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Dr Bhavani Shankar, Vice Chairman
Assistant Professor, Université du Luxembourg
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Abstract

This research focuses on waveform design and implementation for mmWave cognitive

radar systems. Cognitive radar refers to systems that can interact intelligently with

their surroundings by adapting both the transmitter and the receiver. Indeed, the

radio frequency spectrum will continue to become more crowded, and in this context,

the new generation of radar systems will require to sense the environment and avoid

making interference for other systems, like communications. To this end, cognitive radars

require to have intelligent transmission strategies by utilizing waveform diversity and

performing resources management . In general, the most essential resources available for

radar systems are time (range), frequency, polarization, and spatial, and managing these

results in waveform diversity for radar systems. Diverse waveforms and Multiple-Input

Multiple-Output (MIMO) radars are concepts that are inextricably linked.

When compared to the traditional phased array systems, MIMO radar offers a variety of

transmission strategies derived from different optimization objectives and constraints

that improve angular estimation and detection performance. In colocated MIMO radars,

waveform design can be divided into two categories; uncorrelated and correlated waveform

sets. In the first group, waveform optimization is being performed in order to provide a

set of nearly orthogonal sequences to exploit the advantages of the largest possible virtual

aperture. In this case, the sequences in the waveform set needs to be orthogonal to one

another in order to be separated on the received side. In addition, small auto-correlation

sidelobes avoids masking of weak targets by the range sidelobes of strong targets and

mitigates the deleterious effects of distributed clutter. In this context, we propose

Weighted BSUM sEquence SeT (WeBEST) approach to minimize the ℓp-norm (p ≥ 2

and 0 < p ≤ 1) of auto- and cross-correlation based on Block Successive Upper Bound

Minimization (BSUM) method. This work offers a flexible framework to design waveform

with different properties. For instance by choosing p = 2, p→ ∞ and p→ 0 a waveform

with good Integrated Sidelobe Level (ISL), Peak Sidelobe Level (PSL) and sparse auto-

and cross-correlation can be obtained, respectively. Through the numerical results we

compare the performance of our method with the state of the art. We show that the

proposed method is able to meet the ISL lower bound when p = 2 and decrease the PSL

gap with the Welch lower bound when p→ ∞. Furthermore, by selecting the appropriate

weights we can focus the sidelobe minimization in specific range. In the second category,

a correlated set of waveforms is transmitted to form a directional probing beampattern on

the transmit side. Because only the waveform correlation matrix needs to be optimized in

this case, phase shifters can be removed in the both sides of transmit and receive arrays,

lowering hardware costs, which is important in mass production. As a result, the probing

signal can be used as a tool to improve radar performance by increasing the SINR. This,
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however, necessitates knowledge from the environment, which can be obtained through a

cognitive paradigm. In this context, we offer multiple beampattern shaping metrics for

MIMO radar systems, including spatial-ISLR and beampattern matching. To tackle the

resulting problems, we introduce several optimization strategies based on Coordinate

Descent (CD), Semi-definite Relaxation (SDR), penalty approach, and BSUM. We exhibit

the performance of the proposed methods and compare them to their state-of-the-art

equivalents in the numerical results.

In the third investigation, we show that a good beampattern response results in a corre-

lated waveform, whereas orthogonality necessitates as much uncorrelated waveforms as

possible. As a result, beampattern shaping and orthogonality are mutually contradictory.

In this regards, we propose UNImodular set of seQUEnce design (UNIQUE) method

to make a trade-off between these two metrics, based on CD approach. In this method

we consider the weighted sum of spatial-Integrated Sidelobe Level Ratio (ISLR) and

range-ISLR as design metric. Adjusting the weight between these two ISLR, plays

important role to make the trade-off. In the numerical results we show that, by choosing

an appropriate weight, the waveform is able to discriminate the target and mitigate the

interference simultaneously. However, this cannot be achieved when minimizing just the

spatial- or range-ISLR individually.

We look at resource management for three different types of resources in the fourth study:

time, frequency, and spatial domains. We propose Waveform design for beampattern

shapIng and SpEctral masking (WISE) as a framework for tailoring the beampattern in

MIMO radar systems while maintaining the proposed waveform’s unimodularity, desirable

spectral occupancy, and orthogonality. The problem formulation leads to a non-convex

quadratic fractional programming. We propose an effective iterative to solve the problem,

where each iteration is composed of a Semi-Definite Programming (SDP) followed by

eigenvalue decomposition. Some numerical simulations are provided to illustrate the

superior performance of our proposed over the state-of-the-art.

The next research study focuses on maximizing Signal to Interference and Noise Ratio

(SINR) through joint waveform and filter design. Two algorithms based on CD and the

Alternating Direction Method of Multipliers (ADMM) are proposed. The numerical

results reveal the improvements made by the proposed algorithms over the state of the

art.

The final study looks at the problem of joint spectral shaping and waveform orthogonality

in MIMO radar systems. The Parseval theorem is used in the first part to combine the

two objectives related to orthogonality and spectral behaviour of the waveforms into one

objective. In the second part, we use CD framework to optimize a weighted sum of the

two aforementioned objectives. The waveforms, along with the receive processing, are
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designed to enhance the radar detection performance while avoiding certain frequency

bands occupied by communications interference. For a representative scenario of cognitive

radars, the designed system without loss of generality is then implemented using a custom

built Software Defined Radio (SDR) based prototype developed on Universal Software

Radio Peripheral (USRP) from national instruments. These USRPs are quite flexible in

terms of transmitting waveforms, but operate at sub-6 GHz frequencies with a maximum

instantaneous bandwidth of 160 MHz. However, the implemented framework and the

design methodologies can be applied and utilized in mmWave frequencies.

This thesis concludes with summarizing the main research findings and some remarks on

future directions and open problems.
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Chapter 1

Introduction

High-resolution Millimeter Wave (mmWave) radar sensors are becoming integral in

applications ranging from automotive safety and autonomous driving to health monitoring

of infants and the elderly. These sensors link the physical world with the virtual world of

information processing are ideal in different applications such as autonomous vehicles,

in-cabin monitoring, occupancy sensing, drones, multi-copters, gesture recognition, smart

buildings, smart street lighting, factories, healthcare and robotics.

The rapid development of high-performance, low-cost integrated MIMO radar systems in

the mmWave spectrum motivate this study. Millimeter waves are kind of radio frequency

that their wavelength are in millimeter range, between 1 mm to 1 cm, which their

frequency are between 30 GHz to 300 GHz equivalently. This kind of radio frequencies

have several advantages including the following,

• Small size: In general, the electronics components such as capacitors, resistors

and antennas, in short wavelength (high frequency) are smaller rather than lower

frequencies. Therefore, the size of system components required to process mmWave

signals are small [4].

• Lower cost fabrication: Smaller component size leads to lower power consumption

and lower fabrication cost of the final product. This property is attractive for radar

hardware designers to incorporate lots of components for building MIMO radar

systems, such as transmitters, receivers, antennas, Analog to Digital Converter

(ADC) and Digital Signal Processing (DSP) processors [5].

• High range and angular resolution and high accuracy: Range resolution is

the ability of discriminating of two or more objects in range domain. The range

resolution in radar systems is highly depended on the bandwidth of the signal.

1
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Since mmWave radars are able to use larger bandwidth in compare with other

radio frequencies, in general they are capable to obtain higher resolution [5, 6].

For example a mmWave Frequency Modulated Continuous Wave (FMCW) radar

provides about 4 GHz bandwidth which is able to achieve 3.5cm resolution [4].

In addition, using MIMO technology and transmitting orthogonal waveform, the

array in the receiver can be enlarged virtually and subsequently enhances the

angular resolution [5].

Finally, mmWave radar systems operating at 76–81GHz or 58− 62 GHz (with a corre-

sponding wavelength of about 4mm), will have the ability to detect movements that are

as small as a fraction of a millimeter [4]

Automotive: mmWave MIMO radars systems are being increasingly integrated into

commercial vehicles to support the Advanced Driver Assistance Systems (ADAS) by

enabling robust and high performance target detection, localization, as well as interference

(clutter) mitigation. Automotive radar sensors should be able to detect every single

elements of the environment, and one solution to this end is equipping the vehicle with

three types of radar, namely, Long-Range Radar (LRR) (for adaptive cruise control),

Mid-Range Radar (MRR) (for cross traffic alert and lane change assist) and Short-Range

Radar (SRR) (for parking aid, obstacle/pedestrian detection).

Smart buildings: mmWave radar sensors, can be installed in public areas, like

airports hospitals, universities, and smart public buildings to help in crowd control and

provide precise information about the scene by joint processing while respecting privacy.

Healthcare: Monitoring bio-signals include respiratory and heartbeat signals, which

not only reveal a patient’s physical health status but also make it easier to run some public

health systems daily. Currently, conventional contacted (ECG, optics, airflow sensing,

chest wall mechanical displacement sensing, and blood pressure sensing) and radar-based

non-contacted detection are used to detect breathing and heartbeat. Despite having

good accuracy and consistency, contact vital sign detection is not perfect. For patients

with burns, skin infections, etc., it is not helpful. In contrast, by sensing millimetre-scale

displacement of the thoracic surface, the mmWave radar sensors are used to extract

respiratory and heartbeat signals utilizing a variety of signal processing techniques. The

mmWave radar detection system offers significant development potential [7].
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Traffic control and monitoring: Intersection control, speed monitoring, vehicle

counting, and collision avoidance are only a few of the complex issues that need to

be addressed in traffic control and infrastructure monitoring. The installed sensors’

information is used by the infrastructure systems for traffic management and monitoring in

a variety of ways, including dynamic green-light control, statistics gathering, measurement

of position and velocity, and identification of fast moving objects across large areas.

mmWave radars as opposed to optical system sensors like cameras and LiDAR sensors,

is unaffected by variations in the brightness of its surroundings. Additionally, mmWave

radars can easily penetrate through mist, rain and fog. Consequently, neither the time of

day nor the weather have a significant impact on their ability to identify objects. The

use of mmWave radar as infrastructure sensors is being highlighted by these benefits.

[8, 9].

Despite of the advantages of using mmWave, due rather large absorption in the atmo-

sphere, these radio frequency are used mainly in short-range radar systems [10].

1.1 Cognitive Radar Waveform Design

Cognitive MIMO radar systems are smart sensors which interact with the environment

to enhance their performance [11]. Time (range), spatial and spectrum are the most

important resources, and resources management is one important aspects in cognitive

MIMO radar systems (Figure 1.1).

This resources management necessitates an adaptive waveform design approach. Generally,

auto- and cross-correlation sidelobes minimization, beampattern shaping and spectral

shaping and are the approaches which can be considered for managing the time, spatial

and spectrum, respectively. FMCW is the conventional solution for implementing a

MIMO mmWave radar system which the block diagram is given in Figure 1.2 [12]. As can

be seen in the transmitter part, the waveform generator determines a sequence of large

bandwidth of Linear Frequency Modulation (LFM) (range of GHz) that are generated

by the Voltage-Controlled Oscillator (VCO). Then, the signal is amplified by a Power

Amplifier (PA) and transmitted. In the receiver part, the received signal is processed

by a Low Noise Amplifier (LNA) and then down converted in frequency using the same

VCO signal before being filtered. Thanks to the combination of VCO and mixer in the

receiver, a part of signal processing (stretch processing) is done in analog domain. This

approach significantly decreases the bandwidth of the receive signal, which leads to lower

sampling rate for the ADC (range of 10 MHz). The main drawback of FMCW radar is

that there aren’t many options for modifying the transmit waveform’s parameters.
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Figure 1.1: The three main resources in MIMO radar systems.
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Figure 1.2: Block Diagram of an FMCW radar System [12].

On the other hand, Phase Modulated Continuous Wave (PMCW) radar system is an

emerging technology for mmWave radar systems [13–15]. The block diagram of typical

PMCW radar is given in Figure 1.3 [12]. The Digital to Analog Converter (DAC) output

is modulated from an oscillator to generate a phase modulated continuous waveform

signal. In this case, due to obtaining a large bandwidth baseband signal, high sampling

rate (order of GHz) DAC and ADC are required which increase the power consumption

but lead to higher capability of noise mitigation. Tho most advantages of PMCW radars

arises from using arbitrary phase codded waveforms, which has several advantages:

• Flexibility: Using an arbitrary waveform gives the flexibility to radar engineers

for designing waveform in three main domains, time (range), space and spectrum
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Figure 1.3: Block Diagram of an PMCW radar System [12].

[12].

• Interference: The interference in FMCW radar is highly dependent on the LFM.

However, since PMCW is a kind of pseudo noise waveform they are more robust

against the interference [12, 16].

Due to the advantages and flexibility of using phase codded waveforms, in this study

we focus on designing of phase codded waveforms. This kind of waveforms are constant

modulus which play important role in enhancing the performance of MIMO radar

systems. Constant modulus waveforms are attractive for radar system designers due to

efficient utilization of the limited transmitter power of PA and simplicity of hardware

implementation.

In the following we enumerate the state of the arts in auto- and cross-correlation sidelobes

minimization, beampattern shaping and spectral shaping via waveform design for MIMO

radar systems.

1.1.1 Auto and Cross Correlation Minimization in MIMO Radars

Unlike the conventional phased array radars the MIMO radar systems are capable to

transmit different waveforms through the all antennas. This waveform diversity enables

the MIMO radar system to form the virtual array which enhances the performance

of MIMO radar, in terms of spatial resolution, probability of detection, localization,

identification, classification, etc [17]. Figure 1.4 shows the concept of the virtual array

in MIMO radars. In this figure the number of transmitter and receiver are MT = 3

and MR = 4, respectively. Each transmitter transmits an arbitrary waveform, which

is indicated by the colors green, red, and dark blue. Each receiver has three match

filters that correspond to each transmitter in order to build the virtual array. In this

case the virtual array can be formed by arranging the matched filter output as shown in
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dt dr
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θ θ 

θ 

MIMO Transmitters MIMO Receivers

MIMO Virtual Array

Figure 1.4: The virtual array concept in MIMO radars.

Figure 1.4. Please note that in this figure, dT =MTdR, where dT and dR be the distance

between the transmitter and receiver antennas respectively.

In order to form the virtual array and enhancing the angular resolution, the received

signal in MIMO radar system should be separable (orthogonal) in receiver while a

set of arbitrary waveforms are adopted in the transmit side. In general there are

four main techniques to achieve orthogonality, namely Time-Division Multiple Access

(TDMA), Frequency-Division Multiple Access (FDMA), Doppler-Division Multiple Access

(DDMA) and Code-Division Multiple Access (CDMA) [18, 19]. Among them, TDMA,

FDMA,and DDMA can provide almost perfect orthogonality. However,comparing with

CDMA, they suffer from strong azimuth-Doppler coupling, lower amount of maximum

Doppler frequency and shorter target detection range, respectively [18]. In this context,

we investigate a CDMA-MIMO radar system with low cross-correlations, which has

historically been utilized as a measure for designing a set of approximately orthogonal

sequences and leveraging the virtual array. Low auto-correlation, on the other hand, is a

necessity in every radar system to prevent masking weak targets by a strong target’s

range sidelobes and to limit the harmful effects of distributed clutter returns close to the

target of interest [20]. Figure 1.5 shows the masking of a weak target with the sidelobes

of strong target.

As a result, in MIMO radar systems, decreasing auto- and cross-correlation is a need.

This necessity naturally led to the usage of ISLR/ PSLR minimization as the design

metric, which is pursued via a variety of methods, including CAN, MM, ADMM and CD.

The authors in [2, 21] proposed the CAN algorithm to optimize sequence with good ISL

using the alternating minimization technique. However, instead of directly solving the

ISL minimization, they solved its approximation. To solve the ISL minimization problem

the authors in [3] proposed the MM-Corr algorithm and the authors in [22] proposed the

ISL-NEW algorithm, both using the majorization-minimization technique. The authors
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Figure 1.5: Sketch of matched filter output, displaying the effects of waveform
optimization in detecting weak signals. In (a), two targets are correctly detected when
a waveform with low PSL is adopted as the transmitting signal. In (b) the secondary
target is missed, and in (c) false targets are detected due to the large sidelobes of the

transmitted waveform.

in [23] used the ADMM technique to solve an approximation of the ISL minimization

problem. The authors in [24] used the CD technique, to minimize a weighed sum of

ISL and PSL under discrete phase constraint. They have reported superior performance

comparing with the state-of-the art by using the CD approach.

1.1.2 Beampattern Shaping

Transmit beampattern shaping, which involves manipulating the spatial distribution

of transmit power, can help improve radar performance by increasing power efficiency,

boosting detection probability, enhancing target identification, and improving interference

mitigation. The idea behind transmit beam shaping is to concentrate transmit power

at desirable angles while reducing it at undesirable ones [25]. From a waveform design

perspective, there are two methods for beampattern shaping, indirect and direct methods

[26, 27]. In indirect (two-step) method, the waveform correlation matrix is firstly designed

and the waveform matrix is subsequently obtained through one of the decomposition

methods [28–36] while in direct method, the waveform is designed in one step [26, 27, 37–

43]. On the other hand, there are several metrics (objective functions) to obtain the

optimum beampattern such as, beampattern matching, spatial-ISLR/PSLR minimization,

and SINR maximization.

Beampattern Matching The goal of beampattern matching is to reduce the gap between

the desired and designed beampattern. For instance, the following papers have worked

on designing the waveform covariance matrix employing beampattern matching. The

authors in [28] devised a method to address the joint beampattern shaping and the cross-

correlation minimization in spatial domain through Semidefinite Quadratic Programming

(SQP) technique. In [29], Cyclic Algorithm (CA) is presented to shape the beampattern

under low PAR constraint. In [34, 35], the authors propose a covariance matrix design
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method based on Discrete Fourier Transform (DFT) coefficients and Toeplitz matrices.

The DFT-based technique provides a well-match transmit beampattern at low complexity.

However, the drawback of the DFT-based method is that, for small number of antennas,

the performance of the DFT-based method is slightly poorer. On the other hand, several

papers focus on designing directly the transmit waveforms for beampattern shaping.

For example, in [26], two optimization algorithms based on ADMM are proposed under

constant modulus constraint for the probing waveform. In [27], a method based in

ADMM is proposed to design a beampattern in wide-band systems. In [41], a method

for beampattern matching is addressed based on gradient decent which they term it

Projection, Descent, and Retraction (PDR). In [42], the authors propose a method based

on MM for beampattern matching under PAR constraint in two cases of wide- and

narrow-band.

Spatial-ISLR and PSLR minimization In Spatial-ISLR and PSLR minimization ap-

proach, the aim is to minimize the ratio of summation of beampattern response on

undesired over desired angles, and to minimize the ratio of maximum beampattern

response on undesired angles over minimum beampattern response on desired angles,

respectively. In [32], a method based on SDR under constant energy and 3 dB main

beam-width constraint is proposed to minimize the spatial-ISLR. In [44], the robust

designs of waveform covariance matrix through optimizing the worst case transmit

beampattern are considered to minimize the spatial-ISLR and -PSLR of beampatterns,

respectively. Unlike two aforementioned methods, [37, 40, 43] propose a direct waveform

design solution. The authors in [37] propose the efficient UNIQUE algorithm based on

CD method to minimize spatial- and range-ISLR under four different constraints, namely,

limited energy, PAR, continuous and discrete phase constraints. The method proposed in

[43] is similar to UNIQUE without considering range-ISLR metric and PAR and limited

energy constraints. A method based on ADMM is proposed in [40] to minimize the

spatial-PSLR under constant modulus constraint.

SINR maximization In SINR optimization approaches, the problem does not deal with

the beampattern directly. However, the beampattern is implicitly shaped as a result of

transmit waveform optimization. For example [30, 31] address the problem of waveform

design in the presence of signal dependence clutter. In these works, an iterative approach

is presented to jointly optimize the transmit waveform and receive filter to maximize the

output SINR. The authors in [45] propose Majorized Iterative Algorithm (MIA) based

on MM method for joint waveform and filter design under similarity, constant modulus

(MIA-CMC) and PAR (MIA-PC) constraints. While STTC [46] is proposed based on

CD to solve the problem under similarity, uncertain steering matrices, continuous or
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discrete phase constraints. In [46], a Dinkelbach based method and exhaustive search is

proposed for continuous and discrete phase constraints respectively.

1.1.3 Spectral Shaping

In cognitive MIMO radar systems, spectral shaping is a key part of resource management.

The cognitive radar system can effectively use the available bandwidth with this method.

Coexistence of communications and cognitive MIMO radar systems, in which the entire

bandwidth is shared between these two systems based on priorities, is one appealing

application of spectral shaping [47]. There are several methods for spectral shaping. For

instance, in [1, 23, 48–51] spectral matching approach is proposed to shape the spectral

of the transmit waveform. In [52, 53], the authors consider a waveform design approach

to maximize SINR, while the spectral behaviour is considered as a constraint. In [54, 55],

the ratio of the maximum stop-band level to the minimum pass-band level is considered

as the objective function to shape the spectrum. SILR minimization approach is consider

under continuous and discrete phase constraints in [47]. The design of constant modulus

waveform for beampattern matching under spectral constraint are addressed in [50, 56].

To tackle the non-convex optimization problem the authors in [50] and [56] propose

Iterative Beampattern with Spectral design (IBS) and Beampattern Optimization With

Spectral Interference Control (BIC) methods respectively.

1.2 Thesis Outline

The focus of this thesis will be on agile waveform design for modern radar systems. Many

waveform design techniques could not be successfully implemented for several decades in

the mid-twentieth century due to the inherent complexity and hardware considerations.

Although the implementation of such algorithms is rather versatile at this time, there are

still numerous developments in the field that require a new look and novel techniques, as

discussed below:

• Chapter 2 addresses a framework for generalized auto- and cross-correlation min-

imization. In this chapter we consider the ℓp-norm of weighted auto- and cross-

correlation under discrete and continuous phase constraint as design metric. To

obtain a local optimum solution we proposed WeBEST method based on Block

Successive Upper Bound Minimization (BSUM) approach. Choosing an appropriate

value for p gives the flexibility to design a waveform with different properties, such

as good ISL, PSL and sparse auto- and cross-correlation, while the weighting can
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focus the sidelobe reduction in a specific regions. Through the numerical results

we show that the propose method meets the lower bound of ISL and decreases the

PSL gap with the Welch lower bound, by choosing p = 2 and p→ ∞, respectively.

• Chapter 3 is devoted for beampattern shaping approaches in MIMO radar systems

via waveform design. In this chapter we introduce different beampattern shap-

ing approaches such as, beampattern matching and spatial-ISLR minimization.

Subsequently, in order to obtain the sub optimum waveform, we propose different

methods based on CD, SDR, BSUM and penalty method.

• Chapter 4 addresses the trade off between spatial and range-ISLR minimization

under four practical constraints, namely, limited budget energy, PAR, continuous

and discrete phase. We propose UNIQUE algorithm to solve the weighted sum

of spatial- and range-ISLR as design metric. First, we show the contradictory

between these two ISLRs (orthogonality and beampattern shaping) in MIMO

radar systems. On the other words, the optimum beampattern response leads

to correlated waveform which is equivalent to phase array radar whereas, the

orthogonal waveform needs to be uncorrelated as much as possible. However,

the numerical results indicates that, UNIQUE is able to make a good trade-off

between having a good beam pattern response and having orthogonality by selecting

appropriate values for the scalarization parameter in objective function.

• Chapter 5 considers the resource management in time (range), spatial and spectral

domains. This chapter investigates the problem of beampattern shaping with 3 dB

beam width, similarity (orthogonality), spectral masking and constant modulus

constraints. In order to obtain a local optimum solution, we propose an effective it-

erative algorithm, where each iteration is composed of a Semi-Definite Programming

(SDP) followed by eigenvalue decomposition. By adjusting the parameters such

as, similarity and spectral masking level, this algorithm is able to make trade-off

between spatial, spectral and time. through the numerical results we show the

efficiency of WISE method.

• Chapter 6 presents the joint waveform and filter design for SINR maximization. In

this chapter we consider the clutters as signal dependent interference. Based on this

assumption we proposed two iterative joint waveform and filter design algorithms

to enhance SINR in radar systems, based on CD and ADMM, respectively.

• Chapter 7 considers the joint spectral shaping and orthogonality problem. In this

chapter we consider two approaches to consider these two metrics. In the first

approach we integrate the range-ISL with spectral shaping in one objective using

Parseval theorem, whereas in the second approach we consider the weighted sum
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method of SILR and ICCL. For both problem, we consider using CD method to

obtain a local optimum solution. In order to demonstrate the performance of the

proposed method in real application, is then implemented using a custom built

Software-Defined Radio (SDR) based prototype developed on Universal Software

Radio Peripheral (USRP) from National Instruments (NI).

Appendices

• Appendices A, B, C, F, D and E include the detailed calculation of the coefficients,

proofs of the Theorems and Lemmas given in Chapters 2, 3, 4, 5, 6 and 7 respectively.

1.3 Notations

Please note that, each chapter has its own notation and we define it at each chapter.

1.4 Publications

The work presented in this thesis has resulted in a number of peer-reviewed journal and

conference papers, currently published or under revision. The publications included in

this thesis are listed here below.
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Chapter 2

Generalized Waveform Design for

Sidelobe Reduction in MIMO

Radar Systems

MIMO radars transmit a set of sequences that exhibit small cross-correlation sidelobes, to

enhance sensing performance by separating the waveforms at the matched filter outputs.

The waveforms also require small auto-correlation sidelobes to avoid masking of weak

targets by the range sidelobes of strong targets and to mitigate deleterious effects of

distributed clutter. In light of these requirements, in this chapter, we design a set of

phase-only (constant modulus) sequences that exhibit near-optimal properties in terms

of PSL and ISL. At the design stage, we adopt the weighted ℓp-norm of auto- and

cross-correlation sidelobes as the objective function and minimize it for a general p value,

using BSUM. Considering the power output limitation of radar amplifiers, we design

unimodular sequences which make the design problem non-convex and NP-hard. To

tackle the problem, in every iteration of the BSUM algorithm, we introduce different

local approximation functions and optimize them concerning a block, containing a code

entry or a code vector.

2.1 Introduction

A complex problem in radar pulse compression (intra-pulse modulation) is the design

of waveforms exhibiting small PSL. PSL shows the maximum auto-correlation sidelobe

of a transmit waveform in a typical Single-Input Single-Output (SISO)/Single-Input

Multiple-Output (SIMO), or phased-array radar system. If this value is not small, then

either a false detection or a miss detection may happen, based on the way the Constant

15



Generalized Waveform Design for Sidelobe Reduction in MIMO Radar Systems 16

False Alarm Rate (CFAR) detector is tuned [63]. In MIMO radars, PSL minimization is

more complex since the cross-correlation sidelobes of transmitting set of sequences need

to be also considered. Small value in cross-correlation sidelobes helps the radar receiver

to separate the transmitting waveforms and form a MIMO virtual array.

Similar properties hold for ISL of transmitting waveforms where, in case of SISO/SIMO or

phased-array radars, the energy of auto-correlation sidelobes should be small to mitigate

the deleterious effects of distributed clutter. In solid state-based weather radars, ISL

needs to be small to enhance reflectively estimation and improve the performance of

hydrometer classifier [64]. In MIMO radar systems, ISL shows the energy leakage of

different waveforms in addition to the energy of non-zero auto-correlation sidelobes.

Indeed, correlation sidelobes are a form of self-noise that reduce the effectiveness of

transmitting waveforms in every radar system [65].

In a MIMO radar system, different multiplexing schemes can be used to eliminate/reduce

the cross-correlations level of the transmitting waveforms. Frequency Division Multi-

plexing (FDM), Doppler Division Multiplexing (DDM), and Time Division Multiplexing

(TDM) as some examples [18]. Currently, TDM-MIMO radars are commercialized in

the automotive industry with a variety of functionalities from de-chirping and Doppler

processing to angle estimation and tracking [66, 67]. However, Code Division Multiplexing

(CDM)-MIMO is the next step of the industry, which it can use more efficiently the

available resources (time and frequency) [68].

In this chapter, we devise a method called WeBEST to design transmitting waveforms

for CDM-MIMO radars. To this end, we adopt the weighted ℓp-norm of auto- and

cross-correlation sidelobes as the objective function and minimize it under Continuous

Phase (CP) and Discrete Phase (DP) constraints. The weighting and p values in the

provided formulation create a possibility for intelligent transmission considering the

prevailing environmental conditions, where the appropriate p can be selected based on

the presence of distributed clutter or strong targets [69–72]. For example, choosing

p → 0 and minimizing the ℓp-norm of auto- and cross-correlation sidelobes, a set of

sequences with sparse sidelobes will be obtained. With p = 2, the resulting optimized

set of sequences will have small ISL value which performs well in the presence of clutter.

Further, by minimizing the ℓp-norm when p→ +∞, the optimized set of sequence will

have small PSL and are well suited for enhancing the detection of point targets.

2.1.1 Background and Related Works

Waveform design based on sidelobe reduction in SISO/SIMO or phased-array radar

systems: Research into design of waveforms with small ISL and PSL values has significantly
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increased over the past decade for single waveform transmitting radar systems [23, 65, 73–

80]. In case of ISL minimization, several optimization frameworks are proposed, including

power method-like iterations, MM, CD, GD, ADMM, Inexact Alternating Direction

Penalty Method (IADPM), Proximal Method of Multipliers (PMM) and MM-MDR to

name a few [23, 73–84]. In [65], an algorithm based on steepest descent is proposed for

designing long binary sequences. Joint ISL and PSL minimization based on CD under

DP and CP constraints is proposed in [78]. In the proposed method of this chapter,

ℓp-norm of auto-correlation sidelobes when p→ +∞ is considered for the initialization.

Similarly, several papers have considered ℓp-norm minimization to design waveform with

small PSL values. In [79], a GD based approach is proposed to design sequences

with small sidelobes based on ℓp-norm criteria for SISO radar systems. The proposed

algorithm is applicable when p is an even number, i.e., p = 2n, n ∈ Z+. In [76, 77], MM

based approach are proposed for ℓp-norm minimization when p ≥ 2. The results in

[76–78] depict that by gradually increasing p during the minimization of the ℓp-norm

of auto-correlation sidelobes, sequences with very small PSL values can be obtained.

Motivated by this observation, this chapter investigates ℓp-norm minimization of auto-

and cross-correlation functions to obtain set of sequences with very small PSL values for

MIMO radar systems.

Waveform design based on sidelobe reduction in MIMO radar systems: In order to design

set of sequences with small auto- and cross-correlation sidelobes, several approaches

including Multi-CAN/Multi-PeCAN [2], Iterative Direct Search [85], ISLNew [22], MM-

Corr [3] and CD [37, 86, 87], are proposed, all considering the ISL as the design metric.

On the other hand, few papers have focused on PSL minimization for MIMO radars

[24, 88]. In [24, 89] a CD based approach is proposed to minimize PSL. In [88, 90] a MM

based approach is proposed to directly minimize the PSL and design set of sequences

for MIMO radar systems. The authors in [91] solve the problem based on Chebyshev

distance minimization. In the current study, we design set of sequences with very small

PSL values by minimizing ℓp-norm of auto- and cross-correlation sidelobes for a set

of sequences which was not addressed previously in the literature. In contrast to the

previous studies, we solve the problem for a general p value (p > 0) under DP constraint,

and solve it for p ∈ (0, 1] ∪ p ≥ 2 under CP constraint. Interestingly, the obtained PSL

values are close to the Welch lower bound and fill the gap between that and the best of

literature.

2.1.2 Contributions

The main contributions of the current chapter are summarized below.
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• Unified optimization framework: We propose a unified framework based on the

BSUM paradigm to solve a general ℓp-norm minimization problem under practical

design constraints. The formulation makes the problem non-convex, non-smooth

and NP-hard. The proposed problem formulation includes ℓ1/ℓ0-norm of the auto-

correlation sidelobe which relatively have lower number of local minima comparing

with ℓ2-norm. Also, the local minima of those cost functions would correspond to

sequences with good auto-correlation sidelobe levels. For instance, in the simulation

analysis we show that any local minima of ℓ0-norm of auto-correlation would have

many zeros (sparse auto-correlation) which can enhance the detection performance

in the presence of distributed clutter.

• Entry- and vector-based solutions: BSUM is an iterative method that, in each

iteration, the variable is divided in several blocks, then the problem is optimized

with respect to that block. The blocks can be a portion of the variable or in the

smallest case it can be one entry. In this regards, in each iteration of BSUM, we

propose two approaches, i.e, entry- and vector-based solutions. In the entry-based

optimization, we formulate the problem with respect to a single variable; this enable

us to find the critical points and obtain the global optimum solution in each step.

For vector-based optimization we propose a solution based on GD. This approach

is faster than the entry-based method. However, the entry-based method has a

better performance in terms of minimizing the objective function due to obtaining

the global optimum solution in each step.

• Trade-off and flexibility: By conducting thorough performance assessment, we

propose a flexible tool to design set of sequences with different properties. We

show that the ℓp-norm optimization framework provides the flexibly of controlling

the optimization objective by choosing p, where p → ∞ leads to design set of

waveforms with good PSL property. Choosing p → 0 leads to sparse auto- and

cross-correlation and choosing p = 2 leads to design set of waveforms with good

ISL property.

While BSUM offers a generic framework, the contribution of the chapter lies in devising

different solutions based on simplifying the complexity and obtaining a good performance.

We finally propose a direct solution for the discrete phase constraint using Fast Fourier

Transform (FFT)-based technique.

2.1.3 Organization and Notations

The rest of this chapter is organized as follows. In Section 2.2, we formulate the ℓp-norm

minimization for MIMO radar systems, then we introduce the BSUM method as the
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Optimization framework and finally we define the local approximation functions suitable

for ℓp-norm problem. We develop the BSUM framework to solve the problem in Section

2.3 and provide numerical experiments to verify the effectiveness of proposed algorithm

in Section 2.4.

Notations This chapter uses lower-case and upper-case boldface for vectors (a) and

matrices (A) respectively. The set of complex and positive integer numbers are denoted

by C and Z+ respectively. The transpose, conjugate transpose and sequence reversal

are denoted by the (.)T , (.)H and (.)r symbols respectively. Besides the Frobenius

norm, ℓp norm, absolute value and round operator are denoted by ∥.∥F , ∥.∥p, |.| and ⌊.⌉,
respectively. For any complex number a, ℜ(a) and ℑ(a) denotes the real and imaginary

part respectively. The letter j represents the imaginary unit (i.e., j =
√
−1), while the

letter (i) is used as step of a procedure. Finally ⊙ and ⊛ denotes the Hadamard product

and cross-correlation operator respectively.

2.2 Problem Formulation

We consider a narrow-band MIMO radar system with M transmitters and each trans-

mitting a sequence of length N in the fast-time domain. Let the matrix X ∈ CM×N

denote the set of transmitted sequences in baseband, whose the mth row indicates the N

samples of mth transmitter whereas the nth column indicates the nth time-sample across

the M transmitters. Let xm ≜ [xm,1, xm,2, . . . , xm,N ]
T ∈ CN be the transmitted signal

from mth transmitter. The aperiodic cross-correlation of xm and xl is defined as,

rm,l(k) ≜ (xm ⊛ xl)k =
∑N−k

n=1 xm,nx
∗
l,n+k, (2.1)

where m, l ∈ {1, . . . ,Mt} are the transmit antennas indices and k ∈ {−N +1, . . . , N − 1}
is the lag of cross-correlation. If m = l, (2.1) represents the aperiodic auto-correlation

of signal xm. The zero lag of auto-correlation (rm,m(0)) represent the peak of the mth

matched filter output. Also |rm,m(0)| contains the energy of sequence which for constant

modulus sequences is equal to N . The other lags (k ≠ 0) are referred to the sidelobes.

The weighted ℓp-norm of auto- and cross correlation in MIMO radar can be written as,

(∑M
m=1

∑M
l=1

∑N−1
k=−N+1 |wkrm,l(k)|p −M(w0N)p

) 1
p
, (2.2)

where, 0 ≤ wk ≤ 1. TheM(w0N)p term in (2.2) is the weighted ℓp-norm of the mainlobes,

where
∑M

m=1 |w0rm,m(0)|p = M(w0N)p. Since the term M(w0N)p in (2.2) is constant,
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the weighted ℓp-norm minimization can be equivalently written as,
min
X

f(X) ≜
M∑
m=1

M∑
l=1

N−1∑
k=−N+1

|wkrm,l(k)|p

s.t. xm,n ∈ X∞ or XL,

(2.3)

where, X∞ and XL indicating the unimodular and discrete phase with L alphabet size

sequences. More precisely, we consider X∞ = {ejϕ|ϕ ∈ Ω∞} and XL = {ejϕ|ϕ ∈ ΩL},
where Ω∞ ≜ (−π, π] and ΩL ≜ {0, 2πL . . . , 2π(L−1)

L }. The unimodular and discrete phase

are equality constraints and they are not an affine set. Therefore the optimization

problem is non-convex, multi-variable and NP-hard in general. Note that, due to the

existence of the parameter p in f(X), direct solution of (2.3) is complicated.

2.3 Proposed Method

In this chapter, we propose a method based on BSUM framework to tackle the non-convex

problem (2.3). The BSUM framework provides a connection between Block Coordinate

Descent (BCD) and MM, by successively optimizing a certain upper bound of the original

objective in a coordinate wise manner1. In this context, BSUM requires to find an

approximation function for the objective function in (2.3), and then the approximation

function should be written in a simplified form with respect to one variable block while

other blocks are held fixed. In this regard, the term |wkrm,l(k)|p in (2.3) can be majorized

by the following local approximation functions (see Appendix A.1 for more details),

u(wkrm,l(k)) = ηmlk|wkrm,l(k)|2 + ψmlk|wkrm,l(k)|+ νmlk (2.4)

where2,

ηmlk ≜

τp + (p− 1)|wkr
(i)
m,l(k)|p − pτ |wkr

(i)
m,l(k)|p−1

(τ − |wkr
(i)
m,l(k)|)2

p ≥ 2
pϵ(p−2)

2
|wkrm,l(k)| ⩽ ϵ

p|wkrm,l(k)|(p−2)

2
|wkrm,l(k)| > ϵ

0 < p ≤ 1,

(2.5)

1 Details of BSUM and different ways of choosing approximation functions of this chapter can be
found in Appendix A.1.

2Since νmlk is a constant term and does not affect the optimization procedure we do not reported its
value.
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τ ≜

 N−1∑
−N−1

|wkr
(i)
m,l(k)|

p

 1
p

. (2.6)

and

ψmlk ≜p|wkr
(i)
m,l(k)|

p−1 − 2ηmlk|wkr
(i)
m,l(k)| p ≥ 2

0 0 < p ≤ 1,

(2.7)

In (2.5), ϵ is a positive and small value (ϵ > 0 and ϵ→ 0) to incorporated in the objective

function for avoiding the singularity problem for 0 < p ≤ 1.

Consequently, (2.3) can be equivalently replaced with,

P


min
X

u(X) ≜
M∑
m=1

M∑
l=1

N−1∑
k=−N+1

u(wkrm,l(k))

s.t. xm,n ∈ X∞ or XL,

(2.8)

Let xt (t ∈ {1, . . . ,M}) be the only variable block, while other blocks are held fixed

and stored in the matrix X−t ≜ [xT1 ; . . . ;x
T
t−1;x

T
t+1; . . . ;x

T
M ] ∈ C(M−1)×N . In this

case, the approximation function u(X) can be decomposed to a term independent of the

optimization variable xt, and two other terms, one indicating the auto-correlation of xt,

and the other is its cross-correlation with the other sequences of the set X−t. Precisely,

u(X) = um(X−t) + uau(xt) + ucr(xt,X−t), (2.9)

where

um(X−t) =
M∑

m,l=1
m,l ̸=t

N−1∑
k=−N+1

u(wkrm,l(k)),

uau(xt) =

N−1∑
k=−N+1

u(wkrt,t(k)),

ucr(xt,X−t) = 2

M∑
l=1
l ̸=t

N−1∑
k=−N+1

u(wkrt,l(k)).

(2.10)

In the sequel, we provide different approaches for minimizing u(X) under the aforemen-

tioned constraints.
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2.3.1 Code entry optimization

To design the code vector xt, one possible solution is to optimize its code entry se-

quentially. Let xt,d (t ∈ {1, . . . ,M} and d ∈ {1, . . . , N}) be the only entry vari-

able of vector xt while other entries are held fixed and stored in vector xt,−d ≜

[xt,1, . . . , xt,d−1, 0, xt,d+1, . . . , xt,N ]
T ∈ CN . Further, to consider the unimodularity con-

straint, we can substitute xt,d with ejϕ. In this case, it can be shown that (see Appendix

A.2),

wkrt,t(k, ϕ) = cttdk + attdke
jϕ + bttdke

−jϕ,

wkrt,l(k, ϕ) = ctldk + atldke
jϕ.

(2.11)

Observe that the term um(X−t) in (2.9) is independent to the optimization variable xt,d.

Thus, the optimization problem (2.8) with respect to xt,d becomes,


min
ϕ

N−1∑
k=−N+1

u(wkrt,t(k, ϕ)) + 2

M∑
l=1
l ̸=t

N−1∑
k=−N+1

u(wkrt,l(k, ϕ))

s.t. ϕ ∈ Ω∞,

(2.12)

In this case, by some mathematics manipulation the objective function in (2.12) can be

explicitly written based on ϕ as (see Appendix A.3),

Pe


min
ϕ

u(ϕ) ≜ ℜ


2∑

n=−2

vne
jnϕ


s.t. ϕ ∈ Ω∞,

(2.13)

where the coefficients vn are defined in Appendix A.3.

The solution to Pe can be calculated by finding the critical points of the problem and

select the solution that minimizes the objective. In this regards we find the real roots

of the first order derivative of the objective function. Then we evaluate the objective

function in these points and the boundaries and select the solution that minimizes the

objective. In this regards, the derivative of u(ϕ) can be obtained by,

u′(ϕ) = ℜ

j
2∑

n=−2

nvne
jnϕ

 , (2.14)

Then, we perform the change of variable z ≜ tan(ϕ2 ) in (2.14), and use cos(ϕ) =

(1− tan2(ϕ2 ))/(1 + tan2(ϕ2 )), sin(ϕ) = 2 tan(ϕ2 )/(1 + tan2(ϕ2 )) trigonometric equations.

By doing so, it can be shown that finding the roots of du(ϕ)dϕ = 0 is equivalent to find the
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roots of the following 4 degree real polynomials (see Appendix A.4 for details),

4∑
k=0

skz
k = 0, (2.15)

where the coefficients are given in Appendix A.4.

We only admit the real roots for (2.15). Let us assume that zk (k = {1, . . . , 4}) be the

roots of
∑4

k=0 skz
k = 0. Hence, the critical points of u(ϕ) can be expressed as,

Ωu =
{
2 arctan (zk)|ℑ(zk) = 0

}
(2.16)

Therefore, the optimum solution would be,

ϕ⋆ = argmin
ϕ

{
u(ϕ)|ϕ ∈ Ωu

}
. (2.17)

Subsequently the optimum solution for xt,d is, x
(i)
t,d = ejϕ

⋆
.

Remark 2.1. Since, u(ϕ) is a function of cosϕ and sinϕ, it is periodic, real and

differentiable. Therefore, it has at least two extrema and hence its derivative has at

least two real roots; thus Ωu never becomes a null set. As a result in each iteration, the

problem has a solution and never becomes infeasible.

Remark 2.2. To design sequences with discrete phase constraint, an elegant solution

can be obtained for 0 < p < ∞ by using the FFT as detailed below. In this case, the

optimization problem with respect to the phase variable ϕ by removing the constant

terms can be written as,

Pd



min
ϕ

2

M∑
l=1
l ̸=t

N−1∑
k=−N+1

|ctldk + atldke
jϕ|p+

N−1∑
k=−N+1

|cttdk + attdke
jϕ + bttdke

−jϕ|p

s.t. ϕ ∈ ΩL,

(2.18)

Note that in (2.18), all the discrete points lie on the boundary of the optimization

problem; hence, all of them are critical points for the problem. Interestingly, the solution

to (2.18) can be obtained efficiently using an FFT operation due to the fact that the

objective function represents the modulus of the L-point DFT of a sequence associated

with coefficients cttdk, attdk, bttdk, ctldk, and atldk. Precisely, we find the index l′⋆ by (see

Appendix A.5),
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Algorithm 1 :WeBEST-entry optimization framework

Input: Initial set of feasible sequences, X(0).
Initialization: i := 0.
Optimization:

1. while, the stopping criteria is not met, do

2. for t = 1, . . . ,M do

3. for d = 1, . . . , N do

4. Optimize x
(i)
t,d and obtain x⋆t,d;

5. Update x
(i+1)
t,d = x⋆t,d;

6. X(i+1) = X
(i+1)
−(t,d)|xt,d=x(i+1)

t,d

;

7. end for

8. end for

9. i := i+ 1;

10. end while

Output: X⋆ = X(i+1).

l′⋆ = arg min
l=1,...,L

2

M∑
l=1
l ̸=t

N−1∑
k=−N+1

|FL{atldk, ctldk}|p+

N−1∑
k=−N+1

|FL{attdk, cttdk, bttdk}|p,

(2.19)

where, FL is L-point DFT operator. Hence, ϕ⋆ = 2π(l′⋆−1)
L and the optimum entry is

x
(i)
t,d = ejϕ

⋆
.

The summary of the proposed method, called WeBEST-entry based design optimization

framework is given by Algorithm 1, where, x⋆t,d = ejϕ
⋆
is the optimized solution. To

obtain this solution, WeBEST-e (entry optimization) considers a feasible set of sequences

as the initial waveforms. Then, at each iteration, it selects x
(i)
t,d as the variable and updates

that with optimized x⋆t,d, denoted by x
(i+1)
t,d . This procedure is repeated for other entries

and is undertaken until all the entries are optimized at least once. After optimizing the

MN th entry, the algorithm examines the convergence metric for the objective function.

If the stopping criteria is not met the algorithm repeats the aforementioned steps.
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Algorithm 2 : Backtracking line search

Input: ∆φ
(i)
t , α (0 < α < 0.5) and β (0 < β < 1).

Initialization: δ(i) := 1

1. while f(φ
(i)
t + δ(i)∆φ

(i)
t ) > f(φ

(i)
t ) + αs∇f(φ(i)

t )∆φ
(i)
t

2. δ(i) := δ(i)β;

3. end while

2.3.2 Code vector optimization

One alternative approach to solve (2.8) and minimize u(X) is to consider the entire code

vector xt as the optimization variable. Let Φ ≜ ∠X ∈ RM×N , Φ−t ≜ ∠X−t ∈ R(M−1)×N

and φt ≜ ∠xt ∈ RN be the phases corresponding to the matrices X, X−t and the vector

variable xt respectively. Hence, with respect to φt, the optimization problem is
min
φt

um(Φ−t) + uau(φt) + ucr(φt,Φ−t)

s.t. ϕt,n ∈ Ω∞.

(2.20)

To solve (2.20), one possible solution is to use GD framework, which is a first-order

iterative optimization algorithm for finding a local minimum of a differentiable function.

In general, the GD procedure starts with an initial solution (Φ(0)), then at ith iteration,

each block (φt) is updated by the following equation [92],

φ
(i+1)
t = φ

(i)
t + δ(i)∆φ

(i)
t (2.21)

where, δ(i) and ∆φ
(i)
t are the step size (step length) and the search direction at ith

iteration, respectively. After updating all of the blocks, the phase matrix is updated

by Φ(i+1) ≜ [φ
(i+1)
1 , . . . ,φ

(i+1)
M ]T . In gradient descent method, the search direction is

equal to the opposite direction of the gradient i.e. ∆φ
(i)
t = −∇u(φ(i)

t ). Note that,

the convergence behavior of GD methods is highly depended on choosing the step size

and the step direction. In order to achieve the monotonic descent behavior in each step

(u(φ
(i+1)
t ) ≤ u(φ

(i)
t ) ), backtracking line search can be used for choosing the step size,

where it depends on two constants α and β with 0 < α < 0.5 and 0 < β < 1, indicated

in Algorithm 2 [92].

Algorithm 3, called WeBEST-v shows the procedure of vector optimization of ℓp-

norm minimization. In this algorithm, matrix ∇Φ(i) ∈ RM×N contains the gradient

of objective function with respect to sequence phases at ith iteration, i.e., ∇Φ(i) ≜
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Algorithm 3 : WeBEST-vector optimization framework

Input: X(0)

Initialization: i := 0, Φ(i) = ∠X(0).

1. while, the stopping criteria is not met, do

2. for t := 1 :M

3. ∆φ
(i)
t := −∇φt

u(φ
(i)
t );

4. obtain δ(i) using backtracking line search;

5. φ
(i+1)
t := φ

(i)
t + δ(i)∆φ

(i)
t ;

6. end for

7. i := i+ 1;

8. end while

[∇φ1
u(φ

(i)
1 ), . . . ,∇φM

u(φ
(i)
M )]T . This procedure will be continued until the algorithm

meet the stopping criteria3.

Algorithm 3 requires calculation of the gradients of ∇φt
u(φ

(i)
t ), which can be obtained

used the following lemma.

Lemma 2.1. The gradient of ∇φt
u(φ

(i)
t ) is equal to,

∇φt
u(φ

(i)
t ) = 4ℑ{x∗

t ⊙ ((ϑ2
tt ⊙ (xt ⊛ xt))⊛ xt)k+N−1}

+ 4
∑M

l=1
l ̸=t

ℑ{x∗
t ⊙ ((ϑ2

tl ⊙ (xl ⊛ xt)
r)⊛ x∗

l )k+N−1},
(2.22)

where, ϑtt ≜ [ϑtt(−N + 1), . . . , ϑtt(N − 1)]T |ϑtt(k) ≜ wk
√
µttk, µttk ≜ p

2 |wkr
(i)
t,t (k)|p−2

and ϑtl ≜ [ϑtl(−N + 1), . . . , ϑtl(N − 1)]T |ϑtl(k) ≜ wk
√
µtlk, µtlk ≜

p
2 |wkr

(i)
t,l (k)|

p−2.

proof: Since the third term in (2.4) is a constant, it does not affect the gradient calculation

and it can be removed. Beside, according to lemma A.2, the ℓ1-norm in the second term

(|wkrm,l(k)|) can be majorized by the following equation [93],

1

2
|wkr

(i)
m,l(k)|

−1|wkrm,l(k)|2 −
1

2
|wkr

(i)
m,l(k)|. (2.23)

Substituting (2.23) with the |wkrm,l(k)| term in (2.4), becomes,

ū(wkrm,l(k)) ≜ µmlk|wkrm,l(k)|2 + ςmlk, (2.24)

3Please note that the WeBEST-v is proposed for 2 ≤ p < ∞. For 0 < p ≤ 1, we can simply replace
f(φ

(i)
M ) with gϵh(φ

(i)
M ).
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where,

µmlk ≜
p

2
|wkr

(i)
m,l(k)|

p−2

ςmlk ≜ ηmlk|wkr
(i)
m,l(k)|

2 − 1

2
ψmlk|wkr

(i)
m,l(k)|

− (p− 1)|wkr
(i)
m,l(k)|

p,

(2.25)

Now we define ū(Φ) ≜ um(Φ−t) + ūau(φt) + ūcr(φt,Φ−t), where,

ūau(φt) =

N−1∑
k=−N+1

(
µttk|wkrt,t(k)|2 + ςttk

)

=
∥∥ϱtt ⊙ (xt ⊛ xt)k

∥∥2
2
+

N−1∑
k=−N+1

ςttk,

(2.26)

and,

ūcr(φt,Φt−1) = 2
M∑
l=1
l ̸=t

N−1∑
k=−N+1

(
µtlk|wkrt,l(k)|2 + ςtlk

)

= 2
M∑
l=1
l ̸=t

∥∥ϱtl ⊙ (xl ⊛ xt)k
∥∥2
2
+ 2

M∑
l=1
l ̸=t

N−1∑
k=−N+1

ςtlk.

(2.27)

The second terms in (2.26) and (2.27) are constant and can be ignored. To this end it

can be shown that [79],

∇φt

∥∥ϱtt ⊙ (xt ⊛ xt)k
∥∥2
2
=

4ℑ{x∗
t ⊙ ((ϱ2

tt ⊙ (xt ⊛ xt))⊛ xt)k+N−1}
(2.28)

∇φt

∥∥ϱtl ⊙ (xl ⊛ xt)k
∥∥2
2
=

2ℑ{x∗
t ⊙ ((ϱ2

tl ⊙ (xl ⊛ xt)
r)⊛ x∗

l )k+N−1}
(2.29)

Please note that, since ū(Φ) majorizes the |wkrm,l(k)| term of u(Φ), therefore, according

to the MM properties, the gradient of ū(Φ) is equal to ū(Φ) at φt i.e. ∇φt
ū(Φ) =

∇φt
u(Φ). Likewise, ū(Φ) is a majorizer function for f(Φ), thus, ∇φt

ū(Φ) = ∇φt
u(Φ) =

∇φt
f(Φ).

Therefore, considering the equations (2.28), (2.29), (2.26) and (2.27) readily the gradient

in (2.22) can be obtained which completes the proof.
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2.3.3 Convergence

The convergence of proposed method can be discussed in two aspects, the convergence of

objective function and the convergence of the waveform set X. With regard to objective

function, as u(X) > 0, this expression is also valid for the optimum solution of WeBEST-e

and WeBEST-v (u(X⋆) > 0).

On the other hand, both WeBEST-e and WeBEST-v minimize the objective function

in each step leading to a monotonic decrease of the function value. Since the function

value is lower bounded, it can be argued that the algorithm converges to a specific value.

Particularly, if the algorithm starts with feasible X(0) we have,

u(X(0)) ⩾ · · · ⩾ u(X(i)) ⩾ · · · ⩾ u(X⋆) > 0.

The convergence of the argument requires additional conditions and its investigation is

beyond the scope of this chapter. However, for the optimization problem considered in

this chapter, we numerically observed that the argument converges as well as objective

function.

2.3.4 Computational Complexity

In the following we evaluate the computational complexity of WeBEST-e and WeBEST-v.

Complexity of WeBEST-e: This algorithm needs to perform the following steps in

each iteration:

• Calculate the coefficient vn in (2.13): The maximum complexity of the coefficients

are related to v−1, v0 and v1 (see Appendix A.3 for details). Without loss of gener-

ality, we consider ṽ−1 ≜ 2
∑M

l=1
l ̸=t

∑N−1
k=−N+1 ηtlka

∗
tldkctldk to obtain the computational

complexity. As can be seen, ṽ−1 needs to calculate the terms ηtlk, atldk and ctldk.

Among these three terms, ctldk is the most complex term (see (A.13) and (A.15)

in Appendix A.2 for details), which substantially is the cross-correlation of tth

and lth transmitters. Thus, calculating ctldk requires N log2(N) operations due to

using fast convolution [94]. In addition, calculating ṽ−1 needs MN summation.

Therefore ṽ−1 needsMN2 log2(N) operations in overall. Using a recursive equation,

the computational complexity can be reduced more.
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• Solving the optimization problem (2.13): WeBEST-e needs finding the roots of

4 degree polynomials4 in (2.15), which take 43 operations. In case of discrete

phase constraint we obtain (2.19) using two L-points FFT which each has L log2(L)

operations.

• Optimizing all the entries of matrix X: To this end we need to repeat the two

aforementioned steps MN times.

Let us assume that K iterations are required for convergence of the algorithm. Therefore,

the overall computational complexity of WeBEST-e is O(KMN(43+MN2 log2(N))), for

continuous phase constraint, while under discrete phase constraint is O(KMN(L log2(L)+

MN2 log2(N))).

Complexity of WeBEST-v: This algorithm needs to perform the following steps in

each iteration:

• Calculate the gradient of auto- and cross-correlation: The gradient in (2.22) is

expressed in terms of correlations; therefore the gradient needsN log2(N) operations

due to using fast convolution [79]. Since we need to calculate the gradient of auto-

correlation for one time and cross-correlation for M − 1 times, therefore the overall

computational complexity would be MN log2(N).

• Obtain the step size: This step comprises calculating the auto- and cross-correlation

part of objective functions i.e. fau(X) and fcr(X), which needs MN log2(N)

operations. Lets assume that this step needs S iterations to find the step size,

therefore the complexity of this step would be SMN log2(N).

• Optimizing all the entries of matrix X: To this end we need to repeat the two

aforementioned steps M times.

Let us assume that K iterations are required for convergence of the WeBEST-v. Therefore,

the overall computational complexity of WeBEST-v is O(KSM2N log2(N)).

2.4 Numerical Results

In this section, we provide representative numerical examples to illustrate the effectiveness

of the proposed framework. We consider ∆X(i+1) ≜
∥∥∥X(i+1) −X(i)

∥∥∥
F
≤ ζ as the stopping

4For finding the roots of polynomial we use “roots” function in MATLAB. This function is based on
computing the eigenvalues of the companion matrix. Thus the computational complexity of this method
is O(k3), where k is the degree of the polynomial [95, 96]
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criterion of WeBEST-e and WeBEST-v, where ζ is the stopping threshold (ζ > 0). We

set ζ = 10−9 for all the following numerical examples. We further stop the algorithm if

the number of iterations exceed 105. Also, we consider ϵ = 0.05 in (2.4). In this section,

by L→ ∞ we denote the set of continuous phase sequences i.e. the set of sequences with

infinity alphabet sizes. Besides, we use 10 log(.) to report the results on decibel scale.

2.4.1 Convergence

Figure 2.1 depicts the convergence time (behavior) of the proposed method. We consider

a set of random MPSK sequences (X0 ∈ CM×N ) with number of transmitters M = 4,

code-length N = 64, and alphabet size L = 8, as the initial waveform set. For the

initialization sequences, every code entry is given by,

x(0)m,n = ej
2π(lm,n−1)

L , (2.30)

where lm,n is a random integer variable uniformly distributed in [1, L]. Figure 2.1a and

2.1b show the objective function for p = 3 (f(X)) and p = 0.75 ( u(X)) respectively.

Observe that, due to the convergence property of BSUM framework, in both cases the

objective decreases monotonically. Since for 0 < p ≤ 1 we incorporate ϵ in the objective

function, the algorithm is not dealing directly with ℓp-norm metric, and the convergence

of f(X) (ℓp-norm metric) is not monotonic. This fact is shown in Figure 2.1c. However,

in case of 0 < p ≤ 1, f(X) mimics the monotonous decreasing behavior of the smooth

approximation function. This shows the accuracy of the smooth approximation function.

Figure 2.1d shows the convergence of the argument when p = 3 and p = 0.75. In all the

cases and considering the constant modulus constraint, the vector optimization offers

less run-time than entry optimization.

2.4.2 ℓ2-norm (ISL) minimization

In this part, we evaluate the performance of proposed method when p = 2. In this case,

the proposed method minimizes the ISLR metric (ISLR ≜ ISL
N2 ) where the lower bound in

this case can be calculated by 10 log(M(M − 1)) [dB] [3]. Table 2.1 compares the average

ISLR values of the proposed method with Multi-CAN [2], MM-Corr [3], BiST [24] and

the lower bound, when N = 64 for different number of transmit antennas. Similar to

the other methods, the proposed method meets the lower bound under continuous phase

constraint. Interestingly, using the proposed method even for alphabet size L = 8, the

ISLR values of the optimized sequences are very close to the lower bound.
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Figure 2.1: The convergence time of proposed method. (a) The ℓp-norm (f(X)) for
p = 3, (b) the approximation function (u(X)) for p = 0.75, (c) the ℓp-norm correspond

to fig (b), and (d) the argument (∆X(i)) (M = 4 and N = 64).

Table 2.1: Comparison between the ISLR (dB) of the proposed method with other
methods (p = 2, N = 64).

M 2 4 6 8 9 10

Initial 5.92 11.91 15.55 18.05 19.20 19.97

Lower bound 3.01 10.79 14.77 17.48 18.57 19.54

WeBEST-e, L→ ∞ 3.01 10.79 14.77 17.48 18.57 19.54

WeBEST-v 3.01 10.79 14.77 17.48 18.57 19.54

Multi-CAN 3.01 10.79 14.77 17.48 18.57 19.54

MM-Corr 3.01 10.79 14.77 17.48 18.57 19.54

WeBEST-e, L = 8 3.25 10.82 14.78 17.48 18.57 19.54

BiST (θ = 0, L = 8) 3.26 10.82 14.79 17.48 18.57 19.54

Table 2.2: The ISLR obtained by the proposed method under discrete phase constraint
with different length (p = 2, M = 4).

N 64 128 256 512 1024

L = 8 10.82 10.82 10.82 10.82 10.82

By keeping M = 4 and L = 8, Table 2.2 shows the optimized ISLR values under discrete

phase constraint for different sequence lengths. Referring to the lower bound in the

Table 2.1, we observe that the ISLR values of the optimized sequences are very close to

the lower bound.
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Figure 2.2: Comparing the performance of the proposed method with Multi-CAN,
BiST and Welch lower bound in terms of PSL.

2.4.3 ℓp-norm minimization for p > 2

To perform PSL minimization, we consider an increasing scheme for selection of p in

several steps. Precisely, we select p1, p2, . . ., pT , such that 2 ≤ p1 < p2 < · · · < pT <∞.

We initialize the algorithm with a set of random sequences. Then we select the optimized

solution of ℓp1-norm as the initial waveform for ℓp2 minimization, and so on. Subsequently

we repeat this procedure until we cover all of the pi values (i ∈ 1, . . . , T ).

In Figure 2.2a, we fix the number of transmit antennas (M = 4) and report the PSL

values of the optimized sequences at different sequence length. Vice versa in Figure 2.2b,

we fix the sequence length N = 64 and report the PSL values of the optimized sequences

for different number of transmitters. In both figures we compare the performance of

proposed method with BiST [24] (θ = 1), BSUM-PSL [90], and the available lower band

for PSL, which is [97],

BPSL =

√
M − 1

2MN −M − 1
. (2.31)

In this figure, we consider Hadamard Code as initial waveform for all the algorithms.

Further, for a fair comparison, we drop the spectral constraint in BSUM-PSL. It can

be observed that, considering the discrete phase constraint, WeBEST-e outperforms

the BiST method (L = 8). In case of continuous phase constraint, the performance of

WeBEST-v and WeBEST-e (L → ∞) are almost the same and they outperform the

BSUM-PSL. Indeed, WeBEST-v and WeBEST-e (L→ ∞) fill the available gap between

PSL values of the state-of-the-art and Welch lower bound.

2.4.4 ℓp-norm minimization for 0 < p ≤ 1

In this part, unlike to the PSL minimization we consider a decreasing scheme for the

values of p, i. e., 1 ≥ p1 > p2 > · · · > pT > 0. To identify the sparsity, we consider a

threshold for the lags of auto- and cross-correlation sidelobes. If the absolute value of
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the lags is less than that the threshold, we assume that the lags is zero, and count it as

a sparse lag. We choose 1 as the threshold, since |rm,l(N − 1)| = |xm,Nx∗l,1| = 1 is the

lowest possible PSL value for unimodular sequences [98]. Let Ns be the numbers of lags

of auto- and cross-correlations which their absolute value is less than 1. We define the

sparsity value as,

Sp =
Ns

M2(2N − 1)
,

where Sp ∈ [0, 1], and the denominator (M2(2N − 1)) is the total number of lags of

auto and cross-correlations. By this definition, if Sp → 1 means that the auto- and

cross-correlation of set of sequences is sparse, and vice versa if Sp → 0 means that the

auto- and cross-correlation of the set of sequences is not sparse.

Figure 2.3 shows the sparsity behavior of the optimized sequences at different p, N , and

M . In this figure, we use Hadamard Code as the initial set of sequence. Comparing with

BiST (θ = 0) [24] and Multi-CAN, Figure 2.3b and Figure 2.3c show a higher sparsity

performance for the proposed methods of this chapter.

2.4.5 The impact of weighting

In this part, we evaluate the impact of the weight parameter (w) on the auto- and

cross-correlation sidelobes of the optimized sequences. Let V and U be the desired and

undesired correlation lags for a MIMO radar system, respectively. These two sets satisfy

V ∪ U = {−N + 1, . . . , N − 1} and V ∩ U = ∅. We assume that,wk = 1, k ∈ V

wk = 0, k ∈ U

Figure 2.4 shows the impact of w for different values of p when M = 2, N = 256. In this

figure, we consider different regions for the desired lags, precisely we set V = [−90, 90],

V = [−64, 64] and V = [−38, 38]. It can be observed from Figure 2.4 that nulls can be

deeper if the interval of V is smaller.

In Figure 2.5, we compare the performance of the proposed method with MM-WeCorr

[3] and Multi-WeCAN [2]. In this figure, we assume that p = 2, M = 2, N = 512,

and we consider V = [−51, 51]. As can be seen, the proposed method outperforms

the Multi-WeCAN method. Note that, the vector optimization approach has similar

performance comparing to MM-WeCorr. However, the entry optimization approach offers

lower sidelobes in the lag region V = [−51, 51] when compared to MM-WeCorr.
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Figure 2.3: The Sparsity behavior and comparing the performance of the proposed
method with other methods.

2.4.6 Computational Time

In this subsection, we assess the run-time of WeBEST and compare it with Multi-WeCAN

and MM-WeCorr. In this regard, we report the computational time using a desktop

PC with Intel (R) Core (TM) i9-9900K CPU @ 3.60GHz with installed memory (RAM)



Generalized Waveform Design for Sidelobe Reduction in MIMO Radar Systems 35

-255 -200 -100 0 100 200 255

Lags

-100

-80

-60

-40

-20

0

N
o

rm
al

iz
ed

 A
u

to
-C

o
rr

el
at

io
n

 (
d

B
)

(a) p → 0.

-255 -200 -100 0 100 200 255

Lags

-100

-80

-60

-40

-20

0

N
o

rm
al

iz
ed

 A
u

to
-C

o
rr

el
at

io
n

 (
d

B
)

(b) p = 2.

-255 -200 -100 0 100 200 255

Lags

-100

-80

-60

-40

-20

0

N
o

rm
al

iz
ed

 A
u

to
-C

o
rr

el
at

io
n

 (
d

B
)

(c) p → ∞.

Figure 2.4: The impact of weighting in WeBEST-e with different values of p (L→ ∞,
M = 2 and N = 256).

64.00 GB. Figure 2.6 shows the computational time of WeBEST, Multi-WeCAN and

MM-WeCorr with p = 2, M = 2, l = 64 at different sequence lengths. In this figure, we

assume that the desired lags are located at V = [−⌊0.1N⌉, ⌊0.1N⌉]. For fair comparison,

we assume ∆X = 10−3 as stopping threshold for all methods.
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(a) The Auto-Correlation of the first waveform.
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(b) The Cross-Correlation of the first and second waveforms.
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(c) The Auto-Correlation of the second waveform.

Figure 2.5: Comparison of the performance of the weighted ISL minimization of the
proposed method with MM-WeCorr and Multi-WECAN unde discrete phase, entry and

vector optimization (p = 2, M = 2 and N = 512).

2.5 Performance Comparison in SISO case

Figure 2.7 shows the performance of WeBEST-v and GD-based method [79] in terms of

PSL, for different values of p and different initial waveforms, when M = 1. In this figure,
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Figure 2.7: The comparison of the PSL value of WeBEST-v and GD-based method
with different values of p (M = 1, N = 128, p ∈ {2, 4, 6, 8, 10, 12} for GD-based method

[79] and p ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} for WeBEST-v method).

we consider Golomb and random phase sequences of length N = 128 as initial waveforms.

Besides, since the GD-based method [79] just admit the even values of p, we consider an

increasing scheme of p in the set p = {2, 4, 6, 8, 10, 12} (from the lowest to the largest

value of p), while for WeBEST-v, we consider the set p = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
The termination threshold is ζ = 10−9 for both the methods. It can be observed from the

figure that regardless of the initial waveform, WeBEST-v offers better PSL in compare to

GD-based method. Observe that, the GD-based method, does not solve the problem for

odd values of p, while WeBEST-v solves the ℓp-norm problem in these points. Probably,

solving the ℓp-norm at odd points caused to obtain a better performance in compare

with GD-based method.

Table 2.3 compares the convergence time of WeBEST-v and GD-based method. In this

table the simulation setup is similar to Figure 2.8. It can be observed from the table

that the proposed method offers lower convergence time in comparison with GD-based

method.
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Figure 2.8: The comparison of the PSL of WeBEST-v and GD-based method with
different sequence length (M = 1).

Table 2.3: Convergence time (sec) of WeBEST-v and GD-based method (M = 1).

N 8 16 32 64 128 256

WeBEST-v (Golomb) 0.7 1.4 4.3 7.2 25 78

GD (Golomb) 212 300 204 400 559 379

WeBEST-v (Random) 1.2 1.5 3.2 7.8 62 50

GD (Random) 141 39 207 415 1020 970

2.6 Sparse auto- and cross-correlation

In this part, we show how we can design waveform with sparse auto- and cross-correlation

sidelobes using the ℓp→0 metric. To this end, Figure 2.9 shows range-Doppler profile for

the cases when ℓp→0 and ℓ32 was considered as the objective function for the waveform

design problem under discrete phase constraint. In this figure, we assume N = 1024,

M = 3, and alphabet size L = 32. First, we consider three targets located at [40, 50, 60]T

meters distance to the radar, at the same velocity 30km/h, angle 30o and similar Radar

Cross Section (RCS) 30m2. In this case, the both waveforms have almost equivalent

performance in terms of possibility of detecting targets. Then, we consider distributed

targets are located from 50 to 55 meter distance to the radar. In this case, waveforms

which are optimized using ℓ0-norm can identify more targets. This is due to the fact that,

because of the sparsity in the auto- and cross-correlation functions of the waveforms

optimized by ℓ0-norm, a smaller number of targets are masked in this case in comparison

to ℓ32-norm.

2.7 Conclusion

In this chapter, we considered the ℓp-norm of auto- and cross-correlation functions of a

set of sequences as the objective function and optimized the sequences under unimodular
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Figure 2.9: Range-Doppler profile of ℓp→0 and ℓ32-norm with point and continuous
targets (M = 3, N = 1024 and L = 32).

constraint using BSUM framework. This problem formulation, provided further the

flexibility for selecting p and adapting waveforms based on the environmental conditions,

a key requirement for the emerging cognitive radar systems. To tackle the problem,

in every iteration of BSUM algorithm, we utilized a local approximation function to

minimize the objective function. Specifically we introduced entry- and vector-based

solutions where in the former we obtain critical points and in the latter we obtain the

gradient to find the optimized solution. We further used an FFT-based method for

designing discrete phase sequences. Simulation results have shown the monotonicity of

the proposed framework in minimizing the objective function. Besides, the proposed

framework meets the lower bound in case of ISL minimization, and outperform the

counterparts in terms of PSL, ℓ0-norm and computational time values.





Chapter 3

Beampattern Shaping in MIMO

radar systems

Transmit beampattern shaping plays important role to improve the performance of

MIMO radars in different aspects. Such as, enhancing the SINR, probability of detection,

coexistence with other Radio Frequency (RF) transmitter, etc. This chapter aims to

address different waveform design approaches for transmit beampattern shaping in MIMO

radar systems, under practical constraints, such as, continuous and discrete phase. In

general, these approaches leads to multi-variable, non-convex and NP-hard optimization

problem. To tackle the problems, we propose several algorithm based on CD, SDR,

BSUM and penalty method. In the numerical results, we show the performance of the

proposed method and compare it with the state-of-the art.

3.1 Waveform Design for Beampattern Shaping in 4D-

imaging MIMO Radar Systems

In this section we design transmit beampattern for 4D-imaging automotive radar systems.

To this end, we consider spatial-Integrated Sidelobe Level (ISLR) as the design metric and

optimize it under continuous and discrete phase constraints. The problem formulation

leads to a quadratic fractional programming, where we propose an effective Coordinate

Descent (CD) -based method to solve the problem, which minimizes the objective function

monotonically. In every iterations of the proposed method, we find global optimum

solution for a single variable problem under continuous phase constraint. Under discrete

phase constraint, we use Fast Fourier Transform (FFT) to solve problem which is efficient

in terms of implementation. Through numerical simulations, we illustrate the performance

of our proposed method and compare it with state-of-the art.

41
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Figure 3.1: A comparison between the conventional and 4D imaging MIMO radar
system.

MIMO radars systems are being increasingly integrated into commercial vehicles to

support the ADAS by enabling robust and high performance target detection, localization,

as well as interference (clutter) mitigation. Automotive radar sensors should be able

to detect every single elements of the environment, and one solution to this end is

equipping the vehicle with three types of radar, namely, LRR (for adaptive cruise

control), MRR (for cross traffic alert and lane change assist) and SRR (for parking aid,

obstacle/pedestrian detection). 4D-imaging is an alternative solution that provides the

possibility of merging SRR, MRR, and LRR applications with one antenna configuration,

which also provides high angular resolution in the entire radar operation range. To

achieve this goal, a requirement is to design radar transmit beampattern by controlling

the spatial distribution of the transmit power via adaptive waveform design approach, as

it is depicted in Figure 3.1.

Beampattern shaping in MIMO radar: Transmit beampattern shaping by controlling

the spatial distribution of the transmit power can play an important role to improve

the radar performance through enhanced power efficiency, better detection probability,

target identification, improved interference mitigation etc. The goal is to focus the

transmit power on desired angles while minimizing for undesired angles [26]. Recently,

the beampattern shaping via waveform design has been widely studied. On the point

of view of the designed waveform, there are two methods for beampattern shaping,

two-step and direct methods [26, 27]. In two-step method, the waveform correlation

matrix is designed and then the original waveform matrix is obtained through one of



Beampattern Shaping in MIMO radar systems 43

the decomposition methods [28, 30–36] and in direct method the waveform is designed

directly [27, 41, 42].

On the other hand, regarding the objective function, in general there are two approaches,

namely, beampattern matching [26–29, 34, 35, 41, 42] and spatial-ISLR minimization

[40, 44]. In beampattern matching, the aim is minimizing the difference between the

desired and designed beampattern. However in spatial-ISLR minimization approach, the

aim is maximizing and minimizing the beampattern response on desired and undesired

angles respectively. In this regards, several papers have been devoted to minimize the

spatial-ISLR as design metric. For instance MIA [45] and STTC [46] is proposed to

enhance the the SINR by spatial-ISLR minimization. The MIA approach is proposed

based on MM for joint waveform and filter design under similarity, constant modulus and

PAR constraints. In STTC a CD based method is proposed to design space-time codes

under similarity, uncertain steering matrices, continuous or discrete phase constraints.

The authors propose a Dinkelbach based method and exhaustive search for continuous

and discrete phase constraints, respectively.

In this section, we consider beampattern shaping through the minimization of the spatial-

ISLR by directly designing the waveform. Further, due to the need for higher power

efficiency in automotive radars applications and ease of hardware implementation, the

continuous and discrete phase (MPSK) waveform are preferred [99]. Our approach is

to optimize the waveform iteratively using CD method which offers an efficient and low

complexity methodology. Particularly, we propose derivative based method and Fast

Fourier Transform (FFT) under continuous and discrete phase constraints. To this end,

the section is organized as follow. Subsection 3.1.1 introduces the system model and

describes the problem formulation. Subsection 3.1.2 presents the proposed framework

whose performance is numerically assessed in subsection 3.1.3 .

Notations: We adopt the notation of using lower case boldface for vectors (a) and capital

boldface for matrix (A). The transpose, conjugate transpose, conjugate and absolute

value are denoted by the (.)T , (.)†, (.)∗ and |.| respectively. The letter j represents the

imaginary unit (j =
√
−1), while the letter (i) is use as step of a procedure.

3.1.1 System Model and Problem Formulation

We consider a colocated narrow-band MIMO radar system, with M transmitters, each

transmitting N pulses in the fast-time domain. Let the matrix X ∈ CM×N denotes the
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transmitted waveform in the base-band,

S ≜


s1,1 s1,2 . . . s1,N

s2,1 s2,2 . . . s2,N
...

...
...

...

sM,1 sM,2 . . . sM,N

 ∈ CM×N

whose mth row indicates the pulses of mth transmitter while the nth column indicates the

nth pulse of all the transmitters. At time sample n, the waveform transmitted through

the M antennas is denoted by xn, where,

xn = [x1,n, x2,n, . . . , xM,n]
T ∈ CM . (3.1)

In (3.1), xm,n is the nth pulse of mth transmitter. Let the arbitrary position vector of

the mth antenna be pm ≜ [pxm , pym , pzm ]
T and r ≜ [sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)]T .

Thus, the steering vector can be written as [100],

a(θ, ϕ) ≜ [a1(θ, ϕ), . . . , aM (θ, ϕ)]T ∈ CM . (3.2)

where, am(θ, ϕ) ≜ e−j
2π
λ
pT
mr(θ,ϕ). In this case, the antenna beampattern is given by

[28, 44, 101],

g(X, θ, ϕ) =
∑N

n=1

∣∣∣a†(θ, ϕ)xn∣∣∣2 =∑N
n=1 x

†
nA(θ, ϕ)xn (3.3)

where, A(θ, ϕ) ≜ a(θ, ϕ)a†(θ, ϕ). Let us denote ΨD = {(θk, ϕk), k = {1, . . . ,K}} and

ΨU = {(θ′u, ϕ′u), u = {1, . . . , U}} respectively, be the sets of desired and undesired

angles in spatial domain and are obtained by cognitive paradigm. We are interested in

minimizing the spatial-ISLR under continuous and discrete phase as follows,

P


min
X

f(X) ≜

∑U
u=1 g(X, θ′u, ϕ

′
u)∑K

k=1 g(X, θk, ϕk)
=

∑N
n=1 x

†
nAUxn∑N

n=1 x
†
nADxn

s.t X ∈ C1 or C2,

(3.4)

where, AU ≜
∑U

u=1A(θ′u, ϕ
′
u), AD ≜

∑K
k=1A(θk, ϕk), C1 ≜ {X | xm,n = ejνm,n , νm,n ∈

Ω∞},Ω∞ = [0, 2π) is constant modulus constraint and C2 ≜ {X | xm,n = ejνm,n , νm,n ∈
ΩL},ΩL =

{
0, 2πL , . . . ,

2π(L−1)
L

}
is discrete phase constraint. In fact, ΩL indicates the

MPSK with alphabet size L. Since f(X) is a fractional quadratic function, the objective

function is non-convex. The C1 and C2 constraints are not affine sets. Besides the

C2 constraint is non-continuous and non-differentiate set. Therefore, the optimization

problem P is non-convex, multi-variable and NP-hard problem. A promising approach
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that directly finds the solution is CD method [92, 102]. The CD based methods are

intuitively appealing and very simple to implement, yet they exhibit powerful performance

in emerging radar waveform design applications in several aspects, such as beampattern

shaping [38, 39, 100, 101], sidelobe reduction [24, 58, 78, 101] and spectral shaping

[47, 53].

3.1.2 Proposed Method

In particular, we consider one entry of X as being the only variable while keeping

the others fixed; for this identified variable, we optimize the objective function. The

methodology is efficient when the objective function can be written in a simplified form

for that identified variable. In this regard, let us assume that xt,d is the only variable

at (i)th iteration of the optimization procedure. The resulting single-variable objective

function at (i)th iteration can be written as (see Appendix B.1),

f(xt,d,X
(i)
−(t,d)) =

a0xt,d + a1 + a2x
∗
t,d

b0xt,d + b1 + b2x∗t,d
.

Here, X
(i)
−(t,d) = X(i)|st,d=0 refers to the fixed entries. By substituting xt,d = ejν the

problem P depends only on parameter ν 1 and P can be recast as follows,

P(i)


min
ϕ

f (i)(ν) =
a0e

jν + a1 + a2e
−jν

b0ejν + b1 + b2e−jν

s.t ν ∈ Ω∞ or ΩL.

Consequently, the optimal phase of the code entry xt,d can be obtained by solving,

ν⋆(i) = argmin
ϕ

{f (i)(ν) |ϕ ∈ Ω∞ orΩL}. (3.5)

Subsequently, the variable xt,d will be updated by x⋆t,d
(i) = ejν

⋆(i)
. This procedure will

continue until the stationary point is obtained. We consider f(X(i−1))− f(X(i)) < ζ,

(ζ > 0) as stopping criterion of optimization. The proposed method is summarized in

Algorithm 4. In the following we obtain the optimum solution under continuous and

discrete phase.

Designing Continuous phase: As f (i)(ν) is a real, differentiable and periodic function,

it has at least two extrema. Therefore, its derivative has at least two real roots. By

1For the convenience we use ν instead of νm,n in the rest of the section.
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Algorithm 4 : Transmit Beampattern Shaping for 4D-imaging radar

Input: Initial set of feasible sequences, X(0).
Initialization: i := 0.
Optimization:

1. while (f(X(i−1))− f(X(i))) > ζ do

2. i := i+ 1;

3. for t = 1, . . . ,M do

4. for d = 1, . . . , N do

5. Optimize x
(i−1)
t,d and obtain x⋆t,d;

6. Update x
(i)
t,d = x⋆t,d;

7. X(i) = X
(i)
−(t,d)|xt,d=x(i)t,d

;

8. end for

9. end for

10. end while

Output: X⋆ = X(i).

standard mathematical manipulations, the derivative of f (i)(ν) can be obtained as,

f ′(i)(ν) =
c0e

jν + c1 + c2e
−jν

(b0ejν + b1 + b2e−jν)2
,

where, c0 = j(a0b1 − a1b0), c1 = j2(a0b2 − a2b0) and c2 = c∗0. Using the slack variable

z ≜ e−jν , the critical points can be obtained by obtaining the roots of second degree

polynomial of f ′(i)(z) ≜ c2z
2 + c1z + c0 = 0, which is equal to z

(i)
1,2 =

−c1±
√
c21−4C2C0

2c2
.

Therefore the extremum point of f (i)(ν) is ν
(i)
1,2 ≜ j ln (z

(i)
1,2) and subsequently the optimized

phase is,

ν⋆(i) = argmin
ν

{
f (i)(ν) | ν ∈ ν

(i)
1,2

}
. (3.6)

Designing Discrete phase: Since in discrete phase the phases are chosen from limited

alphabet of length L, the objective function can be written with respect to the indices

of ΩL as, f (i)(l) =
∑2

n=0 ane
−j 2πnl

L /
∑2

n=0 bne
−j 2πnl

L where, l = {0, . . . , L − 1}. The

summation term in the numerator and denominator in aforementioned equation is

exactly the definition of L−point DFT of sequences [a0, a1, a2] and [b0, b1, b2] respectively.

Therefore, f (i)(l) can be written as,

f (i)(l) =
FL{a0, a1, a2}
FL{b0, b1, b2}

. (3.7)

where, FL is L−point DFT operator. The current function is only valid for L > 2.

According to periodic property of DFT, f (i)(l) can be written as, f (i)(l) = FL{a0 +
a2, a1}/FL{b0 + b2, b1} for L = 2. Therefore the optimum solution of (3.7) is, l⋆(i) =
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arg min
l=1,...,L

{
f (i)(l)

}
. Subsequently, the optimum phase is,

ν⋆(i) =
2π(l⋆(i) − 1)

L
. (3.8)

3.1.3 Numerical Results

In this subsection we consider to evaluate the performance of the proposed and compare

it with the state-of-the art counterparts. In this regards, we assume that the sequence

length is N = 128 and the stopping condition for Algorithm 4 is set at ζ = 10−6.

Beampattern shaping and convergence: We consider Uniform Linear Array (ULA)

configuration for transmitters, whic are located in z axis (pxm = pym = 0) with M = 8

transmitters and the antenna distance is set as dz =
λ
2 . Figure 3.2a shows the beampattern

response of the proposed method under C1 and C2 constraints with different alphabet

size. In Figure 3.2a we assume that the desired and undesired angular regions are

ΨD = [30o, 50o] and ΨU = [−90o, 25o] ∪ [55o, 90o] with linear grid size of 5o, respectively.

In addition, the proposed method is initialized using random MPSK sequences with

alphabet size L = 4. Here, every code entry is given by,

x(0)m,n = ej
2π(l−1)

L , (3.9)

where l is the random integer variable uniformly distributed in [1, L]. As can be seen

The proposed method steers the beampattern towards desired angles and minimizes

the sidelobes level at undesired angles. Since the feasible set of problem under C1 is

greater than C2, the performance of continuous phase is better than discrete phase.

Besides, by increasing the alphabet size the beampattern under discrete phase tends

to the beampattern of continuous phase constraint. Figure 3.2b shows the convergence

behavior of the proposed method, corresponding to Figure 3.2a. As can be seen the

objective function decreases monotonically in each iteration for both continuous and

discrete phase. Similar to the behavior shown in Figure 3.2a, by increasing the alphabet

size, the objective value under discrete phase tends to the value obtained under continuous

phase constraint.

Beampattern shaping with binary sequences: Due to the simplicity of implementing

of binary sequences, these kind of waveforms are attractive for radar designers. Here we

assess the beampattern performance of proposed binary waveform design. Figure 3.3a

shows the beampattern response of the proposed method, where we assume that ΨD =

[30o, 50o] and ΨU = [−90o, 25o] ∪ [55o, 90o] with linear grid size of 5o. As can be seen,

the beampattern response in binary case is symmetric about 0o. Indeed, in a case when
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Figure 3.2: The linear array beampattern and convergence behavior of the proposed
method (M = 8, N = 128 and ΨD = [30o, 50o] and ΨU = [−90o, 25o] ∪ [55o, 90o])

the waveforms are real (binary sequences), the beampattern will be symmetric. In

4D-imaging application of automotive radar systems, the desired region for beampattern

shaping can be limited to the angles around zero, where binary codes can be used. For

instance a beampattern with ΨD = [−10o, 10o] and ΨU = [−90o,−15o] ∪ [15o, 90o] as

shown in Figure 3.3b can be used for automotive application.

Performance assessment in comparison with the counterparts: We compare the

performance of the proposed method under C1 and C2 with MIA-CMC, MIA-CMC-AC2

[45] and STTC [46] respectively. we assume that the target and the three interferers are

located at 10o, −5o, 25o and −60o respectively. We set noise power −10 dB, and similar

values of 30dB for target and clutter RCS. Since the proposed method and MIA-CMC

does not consider the similarity constraint, for a fairness, we set the similarity threshold

equal to 2, the maximum admissible similarity value in STTC. Figure 3.4a shows the

normalized beampattern response of MIA-CMC, MIA-CMC-AC, STTC and the proposed

method. Observe that in terms of null steering, the proposed method under C1 constraint

2MIA-CMC-AC is the accelerated version of MIA-CMC.
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Figure 3.3: The Beampattern of proposed method with binary set of sequences (M = 8
and N = 128)

outperforms MIA-CMC and has a similar performance under C1 constraint compare

with STTC.

Figure 3.4b compares the convergence time of the proposed method with MIA-CMC,

STTC with different sequence length3. The highest convergence time belongs to the

STTC method which is based on CD method. Note that STTC uses exhaustive search to

find the optimum solution which is very expensive in terms of complexity. Although the

proposed algorithm under C2 constraint uses CD method as well, but due to the efficient

formulation and using FFT, it has significantly lower computational time. Further, under

C1 constraint, the proposed method has lower convergence time in comparison with

MIA-CMC.

Beampattern shaping for planar array: In this part we consider to evaluate the

capability of beampattern shaping of the proposed method in case of planar array

configuration. To this end we assume that the transmitters are laid on x and y plane in

3The reported values are obtained with a standard PC with Intel (R) Core (TM) i5-8250U CPU@
1.60 GHz with installed memory (RAM) 8.00 GB.
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Figure 3.4: Comparing the performance of the proposed method with MIA-CMC
and STTC in terms of null steering and convergence time (M = 8, ΨD = 10o and

ΨU = {−5o, 25o,−60o})

spherical coordinate systems i.e. pzm = 0. We assume the standard rectangular ULA

configuration for transmitters, where the distance between the elements are dx = dy =
λ
2 .

The number of transmitter is set as, M = 4× 4. For purpose of simulation, we consider

an uniform sampling of regions θ = (0, π] and ϕ = (0, π] with a grid size of 5o. We

select the desired angular regions to be ΨD = (θk, ϕk)|θk = ϕk ∈ [−50o,−40o]∪ [40o, 50o].

Observe that the beampattern of discrete phase mimics the beampattern of continuous

phase. However, since the feasible set of C1 is greater than C2 the continuous phase has

greater gain when compared with the discrete phase.

3.2 MIMO Radar Transmit Beampattern Matching Based

on Block Successive Upper-bound Minimization

Waveform design with considering discrete phase constraint at the design stage tends

to be pertinent in the emerging radar designs, especially since the digital to analogue
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Figure 3.5: The Beampattern of proposed method in case of planar array configuration
(M = 4× 4, N = 128 and ΨD = (θk, ϕk)|θk = ϕk ∈ [−50o,−40o] ∪ [40o, 50o].)

converters are limited in the resolution. However, this constraint confines the degree of

freedom to be only the waveform phase, which should be selected from a limited alphabet.

In this section, we aim to approximate a desired beampattern closely by designing the

transmit waveform while considering the discrete phase constraint at the design stage.

To this end, we consider a novel ℓp-norm metric to achieve quasi-equiripple beampattern,

which reduces the interference from the undesired directions. This problem leads to a

NP-hard and non-convex optimization problem, where to efficiently solve it, we utilize

the BSUM algorithm which successively optimizes the objective function by optimizing

a certain upper bound of the original objective in a coordinate wise manner. In the

numerical results, we show the performance of the proposed method and compare it with

the state-of-the art.

Transmit beampattern shaping controls the directionality of the transmission on transmit

antennas in MIMO radar systems. Beampattern shaping by providing a better SINR,

improves the spectral-special efficiency, better detection probability, target identification,

improved interference mitigation, etc. In this regards, adaptive waveform design, plays
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important role to shape the beampattern effectively. Generally, there are two approaches

for beampattern shaping via waveform design are exist, the indirect (two-step) and direct

methods [26]. In indirect approach first, the waveform correlation matrix is designed and

then the original waveform matrix is obtained through one of the decomposition methods

[44]. While in direct method the waveform is designed directly [26]. Besides, there are

several metrics (objective functions) to shape the beampattern, such as, beampattern

matching, spatial-ISLR minimization and SINR maximization. In beampattern matching

the goal is minimizing the difference of the beampattern response of MIMO radar with

the desired beampattern [26–28, 41, 42]. In Spatial-ISLR minimization approach, the

aim is minimizing the ratio of summation of beampattern response on undesired over

desired angles [32, 37, 43]. In SINR optimization approaches, the problem does not deal

with the beampattern directly. However, kind of beampattern will be shaped as a result

of transmit waveform optimization [30, 31, 45, 46].

In this section, we consider the ℓp-norm beampattern matching problem under discrete

phase, i.e. MPSK constraint. Considering the ℓp-norm metric for the beampattern

matching problem was originally suggested in [42], and it has been shown that it provides

quasi-equiripple beampattern comparing with the standard ℓ2-norm metric. In [42],

PAR and energy constraints were considered as the optimization constraints in the

design stage. It is worth noting that in the aforementioned schemes, high-resolution

digital-to-analog converters (DACs) are considered by default. However, it will cause

massive power consumption and huge hardware cost when employing MIMO radars,

especially for the 4D-imaging cases [43]. This motivates the use of low resolution DACs.

Recently, in [103, 104], the low-resolution DACs is utilized to beampattern design.

However, the aforementioned methods need several time approximation which can lead

some performance loss. Different from the works in the literature, we directly solve

the problem of ℓp-norm based beampattern matching considering the discrete phase

constraint at the design stage. This scheme results in a non-convex, possibly NP-hard

problem. Our approach is to design the waveform directly using BSUM which offers a

low complexity methodology to a complex problem.

To this end, the section is organized as follow. Subsection 3.2.1 introduces the system

model and describes the problem formulation. Subsection 3.2.2 presents the proposed

BSUM based method whose performance is numerically assessed in subsection 3.2.3.

Notations: We adopt the notation of using lower case boldface for vectors (a) and

capital boldface for matrix (A). The transpose, conjugate transpose, Frobenius norm

absolute and Hadamard product operators are denoted by the (.)T , (.)H , ∥ . ∥F , |.| and
respectively. The letter j represents the imaginary unit (i.e., j =

√
−1), while the letter

(i) is use as step of a procedure.
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3.2.1 System Model and Problem Formulation

Let X ∈ CM,N be the transmitted waveform in the base-band of a MIMO radar system

with M transmitters and the sequence length of N . At time sample n, the waveform

transmitted through the M antennas is denoted by xn, where,

xn = [x1,n, x2,n, . . . , xM,n]
T ∈ CM . (3.10)

In (3.10), xm,n denotes the nth sample of the mth transmitter. Let ULA be the con-

figuration of the transmitter, where the distance between the elements are dt = λ
2

and λ is the wavelength. Thus, the steering vector can be written as [105], a(θ) =

[1, ejπ sin(θ), . . . , ejπ(M−1) sin(θ)]T ∈ CM . In this case the transmit beampattern is given by

[44],

r(X, θ) =
N∑
n=1

∣∣∣aH(θ)xn∣∣∣2 = N∑
n=1

xHn A(θ)xn, (3.11)

where, A(θ) ≜ a(θ)aH(θ).

Using the beampattern matching under discrete phase constraint leads us to solve the

following optimization problem [42],
min
X,µ

f(X, µ) ≜
K∑
k=1

|r(X, θk)− µqk|p

s.t. xm,n = ejϕ, ϕ ∈ ΦL,

(3.12)

where, p ≥ 2, qk is the desired beampattern, µ is a scaling factor [26], and ΦL indicates

the discrete phase alphabet. Precisely, ΦL indicates the MPSK alphabet, e.g. ΦL ={
0, 2πL , . . . ,

2π(L−1)
L

}
.

As can be seen the (3.12) is a multi-variable, non-convex and NP-hard optimization

problem. In the following, we propose an algorithm based on BSUM to deal with (3.12).

3.2.2 Proposed Method

The BSUM algorithm generalizes the BCD methods and includes procedure that succes-

sively optimize particular upper-bounds or local approximation functions of the original

objectives in a block by block manner [58, 106]. One possible choice for the approxima-

tion function is MM function. This choice is one of the condition which guarantees the

convergence of the argument in optimization problem [107, 108]. In this section, we use

the following lemma to obtain the majorizer function.
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Lemma 3.1. Let |x| ∈ [0, τ ], for p ≥ 2, |x|p can be majorized by η|x|2+ψℜ
{
x x(i)

|x(i)|

}
+ν,

where, ψ ≜ p|x(i)|(p−1)−2η|x(i)|, η ≜ τp+(p−1)|x(i)|p−pτ |x(i)|(p−1)

(τ−|x(i)|)2 , ν ≜ η|x(i)|2−(p−1)|x(i)|p.

Proof. see [76].

Substituting |r(X, θk)−µqk| in lemma 3.1 and considering r(X, θk)−µqk is a real function,

it can be shown that f(X, µ) can be majorized by the following,

u(X, µ) =

K∑
k=1

ηk(r(X, θk)− µqk)
2

+
K∑
k=1

ψk(r(X, θk)− µqk) +
K∑
k=1

νk.

(3.13)

Defining g
(i)
k ≜ r(X(i), θk)− µ(i)qk we have,

ηk ≜
τp − |g(i)k |p − p|g(i)k |p−1(τ − |g(i)k |)

(τ − |g(i)k |)2

ψk ≜ (p|g(i)k |p−2 − 2ηk)g
(i)
k , νk ≜ ηk|g

(i)
k |2 − (p− 1)|g(i)k |p

(3.14)

According to 3.1, in each iteration, τ should be chosen such that it is a upper bound of

|gk|p. Therefore, one possible choice is τ =
∥∥∥g(i)k ∥∥∥

p
[76].

The problem (3.13) depends on X and µ. One possible solution to tackle this problem is

using alternative optimization technique [109]. Based on this technique, first we optimize

the problem with respect to µ, then in the next step we optimize it with respect to X.

3.2.2.1 Scaling factor optimization

The majorization function (3.13) has a quadratic form with respect to µ. In this case

the problem is convex and the optimum value of µ can be obtain by finding the roots of

the derivative of the objective function. It can be shown that the optimum value for µ is

given by,

µ⋆ =

∑K
k=1 2qkηkr(X

(i), θk) + qkψk

2
∑K

k=1 ηkq
2
k

(3.15)

3.2.2.2 Waveform Optimization

The BSUM procedure consists of three steps as follows, 1) Select a block. 2) Find a local

approximation function that locally approximates the objective function. 3) At every
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iteration (i), a single block, is optimized by minimizing a approximation function of the

selected block. In the smallest case each entry of matrix X can be considered as a block.

In particular at ith iteration, one entry of X(i) is considered as the only variable while

others are held fixed and with respect to this identified variable, the objective function is

optimized. Such a methodology is efficient when the objective function can be written in

a simplified form with respect to that variable. Let us assume that x
(i)
t,d = ejϕ

(i)
t,d is the

only variable. Therefore the optimization problem with respect to ϕ
(i)
t,d can be written

equivalently as [37], 
min
ϕ
(i)
t,d

u(µ⋆, ϕ
(i)
t,d) =

2∑
n=−2

c(i)n e
jnϕ

(i)
t,d

s.t. ϕ
(i)
t,d ∈ ΦL,

(3.16)

where the coefficients cn are given in the Appendix B.2.

Since in discrete phase the phases are chosen from limited alphabet of length L, the

objective function can be written with respect to the indices of ΦL as,

u(µ⋆, l) = ej
4πl
L

2∑
n=−2

cne
j
2π(n−2)l

L (3.17)

where l ∈ {0, . . . , L− 1}. As can be seen, the summation part of (3.17) is the definition

of L-points DFT of sequence [c2, . . . , c−2]
T . Therefore (3.17) can be written equivalently

as,

u(µ⋆, l) = h⊙FL{c2, c1, c0, c−1, c−2}, (3.18)

where, h = [1, ej
4π
L , . . . , ej

4π(L−1)
L ]T ∈ CL and FL is L−point DFT operator. The current

function is only valid for L ⩾ 5. According to periodic property of DFT, u(µ⋆, l) can be

written as,

L = 4 ⇒ u(µ⋆, l) = hL ⊙FL{c2 + c−2, c1, c0, c−1},

L = 3 ⇒ u(µ⋆, l) = hL ⊙FL{c2 + c−1, c1 + c−2, c0},

L = 2 ⇒ u(µ⋆, l) = hL ⊙FL{c2 + c0 + c−2, c1 + c−1}.

Therefore the optimum solution for discrete phase is, l⋆ = arg min
l=1,...,L

{
u(µ⋆, l)

}
. Subse-

quently, the optimum phase is, ϕ⋆d =
2π(l⋆−1)

L .

Proposed Algorithm: The proposed method is summarized in Algorithm 5. The

inputs of this algorithm comprise X(0) which is a set of random and feasible waveform,

and the desired beampattern qk. In the initialization step the optimization parameters

will be initialized with proper values. Then in the first step we obtain the optimum value

of µ, subsequently, the variable xt,d will be updated by ejϕ
⋆
d . This procedure will be

continued until the stationary point is obtained. We consider to terminate the algorithm
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procedure when the argument of the objective convergence to the optimum value, e.g.,

we consider ∆X(i) ≜
∥∥∥X(i) −X(i−1)

∥∥∥
F
≤ ζ as the stopping criterion.

Algorithm 5 : Waveform Design

Input: X(0), qk
Output: Optimized waveform, X⋆

1. Initialization

• Set i := 0, t, d := 1 and µ := 1;

2. Optimizing the scaling factor

• calculate the coefficients by (B.2)

• Obtain the optimum µ by (3.15);

3. Optimizing the waveform

• Calculate u(µ⋆, l), using (3.18);

• Find the Optimum phase, using ϕ⋆d =
2π(l⋆−1)

L ;

• X(i) = X(i−1)|
xt,d=e

jϕ⋆
d
;

• If t =M then t := 1; otherwise t := t+ 1;

• If d = N go to 4); otherwise d := d+ 1 and go to 2);

4. Stopping criterion

• If ∆X(i) =
∥∥∥X(i) −X(i−1)

∥∥∥
F
≤ ζ , go to 5); otherwise d := 1 and go to 2);

5. Output

• Set X⋆ = X(i)

3.2.3 Numerical results

In this subsection, we provide some representative numerical examples to illustrate the

effectiveness of proposed method. We consider the following assumptions. For system

parameters we consider ULA configuration with M = 16 transmitters with N = 128

pulses. For purpose of simulation, we consider an uniform sampling of the regions

θ = [−90o, 90o] with a grid size of 5o. For the Algorithm 5, we consider a random

MPSK sequences as initial waveform and the stopping condition of algorithm 5 is set at

ζ = 10−3.

3.2.3.1 Convergence Behavior

Figure 3.6 shows the convergence behavior of the proposed algorithm in two aspects,

namely the objective function and the argument. For these figures, we assume that

the desired angles are located at [−15o, 15o] and the algorithm 5 is initialized with
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Figure 3.6: Convergence behavior of the proposed method with different alphabet size
(M = 16, N = 128, p = 3 and qk ∈ [−15o, 15o])

random MPSK sequence with alphabet size of L = 4. Figure 3.6a shows the convergence

behavior of the objective function with different alphabet sizes. As can be seen, in all

cases the objective function decreases monotonically. By increasing the alphabet size

of the waveform the feasible set of the problem increases, therefore the performance of

the proposed method becomes better. Figure 3.6b shows the convergence behavior of

the argument of the problem. Observe that in all cases the argument converges to the

optimum value.

3.2.3.2 The impact of alphabet size

Here we investigate the impact of alphabet size of the waveform on beampattern response.

Figure 3.7 shows the beampattern response of the proposed method with different

alphabet sizes. In this figure, we consider similar simulation setup with Figure 3.6.

Observe that, increasing the alphabet size cause better beampattern response in terms
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Figure 3.7: The impact of alphabet size on the beampattern response of the proposed
method (M = 16, N = 128, p = 3 and qk ∈ [−15o, 15o]).

of the side-lobes. This behavior was expected, because by increasing the alphabet size

the feasible set will increase as well.

3.2.3.3 Beampattern Analysis

In this part we evaluate the performance of the proposed method in terms of beampattern

response. Figure 3.8 compares the beampattern response of the proposed method with

UNIQUE-C4 [37] and the ADMM [26] methods. The UNIQUE-C4 method proposed a

CD-based method to solve the spatial-ISLR problem under discrete phase, while the

authors in [26] solved the beampattern matching problem based on ADMM method

under continuous phase constraint. Observe that UNIQUE offers the lowest sidelobes in

both terms of spatial-ISLR and -PSLR among the methods. However, the beampattern

response on the mainlobe is imperfect. The ADMM-based and proposed methods with

ℓ2- and ℓp-norm matching have the same mainlobe beampattern response. However, the

advantage of the proposed method is designing a discrete phase waveform with finite

alphabet size which is more attractive for radar engineers, due to the simplicity.

3.2.3.4 Computational Complexity

Figure 3.9 compares the convergence time of the proposed with UNIQUE-C4 and ADMM,

with different sequence length. As can be seen, the ADMM has the highest convergence

time which indicates the the high computational complexity of it. The UNIQUE-C4

method offers the lowest convergence time which shows the efficiency of the algorithm.

However, convergence time of the ℓ2-norm and ℓp-norm beampattern matching approach

is some how between the two aforementioned methods. Since in the proposed method we

do not directly deal with the original problem, this behavior is expected. Furthermore,
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Figure 3.8: Comparing the beampattern response of the proposed method with
UNIQUE-C4 and ADMM (M = 16, N = 32 p = 64, L = 16 and qk ∈ [−10o, 10o]).
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Figure 3.9: Comparing the convergence time of the proposed method with UNIQUE-
C4 and ADMM, with different sequence length (M = 16, p = 64, L = 16 and qk ∈

[−10o, 10o]).

from Figure 3.9 it can be concluded that, approximately the UNIQUE-C4 is 100 times

faster than the ℓ2-norm and ℓp-norm approaches. In similar way the ℓ2-norm and ℓp-norm

approach is 100 times faster than ADMM method.

3.3 Beampattern Shaping for Coexistence of Cognitive

MIMO Radar and MIMO Communications

This section focuses on designing a set of transmit sequences for coexisting cognitive

Multiple-Input Multiple-Output (MIMO) radar and MIMO communications (MRMC)

systems. The aim is to shape the transmit beampattern to minimize the spatial Integrated

Side-lobe Level (ISL) while having a good response on a desired direction in cognitive

paradigm. The resulting non-convex, multi-variable optimization problem for the sequence

design is addressed using the proposed Coordinate Descent (CD) framework under
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constant modulus and discrete phase constraints. The CD method has the capability of

directly designing M -ary Phase Shift Keying (MPSK), which is important in practical

applications. Numerical results indicate the superior performance of the proposed method

over solutions based on Semi-definite Relaxation (SDR).

Spectrum management between MIMO Radar and MIMO Communications (MRMC)

is becoming crucial for next-generation active sensing and communications [110, 111].

Two approaches for spectrum management − co-design and coexistence − is pursued in

MRMC systems [110]. In co-design, the radar and communications are designed jointly

and a single unit is employed for both purposes [112–115]. On the other hand, in the

coexistence approach, radar and communications exist as separate systems which adjust

their transmitter parameters to mitigate the interference from each other adaptively

[116, 117]. In the coexistence context, cognitive radars which continuously learn about

the environment through experience gained from interactions with the environment

[118, 119] play a key role in efficient spectrum management. Interestingly, radar waveform

processing and signal recovery in cognitive MIMO radar systems enjoy a similar set of

research opportunities, particularly in the emerging scenario of self-driving automotive

applications [11, 120, 121].

We investigate radar beampattern shaping for a MRMC coexistence scenario comprising

a cognitive radar. Specifically, it considers the emerging automotive scenario depicted in

fig. 3.10 with the following guidelines for beampattern shaping,

• Steering nulls towards the direction of the base station and the communication

user to enable coexistence.

• Minimizing the ISL on clutter region to mitigate the interference.

• Steering the beam toward the targets to enhance detection.

Clearly, the dynamic scenario necessitates an adaptive waveform design; this is enabled

through the cognitive radar.

Two approaches for beampattern shaping via waveform design are prevalent [26]. In the

two-step method the waveform correlation matrix is designed first and the waveform is then

obtained through one of the decomposition methods [44]; the waveform per-se is designed

in the direct method [26]. Due to implementation and technological considerations,

considering constant modulus or discrete phase alphabet in the design stage tends to

be pertinent in the emerging system designs, especially since finite energy constraints

have become a norm [78, 86]. These constraints render the waveform design problem

significantly more complex than the unconstrained version [1, 24, 122]. Several papers
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Figure 3.10: An illustration of MRMC system. The pedestrian is the target-of-interest
for the MIMO radar deployed on a vehicle at the right. The buildings and ground cause
clutter. At the same time, the car on the left is a MIMO communications user that

communicates with the nearest BS.

have addressed beampattern design with constant modulus constraint; in [26] and [27] the

authors present a method based on ADMM for beampattern matching and minimizing

the spatial cross-correlation in narrow and wide band respectively, whereas [123] proposes

a method based on Quasi-Newton iterations. However, these works do not consider

the application to the cognitive MRMC coexistence scenario and the resulting shaping

requirements.

This section address beampattern shaping for MRMC coexistence; it considers the

two-step approach by using SDR [124] under energy constraint, and the direct approach

using CD [92, 102] under constant modulus and discrete phase constraints. The latter is

particularly novel in literature. In this context, the system model and problem statement

in introduced in subsection 3.3.1, the different design approaches are detailed in subsection

3.3.2 and numerical results presented in subsection 3.3.5.

Notations: We use lower case boldface for vectors (a) and uppercase boldface for

matrices (A). R{a}, I{a} indicate the real, imaginary part of a respectively and Tr(A)

is the trace of matrix A. A ⪰ 0 means that is a positive semidefinite matrix. (.)H

denotes Hermitian, the Frobenius and second order norms are denoted by ∥ . ∥F and

∥ . ∥2 respectively, j =
√
−1, the letter (i) is use as step of a procedure and ⊙ is the

Hadamard product.

3.3.1 Problem Formulation

We consider a colocated narrow-band MIMO radar system, with M transmit antennas,

each transmitting N pulses in the fast-time domain. Let the matrix S denote the

transmitted waveform in the base-band, whose mth row indicates the pulses from the mth

transmitter while the nth column indicates the nth pulse of all the transmitters. Let sn
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and a(θ) be the nth sample of the waveform transmitted through theM antennas and the

steering vector respectively. The transmit beampattern can be written as [28, 44, 125],

P (S, θ) =
1

N

N∑
n=1

∣∣∣aH(θ)sn∣∣∣2 = 1

N

N∑
n=1

sHn A(θ)sn (3.19)

where A(θ) ≜ a(θ)aH(θ). Let us denote by θt, θb, θv, and θq ∈
{
θ1, θ2, . . . , θQ

}
the

locations (directions in the spatial domain) of the target, base station, communication

receiver and clutter patches, respectively. These are assumed to be known from an ideal

cognitive process. We aim to minimize the beampattern gain at the undesired angles (θb,

θv and θq) and simultaneously have a good gain at the desired angle (θt). Accordingly,

we consider the following optimization problem,

P1


min
S

wbP (S, θb) + wvP (S, θv) + wc
∑Q

q=1 P (S, θq)

max
S

P (S, θt)

s.t S ∈ C1 or C2 or C3,

where, wu ≥ 0 (u ∈ {b, v, c}) denotes the weight corresponding to the beampattern

response on the undesired angles. Further, C1 ≜ {S | ∥S∥2F ≤ MN} is the energy con-

straint, C2 ≜ {S | sm,n = ejϕ, ϕ ∈ Φ∞},Φ∞ = [0, 2π) is constant modulus constraint and

C3 ≜ {S | sm,n = ejϕ, ϕ ∈ ΦL},ΦL =
{
0, 2πL , . . . ,

2π(L−1)
L

}
is discrete phase constraint.

In fact, ΦL indicates the MPSK with alphabet size L.

In Problem P1, the maximum of P (S, θt) is M2, and occurs when sn = a(θt), n =

1, . . . , N . This limits the design flexibility and does not serve the shaping requirements

for coexistence. To address this, we enlarge the set of feasible solutions by introducing

the scaling coefficient, α, as,

P2


min
S

wbP (S, θb) + wvP (S, θv) + wc
∑Q

q=1 P (S, θq)

s.t P (S, θt) = αM2

S ∈ C1 or C2 or C3

.

P2 is equivalent with P1 when α = 1, but the former offers design flexibility through the

adjustment of α. We adopt α ∈ [1/2, 1] to have a maximum 3 dB loss in the beampattern

gain of the desired angle. Towards solving P2, we consider the constraint P (S, θt) = αM2

as a penalty term to obtain,

P3


min
S

∑N
n=1 s

H
n AUsn + δ

∥∥∥∥∑N
n=1 sH

n ATsn−αM2

M2

∥∥∥∥2
2

s.t S ∈ C1 or C2 or C3

,
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where AU ≜ 1
N

(
w1A(θb) + w2A(θv) + w3

∑Q
q=1A(θq)

)
, AT ≜ 1

NA(θt), and δ ⩾ 0 is

the penalty weight. In the next subsection, we introduce efficient algorithms to tackle P3

under different practical constraints.

3.3.2 Proposed Method

We now use SDR to tackle P3 under the constraint C1, and then introduce CD to design

the set of transmit sequences under constraints C2 and C3.

3.3.3 Energy constraint

P3 is a non-convex problem due to the penalty term. A possible solution is using the SDR

technique by converting it to a convex problem [124]. Towards this, defining Xn = sns
H
n ,

we obtain

P4


min
Xn

N∑
n=1

Tr(AUXn) + δ

∥∥∥∥∥
∑N

n=1Tr(ATXn)− αM2

M2

∥∥∥∥∥
2

2

s.t
∑N

n=1Tr(Xn) ≤MN

Xn ⪰ 0,

where ∥S∥2F ≤ MN ⇔
∑N

n=1Tr(Xn) ≤ MN . Solving P4 leads to obtain the optimum

X⋆
n and there exist several methods to approximate s⋆n, e. g., eigen-decomposition and

Gaussian randomization [124, 126, 127].

3.3.4 Constant modulus and discrete phase constraints

The problem P3 under C2 and C3 constraints is non-convex and multi-variable; we propose

the CD framework to tackle it [92, 102]. The CD based methods are intuitively appealing

and very simple to implement, yet they exhibit powerful performance in emerging radar

waveform design applications [24, 78]. In particular, we consider one entry of S as being

the only variable while keeping the others fixed; for this identified variable, we optimize

the objective function. Such a methodology is efficient when the objective function can be

written in a simplified form for that identified variable. In this regard, let us assume that

st,d is the only variable at (i)th iteration of the optimization procedure. The resulting

single-variable objective function at (i)th iteration can be written as (see Appendix B.3),

fcd(st,d,S
(i)
−(t,d)) = c

(i)
0 s2t,d + c

(i)
1 st,d + c

(i)
2 + c

(i)
3 s∗t,d + c

(i)
4 s∗t,d

2.
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Here, S
(i)
−(t,d) = S(i)|st,d=0 refers to the fixed entries. Considering the constraint ϕ ∈

Φ∞ or ΦL, it would be straightforward to show that fcd(st,d,S
(i)
−(t,d)) depends only on

the variable ϕ, where st,d = ejϕ. By substituting st,d = ejϕ, the objective function can

be recast as follows,

f (i)o (ϕ) = c
(i)
0 ej2ϕ + c

(i)
1 ejϕ + c

(i)
2 + c

(i)
3 e−jϕ + c

(i)
4 e−j2ϕ, (3.20)

and the optimization problem under constraints C2 and C3 at (i)th iteration can be

written as,

P(i)
5


min
ϕ

f (i)o (ϕ)

s.t ϕ ∈ Φ∞ or ΦL.

Consequently, the optimal phase of the code entry st,d can be obtained by solving,

ϕ⋆(i) = argmin
ϕ

{f (i)o (ϕ) |ϕ ∈ Φ∞ orΦL}. (3.21)

Subsequently, the variable st,d will be updated by s⋆t,d
(i) = ejϕ

⋆(i)
. This procedure

will continue until the stationary point is obtained. We consider (f
(i)
o (ϕ⋆(i−MN)) −

f
(i)
o (ϕ⋆(i))) < ζ, (ζ > 0) as stopping criterion of optimization. The proposed method is

summarized in Algorithm 6.

Algorithm 6 :Transmit Beampattern design for MRMC

Input: Random-phase initial set S(0)|sm,n∈Φ∞ orΦL
;

Output: Optimized set S⋆;

1. Initialization.

• Choose α ∈ [0, 1/2], and set i := 0, t, d := 1;

2. Optimization.

• i := i+ 1;

• Obtain ϕ⋆(i) using (3.24) or (3.27);

• s⋆t,d
(i) = ejϕ

⋆(i)
then S(i) = S(i−1)|st,d=s⋆t,d(i) ;

• If t =M then t := 1; else t := t+ 1;

• If d = N go to 3); else d := d+ 1 and go to 2);

3. Stopping criterion.

• If (f
(i)
o (ϕ⋆(i−MN))− f

(i)
o (ϕ⋆(i)) < ζ , go to 4); otherwise d := 1 and go to 2);

4. Output.

• Set S⋆ = S(i);

In the sequel, we obtain ϕ⋆(i) under different constraints.
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Optimal solution under continuous phase constraints: As f
(i)
o (ϕ) is a real,

differentiable and periodic function, it has at least two extrema. Therefore, its derivative

has at least two real roots. The derivative of f
(i)
o (ϕ) can be obtained by,

f ′o
(i)
(ϕ) = j

(
2c

(i)
0 ej2ϕ + c

(i)
1 ejϕ − c

(i)
3 e−jϕ − 2c

(i)
4 e−j2ϕ

)
.

It can be seen from Appendix that c4 = c∗1 and c3 = c∗1 (details omitted). Then f ′o
(i)(ϕ)

can be written as, j
(
j4I{c(i)0 ej2ϕ}+ j2I{c(i)1 ejϕ}

)
. Hence,

f ′o
(i)
(ϕ) = −8c0r sin(ϕ) cos(ϕ)− 4c0i

(
cos2(ϕ)− sin2(ϕ)

)
− 2c1r sin(ϕ)− 2c1i cos(ϕ),

where c0r ≜ R{c0}, c0i ≜ I{c0}, c1r ≜ R{c1} and c0i ≜ I{c1}. Considering cos(ϕ) =

(1− tan2(ϕ))/(1 + tan2(ϕ)), sin(ϕ) = 2 tan(ϕ)/(1 + tan2(ϕ)) and changing variable z ≜

tan(ϕ2 ), f
′
o
(i)(ϕ) can be obtained by,

f ′z
(i)
(z) =

p
(i)
0 z4 + p

(i)
1 z3 + p

(i)
2 z2 + p

(i)
3 z + p

(i)
4

(1 + z2)2
(3.22)

where, p0, . . . , p4 are real coefficient defined by p0 ≜ 2I {2c0 − c1}, p1 ≜ 2R {2c1 − 8c0},
p2 ≜ −12I {c0}, p3 ≜ 2R {2c1 + 8c0} and p4 ≜ 2I {2c0 + c1}. Since the denominator in

f ′z
(i)(z) is non-zero, the critical points can be obtained by obtaining the roots of

p
(i)
0 z4 + p

(i)
1 z3 + p

(i)
2 z2 + p

(i)
3 z + p

(i)
4 . (3.23)

Let us assume that z
(i)
k are the roots of (3.23), therefore the critical points of f ′o

(i)(ϕ) can

be obtained by, ϕ
(i)
k = 2 tan−1(z

(i)
k ), Notice that only the real roots of (3.23) represent

the extremum of f
(i)
o (ϕ), therefore the optimized phase is,

ϕ⋆(i) = argmin
ϕ
(i)
k

{
f (i)o (ϕ

(i)
k ) | I{ϕ(i)k } = 0

}
. (3.24)

Optimized code entry under discrete phase constraints: It can be noted that

f (i)o (ϕ) = ej2ϕ(c
(i)
0 + c

(i)
1 e−jϕ + c

(i)
2 e−j2ϕ + c

(i)
3 e−j3ϕ + c

(i)
4 e−4jϕ).

Consequently, f
(i)
o (ϕk) can be formulated as,

f (i)o (ϕk) = ej
4πk
L
∑4

n=0 c
(i)
n e

−j 2πnk
L , (3.25)
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Figure 3.11: Beampattern of CD method, continuous phase constraint, different δ.

where, k = {0, . . . , L− 1}. Equation (3.25) is exactly the definition of L−point DFT of

sequence {c0, . . . , c4}. Therefore, f (i)o (ϕk) can be written as,

f (i)od (k) = hL ⊙FL{c(i)0 , c
(i)
1 , c

(i)
2 , c

(i)
3 , c

(i)
4 } (3.26)

where, hL = [1, ej
4π
L , . . . , ej

4π(L−1)
L ]T ∈ CL and FL is L−point DFT operator. The current

function is only valid for L ⩾ 5. According to periodic property of DFT, f
(i)
od (k) can be

written as,

L = 4 ⇒ f (i)od (k) = hL ⊙FL{c(i)0 + c
(i)
4 , c

(i)
1 , c

(i)
2 , c

(i)
3 },

L = 3 ⇒ f (i)od (k) = hL ⊙FL{c(i)0 + c
(i)
3 , c

(i)
1 + c

(i)
4 , c

(i)
2 },

L = 2 ⇒ f (i)od (k) = hL ⊙FL{c(i)0 + c
(i)
2 + c

(i)
4 , c

(i)
1 + c

(i)
3 }.

Therefore the optimum solution of (3.26) is, k⋆(i) = arg min
k=1,...,L

{
fod(k)

}
. Subsequently,

the optimum phase is,

ϕ⋆(i) =
2π(k⋆(i) − 1)

L
. (3.27)

3.3.5 Numerical results

We consider a ULA configuration with M = 8 transmitters and N = 64 pulses. Target,

base station, vehicle and clutter patches are located at θt = 10o, θb = −40o, θv = −20o

and θc = [50o, 60o], respectively. We consider α = 0.9 and wb = 0.45, wv = 0.45 and

wc = 0.1 respectively. For algorithm 8, the stopping condition is set at ζ = 10−3. Finally,

the P4 is solved via the CVX toolbox with SDPT3 solver [128].

The impact of penalty factor (δ): Fig.3.11, shows the beampattern of proposed

methods under C2 with different penalty weights. We observe that a good ISL at the

cost of a poor mainlobe response when the penalty is not considered. On the other hand,

for a high penalty factor, despite the good mainlobe response, the algorithm is unable to

minimize the sidelobes at undesired angles. However, by choosing a moderate penalty
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Figure 3.13: Comparison of beampattern obtained by CD, SDR and QSDR.

factor (δ = 200), we can enforce an efficient trade off between mainlobe and ISL. Hence

δ = 200 in considered henceforth.

Convergence behavior : Fig.3.12 shows the convergence behavior CD method under C2

and C3 constraints when initialized using random MPSK sequences with alphabet size

L = 8. As can be seen, the objective decreases monotonically and converges to a certain

value. The continuous phase design obtains a better performance than the discrete phase

due to higher degrees of freedom. Also, larger the alphabet size, better the performance

in designing discrete phase sequences. This arises from the fact that increasing the

alphabet size enlarges the feasibility set, thereby rendering the achievement of a lower

objective at optimum.

Beampattern comparison : Fig.3.5 illustrates the beampattern of obtained from

different optimization methods in this section, i.e., SDR under constraint C1, and CD

under constraints C2, and C3. Further, we map the obtained waveform of the SDR

solution to the nearest MPSK sequence; calling it Quantized Semi-definite Relaxation

(QSDR) and we use it as initial sequence for algorithm. Interestingly, the waveforms

optimized through the proposed CD mimic the beampattern obtained via SDR, indicating
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the efficiency of this approach in designing set of sequences with practical constraints.

Notice that, there is a significant difference between the solution obtained via CD under

constraint C3, and that obtained by QSDR. This can be justified from the fact CD

directly considers the constraints in the design, while quantizing the waveform to the

nearest MPSK sequence does not guarantee an optimal solution.

3.4 Transmit Beampattern Shaping Via Waveform Design

In Cognitive MIMO Radar

This section is focused on designing a set of constant modulus waveform for cognitive

Multiple-Input Multiple-Output (MIMO) radar systems. The aim is to shape the

beampattern in transmitter to minimize the Integrated Side-lobe Level (ISL) in spatial

domain in a cognitive paradigm. This minimization leads to a NP-hard and non-convex

optimization problem. To address this, the problem is formulated based on Coordinate

Descent (CD) framework with constant modulus constraint. Subsequently, an low-

complexity and fast method based on Discrete Fourier Transform (DFT) is proposed

which monotonically decreases the spatial ISL. Finally, we show some numerical results

and assess the performance of the proposed technique.

Cognitive radar systems are smart sensors which have a dynamic interaction with envi-

ronment to enable optimal adaption of the transmit, receive and other parameters to the

environment [11]. Cognitive beampattern shaping by controlling the spatial distribution

of the transmit power can play an important role to improve radar performance through

enhanced power efficiency, better detection probability, target identification, improved

interference mitigation etc. Clearly, this necessitates an adaptive waveform design ap-

proach. Generally, there are two methods for beampattern shaping via waveform design,

two-step and direct methods [26]. In two-step method first, the waveform correlation

matrix is designed and then the original waveform matrix is obtained through one of the

decomposition methods [44]. While in direct method the waveform is designed directly

[26].

In this section, we consider minimizing the beampattern response in undesired directions

while simultaneously achieving good response in desired directions. These directions can

be driven by cognitive paradigm in response to the environmental situation [11]. Further,

due to the need for higher power efficiency in mmWave radars and ease of hardware

implementation. In this context we consider solving the problem under constant modulus

discrete phase MPSK sequences [1, 99] which requires limited valued phase shifters. This

scheme results in a non-convex, possibly NP-hard problem. Our approach is to design
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the waveform directly using CD which offers a low complexity methodology to a complex

problem while exhibiting gains. The section, thus considers a novel beampattern design

problem in MIMO cognitive radars and offers a fast and efficient solution.

To this end, the section is organized as follow. Subsection 3.4.1 introduces the system

model and describes the problem formulation. Subsection 3.4.2 presents the proposed

CD based framework whose performance is numerically assessed in subsection 3.4.3.

Notations: We adopt the notation of using lower case boldface for vectors (a) and

capital boldface for matrix (A). The transpose, conjugate transpose, Frobenius norm,

absolute value and ceiling operators are denoted by the (.)T , (.)H , ∥ . ∥F , |.| and ⌈.⌉
respectively. Tr(A) indicates the trace of matrix A and A ⪰ 0 means that is a positive

semidefinite matrix. The letter j represents the imaginary unit (i.e., j =
√
−1), while

the letter (i) is use as step of a procedure. Finally ⊙ denotes the Hadamard product.

3.4.1 System Model and Problem Formulation

We consider a colocated narrow-band MIMO radar system, withM transmitters, and each

transmits N pulses in the fast-time domain. Let the matrix S denotes the transmitted

waveform in the base-band, where the mth row indicates the pulses of mth transmitter

while nth column indicates the nth pulse of the transmitters. At time sample n, the

waveform transmitted through the M antennas is denoted by sn, where:

sn = [s1,n, s2,n, . . . , sM,n]
T ∈ CM . (3.28)

In (3.28), sm,n is the nth pulse of mth transmitter. We assume the standard ULA

configuration for transmitters, where the distance between the elements are dt =
λ
2 . Thus,

the steering vector can be written as [105]:

a(θ) = [1, ejπsin(θ), . . . , ejπ(M−1)sin(θ)]T ∈ CM . (3.29)

The transmit beampattern can be written as [28, 44, 125]:

P (S, θ) =
∑N

n=1

∣∣∣aH(θ)sn∣∣∣2 =∑N
n=1 s

H
n A(θ)sn (3.30)

where, A(θ) = a(θ)aH(θ).

Let us denote θd = [θd,1, θd,2, . . . , θd,Md
] and θu = [θu,1, θu,2, . . . , θu,Mu ] respectively, be

the sets of desired and undesired angles in spatial domain and are obtained by cognitive

paradigm. We are interested in minimizing the beampattern gain at the undesired angles

while simultaneously have a good gains at the desired angles. In this regards, we define
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f1(S) ≜
∑Mu

p=1 P (S, θu,p) as spatial ISL and g1(S) ≜
∑Md

p=1 P (S, θd,p) as summation of

beampattern on desired directions. In the point of view of radar designing the viable

solution is minimizing the spatial ISL subject to, g1(S) is greater than a specific value

under constant modulus with discrete phase constraint. To this regard, a relevant design

metric is:

P1


min
S

f1(S) =
∑N

n=1 s
H
n Ausn

s.t g1(S) =
∑N

n=1 s
H
n Adsn ⩾ γ

sm,n = ejϕ, ϕ ∈ ΦL,

(3.31)

where, Ad =
∑Md

p=1A(θd,k), Au =
∑Mu

p=1A(θu,k), m ∈ {1, . . . ,M}, n ∈ {1, . . . , N} and

ΦL indicates the MPSK phases. Precisely, ΦL =
{
0, 2πL , . . . ,

2π(L−1)
L

}
.

In P1, as the constraints are non-convex, therefore the problem is non-convex. But if we

relax by replacing the second constraint with limited energy (∥S∥2F ≤MN) we encounter

with a complex-valued separable Quadratic Constraint Quadratic Programming (QCQP)

which is still non-convex [124]. In this case, a possible solution is SDR.The standard

method is to let Rn = sns
H
n , recast the problem using Rn and imposing the rank

constraint on Rn. This problem is further relaxed by omitting the rank constraint as,

PSDR



min
Rn

∑N
n=1Tr(AuRn)

s.t
∑N

n=1Tr(AdRn) ⩾ γ∑N
n=1Tr(Rn) ⩽MN

Rn ⪰ 0,

(3.32)

where ∥S∥2F ≤ MN ⇔
∑N

n=1Tr(Xn) ≤ MN . This problem is known as the SDR of

QCQP. Solving PSDR leads to obtain the optimum R⋆
n and there are several methods to

approximate s⋆n such as decomposition and Gaussian randomization [124, 126, 127].

3.4.2 Proposed Method

By standard mathematical manipulation, the problem P1 can be written as function of

matrix S as follows:

P2


min
S

f2(S) = Tr(AuSS
H)

s.t g2(S) = Tr(AdSS
H) ⩾ γ

sm,n = ejϕ, ϕ ∈ ΦL,

(3.33)
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Problem P2 can be tackled by CD framework [102]; in fact [129] solves a problem with

similar objective but with different constraint. In CD method instead of the whole matrix

S, it is designed on an entry by entry basis in an iterative manner [24, 78]. In particular,

one entry of S is considered as the only variable while others are held fixed. With respect

to this identified variable, the objective function is optimized. Such a methodology is

efficient when the objective function can be written in a simplified form with respect to

that variable. In this regard, let us assume that st,d is the only variable at ith iteration

of optimization procedure. Therefore P2 can be written equivalently as (see Appendix

B.3):

P(i)
3


min
st,d

f3(st,d,S
(i)
−(t,d)) = a

(i)
0 st,d + a

(i)
1 + a

(i)
2 s∗t,d

s.t g3(st,d,S
(i)
−(t,d)) = b

(i)
0 st,d + b

(i)
1 + b

(i)
2 s∗t,d ⩾ γ

st,d = ejϕ; ϕ ∈ ΦL,

(3.34)

where, S
(i)
−(t,d) = S(i)|st,d=0 and refers to the fixed entries.

Problem P(i)
3 depends only on parameter ϕ. By substituting st,d = ejϕ, P(i)

3 can be recast

as follows after some manipulations:

P(i)
4


min
ϕ

f4(ϕ) = a
(i)
0 ejϕ + a

(i)
1 + a

(i)
2 e−jϕ

s.t g4(ϕ) = b
(i)
0 ejϕ + b

(i)
1 + b

(i)
2 e−jϕ ⩾ γ

ϕ ∈ ΦL,

(3.35)

As ϕ ∈ ΦL, one approach for solving the problem P(i)
4 is examining all the possible phases

in the set ΦL and choose the phase that minimizes f4(ϕ) and satisfies g4(ϕ) ⩾ γ. It can

be shown that P(i)
4 is equivalent to [24, 78]:

P(i)
5


min
k

f5(k) = pL ⊙FL{a(i)0 , a
(i)
1 , a

(i)
2 }

s.t g5(k) = pL ⊙FL{b(i)0 , b
(i)
1 , b

(i)
2 } ⩾ γ,

(3.36)

where, pL =

[
1, ej

2π
L , . . . , ej

2π(L−1)
L

]T
, FL is L points DFT operator and k ∈ {1, . . . , L}.

Problem P(i)
5 is valid when L ⩾ 3. In case of L = 2, P(i)

5 can be written as:

P(i)
6


min
k

f6(k) = pL ⊙F2{a(i)0 + a
(i)
2 , a

(i)
1 }

s.t g6(k) = pL ⊙F2{b(i)0 + b
(i)
2 , b

(i)
1 } ⩾ γ.

(3.37)

The choice of γ to ensure feasibility is a tricky aspect. In our work, we assume that the

γ is selected such that the problem has a feasible solution (e.g., by choosing γ = g1(S)
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for some initial sequence S).

To tackle problems P(i)
5 , our approach is to first find the feasible set from the constraint

(g6(k) ⩾ γ) and then choose the phase from the feasible set which minimizes the objective

function. Accordingly, algorithm 74 is proposed to optimize all MN pulses of matrix S.

In the following, the key steps of the algorithm are:

Finding the feasible set: In this step, the whole possible value for g5(k) is obtained,

then by subtracting γ from g5(k), the feasible set can be derived. In particular, a negative

kth entry implies that, g5(k) is less than γ and hence the phase is infeasible; naturally, a

non-negative entry implies feasibility. Subsequently the feasible and infeasible entries are

mapped into 1 and +∞ respectively in kf of algorithm 1.

Optimization: In this step, the whole possible value for f5(k) is obtained. Subsequently,

the infeasible entries in h of algorithm 7 are mapped to ∞ while the feasible entries are

retained. Then, in s∗t,d the optimum pulse is obtained.

Stopping criterion: After optimizing the MN th pulse, the algorithm examines the

convergence metric for the spatial ISL. If the stopping criteria is not met the algo-

rithm repeats the aforementioned steps for maximum 100MN iterations. We consider(
f2(S

(i−MN))− f2(S
(i))
)
< ζ as stopping criterion of optimization.

3.4.3 Numerical results

In this subsection, we provide some representative numerical examples to illustrate the

effectiveness of proposed method. The reported values are obtained with a standard

PC with Intel (R) Core (TM) i5-8250U CPU @ 1.60GHz with installed memory (RAM)

8.00 GB. Towards this end, unless otherwise explicitly stated, we consider the following

assumptions. For system parameters we consider ULA configuration with M = 8

transmitters with N = 64 pulses. The desired angle is located in the interval of [20o, 60o]

and we consider γ corresponding to the initial sequence for both methods. For the CD

method, we consider a random MPSK sequences as initial waveform and the stopping

condition of algorithm 8 is set at ζ = 10−3. Finally the phase unconstrained problem in

PSDR is considered as the benchmark and is solved via the CVX toolbox [128].

3.4.3.1 Convergence Behavior

We investigate the convergence behavior of the proposed algorithm and we compare it

with SDR solution. Since the SDR method designs a non constant modulus waveform,

for fair comparison, we map the resulting waveform to the nearest MPSK sequence; we

4The procedure for P(i)
6 is similar to P(i)

5 . In this regards we can replace functions f5(k) and g5(k)
with f6(k) and g6(k) respectively.
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Algorithm 7 : Waveform Design

Input: Initial set of random MPSK, S(0)|sm,n ∈ Ωd and L
Output: Optimized set of MPSK, S⋆

1. Initialization.

• Set i := 0, t, d := 1 and γ := g2(S
(0));

2. Find the feasible set.

• i := i+ 1 then g5(k) = pL ⊙FL{b(i)0 , b
(i)
1 , b

(i)
2 };

• kf = 2
⌈sign(g5(k)−γ)+1⌉ ;

3. Optimization.

• f5(k) = pL ⊙FL{a(i)0 , a
(i)
1 , a

(i)
2 };

• h = f5(k)⊙ kf ;

• k(i) = arg min
k=1,...,L

{h};

• s⋆t,d = ej
2π

(
k(i)−1

)
L , S(i) = S(i−1)|st,d=s⋆t,d ;

• If t =M then t := 1; otherwise t := t+ 1;

• If d = N go to 4); otherwise d := d+ 1 and go to 2);

4. Stopping criterion.

• If i = 100MN go to 5);

• If
(
f2(S

(i−NM))− f2(S
(i))
)
< ζ , go to 5); otherwise d := 1 and go to 2);

5. Output.

• Set S⋆ = S(i)
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Figure 3.14: Convergence of CD method for different alphabet size with corresponding
optimum objective function of QSDR.

term this as QSDR. Fig.3.14 shows the convergence of CD with different alphabet size

with corresponding optimum objective function of QSDR.

As can be seen, the objective function decreases monotonically and converges to a certain

value and by increasing alphabet size the performance becomes better. This result is

reasonable, since increasing the alphabet size enlarges the feasibility set thereby rendering



Beampattern Shaping in MIMO radar systems 74

Table 3.1: Comparison between the computational-time (s) of CD and SDR methods
averaged over 10 independent trials, for different alphabet sizes.

CD SDR
L = 4 L = 8 L = 32

0.25 0.27 0.51 3.56
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Figure 3.15: Beampattern of CD method for different alphabet size and SDR method.

the achievement of a lower objective at optimum. Besides, the performance of proposed

method is much better than correspond QSDR. This can be justified from the fact that,

there is no discrete phase constraint in SDR method and quantizing the waveform to the

nearest MPSK sequence does not guarantee optimality. This does arise in the proposed

method as it designs discrete phase sequences explicitly.

Besides, Table 3.1 shows the convergence time of CD for several alphabet sizes and SDR

method averaged over 10 independent trials. It can be observed that, by increasing

the alphabet size the convergence-time of CD method increases very slightly, while its

beampattern matching ability improves. Further, on an average, CD is 10.37 times faster

than SDR method.

3.4.3.2 Beampattern Analysis

Fig.3.15 shows the beampattern of both methods. Observe that the beampattern of

SDR method has smaller sidelobes when compared with the CD method. This result

is predictable because in SDR method is unconstrained unlike the proposed method.

Therefore the feasible set of SDR method is much larger than CD and it can thus achieve

better performance.

3.4.3.3 Power Efficiency

Fig.3.16 shows the constellation designed from the methods.
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As can be seen, the CD method designs a constant modulus waveform and is of interest to

the radar system designers due to this property. While the optimum waveform designed

by SDR is not constant modulus and each code should be transmitted with different

power. Therefore, is not possible to transmit the code with maximum power this results

in a loss in transmit power efficiency. This deviation can be assessed from the point of

view of PAR criterion. For a given sequence PAR is [130]:

PAR =

max
{m=1,...,M}{n=1,...,N}

|sm,n|2

1
MN ∥ S ∥2F

. (3.38)

Due to the constant modulus the PAR of proposed method and QSDR is equal to 0 dB.

However, the average PAR for benchmark scheme is 9.14 dB.

3.5 Conclusion

In this chapter, we look at several beampattern shaping problems for MIMO radar

systems with continuous and discontinuous phase constraints. We use spatial-ISLR

minimization and ℓp-norm beampattern matching as design metrics in this context. In

most cases, the problems result in non-convex, multi-variable, and NP-Hard optimization

problems. We proposed various efficient waveform design methods based on CD, SDR,

BSUM and the penalty technique in order to get optimal solutions. The simulation

results suggest that the proposed strategy improves the spatial domain performance

of the MIMO radar system. When compared to state-of-the-art analogues in terms of
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beampattern shaping and computing time, the proposed method outperforms or performs

similarly.



Chapter 4

Spatial- and Range- ISLR

Trade-off in MIMO Radar via

Waveform Correlation

Optimization

This chapter aims to design a set of transmit waveforms in cognitive colocated MIMO

radar systems considering the simultaneous minimization of spatial- and the range- ISLR.

The design problem is formulated as a bi-objective Pareto optimization under practical

constraints on the waveforms, namely total transmit power, PAR, constant modulus,

and discrete phase alphabet. A CD based approach, called UNIQUE, is proposed in

which at every single variable update of the algorithm we obtain the solution of the

uni-variable optimization problems. The novelty of the chapter comes from deriving a

flexible waveform design problem applicable for the emerging 4D imaging MIMO radars

with application to automotive radar systems. The simultaneous optimization leads

to a trade-off between the two ISLRs and the simulation results illustrate significantly

improved trade-off offered by the proposed methodologies.

4.1 Introduction

Transmit beampattern shaping and orthogonality have been the key waveform design

aspects influencing the performance of colocated MIMO radar systems [17]. Beampattern

shaping involves steering the radiation power in a spatial region of desired angles, while

reducing interference from sidelobe returns to improve target detection [99]. There

77
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exists a rich literature on waveform design for beampattern shaping following different

approaches with regards to the choice of the variables, the objective function and the

constraints; kindly refer to [28, 32, 40, 44–46] for details. An interesting approach to

enhance detection of weak targets in the vicinity of strong ones is the design of waveforms

with a small ISLR [32, 44] in the or spatial domain. This can be achieved by imparting

appropriate correlation among the waveforms transmitted from the different antennas

[131]. Waveform orthogonality, on the other hand, aims to enhance spatial resolution

through the concept of virtual array. Similar to the beampattern design, there is a rich

literature on orthogonal waveform design; kindly refer to [132] for details. Waveforms

with low ISLR in time domain, also known as range-ISLR, are typically sought [21, 24],

to enable an effective virtual array. This is achieved by designing a set of waveforms that

are uncorrelated with each other (within and across antennas). Thus, a contradiction

arises in achieving small spatial- and range-ISLR simultaneously, leading to a waveform

design trade-off between spatial- and range-ISLR. This trade-off necessitates a dedicated

waveform design approach [21], a subject pursued by the UNIQUE method proposed in

this chapter.

Spatial-ISLR minimization: In the spatial-ISLR the approach is to maximize/ minimize

the response of beampattern on desired/ undesired angles respectively. In [32], a waveform

covariance design based on SDR under a constraint on the 3 dB main-beam is proposed

to minimize the spatial-ISLR. In [44], the worst case transmit beampattern optimization

is considered by minimizing the spatial-ISLR and -PSLR. Unlike the aforementioned

methods, [40] proposes a direct design of the waveform entries based on ADMM to

minimize the spatial-PSLR under constant modulus constraint. In [45], MIA approach

was proposed based on MM for joint waveform and filter design under similarity, constant

modulus and PAR constraints. In [46] a CD based method (STTC) was proposed

to design space-time codes under similarity, uncertain steering matrices, continuous

or discrete phase constraints. The authors propose a Dinkelbach based method and

exhaustive search for continuous and discrete phase constraints, respectively.

Range-ISLR minimization: Unlike aforementioned spatially correlated designs, set of

waveforms having low auto- and cross-correlations for all lags have been investigated in

[2, 3, 21–24]. Low cross-correlations traditionally has been used as a metric to design set

of approximately orthogonal sequences and exploiting the virtual array in a CDM-MIMO

radar system. On the other hand, low auto-correlation level is a requirement in every

radar system to avoid masking of the weak targets by the range sidelobes of a strong

target, and to mitigate the harmful effects of distributed clutter returns close to the

target of interest [20]. These two requirements naturally lead to the use of ISLR/ PSLR

minimization as the metric which is pursued through several approaches including, CAN,

MM, ADMM and CD. The authors in [2, 21] proposed the CAN algorithm to optimize
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sequence with good ISL using the alternating minimization technique. However, instead

of directly solving the ISL minimization, they solved its approximation. To solve the ISL

minimization problem the authors in [3] proposed the MM-Corr algorithm and the authors

in [22] proposed the ISL-NEW algorithm, both using the majorization-minimization

technique. The authors in [23] used the ADMM technique to solve an approximation of

the ISL minimization problem. The authors in [24] used the CD technique, to minimize

a weighed sum of ISL and PSL under discrete phase constraint. They have reported

superior performance comparing with the state-of-the art by using the CD approach.

Simultaneous range and spatial-ISLR designs: It is clearly evident that simultaneous

minimization of range- and spatial-ISLR would be essential to achieve high performance

in both range and spatial domains while minimizing the interfering radiation or clutter

reflections. In addition, simultaneous minimization provides a new design perspective

offering novel waveforms. In this context, there are a few works even on the general topic

of waveform design considering simultaneous waveform orthogonality and beampattern

shaping. The same holds for the case of spatial- and range-ISLR minimization. The

authors in [131] bring out the contradictory nature of the orthogonality and beampattern

shaping and propose a method for beampattern matching under particular constraints on

the waveform cross-correlation matrix. In [133], the authors present an algorithm which,

at first, minimizes the difference between desired and designed beampattern responses for

one sub-pulse. Subsequently, other sub-pulses are obtained through random permutation.

The waveforms obtained exhibit quasi-Dirac auto-correlation and the different waveforms

are quasi-orthogonal. Since the spatial-ISLR is the ratio of beampattern response on

undesired and desired angles, the approach in [133] is not equivalent to minimizing

the spatial-ISLR. In [134], the authors introduce a beampattern matching by including

orthogonality requirement as a penalty in the objective function and using the PDR

approach for the solution. In [135], the authors propose a method based on ADMM to

design a beampattern with good cross-correlation property but they do not consider the

need for a good auto-correlation in their formulation. The aforementioned papers design

constant modulus waveforms with continuous phase alphabets. However, they do not

consider simultaneous minimization of range- and spatial-ISLR metrics in designing the

waveform set; nor do they consider discrete-phase constraint.

Another approach considering both orthogonality and beampattern shaping is the phased-

MIMO technique where the transmit array is divided into a number of sub-arrays and

each sub-array coherently transmits a waveform which is orthogonal to those transmitted

by the other sub-arrays. For instance, [136] considers designing a weight vector for each

sub-array to form a beam in a desired direction. In order to obtain the orthogonality, [136]

allocates non-overlapping bandwidth to each sub-array, where the bandwidth is greater

than the Pulse Repetition Frequency (PRF) of the system (similar to DDMA technique).
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4D imaging Radar

SRR

MRR

LRR

Figure 4.1: A comparison between the current automotive radars, and emerging 4D
imaging MIMO radar systems, that can utilize UNIQUE waveforms in the transmission

(SRR: Red, MRR: Blue, LRR: Yellow, 4D imaging Radar: Green).

In this case, the radar system may occupy large bandwidth leading to inefficient spectrum

allocation. On the other hand, the authors in [137] first, generate correlated waveform to

achieve arbitrary beampattern subsequently the matrix waveform is permuted to achieve

a pseudo noise like quasi-orthogonal waveform. However, phased-MIMO radars tend to

be effective for large antenna systems and may not be suitable for applications with few

transmit antennas.

4.1.1 Contributions

In the emerging 4D-imaging automotive MIMO radar systems, the SRR, MRR, and LRR

applications are planned to be merged, to provide unique1 and high angular resolution

in the entire radar detection range, as depicted in Figure 4.1. In this application,

both long range property and fine angular resolution are required. To achieve the long

range property, the MIMO radar system should have the capability of transmitting fully

correlated waveforms to perform beampattern shaping and enhance the received SINR

while the small cross-correlation is required to build the MIMO radar virtual array in

the receiver and obtaining fine angular resolution.

The novel problem in this chapter is aimed to address the above practical requirements, by

considering a CD framework subsuming the key objectives and constraints while offering

an elegant design methodology. This motivation drives the following contributions of the

chapter:

• Use of both range- and spatial-ISLR: Since these two aspects are important in

MIMO radar systems, we exploit the well-known weighting to propose a flexible

framework enabling a trade-off between spatial- and range-ISLR in a cognitive

MIMO radar paradigm. This is considered by resorting to a scalarization of the

1The method proposed in this chapter called UNIQUE to point to this property of 4D-imaging radars.
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multi-objective problem through its weighted sum. The weight offers a trade-off

between spatial- and range- ISLR. This property is very useful for cognitive radars

where the system can set the operation levels for the two ISLRs based on the

scenario. The proposed optimization problem is then augmented with different sets

of practical constraints, i.e., limited energy, PAR, constant modulus and discrete

phase. This novel exercise of consolidation eases design and achieves higher design

efficiency.

• Optimization framework: The problem formulation leads to an objective function

comprising a weighted sum of fractional quadratic (spatial-ISLR) and quartic

(range-ISLR) functions; together with the constraints, the formulation leads to

a non-convex, multi-variable, and NP-hard optimization problem. The chapter

proposes a unified framework based on the CD approach to solve the optimization

problem under the different sets of constraints. An effective iterative algorithm based

on CD, which minimizes the objective function monotonically, in each iteration

is devised. While the CD approach is well-known [24, 38, 53, 60, 78, 92, 102, 138–

141], challenges lie in deriving an efficient solution to each of the single variable

optimization problems. A key analytical contribution of this chapter is to specialize

the single variable objective functions and obtain closed-form or numerically efficient

design methodologies based on the constraints. Particularly, the chapter considers

the following approaches to derive the global optimum at each single variable update

(i) gradient based approach for limited power and PAR constraints wherein the

minimization problems are reformulated to enable derivation of gradients efficiently

using real computations, (ii) a traditional calculus approach for continuous phase

followed by simplification, (iii) solving the problem to yield an efficient FFT based

solution for discrete phase problems.

• Discrete Phase Design: A systematic approach to the design of discrete phase

sequences, generally not addressed in the literature, is considered in this chapter.

The design of discrete phase sequences is important since it allows for the efficient

utilization of the limited transmitter power. Further, the phases of these sequences

are chosen from a limited alphabet, lending it attractive for radar engineers/design-

ers from the point of view of hardware implementation. An FFT based methodology

is considered to handle CD for such sequences.

• Trade-off and Flexibility: Extensive simulations comparing the proposed method

with literature are provided to illustrate the superior trade-off obtained by the

proposed solutions in minimizing the spatial- and range- ISLR. The flexibility of the

framework is also illustrated by reporting superior performance when minimizing

only the spatial-ISLR or the range-ISLR.
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Table 4.1: The contribution of UNIQUE method in comparison with the literature.

Papers [32, 40, 44–46] [2, 3, 21–24] [133–135] UNIQUE

Beampattern Shaping ✓ × ✓ ✓
Range-ISLR × ✓ × ✓

Beampattern Shaping
by orthogonal sets × × ✓ ✓
Trade-off between

Spatial & Range-ISLR × × × ✓

Table 4.1 provides an overview of the contributions of this chapter in comparison with

the literature.

4.1.2 Organization and Notations

The rest of this research is organized as follows. In Section 4.2, the system model and

the design problem is formulated. We develop the CD framework to solve the problem in

Section 4.3 and provide numerical experiments to verify the effectiveness of proposed

algorithm in Section 4.4.

Notations This chapter uses lower-case and upper-case boldface for vectors (a) and

matrices (A) respectively. The conjugate, transpose and the conjugate transpose opera-

tors are denoted by the (.)∗, (.)T and (.)H symbols respectively. Besides the Frobenius

norm, l2 norm, absolute value and round operator are denoted by ∥.∥F , ∥.∥2, |.| and ⌊.⌉
respectively. For any complex number a, ℜ(a) and ℑ(a) denotes the real and imaginary

part respectively. The letter j represents the imaginary unit (i.e., j =
√
−1), while the

letter (i) is use as step of a procedure. Finally ⊙ denotes the Hadamard product.

4.2 System Model and Problem Formulation

We consider a colocated narrow-band MIMO radar system, with Mt transmit antennas,

each transmitting a sequence of length N in the fast-time domain. Let the matrix

S ∈ CMt×N denotes the transmitted set of sequences in baseband as follows,

S ≜


s1,1 s1,2 . . . s1,N

s2,1 s2,2 . . . s2,N
...

...
...

...

sM,1 sM,2 . . . sM,N

 ,



Spatial- and Range- ISLR Trade-off in MIMO Radar via Waveform Correlation
Optimization 83

Let us assume that S ≜ [s̄1, . . . , s̄N ] ≜ [s̃T1 ; . . . ; s̃
T
Mt

]T , where the vector s̄n ≜ [s1,n, s2,n, . . . , sMt,n]
T ∈

CMt (n = {1, . . . , N}) indicates the nth time-sample across the Mt transmitters (the

nth column of matrix S) while the s̃m ≜ [sm,1, sm,2, . . . , sm,N ]T ∈ CN (m = {1, . . . ,Mt})
indicates the N samples of mth transmitter (the mth row of matrix S). In this chapter,

we deal with the spatial- and range- related ISLR. To this end, in the following, we

introduce the ISLR model in these domains.

4.2.1 System Model in Spatial Domain

We assume a ULA structure for the transmit array. The transmit steering vector takes

the from [17],

a(θ) = [1, ej
2πdt
λ

sin(θ), . . . , ej
2πdt(Mt−1)

λ
sin(θ)]T ∈ CMt . (4.1)

In (4.1), dt is the distance between the transmitter antennas and λ is the signal wavelength.

The power of transmitted signal (beampattern) in the direction θ can be written as

[17, 28, 44],

P (S, θ) = 1
N

∑N
n=1

∣∣∣aH(θ)s̄n∣∣∣2 = 1
N

∑N
n=1 s̄

H
n A(θ)s̄n

where,A(θ) = a(θ)aH(θ). Let Θd = {θd,1, θd,2, . . . , θd,Md
} and Θu = {θu,1, θu,2, . . . , θu,Mu}

denote the sets ofMd desired andMu undesired angles in the spatial domain, respectively,

where Θd ∩Θu = ∅ This information can be obtained from a cognitive paradigm. We

define the spatial-ISLR, f̄(S), as the ratio of beampattern response on the undesired

directions (sidelobes) to those on the desired angles (mainlobes) by the following equation,

f̄(S) ≜
1
Mu

∑Mu
r=1 P (S, θu,r)

1
Md

∑Md
r=1 P (S, θd,r)

=

∑N
n=1 s̄

H
n Aus̄n∑N

n=1 s̄
H
n Ads̄n

, (4.2)

where Au ≜
∑Mu

r=1A(θu,r)
NMu

and Ad ≜
∑Md

r=1A(θd,r)
NMd

. Note that f̄(S) is a fractional quadratic

function.

4.2.2 System Model in Fast-Time Domain

The aperiodic cross-correlation of s̃m and s̃l is defined as,

rm,l(k) =
∑N−k

n=1 sm,ns
∗
l,n+k, (4.3)

where m, l ∈ {1, . . . ,Mt} are the transmit antennas indices and k ∈ {−N +1, . . . , N − 1}
denotes the lag of cross-correlation. If m = l, (4.3) represents the aperiodic auto-

correlation of signal s̃m. The zero lag of auto-correlation represents the mainlobe of the
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matched filter output and contains the energy of sequence, while the other lags (k ̸= 0)

are referred to the sidelobes. The range-ISL can therefore be expressed by [22, 24],

∑Mt
m,l=1
l ̸=m

∑N−1
k=−N+1 |rm,l(k)|2 +

∑Mt
m=1

∑N−1
k=−N+1
k ̸=0

|rm,m(k)|2, (4.4)

where the first and second terms represent the cross- and auto-correlation sidelobes,

respectively. For the sake of convenience, (4.4) can be written as,

ISL =
∑Mt

m,l=1

∑N−1
k=−N+1 |rm,l(k)|2 −

∑Mt
m=1 |rm,m(0)|2. (4.5)

The range-ISLR (time-ISLR) is the ratio of range-ISL over the mainlobe energy, i.e.,

f̃(S) =

Mt∑
m,l=1

N−1∑
k=−N+1

∥∥∥s̃H
mJks̃l

∥∥∥2
2
−

Mt∑
m=1

∥∥∥s̃H
ms̃m

∥∥∥2
2

Mt∑
m=1

∥∥∥s̃H
ms̃m

∥∥∥2
2

, (4.6)

where Jk = JT−k donates the N ×N shift matrix [142]. Note that, when the transmit

set of sequences are unimodular,
∑Mt

m=1

∥∥∥s̃Hms̃m∥∥∥2
2
=MtN

2, and f̃(S) is a scaled version

of the range-ISLR defined in [24]. As can be seen f̃(S) is a fractional quartic function.

4.2.3 Problem Formulation

We aim to design sets of sequences that simultaneously possess good properties in terms

of both spatial- and range-ISLR, under limited transmit power, bounded PAR, constant

modulus and discrete phase constraints. The optimization problem can be represented

as, 
min
S

f̄(S), f̃(S)

s.t C

(4.7)

where C ∈ {C1, C2, C3, C4}, with

C1 :0 <∥S∥2F ⩽MtN

C2 :0 <∥S∥2F ⩽MtN,
max |sm,n|2

1
MtN

∥S∥2F
⩽ γp

C3 :sm,n = ejϕm,n ; ϕ ∈ Φ∞

C4 :sm,n = ejϕm,n ; ϕ ∈ ΦL

(4.8)

where m = {1, . . . ,Mt}, and n = {1, . . . , N}. In (4.8),

• C1 represents the limited transmit power constraint.



Spatial- and Range- ISLR Trade-off in MIMO Radar via Waveform Correlation
Optimization 85

• C2 is the PAR constraint with limited power, and γp indicates the maximum

admissible PAR.

• C3 is the constant modulus constraint with Φ∞ = [−π, π).

• C4 is the discrete phase constraint with ΦL = {ϕ0, ϕ1, . . . , ϕL−1} ∈
{
0, 2πL , . . . ,

2π(L−1)
L

}
,

and L is the alphabet size.

The first constraint (C1) is convex while the second constraint (C2) is non-convex due

to the fractional inequality. Besides, the equality constraints C3 and C4 (sm,n = ejϕ 2

or |sm,n| = 1) are not affine. The aforementioned constraints can be sorted from the

smallest to the largest feasible set as,

C4 ⊂ C3 ⊂ C2 ⊂ C1. (4.9)

Problem (4.7) is a bi-objective optimization problem in which a feasible solution that

minimizes the both the objective functions may not exist [24, 143]. Scalarization, a well

known technique converts the bi-objective optimization problem to a single objective

problem, by replacing a weighted sum of the objective functions. Using this technique,

the following Pareto-optimization problem will be obtained,

P


min
S

fo(S) ≜ ηf̄(S) + (1− η)f̃(S)

s.t C,

(4.10)

The coefficient η ∈ [0, 1] is a weight factor that effects trade-off between spatial- and

range-ISLR. In (4.10), f̄(S) is a fractional quadratic function of s̄n, and f̃(S) is a

fractional quartic function of s̃m. Hence, the objective is a non-convex and multi-variable

function. Thus, we encounter a non-convex, multi-variable and NP-hard optimization

problem [24, 78].

4.3 Proposed Waveform Design

To tackle the fractional optimization problems, several approaches including expanded

SDR [32, 144], Dinkelbach [62, 145], polynomial optimization [146] and Grab-n-Pull [147]

can be used. In this chapter, to solve (4.10) directly, we propose CD framework, which

is applicable for both fractional quadratic and quartic problems under four different

constraints, i.e., C1, C2, C3, and C4. Under this framework, the multi variable problem

is solved as a sequence of single variable problems. Further this single variable problems

admit a global solution.

2For the convenience we use ϕ instead of ϕm,n in the rest of the chapter.
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4.3.1 CD based framework

The methodologies based on CD, generally start with a feasible matrix S = S(0) as

the initial waveform set. Then, in each iteration, the waveform set is updated entry

by entry several times [24, 38, 53, 60, 78, 92, 102, 138–140]. In particular, an entry of

S is considered as the only variable while others are held fixed and then the objective

function is optimized with respect to this identified variable. Let us assume that st,d

(t ∈ {1, . . . ,Mt} and d ∈ {1, . . . , N}) is the only variable. There are several rules to

update the matrix S: (a) randomized i.e., the entry (st,d) is chosen uniformly randomly

at each single variable update, (b) cyclic i.e., iterate over all different st,d entries and (c)

Maximum Block Improvement (MBI) (greedy) i.e., optimizing the problem for each entry

separately and choosing the best one. Note that in case of large number of variables,

the use of MBI rule naturally increases the convergence time drastically. In this chapter,

we consider cyclic rule to update the waveform. In this case, the fixed code entries are

stored in the matrix S
(i)
−(t,d) as the following,

S
(i)
−(t,d) ≜



s
(i)
1,1 . . . . . . . . . . . . . . . s

(i)
1,N

...
...

...
...

...
...

...

s
(i)
t,1 . . . s

(i)
t,d−1 0 s

(i−1)
t,d+1 . . . s

(i−1)
t,N

...
...

...
...

...
...

...

s
(i−1)
Mt,1

. . . . . . . . . . . . . . . s
(i−1)
Mt,N


,

where, the superscripts (i) and (i − 1) show the updated and non-updated entries at

iteration i. This methodology is efficient when the problem in (4.10) is written in a

simplified form with respect to that variable. In this regards, the optimization problem

with respect to variable st,d can be written as follows (see Appendix C.1 for details),

Pst,d


min
st,d

fo(st,d,S
(i)
−(t,d))

s.t C

(4.11)

where, fo(st,d,S
(i)
−(t,d)) and the constraints are given by,

fo(st,d,S
(i)
−(t,d)) ≜ ηf̄(st,d,S

(i)
−(t,d)) + (1− η)f̃(st,d,S

(i)
−(t,d)),

f̄(st,d,S
(i)
−(t,d)) ≜

a0st,d + a1 + a2s
∗
t,d + a3|st,d|2

b0st,d + b1 + b2s∗t,d + b3|st,d|2
, (4.12)
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f̃(st,d,S
(i)
−(t,d)) ≜

c0s
2
t,d + c1st,d + c2 + c3s

∗
t,d + c4s

∗
t,d

2 + c5|st,d|2

|st,d|4 + d1|st,d|2 + d2
,

(4.13)

C1 :|st,d|2 ⩽ γe,

C2 :|st,d|2 ⩽ γe, γl ⩽ |st,d|2 ⩽ γu,

C3 :st,d = ejϕ; ϕ ∈ Φ∞,

C4 :st,d = ejϕ; ϕ ∈ ΦL,

(4.14)

Note: In (4.12), (4.13) and (4.14) the coefficients av, bv, (v ∈ {0, . . . , 3}), cw (w ∈
{0, . . . , 5}) and boundaries γl, γu and γe, depend on S

(i)
−(t,d) all of which are defined in

Appendix C.1.

At ith iteration, for t = 1, . . . ,Mt, and d = 1, . . . , N , the (t, d)th entry of S will be

updated by solving (4.11). After updating all the entries, a new iteration will be started,

provided that the stopping criteria is not met. This procedure will continue until the

objective function converges to an optimal value. A summary of the proposed method is

reported (like a pseudo-code) in Algorithm 8.

To optimize the code entries, notice that the optimization variable is a complex number

and can be expressed as st,d = rejϕ, where r ⩾ 0 and ϕ ∈ [−π, π) are the amplitude

and phase of st,d, respectively. By substituting st,d with rejϕ and performing standard

mathematical manipulations, the problem Pst,d can be rewritten with respect to r and ϕ

as follows,

Pr,ϕ


min
r,ϕ

fo (r, ϕ)

s.t C

(4.15)

with fo (r, ϕ) ≜ ηf̄ (r, ϕ) + (1− η)f̃ (r, ϕ), where,

f̄ (r, ϕ) ≜
a0re

jϕ + a1 + a2re
−jϕ + a3r

2

b0rejϕ + b1 + b2re−jϕ + b3r2
, (4.16)

f̃ (r, ϕ) ≜

c0r
2ej2ϕ + c1re

jϕ + c2 + c3re
−jϕ + c4r

2e−j2ϕ + c5r
2

r4 + d1r2 + d2
.

(4.17)

C1 :0 ⩽ r ⩽
√
γe,

C2 :0 ⩽ r ⩽
√
γe,

√
γl ⩽ r ⩽

√
γu,

C3 :r = 1; ϕ ∈ Φ∞,

C4 :r = 1; ϕ ∈ ΦL.

(4.18)
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Algorithm 8 : UNIQUE method for transmit waveform design

Input: Initial set of feasible sequences, S(0).
Initialization: i = 0.
Optimization:

1. while (fo(S
(i−1))− fo(S

(i))) > ζ do

2. i = i+ 1;

3. for t = 1, . . . ,Mt do

4. for d = 1, . . . , N do

5. Optimize s
(i−1)
t,d and obtain s⋆t,d;

6. Update s
(i)
t,d = s⋆t,d;

7. S(i) = S
(i)
−(t,d)|st,d=s(i)t,d

;

8. end for

9. end for

10. end while

Output: S⋆ = S(i).

Let s⋆t,d = r⋆ejϕ
⋆
be the optimized solution of Problem Pr,ϕ. Towards obtaining this

solution, Algorithm 8 considers a feasible set of sequences as the initial waveforms.

Then, for each update of single variable, it selects s
(i−1)
t,d as the variable and updates it

with the optimized s
(i)
t,d, denoted by s⋆t,d. This procedure is repeated for other entries

and is undertaken until all the entries are optimized at least once. After optimizing the

MtN
th entry, the algorithm examines the convergence metric for the objective function.

If the stopping criteria is not satisfied, the algorithm will repeat the aforementioned

steps. We consider (fo(S
(i)) − fo(S

(i−1)) ≤ ζ, (ζ is the stopping threshold, ζ > 0) as

the stopping criterion of the proposed method. With the defined methodology, it now

remains to solve Pr,ϕ for the different constraints. This is considered next.

4.3.2 Solution for limited power constraint

Problem Pr,ϕ under C1 constraint can be written as follows (see Appendix C.2 for details),

Pe


min
r,ϕ

fo (r, ϕ)

s.t C1 : 0 ⩽ r ⩽
√
γe.

(4.19)
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where fo (r, ϕ) = ηf̄ (r, ϕ) + (1− η)f̃ (r, ϕ) and,

f̄ (r, ϕ) =
a3r

2 + 2(a0r cosϕ− a0i sinϕ)r + a1
b3r2 + 2(b0r cosϕ− b0i sinϕ)r + b1

, (4.20)

f̃ (r, ϕ) = [(2c0r cos 2ϕ− 2c0i sin 2ϕ+ c5)r
2

+ 2(c1r cosϕ− c1i sinϕ)r + c2]
1

r4 + d1r2 + d2
.

(4.21)

The solution to Pe will be obtained by finding the critical points of the objective function

and selecting the one that minimizes the objective. As fo(r, ϕ) is a differentiable function,

the critical points of Pe contain the solutions to ∇fo(r, ϕ) = 0 and the boundaries

(0,
√
γe), which satisfy the constraint (0 ⩽ r ⩽

√
γe). To solve this problem, we use

alternating optimization, where we first optimize for r keeping ϕ fixed and vice-versa.

4.3.2.1 Optimization with respect to r

Let us assume that the phase of the code entry s
(i−1)
t,d is ϕ0 = tan−1

(
ℑ(s

(i−1)
t,d )

ℜ(s
(i−1)
t,d )

)
. By

substituting ϕ0 in ∂fo(r,ϕ)
∂r , it can be shown that the solution to the condition ∂fo(r,ϕ0)

∂r = 0

can be obtained by finding the roots of the following degree 10 real polynomial (see

Appendix C.3 for details), ∑10
k=0 pkr

k = 0. (4.22)

Further, since r is real, we seek only the real extrema points. Let us assume that the

roots are rv, v = {1, . . . , 10}; therefore the critical points of problem Pe with respect to

r can be expressed as,

Re =
{
r ∈ {0,√γe, r1, . . . , r10}|ℑ(r) = 0, 0 ⩽ r ⩽

√
γe
}
. (4.23)

Thus, the optimum solution for r will be obtained by,

r⋆e = argmin
r

{
fo(r, ϕ0)|r ∈ Re

}
. (4.24)

4.3.2.2 Optimization with respect to ϕ

Let us keep r fixed and optimize the problem with respect to ϕ. Considering cos(ϕ) =

(1− tan2(ϕ2 ))/(1 + tan2(ϕ2 )), sin(ϕ) = 2 tan(ϕ2 )/(1 + tan2(ϕ2 )) and using the change of

variable z ≜ tan(ϕ2 ), it can be shown that finding the roots of ∂fo(r⋆e ,ϕ)
∂ϕ is equivalent

finding the roots of the following 8-degree real polynomial (see Appendix C.4 for details),
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∑8
k=0 qkz

k. (4.25)

Similar to (4.22), we only admit real roots. Let us assume that zv, v = {1, . . . , 8} are the

roots of (4.25). Hence, the critical points of Pe with respect to ϕ can be expressed as,

Φ =
{
2 arctan (zv)|ℑ(zv) = 0

}
. (4.26)

Therefore, the optimum solution for ϕ is,

ϕ⋆e = argmin
ϕ

{
fo(r

⋆
e , ϕ)|ϕ ∈ Φ

}
. (4.27)

Subsequently the optimum solution for st,d is, s
(i)
t,d = r⋆ee

jϕ⋆e .

Remark 4.1. Since 0 and
√
γe are members of Re, hence, there are two critical points

and Re is not a null set. On the other hand, as fo(r0, ϕ) is function of cosϕ and sinϕ,

it is periodic, real and differentiable. Therefore, it has at least two extrema and its

derivative has at least two real roots; thus Φe never becomes a null set. As a result in

each single variable update, the problem has a solution and never becomes infeasible.

4.3.3 Solution for PAR constraint

Problem Pr,ϕ under C2 constraint is a special case of C1 and the procedures in subsection

4.3.2 are valid for limited power and PAR constraint. The only difference lies in the

boundaries and critical points with respect to r. Considering the C2 constraint, the

critical points can be expressed as the following,

Rp ={r ∈ {max{0,√γl},min{√γu,
√
γe}, r1, . . . , r10}|

ℑ(r) = 0,max{0,√γl} ⩽ r ⩽ min{√γu,
√
γe}}.

(4.28)

Therefore, the optimum solution for r and ϕ is,

r⋆p = argmin
r

{
fo(r, ϕ0)|r ∈ Rp

}
,

ϕ⋆p = argmin
ϕ

{
fo(r

⋆
p, ϕ)|ϕ ∈ Φ

}
,

(4.29)

and, the optimum entry can be obtained by, s
(i)
t,d = r⋆pe

jϕ⋆p .
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4.3.4 Solution for Continuous Phase

The continuous phase constraint (C3) is a special case of limited power (C1) constraint.

In this case r = 1, and the optimum solution for ϕ is,

ϕ⋆c = argmin
ϕ

{
fo(r, ϕ)|ϕ ∈ Φ, r = 1

}
. (4.30)

The optimum entry can be obtained by s
(i)
t,d = ejϕ

⋆
c .

4.3.5 Solution for discrete phase

We consider the design of a set of MPSK sequences for the discrete phase problem. In

this case, Pr,ϕ can be written as follows (see Appendix C.5 for details),

Pd


min
ϕ

fd(ϕ) =
ej3ϕ

∑6
k=0 gke

−jkϕ

ejϕ
∑2

k=0 h
−jkϕ
k

s.t C4 : ϕ ∈ ΦL.

(4.31)

As the problem under C4 constraint is discrete, the optimization procedure is different

compared with other constraints. In this case all the discrete points lie on the boundary

of the optimization problem; hence, all of them are critical points for the problem.

Therefore, one approach for solving this problem is to obtain all the possibilities of the

objective function fo(ϕ) over the set ΦL = {ϕ0, ϕ1, . . . , ϕL−1} ∈
{
0, 2πL , . . . ,

2π(L−1)
L

}
and

choose the phase which minimizes the objective function. It immediately occurs that such

an evaluation could be cumbersome; however, for MPSK alphabet, an elegant solution

can be obtained as detailed below.

The objective function can be formulated with respect to the indices of ΦL as follows,

fd(ϕl) = fd(l) =
ej3

2πl
L
∑6

k=0 gke
−jk 2πl

L

ej
2πl
L
∑2

k=0 hke
−jk 2πl

L

, (4.32)

where l = {0, . . . , L − 1}, and the summation terms on numerator and denominator

exactly follow the definition of L-points DFT of sequences {g0, . . . , g6} and {h0, h1, h2}
respectively. Therefore, the problem Pd can be written as,

Pl

{
min
l

fd(ϕl) =
wL,3 ⊙FL{g0, g1, g2, g3, g4, g5, g6}

wL,1 ⊙FL{h0, h1, h2}
, (4.33)

where, wL,ν = [1, e−jν
2π
L , . . . , e−jν

2π(L−1)
L ]T ∈ CL and FL is an L point DFT operator.

Due to aliasing phenomena, when L < 7, the objective function would be changed.
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Let Nfd and Dfd be the summation terms in nominator and denominator of fd(ϕl)

respectively, it can be shown that,

L = 6 ⇒ Nfd = FL{g0 + g6, g1, g2, g3, g4, g5}

L = 5 ⇒ Nfd = FL{g0 + g5, g1 + g6, g2, g3, g4}

L = 4 ⇒ Nfd = FL{g0 + g4, g1 + g5, g2 + g6, g3}

L = 3 ⇒ Nfd = FL{g0 + g3 + g6, g1 + g4, g2 + g5},

and for L = 2, Nfd = FL{g0 + g2 + g4 + g6, g1 + g3 + g5} and Dfd = FL{h0 + h2, h1}.

According to aforementioned discussion the optimum solution of (4.33) is,

l⋆ = arg min
l=1,...,L

{
fd(ϕl)

}
. (4.34)

Hence, ϕ⋆d =
2π(l⋆−1)

L and the optimum entry is s
(i)
t,d = ejϕ

⋆
d .

4.3.6 Convergence

The convergence of the proposed method can be discussed in two aspects, the convergence

of objective function and the convergence of the waveform set S. With regard to objective

function, as f̄(S) > 0 and f̃(S) > 0, therefore, fo(S) > 0, ∀S ≠ 0, and this expression is

also valid for the optimum solution of Algorithm 8 (fo(S
⋆) > 0).

On the other hand, the Algorithm 8 minimizes the objective function in each step

leading to a monotonic decrease of the function value. Since the function value is lower

bounded, it can be argued that the algorithm converges to a specific value. Particularly,

if the algorithm starts with feasible S(0) we have,

fo(S
(0)) ⩾ · · · ⩾ fo(S

(i)) ⩾ · · · ⩾ fo(S
⋆) > 0.

Finally, the MBI updating rule (greedy), evaluates the new objective values by updating

each entry separately and choosing the best one, ensures the convergence of argument

[148–150] to stationary point. However, the MBI selection rule could be costly with large

number of variables. In cyclic rule which is considered in this chapter, there are three key

assumptions in convergence of the argument: (a) separable constraints, (b) differentiable

objective, and (c) unique minimizer at each step [151].

In this chapter we consider the convergence of objective function and numerically observed

that the problem converges under limited energy, PAR, continuous and discrete phase

constraints.
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4.3.7 Computational Complexity

In each single variable update, Algorithm 8 needs to carry out the following steps:

• Calculate the coefficient av, bv and cw in (4.15): Calculating av and bv needs

M2
t N operations, while cw needs M2

t N log2(N) due to using fast convolution (see

Appendix C.1 for details). Using a recursive relation, the computational complexity

for the coefficients av and bv can be reduced to M2
t and for cw can be reduced

to MtN log2(N). Typically, in most practical MIMO radar systems, N >> Mt.

Hence, considering the fact that av and bv can be obtained in parallel, the overall

computational complexity of calculating the coefficients is O(MtN log2(N)).

• Solve the optimization problem (4.15): Under C1 and C2 constraints, Algorithm 8

needs finding the roots of 10 and 8-degree polynomials3 in (4.22) and (4.25), which

take an order of 103 and 83 operations respectively, while under C3 the algorithm

needs finding roots of (4.25) and takes an order of 83 operations. In case of C4

constraint we obtain (4.32) using two L-point FFT, where each needs L log2(L)

operations.

• Optimizing all the entries of matrix S: To this end we need to repeat the two

aforementioned steps MtN times.

Let us assume that K iterations are required for convergence of the algorithm. There-

fore, the overall computational complexity of Algorithm 8 is O(KMtN(103 + 83 +

MtN log2(N))) under C1 and C2 constraints, while under C3 isO(KMtN(83+MtN log2(N))).

In case of C4 the computational complexity is O(KMtN(L log2(L) +MtN log2(N))).

4.4 Numerical Results

In this section, we provide some representative numerical examples to illustrate the

effectiveness of the proposed algorithm. Towards this end, unless otherwise explicitly

stated, we consider the following assumptions. For transmit parameters we consider

an ULA configuration with Mt = 8 transmitters and the antenna distance is dt =
λ
2 .

We also consider an ULA configuration at the receive side with Mr = 8 antennas.

We select the desired and undesired angular regions to be Θd = [−55o,−35o] and

Θu = [−90o,−60o] ∪ [−30o, 90o] respectively. For purpose of simulation, we consider an

3For finding the roots of polynomial we use “roots” function in MATLAB. This function is based on
computing the eigenvalues of the companion matrix. Thus the computational complexity of this method
is O(k3), where k is the degree of the polynomial [95, 96]
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(d) C4, L = 8

Figure 4.2: Convergence behavior of the proposed algorithm for different constraint
and values of η (Mt = 8, N = 64).

uniform sampling of these regions with a grid size of 5o. The stopping condition for

Algorithm 8 is ζ = 10−6.

4.4.1 Convergence

Figure 4.2 depicts the convergence behavior of UNIQUE algorithm under C1, C2, C3,

and C4 constraints under different scalarization coefficients η. Since MPSK sequences are

feasible for the all constraints, we consider a set of randomMPSK sequences (S0 ∈ CMt×N )

with alphabet size L = 8 as an initial waveform. Here, every code entry is given by,

s(0)m,n = ej
2π(l−1)

L , (4.35)

where l is the random integer variable uniformly distributed in [1, L]. According to

Figure 4.2, the objective function decreases monotonically for all values of η and for all

the constraints. Furthermore, for any η, the performance ordering of limited power, PAR,

continuous and discrete phase can be predicted from the relation C4 ⊂ C3 ⊂ C2 ⊂ C1.

4.4.2 Trade-off between spatial- and range-ISLR

In this part we firstly assess the contradiction in waveform design for beampattern

shaping and orthogonality; subsequently, we show the importance of making a trade-off
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between spatial- and range-ISLR to obtain a better performance.

4.4.2.1 Relation between Beampattern Shaping and Orthogonality

Figure 4.3 shows the beampattern of the proposed algorithm under C1, . . . , C4 constraints

with different values of η. Setting η = 0 results in an almost omni directional beam.

By increasing η, radiation pattern takes the shape of a beam with η = 1 offering the

optimized pattern.

On the other hand, Table 4.2 shows a three-dimensional representation of the amplitude

of correlation of a particular sequence with the other waveforms in the optimized set

S⋆4. The 4th sequence shows the auto-correlation of that particular waveform. With

η = 1 (first row in Table 4.2), yields an optimized beampattern, the cross-correlation

with other sequences is rather large in all cases.

This shows the transmission of scaled waveforms (phase-shifted) from all antennas similar

to traditional phased array. In this case, it would not be possible to separate the transmit

signals at the receiver (by matched filter) and the MIMO virtual array will not be formed,

thereby losing in the angular resolution. When η = 0 (last row in Table 4.2), an orthogonal

set of sequences is obtained as their cross-terms (auto- and cross-correlation lags) are

small under different design constraints. The resulting omnidirectional beampattern (see

Figure 4.3), however, prevents steering of the transmit power towards the desired angles,

while a strong signal from the undesired directions may saturate the radar receiver. The

middle row in Table 4.2, depicts η = 0.5, a case when partially orthogonal waveforms are

adopted, while some degree of transmit beampattern shaping can still be obtained (see

Figure 4.3).

Figure 4.3 and Table 4.2 show that, having simultaneous beampattern shaping and

orthogonality are contradictory, and the choice of η effects a trade-off between the two

and enhance the performance of radar system. This is explored in the next part.

4.4.2.2 Beampattern nulling and target discrimination

To illustrate the effectiveness of choosing 0 < η < 1, we consider a scenario where two

desired targets (T1 and T2) with similar reflectivity, speed, and range are located in

θT1 = −40o and θT2 = −50o. The reason for selecting similar speed and range is to

consider a worse case scenario where targets cannot be extracted from the range and

4In order to plot the auto- and cross-correlation, first we sort the optimized waveforms based on their
energy, then we move the waveform which has the maximum energy at the middle of the waveform set
(⌊Mt

2
⌉). By this rearrangement, the peak of auto-correlation will be located at the middle.
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Figure 4.3: Transmit beampattern under different constraint and value of η (Mt = 8,
N = 64, Θd = [−55o,−35o] and Θu = [−90o,−60o] ∪ [−30o, 90o]).

Table 4.2: Three-dimensional representation of the auto- and cross-correlation of
proposed method (Mt = 8, N = 1024).

η C1 C2, γp = 1.5dB C3 C4 (L = 8)

1
1023

500 2

Lags

0

Sequences

4-500 6-1023 8

1023
500 2

Lags

0

Sequences

4-500 6-1023 8

1023
500 2

Lags

0

Sequences

4-500 6-1023 8

1023
500 2

Lags

0

Sequences

4-500 6-1023 8

0.5
1023

500 2

Lags

0

Sequences

4-500 6-1023 8

500 2

Lags

1000

Sequences

41500 62000 8

1023
500 2

Lags

0

Sequences

4-500 6-1023 8

1023
500 2

Lags

0

Sequences

4-500 6-1023 8

0
1023

500 2

Lags

0

Sequences

4-500 6-1023 8

1023
500 2

Lags

0

Sequences

4-500 6-1023 8

1023
500 2

Lags

0

Sequences

4-500 6-1023 8

1023
500 2

Lags

0

Sequences

4-500 6-1023 8

Doppler processing. Also, we assume that three more strong targets denoted as B1, B2

and B3 (potentially can be clutter), are located in identical speed and range, but with

different angles, θB1 = −9.5o, θB2 = 18.5o and θB3 = 37o, we aim to design a set of

transmit sequences to be able to discriminate the two desired targets, meanwhile avoiding

interference from the undesired directions.

Figure 4.4 shows the range-angle profile of the above scenario under the representative

C4 constraint with L = 8. When η = 1, we consider the conventional phased array

receiver processing for Figure 4.4a and use one matched filter to extract the range-angle

profile. To this end we assume λ/2 spacing for transmit and receive antenna elements,
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Table 4.3: Amplitude of the desired and undesired targets

η T1 T2 B1 B2 B3

1 9.54 dB 9.79 dB -13.24 dB -19.93 dB -9.4 dB
0.5 8.78 dB 9.71 dB -3.5 dB -3.51 dB -0.6 dB
0 -2.39 dB -2.44 dB 3.68 dB 2.95 dB 2.87 dB

i.e., dt = dr = λ
2 . Observe that, despite the mitigation of undesired targets, the two

targets are not discriminated and are merged into a single target. The same scenario has

been repeated in Figure 4.4b when η = 0. Since the optimized waveforms are orthogonal

in this case, we consider MIMO processing to exploit the virtual array and improve the

discrimination/identifiability. In this case, we use Mt matched filters in every receive

chain, each corresponding to one of the Mt transmit sequences. The receive antennas

have a sparse configuration with dr =Mt
λ
2 but the distance between transmit antennas

is dt =
λ
2 ; this forms a MIMO virtual array with a maximum length. In this case, the

optimized set of transmit sequences is able to discriminate the two targets, but it is

contaminated by the strong reflections of the undesired targets. Also, some false targets

(F1, F2 and F3) have appeared due to the high side-lobe levels of the strong reflectors.

By choosing η = 0.5, we are able to discriminate the two targets and mitigate the signal

of the undesired reflections in a same time. This fact is shown in Figure 4.4c.

Table 4.3 shows the amplitude of the desired targets and undesired reflections in the

scene (after the detection chain) at different Pareto-weights (η). As can be seen from

Table 4.3, the performance of target enhancement and interference mitigation reduces

from η = 1 to η = 0. Nevertheless by choosing η = 0.5 the waveform achieves a trade-off

between spatial- and range-ISLR, it can discriminate the two targets and mitigate the

interference from the undesired locations.

4.4.2.3 Pareto-front

Pareto-front or non-dominated solutions, is a curve which gives a set of optimal solutions

and helps the radar designers to choose the best solution for the radar system according to

the environment conditions, priorities and risks. To the best of our knowledge, there is no

technique in literature trading off the two spatial- and range-ISLR functions considered

in the chapter. In this regards, we consider to compare the performance of the proposed

method with Non-Dominated Sorting Genetic Algorithm (NSGA)-II, a multi objective

evolutionary algorithm [152]. We assume the following setup for NSGA-II, the number

of population np = 50, crossover percentage cr = 70%, mutation percentage mp = 40%

and mutation rate mr = 0.05.
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(c) MIMO processing η = 0.5.

Figure 4.4: Illustration of the centrality of η (C4 constraint, Mt =Mr = 8, N = 64,
L = 8, θT1

= −50o, θT2
= −40o, θB1

= −9.5o, θB2
= 18.5o and θB3

= 37o).

Figure 4.5 shows the non-dominated (optimal) solutions of the proposed method under

C1, . . . , C4 constraints and NSGA-II method under discrete phase. As can be seen the

solution obtained by NSGA-II cannot dominate the Pareto front of proposed method.

Besides the proposed methods offers more diversity in compare with NSGA-II. In addition

Figure 4.5 also depicts the performance of the solution corresponding to η = 0.5; this
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Figure 4.5: Solution for Pareto front obtained from NSGA-II and the proposed method
(N = 64, Mt = 8).

solution is used to generate Figure 4.4c. It can be observed that the solution lies on the

Pareto front.

The correct choice of η is essential to achieve the objectives and that, such a choice of η

depends on the scenario. In the following, we provide an plausible method for selecting

an appropriate η.

• Training Step: This is an offline procedure which contains the following steps,

1. We consider different scenarios and obtain the optimized waveform set and its

η value by using the Pareto front. Then, we store the corresponding results

for every scenario in a database.

2. We design an artificial neural networks and train it with the different scenarios

and optimized waveforms corresponding to the best η value that are stored

on the database, to offer the optimum solution based on the scenario.

• Functional Step: After training successfully the artificial neural network we can

consider the following procedure,

1. In order to form the virtual array at the receiver, at the first the MIMO radar

system transmits an orthogonal set of sequences (η = 0). In this case, the

MIMO radar system is able to estimate the angles of targets and interference

with high discrimination (other parameters such as range and Doppler can be

estimated as well).

2. Based on the estimated parameters, the artificial neural network offers the

optimized set of sequences by using the database.

3. Using the chosen set of sequences, the environment parameters are estimated.

4. We go to step 2.
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As mentioned earlier, the training step is performed offline; similar sensor training is also

typically undertaken in many commercial offerings. Further, the functional step does not

involve optimization procedures but executes a neural network which is typically fast,

thereby rendering the scheme practically is applicable. We consider a detailed study on

this scheme for our future research.

4.4.3 Minimizing spatial-ISLR (η = 1)

By choosing η = 1, we focus on minimizing the spatial-ISLR. In this subsection, we

compare the performance of proposed method under different constraints. In this regards,

we compare with SDR based method [32] for C1, MIA-PC for C2, MIA-CMC [45] for C3

and STTC [46] C4 as a benchmark respectively.

To compare with the SDR method [32], we assume that the desired and undesired

angular regions to be Θd = [−55o,−35o] and Θu = [−90o,−60o]∪ [−30o, 90o] respectively.

In Figure 4.6a, we illustrate the beampattern of the optimized waveforms through

different constraints and SDR method. In case of designing discrete phase sequences,

we map the results of SDR to the nearest MPSK sequence and call it Quantized-SDR

(Q-SDR). Interestingly, the optimized waveforms through the proposed method mimics

the beampattern obtained via SDR, indicating the attractiveness of this approach in

designing set of sequences with practical constraints. Notice that, there is a significant

difference between the solution obtained via the proposed method under the discrete

phase constraint and Q-SDR for identical alphabet sizes. This can be justified from the

fact that we consider the constraint directly in the design problem, while quantizing the

waveform to the nearest MPSK sequence does not guarantee an optimal solution.

In order to compare under PAR continuous and discrete phase, we assume that the

target and the three interferers are located at 10o, −5o, 25o and −60o respectively. We

set noise power at −10 dB, and similar values of 30dB for target and clutter RCS.

For a fairness, we compare with MIA-PC and MIA-CMC in [32], where the similarity

constraint is not considered. Also, in [46], we set the similarity threshold equal to

2, the maximum admissible similarity value in STTC. Figure 4.6(b),(c),(d) shows the

normalized beampattern responses of MIA-PC, MIA-CMC, STTC and the proposed

method. Observe that the proposed method outperforms MIA-PC and MIA-CMC in

terms of null steering. Besides the performance of the proposed method and STTC under

discrete phase are similar.
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(a) Comparison of C1 and SDR.
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(b) Comparison of C2 and MIA-PC.
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(c) Comparison of C3 and MIA-CMC.
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(d) Comparison of C4 and STTC).

Figure 4.6: The comparison of beampattern shaping of proposed method with (a)
SDR, (b) MIA-PC, (c) MIA-CMC and (d) STTC (Mt = 8 and N = 64).

4.4.4 Minimizing range-ISLR (η = 0)

We set η = 0 and evaluate the performance of the proposed method. Kindly refer

to the last row of Table 4.2, which shows the three-dimensional representation of the

auto- and cross-correlation (following the methodology in footnote 3 of section 4.4.2),

under C1, . . . , C4 constraints. In this case, the proposed method designs a waveform

with good orthogonality under C2, C3 and C4 constraints, and interestingly achieves a

perfect orthogonality under the C1 constraint. Figure 4.7 shows the absolute value of

optimum sequence under C1 constraint. As can be seen all the power is concentrated on

one transmitter with no waveform from others. This is similar to TDM approach for

orthogonality [132].

We choose Multi-CAN [2] and MM-Corr [3] as the benchmark and assess the range-ISLR

under C3 and C4 (unimodular sequences) for a fair comparison. In this case, a lower

bound on the scaled range-ISLR is 10 log(Mt− 1) dB [3]. Table 4.4 compares the average

scaled range-ISLR of the proposed method with Multi-CAN, MM-Corr and the lower

bound for different number of transmitters. Similar to the Multi-CAN and MM-Corr, the

proposed method meets the lower bound under continuous phase constraint. Interestingly,

even with discrete phase constraint where L = 8 and L = 2 (binary), the obtained set of

sequences exhibits the scaled range-ISLR values quite close to the lower bound.
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Figure 4.7: Optimized waveform of proposed method under C1 constraints (η = 0,
Mt = 8, N = 1024).

Table 4.4: Comparison between the average scaled range-ISLR (dB) of the proposed
method under C3 and C4, Multi-CAN [2], MM-corr [3] and lower bound with different

number of transmitters (η = 0, N = 64).

Mt

Lower
bound

Multi-
CAN

MM-
Corr C3

C4

(L = 8)
C4

(L = 2)

2 0 0 0.0003 0 0.2583 0.5266
3 3.0103 3.0103 3.0104 3.0103 3.1045 3.2133
4 4.7712 4.7712 4.7712 4.7712 4.8080 4.8587
5 6.0206 6.0206 6.0206 6.0206 6.0411 6.0950
6 6.9897 6.9897 6.9897 6.9897 7.0024 7.0283
7 7.7815 7.7815 7.7815 7.7815 7.7891 7.8071
8 8.4510 8.4510 8.4510 8.4510 8.4581 8.4684

Table 4.5: The range-ISLR of the proposed method under the C4 constraint with
different sequence lengths (η = 0, Mt = 8).

N 32 64 128 256 512 1024

L = 2 8.4678 8.4688 8.4687 8.4684 8.4676 8.4675
L = 8 8.4569 8.458 8.4578 8.457 8.4568 8.4567

Table 4.5 shows the optimized scaled range-ISLR values under C4, for L = 8 and L = 2

with different sequence lengths when Mt = 8. As can be seen the proposed method is

capable to design large sequence length without degradation. Recalling the last row of

Table 4.5, we observe that the optimized sequences have range-ISLR values quite close

to the lower bound (less than 0.02 dB difference when Mt = 8).

4.4.5 Beampattern shaping with binary sequences

Due to the simplicity of implementing of binary sequences, these kind of waveforms

are attractive for radar designers. Here we assess the beampattern performance of

the proposed binary waveform design. Figure 4.8a shows the beampattern response of
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(a) Θd = (−55o,−35o) and Θu =
(−90o,−60o) ∪ (−30o, 90o).
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(b) Θd = (−10o, 10o) and Θu =
(−90o,−15o) ∪ (15o, 90o).

Figure 4.8: The beampattern of optimized binary sequences (Mt = 8, N = 1024).

the proposed method in binary case with different value of η, where we assume that

Θd = [−55o,−35o] and Θu = [−90o,−60o] ∪ [−30o, 90o]. As can be seen with η = 1 we

obtain the optimum beampattern response and by decreasing the η the beampattern

worsens. Besides, the beampattern response in binary case is symmetric about 0o.

Indeed, in a case when the waveforms are real (binary sequences), the beampattern will

be symmetric.

In 4D-imaging application of automotive radar systems, the desired region for beampattern

shaping can be limited to the angles around zero, where binary codes can be used.

Figure 4.8b shows the beampattern response at Θd = [−10o, 10o] and Θu = [−90o,−15o]∪
[15o, 90o] for different η.

4.4.6 The impact of alphabet size and PAR

Figure 4.9 shows the impact of alphabet size and PAR in several aspects. In (a) and

(b), the solution of C4 approaches that of C3 for large alphabet sizes. This behavior

is expected since the feasible set of C4 will be close to that of C3, and the optimized

solutions will behave the same. In (c), by increasing the PAR threshold, the feasible

set under C2 constraint converges to C1. By decreasing the PAR threshold to 1, the

feasible set will be limited to that specified in C3. Part (d), shows the constellation of

the optimized sequences under different constraints.

4.4.7 Computational Time

Table 4.6 shows a typical computational time5 required to obtain the results of Table 4.2.

To provide this table, we initialized the algorithm with 10 independent set of random

sequences and performed Algorithm 8. The obtained run-times were averaged and

5The computational times in this section is reported based on running the algorithms on a desktop
PC with Intel (R) Core (TM) i9-9900K CPU @ 3.60GHz and 64.00 GB installed memory (RAM).
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(a) Convergence (η = 0.95).
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(b) Beampattern (η = 1, Θd =
(−55o,−35o) and Θu = (−90o,−60o) ∪

(−30o, 90o)).
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(c) Auto-correlation (η = 0).

-2 0 2

Real

-2

0

2

Im
ag

in
ar

y

(d) Constellation (η = 1).

Figure 4.9: The impact of alphabet size ((a) and (b)) and PAR ((c) and (d)) (Mt = 8
and N = 64).

Table 4.6: Averaged computational time (sec) of Table 4.2 over 10 independent trails
(Mt = 8 and N = 1024).

Constraint C1 C2 C3 C4

η = 0 1124 270 694 1083

η = 0.5 756 277 25570 5809

η = 1 5.9 10.5 0.62 0.58

reported in Table 4.6. Note that depending to the objective and the approach used for

updating the single variable, the proposed algorithm can have different computational

time. In the following, we compare the computational time of the proposed method with

the counterparts.

4.4.7.1 η = 0

Figure 4.10a compares the computational time of the proposed method with Multi-CAN

[2, 21] and MM-Corr [3] with Mt = 2 at different sequence lengths. In this figure, we

consider that all of the methods are initialized with the same set of random discrete

phase sequences with alphabet size of L = 8. Note that the proposed method offers lower
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(a) Range-ISLR minimization (η = 0,
Mt = 2)
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(b) Spatial-ISLR minimization (η = 1,
Mt = 8)

Figure 4.10: Averaged computational time over 10 independent trails.

computational time in comparison with Multi-CAN and MM-Corr under continuous and

discrete phase constraints6.

4.4.7.2 η = 1

Figure 4.10b compares the computational time of the proposed method with the the

methods which are performing beampattern shaping, with Mt = 8 at different sequence

lengths. Note that the highest computational time belongs to the STTC [46] method

which is based on CD method. Note that STTC uses exhaustive search to find the

optimum solution which is very expensive in terms of complexity. Although the proposed

algorithm under discrete phase constraint uses CD method as well, but due to the

efficient formulation and using FFT, it has significantly lower computational time.

Further, under limited energy and continuous phase constraints, the proposed method has

lower computational time in comparison with SDR [32] and MIA-CMC [45], respectively.

Finally, in case of PAR constraint, the proposed method has lower run-time in comparison

with MIA-PC, and its run-time is similar to MIA-PC-AC [45].

4.5 Conclusion

We used spatial- and range-ISLR as representative figures of merit in this chapter to

achieve a trade-off between beampattern response and orthogonality. Accordingly, we

introduced a bi-objective Pareto framework to minimize the two metrics simultaneously

for MIMO radar systems, under power budget, PAR, continuous and discrete phase

constraints. The problem formulation led to a non-convex, multi-variable and NP-hard

optimization problem. To tackle the problem, we proposed an iterative method based

on CD; in each of its steps we utilized an effective method to minimize the objective

6We have not reported the computational time of MM-Corr for N > 64, since it takes much more
time than the counterparts.



Spatial- and Range- ISLR Trade-off in MIMO Radar via Waveform Correlation
Optimization 106

function. Specifically, we used a gradient based method under energy budget, PAR and

continuous phase constraints; an FFT-based method was used under the discrete phase

constraint.

Simulation results have illustrated the monotonicity of the proposed method in minimizing

the objective function as well as the contradiction in minimizing the two ISLRs. In this

context, the proposed method is capable of effecting an optimal trade-off between the

two. The chapter also provided a Pareto curve aided cognitive radar system to decide on

the operating levels of the two ISLRs. Besides, the proposed framework also shows good

performance in comparison to counterparts when used for minimizing the spatial- and

range-ISLR individually; this indicates the flexibility offered by the framework.

Possible future research directions includes the consideration of Doppler filter bank and

spectrum shaping for enhanced cognition in MIMO radar systems.



Chapter 5

MIMO Radar Transmit

Beampattern Shaping for

Spectrally Dense Environments

Designing unimodular waveforms with a desired beampattern, spectral occupancy and

orthogonality level is of vital importance in the next generation MIMO radar systems.

Motivated by this fact, in this chapter, we propose a framework for shaping the beampat-

tern in MIMO radar systems under the constraints simultaneously ensuring unimodularity,

desired spectral occupancy and orthogonality of the designed waveform. In this manner,

the proposed framework is the most comprehensive approach for MIMO radar waveform

design focusing on beampattern shaping. The problem formulation leads to a non-convex

quadratic fractional programming. We propose an effective iterative to solve the problem,

where each iteration is composed of a Semi-definite Programming (SDP) followed by

eigenvalue decomposition. Some numerical simulations are provided to illustrate the

superior performance of our proposed over the state-of-the-art.

5.1 Introduction

Transmit beampattern shaping by controlling the spatial distribution of the transmit

power, can play an important role in improving the radar performance through enhanced

power efficiency, better detection probability, target identification, improved interference

mitigation, among others. The goal is to focus the transmit power on desired angles while

minimizing it at undesired angles [25]. Recently, the beampattern shaping via waveform

design in MIMO radar systems has been widely studied. From a waveform design

perspective, there are two methods for beampattern shaping, indirect and direct methods

107



MIMO Radar Transmit Beampattern Shaping for Spectrally Dense Environments 108

[26, 27]. The early works (two-step method) focus on the correlation matrix design and

the waveform matrix is subsequently obtained through one of the decomposition methods

[28–36], but the latest works is more about the direct waveform design. The drawback

of the two-step method is, there is no guarantee to obtain a rank one solution. On

the other hand, there are several metrics (objective functions) to obtain the optimum

beampattern such as, beampattern matching, spatial-ISLR/PSLR minimization, and

SINR maximization.

Beampattern Matching In beampattern matching, the aim is to minimize the difference

between the desired and designed beampattern. For instance, the following papers have

worked on designing the waveform covariance matrix employing beampattern matching.

The authors in [28] devised a method to address the joint beampattern shaping and the

cross-correlation minimization in spatial domain through SQP technique. In [29], CA is

presented to shape the beampattern under low PAR constraint. In [34, 35], the authors

propose a covariance matrix design method based on DFT coefficients and Toeplitz

matrices. The DFT-based technique provides a well-match transmit beampattern at low

complexity. However, the drawback of the DFT-based method is that, for small number

of antennas, the performance of the DFT-based method is slightly poorer. On the other

hand, several papers focus on designing directly the transmit waveforms for beampattern

shaping. For example, in [26], two optimization algorithms based on ADMM are proposed

under constant modulus constraint for the probing waveform. In [27], a method based in

ADMM is proposed to design a beampattern in wide-band systems. In [41], a method for

beampattern matching is addressed based on gradient decent which they term it PDR.

In [42], the authors propose a method based on MM for beampattern matching under

PAR constraint in two cases of wide- and narrow-band.

Spatial-ISLR and PSLR minimization In Spatial-ISLR and PSLR minimization ap-

proach, the aim is to minimize the ratio of summation of beampattern response on

undesired over desired angles, and to minimize the ratio of maximum beampattern

response on undesired angles over minimum beampattern response on desired angles,

respectively. In [32], a method based on SDR under constant energy and 3 dB main

beam-width constraint is proposed to minimize the spatial-ISLR. In [44], the robust

designs of waveform covariance matrix through optimizing the worst case transmit

beampattern are considered to minimize the spatial-ISLR and -PSLR of beampatterns,

respectively. Unlike two aforementioned methods, [37, 40, 43] propose a direct waveform

design solution. The authors in [37] propose the efficient UNIQUE algorithm based on

CD method to minimize spatial- and range-ISLR under four different constraints, namely,

limited energy, PAR, continuous and discrete phase constraints. The method proposed in
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[43] is similar to UNIQUE without considering range-ISLR metric and PAR and limited

energy constraints. A method based on ADMM is proposed in [40] to minimize the

spatial-PSLR under constant modulus constraint.

SINR maximization In SINR optimization approaches, the problem does not deal with

the beampattern directly. However, the beampattern is implicitly shaped as a result of

transmit waveform optimization. For example [30, 31] address the problem of waveform

design in the presence of signal dependence clutter. In these works, an iterative approach

is presented to jointly optimize the transmit waveform and receive filter to maximize the

output SINR. The authors in [45] propose MIA based on MM method for joint waveform

and filter design under similarity, constant modulus (MIA-CMC) and PAR (MIA-PC)

constraints. While STTC [46] is proposed based on CD to solve the problem under

similarity, uncertain steering matrices, continuous or discrete phase constraints. In [46], a

Dinkelbach based method and exhaustive search is proposed for continuous and discrete

phase constraints respectively.

In order to form the virtual array and enhancing the angular resolution, the received

signal in MIMO radar system should be separable (orthogonal) in receiver while a

set of arbitrary waveforms are adopted in the transmit side. In order to obtain the

orthogonality, the waveform should have small cross-correlation [17]. Also, small auto-

correlation sidelobes is a requirement, to avoid masking weak targets within the range

sidelobes of a strong target, and to mitigate the harmful effects of distributed clutter

returns close to the target of interest. Recently, many optimization techniques, e.g.,

Multi-CAN [2, 21], Iterative Direct Search [85], ISL New [22, 153], MM-Corr [3], BiST

[24], UNIQUE [37] and WeBEST [58] are proposed to design orthogonal sets of sequences,

minimizing the ISL/PSL metrics. However, beampattern shaping in MIMO radar systems

yield a correlated waveform which, is in contradiction with orthogonality [37, 131]. In

this context there are few papers which addressed these two aspects in MIMO radar

systems. For instance [131] proposes beampattern matching problem under particular

constraints on the waveform cross-correlation matrix. In [133], the authors minimizes

the difference between desired and undesired beampattern responses for one sub-pulse.

Then the quasi-orthogonality of other sub-pulses are obtained by random permutation.

In [134], the authors combine a beampattern matching by orthogonality requirement

as a penalty in the objective function and use the PDR approach for the solution. In

[135], the authors propose a method based on ADMM to design a beampattern with

good cross-correlation. In [37], UNIQUE is proposed as a unified framework to minimize

the spatial- and range-ISLR using weighted sum technique under limited energy, PAR,

continuous and discrete phase constraints. By choosing an appropriate value for the
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regularization parameter, UNIQUE is able to make trade-off between having a good

orthogonality and beampattern shaping.

On the other hand, spectral shaping is an important aspect of resource management

in cognitive1 MIMO radar systems. Uing this approach, the cognitive radar system is

able to utilize effectively the available bandwidth. One attractive application of spectral

shaping is coexistence of communications and cognitive MIMO radar systems, which the

whole bandwidth is shared between these two systems based on the priorities [47]. There

are several methods for spectral shaping. For instance, in [1, 23, 48–51] spectral matching

approach is proposed to shape the spectral of the transmit waveform. In [52, 53], the

authors consider a waveform design approach to maximize SINR, while the spectral

behaviour is considered as a constraint. In [54, 55], the ratio of the maximum stop-band

level to the minimum pass-band level is considered as the objective function to shape the

spectrum. SILR minimization approach is consider under continuous and discrete phase

constraints in [47]. The design of constant modulus waveform for beampattern matching

under spectral constraint are addressed in [50, 56]. To tackle the non-convex optimization

problem the authors in [50] and [56] propose IBS and BIC methods respectively.

5.1.1 Contribution

In this chapter, we consider the spatial-ISLR as design metric similar to [43]. In [43], the

authors proposed CD-based method to enhance the performance of the radar in spatial

domain. However, in this chapter, we deal with the design of waveform considering the

features in three domains: ISLR in the spatial and range domain and masking in the

spectral domain. Particularly, we propose a waveform design framework to shape the

beampattern with practical constraints, namely, spectral masking, 3 dB beam-width,

constant modulus and similarity constraints. Spectral masking constraint plays an

important role in cognitive MIMO radar systems in several scenarios, such as spectral

sharing in coexistence of MIMO radar and MIMO communication. The 3 dB beam-width

constraint ensures that the beampattern has a good response at the mainlobe. This

constraint can be used in the emerging 4D-imaging automotive MIMO radar systems,

wherein the SRR, MRR and LRR configurations are merged, to provide unique and

high angular resolution in the entire radar detection range [37, 43]. Constant modulus

waveforms are attractive for radar system designers due to efficient utilization of the

limited transmitter power. Besides, since constant modulus is a kind of only phase-

modulated sequence, implementing of constant modulus waveform is simple. As to

the orthogonality, we incorporate the beampattern shaping optimization problem with

1Cognitive MIMO radar systems are smart sensors which interact with the environment to adapt the
properties of the waveform with the environment to enhance their performance [11].
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similarity constraints to make a trade-off between having a good beampattern response

and orthogonality [37]. This constraint imposes that the optimize waveform inherit some

properties of a reference waveform. In fact, we consider the designed waveform to be

similar to a specific waveform which have a good orthogonality to form the virtual array

in receivers and enhance its angular resolution.

It is desirable to include all these properties to improve radar performance in emerging

applications and in the emerging scenario of crowded environments with interference

from other radars or communication systems. In this context, the contributions of the

work are listed below.

• Incorporation of metrics from multiple domains: Radar tasks are influenced by

parameters in the spatial, temporal and spectral domain. Hence it is pertinent

to consider quality metrics in all these domains to improve performance. Thus,

while it is highly interesting to consider all the metrics in the waveform design, the

existing works consider only a selection of these performance metrics. A problem

set-up involving these key performance indicators in different domains is lacking in

literature. In this context the proposed framework incorporating all the metrics

is the most comprehensive approach for MIMO radar waveform design focusing

on beampattern shaping; it subsumes existing works as special cases. The gains

obtained by incorporating these metrics over the existing works bears testimony to

their impact.

• Novel optimization framework: The incorporation of all the aforementioned quality

metrics adds further complexity to the waveform optimization and these cannot be

handled by the existing frameworks. In this context, the chapter also offers a novel

optimization framework to obtain a local optimum solution of the non-convex multi-

variable and NP-hard problem. In an attempt to solve this problem, we propose

an indirect method based on SDP. We first recast the waveform-design problem

as a rank-one constrained optimization problem. Then, unlike the conventional

methods which drop the rank one constraint, we propose a new iterative algorithm

for efficiently solving the resulting rank-one constrained optimization problem.

Each iteration of the proposed iterative algorithm is composed of an SDP followed

by an Eigenvalue Decomposition (ED). In every iteration, we force the second

largest eigen value towards zero to obtain the rank one solution. We prove that the

proposed iterative algorithm converges to a local minima of the rank-one constrained

optimization problem. Further, we compute the computational complexity of the

proposed iterative algorithm. In addition the proposed framework can be extended

to apply other convex constraints.
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5.1.2 Organization and Notation

The rest of this research is organized as follows. In Section 5.2, the system model

and the design problem for minimizing the spatial-ISLR under constant modulus, 3 dB

beam-width, similarity and spectral masking, constraints is formulated. We develop

the iterative WISE framework based on SDP to obtain a rank-one solution in Section

5.3. Finally we provide numerical experiments to verify the effectiveness of proposed

algorithm in Section 5.4.

Notations This chapter uses lower-case and upper-case boldface for vectors (a) and

matrices (A) respectively. The conjugate, transpose and the conjugate transpose opera-

tors are denoted by the (.)∗, (.)T and (.)† symbols respectively. Besides the Frobenius

norm, ℓ2 and ℓp norm, absolute value and round operator are denoted by ∥.∥F , ∥.∥2,
∥.∥p, |.| and ⌊.⌉ respectively. For any matrix A, Tr(A), Diag(A) and Rank(A) stand for

the trace, diagonal vector and the rank of A, respectively. The letter j represents the

imaginary unit (i.e., j =
√
−1), while the letter (i) is use as step of a procedure. Finally

1 and 0 denote a matrix/vector with proper size which all the elements are equal to one

and zero respectively.

5.2 System Model

We consider a colocated narrow-band MIMO radar system, with M transmit antennas,

each transmitting a sequence of length N in the fast-time domain. Let the matrix

S ∈ CM×N denote the transmitted set of sequences as,

S ≜


s1,1 s1,2 . . . s1,N

s2,1 s2,2 . . . s2,N
...

...
...

...

sM,1 sM,2 . . . sM,N

 .

Let us denote that S ≜ [s̄1, . . . , s̄N ] ≜ [s̃T1 , . . . , s̃
T
M ]T , where the vector s̄n ≜ [s1,n, s2,n, . . . , sM,n]

T ∈
CM (n = {1, . . . , N}) indicates the nth time-sample across the M transmitters (the nth

column of matrix S) while the s̃m ≜ [sm,1, sm,2, . . . , sm,N ]
T ∈ CN (m = {1, . . . ,M})

indicates the N samples of mth transmitter (the mth row of matrix S). In this chapter,

we deal with the design of S considering features in three domains: ISLR in the spatial

and range domain and masking in the spectral domain. To this end, we now introduce
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the system model to describe in spatial and spectral domains. Subsequently, we also

introduce similarity constraints to impose the range-ISLR features.

5.2.1 System Model in Spatial Domain

Let assume a colocated MIMO radar system with an ULA structure for the transmit

array characterized by the following steering vector[17],

a(θ) = [1, ej
2πd
λ

sin(θ), . . . , ej
2πd(M−1)

λ
sin(θ)]T ∈ CM , (5.1)

where d is the distance between the transmitter antennas and λ is the signal wavelength.

The beampattern in the direction of θ can be written as [17, 28, 44],

P (S, θ) =
1

N

N∑
n=1

∣∣∣a†(θ)s̄n∣∣∣2 = 1

N

N∑
n=1

s̄†nA(θ)s̄n

where, A(θ) = a(θ)a†(θ). Let Θd and Θu be the sets of desired and undesired angles in

the spatial domain, respectively. These two sets satisfy, Θd ∩Θu = ∅ and Θd ∪Θu ⊂
[−90o, 90o]. In this regard the spatial-ISLR is given by the following expression [37],

f(S) ≜

∑
θ∈Θu

P (S, θ)∑
θ∈Θd

P (S, θ)
=

∑N
n=1 s̄

†
nAus̄n∑N

n=1 s̄
†
nAds̄n

, (5.2)

where Au ≜ 1
N

∑
θ∈Θu

A(θ) and Ad ≜
1
N

∑
θ∈Θd

A(θ).

5.2.2 System Model in Spectrum Domain

Let F ≜ [f0, . . . , fN̂−1] ∈ CN̂×N̂ be the DFT matrix (N̂ ≥ N), where,

fk ≜ [1, e−j
2πk
N̂ , . . . , e−j

2πk(N̂−1)

N̂ ]T ∈ CN̂ , k = {0, . . . , N̂ − 1}.

Let U = ∪Kk=1(uk,1, uk,2) be the K number of normalized frequency stop-bands, where

0 ≤ uk,1 < uk,2 ≤ 1 and ∩Kk=1(uk,1, uk,2) = ∅. Thus, the undesired discrete frequency

bands are given by V = ∪Kk=1(⌊N̂uk,1⌉, ⌊N̂uk,2⌉). In this regards, the absolute value of

the spectrum at undesired frequency bins can be expressed as |Gŝm|, where ŝm is N̂ −N

zero-pad version of ŝm, and defined as,

ŝm ≜ [s̃m; 0; . . . ; 0︸ ︷︷ ︸
N̂−N

], (5.3)
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and, G ∈ CK×N̂ contains the rows of F corresponding to the frequencies in V, and K is

the number of undesired frequency bins [47].

5.2.3 Problem Formulation

We aim to design a set of constant modulus sequences for MIMO radar such that the

transmit beampattern is steered towards desired directions and has nulls at undesired

directions simultaneously, with spectrum compatibility and similarity constraints. To

this end, we can formulate the following optimization problem,



min
S

f(S) =

∑N
n=1 s̄

†
nAus̄n∑N

n=1 s̄
†
nAds̄n

s.t. 0.5 ≤
∑N

n=1 s̄
†
nA(θd)s̄n∑N

n=1 s̄
†
nA(θ0)s̄n

≤ 1,

|sm,n| = 1,

max
{
|Gŝm|

}
≤ γ, m ∈ {1, . . . ,M},

1√
MN

∥S− S0∥F ≤ δ,

(5.4a)

(5.4b)

(5.4c)

(5.4d)

(5.4e)

where (5.4b) indicates the 3 dB beam-width constraint to guarantee the beampattern

response at all desired angles is at least half the maximum power. In (5.4b), θd ∈ {θ|∀θ ∈
Θd} and θ0, denotes the the angle with maximum power, which is usually chosen to be

at the center point of Θd. The constraint (5.4c) indicates the constant modulus property;

this is attractive for radar system designers since its allows for the efficient utilization of

the limited transmitter power. The constraint (5.4d) indicates the spectrum masking

and guarantees the power of spectrum in undesired frequencies not to be greater than γ.

Finally, the constraint (5.4e) has been imposed on the waveform to control properties

of the optimized code (such as orthogonality) similar to the reference waveform S0, for

instance this helps controlling ISLR in range domain. If we consider S and S0 to be a

constant modulus waveform, the maximum admissible value of the similarity constraint

parameter would be δ = 2 (0 ≤ δ ≤ 2).

In (5.4), the objective function (5.4a) is a fractional quadratic function, also (5.4b) is a

non-convex inequality constraint. The (5.4c) is a non-affine equality constraint while, the

inequality constraint (5.4e) yields a convex set. Therefore, we encounter a non-convex,

multi-variable and NP-hard optimization problem [37]. In the following, we propose an

iterative method based on SDP to obtain an efficient local optimum solution.
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5.3 Proposed Method

The maximum of P (S, θ) is clearly M2, and occurs when s̄n = a(θ) n = {1, . . . , N}.
Therefore, the denominator of (5.4a) satisfies,

∑N
n=1 s̄

†
nAds̄n ≤ KdM

2, where Kd is the

number of desired angles. Thus, the problem (5.4) can be relaxed as [154],



min
S

N∑
n=1

s̄†nAus̄n

s.t.
N∑
n=1

s̄†nAds̄n ≤ KdM
2,

N∑
n=1

s̄†nA(θd)s̄n ≤
N∑
n=1

s̄†nA(θ0)s̄n,

N∑
n=1

s̄†nA(θ0)s̄n ≤ 2
N∑
n=1

s̄†nA(θd)s̄n,

|sm,n| = 1,

∥Gŝm∥p→∞ ≤ γ, m ∈ {1, . . . ,M},
1√
MN

∥S− S0∥F ≤ δ

(5.5a)

(5.5b)

(5.5c)

(5.5d)

(5.5e)

(5.5f)

(5.5g)

In (5.5), constraints (5.5c) and (5.5d) are obtained by expanding (5.4b) constraint.

Besides, we replace the constraint max{|Gŝm|} (5.4d) with ∥Gŝm∥p→∞ (5.5f), which is

a convex constraint for each finite p.

Remark 5.1. Another possible solution to consider the constraint (5.4d) is direct

implementation by individually bounding each frequency response at each undesired

frequency bin. This reformulation makes the problem convex, but needs to consideration

of M ×K constraints in total, which increases the complexity of the Algorithm. As the

alternative, in this chapter we replace this constraint with ℓp-norm and leveraging the

stability of the algorithm, choose a large p value to solve the problem.
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Problem (5.5) is still non-convex with respect to S due to (5.5c), (5.5d) and (5.5e). To

cope with this problem, defining Xn ≜ s̄ns̄
†
n, we recast (5.5) as follows,

min
S,Xn

N∑
n=1

Tr(AuXn)

s.t.

N∑
n=1

Tr(AdXn) ≤ KdM
2,

N∑
n=1

Tr(A(θd)Xn) ≤
N∑
n=1

Tr(A(θ0)Xn),

N∑
n=1

Tr(A(θ0)Xn) ≤ 2

N∑
n=1

Tr(A(θd)Xn),

Diag(Xn) = 1M ,

(5.5f), (5.5g),

Xn ≽ 0,

Xn = s̄ns̄
†
n,

(5.6a)

(5.6b)

(5.6c)

(5.6d)

(5.6e)

(5.6f)

(5.6g)

(5.6h)

It is readily observed that, in (5.6), the objective function and all the constraints but (5.6h)

are convex in Xn and S. In the following, we first present an equivalent reformulation for

(5.6), which paves the way for iteratively solving this non-convex optimization problem .

Theorem 5.1. Defining Qn ≜

 1 s̄†n

s̄n Xn

 ∈ C(M+1)×(M+1) and considering slack vari-

ables Vn ∈ C(M+1)×M and bn ∈ R. The optimization problem (5.6) is equivalent to,

min
S,Xn,bn

N∑
n=1

Tr(AuXn) + η
N∑
n=1

bn

s.t. (5.6b), (5.6c), (5.6d), (5.6e), (5.6f), (5.6g)

Qn ≽ 0,

bnIM −V†
nQnVn ≽ 0,

bn ≥ 0,

(5.7a)

(5.7b)

(5.7c)

(5.7d)

(5.7e)

where η is a regularization parameter.

Proof. See Appendix D.1.

The problem (5.7) can be solved iteratively by alternating between the parameters. Let,

V
(i)
n , Q

(i)
n , S(i), X

(i)
n and b

(i)
n be the values of Vn, Qn, S, Xn and bn at ith iteration,

respectively. Given V(i−1) and b
(i−1)
n , the optimization problem with respect to S(i), X

(i)
n

and b
(i)
n at the ith iteration becomes,
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

min
S(i),X

(i)
n ,b

(i)
n

N∑
n=1

Tr(AuX
(i)
n ) + η

N∑
n=1

b(i)n

s.t.

N∑
n=1

Tr(AdX
(i)
n ) ≤ KdM

2,

N∑
n=1

Tr(A(θd)X
(i)
n ) ≤

N∑
n=1

Tr(A(θ0)X
(i)
n ),

N∑
n=1

Tr(A(θ0)X
(i)
n ) ≤ 2

N∑
n=1

Tr(A(θd)X
(i)
n ),

Diag(X(i)
n ) = 1M ,∥∥∥Gŝ(i)m

∥∥∥
p→∞

≤ γ, m ∈ {1, . . . ,M},

1√
MN

∥∥∥S(i) − S0

∥∥∥
F
≤ δ,

X(i)
n ≽ 0,

Q(i)
n ≽ 0,

b(i)n IM −V(i−1)
n

†
Q(i)

n V(i−1)
n ≽ 0,

b(i−1)
n ≥ b(i)n ≥ 0,

(5.8a)

(5.8b)

(5.8c)

(5.8d)

(5.8e)

(5.8f)

(5.8g)

(5.8h)

(5.8i)

(5.8j)

(5.8k)

Once X
(i)
n , S

(i)
n and b

(i)
n are found by solving (5.8), V

(i)
n can be obtained by seeking an

(M+1)×M matrix with orthonormal columns such that b
(i)
n IM ≽ V

(i)
n

†
Q

(i)
n V

(i)
n . Choosing

V
(i)
n to be equal to the matrix composed of the eigenvectors of Q

(i)
n corresponding to

its M smallest eigenvalues, and following similar arguments provided after (D.1) in the

Appendix, we have [155, Corollary 4.3.16],

V(i)
n

†
Q(i)
n V(i)

n = Diag([ρ
(i)
1 , ρ

(i)
2 , · · · , ρ(i)M ]T )

≼ Diag([ν
(i−1)
1 , ν

(i−1)
2 , · · · , ν(i−1)

M ]T ) ≼ b(i)n IM ,
(5.9)

where, ρ
(i)
1 ≤ ρ

(i)
2 ≤ · · · ≤ ρ

(i)
M+N and ν

(i−1)
1 ≤ ν

(i−1)
2 ≤ · · · ≤ ν

(i−1)
M denote the eigenvalues

ofQ
(i)
n andV

(i−1)
n

†
Q

(i)
n V

(i−1)
n , respectively. It follows from (5.9) that the matrix composed

of the eigenvectors of Q
(i)
n corresponding to its M smallest eigenvalues is the appropriate

choice for V
(i)
n .

Accordingly, at each iteration of the proposed algorithm which we term as WISE, we

need to solve a SDP followed by an Eigenvalue Decomposition (EVD). Algorithm 9

summarizes the steps of the WISE approach for solving (3.4). In order to initialize the

algorithm, V
(0)
n can be found through the eigenvalue decomposition of Q

(0)
n obtained from

solving (5.8) without considering (5.8j) and (5.8k) constraints. Further, we terminate

the algorithm when s̄ns̄
†
n converges to Xn. In this regards, let us assume that,

ξn,1 ≥ ξn,2 ≥ · · · ≥ ξn,m ≥ · · · ≥ ξn,M ≥ 0,
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Algorithm 9 :WISE in MIMO Radar Systems

Input: γ, δ, S0, U and N̂ .
Initialization:

1. i := 0;

2. Obtain Q
(0)
n by dropping (5.8j) and (5.8k) then solving (5.8);

3. V
(0)
n is the M eigenvectors of Q

(0)
n , corresponding to the M lowest eigenvalues;

4. b
(0)
n is the second largest eigenvalue of Q

(0)
n ;

Optimization:

1. while, ξ ≥ e1 and max

{∥∥∥s̄ns̄†n−Xn

∥∥∥
F√

MN

}
≥ e2 do

2. i := i+ 1;

3. Obtain S(i), X
(i)
n and b

(i)
n by solving (5.8);

4. V
(i)
n is the M eigenvectors of Q

(i)
n , by dropping the eigenvector correspond to

the largest eigenvalue.

5. b
(i)
n is the second largest eigenvalue of Q

(i)
n .

6. end while

Output: S⋆ = S(i).

be the eigenvalues of Xn, we consider ξ ≜ max{ξn,2}
min{ξn,1} < e1 (e1 > 0) as the termination

condition. In this case the second largest eigenvalue of Xn is negligible comparing to its

largest eigenvalue and can be concluded that the solution is rank one. In addition, we

consider max

{∥∥∥s̄ns̄†n−Xn

∥∥∥
F√

MN

}
< e2 (e2 > 0) as the second termination condition.

We note that the proposed algorithm, which is based on alternating optimization method,

is guaranteed that the objective function converges to at least a local minimum of (5.7)

[156].

5.3.0.1 Convergence

It readily follows from (5.8k) that limk→∞
|b(i)n |

|b(i−1)
n |

≤ 1. This implies that b
(i)
n converges at

least sub-linearly to zero [157]. Hence, there exists some I such that b
(i)
n ≤ ϵ (ϵ→ 0) for

i ≥ I. Making use of this fact, we can deduce from (5.8j) that,

V(i−1)
n

†
Q(i)
n V(i−1)

n ≼ ϵIM , ϵ→ 0, (5.10)
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for i ≥ I. Then, it follows from (5.10) and (5.9) that Rank(Q
(i)
n ) ≃ 1 for i ≥ I, thereby

X
(i)
n = s̄

(i)
n s̄

(i)†
n for i ≥ I. This implies that X

(i)
n , for any i ≥ I, is a feasible point for the

optimization problem (5.7). On the other hand, considering the fact that b
(i)
n ≤ ϵ for

i ≥ I, we conclude that X(i)
n for i ≥ I is also a minimizer of the function

∑N
n=1Tr(AuXn).

These imply that X
(i)
n for i ≥ I is at least a local minimizer of the optimization problem

(5.7). The proves the convergence of the proposed iterative algorithm.

5.3.0.2 Computational Complexity

In each iteration, Algorithm 9 needs to perform the following steps:

• Solving (5.8): Needs the solution of a SDP, whose computational complexity is

O(M3.5) [124].

• Obtaining V
(i)
n and b

(i)
n : Needs the implementation of a Single Value Decomposition

(SVD), whose computational complexity is O(M3) [96].

Since we have N summation, the computational complexity of solving (5.8) is O(N(M3.5+

M3)). Let us assume that I iterations are required for convergence of the Algorithm 9.

Therefore, the overall computational complexity of Algorithm 9 is, O(IN(M3.5+M3)).

5.4 Numerical Results

In this section, numerical results are provided for assessing the performance of the

proposed algorithm for beampattern shaping and spectral matching under constant

modulus constraint. Towards this end, unless otherwise explicitly stated, we consider the

following set-up. For transmit parameters, we consider ULA configuration with M = 8

transmitters, with the spacing of d = λ/2 and each antenna transmits N = 64 samples.

We consider an uniform sampling of regions θ = [−90o, 90o] with a grid size of 5o and the

desired and undesired angels for beampattern shaping are Θd = [−55o,−35o] (θ0 = −45o)

and Θu = [−90o,−60o] ∪ [−30o, 90o], respectively. The DFT point numbers is set as

N̂ = 5N , the normalized frequency stop-band is set at U = [0.3, 0.35]∪[0.4, 0.45]∪[0.7, 0.8]
and the absolute spectral mask level is set as γ = 0.01

√
N̂ . As to the reference signal

for similarity constraint, we consider S0 be a set of sequences with a good range-ISLR

property, which is obtained by the method in [37]. For the optimization problem we set

η = 0.1 and p = 1000 to approximate the (5.5f) constraint. The convex optimization

problems are solved via the CVX toolbox [158] and the stop condition for Algorithm 9

are set at e1 = 10−5 and e2 = 10−4, with maximum iteration of 1000.
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5.4.1 Convergence

Figure 2.1 depicts the convergence behavior of the proposed method in different aspects.

In this figure, we consider the maximum admissible value for similarity parameter, i.e.,

δ = 2. Figure 5.1a shows the convergence of ξ to zero. This indicates that the second

largest eigenvalue of Xn is negligible in comparison with the largest eigenvalue, therefore

resulting in a rank one solution for s̄n. Figure 5.1b shows that the solution of Xn

converges to s̄n, which confirms our claim about obtaining a rank one solution.

To indicate the performance of the proposed method under constant modulus constraint,

by defining

smax ≜ max{|sm,n|}, smin ≜ min{|sm,n|}, (5.11)

for m ∈ {1, . . . ,M} , and n ∈ {1, . . . , N}, in Figure 5.1c we evaluate the maximum/min-

imum absolute values of the code entries in S. The results indicate that the values of

smax and smin are converging to a fixed value, which indicates the constant modulus

solution of WISE.

In addition, Figure 5.1d depicts the proposed method’s PAR convergence. In the first

step, we have a high PAR value, and as the number of iterations increases, the PAR

value converges to 1, indicating the constant modulus solution.

Please note that, the first iteration in Figure 5.1a, Figure 5.1b and Figure 5.1c shows the

SDR solution of (5.8) by dropping (5.8j) and (5.8k). As can be seen the SDR method

offers neither rank one nor constant modulus solution. Since in the initial step (SDR)

we drop the constraints (5.8j) and (5.8k), we do not have lower bound or equality energy

constraints on variable S. By considering those two constraints (which are equivalent

to (5h) constraint) in the next steps of the algorithm, we indeed impose the Xn = s̄ns̄
†
n

constraints. On the other side we have the DiagXn = 1M constraint which force the S

variable to be constant modulus. Therefore in the first iteration the magnitude of the

sequence in Figure 5.1c is close to zero.

5.4.2 Performance

Figure 5.2 compares the performance of the proposed method in terms of beampattern

shaping and spectral masking with UNIQUE [37] method in spatial-ISLR minimization

mode (η = 1) as a benchmark. Figure 5.2a shows the beampattern response of the

proposed method and UNIQUE. In this figure, for fair comparison we drop the spectral

masking (5.8f) and 3 dB main beam-width (5.8c) and (5.8d) constraints. As can be seen,

in this case the proposed method offers almost similar performance (in some undesired
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Figure 5.1: The convergence behavior of proposed method in different aspects, (a)

ξ =
max{ξn,2}
min{ξn,1} , (b) Constant modulus, (c) max

{∥∥Xn − s†nsn
∥∥
F

}
and (d) PAR (M = 8,

N = 64, N̂ = 5N , δ = 2, Θd = [−55o,−35o], Θu = [−90o,−60o] ∪ [−30o, 90o],

U = [0.12, 0.14] ∪ [0.3, 0.35] ∪ [0.7, 0.8] and γ = 0.01
√
N̂).

angles deeper nulls) as compared to UNIQUE method. However, considering the spectral

masking (5.8f) and 3 dB main beam-width (5.8c) and (5.8d) constraints, the proposed

method is able to steer the beam towards the desired and steer the nulls at undesired

angles simultaneously.

The beampattern response of WISE at desired angles region and the spectrum response of

the proposed method has better performance comparing to UNIQUE method. Figure 5.2b

shows the main beam-width response of the proposed method and UNIQUE. Since

UNIQUE does not have the 3 dB main beam-width constraint, it does not have a good

main beam-width response. However, the 3 dB main beam-width constraint incorporated

in our framework improves the main beam-width response. Besides, the maximum

beampattern response is located at −45o in the proposed method while there is a

deviation in UNIQUE method. On the other hand Figure 5.2c shows the spectrum

response of the proposed method. Observe that the waveform obtained by WISE masks

the the spectral power in the stop-bands region (U) below the γ value. However, since

UNIQUE method is not spectral compatible, is unable to put notches on the stop-bands.

Furthermore, as can be seen the spectral of the transmitters in UNIQUE are the same.

On the other words in order to obtain a good beampattern response, the UNIQUE offers

high correlated waveforms. This shows the contradiction of the steering beampattern

with orthogonality.
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(c) Spectral of WISE
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(d) Spectral of UNIQUE

Figure 5.2: Comparing the performance of WISE and UNIQUE methods in several
aspects (M = 8, N = 64, N̂ = 5N , δ = 2, Θd = [−55o,−35o], Θu = [−90o,−60o] ∪

[−30o, 90o], U = [0.3, 0.35] ∪ [0.4, 0.55] ∪ [0.7, 0.85] and γ = 0.01
√
N).

5.4.3 The impact of similarity parameter

In this subsection, we evaluate the impact of choosing the similarity parameter δ on

performance of the proposed method. When we consider the maximum admissible value

for similarity parameter, i.e., δ = 2, we do not include similarity constraint and by

decreasing δ we have the degree of freedom to enforce properties similar to the reference

waveform on the optimal waveform. As mentioned in section 5.4, we consider S0 be a

set of sequences with a good range-ISLR property as the reference signal for similarity

constraint, which is obtained by UNIQUE method [37]. Therefore, by decreasing the δ we

obtain a waveform with good orthogonality, which leads to omni directional beampattern.

Figure 5.3 shows the beampattern response of the proposed method with different values

of δ. As can be seen, with δ = 2, yields an optimized beampattern and by decreasing δ

the beampattern gradually tends to be omnidirectional.

On the other hand, Figure 5.4a, Figure 5.4c and Figure 5.4e show the correlation

level of the 4th transmitter of the proposed method with others transmitters with

different values of δ. Observe that with δ = 2 we a obtain fully correlated waveform

and by decreasing δ the waveform gradually becomes uncorrelated. Therefore, having

simultaneous beampattern shaping and orthogonality are contradictory, and the choice

of δ effects a trade-off between the two and enhance the performance of radar system

[37]. Besides Figure 5.4b, Figure 5.4d and Figure 5.4f show the spectrum of the proposed
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Figure 5.3: The impact of choosing δ in the proposed method on Beampattern response
(M = 8, N = 64, N̂ = 5N , Θd = [−55o,−35o] and Θu = [−90o,−60o] ∪ [−30o, 90o],

U = [0.12, 0.14] ∪ [0.3, 0.35] ∪ [0.7, 0.8] and γ = 0.01
√
N̂).

method with different values of δ. As can be seen in all cases the proposed method is able

to perform the spectral masking. Furthermore observe that, in the desired frequency

region (for instance in the region [0.36, .069]), when δ = 2, the spectral responses of the

transmitter waveforms are more similar than lower values of δ. This observation verifies

that, the more similar spectral response leads to more obtain more correlated waveforms.

5.4.4 The impact of N̂

Figure 5.5 shows the impact of choosing N̂ on spectral response of the proposed method.

In this figure we indicate the DFT points as Nfft. Figure 5.5a shows the spectrum

response of WISE when we do not have zero padding (N̂ = N) and Nfft = N . In this

case, the proposed method is able to mask the spectral response on undesired frequencies.

When we increase the DFT point to Nfft = 5N , some spikes are appeared on U region

(please see Figure 5.5b). However, as can be seen from Figure 5.5c and Figure 5.5d, when

we apply the zero padding to N̂ = 5N , the proposed method is able to mask the spectral

response on undesired frequencies for both Nfft = 5N and Nfft = 10N respectively.

5.4.5 The impact of Constant modulus in the IF band

In order to transmit the baseband waveform in radar system, it needs to be translated to

Intermediate Frequency (IF) band. In this regards, in the first step the waveform passes

through DUC to increase the sample rate and provide a real signal. Then the output of

DUC passes through the DAC to generate the analog signal. Finally the analog signal

passes the PA to do the amplification and become ready for next up-converting to the
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(f) δ = 0.7

Figure 5.4: The impact of choosing δ on correlation level and spectral masking
(M = 8, N = 64, N̂ = 5N , Θd = [−55o,−35o] and Θu = [−90o,−60o] ∪ [−30o, 90o],

U = [0.12, 0.14] ∪ [0.3, 0.35] ∪ [0.7, 0.8] and γ = 0.01
√
N̂).

RF frequency. In this subsection we aim to evaluate the performance of the proposed

method from the baseband till the PA.

In this regards, Figure 5.6a depicts the normalized constellation of the optimized wave-

forms obtained by two proposed methods in this chapter; say WISE and SDR. We

pass these two optimized waveforms through DUC to obtain IF band in digital domain.

Figure 5.6b compares the power level of the optimized waveforms obtained by WISE and

SDR after DUC when the reference signal in similarity constraint was randomly chosen

in 100 trials. In this figure, PWISE , P̄WISE , σWISE , PSDR, P̄SDR and σSDR denotes the

instant, mean and standard deviation of the power of WISE and SDR respectively. We

normalized the maximum output power of DUC of the both waveforms to 30 dB. Besides,

we assume the following setup,

• Signal bandwidth: BWs = 1MHz.
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(a) (N̂ = N and Nfft = N)
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(b) N̂ = N and Nfft = 5N
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(c) N̂ = 5N and Nfft = 5N
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(d) N̂ = 5N and Nfft = 10N

Figure 5.5: The impact of choosing V̂ and Nfft on spectral response (M = 8, N = 64,
Θd = [−55o,−35o] and Θu = [−90o,−60o] ∪ [−30o, 90o], U = [0.12, 0.14] ∪ [0.3, 0.35] ∪

[0.7, 0.8] and γ = 0.01
√
N̂).

• Sample rate: fs = 6MHz.

• Interpolation factor: Nint = 25.

• Center frequency: fc = 50MHz.

• Filter bandwidth: BWs = 2MHz.

Based on this figure, two important facts can be concluded,

1. WISE offers higher average power rather than SDR waveform.

2. The standard deviation of WISE is less that SDR waveform.

The DUC output passes the DAC to convert the IF digital signal to analog domain.

Subsequently it passes through the PA. In order to utilize the maximum power efficiency

the input power of PA should be constant as much as possible [159] (see Appendix D.2).

Hence, the Constant Modulus (CM) waveform is attractive for radar designers since they

can drive the PAs at their maximum efficiency.
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(b) N̂ = N and Nfft = 5N

Figure 5.6: Comparing the performance of WISE and SDR methods (a) Constellation
(b) Power of the WISE and SDR after DUC for 100 number of trials (M = 8, N = 64,
N̂ = N , δ = 2, Θd = [−55o,−35o], Θu = [−90o,−60o] ∪ [−30o, 90o], U = [0.3, 0.4] and

γ = 0.01
√
N̂).

5.4.6 Conclusion

In this chapter we discuss about the problem of beampattern shaping with practical

constraints in MIMO radar systems namely, spectral masking, 3 dB beam-width, constant

modulus and similarity constraints. Solving this problem, not considered hitherto, enables

us to control the performance of MIMO radar in three domains namely, spatial, spectral

and orthogonality (by similarity constraints). Accordingly, we consider a waveform design

approach for beampattern shaping optimization problem under. The aforementioned

problem leads to a non-convex and NP-hard optimization problem. In order to obtain a

local optimum solution of the problem, first by introducing a slack variable we convert

the optimization problem to a linear problem with a rank one constraint. Then to tackle

the the we proposed an iterative method to obtain the rank one solution. Numerical

results shows that the proposed method is able to manage the resources efficiently to

obtain the best performance.



Chapter 6

SINR Maximization in Radar

Systems

In this chapter we address the SINR maximization under discrete phase constraint in SISO

radar system. To this end, we deal with general signal-dependent interfering scenario and

devise an optimization procedure leading to sub-optimal solutions. Specifically, we focus

on the joint waveform and the receive Doppler filter bank. We discuss two optimization

approaches in this context. In the former, we assume that the target Doppler frequency

is unknown and the worst-case SINR at the output of the filter bank as the design metric.

To this end, we propose an CD-based iterative algorithm to design MPSK waveform.

In the latter, we assume that the Doppler of the target is known and we consider to

maximize the SINR of that specific Doppler. We propose an iterative ADMM-based

method to solve the problem, where we obtain a closed form solution for the filter and

we utilize CD method to design the waveform. We demonstrate the proposed approaches’

performance and compare that to the state of the art using numerical results.

6.1 Designing MPSK Sequences and Doppler Filter Bank

in Cognitive Radar Systems

Cognitive transmission is an emerging technique in the next-generation radar systems,

where new levels of radar performance are needed. A cognitive radar system can design

and transmit a waveform that adapts to the environment and provides a flexible framework

with different trade-offs between a variety of performance objectives, including target

detection [11]. In this context, the SINR at the receive side of every radar system

determines the detection performance. Enhancing the SINR, therefore, improves the

reliability of the radar system.

127
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Enhancing the SINR through radar waveform design and Doppler filter banks is discussed

in recent works [160, 161]. The authors in [160] consider the maximization of the

minimum SINR at the output of a Doppler filter bank as the design metric under

similarity (to other waveforms) and energy constraints. Similarity constraint can control

some signal properties such as Doppler resolution, ISL and PSL. The problem leads to a

non-convex optimization formulation which they tackle it with the GFP method based

on Dinkelbach algorithm [162]. Subsequently, the design scope is enhanced to include

the constant modulus sequences under budget energy and PAR constraint [161]. Authors

in [161] represent ℓ2-norm and ℓ∞-norm for the energy budget and PAR level constraint,

respectively. They propose two algorithms based on the Majorization Minimization or

Minorization Maximization (MM) [163] to solve the problem.

Unimodular sequences is an important criterion in two aspects, first from the point of

view of hardware implementation and second to allow for full utilization of the transmitter

power. In order to achieve the best detection probability, radar systems generally transmit

the signal with the maximum power. On the other hand, the maximum power of a

radar transmitter is usually constant and unimodular sequences exploit this to output all

sequences with maximum power. Therefore from the point of view of radar transmitter

efficiency, unimodular sequences are attractive. In addition, in order to control the

sidelobe levels of the phase changing points, discrete phase sequences whose phases are

chosen from a small size alphabet, are typically preferred [78].

In this section, we tackle a problem similar to that addressed in [160, 161] under a more

practically attractive constraint, namely the use of discrete phase MPSK sequences. We

propose a method which is able to design MPSK sequences, to maximize the minimum

SINR over a Doppler filter bank at the receiver under the assumption of unknown target

Doppler shift and signal-dependent interference. Building on this method, the section

presents a joint design of MPSK waveform and receiver Doppler filter bank to enhance

worst case SINR in target Doppler domain. This approach leads to a multivariable, non-

convex min-max optimization problem. Towards solving this, we propose an alternative

algorithm based on CD framework [24, 102]. To this end, we sequentially optimize the

objective function over one variable, keeping fixed the others.

We organized this section as follows. In subsection 6.1.1, we introduce the system model

and problem statement, respectively. Subsection 6.1.2 presents the proposed CD based

framework whose performance is numerically assessed in subsection 6.1.3.
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6.1.1 System Model and Problem Statement

Let us assume a monostatic radar system which coherently transmits N pulses in the

slow-time, each pulse denoted by si, i = 1, . . . , N . The reflected signal from a moving

target with the unknown-Doppler frequency fdT in a Coherent Pulse Interval (CPI) is

contaminated by signal-independent interference (noise) and signal-dependent interference

(clutter). For a given range gate, this signal can be written as [164],

r = αRs⊙ v(fdT ) + rc + rn, (6.1)

where αR is proportional to the RCS of the target and free space path loss, v(fdT ) is the

target steering vector which can be expressed as,

v(fdT ) = [1, ej2πfdT , . . . , ej2π(N−1)fdT ]T ∈ CN . (6.2)

In (6.2) fdT is the unknown target Doppler shift, and rc, rn ∈ CN are signal-dependent

and signal-independent interference, respectively.

6.1.1.1 Interference Model

In (6.1) the vector rn is related to thermal noise which is modelled as zero-mean white

Gaussian noise (E [rn] = 0) and with autocorrelation matrix of E
[
rnrn

†
]
= Rn = σ2nI.

The vector rc is related to the superposition of reflected signal from different uncorrelated

scatterers and can be expressed as [160],

rc =

Nr∑
r=0

Na∑
l=0

α(r,l)Jr

(
s⊙ v(fd(r,l))

)
. (6.3)

In (6.3) Nr and Na are the numbers of the range-bin and azimuth-bin of clutter patches,

α(r,l) and fd(r,l) are the received scatterer power and shift Doppler of the scatterer in rth

range and lth azimuth bin, respectively and Jr denotes the shift matrix.

Jr(p, q) =

1 p− q = r

0 p− q ̸= r
(p, q) ∈ {1, . . . , N}2.

From a statistical point of view, the mean RCS of each clutter patch is E
[
|α(r, l)|2

]
= σ2(r,l).

The Doppler shift is uniformly distributed in the interval fd(r,l) ∈
[
f̄d(r,l) −

ϵd(r,l)
2 , f̄d(r,l) +

ϵd(r,l)
2

]
,

where f̄d(r,l) and ϵ(r,l) are the mean and variance shift Doppler of each clutter patch,
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respectively. The covariance matrix of rc can be expressed as [160],

Rc(s) = E
[
rcrc

†
]
=

Nr∑
r=0

Na∑
l=0

σ2(r,l)JrΞ
(
s, (r, l)

)
J†
r, (6.4)

where Ξ
(
s, (r, l)

)
= Diag {s}Υ

f̄d(r,l)
ϵd(r,l)

Diag {s}† and Υ
f̄d(r,l)
ϵd(r,l)

is the covariance matrix of

clutter steering vector
(
v(fd(r,l))

)
taking the form,

Υ
f̄d(r,l)
ϵ(r,l) (p, q) = e

j2πf̄d(r,l) (p−q)
sin[πϵ(r,l)(p− q)]

πϵ(r,l)(p− q)
.

6.1.1.2 SINR Formulation

The SINR at the output of kth filter bank can be expressed as,

SINRk =
|αR|2

∣∣w†
k

(
s⊙ v(fkdT )

) ∣∣2
w†
kRc(s)wk +w†

kRnwk

, (6.5)

where Rc(s), Rn and wk are the covariance matrices of clutter, noise and the coefficients

of kth filter, respectively.

The value of SINR is related to the statistical characterization of interference, and their

knowledge is vital to optimized designs. As to the clutter it is necessary to measure

the statistical parameter, such as σ2(r,l), f̄d(r,l) and ϵ(r,l). Cognitive radar is a system

which estimates these parameters by interactions with the surrounding environment,

using dynamic database and some clutter models [164]. In this regard, we consider using

cognitive radar to derive the clutter statistical parameters.

6.1.1.3 Problem Statement

We assume a bank of K filters, each tuned to a specific Doppler shift to reveal the target

radial velocity (see [160] for more details). In such a case, a relevant design metric is the

maximization of the minimum SINR over the filter bank outputs [160, 161], i.e.,

max
s,w1,...,wK

min
k=1,...,K

SINRk (6.6)

where wk ∈ CN indicates the kth filter coefficients tuned at Doppler shift fkd . If the filter

bank covers the entire region of Doppler shifts, the worst case SINR is then related to

signal-dependent interference (clutter) Doppler region. In this situation, maximizing the

worst case SINR is not attractive since Doppler filter is not efficient for clutter processing
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[160]. Hence many radar systems use other effective procedure to tackle this problem,

such as Moving Target Indicator (MTI) and cluttering map. Consequently, we design the

filter bank such that it doesn’t overlap with the domain of considered clutter Doppler

shifts.

Let us define,

ΩM = {s|si ∈ ΨM , i = 1, . . . , N}, (6.7)

and ΨM = {1, ej
2π
M , ej

4π
M , . . . , ej

2(M−1)π
M }, where M is the alphabet size. The constrained

optimization problem can be formulated as,

max
s,w1,...,wK

min
k=1,...,K

SINRk

s.t. s ∈ ΩM

. (6.8)

This is a multi-variable non-convex constrained optimization and a sub-optimal approach

to solving this is presented next.

6.1.2 Joint MPSK And Doppler filter bank design

A viable means to jointly design Doppler filter bank and the transmit sequence is to

maximize the SINR output in the worse case [160, 161], i.e.,

P =


max

s,w1,...,wK

min
k=1,...,K

|αR|2
∣∣w†

k

(
s⊙ v(fkdT )

) ∣∣2
w†
kRc(s)wk +w†

kRnwk

s.t. s ∈ ΩM

, (6.9)

which is a max-min non-convex constrained optimization problem. Note that the Doppler

frequencies are considered outside the domain of clutter Doppler. Alternative optimization

is a general framework to tackle this family of problems, where the optimization problem

can be alternatively solved [92]. In particular, let the worst case SINR at step (n) be

defined as,

h
(
s(n),W (n)

)
= min

k=1,...,K

|αR|2
∣∣w†

k

(
s(n) ⊙ v(fkdT )

) ∣∣2
w

(n)†
k

[
Rc

(
s(n)

)
+Rn

]
w

(n)
k

, (6.10)

where W ≜
[
w

(n)
1 |w(n)

2 | . . . |w(n)
K

]
denotes the matrix of filter bank coefficients. We

alternatively tackle the following problems of sequence design given a filter bank (Ps(n))
and design of a filter bank given a MPSK sequence (Pw(n)),

Ps(n) =


max
s

h
(
s(n−1),W (n)

)
s.t. s ∈ ΩM

, (6.11)
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and,

Pw(n) =

{
max

w1,...,wK

h
(
s(n),W (n)

)
. (6.12)

Notice that, (6.12) is the well-known Minimum Variance Distortionless Response (MVDR)

problem [165], and its solution can be directly obtained as [160, 161],

w
(n)
k =

(Rc(s
(n)) +Rn)

−1
(
s(n) ⊙ v(fkdT )

)
∥(Rc(s(n)) +Rn)−1/2

(
s(n) ⊙ v(fkdT )

)
∥2
. (6.13)

To tackle Problem Ps(n), instead of designing the entire vector s, we consider designing

it’s entries consecutively. CD framework enables such an optimization by assuming

one entry of the code vector s ∈ CN as the variable and keeping the others fixed.

Subsequently, by examining all possible alphabet of MPSK for the chosen variable, we

select the alphabet which leads to the best SINR [78].

Therefore to solve problem Ps(n), we propose Algorithm 10 to optimize all N pulses.

In this algorithm we assume that the optimum entry, s⋆d, the corresponding optimum

filters, W ⋆
d, can be derived from the knowledge of the other using the CD framework,

details of which will be presented later. Algorithm 10 optimizes the vector s entry

by entry until all N pulses become optimized at least once. After optimizing the N th

pulse, the algorithm examines the convergence metric for the worst case SINR. The

algorithm repeats the aforementioned steps if the stopping criteria is not met. We

consider
(
SINR

(n)
worst − SINR

(n−N)
worst

)
< ζ for stopping criterion of optimization, where ζ,

SINR
(n)
worst and SINR

(n−N)
worst are a positive threshold, the worst case of SINR in step n and

step n−N , respectively.

To illustrate CD framework let us assume that sd is the dth transmitted pulse (d =

1, . . . , N) and is the only variable, while the other N − 1 entries are fixed; these are

stacked into the s−d vector as,

s−d = [s1, . . . , sd−1, sd+1, . . . , sN ]
T ∈ CN−1. (6.14)

The design Problem Ps(n) with respect to the variable sd can be expressed as,

P(n)
sd

=


max
sd

h
(
sd, s−d,W

(n)
)

s.t. sd ∈ ΩM

, (6.15)

which is still a non-convex constrained max-min optimization problem; however, unlike

the earlier formulation, it involves only one variable. Towards solving this, we calculate

the worst case SINR across the filter bank using (6.10) for each possible alphabet of sd
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Algorithm 10 : Joint waveform and filter bank design

Input: Initial waveform s(0)|si ∈ ΨM , i = 1, . . . , N
Output: Optimized waveform s⋆ and filter bank w⋆

k

1. Initialization.

• Set n := 0, s := s(n) and d := 1;

• Obtain Rc(s
(0)) from Eq (6.4)

• Obtain W (0) from Eq (6.13)

• SINR
(0)
worst = h

(
s(0),W (0)

)
2. Optimization.

• n := n+ 1

• Obtain s⋆d, W
⋆
d and SINR⋆d,worst from CD framework (see below)

• s(n) =
[
s
(n−1)
1 , . . . , s⋆d, . . . , s

(n−1)
N

]T
• W (n) = W ⋆

d

• SINR
(n)
worst = SINR⋆d,worst

• if d = N then go to 3); otherwise d := d+ 1 and go to 2);

3. Stopping Criterion.

• If
(
SINR

(n)
worst − SINR

(n−N)
worst

)
< ζ , go to 4); otherwise d := 1 and go to 2);

4. Output.

• Set s⋆ = s(n) and W ⋆ = W (n)

and choose the one that results in the best minimum SINR. In the next step, we perform

this procedure for the next pulse (sd+1) and the process is repeated till all pulses are

optimized at least once. This optimization procedure is shown in (6.16) for vector s.

s
⋆(n−d+1)
1 = argmax

s1
h
(
s1, s

(n−d)
−1 ,W (n−d)

)
s
⋆(n−d+2)
2 = argmax

s2
h
(
s2, s

(n−d+1)
−2 ,W (n−d+1)

)
...

s
⋆(n)
d = argmax

sd
h
(
sd, s

(n−1)
−d ,W (n−1)

)
...

s
⋆(n+N−d)
N = argmax

sN
h
(
sN , s

(n+N−d−1)
−N ,W (n+N−d−1)

)
,

(6.16)
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CD framework

Input: Optimized waveform at step n− 1 (s(n−1)), alphabet size M and pulse index d
Output: Optimum code (s⋆d), optimum filter bank coefficients (W ⋆) and optimum worst
case SINR (SINR⋆worst)

1. Initialization.

• set set i := 1 and s := s(n−1)

2. Optimization.

• sd = ej
j2π(i−1)

M

• s = [s1, . . . , sd, . . . , sN ]
T

• Obtain Rc(s) from Eq (6.4)

• Obtain W from Eq (6.13) and W i = W

• hi = h (s,W i)

• if i =M go to 3); otherwise i := i+ 1 and go to 2);

3. Output.

• m = arg max
i=1,...,M

{
hi

}
• s⋆d = ej

j2π(m−1)
M

• W ⋆
d = Wm

• SINR⋆d,worst = hm

where s
⋆(n)
d denotes the optimum value of sd at the step n of the optimization procedure.

Therefore the optimized vector s can be obtained by,

s(n) = [s
(n−1)
1 , . . . , s

(n−1)
d−1 , s

⋆(n)
d , s

(n−1)
d+1 , . . . , s

(n−1)
N ]T . (6.17)

Based on the aforementioned discussion, we propose CD framework waveform design to

derive optimum s⋆d under the assumption of signal-dependent interference. Due to the

iterative improvement, this framework guarantees that the worst case SINR converges to

the local optimum value.

6.1.3 Performance Analysis

In this subsection, we provide some numerical examples to illustrate the effectiveness of

the proposed method. Towards this end, unless otherwise explicitly stated, we consider

the following assumptions. Note that all Doppler shift are normalized to PRF.
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Waveform Parameters For the waveform characteristic, we consider a coherent

stationary radar transmitting a burst of N = 32 pulses, while the alphabet size of the

MPSK sequence is assuming M = 8. The energy transmitted is es = ∥ s ∥2. Besides, we
consider a random alphabet MPSK sequence for the initial waveform.

Interference Parameters A white Gaussian noise is considered with σ2n = 1. For

signal-dependent interference (clutter) we assume Nr = 2 as interfering range rings,

and Na = 100 as azimuth sectors. We consider a homogeneous clutter which means

σ2(r,l) = σ2; r ∈ {1, . . . , Nr}, l ∈ {1, . . . , Na}. The CNR can be calculated by [166],

CNR =
σ2(r,l)

σ2n
es,

which is adjusted to be equal to 30 dB. The normalized mean and variance shift Doppler

are f̄d(r,l) = 0 Hz and ϵ(r,l) = 0.13 Hz, respectively. Therefore the Doppler shifts of the

clutter scatterers are uniformly distributed over the interval Ωc = [f̄d − ϵ
2 , f̄d +

ϵ
2 ] =

[−0.065, 0.065].

Target Parameters The SNR of received signal is [166],

SNR =
|αR|2

σ2n
es.

which is adjusted to be 10 dB. In addition, we assume that the normalized target Doppler

shift belongs to the interval ΩT = [−0.5,−0.34] ∪ [0.34, 0.5], in other words, we consider

that there is no overlapping on target and clutter Doppler region. Besides, the normalized

bandwidth of each filter is assumed to be 1/300 Hz.

Finally, the stopping condition of the proposed algorithm is set at ζ = 10−4.

6.1.3.1 Convergence behavior of proposed algorithm

In this part, we investigate the convergence behavior of the proposed algorithm. Fig. 6.1

shows the worst case SINR versus the number of iterations for N = 32 and M = 8.

Note that, the upper bound for the SINR value is the case when there is no interference,

equivalent to the SNR value therefore, the optimized SINR is bounded by 10 dB.

Furthermore, in each iteration, the worst case SINR monotonically increases and converges

to a certain value close to the upper bound.
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Figure 6.1: Convergence of worst-case SINR over the all filters (N = 32, M = 8,
SNR = 10 dB, CNR = 30 dB).

Figure 6.2: Robust worst case SINR convergence behavior versus different alphabet
size (N = 32, SNR = 10 dB, CNR = 30 dB).

This behavior is investigated for different alphabet sizes. Fig.6.2 shows the optimized

worst case SINR versus alphabet sizes, from M = 2 to M = 32. In this simulation,

we assume that the initial waveform is a random MPSK sequence. Subsequently by

performing the CD optimization procedure, we achieve the optimized SINR very close

to the upper bound. On the other hand, the variation of the optimized SINR values

for different alphabet sizes are very small. In this case the value of the optimized SINR

is on [9.74, 9.34] dB interval, so the maximum variation is 0.4 dB. This means that the

proposed algorithm is capable to maximize the minimum SINR through filter bank for

various alphabet sizes.

6.1.3.2 Receiver Operating Characteristic

Radar performance highly depends on detection and false alarm probability. Receiver

Operating Characteristic (ROC) evaluates the variation of the detection probability

(Pd) with false alarm probability (Pfa). In this part, we consider the worst-detection
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Figure 6.3: ROC of optimized and initial step waveform and filter bank (N = 32,
M = 8, SNR = 10 dB, CNR = 30 dB).

probability which is given by [130, 167],

Pd,worst = Q

(√
2SINRmin,

√
−2 log(Pfa)

)
. (6.18)

In (6.18) the SINRmin = mini∈{1,...,K} SINRi is the minimum SINR through all filters,

Pfa is the probability of false alarm and Q(., .) is the generalized Marcum-Q function.

Fig.6.3 shows the ROC curve related to the non-optimized and optimized waveform

and their corresponding filter banks. Observe that, the proposed algorithm significantly

enhances the detection performance.

6.1.3.3 Comparison With Existing Method

We now compare the performance of our method with the method proposed in [160],

where we term it as the GFP method. In this regard, we assume a similar scenario

addressed in [160]. With number of pulses is N = 20, and for the similarity constraint

we consider a generalized Barker code with δ = 0.5 and δ = 0.2.

The GFP method designs a waveform which is not unimodular with a continuous phase.

Therefore for a fair comparison, we map the optimum GFP waveform to the nearest

MPSK sequence and term it quantized GFP. Fig.6.4 shows the constellation of the

optimized waveform related to the proposed method, GFP and quantized GFP for two

values of δ. The proposed waveform is unimodular by design and is of interest to the radar

system designers due to this property. But the optimum waveform designed by GFP

is not unimodular and this means that radar should transmit each code with different

power and in this case, is not possible to transmit the code with maximum power in

each Pulse Repetition Interval (PRI). Therefore, in this case, the power transmission is
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(a) δ = 0.5 (b) δ = 0.2

Figure 6.4: Convergence comparison between proposed method, GFP and Quantized
GFP for different value of similarity constraint (N = 20, M = 8, SNR = 10 dB,

CNR = 30 dB).

not efficient. However, using smaller δ leads to smaller deviation from the unimodular

sequence. This deviation can be assessed from the point of view of PAR criterion. For a

given sequence PAR is [130],

PAR =

max
i=1,...,N

|si|2

1
N ∥ s ∥2

. (6.19)

Due to the unimodularity the PAR of proposed method and quantized GFP is equal to 0

dB. Whereas that value for GFP method is 2.65 dB and 5.16 dB for δ = 0.2 and δ = 0.5,

respectively.

Fig.6.5 shows the worst-case SINR of three methods. As can be seen, the GFP method

has a better performance in comparison to the proposed method in case of δ = 0.5 and

similar performance in case of δ = 0.2. But if we quantize it to nearest MPSK code, the

performance is decreased. Indeed, the obtained SINR value of the proposed method is

9.05 dB whereas, in quantized GFP that is 7.44 dB and 8.18 dB in case of δ = 0.5 and

δ = 0.2, respectively. Therefore the proposed method improves the worst case SINR by

1.61 dB and 0.87 dB in case of δ = 0.5 and δ = 0.2, respectively. Besides, in quantized

GFP, the behavior of the worst case SINR doesn’t increase monotonically. This drawback

can be justified that, there is no discrete phase constraint in GFP method and if we

quantize it in nearest MPSK code, there is no guarantee to obtain the optimum waveform.

But in the proposed method we tackle the optimization problem with discrete phase

constraint directly.

Fig.6.5 shows that the proposed method converges in fewer iterations compared to the

GFP. Table 6.1 shows the convergence time for several alphabet sizes and different CNR

averaged over 10 independent trials. The reported values are obtained with a standard

PC with Intel (R) Core (TM) i5-8250U CPU @ 1.60GHz with installed memory (RAM)
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Figure 6.5: Convergence comparison between proposed method, GFP and Quantized
GFP for different value of similarity constraint (N = 20, M = 8, SNR = 10 dB,

CNR = 30 dB).

8.00 GB. Observe that with specific CNR, by increasing the alphabet size the convergence-

time of proposed method increases, while those of GFP method and quantized GFP are

almost constant. This behavior is expected, since the proposed method uses entry by

entry search strategy to find the optimum solution; increasing the alphabet size naturally

increases the convergence time.

On the other hand, the GFP method finds an optimum solution considering all the

entries at once. For a given alphabet size, by increasing CNR the convergence time

of CD method is almost constant. This is because the search region for the proposed

method is independent of the CNR. However, in this scenario, the convergence time of

GFP method increases. and this means that converge-time in GFP method depends on

the value of CNR. This behavior is expected. Since the GFP method uses a sequential

procedure, if the CNR is increased, the algorithm would start at lower SINR. Therefore

GFP needs more time for converging to the optimum value.

Table 6.1: Comparison between the convergence-time (s) of proposed method and
Quantized GFP averaged over 10 independent trials, for different alphabet sizes and

different CNR.

M
CD Quantized GFP

CNR CNR CNR CNR
20 dB 30 dB 20 dB 30 dB

2 2.67 2.20 218.27 253.47
4 5.01 4.46 239.07 266.04
8 10.66 8.40 226.06 267.53
16 26.14 29.37 227.80 387.26
32 58.96 68.13 224.14 331.23
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6.2 ADMM Based Transmit Waveform and Receive Filter

Design in Cognitive Radar Systems

In this section, we aim to tackle the maximization of SINR by jointly optimizing the

Doppler filter and waveform under the assumption of signal-dependent interference and

MPSK sequences. The importance of designing a MPSK sequence can be discussed in

two aspects. First, MPSK is an uni-modular sequence and allows the radar system for

full utilization of the transmitter power. Second, the MPSK is a discrete phase sequences

whose phases are chosen from a small size alphabet [78]. This property is attractive for

radar designers in the point of view of hardware implementation.

This approach leads to a multi-variable, non-convex optimization problem. Towards

solving this, we propose an algorithm based on ADMM [168]. According to this method

we split the problem into two sub-optimization problem, specifically with respect to

the Doppler filter and waveform, then we optimize the Doppler filter and waveform

alternatively. This powerful approach simplifies the problem and offers an efficient

and fast solution. Accordingly, the problem with respect to Doppler filter is a convex

optimization problem and we find a closed-form solution for it. However the problem

with respect to waveform is non-convex and we propose an iterative algorithm based

on CD framework [24, 38, 39, 102, 149, 169] to design the waveform. Numerical results

show that the proposed method has better performance in terms of computational time

and reducing the sidelobe with its counterpart.

We organize this section as follows. In subsection 6.2.1, we introduce the system model

and problem statement, respectively. Subsection 6.2.2 presents the proposed ADMM

based framework whose performance is numerically assessed in subsection 6.2.3.

Notations: The following notations is adopted. Bold lowercase letters for vectors and

bold uppercase letters for matrices. Diag {a}, (.)T , (.)∗, (.)†, ℜ{.}, |.|, E [.] and ⊙ denote

the diagonal matrix of vector a, transpose, conjugate, conjugate transpose, real part,

absolute value, statistical expectation and Hadamard product respectively. The letters

j, (k) and (i) represent the imaginary unit (i.e., j =
√
−1) and the step of a procedure

respectively.

6.2.1 System Model and Problem Formulation

Let s = {s1, . . . , sN} ∈ CN be the slow-time transmitted signal in a mono-static radar

system. The received signal at any CPI is,

r = αtP (fd)s+ rc + rn ∈ CN , (6.20)
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where αt is proportional to the RCS of the target and free space path loss. rc, rn are

signal-dependent and signal-independent interference, respectively. In (6.20) fd denotes

the Doppler shift and P (fd) = Diag(v(fd)) ∈ CN×N , where v(fd) is the target steering

vector which can be expressed as, v(fd) = [1, ej2πfd , . . . , ej2π(N−1)fd ]T ∈ CN .

Interference Model The signal-dependent interference is modelled as [160],

rc =
∑Nr

r=0

∑Na

l=0
α(r,l)Jr

(
s⊙ v(fd(r,l))

)
, (6.21)

where, α(r,l) and fd(r,l) are the received scatterer power and shift Doppler in the rth

range and lth azimuth bin, respectively. Nr and Na are the number of the range-bin and

azimuth-bin of clutter patches and Jr denotes the shift matrix [160]. From the statistical

point of view, the covariance matrix of rc can be expressed as [160],

Rc(s) =
∑Nr

r=0

∑Na

l=0
σ2(r,l)JrΞ

(
s, (r, l)

)
J†
r, (6.22)

where, E
[
|α(r, l)|2

]
= σ2(r,l) is the mean RCS of each clutter patch and Ξ

(
s, (r, l)

)
=

Diag {s}Υ
f̄d(r,l)
ϵd(r,l)

Diag {s}†. f̄d(r,l) and ϵ(r,l) are the mean and standard deviation shift

Doppler of each clutter patch, and Υ
f̄d(r,l)
ϵd(r,l)

is the covariance matrix of clutter steering

vector (v(fd(r,l))) taking the form,

Υ
f̄d(r,l)
ϵ(r,l) (p, q) = e

j2πf̄d(r,l) (p−q)
sin(πϵ(r,l)(p− q))

πϵ(r,l)(p− q)
.

The signal-independent interference is modelled as zero-mean white Gaussian noise

(E [rn] = 0), with autocorrelation matrix of E
[
rnrn

†
]
= Rn = σ2nI.

SINR Formulation Let w be the coefficients of Doppler filter, the output SINR of

the Doppler filter can be expressed as,

SINR =
|αt|2

∣∣w†P (fd)s
∣∣2

w†Ri(s)w
, (6.23)

where Ri(s) = Rc(s) +Rn.

The knowledge of the statistical characterization of interference such as σ2(r,l), f̄d(r,l) , ϵ(r,l)

and σ2n are crucial for optimization design. Cognitive radar can estimate these parameters

by interactions with the environment, using dynamic database and some clutter models

[164]. In this regard, we consider using cognitive paradigm to derive the interference

statistical parameters.
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Problem Statement Assume a Doppler filter which is tuned to fd. In such a case, a

relevant design metric is the maximization of the output SINR under uni-modular and

discrete phase constraint (e.g., MPSK). As SINR is a fractional function, one approach

for maximizing (6.23) is,

P1


min
w,s

w†Ri(s)w

s.t w†P (fd)s = κ

s ∈ ΩM ,

(6.24)

In P1 the first constraint is the well known Capon constraint with κ ∈ R [170, 171],

and the second constraint indicates the uni-modular and discrete phase constraint. In

P1, ΩM = {s|sn = ejϕ, ϕ ∈ ΨM , n = 1, . . . , N} is MPSK sequence set and ΨM =

{0, 2πM , 4πM , . . . , 2(M−1)π
M }, where M is the alphabet size.

Problem P1 is a multi-variable non-convex constrained optimization and a solution is

presented next.

6.2.2 Proposed Method

By straightforward mathematical manipulation problem (6.24) equivalently can be written

as follow,

P2


min
w,s

w†Ri(s)w

s.t g(w, s) = 0

sn = ejϕ, ϕ ∈ ΨM ,

(6.25)

where, g(w, s) = h(w)s− κ = h′(s)w − κ ∈ R and,

h(w) = w†P (fd) ∈ C1×N , (6.26)

h′(s) = s†P †(fd) ∈ C1×N . (6.27)

As (6.25) depends on w and s, problem P2 can be optimized alternatively using ADMM

[168]. In this regards the augmented Lagrangian of (6.25) can be written as,

Lρ(w, s, λ) = w†Ri(s)w + ℜ{λ(g(w, s))}+ ρ

2

∥∥g(w, s)∥∥2 , (6.28)

where λ is Lagrangian multiplier and ρ is penalty parameter and can be adjusted according

to the design requirements. Hence the ADMM procedure at step (k + 1) is summarize
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as,

w(k+1) = argmin
w

{
Lρ
(
w, s(k), λ(k)

)}
, (6.29a)

s(k+1) = argmin
s

{
Lρ
(
w(k+1), s, λ(k)

)
|s ∈ ΩM

}
, (6.29b)

λ(k+1) = λ(k) + ρg
(
w(k+1), s(k+1)

)
. (6.29c)

In order to solve (6.29a), inserting (6.28) and (6.27) in (6.29a) we have,

Lρ
(
w, s(k), λ(k)

)
= w†Ri(s

(k))w

+ ℜ{λ(k)(h′(s(k))w − κ)}+ ρ

2

∥∥∥h′(s(k))w − κ
∥∥∥2 . (6.30)

By combining the linear and quadratic terms, (6.30) can be written in more compact

form as the following,

Lρ
(
w, s(k), u(k)

)
= w†Ri(s

(k))w

+
ρ

2

∥∥∥h′(s(k))w − κ+ u(k)
∥∥∥2 , (6.31)

where u(k) = 1
ρy

(k) is a scaled dual variable [168]. Therefore w(k+1) can be obtained by

solving the following problem,

w(k+1) = argmin
w

{
Lρ
(
w, s(k), u(k)

)}
. (6.32)

Similarly Lρ
(
w(k+1), s, λ(k)

)
can be recast as,

Lρ
(
w(k+1), s, u(k)

)
= w(k+1)†Ri(s)w

(k+1)

+
ρ

2

∥∥∥h(w(k+1))s− κ+ u(k)
∥∥∥2 , (6.33)

In order to simplify (6.33), w†Rc(s)w can be written as w†Rc(s)w = s†T c(w)s [160],

where,

T c(w) =∑Nr

r=0

∑Na

l=0
σ2(r,l)Diag {J−rw}(Υ

f̄d(r,l)
ϵd(r,l)

)∗Diag {J−rw
∗}.

(6.34)

In this case, w†Ri(s)w = s†T c(w)s+w†Rnw and (6.33) can be written equivalently

as follows,

Lρ
(
w(k+1), s, u(k)

)
= s†T c(w

(k+1))s

+
ρ

2

∥∥∥h(w(k+1))s− κ+ u(k)
∥∥∥2 , (6.35)
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Therefore the equivalent problem of (6.29b) is,

s(k+1) = argmin
s

{
Lρ
(
w(k+1), s, u(k)

)
|s ∈ ΩM

}
, (6.36)

With regard to u(k+1) the update rule is,

u(k+1) = u(k) + h(s(k+1))w(k+1) − κ. (6.37)

6.2.2.1 Optimizing w(k+1)

Problem (6.32) is a convex optimization problem, hence there is a closed-form solution for

(6.32) by taking derivative from Lρ
(
w, s(k), u(k)

)
with respect to w and subsequently

finding the roots,

▽wLρ
(
w, s(k), u(k)

)
= 2R†

i (s
(k))w

+ ρh′†(s(k))h′(s(k))w − ρh′†(s(k))
(
κ− u(k)

)
= 0.

(6.38)

Therefore the closed-form solution is,

w(k+1) = A−1a. (6.39)

where,

A = 2R†
i (s

(k))w + ρh′†(s(k))h′(s(k)), (6.40)

a = ρh′†(s(k))
(
κ− u(k)

)
. (6.41)

6.2.2.2 Optimizing s(k+1)

Problem (6.36) is a multi-variable and non-convex optimization problem and we propose

an iterative procedure based on CD framework [102] to solve it. CD is an iterative

optimization method which starts with an initial feasible vector x = s(0), then x is

updated by optimizing entry by entry basis in an iterative manner [24, 78]. In particular,

one entry of x is considered as the only variable while others are held fixed. Subsequently,

with respect to this identified variable, we optimize the problem (6.36). Let us assume

that sd is the dth transmitted pulse (d = 1, . . . , N) and is the only variable, while the

other N − 1 entries are fixed. We define x
(i)
−d as a vector at the ith iteration of CD which
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the dth entry is undergone of the optimization procedure as,

x
(i)
−d ≜ [s

(i)
1 , . . . , s

(i)
d−1, sd, s

(i−1)
d+1 , . . . , s

(i−1)
N ]T ∈ CN . (6.42)

At iteration (i) of the CD procedure, the variable s
(i)
d is updated by solving the following

sub-problem,

s
(i)
d = argmin

sd

{
Lρ
(
w(k+1),x

(i)
−d, u

(k)
)
|x(i)

−d ∈ ΩM

}
, (6.43)

Each iteration is completed when all of the entries are updated. At the end of each

iteration the algorithm examines the convergence metric for the objective function. If

the stopping criteria is not met another iteration is started to optimize the waveform.

Let x(i) ≜ [s
(i)
1 , . . . , s

(i)
N ]T ∈ CN be the optimized vector at ith iteration. We consider the

following condition as stopping criterion of optimization,

Lρ
(
w(k+1),x(i−1), u(k)

)
− Lρ

(
w(k+1),x(i), u(k)

)
< ζ (6.44)

where, ζ > 0.

In order to enhance the efficiency of the proposed method, problem (6.43) can be

simplified by rewriting that with respect to sd as follows (see Appendix E.1 for details),

P1


min
sd

c0sd + c1 + c2s
∗
d

s.t sd = ejϕ, ϕ ∈ ΨM

. (6.45)

Replacing sd = eiϕ, the problem (6.45) can be recast as,

P2


min
ϕ

f(ϕ) = ejϕ
(
c0 + c1e

−jϕ + c2e
−2jϕ

)
s.t ϕ ∈ ΨM

. (6.46)

As ϕ is chosen over finite alphabet, the objective function can be written with respect to

the index of ΨM as, f(ϕm) = ej
2πm
L
∑2

n=0 cne
−j 2πnm

M , where, m = {0, . . . ,M − 1}. The
summation term is the definition of M−point DFT of sequence {c0, c1, c2}. Hence, f(ϕm)
can be written as,

f(m) = hM ⊙FM{c0, c1, c2} (6.47)

where, hM = [1, ej
2π
L , . . . , ej

2π(L−1)
L ]T ∈ CM and FM is the M−point DFT operator.

Therefore the optimum solution of (6.47) is, m⋆ = arg min
m=1,...,M

{
f(m)

}
. Subsequently,

the optimum phase is,

ϕ⋆ =
2π(m⋆ − 1)

M
. (6.48)
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To this end, based on the aforementioned discussion, we propose Algorithm 11 based on

CD to solve (6.43).

Subroutine Procedure 11 : CD Framework

Input: w(k+1), s(k)

Output: Optimized waveform s(k+1).

1. Initialization.

• Set i := 0, x(i) := s(k) and d := 1;

2. Optimization.

• i := i+ 1;

• Obtain ϕ⋆ using (6.48), then s
(i)
d = ejϕ

⋆
;

• If d = N go to 3); else d := d+ 1 and go to 2);

3. Stopping Criterion.

• x(i) = [s
(i)
1 , . . . , s

(i)
N ]T and d := 1;

• If (6.44) is satisfied, go to 4), otherwise go to 2);

4. Output.

• Set s(k+1) = x(i);

6.2.2.3 Termination Criteria of ADMM method

The authors in [168] suggest the two following criteria for ADMM termination at the kth

step, ∥∥∥r(k)∥∥∥
2
< ϵpri,

∥∥∥v(k)∥∥∥
2
< ϵdual, (6.49)

where, r(k) and v(k) are known as primal and dual residual at iteration k, and ϵpri > 0

and ϵdual > 0 are tolerances for the primal and dual residual, respectively. Here, the

primal and dual residual are,

rk = h′(s(k))w − κ, (6.50)

vk = ρh(w(k))
(
s(k) − s(k−1)

)
, (6.51)

and the tolerances for primal residuals are,

ϵpri = ϵabs
√
N + ϵrelmax

{∥∥∥h(w(k))s(k)
∥∥∥ ,∥∥∥h′(s(k))w(k)

∥∥∥ , κ} , (6.52)
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ϵdual = ϵabs
√
N + ϵrel

∥∥∥∥ρ(h(w(k))s(k)
)†
u(k)

∥∥∥∥ . (6.53)

In (6.52) and (6.53) ϵabs > 0 and ϵrel > 0 are absolute and relative tolerance respectively

and they are selected depending on the application.

6.2.2.4 ADMM algorithm

Algorithm 12 summarizes the joint Doppler filter and waveform design based on ADMM.

Subroutine Procedure 12 : Joint Doppler filter and waveform design

Input: w(0), s(0), u(0), ρ, ϵdual and ϵrel

Output: Optimized waveform s⋆.

1. Initialization.

• Set k := 0;

2. Optimization.

• Obtain w(k+1) using (6.39);

• Obtain s(k+1) using Algorithm 11;

• u(k+1) := u(k) + h(s(k+1))w(k+1) − κ;

• k := k + 1;

3. Stopping Criterion.

• If (6.49) is satisfied, go to 4), otherwise go to 2);

4. Output.

• Set w⋆ = w(k+1) and s⋆ = s(k+1);

6.2.3 Numerical Results

In this subsection, we provide some simulation results to evaluate the effectiveness of the

proposed method. Towards this end, unless otherwise explicitly stated, we consider the

following assumptions. Note that all Doppler shifts are normalized to PRF.

Waveform Parameters We design a MPSK sequence with length and alphabet size

of N = 32 and M = 8 respectively. The energy transmitted is es = ∥ s ∥2.
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Figure 6.6: Convergence behavior of Capon constraint.

Interference Parameters We consider σ2n = 1 for signal-independent interference.

For signal-dependent interference (clutter) we assume Nr = 2 as interfering range

rings, and Na = 100 as azimuth sectors. We consider a homogeneous clutter which

means σ2(r,l) = σ2; r ∈ {1, . . . , Nr}, l ∈ {1, . . . , Na}. The CNR can be calculated by

CNR =
σ2
(r,l)

σ2
n
es, [166], which is equal to 30 dB. The normalized mean and variance shift

Doppler are f̄d(r,l) = 0 Hz and ϵ(r,l) = 0.1 Hz, respectively.

Target Parameters The SNR of received signal is, SNR = |αt|2
σ2
n
es, [166], which is

adjusted to be 10 dB. In addition, we assume that the normalized target Doppler shift is

equal to fd = 0.35 Hz.

Algorithm Parameters For problem (6.24), we set κ = 1. For Algorithm 12, we

initialize u(0) = 0 and w(0) to be a zero vector while for s(0) we consider a random MPSK

sequence. We set the penalty ρ = 100, and the absolute tolerance and relative tolerance

are ϵabs = 10−2 and ϵrel = 10−4. Finally, for Algorithm 11 the stopping condition is set

at ζ = 10−3.

6.2.3.1 Convergence behavior of proposed algorithm

In this part, we investigate the convergence behavior of the proposed algorithm. Figure 6.6

shows the convergence behavior of the Capon constraint of (6.24). As we expected in

Figure 6.6 the Capon constraint converges to κ.

Figure 6.7 shows the convergence behavior of the SINR of the proposed method. As can

be seen in the SINR converges to the optimum value close to the upper bound.
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Figure 6.8: ROC improvement of proposed method.

Note that, the upper bound for the SINR value is the case when there is no clutter

interference, equivalent to the SNR value therefore, the optimized SINR is bounded by

10 dB.

6.2.3.2 Receiver Operating Characteristic

The detection performance of radar system can be evaluate by ROC which plots the

variation of the detection probability (Pd) with false alarm probability (Pfa). The

detection probability is given by Pd = Q
(√

2SINR,
√
−2 log(Pfa)

)
[130, 167], where Pfa

is the probability of false alarm and Q(., .) is the generalized Marcum-Q function.

Figure 6.8 shows the ROC of the proposed method in the first and the last iteration

(optimized waveform and the corresponding Doppler filter). As can be seen, the detection

performance is significantly enhanced by proposed method.
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Figure 6.9: Doppler filter Response of proposed method with different fd.

6.2.3.3 Filter Response

The Doppler filter response associated with different fd are plotted in Figure 6.9. It

can be observed that the proposed method enhances the output SINR of Doppler filter

yielding a value close to the upper bound with different central frequencies.

6.2.3.4 Comparison with another method

In this part, we compare the performance the proposed method with GFP method in

[160] in different aspects. To this end, we assume a similar simulation setup, where the

number of pulses is N = 20, and for the similarity constraint we consider a generalized

Barker code with different δ.

Frequency Response As [160] designs a Doppler filter bank, we choose one of

them and we compare it with the proposed method with the same central Doppler

frequency. Figure 6.10 shows the Doppler filter response of GFP and proposed method

with fd = 0.425 Hz. Observe that although GFP method provides a slightly better SINR

in central frequency, it has higher spectrum sidelobes compared to the proposed method.

This enables superior discrimination capability of the proposed approach.

Power Efficiency The optimum waveform obtained by GFP is not uni-modular and

each code has different power, leading to inefficient power transmission. However due to

the uni-modular sequence the proposed method has a better performance in compare

with GFP method. The power efficiency can be assessed from the PAR criterion as [130],

PAR =

max
i=1,...,N

|si|2

1
N ∥ s ∥2

. (6.54)
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Figure 6.10: Comparison the filter Response between proposed method and GFP
(N = 20, M = 8, fd = 0.425 Hz, SNR = 10 dB and CNR = 30 dB).

Table 6.2: The convergence-time (s) of proposed method averaged over 10 independent
trials, for different sequence length.

N 16 32 64 128 256

Convergence 0.69 1.04 1.93 5.05 19.75

The PAR of GFP method is equal to 4.35 dB whereas, it is equal to 0 dB in the proposed

method due to the uni-modular sequence.

Computational Complexity Table 3.1 shows the convergence time of the proposed

method with different sequence lengths over 10 independent trials. The reported values

are obtained with a standard PC with Intel (R) Core (TM) i5-8250U CPU @ 1.60GHz with

installed memory (RAM) 8.00 GB. By increasing the sequence length, the convergence-

time of proposed method increases. This behavior is expected; increasing the sequence

length increases the problem dimension and naturally increases the convergence time.

However the average convergence time of GFP method is 119.97 seconds and table 3.1

shows that the proposed method is faster than GFP method.

6.3 Conclusion

In this chapter, we have considered a maximization of SINR by joint design the Doppler

filter and waveform under assumption of presence of signal-dependent interfering. In

addition, in order to achieve a good power efficiency and efficient hardware implementation,

we consider discrete phase sequences. In this chapter We consider two design metric.

First we consider maximizing the worst-case SINR at the output of the filter bank target

Doppler frequency is unknown. Second we consider SINR maximization with known

Doppler. To obtain a sub-optimal solution, we propose CD-based and ADMM-based
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methods. Through the numerical results we evaluate the performance of the proposed

methods and compare it with the state of the art.



Chapter 7

Joint spectral shaping and

waveform orthogonality in MIMO

radar systems implementation

In this chapter we address the joint spectral shaping and orthogonality problem in

MIMO radar system. To this end, we deal with spectral nulling problem (on undesired

frequency), while having a good orthogonality. In this regards we present two studies. In

the first study, we consider the range-ISL as design metric, then we express the problem

in frequency domain using Parseval theorem. In this step, the spectral shaping (nulling)

can be achieved by incorporating some weights in the objective function in frequency

domain. In this approach, the two metrics (orthogonality and spectral shaping) are

integrated in one objective functions which makes tackling easier. In order to solve

the problem, we proposed an algorithm based on CD method. In the second study, we

introduce the SILR and ICCL as design metrics for spectral shaping and orthogonality,

respectively. We formulate the problem as weighted sum of these two metrics, which

ables us to make a trade-off between SILR and ICCL. In order to solve the problem we

use CD method. Finally, we implement the framework using a custom built SDR based

prototype developed on USRP from NI to demonstrate the performance of the proposed

method in real application.

153
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7.1 Waveform Design for Range-ISL Minimization with

Spectral Compatibility in MIMO Radars

Cognitive radar systems are smart sensors which have a dynamic interaction with

environment. These radars optimally adapt their transmit, receive and other parameters

to the environment to enhance its performance [11]. Resource management in cognitive

MIMO radar is becoming crucial for next-generation of active sensing and communications

[111]. In general, there are three important resources, the time (range), spectral and

spatial [57]. In time (range) domain, low auto and cross-correlation sidelobes level

are required, to avoid masking weak targets within the range sidelobes of a strong

target and to obtain orthogonality, respectively [17, 37, 58]. In Spatial domain, transmit

beampattern shaping is used to control the spatial distribution of the transmit power

[26, 39, 44]. In spectral domain, spectral shaping has a key role in spectral sharing for

coexistence between MIMO radar and other RF systems [110, 114, 172, 173].

In this section we consider the range-ISL minimization problem in time (range) domain

with spectral compatibility. We consider solving the problem under discrete phase

MPSK sequences which requires limited valued phase shifters. In general, there are two

approaches to tackle this problem. First, solving an optimization problem where, the

range-ISL minimization and spectral compatibility as objective function and constraint,

respectively [90]. Another approach is solving a bi objective optimization problem of

range-ISL and spectral shaping with weighted sum method [97]. However, in this section

we consider one objective function to tackle the problem. To this end, we express the

range-ISL function in frequency domain using the Parseval theorem. Then we incorporate

weights to the objective function to control the spectral response of the waveform. To solve

the problem we proposed an iterative algorithm based on CD method which decreases

the objective function monotonically in each iteration. In the numerical results we show

the performance of the proposed method and we compare it with its counterpart.

We organize this section as follows. In subsection 7.1.1, we introduce the system model

and problem statement. Subsection 7.1.2 presents the proposed CD based framework

whose performance is numerically assessed in subsection 7.1.3

Notations: The following notations is adopted. Bold lower and uppercase letters

for vectors matrices, respectively. Diag {a}, (.)T , (.)∗, (.)r, |.|, ⌊.⌉ and ⊙ denote the

diagonal matrix of vector a, transpose, sequence reversal, conjugate, absolute value,

round and Hadamard product respectively. The letter j represents the imaginary unit

(i.e., j =
√
−1).
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7.1.1 System Model and Problem Formulation

Let X ∈ CM,N be the transmitted sequence in MIMO radar system with M transmitters

and the sequence length of N . At time sample n, the waveform transmitted through the

M antennas is denoted by xn, where,

xn = [x1,n, x2,n, . . . , xM,n]
T ∈ CM . (7.1)

In (7.1), xm,n denotes the nth sample of the mth transmitter. The aperiodic cross-

correlation of xm and xm′ is defined as,

rm,m′(k) ≜
∑N−k

n=1 xm,nx
∗
m′,n+k, (7.2)

where m,m′ ∈ {1, . . . ,M} are the transmit antennas indices and l ∈ {−N+1, . . . , N−1}
is the lag of cross-correlation. If m = m′, (7.2) represents the aperiodic auto-correlation

of signal xm. The zero lag of auto-correlation represents the peak of the matched filter

output and contains the energy of sequence, while the other lags (l ̸= 0) are referred to

the sidelobes. The range-ISL can therefore be expressed by [39],

ISL =
∑M

m,m′=1

∑N−1
l=−N+1 |rm,m′(k)|2 −MN2. (7.3)

Please note that, the MN2 term in (7.3) is the peak of the matched filters output,

where is a constant value for constant modulus waveforms (
∑M

m=1 |rm,m(0)|2 =MN2).

Therefore the range-ISL as objective function can be equivalently written as f(X) ≜∑M
m,m′=1

∑N−1
l=−N+1 |rm,m′(l)|2.

Based on Parseval theorem the range-ISL minimization problem can be written in the

frequency domain as, f(X) = 1
2N−1

∑M
m,m′=1

∑N−1
k=−N+1 |Rm,m′(k)|2, where, Rm,m′(k)

indicates the Fourier transform of rm,m′(l). Let F ≜ [f0, . . . , f2N−2] ∈ C(2N−1)×(2N−1) be

the DFT matrix, where, fk ≜ [1, e−j
2πk

2N−1 , . . . , e−j
2πk(2N−2)

2N−1 ]T ∈ C2N−1, k = {0, . . . , 2N −
2}. Hence, we have, Rm,m′(k) = Fx̄m ⊙ Fx̄rm

∗, where, x̄t ∈ C(2N−1) is the N − 1 zero

pad version of xt, i.e. x̄t ≜ [xt; 0; . . . ; 0︸ ︷︷ ︸
N−1

]. In this regards, we consider the following

optimization problem,


min
X

f(X) =
∑M

m,m′=1

∥∥w ⊙ Fx̄m ⊙ Fx̄r
m

∗∥∥2
2

s.t. xm,n ∈ XL,
(7.4)

where, XL indicates the discrete phase sequence with L alphabet size. More precisely,

XL = {ejϕ|ϕ ∈ ΩL}, where ΩL ≜ {0, 2πL . . . , 2π(L−1)
L }; and, w = [w0, . . . , w2N−2]

T ,

0 ≤ wk ≤ 1, k ∈ {0, . . . , 2N − 2}. Please note that, choosing wk = 1, leads to range-ISL
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minimization. Besides, by choosing appropriate value for w the spectral response can be

shaped. In this regards, let U = ∪Kk=1(uk,1, uk,2) be theK number of normalized frequency

stop-bands (K ≤ 2N−1), where 0 ≤ uk,1 < uk,2 ≤ 1 and ∩Kk=1(uk,1, uk,2) = ∅. Thus, the

undesired discrete frequency bins are given by V = ∪Kk=1(⌊(2N − 1)uk,1⌉, ⌊(2N − 1)uk,2⌉).
Therefore the weights w can be obtained by,

wk =

1 k ∈ V

0 k /∈ V
, k ∈ {1, . . . , 2N − 1}. (7.5)

Problem (7.4) is a multi-variable, non-convex and NP-hard optimization problem. In the

following we proposed a CD-based method to obtain a local optimum solution.

7.1.2 Proposed Method

In CD based methods we need to consider one entry of X as being the only variable

while keeping the others fixed; for this identified variable, we optimize the objective

function. This methodology is efficient when the objective function can be written in

a simplified form for that identified variable [24]. To this end, First we express the

problem with respect to tth transmitter, then we express it with the dth sample. Let xt

be the only variable block, while other blocks are held fixed and stored in the matrix

X−t ≜ [xT1 ; . . . ;x
T
t−1;x

T
t+1; . . . ;x

T
M ] ∈ C(M−1)×N . In this case, the function f(X) can be

decomposed to a term independent of the optimization variable xt, and two other terms,

one indicating the auto-correlation of xt, and the other is its cross-correlation with the

other sequences of the set X−t. Precisely,

f(X) = fm(X−t) + fau(xt) + fcr(xt,X−t). (7.6)

Since, fm(X−t) does not depend on xt, therefore it can be ignored in the objective

function. Thus, it can be shown that,

fau(xt) =
∥∥w ⊙ Fx̄rt

∗ ⊙ Fx̄t
∥∥2
2
,

fcr(xt,X−t) =
∑M

m=1
m̸=t

∥∥w ⊙ Fx̄rm
∗ ⊙ Fx̄t

∥∥2
2
,

(7.7)

Let us assume that xt,d is the only variable at (i)th iteration of the optimization procedure.

In this regards f(X) can be written with respect to xt,d as (see Appendix F.1),

f(xt,d,X
(i)
−(t,d)) = a0x

2
t,d + a1xt,d + a2 + a3x

∗
t,d + a4x

∗
t,d

2, (7.8)
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where the coefficients are given in the Appendix F.1. Here, X
(i)
−(t,d) ≜ X(i)|xt,d=0 refers to

the fixed entries. By substituting xt,d = ejϕ, (7.8) depends only on parameter ϕ 1. In this

case, since ϕ ∈ XL is chosen from a limited alphabet of length L, the objective function

can be written with respect to the indices of XL as, f (i)(ℓ) = ej
4πℓ
L
∑4

n=0 ane
j 2πnℓ

L , where,

ℓ = {0, . . . , L− 1}. The summation term in the aforementioned equation is exactly the

definition of L−point DFT of sequences [a0, a1, a2, a3, a4]. Therefore we have,

f (i)(ℓ) = h⊙FL{a0, a1, a2, a3, a4}, (7.9)

where, h ≜ [1, ej
4π
L , . . . , ej

4π(L−1)
L ]T ∈ CL and FL is L−point DFT operator. Please note

that the current function is only valid for L ⩾ 5. According to periodic property of DFT,

f (i)(ℓ) can be written as,

L = 4 ⇒ f (i)(ℓ) = h⊙FL{a0 + a4, a1, a2, a3},

L = 3 ⇒ f (i)(ℓ) = h⊙FL{a0 + a3, a1 + a4, a2},

L = 2 ⇒ f (i)(ℓ) = h⊙FL{a0 + a2 + a4, a1 + a3}.

Therefore the optimum solution of (7.9) is, ℓ⋆(i) = arg min
ℓ=1,...,L−1

{
f (i)(ℓ)

}
, then the

optimum phase is,

ϕ⋆(i) =
2πℓ⋆(i)

L
. (7.10)

Subsequently, the variable xt,d will be updated by x⋆t,d
(i) = ejϕ

⋆(i)
. This procedure

will continue for other entries until the stationary point is obtained. We consider
1√
MN

∥∥∥X(i) −X(i−1)
∥∥∥
F
< ζ, (ζ > 0) as stopping criterion of optimization. The proposed

method is summarized in Algorithm 13.

7.1.3 Numerical Results

In this subsection we consider to evaluate the performance of the proposed method and

compare it with the state-of-the art counterparts. In this regards, we assume that the

stopping condition for Algorithm 8 is set at ζ = 10−5.

7.1.3.1 Convergence

Figure 7.1 shows the convergence behavior the objective function and the argument.

For these figures, we assume that the undesired normalized frequency are located at

U = [0.3, 0.35]∪ [0.4, 0.45]∪ [0.7, 0.8] and the algorithm 8 is initialized with random MPSK

1For the convenience we use ϕ instead of ϕt,d in the rest of the section.
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Subroutine Procedure 13 : Spectral Compatible Range-ISL minimization.

Input: X(0) and w.
Initialization: i := 0.
Optimization:

1. while 1√
MN

∥∥∥X(i) −X(i−1)
∥∥∥
F
< ζ do

2. i := i+ 1;

3. for t = 1, . . . ,M do

4. for d = 1, . . . , N do

5. Optimize x
(i−1)
t,d and obtain x⋆t,d;

6. Update x
(i)
t,d = x⋆t,d;

7. X(i) = X
(i)
−(t,d)|xt,d=x(i)t,d

;

8. end for

9. end for

10. end while

Output: X⋆ = X(i).
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Figure 7.1: Convergence behavior of the proposed method with different alphabet size
(M = 4, N = 128, and U = [0.3, 0.35] ∪ [0.4, 0.45] ∪ [0.7, 0.8])

sequence with alphabet size of L = 4. Figure 7.1a shows the convergence behavior of the

objective function with different alphabet sizes. As can be seen, in all cases the objective

function decreases monotonically. By increasing the alphabet size of the waveform the

feasible set of the problem increases, therefore the performance of the proposed method

becomes better. Figure 7.1b shows the convergence behavior of the argument of the

problem. Observe that in all cases the argument converges to the optimum value.
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Figure 7.2: Comparison of average range-ISL of the proposed method with BiST and
the lower bound with 10 number of trials (L = 32).

7.1.3.2 Range-ISL Minimization

The range-ISL minimization can be obtained by setting wk = 1, k ∈ {1, . . . , 2N − 1}.
Figure 7.2a and Figure 7.2b compare the average range-ISL of the proposed method with

BiST and the lower bound which is given by, N2M(M−1), with different sequence length

and number of transmitters, respectively. As can be seen in both cases the proposed

method offers lower range-ISL compared to BiST.

7.1.3.3 Spectral Shaping

Figure 7.3 compares the performance of the proposed method with [174] in terms of

spectral shaping. The authors in [174], address the spectral shaping and orthogonality in

MIMO radar systems under discrete and continuous phase constraint. They proposed a

weighted sum approach to make a trade off between spectral shaping and orthogonality.

By choosing θ = 1, [174] offers the optimum spectral response. As can be seen, the

performance of the proposed method is similar to [174]. However, the range-ISL of the

proposed method and [174] are 341767 and 355793, respectively. This indicates that the

proposed method offers lower range-ISL rather than [174].

7.2 Cognitive Radar Prototype for Coexistence with Com-

munications

Spectrum congestion has become an imminent problem with multitude of radio services

like wireless communications, active RF sensing and radio astronomy vying for the

scarce usable spectrum. Within this conundrum of spectrum congestion, radars need to

cope with simultaneous transmissions from other RF systems. Spectrum sharing with
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Figure 7.3: Comparison of spectrum response of the proposed method with [174]
(M = 4, N = 256, L = 64 and U = [0.3, 0.35] ∪ [0.7, 0.8])

communications being the highly plausible scenario given the need for high bandwidth in

both systems [110, 114, 172]. While elaborate allocation policies are in place to regulate

the spectral usage, the rigid allocations result in inefficient spectrum utilization when

the subscription is sparse. In this context, smart spectrum utilization offers a flexible

and a fairly promising solution for improved system performance in the emerging smart

sensing systems [175].

Two paradigms, Cognition andMIMO have been central to the prevalence of smart sensing

systems. Herein, the former concept offers ability to choose intelligent transmission

strategies based on prevailing environmental conditions and a prediction of the behaviour

of the emitters in the scene, in addition to the now ubiquitous receiver adaptation

[69–72, 119, 176–179]. The second concept, offers a canvas of transmission strategies

to the cognition manager to select from; these strategies exploit waveform diversity

and the available degrees of freedom [180, 181]. Smart sensing opens up the possibility

of coexistence of radar systems with incumbent communication systems in the earlier

mentioned spectrum sharing instance. A representative coexistence scenario is illustrated

in Figure 7.4, where an understanding of the environment is essential for seamless

operation of radar systems while opportunistically using the spectrum allocated to

communication [117, 182, 183].

In this chapter, we design a cognitive MIMO radar system towards fostering coexistence

with communications; it involves spectrum sensing and transmission strategies adapted

to the sensed spectrum while accomplishing the radar tasks and without degrading the

performance of communications. Particularly, a set of transmit sequences is designed to

focus the emitted energy in the bands suggested by the spectrum sensing module while

limiting the out-of-band interference. The waveforms, along with the receive processing,

are designed to enhance the radar detection performance. The designed system is then

demonstrated for the representative scenario of Figure 3.10 using a custom built SDR
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Figure 7.4: An illustration of coexistence between radar and communications. The
radar aims to detect the airplane, without creating interference to the communication

links, and similarly avoiding interference from the communication links.
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Figure 7.5: Sequence of operation in a cognitive radar system, including scanning of
the environment, estimating the environmental parameters, and adapting the transceiver

accordingly.

based prototype developed on USRPs2 from NI [184, 185]. These USRPs operate at

sub-6 GHz frequencies with a maximum instantaneous bandwidth of 160 MHz.

Notations: This section uses lower-case and upper-case boldface for vectors (a) and

matrices (A), respectively. The conjugate, transpose and the conjugate transpose

operators are denoted by (.)∗, (.)T , and (.)†, respectively. The Frobenius norm, l2 norm,

absolute value and round operator are denoted by ∥.∥F , ∥.∥2, |.| and ⌊.⌉ respectively.

7.2.1 Cognitive Radar

The scenario under consideration in this chapter is one where a radar system desires

to operate in the presence of interfering signals that are generated by communication

systems. The radar system will benefit from using as much bandwidth as possible. This

2USRPs are inexpensive programmable radio platforms used in wireless communications and sensing
prototyping, teaching and research.
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will improve the systems range resolution and accuracy, but requires the radar system to

avoid the frequency band occupied by communication signals for two reasons:

[A] - To enhance the performance of the communications, that requires the radar system

does not interfere with the communication signals.

[B] - To improve the sensitivity of the radar system for detecting targets with very small

SINR values. Indeed, by removing the communications interference, the radar SINR will

be enhanced and thus the sensitivity of the radar system will be improved.

Given the scenario under consideration, the cognitive radar requires to scan the envi-

ronment; estimate the environmental parameters; and adapt the transceiver accordingly.

These three steps are the high level structure for a cognitive loop or Perception/Action

Cycle (PAC) that are indicated in Figure 7.5.

Thus, the first important step is to sense the RF spectrum. Once RF spectral information

has been collected, then the interfering signals needs to be characterized and some

specifications such as their center frequencies and bandwidths needs to be extracted.

After that, radar must choose how to adapt given the obtained information from the

interference. In this step, waveform optimization can be a solution, which provides the

optimal solution for the given constraints, provided that it can be performed before any

new change in the environmental parameters.

7.2.2 The Prototype Architecture

The prototype consists of three application frameworks as depicted in Figure 7.6; a)

LTE Application Framework, b) Spectrum sensing application, and c) Cognitive MIMO

radar application. A photograph of the proposed coexistence prototype is depicted in

Figure 7.7. The hardware (HW) consists of three main modules: 1) USRP 2974 for LTE

communications 2) USRP B210 for spectrum sensing, and 3) USRP 2944R for cognitive

MIMO radar with specifications given in Table 7.1. USRPs are used for the transmission

and reception of the wireless RF signals and the Rohde and Schwarz spectrum analyzer

is used for the validation of the transmission.

7.2.2.1 LTE Application Framework

The LabVIEW LTE Application Framework (Figure 7.6a) is an add-on software that

provides a real-time physical layer LTE implementation in the form of an open and

modifiable source-code [186]. The framework complies with a selected subset of the 3GPP

LTE which includes a closed-loop Over-The-Air (OTA) operation with channel state and



Joint spectral shaping and waveform orthogonality in MIMO radar systems
implementation 163

USRP-2974

(a) LTE Application

USRP-B210

(b) Spectrum Sensing

USRP-2944

(c) MIMO Radar

Figure 7.6: Application frameworks forming the prototype: LTE application developed
by NI, spectrum sensing and cognitive MIMO radar applications developed in this section.
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Figure 7.7: A photograph of the proposed coexistence prototype. The photo shows
communication BS and user, spectrum sensing, and cognitive MIMO radar systems.

Table 7.1: Hardware characteristics of the proposed prototype

Parameters 2974/2944R B210

Frequency range 10 MHz −6 GHz 70 MHz −6 GHz
Max. output power 20 dBm 10 dBm
Max. input power +10 dBm −15 dBm
Noise figure 5− 7 dB 8 dB
Bandwidth 160 MHz 56 MHz
DACs 200 MS/s, 16 bits 61.44 MS/s, 12 bits
ADCs 200 MS/s, 14 bits 61.44 MS/s, 12 bits

ACK/ NACK feedback, 20 MHz bandwidth, PDSCH and Physical Downlink Control

Channel (PDCCH), up to 75 Mbps data throughput, FDD and TDD configuration

5-frame structure, QPSK, 16-QAM, and 64-QAM modulation, channel estimation and

zero-forcing channel equalization. The framework also has a basic MAC implementation

to enable packet-based data transmission along with a MAC adaptation framework for

rate adaptation. Since the NI-USRP 2974 has two independent RF chains and the

Application Framework supports single antenna links, we emulated both the BS and

communications user on different RF chains of the same USRP.
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Figure 7.8: A snapshot of the developed cognitive MIMO radar application. (a)
Settings for device, radar, and processing parameters. (b) I and Q signals of two receive
channels. (c) Spectrum of the received signals in two receive channels. (d) Matched
filters to two transmitting waveforms at the first receive channel. (e) Matched filters to
two transmitting waveforms at the second receive channel. (f) Received information

from the energy detector of the spectrum sensing application.

7.2.2.2 Spectrum Sensing Application

To perform the cognition and continuously sensing the environment, we developed an

application based on LabView NXG 3.1 that connects to Ettus USRP B2xx (Figure 7.6b).

The developed application is flexible in terms of changing many parameters on the fly, e.g.,

averaging modes, window type, energy detection threshold, and the USRP configurations

(gain, channel, start frequency, etc.). In the developed application, the center frequency

can be adjusted to any arbitrary value in the interval 70 MHz to 6 GHz, and the span

bandwidth can be selected from the two values of 50 MHz, and 100 MHz3. The obtained

frequency chart is being transferred through a network connection (LAN/Wi-Fi) to the

cognitive MIMO radar application.

7.2.2.3 MIMO Radar Prototype

Figure 7.8 depicts a snapshot of the developed cognitive MIMO radar application

framework, when the licensed band 3.78 GHz with 40 MHz bandwidth was used for

transmission4. All the parameters related to the radar waveform, processing units, and

targets can be changed and adjusted during the operation of the radar system. The

MIMO radar application was developed based on LabView NXG 3.1, and was connected

to the HW platform NI-USRP 2944R. This USRP consists of a 2×2 MIMO RF transceiver

with a programmable Kintex-7 field programmable gate array (FPGA). The developed

application is flexible in terms of changing the transmit waveform on the fly, such that it

can adapt with the environment. Table 7.2 details the features and flexibilities of the

developed application. The center frequency can be adjusted to any arbitrary value in

3Note that USRP B2xx provides 56 MHz of real-time bandwidth by using AD9361 RFIC direct-
conversion transceiver. However, the developed application can analyze larger bandwidths by sweeping
the spectrum with efficient implementation.

4SnT has experimental licence to use 3.75 - 3.8 GHz for 5G research in Luxembourg.
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Figure 7.9: Block diagram of the transmitter in the developed cognitive MIMO radar
application. A list of occupied frequency bands will determined by the spectrum sensing
application. Based on this information, the proposed design algorithm optimizes the

transmitting waveforms.

the interval 70 MHz to 6 GHz, and the radar bandwidth can be adjusted to any arbitrary

value in the interval 1 MHz to 80 MHz.

Table 7.2: Characteristics of the developed cognitive MIMO radar

Parameters MIMO radar

Bandwidth 1− 80 MHz

Window type Rectangle, Hamming, Blackman, etc.

Averaging mode Coherent integration (FFT)

Processing units Matched filtering, range-Doppler processing

Transmitting waveforms

Random-polyphase, Frank, Golomb,
Random-Binary, Barker, m-Sequence, Gold,
Kasami, Up-LFM, Down-LFM,
and the optimized sequences

The block diagram of the transmit units of the developed cognitive MIMO radar is

depicted in Figure 7.9. Note that the application is connected through a network

(LAN/Wi-Fi) to the spectrum sensing application to receive a list of occupied frequency

bands. Based on this information, the radar optimizes the transmitting waveforms. The

design algorithm for the waveform optimization is described next.

7.2.2.4 Waveform Optimization

To perform waveform optimization in our developed cognitive radar prototype, we utilize

the CD framework wherein a multi variable optimization problem can be sequentially

solved as a sequence of (potentially easier) single variable optimization problems (see

Chapter 5 for more details). The benefits of using CD framework for this prototype are

listed below:
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[A] - CD provides a sequential solution for the optimization problem which typically

converges fast (comparing with the other optimization frameworks). Further, initial

iterations of the CD algorithm, generally provide deep decrement in the objective value.

Consequently, based on the limited available time for having a stationary environment,

CD can be terminated after a few number of iterations.

[B] - CD converts a multivariable objective function to a sequence of single variable

objective functions. As a result, the solutions of single variable problems are generally

less complex than the original problem. This is helpful for real-time implementation of

the optimization algorithm, where the algorithm does not need to do complex operations

in every iteration.

Using the advantages of CD framework, we perform the waveform optimization given

the limited time available for the scene to be remained stationary. This time in principle

can be as small as one CPI time, or can be adjusted depending to the dynamic of the

scene and the decision of the designer.

Let us now discuss in details the waveform design problem related to the scenario we

pursued in this chapter. We consider a colocated narrow-band MIMO radar system, with

M transmit antennas, each transmitting a sequence of length N in the fast-time domain.

Let the matrix X ∈ CM×N ≜ [xT1 , . . . ,x
T
M ]T denotes the transmitted set of sequences

in baseband, where the vector xm ≜ [xm,1, . . . , xm,N ]
T ∈ CN indicates the N samples of

the mth transmitter (m ∈ {1, . . . ,M}). We aim to design a transmit set of sequences

which have small cross-correlation among each others, while each of the sequences have

a desired spectral behaviour. To this end, in the following, we introduce the SILR and

ICCL metrics and subsequently the optimization problem to handle them.

Let F ≜ [f0, . . . , fN−1] ∈ CN×N be the DFTmatrix, where, fk ≜ [1, ej
2πk
N , . . . , ej

2πk(N−1)
N ]T ∈

CN , k = {0, . . . , N − 1}. Let V and U be the desired and undesired discrete frequency

bands for MIMO radar, respectively. These two sets satisfy V ∪ U = {0, . . . , N − 1} and

V ∩ U = ∅. We define SILR as,

gs(X) ≜

∑M
m=1

∥∥∥f †kxm∥∥∥2 |k ∈ U∑M
m=1

∥∥∥f †kxm∥∥∥2 |k ∈ V
(7.11)

which is the energy of the radar waveform interfering with other incumbent services (like

communications) relative to the energy of transmission in the desired bands. Optimizing

the above objective function may shape the spectral-power of the transmitting sequence

and satisfy a desired mask in the spectrum. However, in a MIMO radar it is necessary to

separate the transmitting waveforms in the receiver to investigate the waveform diversity,

which ideally requires orthogonality among the transmitting sequences. To make this
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orthogonality feasible by CDM, we need to transmit a set of sequences which have small

cross-correlations among each other. The aperiodic cross-correlation5 of xm and xm′ is

defined as,

rm,m′(l) =
N−l∑
n=1

xm,nx
∗
m′,n+l, (7.12)

where m ̸= m′ ∈ {1, . . . ,M} are indices of the transmit antennas and l ∈ {−N +

1, . . . , N − 1} denotes the cross-correlation lag. We define ICCL as,

g̃c(X) ≜
M∑
m=1

M∑
m′=1
m′ ̸=m

N−1∑
l=−N+1

|rm,m′(l)|2, (7.13)

which can be used to promote the orthogonality among the transmitting sequences.

Problem Formulation We aim to design set of sequences with small SILR and ICCL

values. To this end, we consider the following optimization problem,
min
X

gs(X), gc(X)

s.t. C1 or C2

(7.14)

where gc(X) = 1
(2MN)2

g̃c(X) is the scaled version of the ICCL, defined in (7.13). By

defining Ω∞ = [0, 2π), and ΩL =
{
0, 2πL , . . . ,

2π(L−1)
L

}
, then

C1 ≜ {X | xm,n = ejϕm,n , ϕm,n ∈ Ω∞}, (7.15)

and

C2 ≜ {X | xm,n = ejϕm,n , ϕm,n ∈ ΩL}, (7.16)

indicate constant modulus constraint and discrete phase constraints, respectively.

Problem (7.14) is a bi-objective optimization problem in which a feasible solution that

minimizes both objective functions may not exist [24, 143]. Scalarization is a well known

technique that converts the bi-objective optimization problem to a single objective

problem by replacing a weighted sum of the objective functions. Using this technique,

the following Pareto-optimization problem will be obtained,

P


min
X

g(X) ≜ θgs(X) + (1− θ)gc(X)

s.t. C1 or C2,

(7.17)

5In this chapter, we provide the solution to the design of sequences with good aperiodic correlation
functions. However, following the same steps as indicated in [86], the design procedure can be extended
to obtain sequences with good periodic correlation properties.
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The coefficient θ ∈ [0, 1] is a weight factor that effects trade-off between SILR and ICCL.

In (7.17), gs(X) is a fractional quadratic function while gc(X) is quartic function, both

with multiple variables. Further, both C1 and C2 constraints are not an affine set, besides

C2 is non-continuous and non-differentiate set. Therefore, we encounter a non-convex,

multi-variable optimization problem [24, 78].

The Optimization Method Let us assume that xt,d is the only variable in code

matrix X at (i)th iteration of CD algorithm, where the other entries are kept fixed and

stored in the matrix X
(i)
−(t,d) defined by,

X
(i)
−(t,d) ≜



x
(i)
1,1 . . . . . . . . . . . . . . . x

(i)
1,N

...
...

...
...

...
...

...

x
(i)
t,1 . . . x

(i)
t,d−1 0 x

(i−1)
t,d+1 . . . x

(i−1)
t,N

...
...

...
...

...
...

...

x
(i−1)
Mt,1

. . . . . . . . . . . . . . . x
(i−1)
Mt,N


The resulting single-variable objective function can be written as (see Appendix A),

g(xt,d,X
(i)
−(t,d)) = θ

a0xt,d + a1 + a2x
∗
t,d

b0xt,d + b1 + b2x∗t,d
+ (1− θ)

(
c0xt,d + c1 + c2x

∗
t,d

)
(7.18)

where, the coefficients ai, bi and ci depend onX
(i)
−(t,d) (t ∈ {1, . . . ,M} and d ∈ {1, . . . , N})

and are specified in Appendix A. By considering g(xt,d,X
(i)
−(t,d)) as the objective function

of the single variable optimization problem, and substituting6 xt,d = ejϕ, the optimization

problem at ith iteration of CD algorithm is

P(i)
ϕ


min
ϕ

θ
a0e

jϕ + a1 + a2e
−jϕ

b0ejϕ + b1 + b2e−jϕ
+ (1− θ)

(
c0e

jϕ + c1 + c2e
−jϕ
)

s.t. C1 or C2,

(7.19)

Let us assume that ϕ⋆ is the optimized phase value of (t, d)th entry of X. This value

can be found by solving (7.19), and consequently we obtain x⋆t,d = ejϕ
⋆
. After optimizing

all the code entries (t = 1, . . . ,M , and d = 1, . . . , N), a new iteration will be started,

provided that the stopping criteria is not met. A summary of the devised optimization

method is reported in Algorithm 14.

6For the sake of notational simplicity, we use ϕ instead of ϕt,d in the rest of this chapter.
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Subroutine Procedure 14 The proposed method for designing set of sequences that
avoid reserved frequency bands, and in the same time have small cross-correlation among
each other.

Input: Initial set of feasible sequences, X(0).
Initialization: i := 0.
Optimization:

• while the stopping criteria is not met, do

• i := i+ 1;

• for t = 1, . . . ,M do

• for d = 1, . . . , N do

• Optimize x
(i−1)
t,d and obtain x⋆t,d;

• Update x
(i)
t,d = ejϕ

⋆
;

• X(i) = X
(i)
−(t,d)|xt,d=x(i)t,d

;

• end for

• end for

• end while

Output: X⋆ = X(i).

Solution under continuous phase constraint Next step to finalize the waveform

design part is to provide a solution to Problem P(i)
ϕ . Let us define

g(ϕ) = θ
a0e

jϕ + a1 + a2e
−jϕ

b0ejϕ + b1 + b2e−jϕ
+ (1− θ)

(
c0e

jϕ + c1 + c2e
−jϕ
)
. (7.20)

Since g(ϕ) is a differentiable function with respect to the variable ϕ, the critical points

of (7.19) contain the solutions to d
dϕg(ϕ) = 0. By standard mathematical manipulations,

the derivative of g(ϕ) can be obtained as,

g′(ϕ) =
ej3ϕ

∑6
p=0 qpe

jpϕ

(b0ejϕ + b1 + b2e−jϕ)2
, (7.21)

where, the coefficients qp are given in Appendix B. Using the slack variable z ≜ e−jϕ,

the critical points can be obtained by obtaining the roots of six degree polynomial of

g′(z) ≜
∑6

p=0 qpz
p = 0. Let us assume that zp, p = {1, . . . , 6} are the roots of g′(z).

Hence, the critical points of (7.19) can be expressed as, ϕp = j ln zp. Since ϕ is a real

variable, we seek only the real extrema points. Therefore, the optimum solution for ϕ is,

ϕ⋆c = argmin
ϕ

{
g(ϕ)|ϕ ∈ ϕp,ℑ(ϕp) = 0

}
. (7.22)
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Subsequently, the optimum solution for is xt,d = ejϕ
⋆
c 7.

Solution under discrete phase constraint In this case, the feasible set is limited

to a set of L phases. Thus, the objective function with respect to the indices of ΩL can

be written as,

g(l) = θ

∑2
n=0 ane

−j 2πnl
L∑2

n=0 bne
−j 2πnl

L

+ (1− θ)e
j2πl
L

2∑
n=0

cne
−j 2πnl

L (7.23)

where, l = {0, . . . , L − 1}. The summation term in the numerator and denominator

in Equation (7.23) is exactly the definition of L−point DFT of sequences [a0, a1, a2] ,

[b0, b1, b2] and [b0, b1, b2] respectively. Therefore, g(l) can be written as,

g(l) = θ
FL{a0, a1, a2}
FL{b0, b1, b2}

+ (1− θ)h⊙FL{c0, c1, c2}. (7.24)

where h = [1, e−j
2π
L , . . . , e−j

2π(L−1)
L ]T ∈ CL and FL is L−point DFT operator. The

current function is valid only for L > 2. According to periodic property of DFT, for

binary g(l) can be written as,

g(l) = θ
FL{a0 + a2, a1}
FL{b0 + b2, b1}

+ (1− θ)h⊙FL{c0 + c2, c1}. (7.25)

Finally l⋆ = arg min
l=1,...,L

{
g(l)

}
, and ϕ⋆d =

2π(l⋆−1)
L .

7.2.2.5 Adaptive Receive Processing

The block diagram of the receive units of the developed cognitive MIMO radar is

depicted in Figure 7.10. The receiver starts sampling by a trigger that is received by

transmitter, indicating the start of transmission (possibility of working in Continuous

Wave (CW) mode is supported). In each receive channel, two filters matched to each of

the transmitting waveforms is implemented using the fast convolution technique. Four

range-Doppler plots corresponding to the receive channels and transmitting waveforms

are obtained by implementing FFT in the slow-time dimension.

7Since g(ϕ) is a function of cosϕ and sinϕ, it is periodic, real and differentiable. Therefore, it has at
least two extrema, and hence its derivative has at least two real roots. Thus, Ω is never a null set. As a
result in each single variable update, the problem has a solution and never becomes infeasible.
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Figure 7.10: Block diagram of the receiver of the developed cognitive MIMO radar
application. The coefficients of the matched filter will be updated for appropriate
matched filtering in the fast-time dimension. Consequently, the modulus of the range-

Doppler plots will be calculated after taking FFT in the slow-time dimension.
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Figure 7.11: The connection diagram of the proposed coexistence prototype.

7.2.3 Experiments and Results

In this subsection, we present present experiments conducted using the developed

prototype and analyze the HW results. For the practical applicability of our methods

and verification of the simulation, we established all the connections shown in Figure 7.11

using RF cables and splitters/ combiners, and measured the performance in a controlled

environment.

Passing the transmitting waveforms through the 30 dB attenuators as indicated in

Figure 7.11, a reflection will be generated; this will be used to generate the targets,

contaminated with the communications interference. The received signal in this way will
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be further shifted in time, frequency and spatial direction to create the simulated targets.

These targets will be detected after calculating the absolute values of the range-Doppler

maps.

The transmitting waveforms can be selected based on the options in Table 7.2 or obtained

based on Algorithm 14. When executing the application, input parameters to optimize

the waveforms pass from the Graphical User Interface (GUI) to MATLAB, and the

optimized set of sequences are passed to the application through the GUI. The other

processing blocks of the radar system including matched filtering, Doppler processing,

and scene generation are developed in the LabView G dataflow application. Table 7.3

and Table 7.4 summarize the parameters used for radar and targets in this experiment.

Table 7.3: Radar experiment parameters

Parameters Value

Center frequency 2 GHz
Real-time bandwidth 40MHz
Transmit and receive channels 2× 2
Transmit power 10 dBm
Duty cycle 50%
Transmit code length 400
Pulse repetition interval 20µs

For the LTE communications, we established the downlink between a BS and one user.

Nonetheless, the experiments can be also be performed with uplink LTE as well as

bi-directional LTE link. LabVIEW LTE framework offers the possibility to vary the MCS

of PDSCH from 0 to 28 where the constellation size goes from QPSK to 64QAM [187].

LTE uses PDSCH for the transport of data between the BS and the user. Table 7.5

indicates the experimental parameters used in our test set-up for the communications.

In Figure 7.12, we assess the convergence behaviour of the proposed algorithm in case

M = 4, and N = 64 for the first 100 iterations. It can be observed that given a few

number of iterations, the objective value decreases significantly. This behaviour is the

same for different values of θ, and also under C1 or C2 constraints. Note that the

optimized solution under C1 constraints obtain lower objective values comparing to the

solution of C2 constraint, due to a more degree of freedom in selecting the alphabet size.

Let us now, terminate the optimization procedure at iteration 10, and see the perfor-

mance of the obtained waveform at this iteration, comparing with SHAPE [1] which

is an algorithm for shaping the spectrum of the waveforms using spectral-matching

framework. Figure 7.13 shows spectral behaviour and cross-correlation levels of the

optimized waveforms in case M = 2, N = 400, and S = [0.25, 0.49] ∪[0.63, 0.75] Hz.
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Table 7.4: Target experiment parameters

Parameters Target 1 Target 2

Range delay 2µs 2.6µs
Normalized Doppler 0.2 Hz −0.25 Hz
Angle 25 deg 15 deg
Attenuation 30 dB 35 dB

Table 7.5: Communications experiment parameters

Parameters Value

Communication MCS
MCS0 (QPSK 0.12)
MCS10 (16QAM 0.33)
MCS17 (64QAM 0.43)

Center frequency (Tx and Rx) 2 GHz
Bandwidth 20 MHz
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Figure 7.12: Convergence behaviour of the proposed method under continuous and
discrete phase constraints for different θ values (M = 4, N = 64 and L = 16).
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Figure 7.13: The impact of θ value on trade-off between (a) spectral shaping and (b)
cross-correlation levels in comparison with SHAPE [1] (M = 2 and N = 512).

It is observable that by choosing θ = 0, the optimized waveforms are not able to put

notches on the undesired frequencies. By increasing θ, the notches will appear gradually
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and in case of θ = 1, we obtain the deepest notches. However, when θ = 1 the cross-

correlation is at the highest level which decreases with θ. In case θ = 0, we obtain the best

orthogonality. Therefore, by choosing an appropriate value of θ, one can make a good

trade-off between spectral shaping and orthogonality. For instance, choosing θ = 0.75 is

able to put a null level around 50 dB (see Figure 7.13a), while having relatively good

cross-correlation level (see Figure 7.13b).

Based on the aforementioned analysis, we set θ = 0.75, and always terminate the

algorithm after 10 iterations, for optimizing radar waveform. In this case, we show the

impact of optimized radar waveform on a coexistence with communications scenario with

the experiment. We use the experiment parameters reported in Table 7.3 and Table 7.5

for radar and communications, respectively. According to these tables, we utilize the

radar with a 50% duty cycle. By transmitting a set of M = 2 waveforms with length

N = 400, radar transmissions will occupy a bandwidth of 40 MHz with some nulls which

will be obtained adaptively based on the received feedback from the spectrum sensing

application. On the other side, the LTE communications framework utilizes 20 MHz

bandwidth for transmission. To have some nulls that can be utilized by radar in the

spectrum of communications, we select the allocation 1111111111110000000111111 for

the LTE resource blocks (4 physical resource blocks/bit), where the entry “1” indicates

the use of the corresponding time-bandwidth resources in the LTE application framework.

The spectrum of this LTE downlink is measured with the developed spectrum sensing

application as depicted in Figure 7.14. This figure serves two purposes, (i) focusing on the

LTE downlink spectrum, it validates the spectrum analyzer application with a commercial

product, and (ii) it clearly indicates that the desired objective of spectrum shaping is

met. The impact of this matching on performance of radar and communications are

presented next.

When the radar is not aware of the presence of communications, it transmits optimized

sequences when θ = 0. In this case, radar utilizes the entire bandwidth and the two

system mutually interfere. In fact, the operations of both radar and communications

are disrupted as depicted in Figure 7.15 (a and c), thereby creating difficulties for their

coexistence. In this case, by utilizing the optimized waveforms obtained by θ = 0.75, the

performance of both systems are enhanced as indicated pictorially in Figure 7.15 (b and

d).

7.2.4 Performance Analysis

To measure the performance of the proposed prototype, we calculate the SINR of the two

targets for radar while on the communication side, we report the PDSCH throughput
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(a) LTE spectrum at developed applica-
tion.

(b) LTE spectrum at R&H spectrum ana-
lyzer.

(c) Radar and LTE spectrum at the devel-
oped 2 channels spectrum sensing applica-

tion.

Figure 7.14: Screen captures of the resulting spectrum occupied by the LTE commu-
nications and optimized radar signals (θ = 0.75) at the developed two-channel spectrum
sensing application and R&H spectrum analyzer. The spectrum of the LTE downlink
in (a) is validated by a commercial product in (b), and (c) indicates the the resulting
spectrum of both communications (blue) and radar (red) at the developed two-channel

spectrum sensing application.

calculated by the LTE application framework. We perform our experiments in following

steps:

• Step-1: In the absence of radar transmission, we collect the LTE PDSCH throughput

for MCS0, MCS10 and MCS 17. For each MCS, we use LTE transmit power of 5

dBm, 10 dBm, 15 dBm and 20 dBm.

• Step-2: In the absence of LTE transmission, we obtain the received SNR for the

two targets. In this case, radar utilizes its optimized waveform by setting θ = 0.

The SNR is calculated as the ratio of the peak power of the detected targets to the

average power of the cells close to the target location in the range-Doppler map.

• Step-3: We transmit a set of optimized radar waveforms by setting θ = 0. At the

same time, we transmit the LTE waveform and let the two waveforms interfere

with each other. We log the PDSCH throughput as well as the SINR of Target-1

and Target-2. We perform this experiment for MCS0, MCS10 and MCS17 and

for each MCS, we increase the LTE transmit power from 5 dBm to 20 dBm in
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steps of 5 dBm. Throughout the experiment we keep the radar transmit power

fixed. For each LTE MCS and LTE transmit power combination, we average over

5 experiments before logging the PDSCH throughput and target SINRs.

• Step-4: We repeat step-3, but using the optimized waveforms with θ = 0.75 at the

radar transmitter.

To evaluate the performance of the communication data rate we reported PDSCH

throughput in Figure 7.16. Indeed, the PDSCH throughput value matches the theoretical

data rate for the combination of MCS and resource block allocation set for the UE TX.

This value indicates the number of payload bits per received transport block that could

be decoded successfully in every second. Mathematically it can be written as,

throughput =
∑

1second

npayload bits. (7.26)

In Figure 7.16, we first notice that in the presence of radar interference, the link’s

throughput degrades. Because the SINR requirement for obtaining a clean constellation

for larger modulations is also high, the degradation becomes more noticeable at higher

MCS. Subsequently, the LTE throughput improves when the radar optimizes its waveform

with θ = 0.75. Again we see that the improvement is prominent in the higher MCS.

This is because, after a certain SINR, the lower MCS show no symbol error because

the constellation points are already well separated. However, as the distance between

the constellation points decreases, even a small increase in SINR leads to improved

Error Vector Magnitude (EVM), which leads to improved decoding and thus a significant

increase in throughput.

In Figure 7.17, in the presence of LTE interference, we observe that the SINRs of

Target-1 and Target-2 degrade. These quantities improve when the radar optimizes the

transmitting waveforms by setting θ = 0.75. Interestingly, when the LTE transmission

power is high (15 dBm, and 20 dBm), higher improvement results from the avoidance of

the used LTE bands. Precisely, when the communication system is transmitting with

a power of 20 dBm, use of the optimized waveforms enhances the SINR of Target-1,

and Target-2 in excess of 7 dB in all the MCS values. Note that, due to the different

attenuation paths that is considered for the two targets (see Table 7.3), the measured

SINRs for these targets are different. Also, in the absence of the LTE interference, the

achieved SINR of Target-1, and Target-2 is 22 dB and 17 dB, respectively, which is the

upper bound for the achievable SINR through the optimized waveforms in presence of

the communications interference.
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7.3 Conclusion

In section 7.1 we address the range-ISL minimization with spectral compatibility problem.

In this regards, we express the range-ISL function in spectral domain, then incorporating

the weights on spectral domain gives us the ability of controlling the spectral response.

In order to design the waveform, we propose an algorithm based on CD and we utilize the

FFT to implement the algorithm efficient. The simulation results shows the monotonicity

decreasing of the objective function and better performance of the proposed method

rather than the state of the art, in terms of range-ISL minimization and spectral shaping.

In section 7.2, we developed a SDR based cognitive MIMO radar prototype using

USRP devices that coexist with LTE communications. To enable seamless operation of

incumbent LTE links and smart radar sensing, the chapter relied on cognition achieved

through the implementation of a spectrum sensing followed by the development of a

MIMO waveform design process. An algorithm based on CD approach is considered to

design a set of sequences, where the optimization is based on real-time feedback received

from the environment through the spectrum sensing application. The developed prototype

is tested both in controlled environment to validate its functionalities. The experimental

results indicating adherence to system requirements and performance enhancement are

noted.
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(a) LTE in the presence of radar interference that occupies entire
band by utilizing optimized sequences (θ = 0).

(b) LTE in the presence of optimized sequences for the coexistence
scenario (θ = 0.75).

(c) MIMO radar utilizing optimized waveforms without considering
the presence of communications (θ = 0).

(d) MIMO radar utilizing optimized sequences for the coexistence
scenario (θ = 0.75).

Figure 7.15: LTE application framework in the presence of radar signal. In case of
transmitting random-phase sequences in radar at the same frequency band of communi-
cations, the throughput of communications decreases drastically which is depicted in (a).
In this case, radar also cannot detect targets as depicted in (c). In case of transmitting
the optimized waveforms, the performance of both radar and communications enhances

(b and c).
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Figure 7.16: PDSCH throughput of LTE under radar interference. We observe that
with radar interference reduces the PDSCH throughput but with cognitive spectrum
sensing followed by spectral shaping of the radar waveform PDSCH throughput improves

for all the LTE MCS.
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Figure 7.17: SINR of targets under interference from downlink LTE link. We observe
that by optimizing the transmitting waveforms, the SNR of both the targets improves.
Note that in this experiment the SNR upper-bound for the first and the second target
in the absence of communications interference was 22 dB, and 17 dB, respectively.





Chapter 8

Conclusions and Future Work

8.1 Summary and conclusions

In this chapter, the main conclusions of the thesis are summarized, and also the possible

research directions for the future works are identified and discussed. Broadly speaking,

this thesis has looked into the problems of resource management in three primary

domains (time (range), spatial, and spectral) using waveform design. In general, for

each work we start with defining a specific problem and motivate that how solving

the problem can enhance the performance of radar systems. Then by surveying the

literature, we indicate the drawbacks of the state of the art and also the problems which

are not addressed. Subsequently, we choose or define the appropriate design metrics and

formulate it accordingly. The works in this thesis go beyond the state of the art the area

of waveform design for cognitive radar by defining proposing novel algorithms. Moreover,

the performance of the proposed algorithms has been analyzed and then assessed through

comparing them with with the state-of-the-art and conventional algorithms.

In chapter 2, we focus on a time (range) management problem by considering the

ℓp-norm of weighted auto- and cross-correlation under discrete and continuous phase

constraints. We proposed WeBEST as a flexible BSUM-based framework to design

waveform. By choosing appropriate value for the weights and p, the framework is able to

design waveform with different properties, such as good ISL, PSL and sparse auto- and

cross-correlation level. Through the numerical results we show that the proposed method

meets the lower bound in case of ISL minimization, and decreases the PSL gap with

the Welch lower bound. In chapter 3 we address several spatial management approaches

for MIMO radar systems, such as spatial-ISLR minimization and ℓp-norm beampattern

matching. In this regards we proposed various efficient waveform design methods based

on CD, SDR, BSUM and the penalty technique in order to get optimal solutions and

181
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we evaluated their performance in numerical results. In chapter 4 we addressed the

attractive joint time (range) and spatial management. In this chapter we illustrated

the inherent incompatibility of orthogonality and beampattern steering in MIMO radar

systems. The key point of enhancing the performance is making an efficient trade-off

between these two metrics. In this regards, we choose the weighted sum approach to solve

the problem which the weight plays the role of trade-off parameter. In order to solve

the problem we proposed an iterative method based on CD and we named it UNIQUE.

Through the numerical results we reported the performance of UNIQUE to make a good

trade-off between orthogonality and beampattern shaping. In chapter 5 we discussed

about the problem of beampattern shaping with practical constraints in MIMO radar

systems namely, spectral masking, 3 dB beam-width, constant modulus and similarity

constraints. Solving this problem, enables us to control the performance of MIMO radar

in three domains namely, spatial, spectral and orthogonality (by similarity constraints).

Accordingly, we proposed WISE method to solve the problem, first by introducing a

slack variable and convert the optimization problem to a linear problem with a rank

one constraint. Then we proposed an iterative method to obtain the rank one solution.

Numerical results shows that the proposed method is able to manage the resources

efficiently to obtain the best performance. We considered maximizing of SINR by joint

design of the Doppler filter and transmit waveform in chapter 6 under the assumption of

signal-dependent interference. To obtain a sub-optimal solution, we proposed CD-based

and ADMM-based methods. Through the numerical results we evaluated the performance

of the proposed methods and compared it with the state of the art. In chapter 7, we

considered the joint spectral shaping (nulling) and orthogonality problems in the MIMO

radar system to handle the joint temporal (range) and spectral management challenge.

The range-ISL problem was initially defined in frequency domain using the Parseval

theorem, and then spectral shaping (nulling) was performed by including some weights.

In the second study, we introduced the SILR and ICCL as design metrics for spectral

shaping and orthogonality, respectively. To make a trade-off between these two metrics,

we phrased the problem as a weighted sum of these two criteria. In order to solve the

problem we used CD method. Finally, we implemented the framework using a custom

built SDR based prototype developed on USRP to demonstrate the performance of the

proposed method in real practical applications.

8.2 Future Directions

The research presented in this thesis can be expanded in a multiple ways. The following

are the primary problems that need to be addressed in the future:
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• Trade-off between the design metrics: Due to the contradictory of the metrics

in time (range), spatial and spectral, obtaining solution which simultaneously

optimize the waveform in these three domains, is impossible. In this regards

making a trade-off between these metrics is crucial. Along this thesis we show

the impact of trade-off in the performance of MIMO radar systems. But, more

importantly, what is the best trade-off between these metrics? Finding answers

to this topic opens up new possibilities for cognitive MIMO radar systems, such

as those used in automotive. The following guidelines can be considered in this

regard:

1. In general current modern vehicles are equipped with three types of radar,

namely, LRR (for adaptive cruise control), MRR (for cross traffic alert and

lane change assist) and SRR (for parking aid, obstacle/pedestrian detection).

The aim of 4D-imaging radar is merging all of these radars into one radar. This

approach decreases the hardware price and complexity. However, on the signal

processing point of view this brings up several requirements and challenges.

This radars should be able to provide high angular resolution in the entire

radar operation range. This necessities to have a good orthogonality and

beampattern shaping simultaneously. Based on our study in chapter 4 these

two are inherently incompatible and the trade-off between these two aspects

is the key of enhancing the performance of the radar. However, since the

scenario is dynamically changed in automotive application making trade-off is

complicated. One possible approach for this study is “reinforcement learning”,

which is able to predict the next state in dynamic environment and act based

on that.

2. Because an integrated radar and communication system is being investigated

for the next generation of automotive technology, techniques for performing

resource management is becoming increasingly important in this field. In

this case, radar systems must have full control (management) over the use of

available resources. We examine resource management in three domains (time

(range), spatial, and spectral) in chapter 5. By suppressing the unwanted

frequency bins, we maximize beampattern shaping with high spectral control.

However, because we use a similarity constraint to provide time management,

we don’t have complete control over the waveform’s orthogonality. In this

case, it would be advantageous to have complete control over the correlation

level by considering orthogonality as a problem constraint.

3. Most of the literature are focused on far filed scenario, however in 4D-imaging

the impact of near field waveform is challenging. This challenge is more critical

when we use a large number of antenna to enhance the angular resolution. In
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this regards, one possible study can be designing a waveform considering the

near field phenomena.

• All of the developed waveform design procedures in this work were carried out

without taking into account the negative impacts of PA. A further expansion of the

current work might be the non-linearity behavior of PA on a designed waveform

and consideration of it as a constraint in the design stage. The following activities

can be considered as part of this study:

– Investigate the effects of PA’s non-linearity behavior on a waveform based on

the literature.

– Define and formulate a problem to reduce to waveform’s cross-correlation with

the PA output. Propose a solution to the problem based on existing methods

such as CD.

– For demonstrative purposes, implement the proposed method in USRP and

using Field Programmable Gate Array (FPGA) implementation for real-time

operation.

• The computer-based simulation works in this thesis, can be evaluated in a real-world

setting. The first step in this direction is to demonstrate the algorithm’s validity

using USRP. Following that, setup the FPGA implementation to run in real-time

mode.

• This study focuses on colocated MIMO radar systems. The resource management

problems can be extended to the other MIMO configurations, such as widely

separated MIMO radars.
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Appendix A

Appendices of Chapter 2

A.1

The BSUM algorithm includes algorithms that successively optimize particular upper-

bounds or local approximation functions of the original objectives in a block by block

manner [106, 139, 188, 189]. Let X ≜ [xT1 ; . . . ;x
T
M ] ∈ CM×N , where xm,m = 1, . . . ,M

is the transmitted signal from mth transmitter. The following optimization problem,
min
x

f(x1,x2, . . . ,xM ),

s.t. xm ∈ Ψm, m = 1, . . . ,M.
(A.1)

can be iteratively obtained using BSUM by solving,
min
xm

um(xm;x
(i)
−m)

s.t. xm ∈ Ψm, m = 1, 2, . . . ,M
(A.2)

where um is local approximation of the objective function and x
(i)
−m represent the variable

blocks that are kept fixed in the current iteration. If at some point, the objective

is not decreasing at every coordinate direction, then we have obtained the optimum

X⋆ ≡ X(i+1) ≜ [x
(i+1)
1

T
;x

(i+1)
2

T
; . . . ;x

(i+1)
M

T
]. The above framework is rather general,

and leaves us the freedom of how to choose the indexm at i-th iteration (see [106, 149, 190]

for more details).

The local approximation functions play an important role to simplify and efficiently

solve the optimization problem. In the following, we introduce some local approximation

functions which reduce the weighted ℓp-norm problem of (2.3) to simpler quadratic forms

for 0 < p ≤ 1 and p ≥ 2.
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A.1.0.1 local approximation Function for p ≥ 2

In this case, one choice for local approximation function is using majorization function

[106]. Let u(x) be a majorization (minorization) function of f(x) and x(i) be the variable

at i(th) iteration. This function must satisfy the following conditions [161],

u(x(i)) = f(x(i)); ∀x(i) ∈ X (A.3a)

u(x) ≥ f(x) (minorize: u(x) ≤ f(x)); ∀x,∈ X (A.3b)

∇u(x(i)) = ∇f(x(i)); ∀x(i) ∈ X (A.3c)

u(x) is continuous ∀x,∈ X . (A.3d)

Lemma A.1. Let f(x) = |x|p and |x| ∈ [0, τ ] be a real-valued function with p ≥
2. Then u(x) = η|x|2 + ψ|x| + ν is a majorization function of f(x) where, η =
τp+(p−1)|x(i)|p−pτ |x(i)|p−1

(τ−x(i))2 , ψ = p|x(i)|p−1 − 2η|x(i)| and ν = η|x(i)|2 − (p− 1)|x(i)|p.

Proof. See [76].

Therefore when p ≥ 2, |wkrm,l(k)|p can be majorized by the following function,

ηmlk|wkrm,l(k)|2 + ψmlk|wkrm,l(k)|+ νmlk, (A.4)

where,

ηmlk ≜
τp + (p− 1)|wkr

(i)
m,l(k)|

p − pτ |wkr
(i)
m,l(k)|

p−1

(τ − |wkr
(i)
m,l(k)|)2

,

ψmlk ≜ p|wkr
(i)
m,l(k)|

p−1 − 2ηmlk|wkr
(i)
m,l(k)|,

νmlk ≜ ηmlk|wkr
(i)
m,l(k)|

2 − (p− 1)|wkr
(i)
m,l(k)|

p,

(A.5)

and

τ ≜

 N−1∑
−N−1

|wkr
(i)
m,l(k)|

p

 1
p

. (A.6)

A.1.0.2 local approximation Function for 0 < p ≤ 1

f(X)|p→0 denotes the number of non-zero elements of auto- and cross-correlation.

Lemma A.2. Let f(x) = |x|p be a real-valued function with 0 < p ≤ 1. The function

f(x) can be majorized by η|x|2 + ν where, η and ν are determined by the following two

conditions,

f(x(i)) = η(x(i))2 + ν, f ′(x(i)) = 2ηx(i)
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Proof. See [93].

In this regard |wkrm,l(k)|p with 0 < p ≤ 1 can be majorized with the following simpler

quadratic function,

u(wkrm,l(k)) ≜ ηmlk|wkrm,l(k)|2 + νmlk, (A.7)

where, the coefficients ηmlk and νmlk can be obtained by solving the following system of

equation [93],

f(wkr
(i)
m,l(k)) =u(wkr

(i)
m,l(k))

∂f(wkr
(i)
m,l(k))

∂|wkr
(i)
m,l(k)|

=2ηmlk|wkr
(i)
m,l(k)|,

(A.8)

resulting in,

νmlk = f(wkr
(i)
m,l(k))− ηmlk|wkr

(i)
m,l(k)|

2

ηmlk =
∂f(wkr

(i)
m,l(k))

∂|wkr
(i)
m,l(k)|

× 1

2|wkr
(i)
m,l(k)|

.
(A.9)

According to (A.9) the quadratic functions in (A.7), (A.9) are non-differentiable and

singular when wkrm,l(k) = 0. A possible solution is to incorporate a small ϵ > 0 that

avoids this singularity issue and use the smooth approximation functions f ϵ(wkrm,l(k))

as follow [93],

f ϵ(wkrm,l(k)) =
p

2
ϵp−2|wkrm,l(k)|2 |wkrm,l(k)| ⩽ ϵ

|wkrm,l(k)|p − (1− 1

p
)ϵp |wkrm,l(k)| > ϵ

(A.10)

Substituting (A.10) in (A.9) we have,

ηmlk =


pϵ(p−2)

2
|wkrm,l(k)| ⩽ ϵ

p|wkrm,l(k)|(p−2)

2
|wkrm,l(k)| > ϵ

(A.11)

A.2

The auto- and cross-correlation of tth transmitter can be written as dth entry as, [24, 78,

86],

rt,t(k) ≜ c̄ttdk + āttdkxt,d + b̄ttdkx
∗
t,d

rt,l(k) ≜ c̄tldk + ātldkxt,d
(A.12)
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where,

c̄tldk ≜
∑N−k

n=1
n ̸=d

xt,nx
∗
l,n+k, ātldk ≜ x∗l,d+kIA(d+ k)

c̄ttdk ≜
∑N−k

n=1
n ̸=d,n̸=d−k

xt,nx
∗
t,n+k

āttdk ≜ x∗t,d+kIA(d+ k), b̄ttdk ≜ xt,d−kIA(d− k)

(A.13)

where, IA(p) is the indicator function of set A = {1, . . . , N}, i.e, IA(p) ≜

1, p ∈ A

0, p /∈ A
.

Please note that the coefficients c̄tldk and c̄ttdk are depend on xt,−d while ātldk, āttdk

and b̄ttdk are depend on xt,d. Therefore the weighted auto- and cross-correlation of tth

transmitter becomes,

wkrt,t(k) = cttdk + attdkxt,d + bttdkx
∗
t,d

wkrt,l(k) = ctldk + atldkxt,d
(A.14)

where

attdk ≜ wkāttdk, bttdk ≜ wk b̄ttdk, cttdk ≜ wk c̄ttdk,

atldk ≜ wkātldk, ctldk ≜ wk c̄tldk,
(A.15)

A.3

Substituting (2.11) in (2.4) and expanding u(wkrt,t(k, ϕ)) and u(wkrt,l(k, ϕ)) for 0 < p ≤
1, we have,

u(wkrt,t(k, ϕ)) =
2∑

n=−2

v̄ne
jnϕ,

u(wkrt,l(k, ϕ)) =

1∑
n=−1

ṽne
jnϕ,

(A.16)

where,

v̄−2 ≜
N−1∑

k=−N+1

ηttk(a
∗
ttdkbttdk), v̄2 ≜ v̄∗−2,

v̄−1 ≜
N−1∑

k=−N+1

ηttk(a
∗
ttdkcttdk + c∗ttdkbttdk), v̄1 ≜ v̄∗−1,

v̄0 ≜
N−1∑

k=−N+1

(ηttk(|cttdk|2 + |attdk|2 + |bttdk|2) + νttk).
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ṽ−1 ≜ 2

M∑
l=1
l ̸=t

N−1∑
k=−N+1

ηtlka
∗
tldkctldk, ṽ1 ≜ ṽ∗−1,

ṽ0 ≜ 2

M∑
l=1
l ̸=t

N−1∑
k=−N+1

(ηtlk(|ctldk|2 + |atldk|2) + νtlk).

For p ≥ 2, (A.4) can be majorized by [76],

u(wkrm,l(k)) ≜ ηmlk|wkrm,l(k)|2+

ψmlkℜ

w∗
kr

∗
m,l(k)

wkr
(i)
m,l(k)

|wkr
(i)
m,l(k)|

+ νmlk
(A.17)

Like wise, substituting (2.11) in (A.17) and expanding u(wkrt,t(k, ϕ)) and u(wkrt,l(k, ϕ))

for p ≥ 2, we have,

u(wkrt,t(k, ϕ)) =
2∑

n=−2

ūne
jnϕ + ℜ


1∑

n=−1

ûne
jnϕ

 ,

u(wkrt,l(k, ϕ)) =
1∑

n=−1

ũne
jnϕ + ℜ


1∑

n=−1

ǔne
jnϕ

 ,

Defining ψ′
ttk ≜

ψttk

|wkr
(i)
t,t (k)|

and ψ′
tlk ≜

ψtlk

|wkr
(i)
t,l (k)|

, it can be shown that,

ū−2 ≜
N−1∑

k=−N+1

ηttka
∗
ttdkbttdk, ū2 ≜ ū∗−2,

ū−1 ≜
N−1∑

k=−N+1

ηttk(a
∗
ttdkcttdk + c∗ttdkbttdk), ū1 ≜ ū∗−1,

ū0 ≜
N−1∑

k=−N+1

(ηttk(|cttdk|2 + |attdk|2 + |bttdk|2) + νttk)

û−1 ≜
N−1∑

k=−N+1

ψ′
ttk(|cttdk|2 + c∗ttdkattdke

jϕ(i)

+ c∗ttdkbttdke
−jϕ(i)

)

û0 ≜
N−1∑

k=−N+1

ψ′
ttk(|bttdk|2e−jϕ(i)

+ b∗ttdkattdke
jϕ(i)

+ b∗ttdkcttdk)

û1 ≜
N−1∑

k=−N+1

ψ′
ttk(|attdk|2ejϕ

(i)

+ a∗ttdkbttdke
−jϕ(i)

+ a∗ttdkcttdk)
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ũ−1 ≜ 2
M∑
l=1
l ̸=t

N−1∑
k=−N+1

ηtlkctldka
∗
tldk, ũ1 ≜ ũ∗−1

ũ0 ≜ 2

M∑
l=1
l ̸=t

N−1∑
k=−N+1

(ηtlk(|ctldk|2 + |atldk|2) + νtldk))

ǔ−1 ≜ 2
M∑
l=1
l ̸=t

N−1∑
k=−N+1

ψ′
tlk(|ctldk|2 + c∗tldkatldke

jϕ(i))

ǔ0 ≜ 2
M∑
l=1
l ̸=t

N−1∑
k=−N+1

ψ′
tlk(|ctldk|2 + c∗tldkatldke

jϕ(i))

ǔ1 ≜ 2

M∑
l=1
l ̸=t

N−1∑
k=−N+1

ψ′
tlk(|atldk|2ejϕ

(i)
+ a∗tldkctldk)

In this regard, readily it can be shown that the problem (2.12) can be written as (2.13),

where the coefficients are,

vn;∈{−2,2} ≜

v̄n 0 < p ≤ 1

ūn p ≥ 2
(A.18)

vn;∈{−1,0,1} ≜

v̄n + ṽn 0 < p ≤ 1

ūn + ũn + ûn + ǔn p ≥ 2
(A.19)

A.4

Substituting ejnϕ = cos (nϕ) + j sin (nϕ) in u′(ϕ) and separating the real and imaginary

part, u′(ϕ) becomes,

u′(ϕ) = ξ0 cos
2(ϕ) + ξ1 sin

2(ϕ) + ξ2 sin(ϕ) cos(ϕ)

+ ξ3 cos(ϕ) + ξ4 sin(ϕ)
(A.20)

where, ξ0 ≜ 2ℑ{v−2 − v2}, ξ1 ≜ 2ℑ{v2 − v−2}, ξ2 ≜ −4ℜ{v2 + v−2}, ξ3 ≜ ℑ{v−1 − v1}
and ξ4 ≜ −ℜ{v−1+v1}. Using the change variable z ≜ tan(ϕ2 ) and substituting cos(ϕ) =

(1− z2)/(1 + z2), sin(ϕ) = 2z/(1 + z2) in u′(ϕ), it can be written as, u′(z) =
∑4

k=0 skz
k

(1+z2)2
,

where,
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s0 ≜ ξ0 + ξ3, s1 ≜ 2(ξ2 + ξ4), s2 ≜ 2(2ξ1 − ξ0),

s3 ≜ 2(ξ4 − ξ2), s4 ≜ ξ0 − ξ3
(A.21)

A.5

Let assume that l′ = {1, 2, . . . , L} be the indices of alphabet ΩL. Therefore the objective

function can be written as,

f(l′) = f(X−t) + 2

M∑
l=1
l ̸=t

N−1∑
k=−N+1

|atldk + ctldke
−j2π l′−1

L |p

+

N−1∑
k=−N+1

|attdk + cttdke
−j2π l′−1

L + bttdke
−j4π l′−1

L |p
(A.22)

Let assume that y ∈ CN be a vector and FL{y} ≜
∑N

n=1 y(n)e
j2π

(n−1)(l′−1)
L be the L

point DFT operator of y. Therefore, it can be shown that all the possible values of

atldk + ctldke
−j2π l′−1

L and attdk + cttdke
−j2π l′−1

L + bttdke
−j4π l′−1

L for l′ = {1, 2, . . . , L}, can
be obtained by FL{atldk, ctldk} and FL{attdk, cttdk, bttdk} respectively. Therefore, the

optimum index can be can be obtained as (2.19).
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B.1

The beampattern response on undesired angles can be written as
∑N

n=1 x
†
nAUxn =∑M

m=1

∑M
l=1

∑N
n=1 x

∗
m,nUm,lxl,n where, Um,l are the elements of matrix AU . By a few

mathematical manipulations it can be shown that,
∑N

n=1 x
†
nAUxn = a0xt,d + a1 + a2x

∗
t,d,

where,

a0 =
∑M

m=1
m ̸=t

s∗m,daUm,t , a2 = a∗0, a1 =
∑N

n=1
n̸=d

∑M
m,l=1 x

∗
m,nUm,lxl,n +

∑M
m,l=1
m,l ̸=t

x∗m,nUm,txt,n + Ut,t.

Likewise,
∑N

n=1 x
†
nADxn = b0xt,d+ b1 + b2x

∗
t,d, where bi’s are obtained similar to ai with

Dm,t and Dm,l replacing Um,t and Um,t respectively, and Dm,l are the elements of matrix

AD.

B.2

The function r(X, θk) can be written with respect to xt,d as r(X, θk) = b1,ke
jϕt,d + b0,k +

b−1,ke
−jϕt,d [37], where,

b1,k ≜
M∑
m=1
m ̸=t

x∗m,dakm,t , b−1,k ≜ b∗1,k,

b0,k ≜ akt,t +
N∑
n=1
n̸=d

xHn A(θk)xn +
M∑
m=1
m ̸=t

M∑
l=1
l ̸=t

x∗m,dakm,l
xl,d,

(B.1)

195
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and akm,l
is the (m, l)th entry of matrix A(θk). By substituting (B.1) in (3.13) and some

mathematics manipulation the objective function in (3.33) can be obtained, as,

c2 ≜
K∑
k=1

ηkb1,k, c1 ≜
K∑
k=1

2ηkb1,k(b0,k − µqk) + ψkb1,k,

c0 ≜
K∑
k=1

2ηk(|b1,k|2 + (b0,k − µqk)
2) + ψk(b0,k − µqk) + νk,

c−1 ≜ c∗1, c−2 ≜ c∗2.

(B.2)

B.3

The beampattern response on undesired angles can be written as
∑N

n=1 s
H
n AUsn =∑M

m=1

∑M
l=1

∑N
n=1 s

∗
m,nUm,lsl,n where, Um,l are the elements of matrix AU . By some

mathematical manipulation it can be shown that,
∑N

n=1 s
H
n AUsn = a0st,d + a1 + a2s

∗
t,d,

where,

a0 =
∑M

m=1
m̸=t

s∗m,daUm,t , a2 = a∗0, a1 =

N∑
n=1
n̸=d

M∑
m=1

N∑
l=1

s∗m,nUm,lsl,n +
M∑
m=1
m̸=t

M∑
l=1
l ̸=t

s∗m,nUm,tst,n + Ut,t.

Likewise,
∑N

n=1 s
H
n ATsn = b0st,d + b1 + b2s

∗
t,d, where bi’s are obtained similar to ai with

Tm,t replacing Um,t and Tm,l are the elements of matrix AT . It can be shown that the

objective function of problem P3 is equal to c0s
2
t,d + c1st,d + c2 + c3s

∗
t,d + c4s

∗
t,d

2, where

c0 ≜
δb20
M4

, c1 ≜
2δb0(b1 − αM2)

M4
, c4 = c∗0, c3 = c∗1

c2 ≜
2δ|b0|2 + δ(b1 − αM2)2 + a1

M4
.

(B.3)

B.4

Let aum,l
be the elements of matrix Au. The spatial ISL can be written as, f1(S) =∑M

m=1

∑M
l=1

∑N
n=1 s

∗
m,naum,l

sl,n. By some mathematical manipulation f1(S) can be

written with respect to st,d entry as, a0st,d + a1 + a2s
∗
t,d, where a0 =

∑M
m=1
m ̸=t

s∗m,daum,t ,
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a2 = a∗0 and:

a1 =
M∑
m=1
m̸=t

M∑
l=1
l ̸=t

N∑
n=1

s∗m,naum,l
sl,n +

M∑
m=1
m ̸=t

N∑
n=1
n̸=d

s∗m,naum,tst,n

+
M∑
l=1
l ̸=t

N∑
n=1
n ̸=d

s∗t,naut,lsl,n +
N∑
n=1
n ̸=d

s∗t,naut,tst,n + aut,t .

Likewise g1(S) can be written as, b0st,d + b1 + b2s
∗
t,d, where, adm,l

are the elements of

matrix Ad, b0 =
∑M

m=1
m̸=t

s∗m,dadm,t , b2 = b∗0 and:

b1 =
M∑
m=1
m ̸=t

M∑
l=1
l ̸=t

N∑
n=1

s∗m,nadm,l
sl,n +

M∑
m=1
m̸=t

N∑
n=1
n̸=d

s∗m,nadm,tst,n

+

M∑
l=1
l ̸=t

N∑
n=1
n̸=d

s∗t,nadt,lsl,n +

N∑
n=1
n ̸=d

s∗t,nadt,tst,n + adt,t
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C.1

Writing (4.10) with respect to st,d has the following parts.

Spatial-ISLR coefficients Beampattern of undesired angles can be written as,∑N
n=1 s̄

H
n Aus̄n =

∑N
n=1
n ̸=d

s̄Hn Aus̄n + s̄Hd Aus̄d,

where the second term can be expanded as,∑Mt

m=1

∑Mt

l=1 s
∗
m,daum,l

sl,d =
∑Mt

m=1
m̸=t

∑Mt

l=1
l ̸=t

s∗m,daum,l
sl,d

+ st,d
∑Mt

m=1
m ̸=t

s∗m,daum,t + s∗t,d
∑Mt

l=1
l ̸=t

aut,l
sl,d + s∗t,daut,tst,d,

with aum,l
indicating {m, l} entries of matrix Au. Defining,

a0 ≜
∑Mt

m=1
m̸=t

s∗m,daum,t , a3 ≜ aut,t , a2 ≜ a∗0,

a1 ≜
∑N

n=1
n ̸=d

s̄Hn Aus̄n +
∑Mt

m=1
m ̸=t

∑Mt

l=1
l ̸=t

s∗m,daum,l
sl,d,

the beampattern response on undesired angles is equivalent to,

∑N
n=1 s̄

H
n Aus̄n = a0st,d + a1 + a2s

∗
t,d + a3s

∗
t,dst,d. (C.1)

Like wise the beampattern at desired angles is:

∑N
n=1 s̄

H
n Ads̄n = b0st,d + b1 + b2s

∗
t,d + b3s

∗
t,dst,d, (C.2)

b0 ≜
∑Mt

m=1
m ̸=t

s∗m,dadm,t
, b3 ≜ adt,t

, b2 ≜ b∗0,

b1 ≜
∑N

n=1
n ̸=d

s̄Hn Ads̄n +
∑Mt

m=1
m̸=t

∑Mt

l=1
l ̸=t

s∗m,dadm,l
sl,d,

199
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where adm,l
are the {m, l} entries of Ad. (4.12).

Range-ISLR coefficients (4.5) can be written as,

ISL = γt +
∑N−1

k=−N+1 |rt,t(k)|2 + |rt,t(0)|2

+
∑Mt

l=1
l ̸=t

∑N−1
k=−N+1 |rt,l(k)|2 +

∑Mt
m=1
m̸=t

∑N−1
k=−N+1 |rm,t(k)|2.

where,

γt ≜
∑Mt

m=1
m ̸=t

∑Mt

l=1
l ̸=t

∑N−1
k=−N+1 |rm,l(k)|2 −

∑Mt
m=1
m ̸=t

|rm,m(0)|2

Also,

rm,t(k) =
∑N−k

n=1
n ̸=d−k

sm,ns
∗
t,n+k + sm,d−ks

∗
t,dIA(d− k)

rt,l(k) =
∑N−k

n=1
n ̸=d

st,ns
∗
l,n+k + st,ds

∗
l,d+kIA(d+ k)

rt,t(k) =
∑N−k

n=1
n ̸=d,n̸=d−k

st,ns
∗
t,n+k + st,ds

∗
t,d+kIA(d+ k)

+ s∗t,dst,d−kIA(d− k)

where, IA(p) is the indicator function of set A = {1, . . . , N}, i.e, IA(p) ≜

1, p ∈ A

0, p /∈ A
.

Let us define 1,

γmtdk ≜
∑N−k

n=1
n ̸=d−k

sm,ns
∗
t,n+k, βmtdk ≜ sm,d−kIA(d− k)

γtldk ≜
∑N−k

n=1
n ̸=d

st,ns
∗
l,n+k, αtldk ≜ s∗l,d+kIA(d+ k)

γttdk ≜
∑N−k

n=1
n ̸=d,n̸=d−k

st,ns
∗
t,n+k, αttdk ≜ s∗t,d+kIA(d+ k)

βttdk ≜ st,d−kIA(d− k)

Thus, we obtain,

ISL = c0s
2
t,d + c1st,d + c2 + c3s

∗
t,d + c4s

∗
t,d

2 + c5|st,d|2 (C.3)

with,

c0 ≜
∑N−1

k=−N+1
k ̸=0

αttdkβ
∗
ttdk, c4 ≜ c∗0,

c3 ≜ c∗1, c1 ≜
∑N−1

k=−N+1
k ̸=0

(γ∗ttdkαttdk + γttdkβ
∗
ttdk)+∑Mt

l=1
l ̸=t

∑N−1
k=−N+1 γ

∗
tldkαtldk +

∑Mt
m=1
m ̸=t

∑N−1
k=−N+1 γmtdkβ

∗
mtdk,

c2 ≜
∑N−1

k=−N+1
k ̸=0

|γttdk|2 +
∑Mt

l=1
l ̸=t

∑N−1
k=−N+1 |γtldk|2

+
∑Mt

m=1
m ̸=t

∑N−1
k=−N+1 |γmtdk|2 + γt,

1By defining, s̃{t,m,l}−d
≜ s̃m|s{t,m,l},d=0, it can be shown that, γmtdk, γtldk and γttdk can be considered

as correlation of s̃m−d and s̃t−d , s̃t−d and s̃l−d , s̃t−d and s̃t−d respectively.
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c5 ≜
∑N−1

k=−N+1
k ̸=0

(|αttdk|2 + |βttdk|2)

+
∑Mt

l=1
l ̸=t

∑N−1
k=−N+1 |αtldk|2 +

∑Mt
m=1
m̸=t

∑N−1
k=−N+1 |βmtdk|2.

Since c0 = c∗4, c1 = c∗3 and c1, c5 are real coefficient, (C.3) is a real and non-negative

function. Also for the mainlobe,∑Mt

m=1 |rm,m(0)|2 =
∑Mt

m=1
m̸=t

(∑N
n=1 |sm,n|2

)2
+(∑N

n=1
n ̸=d

|st,n|2
)2

+ 2|st,d|2
∑N

n=1
n ̸=d

|st,n|2 + |st,d|4.

Defining, d2 ≜
∑Mt

m=1
m ̸=t

(∑N
n=1 |sm,n|2

)2
+

(∑N
n=1
n̸=d

|st,n|2
)2

and d1 ≜ 2
∑N

n=1
n̸=d

|st,n|2, we

have,

∑Mt

m=1 |rm,m(0)|2 = |st,d|4 + d1|st,d|2 + d2. (C.4)

C1 Constraint It is straight-forward to show that,

γe ≜MtN −
∑Mt

m=1
m ̸=t

∑N
n=1 |sm,n|2 −

∑N
n=1
n ̸=d

|st,n|2. (C.5)

Note: ∥S∥2F =
∑Mt

m=1
m̸=t

∑N
n=1 |sm,n|2 +

∑N
n=1
n̸=d

|st,n|2 + |st,d|2.

C2 Constraint The PAR constraint can be written as, MtN max |sm,n|2 ⩽ γp∥S∥2F .
Defining P−(t,d) ≜ max{|sm,n|2; (m,n) ̸= (t, d)}, we obtain

MtN max{|st,d|2, P−(t,d)} ⩽ γp

(
|st,d|2 +

∥∥∥S−(t,d)

∥∥∥2
F

)
Defining,

γl ≜
MtNP−(t,d) − γp

∥∥∥S−(t,d)

∥∥∥2
F

γp
, γu ≜

γp

∥∥∥S−(t,d)

∥∥∥2
F

MtN − γp
,

Hence, |st,d|2 ⩾ γl when |st,d|2 ⩽ P−(t,d), and |st,d|2 ⩽ γu when |st,d|2 ⩾ P−(t,d).

C.2

Considering a2 = a∗0, b2 = b∗0, c4 = c∗0 and c3 = c∗1, the (4.16) and (4.17) can be written

as 2,

2It is possible to consider ejϕ as the variable and solve the problem. However, we reformulate the
problem in the real variable to enable computations in real domain to be closer to practical implementation.
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f̄ (r, ϕ) =
2ℜ{a0rejϕ}+ a1 + a3r

3

2ℜ{b0rejϕ}+ b1 + b3r3

=
a3r

2 + 2(a0r cosϕ− a0i sinϕ)r + a1
b3r2 + 2(b0r cosϕ− b0i sinϕ)r + b1

(C.6)

f̃ (r, ϕ) =
2ℜ{c0r2ej2ϕ}+ 2ℜ{c1rejϕ}+ c2 + c5r

2

r4 + d1r2 + d2

= [(2c0r cos 2ϕ− 2c0i sin 2ϕ+ c5)r
2

+ 2(c1r cosϕ− c1i sinϕ)r + c2]
1

r4 + d1r2 + d2
,

(C.7)

where, a0r = ℜ(a0), a0i = ℑ(a0), b0r = ℜ(b0), b0i = ℑ(b0), c0r = ℜ(c0), c0i = ℑ(c0),
c1r = ℜ(c1) and c1i = ℑ(c1).

C.3

As fo(r, ϕ0) is a fractional function, ∂fo(r,ϕ0)∂r is also a fractional function. Hence to find

the roots of ∂fo(r,ϕ0)
∂r = 0 it is sufficient to find the roots of the numerator. By some

mathematical manipulation it can be shown that the numerator can be written as (4.22),

and the coefficients are,

p0 ≜ 2ηℜ{ρ0ejϕ0}, p1 ≜ 2(ηρ1 + (η − 1)b23ρ2),

p2 ≜ 2(ηℜ{(ρ3 + 2d1ρ0)e
jϕ0}+ (η − 1)(3b23ρ4 + 4b3ρ5ρ2)),

p3 ≜ 4(ηd1ρ1 + (η − 1)((2ρ25 + b1b3)ρ2 + c2b
2
3 + 6b3ρ5ρ4)),

p4 ≜ 2(ηℜ{(ρ6ρ0 + 2d1ρ3)e
jϕ0}+

(η − 1)(ρ4(12ρ
2
5 + 6b1b3 + b23d1) + 4ρ5(b1ρ2 + 2b3c2))),

p5 ≜ 2(ηρ6ρ1 + (η − 1)(ρ2(b
2
1 − d2b

2
3) + b23c2d1+

4c2(2ρ
2
5 + b1b3) + 4ρ5ρ4(3b1 + b3d1))),

p6 ≜ 2(ηℜ{(ρ6ρ3 + 2d1d2ρ0)e
jϕ0}+ (η − 1)(ρ4(3b

2
1 − b23d2

+ 2d1(2ρ
2
5 + b1b3)) + 4ρ5(2b1c2 − b3(d2ρ2 − c2d1)))),

p7 ≜ 4(ηd1d2ρ1 + (η − 1)(b21c2 + 2(b1d1 − b3d2)ρ5ρ4

− (d2ρ2 − c2d1)(2ρ
2
5 + b1b3))),

p8 ≜ 2(ηℜ{(d22ρ0 + 2d1d2ρ3)e
jϕ0}+ (η − 1)(ρ4(b

2
1d1

− 2d2(2ρ
2
5 + b1b3))− 4b1ρ5(d2ρ2 − c2d1))),

p9 ≜2(ηd22ρ1 − (η − 1)(b21(d2ρ2 − c2d1) + 4b1d2ρ5ρ4)),

p10 ≜2(ηd22ℜ{ρ3ejϕ0} − (η − 1)b21d2ρ4),
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where, ρ0 ≜ a3b0 − b3a0, ρ1 ≜ a3b1 − a1b3, ρ2 ≜ c5 + 2ℜ{c0ej2ϕ0}, ρ3 ≜ b1a0 − a1b0,

ρ4 ≜ ℜ{c1ejϕ0}, ρ5 ≜ ℜ{b0ejϕ0} and ρ6 ≜ d21 + 2d2.

C.4

After substituting cos(ϕ) = (1− tan2(ϕ2 ))/(1 + tan2(ϕ2 )), sin(ϕ) = 2 tan(ϕ2 )/(1 + tan2(ϕ2 ))

in ∂fo(r⋆e ,ϕ)
∂ϕ and considering z ≜ tan(ϕ2 ), we encounter with a fractional function. In this

case it is sufficient to find the roots of nominator. It can be shown that the nominator

can be written as, (4.25), where,

q0 ≜ 2r⋆e(ηξ0(2ξ3 − ξ2)

+ (1− η)(c1i − 2ξ9)(ξ
2
4 − 4ξ6(ξ4 − ξ6))),

q1 ≜ 4r⋆e(ηξ0ξ1 + (1− η)(4ξ7(2ξ9 − c1i)(ξ4 − 2ξ6)

+ (4ξ8 − c1r)(ξ
2
4 − 4ξ6(ξ4 − ξ6)))),

q2 ≜ 4r⋆e(ηξ0(4ξ3 − ξ2) + (1− η)(−8ξ7(4ξ8 − c1r)(ξ4 − 2ξ6)

+ ξ24(4ξ9 + c1i) + 4(r⋆e
2ξ5(2ξ9 − c1i)− 6ξ6ξ9(ξ4 − ξ6)))),

q3 ≜ 4r⋆e(3ηξ0ξ1 + (1− η)(ξ24(4ξ8 − 3c1r) + 8ξ10 + 4ξ11+

4(ξ5r
⋆
e
2(c1r − 8ξ8)− 2ξ27c1r − 2ξ6(2ξ6ξ8 − ξ7(14ξ9 − c1i))))),

q4 ≜ 8r⋆e(3ηξ0ξ3 + (1− η)(ξ9(5ξ
2
4 − 24r⋆e

2ξ5)

+ 2ξ4(4ξ7c1r + ξ6c1i)− 4ξ6(16ξ7ξ8 + ξ9ξ6))),

q5 ≜ 4r⋆e(3ηξ0ξ1 + (1− η)(−ξ24(4ξ8 + 3c1r) + 8ξ10 − 4ξ11+

4(ξ5r
⋆
e
2(c1r + 8ξ8)− 2ξ27c1r + 2ξ6(2ξ6ξ8 − ξ7(14ξ9 + c1i))))),

q6 ≜ 4r⋆e(ηξ0(4ξ3 + ξ2) + (1− η)(8ξ7(4ξ8 + c1r)(ξ4 + 2ξ6)

+ ξ24(4ξ9 − c1i) + 4(r⋆e
2ξ5(2ξ9 + c1i) + 6ξ6ξ9(ξ4 + ξ6)))),

q7 ≜ 4r⋆e(ηξ0ξ1 + (1− η)(4ξ7(2ξ9 + c1i)(ξ4 + 2ξ6)

− (4ξ8 + c1r)(ξ
2
4 + 4ξ6(ξ4 + ξ6)))),

q8 ≜ 2r⋆e(ηξ0(2ξ3 + ξ2)

− (1− η)(c1i + 2ξ9)(ξ
2
4 + 4ξ6(ξ4 + ξ6))),

where, ξ0 ≜ r⋆e
4 + r⋆e

2d1 + d2, ξ1 ≜ r⋆e
2(a3b0r − a0rb3) + (a1b0r − a0rb1), ξ2 ≜ r⋆e

2(a3b0i −
a0ib3)+(a1b0i−a0ib1), ξ3 ≜ r⋆e(a0rb0i−a0ib0r), ξ4 ≜ r⋆e

2b3+b1, ξ5 ≜ b20r−2b20i, ξ6 ≜ r⋆eb0r,

ξ7 ≜ r⋆eb0i, ξ8 ≜ r⋆ec0r, ξ9 ≜ r⋆er0i, ξ10 ≜ ξ4(2ξ6ξ8 − 5ξ7ξ9) and ξ11 ≜ ξ4(ξ6c1r − ξ7c1i).
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C.5

By substituting r = 1 in (4.20) and (4.21), the objective function under C4 constraint

can be written as, (4.31), where,

h0 ≜ b0, h1 ≜ b1 + b3, h2 ≜ b2, g0 ≜ c0b0
1− η

MtN2
, g6 ≜ g∗0

g1 ≜ (c0b1 + c1b0)
1− η

MtN2
, g5 ≜ g∗1

g2 ≜ (c0b2 + c1b1 + c2b0)
1− η

MtN2
+ a0η, g4 ≜ g∗2 ,

g3 ≜ (c1b2 + c2b1 + c3b0)
1− η

MtN2
+ a1η.

(C.8)
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D.1

It is readily confirmed that the constraint Xn = s̄ns̄
†
n is equivalent to Rank(Xn− s̄ns̄

†
n) =

0. Further, it can be equivalently expressed as 1 + Rank(Xn − s̄ns̄
†
n) = 1. Since 1

is positive definite, it follows from the Guttman rank additivity formula [191] that

1 + Rank(Xn − s̄ns̄
†
n) = Rank(Qn). Moreover, it follows from Xn = s̄ns̄

†
n and 1 ≻ 0 that

Qn has to be positive semi-definite. These imply that the constraint Xn = s̄ns̄
†
n in (3.33)

can be replaced with a rank and semi-definite constraints on matrix Qn. Hence, the

optimization problem (3.33) can be recast as follows,



min
S,Xn

N∑
n=1

Tr(AuXn)

s.t. (5.6b), (5.6c), (5.6d), (5.6e), (5.6f), (5.6g)

Qn ≽ 0,

Rank(Qn) = 1,

(D.1a)

(D.1b)

(D.1c)

(D.1d)

Now, we show that the optimization problem (3.3.1) is equivalent to (D.1). Let ρn,1 ≤
ρn,2 ≤ · · · ≤ ρn,M+1 and νn,1 ≤ νn,2 ≤ · · · ≤ νn,M denote the eigenvalues of Qn and

V†
nQnVn, respectively. From the constraint bnIM −V†

nQnVn ≽ 0, we have νn,i ≤ bn, i =

1, 2, · · · ,M for any Vn and Qn in the feasible set of (3.3.1). Additionally, it follows from

[155, Corollary 4.3.16] that 0 ≤ ρn,i ≤ νn,i, i = 1, 2, · · · ,M for any Vn and Qn in the

feasible set of (3.3.1). Hence, we observe that,

0 ≼ Diag([ρn,1, · · · , ρn,M ]T )

≼ Diag([νn,1, · · · , νn,M ]T ) ≼ bnIM ,
(D.2)
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Figure D.1: The non-linearity behavior of PA [192].

for any Vn and Qn in the feasible set of (3.3.1). It is easily observed from (3.3.1)

and (D.2) that, by properly selecting η, the optimum value of Vn will be equal to the

eigenvectors of Qn corresponding to its M smallest eigenvalues and the optimum values

of bn, ρn,1, · · · , ρn,M , νn,1, · · · , νn,M will be equal to zero. This implies that the optimum

value of Qn in (D.2) possesses one nonzero and M zero eigenvalues. This completes the

proof.

D.2

Figure D.1 shows the non-linearity behavior of a PA. Based on this figure, the PA curve

is linear when the input power is between a Sensitivity level and IP1 dB value. Beyond

that, by increasing the input level, the output level will be entered to the non-linear

region and converges to a saturation power. Therefore, the maximum power that can

be obtained by PA without distortion is OP1 dB, corresponding to the IP1 dB input

level. It means that the deviation of the input power should not be large near the IP1

dB value.
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E.1

Defining, Q ≜ s†T c(w
(k+1))s+ ρ

2h(w
(k+1))

†
h(w(k+1)), b ≜ −ρ

2h(w
(k+1))

†
(κ− u(k)) and

µ ≜ |κ− u(k)
∗|2, (6.35) can be written as, Lρ

(
w(k+1), s, u(k)

)
= s†Qs+ s†b+ b†s+ µ.

Therefore, Lρ
(
w(k+1), s, u(k)

)
=
∑N

k=1

∑N
n=1 s

∗
nqn,ksn +

∑N
n=1 s

∗
nbn +

∑N
n=1 snb

∗
n + µ.

By some mathematical manipulation it can be shown that Lρ
(
w(k+1), s, u(k)

)
= c0sd +

c1 + c2s
∗
d, where,

c0 =
∑N

n=1 s
∗
nqn,d + b∗d, c0 =

∑N
n=1 snqd,n + bd

c1 =
N∑
k=1
k ̸=d

N∑
n=1
n̸=d

s∗nqn,ksn +
N∑
n=1
n̸=d

s∗nbn +
N∑
n=1
n̸=d

snb
∗
n + µ+ qd,d,

where, qn,k and bn (k, n = {1, . . . }) are the the entries of Q and b respectively.
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F.1

Calculating the coefficients of fau(xt): The kth entry of Fx̄t and w ⊙ Fx̄rt
∗
in (7.7)

can be written as,

(Fx̄t)k = α1x̄t,d + γ1, (w ⊙ Fx̄rt
∗
)k = β2x̄

∗
t,d + γ2.

where, x̄t,d denotes the dth entry of xt and α1 ≜ wke
−j 2π(k−1)(n−1)

2N−1 , β2 ≜ e−j
2π(k−1)(n−1)

2N−1 ,

γ1 ≜
∑2N−1

n=1
n̸=2N−d

wkx̄
∗
t,N−n+1e

−j 2π(k−1)(n−1)
2N−1 and γ2 ≜

∑2N−1
n=1
n̸=d

x̄t,ne
−j 2π(k−1)(n−1)

2N−1 . Therefore,

(w ⊙ Fx̄rt
∗ ⊙ Fx̄t)k = αtdkx̄t,d + βtdkx̄

∗
t,d + γtdk, .

where, αtdk ≜ α1γ2, βtdk = β2γ1, γtdk = α1β2 + γ1γ2. Substituting the aforementioned

equation in fau(xt) we have,

fau(xt) = aau,0x
2
t,d + aau,1xt,d + aau,2 + aau,3x

∗
t,d + aau,4x

∗
t,d

2.

where, aau,0 ≜ 1
2N−1

∑2N−1
k=1 αtdkβtdk, aau,4 ≜ a∗au,0, aau,1 ≜ 1

2N−1

∑2N−1
k=1 (αtdkγ

∗
tdk +

β∗tdkγtdk), aau,3 ≜ a∗au,1 and aau,2 ≜ 1
2N−1

∑2N−1
k=1 (|αtdk|2 + |βtdk|2 + |γtdk|2).

Calculating the coefficients of fcr(xt,X−t): By some mathematical manipulation it

can be shown that,

fcr(xt,X−t) =
∑M

m=1
m̸=t

∥Vmx̄t∥22 ,

where, Vm ≜ Diag (w⊙Fx̄rm
∗) ∈ C(2N−1)×(2N−1). By some mathematical manipulation

it can be shown that the kth entry of Vmx̄t can be obtained by, (Vmx̄t)k = αmdkxt,d +

γmdk, where, αmdk ≜ vmdk and γmdk ≜
∑2N−1

n=1
n ̸=d

vmnkxt,n and vmnk denotes the nth and
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kth entry of matrix Vm. Substituting the aforementioned equation in fcr(xt,X−t) we

have,

fcr(xt,X−t) = acr,0xt,d + acr,1 + acr,2x
∗
t,d.

where, acr,0 ≜
∑2N−1

n=1
n̸=d

x̄∗t,nvmnd, acr,2 ≜ a∗cr,0 and acr,1 ≜ vmdd+
∑2N−1

n=1
n ̸=d

∑2N−1
n′=1
n′ ̸=d

x̄∗t,nvmnn′ x̄t,n′ .

Adding, fau(xt) and fcr(xt,X−t) we have,

fcr,au(xt,X−t) = a0x
2
t,d + a1xt,d + a2 + a3x

∗
t,d + a4x

∗
t,d

2,

where, a0 ≜ aau,0, a1 ≜ aau,1 + acr,0, a2 ≜ aau,2 + acr,1, a3 ≜ a∗1 and a4 ≜ a∗0.

F.2

SILR coefficients Let us assume that

F U ≜
∑
k∈U

fkf
†
k ∈ CN×N ,

and un,l indicates (n, l)-th element (n = 1, 2, . . . , N , l = 1, 2, . . . , N) of matrix F U . The

nominator in (7.11) can be written as

M∑
m=1

∥∥∥f †kxm∥∥∥2 |k ∈ U =

M∑
m=1

∑
k∈U

x†
mfkf

†
kxm =

∑M
m=1 x

†
mF Uxm

=
M∑
m=1

N∑
n=1

N∑
l=1

x∗m,nun,lxm,l

=a0xt,d + a1 + a2x
∗
t,d

(F.1)

where

a0 =

N∑
n=1
n̸=d

x∗t,nun,d,

a1 =

N∑
n=1
n̸=d

N∑
n,l=1

x∗m,nun,lxm,l +

N∑
n,l=1
n,l ̸=d

x∗t,nun,lxt,l + ud,d,

(F.2)

and a2 = a∗0. Similarly, by defining

F V ≜
∑
k∈V

fkf
†
k ∈ CN×N
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the denominator in (7.11) is,

M∑
m=1

∥∥∥f †kxm∥∥∥2 |k ∈ V = b0xt,d + b1 + b2x
∗
t,d, (F.3)

where

b0 =
N∑
n=1
n̸=d

x∗t,nvn,d,

b1 =
N∑
n=1
n̸=d

N∑
n,l=1

x∗m,nvn,lxm,l +
N∑

n,l=1
n,l ̸=d

x∗t,nvn,lxt,l + vd,d,

(F.4)

with b2 = b∗0, and vn,l are the elements of F V .

ICCL coefficients For (7.13), it can be shown that,

M∑
m=1

M∑
m′=1
m′ ̸=m

N−1∑
l=−N+1

|rm,m′(l)|2 = γt + 2
M∑
m=1
m̸=t

N−1∑
l=−N+1

|rm,t(l)|2, (F.5)

where

γt ≜
M∑
m=1
m̸=t

M∑
m′=1
m′ ̸=m,t

N−1∑
l=−N+1

|rm,m′(l)|2.

Further, it would be easy to show

rm,t(l) = αmtdlxt,d + γmtdl (F.6)

where αmtdl = xm,d−lIA(d− l), and

γmtdl =

N−l∑
n=1
n̸=d−l

xm,nx
∗
t,n+l, (F.7)

where, IA(p) is the indicator function of set A = {1, . . . , N}, i. e., IA(p) =

1, p ∈ A

0, p /∈ A
.

Thus,
M∑
m=1

M∑
m′=1
m′ ̸=m

N−1∑
l=−N+1

|rm,m′(l)|2 = c0xt,d + c1 + c2x
∗
t,d, (F.8)

where

c0 =
2

(2MN)2

M∑
m=1
m̸=t

N−1∑
l=−N+1

αmtdlγ
∗
mtdl, (F.9)
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c1 =
1

(2MN)2
(γt + 2

M∑
m=1
m ̸=t

N−1∑
l=−N+1

|αmtdl|2 + 2
M∑
m=1
m̸=t

N−1∑
l=−N+1

|γmtdl|2), (F.10)

and c2 = c∗0.

F.3

Equation (7.20) can be expressed as,

g(ϕ) = θ
ga(ϕ)

gb(ϕ)
+ (1− θ)gc(ϕ), (F.11)

where

ga(ϕ) = a0e
jϕ + a1 + a2e

−jϕ,

gb(ϕ) = b0e
jϕ + b1 + b2e

−jϕ,

gc(ϕ) = c0e
jϕ + c1 + c2e

−jϕ.

The derivative of g(ϕ) can be written as,

g′(ϕ) = θ
g′a(ϕ)gb(ϕ)− g′b(ϕ)ga(ϕ)

g2b (ϕ)
+ (1− θ)g′c(ϕ). (F.12)

By some standard mathematical manipulation g′(ϕ) can be written as

g′(ϕ) =
ej3ϕ

∑6
p=0 qpe

jpϕ

(b0ejϕ + b1 + b2e−jϕ)2
, (F.13)

where
q0 =j(1− θ)c0b

2
0,

q1 =j2(1− θ)c0b0b1,

q2 =j(θ(a0b1 − b0a1) + (1− θ)(2c0b0b2 + c0b
2
1 − c2b

2
0))

q3 =j2(θ(a0b2 − a2b0) + (1− θ)b1(c0b2 − c2b0)),

q4 =q
∗
2, q5 ≜ q∗1, q6 ≜ q∗0.

(F.14)
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