigate the concept of locality at each stage of an existing
community detection workflow. We summarized terminologies concerning the locality in the state-of-
the-art community detection approaches. In some cases, we observe how different terms are used for
the same concept. We demonstrate the applicability of our algorithm by providing a review of some
algorithms using our proposed scheme. Our review highlights a research gap in community detection
algorithms and initiates new research topics in this domain. The results are published in the ACIIDS
2021 conference proceedings as "Community Detection in Complex Networks: A Survey on
Local Approaches" [52]
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4.1 Introduction
Densely connected components are inseparable from networks providing structural or functional roles
of the applications represented by the network. Community detection algorithms aim to identify
these densely connected components within a network. Each community consists of nodes that are
similar or close to each other more than other nodes outside the community. The existing community
detection algorithms can be differentiated into categories of global and local approaches. Unlike global
approaches, local methods are known to discover communities without the integral global structural
information of the complex networks [53–55].

The primary goal of developing local community detection algorithms is to find a local community
of a given node in the absence of global information of the network [56, 57]. Utilizing the traditional
global algorithms, that requires fetching a large-scale network, often produce structural hairballs and
not meaningful communities [58] as studied in protein folding networks [59]. The initial solution of
finding a local community structure for a given node has been further developed to detect all network
communities. Therefore, locally detecting communities turn to answer today’s large-scale networks
that is one of the drawbacks of the global algorithms that tend to find all network communities using
complete network information.

Motivation. The question is, then, what is defined as locality when it comes to community
detection algorithms? Among various interpretations, one may define it as finding local commu-
nity(s) [56, 57] of a given node(s). In contrast, others infer it as a local approach by incorporating
local information of a network to find all network communities [24,58,60]. The majority of the studies
still lay down in a spectrum within these two classes. For instance, they exploit the entire network
to extract information used in the core community detection operation, whereas the objectives that
define a community are determined locally [61–64]. Considering all the above-mentioned points, we
noted the absence of a comprehensive study that supports the need to define a standard terminology
regarding the locality of community detection algorithms to analyze the existing approaches deeply
in this field. Our goal is to address these gaps in this chapter.

Contribution. We raise a new research challenge on community detection approaches concerning
the locality in different stages of the algorithm. We explore the corresponding concepts and termi-
nologies in various references, yet often with different terms. We also investigate the working flow of
community detection approaches that benefit from a locality level in their approach. We developed
Locality Exploration Scheme (LES) to incorporate research questions on the locality level of an ap-
proach in each step of the algorithm. Our scheme surveys existing approaches and countermeasures
from a broad perspective respecting the algorithm’s input, the core workflow of community detection,
and the resulting output. Employing our model, we analyze some of the references concentrating on
the stages defined in our scheme and discuss the applied locality level.

To the best of our knowledge, no studies have previously addressed the mentioned challenges. Our
scheme is the first model to assemble strategies and associated locality levels to develop a community
detection algorithm with a predetermined level of locality.

4.2 Preliminaries and Background
We assume G is a network denoted by G = (V,E), where V is the set of nodes, and E is the set of
edges representing links within pairs of nodes (v, u) such that v, u ∈ V . Each node v ∈ V has a degree
of kv representing the number of its neighbours from Γ(v), the neighbour list of v.

Definition 1. Community Structure. We define a community structure c as a sub-network of G,
where the intra-connectivity is maximized compared to the inter-connections such that ci ∩ cj = ø
and

⋃
ci = V .

Definition 2. Local Community Structure. As introduced by [56], a local community has no
knowledge from outside of the community. It consists of core node(s) that are internal to the com-
munity such that they have no connection to the outside of the community, and border nodes that
connect those core nodes to the unknown portion of the network (i.e., other communities).

Definition 3. Community Detection Algorithm. The algorithm that detect densely connected
components of community structures in a network is known as community detection algorithms. Local
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community detection algorithms tend to discover local community structures of G. We define Local
Detection of Communities as an algorithm that associate a level of locality in its process to detect all
communities of a network.

Definition 4. Source Node. A set of nodes chosen according to a score (e.g., similarity and
centrality) to represent a community structure are identified as source nodes. They are also sometimes
referred as core, seed and central nodes in the literature. In most of the cases, identifying a source
node initializes a community of a network.

Definition 5. Locality Level. Adopted from [65], we define a three-level spectrum of local-
ity. Starting from the most relaxed level, global-level that has no constraints, then community-level
that is limited to the information within the community, and finally, node-level locality as the most
restricted level which incorporates only local information of a node (up to certain extension, e.g.,
second-neighborhood).

Definition 6. Auxiliary Information. Some approaches require extra information to operate, for
instance a threshold value, or a node/link weight. In this chapter, the extra information added to the
process are considered as auxiliary information.

Definition 7. Community Expansion. A community detection algorithm often needs an expan-
sion strategy to enlarge the initial source nodes or preliminary detected communities. It can be a
fitness function to evaluate the membership of a node to a community or a modularity objective to
measure the inter-connectivity of the community.

4.3 Locality Exploration Scheme (LES)

The question of how much information algorithms need from a network for their operations is not a
recent research question [66, 67]. Stein et al. [68] have provided a classification of local algorithms
in network research. They define a four-level model based on auxiliary information, non-constant
run time, and functionality. We find this classification comprehensive in communication networks,
however, it is limited when it comes to community detection criteria. Other comprehensive studies
on community detection are confined to the two main categories of local and global algorithms [53–55,
69–72] emphasizing global methods. Thus, we identify this absence of attention to local community
detection in complex networks.

We provide Locality Exploration Scheme (LES) illustrated in Fig. 4.1 and combine the challenges
raised in Section 7.1. The scheme considers a three-level model for community detection algorithms:
Input data, Community detection flow, and Output communities. In each step, we collect the possible
solutions from the literature and sort them with the locality level described in Section 4.2. In the
following subsections, we explain each stage provided in Fig. 4.1 for the possible solutions investigated
from the literature.

4.3.1 Input Data

The initial step towards any community detection algorithm is the input provided to the algorithm.
One of the main drawbacks of the global community detection is being dependent on the entire network
to discover the communities. Although the community detection flow in local algorithms does not
depend on the global structure, the input data includes the whole network for preliminary operations
in several cases.

Considering large-scale networks, it is impossible to fetch the whole network for the next oper-
ations. Therefore, even if an algorithm offers an adequate locality level during some steps of the
community detection flow (i.e., community expansion), it may fail to operate on a network if the
input is the entire network. Hence, this is an essential stage when investigating the locality of the
algorithm. Besides the network’s information, sometimes, the algorithm also expects to input certain
auxiliary information, such as a threshold value. Depending on the auxiliary information, sometimes
it may also impact the level of locality.
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Figure 4.1: An overview of proposed LES model. The analysing scheme represents a three-level
structure of community detection approaches. In the middle rectangles, the main challenges that may
raise at each stage is highlighted. The pink rectangles show the existing solutions in the literature
sorted from left to right based on their locality level.

4.3.2 Community Detection Flow
We assembled the core operations towards a community detection procedure in this stage. Principally,
the procedure is decomposed itself into four functions as described in Fig 4.2. We noticed that when
there is a discussion on community detection locality, it mainly refers to this stage. It is worth noting
that not all algorithms follow the four-step model, in some instances some steps are combined (e.g.,
Source node identification and Preliminary communities). It is not a trivial task to decide about the
locality of an approach based on this stage. A number of algorithms have included the entire network
during the source node identification, however, they have increased the locality by incorporating local
information while expanding the communities [61, 63, 73, 74]. Thus, we analyze this stage given the
workflow described in Fig. 4.2.

Preliminary 
communities

Community 
expansion

Merge candiadte 
communities

Source node 
identification

Figure 4.2: Community detection flow.

Source node identification.
Source node identification is one of the main steps that targets candidate nodes to be expanded later in
order to shape the communities. The performance of the algorithm, however, depends highly on this
step since the source nodes initiate output communities. Each contribution has introduced a slightly
different approach to choose the source nodes. Besides algorithms that apply a random strategy (e.g.,
LPA) other tend to find the important nodes that is a good representation of its community to start
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their approach from. In this step, a dedicated score is first calculated for a particular set of nodes
(or the entire network) and then usually the list of scores is sorted to choose the best candidates as
source nodes. We categorize the source node identification techniques into the following main classes:

• Network centrality metric [75,76]

• Node similarity score [77,78]

• Combination of topological measure (e.g., [74])

Table 4.1 summarized metrics used in reference for source node identification in some community
detection approaches. It is noteworthy that the metrics, especially similarity scores, are not exploited
only for identifying the source nodes but also as a similarity measure to quantify a node’s belongingness
to a community that we explore in the next subsections.

Besides the impact of the source node selection on the performance, it is also important to remind
that not all of the metrics are local. Several metrics listed in Table 4.1 are required the knowledge
from the entire network as the score that calculates both the degree and distance of a node from other
high degree nodes. On the other, to choose source nodes, it is mostly observed that V is required to
be sorted based on the chosen score (ref. Table 4.1).

Table 4.1: A summary of similarity scores of two nodes in the literature. (γ(v) is the number
of subgraphs with 3 edges and 3 vertices, one of which is v, τ(v) the number of triples on v, σst(v)
represents the shortest path from s to t through v suv represent a similarity score between node v and
u.)

Categories Metrics Definition References

Centrality

Degree kv = |Γ(v)| [79–82]

Clustering coeficient cc = γ(v)
τ(v) [74]

Betweenness centrality bc = ∑
s,t∈V

σst(v)
σst

[79, 83]

Edge density Den(G) = |E|
|V |(|V |−1)/2 [84]

Similarity

Jaccard’s Coefficient (JC) suv = |Γ(u)∩Γ(v)|
|Γ(u)∪Γ(v)| [61–63]

Adamic-Adar Coefficient (AA) suv = ∑
t∈Γ(u)∩Γ(v)

1
log k(t) [85]

Resource Allocation (RA) suv = ∑
t∈Γ(u)∩Γ(v)

1
k(t) [77, 81,86]

Combination Degree - distance sci = kv × σv [73, 74]

Preliminary communities.
After detecting source nodes, the initial communities are predefined and most of the time, they are
considered preliminary communities. Thus, this step may not be taken as an independent stage in the
community detection flow. In many references, yet, this step is developed to extend source nodes into
preliminary communities. It can be operated as merely taking the first neighbourhood of a source node
as its preliminary community [62], or choosing neighbours relying on a similarity score (ref. Table
4.1) [61, 63]. The level of locality depends on the taken strategy. Per only the local neighbourhood
provides a higher level of locality compared to other solutions.

Community expansion.
Several references have conducted an adequate locality level only during community expansion, regard-
less of previous input data. A list of local community expansion strategies developed in the literature
mostly rely on community-level local information: internal connection and external connections of a
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community [69]. A list of important local fitness function are provided in Table 4.2. Moreover, some
approaches do not depend on such objectives. Instead, they exploit techniques such as spreading of
influence (i.e., LPA) [58,73,74] or random walk.

Moreover, many references measure these functions (ref Table 4.2) from a community perspective
such that a community calculates a respective objective to decide about adopting a new node. In
other words, it is the community that determines whether to accept the joining of a new node to
its community (if that node maximized the objective function) or not. By slightly changing the
perspective, one can operate any of these functions on a node to decide on surrounded communities
to join [24, 58, 60]. By employing this strategy, the locality level of an approach increases to the
node-level.

Table 4.2: Summary of existence fitness functions.

Fitness Functions Formula Reference

Local modularity (Clauset) [87] R =
∑
Bijσ(i, j)∑

Bij
[80]

Local modularity (Lou) [88] M = Ein
Eout

[62, 89]

Fitness Function (Lancichinetti) [82] Fc = f cin
(f cin + f cout)α

[63]

Merging candidate communities.
In certain instances, communities are small or sparse. Hence, identifying The merging step is not
always a requirement; however, it can increase the quality of resulted communities [58, 61, 62]. The
approach is accomplished by considering each community as a node and pursuing a similar approach
to finding the most similar communities to merge. In some cases, it also requires a given threshold
to decide on the degree of similarities between two communities [58, 61, 63]. Overall, the function
requires communities to operate and its locality level can be community-level if the threshold value is
not relying on the global structure of a network.

4.3.3 Output Communities
Finally, the communities are identified that can either represent a set of communities from the entire
network [58,60,61,74], or only a local community of a given node (subset of nodes) [56,57] depending
on the purpose behind the community detection approach. The early work is primarily motivated by
finding local communities of a given node [56, 57]. Considering the underlying network, it is possible
only to have meaningful local communities within a network [59] rather than global communities for
the entire network.

4.4 Analyzing Existing Algorithms based on LCE
In this section we provide a review analysis of some papers regarding the scheme described in Sec-
tion 4.3.

NSA.
In [61], authors have proposed an algorithm (NSA) founded on Jaccard similarity. The algorithm
requires a network G and a threshold value used during the merging process of community detection
flow as input. The source identification relies on the high degree nodes. Afterwards, the preliminary
communities shape, adding the most similar neighbours due to the Jaccard similarity scores. The
produced small communities are then merged similarly based on a given threshold on the Jaccard score
between two communities this time. NSA functions on time complexity of O(n log(n)). The algorithm

58



4.5 Conclusion

is global at the input level; however, it is operating locally given only nodes local neighborhood during
the community detection flow. The outputs are all communities of a given network.

ECES.
The algorithm [62] is motivated by the drawback of global community detection algorithms that
require the network’s global information to operate. However, the model itself needs a network to
process the first step of community detection flow. That is to obtain the core nodes of the network
using an extended Jaccard score. The score admits local information until the second-neighbour of
a node. The highest score node is then extended, including its first neighbours forming preliminary
communities. Next, each community is extended by the ratio of internal links to the external ones.
Finally, candidate communities satisfying the condition relying on the sum of its nodes Jaccard score
are merged. The output is a set of network communities. The algorithm operates in a super-linear
time complexity of O(n log(n)). Similar to NSA, this approach also depend on global information to
detect the source nodes, however, it enjoys a level of locality (second-neighbourhood compared to the
first-neighbourhood of NSA) while extending the communities in community detection flow.

InfoNode.
In a recent approach [63], authors propose a model that concedes the increment of particular local
community modularity as a condition of adopting a node. InfoNode requires both a network and a
threshold value as input. Even though the source selection relies on a node degree, a local centrality
metric, the approach needs to sort all nodes in regard to their degree. Therefore, this step is not
local anymore. The high degree nodes are first enlarged to preliminary communities calculating the
F fitness function [82], and then extended based on an internal force function defined by the authors.
The growth of communities in the community detection flow is processed locally. The algorithm has
a non-linear time complexity of O(n2).

DEMON.
Slightly different than the previous papers, DEMON [58] defines locality as taking each node to
be responsible for joining a community. However, the algorithm requires a global network and a
threshold value to process. The source nodes are chosen randomly, and an ego network for each node
is identified. The local expansion of the candidate nodes is operated similarly to the LPA technique.
Finally, sparse communities are merged considering the threshold value. The time complexity of the
algorithm is quasi-linear reported as O(nk(3−α)). Regardless of the input, all the steps during the
community detection flow have been operated in a community-level locality.

LCDA-SSN.
In another approach [60], authors developed a community detection algorithm that has increased the
locality level compared to similar approaches. The proposed method is an iterative model taken only
a node as input. They consider each node knowing its first neighborhood; hence, it discovers the
network while operating on one node. The approach offers a self-defining source node selection giving
a score to a visited node based on local structural information. The score is updated each time, as for
the community cores. The community expansion is adopted from M local modularity [88]. However,
it is applied to a node rather than a community. The output is all communities of a network in a
quasi-linear time complexity of O(nk).

4.5 Conclusion
In this chapter, we bring up new research questions in the field of community detection algorithms in
complex networks, highlighting two foremost challenges: first, the absence of a standard terminology
when it comes to local community detection algorithms, and second, the gap between the interpretation
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of locality and community detection algorithms. We provide a Locality Exploration Scheme (LES)
model based on the steps of the community detection approach and incorporate the research questions
raised by the concept of locality in each step. By employing our LES, we could survey the existing
techniques and strategies required for developing a community detection algorithm with an adequate
locality level. Furthermore, we provide a thorough review of some of the references showing the
applicability of our scheme. Our analysis can also be taken as a guideline to choose the most relevant
functions while developing community detection. We show that ignoring the problem of defining
locality can lead to misunderstandings, and if not addressed correctly. We plan to further extend our
scheme by including evaluation metrics determined for these approaches.
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Chapter 5
A Local Community Detection Algorithm
with Self-Defining Source Nodes

Considering the growing size of existing networks, local community detection methods have gained
attention in contrast to global methods that impose a top-down view of global network information.
Current local community detection algorithms are mainly aimed to discover local communities around
a given node. Besides, their performance is influenced by the quality of the source node.

In this chapter, we propose a community detection algorithm that outputs all the communities of
a network benefiting from a set of local principles and a self-defining source node selection. Each node
in our algorithm progressively adjusts its community label based on an even more restrictive level
of locality, considering its neighbours local information solely. Our algorithm offers a computational
complexity of linear order with respect to the network size. Experiments on both artificial and
real networks show that our algorithm gains more over networks with weak community structures
compared to networks with strong community structures. Additionally, we provide experiments to
demonstrate the ability of the self-defining source node of our algorithm by implementing various
source node selection methods from the literature. The results are published in the proceedings
of International Conference on Complex Networks and Their Applications as "Local community
detection algorithm with self-defining source nodes" [60]
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5.1 Introduction

Complex networks exhibit modular structures, namely communities, which are directly related to
important functional and topological properties in various fields. They can, for example, represent
modules of proteins with similar functionality in a protein interaction network [53], or affect dynamic
processes of a network such as opinion and epidemic spreading [90]. Despite the various insights and
applications communities represent, they are all referred to as a densely connected set of nodes with
relatively sparse links to the rest of the network. This simple definition, however, has raised great
interest in discovering communities in complex networks. Numerous solutions have been proposed ever
since. While most of the conventional algorithms are rooted in a top-down view obtaining the global
information of the entire network [55, 71], others reduce the problem to a local level, by availability
of a part of the network [57, 87] to find local communities of a given node(s). The existing local
community detection algorithms in the literature are mostly designed to first identify a set of source
nodes to initialize the community detection [62,73,76,79] and then use a local community modularity
to expand the communities [82, 87, 88]. The main challenges raised by these methods fall into the
followings: i) the optimal result highly depends on the source node selection [73], ii) the main goal is
to discover the local communities of a given set of nodes rather than all communities of a network, iii)
the approaches are mostly operating in a relaxed level of locality, i.e. local-context the forth level of
locality [68], exploiting the information of a part of the network in the community detection process,
iv) even though they appreciate a level of locality while employing the algorithm, they cannot cope
with any changes in the network which is mostly the case in real-world complex networks.

Taking the above-mentioned considerations into account, we propose a community detection ap-
proach that has two main properties: First, it is operating solely based on a node and its local
neighbours at a time, thus, it can belong to the local-bounded category, introduced by Stein et al. [68],
which is one level more restrictive compared to most of the state-of-the-art approaches. Secondly, it
does not depend on any auxiliary process of source node selection. Instead, it is exploiting a self-
defining source node that can adapt based on the local neighbourhood knowledge. Our algorithm
progressively iterates over the discovered part of the network allowing each node to decide on joining
one of the neighbour communities or even create a new community. We develop a community influence
degree employing topological measures [25] to identify the community influence of each node to assure
maintaining a hierarchical community structure centralized by high-degree nodes. We, then, perform
a local modularity measure to label each node’s community. This way, our algorithm addresses the
challenges raised by the previous algorithms by proposing a local approach based on a self-defining
source node.

Many of local-context community detection algorithms are founded on this assumption that the
global knowledge of the network is not available, therefore, the community structure measures should
be in dependant of those global properties [87] such as modularity metric Q in Girvan and Newman [91]
non-local community detection algorithm. A variety of source (i.e., seed) selection techniques are
employed by local-context algorithms to increase the quality of communities. Some of these methods
are based on the network’s centrality metrics such as degree [79], others exploit similarity metrics [76]
like the Jaccard score [62], while others defined new metrics, for example, node density in [73]. With
all the advantages that centrality based community detection algorithms offer, they tend to give
relatively poor results in dense networks and perform better in sparse networks [53]. In the next step,
benefiting from a fitness function or a local community modularity, the chosen seeds are expanded.
Clauset defines a local community modularity [87] as R =

∑
Bijσ(i, j)∑

Bij
. It measures the ratio of the

number of links within the community (i.e., internal links) to the sum of the number of all internal
and external links. Luo et al. [88] have simplified the above measure and define local modularity as
M = Ein

Eout
, which only divides the number of internal links of a community to the number of external

links. Next, Lancichinetti et al. [82] propose a fitness function as Fc = kcin
(kcin + kcout)α

, where, kcin and
kcout represent the internal and external links of a community c. It requires a parameter α to control
the size of the communities. While the above-mentioned algorithms are considered in the local-context
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class of local algorithms [68], other algorithms perform with even more restricted local properties of
a network categorized as local-bounded. These algorithms deploy entirely based on a node and the
information from its neighbourhood. In an approach for wireless ad-hoc networks, Brust et al. [24]
proposed an adaptive k-hop hierarchical community detection that performs using only neighbour
local information. In another study [58] the authors proposed a community detection algorithm by
giving the authority to nodes to vote for the community that they might belong to. Our local-bounded
algorithm offers a change of mindset such that nodes are responsible to choose their community based
on a self-identifying source selection. To expand the communities, we define a local modularity similar
to Luo et al. [88] by engaging both internal and external links in the fraction.

5.2 Preliminaries of Local Community Detection
In this section, we introduce the preliminaries and notation that are used in the rest of this chapter.
We assume an undirected and unweighted network G = (V,E), where V and E represent the set of
nodes and the set of links, respectively. Our goal is to discover a set of all communities C =

⋃
ci,

such that each node v ∈ V belongs only to one community. A good community is achieved if all nodes
within a community are densely intra-connected, in other words, implying that the local modularity
of each community is maximized. Besides, we construct a community in a hierarchical structure in
such a way that nodes with a higher degree are pushed towards the center of the community whereas
the lower degree nodes stay close to the border of the community. We aim to find all communities of
a network by allowing each node to adjust its community label given its local neighbours, Γ(v), and
their properties at a time. We exploit a set of measures adopted from the network structure to assure
that each node belongs to a community at the end of the execution time.

Definition 1. (Community influence degree.) Each node is influenced by its surrounding com-
munities. To quantify this impact, we define λ(v)ci

to show the level of impact from node v with
community label ci to its neighbours, as follows:

λ(v)ci
= kv
hl
, (5.1)

where kv is the degree of v (i.e. the number of nodes in Γ(v)), and hl shows the hierarchy level of v in
its community. In a nutshell, hl represents the hop distance from the source node in the community.
The value is 1 for source nodes, showing the first layer of the hierarchy (i.e., seed node) and increases
by per hop-distance towards the border of the community. The intuition behind this measure is that
a node is more likely to be in the same community as another node if the following node is closer to
the source of the community and has a higher degree. Thus, we indicate the strength of a member in
a community with a high λ(v) value showing the high degree and low hierarchy level of that node.

Definition 2. (Local community modularity.) It defines the degree of a node contributing to a
candidate community ci. It is measured by the following equation:

µ(v)ci =Ein − Eout
Ein + Eout

= 2 Ein
Ein + Eout

− 1, (5.2)

where Ein is the number of edges from node v towards the community ci, Eout represents the outwards
of node v. Therefore, kv = Ein+Eout is the total number of edges of v or simply the degree of node v.
In other words, the local community modularity explains a membership degree for a given community.
It represents the link ratio of those neighbours of v within a community minus the number of those
outside the community, normalized by the degree of v. The value can vary in the range of (−1, 1].
It takes a negative value if it does not have any connection to the community ci and positive if the
majority of its links are toward the community.

5.3 Self-defining Local Community Detection
We design an iterative bottom-up approach allowing each node to take a decision of joining a com-
munity independently. Our algorithm discovers the whole network starting from a given node and
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its local neighbours, therefore, it performs in a restricted level of locality (i.e. local-bounded). The
algorithm converges when all nodes agree with their community labels. We assume a hierarchical
structure for each community by encouraging high degree nodes towards the center of the community
and nodes with a lower degree to the borders while maximizing the local modularity defined in Eq. 6.2.
To forge a hierarchical structure, we adjust the hop-distance hl, and in the meantime, we update each
node’s community influence degree λ(v) as defined in Eq. 6.1. The metric is considered as a level of
attraction to encourage a node towards a community. On the other hand, to extend communities or to
prevent emerging large communities we initially filter communities by measuring the local modularity
from Eq. 6.2.

Algorithm 5.1 Local Community Detection Algorithm (LCDA)
Input: Node v, and Γ(v)
Output: C set of communities

1: Initialization:
2: R← v
3: v.hl = HL
4: v.cl = v
5: Procedure
6: while stopCondition do
7: for v in R do
8: if deg(v) > deg(Γ(v)) then
9: v.hl← v.hl − 1

10: v.λ = λ(v)
11: v.µ = µ(v)
12: v.hl, v.cl← Alg. 5.2(v)
13: R← update(Γ(v))
14: return C ← R.cl

Algorithm description. The general structure of the proposed local approach to detect com-
munities of a network is described in Alg. 5.1. To extend the communities we define a set of principles
that are explained in Alg. 5.2. The procedure starts by initializing the node list R (line 1), that
records visited nodes and their neighbours. As a first-time-visited node in the list, the community
label cl and hierarchy level hl of the node will be initialized to its node ID and a constant value HL,
respectively (line 2-3). We chose HL to be 4 initially, however, it can be any value larger than 1.
The next step is to adjust the node’s hl value, its value will be reduced if it has the highest degree
compared to its neighbours (line 6-7). Afterwards, the community influence degree λ(v) and the local
modularity µ(v) is calculated (line 9-10). To update both hl and cl of v, we input the node through
some principles defined in Alg. 5.2 (line 11). Besides, the list R will be updated by the neighbours of
node v. Finally, if all nodes come to an agreement such that no further changes occur, the algorithm
will converge and stop. Extracting the cl of all nodes in R results in obtaining all communities of G.
A set of principles is defined in Alg. 5.2 to decide the corresponding community of the node v. First,
choosing the common community label (mc), the local modularity is calculated. If v.µ was positive,
v takes the same label as mc. Then, v adjust its hierarchy level by taking the minimum hl of that
community and increase it by one unit as its hl value. Otherwise, if µ(v) was negative or zero, then,
either v itself is selected by the neighbours to be a new community, or it will temporarily follow the
best candidate among its neighbourhood.

Computational complexity. The complexity of the proposed algorithm, on a network of size n,
and an average degree k can be estimated as follows. The outer while loop repeats until the algorithm
has converged. The inner for-loop, depends on the length of R which progressively includes all the
nodes from V . Starting from one node with degree k, in the worst case, R increases as follows:
{1, k, k2, ..., km}, while km = n, hence, it is in the order of n and can never be more than O(m× n),
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Algorithm 5.2 Local community expansion
1: mc = common community label
2: bc = [u in Γ(v) if u.λ is max(Γ(v).λ)]
3:
4: if (v.µ > 0) then
5: v.hl = min(Γ(v)).hl + 1
6: v.cl = mc
7: else if (v.µ <= 0) then
8: if v is mc then
9: v.hl = 1

10: v.cl = v
11: else
12: v.hl = bc.hl
13: v.cl = bc.cl

Table 5.1: Dataset of networks used for the experiments.
Real-world networks with ground-truth

Networks n kavg ncom Description
Zachery’s Club 34 4.59 2 Zachary’s karate club
Football 115 10.66 12 American football game
Dolphins 62 5.13 2 Dolphin social networks
US Politics’ Books 105 8.5 3 US Politics’ Books

Synthetic networks
Networks n kavg µ t1 t2 cmin cmax ncom

LFR 4000 4000 25 0.1− 0.8 2 1.1 40 100 63
LFR 8000 8000 25 0.1− 0.8 2 1.1 60 100 103
LFR 15000 15000 25 0.1− 0.8 2 1.1 40 200 82

with m as the number of iterations in the outer while loop until the convergence.

5.4 Experimental Analysis
In this section, we examine the performance of our algorithm with different experiments. We exploit
both real-world and artificial networks that are described in Table 6.2. Following artificial networks,
we generate various networks using the LFR benchmark algorithm [92]. The mixing parameter µ,
identifies the density of the networks, i.e. the strength of the communities.

We first compare the results of the proposed algorithm on the networks from Table 6.2 with a set
of algorithms: Louvain [20] and Fast-greedy [56], and Label Propagation Algorithm (LPA). Next, to
examine the ability of self-defining source nodes of our algorithm, we implement a set of source node
selection methods from the literature and combine them with our algorithm. Finally, we provide tests
to validate the analytically derived low complexity of our algorithm.

5.4.1 Evaluating Quality of Communities
To measure the quality of the results obtained from networks in Table 6.2, we calculate Adjusted
Mutual Information (AMI). This metric is an adjustment of the Mutual Information (MI) score to
account for chance. It accounts for the fact that the MI is generally higher for two methods with a
larger number of communities, regardless of whether there is actually more information shared.

We compare the results with the above-mentioned algorithms from the literature. The resulted
communities of these algorithms are, then, used as a baseline to compare the performance of our
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algorithm with. The results for the real-world networks are reported in Table 5.2 and for LFR
benchmark networks are shown in Fig. 5.1. As shown in both results, our algorithm is comparable to

Table 5.2: The AMI quality metric results on the communities detected by Louvain, LPA, Fast-
greedy, and our proposed algorithm (Proposed Alg.) on real-world networks. The bold values show
the best results among other algorithms for each network.

Networks Louvain LPA Fast-greedy Proposed Alg.
Zachery’s Club 0.46 0.48 0.54 0.45
Football 0.85 0.87 0.65 0.65
Dolphins 0.49 0.59 0.55 0.88
US Politics’ Books 0.49 0.53 0.51 0.56

the other algorithms while processing entirely based on the local information and thus, benefiting from
a low complexity. The algorithm gains more when the community structure of the network becomes
weaker (i.e., µ is increased). The reason is that due to the locality level, our algorithm behaves greedily
in a situation where the conditions to join a neighbour community are not fulfilled, by generating new
communities. Hence, it ends up with different communities than the other algorithms of Louvain and
LPA, and similar to Fast-greedy.
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Figure 5.1: AMI results on the LFR benchmark networks explained in Table. 6.2.

5.4.2 Source Node Selection Analysis

Most of the existing local community detection algorithms require a source node selection before the
community expansion. We implement some of the source node selection methods from the literature
and develop an experiment to analyze the impact of source node selection on our algorithm. We
choose different centrality and similarity scores: degree centrality [79], extended Jaccard metric [62],
and node density (to find nodes with high degree, however, distant from each other) [73]. In order to
be fair on choosing the best candidate nodes, we apply an outlier detection technique, Interquartile
Range (IQR), to select nodes with higher scores. We then adjust the hl of these nodes to be known as
the initial communities of the network and proceed as described in Alg. 5.1. We evaluate the methods
on an LFR benchmark network with n = 2000 and report the results in Fig. 5.2. The results show
that there are no differences between the proposed algorithm (Basic) and its variations by each source
node selection (e.g., Basic+Degree). As shown in Fig. 5.2, our method maintains a self-identifying
source node selection considering node degree.
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Figure 5.2: Employing different source node selection methods from the literature on the bases
of the proposed algorithm. The methods are examined over the LFR 2000s network exploiting AMI
and Modularity measures.

5.4.3 Computational Complexity Analysis
Following the experiments on the networks provided in Table. 6.2, we analyze both the number of
iterations our algorithm requires to converge (the outer loop in Alg. 5.2) and the number of nodes
from the list R that were qualified to the conditions thus, are forged to change adjust their properties
(i.e., hl or cl) in Alg. 5.2 which are not all the nodes in R.

The overall results are shown in Fig. 5.3 and Fig. 5.4. At each level of the mixing parameter
(µ), from 0.1 to 0.8, for each network size, we calculated the number of iterations that the algorithm
requires until convergence. As shown in Fig. 5.3, the number of repetitions does not rely on the size
of the network and is slightly influenced by µ that shows the organization of community structures.
However, regardless of n, the proposed algorithm converges in the average number of 8.2 iterations.
Furthermore, with regard to the inner loop of the algorithm, we calculate a ratio of the number of
nodes that are entitled to modify in each iteration to the size of the network. According to Fig. 5.4,
the results reveal that the number of operations in each repetition of the algorithm has never reached
n. It hits 87% of n in its maximum case which has mostly occurred from 3rd to 5th iterations. The
number of modified nodes are considerably lower than the 3rd to 5th iterations that substantiates the
low complexity of our algorithm.

5.5 Conclusion
In this chapter, we described our proposed community detection algorithm that is benefiting from
a set of local principles and a self-defining source node selection to detect communities in complex
networks. We developed the algorithm exploiting community influence degree and a local community
modularity that are defined in this chapter. The community influence degree of a node increases if
the node has a high degree and low hierarchy level in the community that is defined based on the hop-
distance from the source node. This way, we shape communities in a hierarchical structure where nodes
with higher degrees are towards the center of the community. Our algorithm exploits a set of local
principles allowing each node to take a decision on its community label based on its neighborhoods
local information. The algorithm is designed in a more restrictive level of locality compared to the
current local algorithms and offers a linear order of computational complexity. We deploy extensive
experiments to analyze the performance and efficiency of our algorithm. The experiments on both
real and artificial networks show that the proposed algorithm performs better in networks with weak
community structures compare to the algorithms that benefit from the global information of the
network. Moreover, we perform experiments to validate the ability of self-defining source node selection

67



A Local Community Detection Algorithm with Self-Defining Source Nodes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Mixing Parameter ( )

0

2

4

6

8

10

12

14

N
um

be
r o

f i
te

ra
tio

ns

LFR-4000
LFR-8000
LFR-15000

Figure 5.3: The results of experiments on the convergence of the algorithm on LFR networks, a
bar plot showing the number of iteration.
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Figure 5.4: The results of experiments on the convergence of the algorithm on LFR networks, the
percentage of the number of nodes modified per iteration.
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5.5 Conclusion

of the our algorithm. We show that our algorithm performs independently from the source node
selection methods in the literature. The experiments on the complexity of the algorithms demonstrate
that, regardless of the size of the network, the algorithm converged after approximately 8 iterations,
whereas, the number of nodes that are involved in the process has shown not to exceed the 87% of
the whole network size. Remarkably, the locality and self-defining properties of this approach have
equipped our algorithm for the future investigations on the adaptability to dynamic environments.
Besides, we are planning to elaborate on the proposed approach by employing a local merging method
on the output communities in order to increase the accuracy and performance of the results, while
still holding the same level of the locality.
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Chapter 6
Application in Biological Networks

Community detection is considered as a solution to many biological networks. In this chapter, we apply
our proposed local community detection algorithm on protein-protein interaction (ppi) networks to
identify protein complexes in this network. Several community detection algorithms are applied on
(ppi) networks. Many of existing algorithms use global measures that operate on the entire network
to identify communities. The result of using global metrics are large communities that are often not
correlated with the functionality of the proteins. Moreover, ppi network analysis shows that most of
the biological functions possibly lie between local neighbours in ppi networks, which are not identifiable
with global metrics. Besides, the advancement of experimental techniques on ppi has motivated the
generation of many Gene Ontology (go) databases. Incorporating the functionality extracted from
go with the topological properties from the underlying ppi network yield a novel approach to identify
protein complexes.

In this chapter, we exploited the capability of lcda, our local community detection algorithm,
by incorporating functional properties of proteins to detect protein complexes in ppi networks. We
propose (lcda-go), that uniquely exploits information of functionality from go combined with the
network topology. lcda-go identifies the community of each protein based on the topological and
functional knowledge acquired solely from the local neighbour proteins within the ppi network. Ex-
perimental results using the Krogan dataset demonstrate that our algorithm outperforms in most
cases state-of-the-art approaches in assessment based on Precision, Sensitivity, and particularly
Composite Score. We also deployed lcda, the local-topology based precursor of lcda-go, to com-
pare with a similar state-of-the-art approach that exclusively incorporates topological information of
ppi networks for community detection. In addition to the high quality of the results, one main ad-
vantage of lcda-go is its low computational time complexity. The results are published in the Plos
One Journal as "From Communities to Protein Complexes: A Local Community Detection
Algorithm on PPI Networks".
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6.1 Introduction
Proteins work cooperatively to accomplish biological functions. The physical interaction between
proteins, known as protein-protein interaction (ppi), is the key for many biological functions [93], for
example, the transcription of DNA, the translation of mRNA, and cell cycle [94]. Scientific progress on ppi
is highly critical for applications such as protein function discovery [95], disease comprehension [96],
and drug discovery [97].

To infer the physical interactions of proteins, a number of experimental techniques have been
developed, such as yeast-two-hybrid (y2h) [98] and tandem affinity purification (tap) [99]. This
resulted in the generation of several depositories and databases of experimental data on ppi (e.g.,
biogrid1). While these screening methods facilitate the comprehension of ppi, they have been widely
criticized due to the false negative (i.e., not being able to detect interacting proteins) and false positive
(i.e., identifying non-interacting proteins as interacting proteins) interaction detection. Therefore,
high-throughput screening methods suffer from a considerable lack of accuracy and thus, produce an
incomplete map of the interactions among the proteins [100–102].

The pairwise physical interaction of proteins within the ppi data suggests a network represen-
tation where nodes are the proteins and links are the interactions among the proteins. Exploiting
network structure with network analysis tools on such data has shifted the ppi analysis to the network
level. Besides, the existence of protein complexes justifies the high-degree clusters within the ppi
network [101]. ppi networks inherit both topological and functional information [93]. The first term
refers to the physical interaction describing the arrangements of the nodes in the network, and is as-
sociated with the densely connected proteins namely communities. The latter explains the biological
function of proteins that are achieved by groups of proteins that bind each other and shape protein
complexes. The complexes are explained by the annotations available in Gene Ontology (go) [103,104]
databases. go provides a specific definition of protein functions and it is one of the main resources of
biological information. go provides a structured and controlled vocabulary of terms, which are sub-
divided into three non-overlapping ontologies: Molecular Function (mf), Biological Process (bp) and
Cellular Component (cc) [105]. We utilize go terms to enrich ppi networks with functional properties
of proteins.

It is acknowledged that in several cases, those proteins that are topologically interconnected rep-
resent similar biological processes (i.e., go terms) [106], thereby there is an overlap between the
communities of proteins and complexes. Nevertheless, the two terms are distinguished entities in ppi
networks. Moreover, biological networks such as ppi networks share a common feature refereed as
local cluster connectivity [59] that highlights the locality of the biological functions in ppi networks
that are possible only between local neighbours.

Because of the correlation that exists between protein communities and complexes, detecting
protein complexes from ppi networks can be translated into a community detection problem [94,
107,108]. The purpose of a community detection algorithm for ppi networks is to divide proteins into
groups such that the proteins of the same group are more similar to each other rather than those in the
other groups. The state-of-the-art solutions consider different objectives to divide the nodes of a given
network into highly interconnected communities [53–55]. Some of these algorithms are adjusted to
biological networks to tackle the protein complex detection in ppi networks [109], including c-finder,
coach, ClusterOne, mcl, cmc, mcode, and core&peel. Even though the community detection
algorithms drive optimal topological communities in ppi networks, they suffer from the particular
biological nature of the network due to the disengagement of functional properties. [94,102,110,111].

The extracted interactions from experimental techniques (e.g., y2h, tap) are sometimes biased
with incorrect inferring of existing and non-existing relationships. In other words, the available ppi
networks could be incomplete and unreliable with respect to the detected nodes and links [101]. That in
return will impact the results of the communities if the method depends solely on the existing topology
of the network [25]. Moreover, some of the existing community detection algorithms acquire the whole
network, that could be inherently incomplete, and hence results in large tangled communities of mixed
or broad functionality [112] that do not explain adequately the underlying ppi network [111,113]. In
addition, such algorithms perform based on the global measures that are expensive in time complexity.

1https://thebiogrid.org/
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Encoding biological information in ppi networks could address the challenge of detecting higher
quality communities of proteins with respect to their biological nature. The functionality hence could
be achieved by incorporating biological information from the annotated databases (e.g., go, david).
dcafp [114], gmftp [115], and mtgo [111] are some of the algorithms that are designed in a similar
way. To tackle the next challenge regarding the reliability of the data and missing information, one
possible solution could be to diminish the impact of network structure by focusing only on the local
neighbours [60].

In this chapter, we propose lcda-go, a local community detection algorithm that combines topo-
logical and functional properties (i.e., go terms) of ppi networks to detect associated communities
that are representing protein complexes. One of the main advantages of lcda-go is the strong de-
gree of locality [52] devised in the algorithm which not only reduces the dependency to the network
structure but also equips the algorithm with a considerably low time complexity when compared to
other state-of-the-art approaches. We compare lcda-go with the state-of-the-art algorithm that in-
corporates the topology and functionalities by exploiting go to detect protein complexes. We also
expand our experiments by providing a comparative evaluation with state-of-the-art protein complex
detection approaches relying only on the topology of the network. For this experiment, we have used
the lcda algorithm [60], the local-topology based precursor of lcda-go.

6.2 Related Work
Many algorithms have been proposed to detect communities in ppi networks [94,109,116,117]. Some
of these approaches just rely on the topology of the ppi networks to detect communities, while others
combine the biological functionality of the nodes to enrich the network and hence complex detection.
We classify the existing community detection algorithms used for protein complexes in two categories
based on the properties that an algorithm incorporates to detect the communities. We first explain
community detection algorithms that perform solely on the topology of a network, and then, we discuss
algorithms that rely on both topology and functionality.

6.2.1 Topological Approaches
One of the earliest algorithms that has been developed for ppi networks community detection is
mcode [118]. It enjoys a level of locality, by expanding a set of high-ranked nodes (i.e., source nodes)
into communities. mcode often represents very large communities and hence the number of predicted
real complexes is small. The Markov Cluster algorithm (mcl) [119] is also utilized on ppi networks.
The algorithm is a robust method based on a random walk to partition the network into communities.
ClusterOne is a greedy approach starting from a seed node. The nodes with high cohesiveness
are added or removed from the communities in an iterative process. ClusterOne is an overlapping
community detection approach and it merges those groups of proteins that satisfy an overlap score.

For the comparative evaluation we used mcode, mcl, and ClusterOne [120] to measure the
performance differences of our lcda algorithm, a version of lcda-go performing based on just local
topological properties. Other algorithms such as coach [121] and lcma [122], and CFinder [123]
also benefit from topology of the network to find the communities. These algorithms are discussed
in [94,109,116].

6.2.2 Topological and Functional Approaches
Recent approaches benefit from functional enrichment of the network to accurately detect the commu-
nities of proteins in ppi networks. The main motivation of such algorithms lies in the fact that protein
complexes are mostly aggregated in performing common functions. One of the earliest approaches in
this category is rnsc [124]. This algorithm is initialized with a random partitioning that is optimized
based on the minimum cost for node exchanging. It considers density and functional homogeneity to
search for better communities. Its performance, however, depends on the initial community assign-
ment. mtgo [111] is a recent approach that combines both topological and functionality of the ppi
networks to detect the communities. Similarly to rnsc, mtgo initializes the process by a random
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partitioning, and decides on rejoining the nodes into the communities if they share a common func-
tionality and also if the new node increases the modularity of the community. The algorithm relies
on two parameters min and max that control the size of the communities and impact the outcome.
gmftp [115] and dcafp [114] are two other algorithms that are designed similarly by exploiting func-
tionality, however, the biological nature of the networks are not directly involved in the main process
and it is rather processed in advance by the network topology.

Our proposed lcda-go approach is similar to mentioned algorithms such that it combines both
topological and functional information. However, unlike rnsc, mtgo, our proposed model does not
rely on any random partitioning nor is restricted to initial input parameters. The results of lcda-go
is compared to mtgo in Experiments and Results Section.

6.3 Local Community Detection Algorithm for Protein Com-
plexes with Gene Ontology (LCDA-GO)

In this section, we introduce the basic notation and terminologies that will be used through the
chapter. We also describe how lcda-go is implemented to detect communities of proteins exploiting
topological and functional properties based on local conditional rules.

6.3.1 Notation and Preliminaries
We assume an undirected and unweighted network G = (V,E), where V and E represent the set
of nodes and the set of links, respectively. Our purpose is to divide G into set of communities, C,
such that each node v ∈ V belongs exclusively to one community ci, and C =

⋃
ci. A high quality

community is a densely intra-connected (topology property) group of proteins representing lowest
variation of go terms (functional property). lcda-go finds communities based on both topological
and functional properties in a local manner. The algorithm allows each node to adjust its community
label, cl, given the local neighbourhoods.
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Figure 6.1: A snapshot of the community structures and local information that lcda-go is
implemented on for node v. The transparent area is unknown zone that is not available during
the operations. Thus, each node performs relying on the knowledge of its first neighbours. In this
example, c and d are from community a and t is in community x. The community label describes the
source node of the community, hence, a and x are two surrounded communities of v. The numbers
attached to each node describes the hop-distance of the node from its community presenter. During
the implementation, we have considered hl of a source node equal to 1 instead of 0.

On a given ppi network, lcda-go represents communities by a source node that is discovered
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(LCDA-GO)

Table 6.1: Notation exploited in lcda-go
G A ppi network
C Set of solution that consists of communities of ci such that C = ⋃

ci
v The current node
Γ(v) Neighbours of node v
kv Degree of node v
clv Community label of v
hlv Hop-distance from the community source node
gv go terms of node v (i.e., functional properties)
λ(v) Community influence degree on node v
µ(v) Local community modularity

during the algorithm. A source node is one of the high-degree nodes of the community and is connected
to the nodes that have similar functional properties. The distance from the source node of a community
to node v is stored in hlv. A snapshot of lcda-go performance is illustrated in Fig 6.1 showing the
process for node v. In this scenario, v has three neighbours [c, d, t], such that node c and d belong to
'a' and t is from x (i.e., clc = 'a', cld = 'a', clt = 'x'). Besides, the numbers show hl of each node,
that is the hop-distance from the source node of the community. According to this example node c
and node d are 1 and 2 hops away from the source node of their community (i.e., a), respectively,
and t is 3 hops away from its source node, x. It is worth mentioning that v does not have any other
knowledge about the rest of the network as shown in the transparent zone in Fig. 6.1.

Besides the above-mentioned topological variables, cl and hl, that are consider in lcda-go, g is
also determined to store go terms that a protein is contributed. To access a decision on the community
of node v, lcda-go calculates two parameters as defined in the following:

Definition 1. (Community influence degree.) The community influence degree of node v is
calculated between v and its neighbours from community ci as follows:

λ(v)u∈[Γ(v)∩ci] = ln( kv
hlv

).|gv ∩ gu∈[Γ(v)∩ci]|, (6.1)

where |gv∩gu∈ci
| is the number of common go functions between v and its neighbours from community

ci. The intuition behind the community influence degree is that a node is more likely to be in the same
community as a neighbour node if the following node is closer to the source node of the community,
has a higher degree, and shares similar functions with the neighbour node. If in a community one
node has a higher community influence degree, the node could be a potential source node.

Definition 2. (Local community modularity.) The local community modularity for a node v is
calculate for a surrounded community ci as:

µ(v)ci =Ein − Eout
Ein + Eout

=2 Ein
Ein + Eout

− 1,
(6.2)

where Ein is the number of links connecting node v to nodes from community ci, and Eout represents
the links to the other nodes. The value of local community modularity can vary in the range of (−1, 1].
It takes a negative value if there is no link to community ci. The value is positive if the number of links
connected to ci surpasses the number of links to other communities. Local community modularity
performs as a measure of community extension by adding v to ci, if µci

v is positive.
A list of the notations used in the chapter is summarized in Table 6.1.
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6.3.2 Algorithm Description

We propose an iterative bottom-up approach, lcda-go, allowing each node to take a decision of joining
a community independently. Our algorithm starts from a node and discovers the network through
each node’s direct neighbours. lcda-go relies on a set of conditional rules to expand or generate
new communities. The Local Community Expansion Rules (lcer) operate on each node based on
the acquired local neighbourhood information as explained in Notation and Preliminaries Subsection.
At each step of lcda-go nodes adjust their hop-distance (hl) value according to their distance from
source nodes. If a node has a higher community influence degree and meets the conditions, it will
become a source node. Thus, its hl is updated to 1. In this case, all neighbour nodes adjust their hl
according to their hop-distance from the source node. lcda-go converges when all nodes agree with
their community labels.

Algorithm 6.1 lcda-go
Input: Network G
Output: C set of communities

1: Initialization:
2: R← v from V
3: v.hl = HL
4: v.cl = v
5: v.g = GO[v]
6: Procedure:
7: while stopCondition do
8: for v in R do
9: if kv > max(kΓ(v)) then

10: v.hl← v.hl − 1
11: v.λ = λ(v)
12: v.µ = µ(v)
13: lcer(v)
14: R.update← Γ(v)

return C.update← cl from nodes of R
A pseudo code of the proposed lcda-go is described in Alg. 6.1 lcda-go. The algorithm starts

by initializing the node list R (line 1), that records the visited nodes and their neighbours. The initial
node is either a given node or randomly selected from the network. As a first-time-visited node in
the list, the community label cl of the node is assumed as it ID, in this case, v, and its hop-distance
hl is set to the constant value of HL (line 2-3). We chose HL = 4 initially, however, it can be any
value larger than 1. The next step is to adjust v.hl: If v.hl is the highest compared to v’s neighbours,
then it will be reduced by 1 (lines 7-8). Afterwards, λ(v) and µ(v) is calculated (lines 10-11) and v is
transmitted to Alg. 6.2 lcer (line 12) to make a decision regarding its cl. employing lcer on v, its
attributes such as cl and hl will be updated consequently. Next, R expands by including neighbours of
v. The processes continue such that all nodes of V is included in R and updated by lcer. Finally, if
all nodes come to an agreement such that no further changes occur in community structure and each
node of the network is declared in one community, the algorithm will converge. The stopCondition
is defined as follows:

stopCondition =
{

1, if (R == V ) & (for v in R, v.cl doesn’t change)
0, otherwise.

(6.3)

After the convergence of lcda-go, the set of communities is obtained by retrieving each node’s cl
from R.
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6.3 Local Community Detection Algorithm for Protein Complexes with Gene Ontology
(LCDA-GO)

We defined Alg. 6.2 lcer to decide the corresponding community of v. For an input node v, it
first calculates the local community modularity. Instead of computing the function for each ci, we
only consider the larger community(ies) which has the larger number of links to v. We assume that
u is the larger community. If µ(v) is positive, v joins community u. Thus, the community label of
v changes to u (line 3), and the hop-distance shift to the shortest path from v to the source node u
(line 4). To measure the shortest path, we simply consider the minimum hl of the neighbours plus
1. In case µ(v) is negative or zero, one of these two scenario may occur: First, the algorithm checks
for the possibility of v itself being a source node. It means that node v is selected by the neighbours
as the source node, while its attributes are not updated. Hence, the attributes of v are changed to
fit the condition (line 7-8). Otherwise, v changes its attributes to follow the most similar node in
its neighbourhood, which is node p with highest community influence degree (line 9-10). then, either
v itself is selected by the neighbours to be a new community, or it will temporarily follow the best
candidate among its neighbourhoods.

Algorithm 6.2 lcer
1: if (µ(v) > 0) then
2: v.hl = min(Γ(v).hl) + 1
3: v.cl = u (µ(v) <= 0)
4: if v.cl is u then
5: v.hl = 1
6: v.cl = u
7: else
8: v.hl = p.hl
9: v.cl = p.cl

6.3.3 Computational Complexity

The complexity of the proposed algorithm is determined by two loops in the algorithms. The outer
while-loop in Alg. 6.1 lcda-go - line 5 coordinates the convergence of lcda-go to ensure that all
nodes have come to an agreement about their community assignments. The recurrence (t) of the outer
loop is independent from the size of the network. Our experiments with various networks’ sizes [60]
shows that 8 ≤ t ≤ 15. The inner for-loop of lcda-go described in 6.1 line 6, operates a set of
conditional rules over each node from list R. The performance of the inner loop has the highest
impact on the overall complexity of lcda-go.

The complexity of the inner loop on a network G of size n can be estimated as follows. The
repetition of the loop changes as R is updated. The list of neighbours (i.e., R) initially starts with the
neighbours of node v. Let us assume k is the average degree of G. In this case, The initial size of R,
in other words, the repetition of the first loop is k (t1 = k). As R progressively is extended by adding
other nodes, the next loop repetitions t2, t3, ..., tm increases as well. To calculate the complexity, we
need to sum up all recurrences of the loop: {t1 = k, t2 = k2, ..., tm = km}. Considering the size of
the network, the final R includes all nodes of G, therefore, tm = km = n. Then, the complexity of
the series that is combining the loops is O(t × n), with t representing the iterations over the outer
while-loop. In addition, according to our experiments [60] t log(n), hence the average complexity of
lda-go is O(nlog(n)).

The worst scenario happens when the inner-loop runs over V instead of R. In this case, each
iteration performs on n nodes instead of k. The recurrence of the inner-loop is then, {t1 = n, t2 =
n, ..., tm = n}. However, the iterations of outer-loop remains the same since it is independent from the
inner-loop. Hence, the worst case complexity stays as same as the average complexity, O(nlog(n)).
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6.4 Experiments and Results

In this section, we first describe the ppi network dataset, go [104] terms that are used to enrich
the network, and the benchmark dataset. Next, we define the metrics and measures that we use to
evaluate the performance of our algorithms, lcda and lcda-go. Finally, we provide a comparative
evaluation to show the performance of our algorithm compared to state-of-the-art algorithms.

6.4.1 PPI Network and Gene Ontology (GO)

To evaluate lcda-go and lcda, Krogan [125] dataset is selected. It includes a set of nodes (i.e.,
proteins) and associated links (i.e., interactions) built on yeast Saccharomyces Cerevisiae data. We
download the dataset from BioGrid 2 database [126]. To include the functionality we exploit Gene
Ontology (go) terms from Panther3 database [127]. go terms are subdivided into three categories of
Molecular Function (mf), Biological Process (bp) and Cellular Component (cc). We extract the go
terms of Krogan ppi network. For evaluating the outcome, we use gold standard protein complexes
cyc2008 [128] as target sets to evaluate the predicted communities resulted from lcda-go. The
information associated with the database and datasets are described in Table 6.2.

Table 6.2: Datasets of networks used for the experiments.
PPI Network

Datasets |V | |E| avg. degree # CC |Gcc|
Krogan [125] 2674 7079 5.29 62 2527
PPI + MF 1014 2135 4.21 7 995
PPI + BP 1154 2502 4.33 8 1130
PPI + CC 1160 2710 4.67 10 1130
PPI + All 1523 3708 4.86 9 1498

Gene Ontology (GO)
Database Proteins # MF functions # BP functions # CC functions All functions
Panther [127] 2358 8 11 3 22

Benchmark
Database Proteins Complexes # ∩ Krogan # ∩ Panther
CYC2008 [128] 1920 408 970 813

Krogan ppi network [125] dataset, includes 2674 proteins in total. Our analysis found 62 connected
components with a giant connected component including 2527 proteins, while 42 of the components
had less than 3 nodes. For the community detection, we removed all those 42 components that will
not shape a community. The final ppi network includes 2590 proteins.

We generated four ppi networks from the original Krogan ppi network according to go term
categories: ppi + mf, ppi + bp, ppi + cc, ppi + all, such that the last network includes all the
functions. We also keep the original Krogan network without annotations for further analysis. All
five networks are refined by filtering the connected components with the size of less than 3 proteins.

6.4.2 Evaluation Metrics

Before presenting the evaluation results, we describe various metrics that are mostly used in the
literature [94, 111, 116, 117] to assess detected complexes in ppi networks. Exploiting these metrics,
we then compare the state-of-the-art algorithms with our proposed algorithm and describe them.

2https://thebiogrid.org/
3http://pantherdb.org/
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Neighbour Affinity Score

To quantify the similarity of the detected complex p = (Vp, Ep) with the benchmark b = (Vb, Eb), we
use the neighbour affinity score (AS) as defined in Eq. 6.4. This metric considers both the size of the
two complexes and the common proteins in the two sets to measure the similarity between the two.
In case the predicted complex is exact equal to the real complex, then AS will be equal to 1. For two
complexes of p and b the affinity score is defined as follows:

AS(p, b) = |Vp ∩ Vb|
2

|Vp|.|Vb|
(6.4)

where Vp is the number of proteins from the predicted complex and Vb is the number of proteins in the
benchmark complex. We define a threshold θ, AS(p, b) ≥ θ, to control the strength of the similarity
measured by AS. We consider θ = 0.1 to get results from all algorithms.

Precision, Recall, and F-measure

Among the standard metrics to evaluate the predicted values based on the benchmark are Precision,
Recall, and F − measure. However, the metrics that we have implemented in this chapter for the
evaluation are slightly different than the common definition for the Precision, Recall, and F-measure
and are similar to [94, 129]. We use AS as defined in Eq. 6.4 to choose a good match between the
predicted and benchmark complexes. Assume that p is a predicted complex from the set of all predicted
complexes P , and b is a benchmark complex from set B that includes all benchmark complexes. In
this case, Ncp and Ncb are defined as follows:

Ncp =|{∀p|p ∈ P,∃b ∈ B,AS(p, b) ≥ θ}|,
Ncb =|{∀b|b ∈ B, ∃p ∈ P,AS(p, b) ≥ θ}|.

(6.5)

Based on the Ncp and Ncb values from Eq. 6.5, Precision, Recall are defined as the fraction of
the matched complexes from the predicted set P , and benchmark set B respectively, according to the
Eq. 6.6.

Precision =Ncp
|P |

, (6.6a)

Recall =Ncb
|B|

. (6.6b)

The harmonic average of Precision and Recall, known as F-measure, is then calculated as follows:

F -measure = 2× Precision×Recall
Precision+Recall

(6.7)

We use these metrics to evaluate the overall performance of the detected complexes over the
complexes within the benchmark.

Sensitivity, Positive Predicted Value, and Accuracy

Besides the metrics defined above, Sensitivity (Sn) (also called Coverage), Positive Predicted V alue
(PPV ), and Accuracy (Acc) are used to evaluate the performance and accuracy of the detected
complexes [94, 101, 117]. Consider Tij equal the number of common proteins between ith benchmark
complexes and jth predicted complex. Ni is the number of proteins the ith benchmark complex. Given
n is the overall number of b benchmark complexes and m predicted complexes p, then Sn and PPV
are defined as follows:
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Sn =
∑n
i=1 maxj(Tij)∑n

i=1Ni
, (6.8a)

PPV =
∑m
j=1 maxi(Tij)∑m
j=1

∑n
i=1 Tij

. (6.8b)

Larger values of Sn indicate that the community detection algorithm has well-covered the proteins
in the real complexes. On the other hand, PPV highlights the probability of true positives of protein
complexes in predicted communities. The accuracy of the prediction, as a summary metric, can then
be defined as as the geometric average of Sn and PPV as follows:

Acc =
√
Sn× PPV (6.9a)

In addition to the above-mentioned metrics, several studies [111,120,130] rely on another measure
known as Composite Score [131] to make a comprehensive evaluation. Therefore, as a final global
performance measure, we calculate the Composite Score by summing up the three values of Precision,
Sn, and Acc. This value is important to avoid the advantage of evaluation metrics to another.

6.4.3 Comparative Evaluation
We provide a set of experiments to compare the communities resulted from our algorithm with the
state-of-the-art algorithms. We compared lcda-go and lcda [60] with mcode [118], mcl [119],
ClusterOne [120], and mtgo [111]. We choose these algorithms to explore the benefits of topological
and functional properties in the performance of protein complex detection methods.

Table 6.3: An overview of the resulted communities from each algorithm including our method
on Saccharomyces Cerevisiae Krogan interaction datasets.

PPI + MF
Algorithms MCODE MCL ClusterOne LCDA LCDA-GO
#communities 37 244 209 65 383
Ncb 4 160 142 69 167
Ncp 2 112 117 36 154

PPI + BP
Algorithms MCODE MCL ClusterOne LCDA LCDA-GO
#communities 38 256 236 71 416
Ncb 3 192 170 76 202
Ncp 3 149 146 51 196

PPI + CC
Algorithms MCODE MCL ClusterOne LCDA LCDA-GO
#communities 51 277 237 71 425
Ncb 6 196 180 80 210
Ncp 5 158 153 54 211

PPI + All
Algorithms MCODE MCL ClusterOne LCDA LCDA-GO
#communities 52 347 142 79 548
Ncb 4 213 122 78 223
Ncp 4 178 106 52 237

80



6.4 Experiments and Results

Except our two algorithms, lcda and lcda-go, other algorithms require setting up initial pa-
rameters such as min size of the community, in their software. Clearly, tuning the parameters could
result in better performance, however, there is no principled way to discover the optimal values for
these parameters rather than using their defined values. Table 6.3 describes a general overview of the
results of employing different community detection algorithms on ppi networks. In all experiments,
we benefit from the gold standard protein complexes of cyc2008 [128] as the benchmark.

To provide fair comparisons and for a detailed analysis, we have designed two experiments. In the
first experiment, we only consider the communities that are detected by the algorithms only considering
the topology of the network, namely, mcode [118], mcl [119], ClusterOne [120], lcda [60]. The second
experiment is for evaluating the communities resulting from algorithms that are incorporating both
topology and functionality. For this evaluation, we compared lcda-go with mtgo [111]. The next
two subsections present the comparisons of these experiments.

Table 6.4: Performance comparison of the communities of the algorithms that are based on only
topology on Saccharomyces Cerevisiae Krogan interaction datasets. θ is 0.1.

PPI + MF
Algorithms Precision Recall F -measure Sn PPV Acc Composite Score

MCODE 0.05 0.01 0.02 0.02 0.65 0.11 0.19
MCL 0.45 0.39 0.42 0.26 0.60 0.39 1.11
ClusterOne 0.55 0.35 0.42 0.25 0.58 0.38 1.19
LCDA 0.55 0.16 0.26 0.29 0.33 0.31 1.16

PPI + BP
Algorithms Precision Recall F -measure Sn PPV Acc Composite Score

MCODE 0.07 0.00 0.01 0.02 0.68 0.12 0.22
MCL 0.58 0.47 0.52 0.34 0.62 0.45 1.38
ClusterOne 0.61 0.41 0.49 0.31 0.63 0.44 1.37
LCDA 0.72 0.17 0.30 0.35 0.35 0.35 1.41

PPI + CC
Algorithms Precision Recall F -measure Sn PPV Acc Composite Score

MCODE 0.10 0.01 0.02 0.03 0.78 0.15 0.28
MCL 0.57 0.48 0.52 0.34 0.65 0.47 1.39
ClusterOne 0.64 0.44 0.52 0.34 0.63 0.46 1.45
LCDA 0.76 0.20 0.31 0.38 0.34 0.36 1.50

PPI + All
Algorithms Precision Recall F -measure Sn PPV Acc Composite Score

MCODE 0.08 0.01 0.02 0.03 0.75 0.15 0.26
MCL 0.51 0.52 0.51 0.39 0.63 0.50 1.40
ClusterOne 0.74 0.30 0.45 0.30 0.60 0.42 1.46
LCDA 0.66 0.20 0.30 0.44 0.31 0.37 1.47

Topological Algorithms Analysis

We compare our lcda [60] algorithm that solely considers the topological interaction of the ppi network
with other algorithms from the literature that perform in a similar manner. We select mcode [118],
mcl [119], and ClusterOne [120] for this comparison. We have used Cytoscape software [132]
and exported the communities resulted from these methods. The input networks are extracted from
Krogan dataset and divided based on go functionalities. The assessments are described for all four
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algorithms in Table 6.4 based on the metrics explained earlier in this section. As presented in the
table, the performance of mcode is considerably low compared to the other algorithms, even though
we have set θ = 0.1 to relax the condition for AS. mcl has overall the highest Recall, Fmeasure,
and Acc, while our lcda algorithm outperforms other algorithms with the highest Precision, Sn, and
particularly Composite Score. The performance of ClusterOne algorithm is also high and relatively
close to both MCL and and our algorithm lcda. The Composite Score is shown in Fig 6.2. The
total height of each bar is the value of the Composite Score and the larger scores are better. The
figure describes how the three algorithms are competing for a higher performance rank and lcda is
outperform them.

Figure 6.2: Composite score including Precision, Sn, and Acc.

Topological and Functional Algorithms Analysis

We implement and test our proposed algorithm for protein complex detection, lcda-go on all the
networks extracted from Krogan dataset. The results are described in Table 6.5.

We choose mtgo to compare the results of lcda-go with since it also considers functionality
as a parameter involved in the community detection and not as an in dependant process that could
apply after community detection algorithm. We have exploited the mtgo software to run over the
Krogan networks from Table 6.2, however, considering the large time complexity of this algorithm
the final results could not converge by the time of writing this chapter. Therefore, we decided to rely
on the experiments attached to their studies for this comparison. We choose only Sn, PPV , and
Acc to compare the results due to the fact that they are independent from the threshold required
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Table 6.5: Performance of lcda-go on Saccharomyces Cerevisiae from Krogan interaction
datasets.
Network Precision Recall F -measure Sn PPV Acc Composite Score

PPI + MF 0.40 0.41 0.41 0.19 0.62 0.35 0.94
PPI + BP 0.72 0.17 0.30 0.35 0.35 0.35 1.41
PPI + CC 0.50 0.51 0.51 0.27 0.64 0.41 1.17
PPI + All 0.43 0.55 0.48 0.28 0.65 0.43 1.15

for AS score. The results are presented in Fig 6.3. As shown in this figure, even though mtgo has
better Sn compared to lcda-go, PPV and Acc of lcda-go is larger. Overall, the two algorithms
are competitive based on these assessments.

LCDA-GO
MTGO

Algorithms based on topology and GO functionality

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sensitivity
PPV
Accuracy

Figure 6.3: Comparing the results of lcda-go with mtgo on Krogan dataset.

Computational Complexity Analysis

Besides, the relatively close results from lcda-go and mtgo is the complexity of the two algorithms.
Due to the locality of lcda-go, our algorithm enjoys from the loglinear time complexity while mtgo
is a polynomial time algorithm. Our algorithm is more than 1400 times faster than mtgo when
performing on Krogan dataset with 2674 nodes. The time complexity of lcda-go and mtgo is
compared in Table 6.6.

Table 6.6: Complexity and run time of algorithms incorporating go on Krogan network.
Algorithm Time (sec) Complexity
LCDA-GO 47.05 O(nlog(n))
MTGO 54000 O(kn3)
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6.5 Conclusion
Identifying protein complexes is an important step for biological knowledge discovery since several
biological processes are accomplished in the formation of protein complexes. In this chapter, we
propose a local community detection algorithm, lcda-go, for protein complexes by exploiting Gene
Ontology (go). lcda-go exploits networks’ topological properties such as degree and shortest path in
conjunction with protein’s functional properties derived from go databases. Our algorithm employs
both topological and functional properties in local measures to perform on ppi networks in a local
procedure.

We evaluate lcda-go and another variation of the algorithm called lcda, the latter relying only
on the topology of the network. Experimental results demonstrate their performance on real-world
ppi networks from the Krogan dataset and their capabilities in finding protein complexes.

In addition, the promising performance of lcda and lcda-go show the capability of our al-
gorithms in successfully detecting protein complexes in ppi network with significantly lower time
complexity than the state-of-the-art. lcda-go surpasses the state-of-the-art algorithms by perform-
ing on a log-linear time complexity, while recent algorithms such as mtgo run on polynomial time
complexity.

One of the limitations of lcda-go is that it can only discover networks including one connected
component. The algorithm relies on breadth-first search to discover the network, it thus could not
converge if the network consists of more than one connected components. One solution to avoid this
issue is to identify the connected components of the network before executing lcda-go and provide
one node from each component as the input for the algorithm.

To extend our algorithm, we plan to evaluate lcda-go from functionality aspects. A go term
analysis could provide an evaluation on the significance of the functions within each community.
Moreover, considering the various attributes utilized in ppi networks, we plan to analyze ppi networks
from attributed network [133] prospect. We believe that the algorithm could expand for applications
in the context of attributed networks.
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Chapter 7
Privacy and Trustworthiness of AI

The huge volume, variety, and velocity of big data have empowered Machine Learning (ML) techniques
and Artificial Intelligence (AI) systems. However, the vast portion of data used to train AI systems is
sensitive information. Hence, any vulnerability has a potentially disastrous impact on privacy aspects
and security issues. Nevertheless, the increased demands for high-quality AI from governments and
companies require the utilization of big data in the systems. Several studies have highlighted the
threats of big data on different platforms and the countermeasures to reduce the risks caused by
attacks. The demand for AI in the market and yet the vulnerability of the data in the workflow has
stimulated Standards Developing Organizations (SDOs) to set up Subcommittees (SCs) and initiate
projects [10,134] with the mandate of providing standards and guidelines for big data and AI in order to
help business sectors and market for a secure AI adoption. The Joint Technical Committee between
the International Organization for Standardization and International Electrotechnical Commission
(ISO/IEC JTC 1) 1 is a pioneer organization that is currently involved in developing standards on
big data and AI.

This chapter provides a literature review on privacy and security issues of big data in AI sys-
tems. Our work departs from previous studies by discussing this issue using standards and guidelines
developed by SDOs. Due to the worldwide importance of big data and AI in the market, we aim
both research and standards to emphasize the opportunities where both frames can benefit from the
outcomes of the other. The results are published in IEEE International Conference on Big Data (Big
Data) as "Privacy and Security of Big Data in AI Systems: a Research and Standards
Perspective" [3].

1https://www.iso.org/isoiec-jtc-1.html
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7.1 Introduction
The huge volume of data generated by various sources, from connected devices to social media, termed
as big data [2], is a valuable asset. The availability and widespread applications of big data [135] sig-
nificantly impacts the growth of Machine Learning (ML) and Artificial Intelligence (AI) with the goals
of increasing the efficiency and the accuracy of prediction and decision making and also minimizing
their computational cost. Statistics depict the interest of the world market in AI systems that, only
between 2018 and 2019, has increased by 154%, reached a $14.7 billion market size and will reach
almost $37 billion by 2025 [136]. Stakeholders such as governments and industry sectors are attracted
to benefit from AI to acquire insights from the data for customized services depend on customer’s
needs.

The integration of AI in various domains [5] significantly increases concerns regarding the privacy
and security of data. The data that actuates AI includes various sensitive information, particularly
individuals’ information, including: images, speech, comments and posts on social media [6,7], financial
transactions, and health record information. Feeding such data in AI systems, they become vulnerable
to privacy and security attacks that are even significantly increased recently [8,9]. In a recent paper [8],
the impact of adversarial attacks against AI medical systems is described such that an image of a
benign melanocytic nevus is recognized as malignant with a high confidence score. A malicious attack
on a face recognition system can reveal individuals images which are used to train the system [137].
By abusing a speech recognition system, an adversary can produce almost the same voice, however,
transcribed the phrases [138]. Other attack techniques can cause potential safety hazards by effectively
fooling the image classification system of an autonomous vehicle [139].

The demand for AI in the market and yet the vulnerability of the data in the workflow has
stimulated Standards Developing Organizations (SDOs) to set up Subcommittees (SCs) and initiate
projects [10,134] with the mandate of providing standards and guidelines for big data and AI in order
to help business sectors and market for a secure AI adoption. SDOs develop technical standards
and guidelines to address the needs and demands of particular adopters. Moreover, the standards
play an important role in achieving interoperability and portability of complex ICT technologies and
platforms. They can bring significant benefits to industry and consumers. The Joint Technical Com-
mittee between the International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC JTC 1)2 is a pioneer organization that is currently involved in developing stan-
dards on big data and AI. The JTC 1 covers several domains concerning smart ICT and information
technology including privacy, data protection and security of ICT technologies mainly under Subcom-
mittee, ISO/IEC JTC1/SC 27 – "Information Security, Cybersecurity and Privacy Protection", and
ISO/IEC JTC1/SC 42 – "Artificial Intelligence" that is dedicated to AI that is recently created and
dedicated to AI and big data. Overall, the JTC 1 has already published more than 3k standards in
different domains regarding smart ICT, among them are 188 for SC 27, 3 for SC 42 with 13 more
standards under development for AI and big data. The other international level SDO is the Interna-
tional Telecommunication Union’s Telecommunication Standardization Sector (ITU) that is focused
on the AI in communication technologies. Furthermore, the Institute of Electrical and Electronics
Engineers (IEEE) as the other international leading standard body, has also initiated projects which
mostly concern the legal and ethical perspectives of AI [134]. In this chapter, our main target is the
joint committee of ISO/IEC JTC 1 since it has already established a particular committee and various
study and working groups in AI and big data related issues.

Different surveys in the literature have followed a particular perspective to tackle the privacy and
security of machine learning and AI systems. Bae et al. [140] have considered the vulnerabilities of
AI systems in the white-box/black-box scenarios, while Liu et al. [141] focused on learning techniques
and classified attacks based on training/testing phases. Biggio et al. [9] proposed a four-dimensional
model based on the goal, knowledge, capability and attacking strategy of the adversary. Additionally,
in [142] the authors focused on the privacy and security issues of big data from another perspective
based on the three main phases of big data analysis: data preparation, data processing, and data
analysis. In an ongoing project by ISO/IEC JTC 1, the threats against the trustworthiness of AI
systems are summarized and the characteristics of each has been reported [143]. We focus on the

2https://www.iso.org/isoiec-jtc-1.html
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data violation threats in AI systems which are highlighted the most in the literature [9,140,141] and
standardization [143].

7.2 Machine Learning (ML), Artificial Intelligence (AI)
In computer science, AI is associated with the accomplishments of tasks or problems by computers for
which human intelligence is assumed to be required. AI is designed such that the input is the infor-
mation acquired from the environment and takes actions to maximize success in achieving particular
goals [144]. The most dominant way of achieving AI nowadays is by Machine Learning (ML) tech-
niques which are build based on the concept of “without being explicitly programmed". In principle,
ML consists of a set of algorithms and statistical models for computer systems to efficiently perform
a particular task without relying on rule-based programming or human interaction. Developing the
mathematical model is strongly dependant on the dataset, referred to as training data, which allows
the program to gradually improve through the experiences and learning process from the data for
predicting, detecting or making decisions [145]. A standard terminology of AI and Big data is also
described in a standard document [146], an under development project from ISO/IEC JTC 1.

Machine learning techniques can be classified in different ways. In an underdevelopment stan-
dard [147] a set of ML approaches are defined as follows:

1. Supervised learning,

2. Unsupervised learning,

3. Semi-supervised learning,

4. Reinforcement learning,

5. Transfer learning.

Several techniques exist in each approach which are used based on the learning purpose and
dataset. Regression, for instance is one of the well-known techniques used for prediction on labeled
dataset. Clustering is another fundamental technique that is implied on unlabeled dataset for various
applications such as recommendation of new options. However, clustering results shown to be highly
influenced by the underlying data structure [25,148]. Hence, a small change implied by an adversary
can affect the results in the favour of the adversary [139].

7.3 Adversarial Model
We investigate privacy and security attacks of big data in AI systems that are modeled based on ML
techniques. Each step in the workflow of the AI system can be the target of the specific attack(s).
Hence, we use four phases in the AI overflow to identify the attacks based on the phase that an
adversary penetrates to violate the system. The phases are illustrated in Fig. 7.1 on the defined AI
workflow system. The first phase, Training phase, is the step where the trained data is fed into the
ML model for the learning process. The data in this stage (labeled or unlabeled) is a significantly
valuable source for the AI system that can be the aim of many attackers to violate the privacy and
security [137, 149–151]. The next phase is the Model phase where the ML algorithm learns from the
trained dataset and develops a model, which is the other valuable intellectual property of AI systems
and hence is the target of various attacks [137, 152, 153]. The novel data is then fed into the trained
model, named as Apply phase, where an adversary can penetrate the system and modify the results
in his favor [139,154,155]. Finally, the valuable outcomes of the system, determined as the Inference
phase, may host attacks that disclose sensitive information [156,156,157].

The security goals of the attacks are also investigated as the other feature. For this purpose,
we consider the CIA triad [158], as the three pillars to cover the security of a system. They are
summarized as follows:
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Trained Data Model learning

ApplicationReal Data Result

Training phase Model phase 

Apply phase Inference phase

Figure 7.1: The workflow and different phases of AI systems developed based on ML algorithms.

• Confidentiality ensures the protection of sensitive information against misuse and unauthorized
access. Hence, it roughly represents the privacy of a system.

• Integrity refers to the consistency and accuracy of data through the AI system workflow against
unauthorized modification. An attack may modify the system towards misclassification, and
yet does not affect the performance of the systems.

• Availability describes the system power to perform to achieve the expected purpose designed
for the AI system with reliable outputs.

7.3.1 Standards Developing Organization (SDO)

Table 7.1: Identifying the phases where a particular attack penetrates the AI system.

Attack AI Workflow Phase
Training Model Apply Inference

Data Breach 4 4 4

Bias in Data 4

Data Poisoning 4

Model extraction 4

Evasion 4

Table 7.2: Summary of the data privacy and security attacks in the AI workflow.
Attack Security Goal (CIA) Attack Examples Developed / Under development

Standards

Data Breach Confidentiality Re-identification [159]
Risk of inference [160]

ISO/IEC CD 20547-4 [161],
ISO/IEC PD TR 24028 [143]

Bias in Data Integrity,
Availability

Gender classification [149]
Face recognition [162]
Criminal legal system [163]

ISO/IEC NP TR 24027 [164],
ISO/IEC PD TR 24028 [143]

Data Poisoning Availability,
Integrity

Self-driving car [151]
Sentiment anlysis [165]
Social media chatbot [166]

ISO/IEC PD TR 24028 [143]

Model Extraction Confidentiality Image recognition [152]
Location data [167] ISO/IEC PD TR 24028 [143]

Evasion Integrity
Image classification [168]
Spam emails [169]
Self-driving car [139]

ISO/IEC PD TR 24028 [143]
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7.4 Privacy and Security of Big Data in AI
In this section, we analyze the data privacy and security attacks concerning the defined characteris-
tics (cf. Section 7.1). We describe the phase where the attack is imposed, the risks caused by the
attack, and the real-world attack examples. Besides, an overview of the research papers and standards
is conducted corresponding to each attack scenario. Table 7.1 represents, for each attack the phase(s)
where a particular attack penetrates the AI system. Table 7.2 summarizes the attacks introduced in
this section and lists the relevant standards where these attacks or the elements of mitigation strategies
are described.

7.4.1 Data Breach

As a common privacy incident, a data breach is the disclosure of confidential or sensitive data in an
unauthorized access. This type of attack has a long history [170] in privacy and security challenges of
any systems and is not limited to AI. Nevertheless, AI has increased the quality of the insight gained
from big data and therefore, new vulnerabilities against data and privacy breaches have raised by AI.
The data breach may happen in different phases of AI workflow [171]: Training, model, and inference
phases. Confidentiality which is roughly an equal to privacy is the target of the adversary providing
this attack.

As an early example of data breach attacks is re-identification where attackers used another dataset
from the public electoral rolls of the city of Cambridge [159] to identify medical records. Additionally,
a study on mobile phone metadata revealed that unique identification of 95% of individuals from a
population of 1.5 million people, requires only 4 approximate location and time data points [156]. Dif-
ferent methods were implied to mask the sensitive information of individuals within the datasets [170].
Nonetheless, the evolution of big data and computational techniques such as AI systems provided new
opportunities to violate data privacy in the process.

7.4.2 Bias in Data

The decisions achieved by AI systems can reinforce injustice and discrimination [162] in shortening
candidates list for credit approval, recruitment, and criminal legal system [163]. Even though bias is
not directly recognized as the privacy and security issue of big data, it is entangled with data and
thereby can significantly impact the accuracy and accountability of the results. Among different types
of bias [164] identified in AI systems, we focus on those which are correlated to data: i) Sample bias
describing an unbalanced representation of samples in training data, ii) Algorithm bias which refers
to the systematic errors in the system, and iii) Prejudicial bias indicates the incorrect attitude upon
an individual data. Other types such as measurement bias that results from poorly measuring the
outcome, are out of the scope of this chapter. Bias is not a deliberate feature of AI systems, but rather
the result of biases presented in the input data used to train the systems [172]. Hence, it targets the
training phase and violates the integrity of an AI system.

Bias can target different attributes in decisions making including gender, race, age, national origin.
In a project by MIT [149], known as Gender shade3, the AI gender classification systems sold by
giant technology companies (e.g., Microsoft, IBM, and Amazon) have been analyzed. The results of
analysis in 2018, show a significant difference in the error rate of classifying darker-skinned female (up
to 34.4%) in contrast to lighter-skinned males (0.8%). Some classification systems are considerably
improved by 2019 [173] to reduce the error rate and yet the bias is not eliminated [174]. Bias is
also found in a criminal legal system, Correctional Offender Management Profiling for Alternative
Sanctions (COMPAS) developed based on ML techniques to assess the sentencing and parole of
convicted criminals. The purpose of COMPAS was to forecast the criminals who are most likely to
re-offend [163]. However, the system has racial bias and tend to label black offenders almost twice
higher risk than white offenders [175].

3http://gendershades.org/
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7.4.3 Data Poisoning
Data poisoning [150] is one of the most widespread attacks developed based on the idea of learning with
polluted data. Its disruptive effects in industrial applications have attracted experts of the standard
technical committee to investigate on the countermeasures and defence techniques [143]. The attack
happens by injecting adversarial training data during the learning to corrupt the model or to force a
system towards producing false results [176]. Therefore, the attack works in two ways: i) a common
adversarial type is to alter the boundaries of the classifier such that the model becomes useless. This
way the attacker aims the availability of the system. ii) the other type, however, targets the integrity
of the system by generating a backdoor such that the attacker can abuse the system in his favor.

In a particular study on injecting poisoned samples to a deep learning model, it is shown that only
50 polluted samples are enough to achieve a 90% attack success rate in the system [177] while the
accuracy remains almost the same. Early examples of data poisoning attacks are the worm signature
generation [178], and spam filtering [179]. In another real world scenario of classifying the street
signs in the U.S., a backdoor attack lead to the misclassification of the stop sign as the speed limit
sign [151]. In social media, the data poisoning attack on Microsoft’s chatbot, Tay, created a bot who
made offensive and racist statements [166]. The bot was shut down only 16 hours after its launch.
Sentiment analysis [165], malware clustering and detection [180–182] are the other target domains of
this attack.

7.4.4 Model Extraction
The trained model is a valuable intellectual property in ML systems due to i) the big data source that
is been used to train the model, and ii) the parameters (e.g., weights, coefficients) which generated for
the model based on its function (e.g., classification) [143, 183]. The adversary’s aim from the model
extraction might be to infer record(s) that is used to train the model, thus, violates the confidentiality
of the system. Based on how sensitive the trained data is (e.g., medical record), the attack can cause
a significant privacy breach by disclosing sensitive information [153]. A reverse-engineering of ML
model can happen by observing the input and output pairs [184] or by sending queries and analyzing
the responses [183], where Tramer et al. prove that sending only hundreds of queries is sufficient
enough to clone the same system with almost 100% accuracy.

Many ML techniques (e.g., logistic regression, linear classifier, support vector machine, and neural
network) [185, 186] are shown to be vulnerable to this type of attack [183] and yet the proposed
defense mechanisms are not sufficient enough to protect the privacy and security of data. In a study
by Fredrikson et al. [137, 152], the authors report that having access to a face recognition model,
they reproduce almost 80% of an individual’s image from the training dataset. In a similar yet more
successful attack on face recognition [187], attackers infer samples with a 100% success rate. Other
examples of membership inference attack is also observed in location data disclosure [167], machine
translation and video captioning [153], and medical diagnosis [187].

7.4.5 Evasion
Evasion is a popular common attack in which the attacker’s aim is to evade detection by fooling the
systems towards misclassification [155]. It happens in the apply phase of the AI workflow, where the
real data is implied on the trained model. The well-known example of evasion attacks is the adversarial
samples [143]. They are malicious samples that are designed adding a few chosen bytes to the original
sample [154]. Even though adversarial samples and poisoning data might look similar, they function
differently. Considering a classifier, a data poisoning attack alters the classification boundary, however,
adversarial samples modify the input samples to be classified in the wrong category. Hence, both lead
to misclassification by targeting a different phase of AI workflow.

Adversarial samples are popular in comprising computer vision. In an experiment on autonomous
vehicles [139], a couple of minor changes on the stop sign caused the learning model to misclassify the
sign with a speed limit 45 sign. Even though for a human eyes such modifications does not affect the
understanding of the street sign.
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Figure 7.2: A overview of the evolution of defense techniques for AI and big data analysis.

7.5 Countermeasures and Privacy-preserving Solutions

This section describes an overview of the countermeasures and defense mechanisms of each particular
attack mentioned in Section 7.4.

7.5.1 Data Breach

The data protection and privacy techniques evolved during the time based on the growth of big
data and the complexity of data analysis techniques. The purpose of these mechanisms is to ensure
the confidentiality of data used for data analysis. Overall, the privacy-preserving techniques of big
data can be categorized in three classes: Anonymization, De-identification, and Privacy-enhancing
Techniques (PET). The privacy concerns of data is not a recent issue, started from data analysis on
medial datasets in 1998, when the researcher find out that the anonymization is not sufficient solely to
protect data privacy [170]. The sensitive data disclosure reports [156,159] represent the deficiency of
anonymization, where replacing clear identifier was enough solely to ensure the privacy and security
of the data. Hence, the second level of mechanisms developed by k-anonymity [170] family, including
l-diversity and t-closeness [142]. These techniques are suitable to mask sensitive information such
as location-based data [188] to guarantee that the identity of records is not distinguishable in a
dataset. The emergence of AI and ML techniques along with the increased complexity of big data,
the conventional de-identification methods become obsolete [157]. Hence, PET was developed for
privacy-preserving data analysis in various domains such as e-health [189, 190]. Fig. 7.2 describes
these techniques according to the evolution of privacy-preserving techniques.

The next generation of the privacy-preserving approach is focused on the concept of sending the
code to the data. The OPen ALgorithms (OPAL) project [191] has combined different mechanisms such
as access-control protocols, aggregation schemes and develop a platform that allows third-parties (e.g.,
researchers) to submit algorithms that will be trained on data. The privacy of individuals, however,
is guaranteed while data is being analyzed. Furthermore, Google’s DeepMind has also developed
a verifiable data audit which ensures that any interaction with health records data is recorded and
accessible to mitigate the risk of foul play.

7.5.2 Bias in Data

To identify different types of bias several metrics are introduced in the literature [172] including dif-
ference in means, difference in residuals, equal opportunity, disparate impact, and normalized mutual
information. Moreover, benefiting the metrics, approaches to mitigate AI bias are developed such
as optimized prepossessing, reject option classification, learning fair representations, and adversarial
debiasing [192]. Besides, a set of toolboxes are designed which are accumulated the identification
metrics along with the mitigation approaches together as a framework for different ML algorithms.
The purpose is to diagnose and remove AI biases if exists in the system. The available toolboxes are
Lime, FairML [193], Google What-If and IBM Bias Assessment Toolkit [194] which is mostly used for
face detection systems.
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7.5.3 Data Poisoning
The feasibility of data poisoning attacks on ML algorithms such as Support Vector Machine (SVM)
classifier is studied [195]. One common approach to detect the poisoned data is to identify the outlier
(i.e., anomaly detection) since the injected data is expected to follow a different data distribution.
Paudice et al. [196] developed their defense model against data poisoning based on anomaly detection.
However, poisoned samples can evade anomaly detection if the adversary knows the data distribution.
Hence, advanced techniques are required to defeat the attack. In [197], a method is proposed to
perturb the incoming input and observe the randomness of the outcome. A low variance in the
predicted classes represents malicious samples. Nelson et al. [198] proposed a technique to recognize
and remove the poisoned data in the training dataset by separating the new joined input and calculate
the accuracy of the model on them.

7.5.4 Model Extraction
Juuti et al. [199] proposed a method to detect model extraction attack by analyzing the distribution of
consecutive API queries and compare it with benign behavior. One possible defense technique against
model extraction is by training multiple models using different partitions of training data to each
model. The techniques are proposed by Papernot et al. known as PATE [200]. Another approach
to protect the learning model is to limit the information regarding the probability score of the model
and degrade the success rate by misleading the adversary [201].

7.5.5 Evasion
Adversarial samples, as the most common evasion attacks, leas to misclassification only by small
perturbations in the original inputs. Hence, a potential defense mechanism is to ensure that a small
modification in the input cannot change the result significantly. Adversarial training is based on this
technique to train the model based on the adversarial samples, however, with true labels such that
it can avoid the noise [202]. In a similar approach by Deepfool [168] the ideas is to compute the
perturbations which fool the classifier and thus quantify the robustness of the classifier. In another
approach, the goal is to detect the adversarial samples from the original ones and therefore remove
them from the dataset [203].

7.6 Conclusion
The huge volume, variety, and velocity of big data have empowered Machine Learning (ML) tech-
niques and Artificial Intelligence (AI) systems. As privacy and security threats evolve, so too will the
technology need to adapt – as well as the rules and regulations that govern the use of such technolo-
gies. The two perspectives of the research outcomes and standards development are considered in this
study. We focus on challenges and threats of big data in the AI workflow by providing a review of the
recent research literature, standard documents, and ongoing projects on this topic. Several projects
are initiated by SDOs to investigate different aspects of big data privacy aspects and security issues.
Even though most of the standards mentioned in this study are ongoing projects, they are expected
to be published in the near future. One of the advantages standards can bring into research is a more
coherent terminology, which is defined once and used later in subsequent projects. In contrast, re-
searchers often use different terminologies for the same or similar concepts. Besides, according to the
rapid growth of AI, developed road maps in standards can provide insights according to the demands
and requirements of the market. Hence, it may provide opportunities for new research activities to
address line with market needs.
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Chapter 8
AI Conformity Assessment

AI has been deployed into many applications where trust is imperative. It is shown that how AI
is capable to be integrated in our lives and we see both the promises and the harms of the AI-
based technologies. The primary need to work on a certification program is paramount to allow these
technologies operate with proper transparency and control. One main requirement towards developing
an efficient guideline and standard is to invite different stakeholders to get involved and participate
in the process. The purpose of this simulation is to develop a useful framework where different
stakeholders can participate in the development of a certain standard and guideline by providing
feedback based on their own benefits and use-case.
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Figure 8.1: An overview on simulation of the AI Assessment.

8.1 AI Conformity Assessment

ISO certificates are good examples to explain what a standard certificate is. An ISO certificate (e.g.,
ISO 9001, ISO 27001) certifies that a system, process, or service has met all the standardization
and quality assurance requirements. ISO certificates exist in various industry areas, including Smart
ICT domains such as quality management systems and information security management systems.
When an organization bills itself a particular ISO certification, it means that that organization met
the requirement designed under that particular ISO certification. Hence, the organization follows a
verified level of quality principles, which in turn brings many business benefits. With all ongoing
projects in ISO for developing AI standards (ISO/IEC 42001 – AI management system), there has
not been a project regarding the certification for AI systems broadly utilized by different stakeholders.
The need for guidelines and principles for safe, transparent, and trustworthy AI systems should be a
priority for multiple standardization development organizations. IEEE has taken the first step towards
this matter by developing the Ethics Certification Program for Autonomous and Intelligent Systems
(ECPAIS) for the purpose of developing critical certification criteria for responsible innovation and
delivery of autonomous and intelligent systems (A/IS).

AI has been deployed into many applications where trust is imperative. The primary need to work
on a certification program is paramount to allow these technologies operate with proper transparency
and control. One main requirement towards developing an efficient guideline and standard is to invite
different stakeholders to get involved and participate in the process. The purpose of this simulation
is to develop a useful framework where different stakeholders can participate in the development of
standards. Figure 8.1 shows a summary of the objectives of this simulation.

8.2 The Structure and Organization

The proposed assessment consists of four clauses to assure a minimum value of ethics, trust, and
privacy in an AI system. The clauses are defined based on HLEGAI report 1 as follows:

8.2.1 Robustness and Safety

A crucial component of achieving Trustworthy AI is technical robustness, which is closely linked to the
prevention of harm. Technical robustness requires that AI systems be developed with a preventative
approach to risks and how they reliably behave as intended while minimizing unintentional and unex-
pected harm and preventing unacceptable harm. This should also apply to potential changes in their
operating environment or the presence of other agents (human and artificial) that may interact with
the system in an adversarial manner. Besides, the physical and mental integrity of humans should be
ensured.

1High-Level Expert Group on Artificial Intelligence (HLEGAI), Ethics Guidelines for Trustworthy AI,
(2019)
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8.2.2 Explicability
Explicability is crucial for building and maintaining users’ trust in AI systems. This means that
processes need to be transparent, the capabilities and purpose of AI systems openly communicated,
and decisions – to the extent possible – explainable to those directly and indirectly affected. Without
such information, a decision cannot be duly contested. An explanation as to why a model has generated
a particular output or decision (and what combination of input factors contributed to that) is not
always possible. These cases are referred to as ’black-box’ algorithms and require special attention.
In those circumstances, other explicability measures (e.g., traceability, auditability, and transparent
communication on system capabilities) may be required, provided that the system as a whole respects
fundamental rights. The degree to which explicability is needed is highly dependent on the context
and the severity of the consequences if that output is erroneous or otherwise inaccurate.

8.2.3 Non-Discrimination and Fairness
The development, deployment, and use of AI systems must be fair. While we acknowledge that
there are many different interpretations of fairness, we believe that fairness has both a substantive
and a procedural dimension. The substantive dimension implies a commitment to: ensuring equal
and just distribution of both benefits and costs, and ensuring that individuals and groups are free
from unfair bias, discrimination and stigmatisation.If unfair biases can be avoided, AI systems could
even increasesocietal fairness. Equal opportunity in terms of access to education, goods, services and
technology should also be fostered. Moreover, the use of AI systems should never lead to people being
deceived or unjustifiably impaired in their freedom of choice.

8.2.4 Privacy and Data Governance
AI systems must guarantee privacy and data protection throughout a system’s entire life-cycle. This
includes the information initially provided by the user, as well as the information generated about the
user over the course of their interaction with the system (e.g. outputs that the AI system generated
for specific users or how users responded to particular recommendations). Digital records of human
behaviour may allow AI systems to infer not only individuals’ preferences, but also their sexual
orientation, age, gender, religious or political views. To allow individuals to trust the data gathering
process, it must be ensured that data collected about them will not be used to unlawfully or unfairly
discriminate against them. Fig. 8.2 shows the structure of the simulated AI Certificate.

8.3 Methodology
The simulation is designed in a questionnaire format. The educational purpose of the framework is
for the stakeholders to gain knowledge on the requirements and how to implement them. The primary
goal is to involve them in an interactive way to develop and improve a practical certificate. This
simulation’s inquiry can provide valuable information for a gap analysis to identify possible new items
as Luxembourg national contribution to support the potential AI Certificate and standards.

We implement the AI conformity assessment by asking two particular roles to get involved in this
simulation, each from a different perspective:

• AI developer

• Internal examiner

The AI developer’s primary concern is privacy and trustworthiness of the system being developed.
The AI developer has a technical background on AI. We asked them to prioritize each question
considering their AI developments by scoring (considering 1 for the most important one and 5 as the
least important) questions of each section. This represents the priorities of the developer with respect
to the developed AI systems. Finally, we also asked for in each the related factor(s) that is missing
from the list and yet important based on the AI domain and system of use.
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Figure 8.2: The main structure of the Simulated AI conformity assessment.

The internal examiner’s focus is data privacy and conformity of the AI systems that is using
individuals data and creating models based on this data. In this case, we asked them to fill in the
response column of the questionnaire by replying the questions (21 Y/N questions). The questions
are organized in four clauses of the AI Conformity Assessment shown in Figure 1.

8.4 Implementation and Results
We provide a dry-run test with our team at SnT. A group of 10 scientist and engineers participated in
this simulation. Each person was involved in AI application research/development and was asked to
answer the questionnaire considering the application. In general, 5 different applications of AI were
considered in this test including fintech, generating heuristics, UAVs, constraint solver, and medical
imaging. The results of the first dry-run of the conformity assessment is shown in Fig. 8.3.
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Figure 8.3: The results of the first dry-test of the AI Conformity Assessment at University of
Luxembourg.
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Chapter 9
Concluding Remarks and Future Work

This dissertation tackled several challenges in AI and Complex Networks. In summary, we defined and
developed local network analysis algorithms, as well as described the challenges of AI trustworthiness
from a unique perspective by combining standards and research. Accordingly, the main conclusions
drawn from the work carried out in this thesis, as well as the potential extensions and applications of
the thesis findings, are described in the following sections.
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9.1 Main Conclusions
The first Part of the thesis is devoted to complex network analysis, and Chapters 2-6 are the contri-
butions we made on this topic.

First, we elaborated on the network construction from relational data and designed an approach
in Chapter 2 to describe potential network topologies driven from a real-world relational dataset
of research collaboration. We defined a Linkage Threshold (LT) parameter that is formulated over
the number of collaborators in teams and their contribution percentage. As results, we presented
different network layers each presenting an organizational perspective from the collaboration data.
We performed network analysis with metrics such as clustering coefficient, closeness and betweenness
centrality, and illustrated their impact on the different network layers. The network analysis of the
generated network layers reveals different behavior in each layer. The metrics results are then used
as an important input to visualize the generated graphs. We conclude that the LT has a significant
impact on network properties and should be chosen cautiously.

In Chapter 3 3, we revisit the network construction challenge by first improving our method to
incorporate more data features and then developing network analysis to analyze the impact of the
constructed layers on community detection results. Our findings show that the quality of detected
communities can differ significantly when increasing the links and connections of the network.

We discovered a gap in local approaches to community detection as a result of our research on com-
munity detection. In Chapter 4 4, we emphasized the lack of a concrete taxonomy for local community
detection algorithms, in contrast to the numerous studies and taxonomies for global community detec-
tion algorithms. We proposed a locality exploration scheme (LES) as a solution and investigated the
concept of locality at each stage of the existing community detection algorithms. We demonstrated
the applicability of our scheme by reviewing some algorithms based on our proposed scheme. Our
findings can be used to guide the selection of the most relevant functions when developing community
detection algorithms and deploying them on networks.

In Chapter 5 5, we proposed a new local community detection algorithm (LCDA) to address the
drawbacks of traditional global algorithms as well as the limitations of previous local algorithms.
LCDA was created using a set of local principles to emphasize the algorithm’s locality. LCDA re-
lies solely on neighborhood local information to identify all network communities. The algorithm is
designed with a more restricted level of locality than current local algorithms and has a logarithmic
order of computational time complexity. Extensive experiments were carried out to evaluate the per-
formance and efficiency of our algorithm both on real and artificial networks. The outcomes show
that LCDA performs better in networks with weak community structures than algorithms that benefit
from the network’s global information.

We demonstrate an application of LCDA on biological networks in Chapter 6 6 by extending
LCDA to a new variation that includes network functionality as well. In this regard, we created
LCDA-GO, which combines network topology and functionality, and applied it to protein-protein
interaction (PPI) networks to detect protein communities that collaborate in the cell. Our LCDA-
GO algorithm identifies the community of each protein based solely on topological and functional
knowledge (GO) acquired from the PPI network’s local neighbor proteins. Experiment results on
the yeast PPI network demonstrated that our algorithm outperforms state-of-the-art approaches in
assessment based on Precision, Sensitivity, and, in particular, Composite Score in the majority of cases.
Aside from the high quality of the results, one major advantage of LCDA-GO is its low computational
time complexity when compared to previous algorithms of a similar type.

The second Part of the thesis, Chapter 7-8, describes the contributions made for AI trustworthiness
including standards in AI and big data.

In Chapter 7 7, we defined an AI workflow and discussed the threats and attacks that aim to
undermine AI’s trustworthiness, robustness, and privacy. We analyzed several threats by defining
the threat’s target and security goal. To formalize our survey, we consider both standardization and
research resources when developing the analysis. We introduce the most recent projects initiated by
the International Standardization Organization (ISO) by the time and connect them to existing AI
challenges and threats that could be used for further gap analysis.

Finally, in Chapter 8 8, we developed a questionnaire-based AI Conformity Assessment to bridge
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the gap between the most recent research findings and the concerns about AI regulation and certifi-
cation. We proposed a pilot simulation to assess the level of awareness of people working with AI, as
well as to examine AI in different environments to identify gaps. We conducted a dry-run test with
our SnT team and reported the results.

9.2 Future Work
The work presented in this thesis has the potential to be expanded in a variety of ways. We propose
some possible extensions to the current work in this section.

1. Some challenges need to be further addressed in the community detection algorithm as listed
below:

– Firstly, re-build the LCDA algorithm on objective oriented or optimization model
– Secondly, providing the solid proof on the properties of the algorithm (e.g., termination)

2. Investigating on the dynamicity aspects of the algorithm by employing it on temporal networks.

3. The privacy-preserving of the algorithm is also yet to be discussed. The locality base of LCDA
initiates privacy preserving features on the algorithm. However, additional tests and analysis
are required to be employed.

4. Regarding the AI Assessment, the framework could be further extended by converting existing
measures and algorithms to an AI trustworthy tool that can both upskilling the employees and
also to asses AI in different domains.
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