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Abstract

In conventional satellite communication systems, onboard resource management follows pre-design ap-
proaches with limited flexibility. On the one hand, this can simplify the satellite payload design. On
the other hand, such limited flexibility hardly fits the scenario of irregular traffic and dynamic demands
in practice. As a consequence, the efficiency of resource utilization could be deteriorated, evidenced
by mismatches between offered capacity and requested traffic in practical operations. To overcome this
common issue, exploiting multi-dimension flexibilities and developing advanced resource management
approaches are of importance for next-generation high-throughput satellites (HTS).

Non-orthogonal multiple access (NOMA), as one of the promising new radio techniques for fu-
ture mobile communication systems, has proved its advantages in terrestrial communication systems.
Towards future satellite systems, NOMA has received considerable attention because it can enhance
power-domain flexibility in resource management and achieve higher spectral efficiency than orthogonal
multiple access (OMA). From ground to space, terrestrial-based NOMA schemes may not be directly
applied due to distinctive features of satellite systems, e.g., channel characteristics and limited onboard
capabilities, etc. To investigate the potential synergies of NOMA in satellite systems, we are motivated
to enrich this line of studies in this dissertation. We aim at resolving the following questions: 1) How
to optimize resource management in NOMA-enabled satellite systems and how much performance gain
can NOMA bring compared to conventional schemes? 2) For complicated resource management, how
to accelerate the decision-making procedure and achieve a good tradeoff between complexity reduction
and performance improvement? 3) What are the mutual impacts among multiple domains of resource
optimization, and how to boost the underlying synergies of NOMA and exploit flexibilities in other
domains?

The main contributions of the dissertation are organized in the following four chapters:
First, we design an optimization framework to enable efficient resource allocation in general NOMA-

enabled multi-beam satellite systems. We investigate joint optimization of power allocation, decoding
orders, and terminal-timeslot assignment to improve the max-min fairness of the offered-capacity-to-
requested-traffic ratio (OCTR). To solve the mixed-integer non-convex programming (MINCP) problem,
we develop an optimal fast-convergence algorithmic framework and a heuristic scheme, which outper-
form conventional OMA in matching capacity to demand.

Second, to accelerate the decision-making procedure in resource optimization, we attempt to solve
optimization problems for satellite-NOMA from a machine-learning perspective and reveal the pros
and cons of learning and optimization techniques. For complicated resource optimization problems
in satellite-NOMA, we introduce deep neural networks (DNN) to accelerate decision making and de-
sign learning-assisted optimization schemes to jointly optimize power allocation and terminal-timeslot
assignment. The proposed learning-optimization schemes achieve a good trade-off between complexity



and performance.
Third, from a time-domain perspective, beam hopping (BH) is promising to mitigate the capacity-

demand mismatches and inter-beam interference by selectively and sequentially illuminating suited
beams over timeslots. Motivated by this, we investigate the synergy and mutual influence of NOMA
and BH for satellite systems to jointly exploit power- and time-domain flexibilities. We jointly optimize
power allocation, beam scheduling, and terminal-timeslot assignment to minimize the capacity-demand
gap. The global optimal solution may not be achieved due to the NP-hardness of the problem. We de-
velop a bounding scheme to tightly gauge the global optimum and propose a suboptimal algorithm to
enable efficient resource assignment. Numerical results demonstrate the synthetic synergy of combining
NOMA and BH, and their individual performance gains compared to the benchmarks.

Fourth, from the spatial domain, adaptive beam patterns can adjust the beam coverage to serve ir-
regular traffic demand and alleviate co-channel interference, motivating us to investigate joint resource
optimization for satellite systems with flexibilities in power and spatial domains. We formulate a joint
optimization problem of power allocation, beam pattern selection, and terminal association, which is in
the format of MINCP. To tackle the integer variables and non-convexity, we design an algorithmic frame-
work and a low-complexity scheme based on the framework. Numerical results show the advantages of
jointly optimizing NOMA and beam pattern selection compared to conventional schemes.

In the end, the dissertation is concluded with the main findings and insights on future works.
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Chapter 1
Introduction

Satellite communications (SatCom) can provide broadband data transmission to a wide-range area [1, 2].
In the SatCom systems, satellites in the space function as relays to transceive signals from/to targeted
remote areas [1], which greatly extends the coverage compared to terrestrial cellular systems. This allows
SatCom to provide ubiquitous service, even for some sparsely populated regions that are hard-to-reach
for incumbent terrestrial systems, e.g., oceans, mountains, and deserts [1, 2, 3]. To embrace the trend
of the explosive growth of wireless traffic and requirements of ubiquitous connectivity [4], SatCom has
been drawing tremendous attention from the wireless communication society and is envisioned as one
of the key components for future communication systems, e.g., non-terrestrial networks (NTN) [3] and
space-air-ground integrated networks [5, 6].

Resource allocation is of great significance in wireless systems. By leveraging the flexibilities in
different domains, e.g., power/frequency/time/code/spatial, the allocation of wireless resources can be
optimized to achieve performance improvement and satisfy various requirements. In SatCom, satellite
payloads at the space segment play an important role in resource allocation for data transmission [1]. The
allocation of on-board resources, e.g., transmit power and bandwidth, is decided at the gateways on the
ground. Then the decision is communicated to the satellite in the space so that the resource management
can be realized at the payload. Conventionally, the design of satellite payloads is with limited flexibility.
On-board resources are fixed and uniformly allocated to each beam [7]. Besides, all the beams keep
illuminated and beam radiation patterns stay constant irrespective of traffic demand during service time
[1]. This conventional design may lead to the following typical issues:

• Mismatch between requested traffic and offered capacity. In practice, requested traffic in satellite
systems is irregularly distributed across regions and dynamically changed over time [8, 9]. The
conventional pre-designed resource allocation scheme could fail to adapt to the non-uniform traffic
distribution, which would cause unmet and unused capacity [10]. Both cases are undesired since
the former results in undelivered user demands and the latter wastes on-board resources.

• Low spectral efficiency. In conventional satellite systems, the management of on-board resources
cannot be adaptively adjusted, which may cause large co-channel interference, especially when
aggressive frequency-reuse patterns are applied [11, 12], e.g., full-frequency reuse scheme. In this
case, the spectral efficiency is low and thus the performance deteriorates severely.

• Obstacles of integration or coexistence with other systems. In satellite-terrestrial integrated net-
works or multi-layer satellite networks, one may concern about the issues of co-channel interfer-
ence caused by fierce competition among various systems for the same frequency band [13, 14].



1.1. Flexibilities in Satellite Payloads

Figure 1.1: Illustrative examples of flexibilities in (a) power domain; (b) frequency domain; (c) time domain; (d)
spatial domain.

Fixed resource allocation schemes discourage the seamless integration of SatCom to terrestrial
systems [15].

• High operational cost. For instance, high transmit power can affect the lifetime of satellites, which
could be worse if transmit power cannot be adjusted [16]. Another typical issue is that the payload
weight and the corresponding manufacturing cost are large if all the spot beams are permanently
illuminated [17].

To address the emerging challenges, more flexibilities are introduced to next-generation high-throughput
satellite (HTS) systems.

1.1 Flexibilities in Satellite Payloads

In the past few decades, the SatCom society has witnessed a technical breakthrough in satellite payloads.
The digitalization of payloads makes it possible to introduce more flexibilities in resource management
and adaptively assign on-board resources to cater to the dynamics in satellite systems [2]. The upgraded
satellite payloads can offer the following flexibilities.
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• Power-domain flexibility (referring to Fig. 1.1(a)): In conventional payload, transmit power is
equally assigned to different carriers or beams since they share the same amplifier. By adopt-
ing multi-port amplifiers (MPA) and digital transparent processors (DTP), the sharing of trans-
mit power among beams or carriers is enabled, and the transmit power can be tuned adaptively
[18, 19, 20]. Flexible power allocation can be designed to meet terminals’ or beams’ demands
to reduce unmet and unused capacity [21]. Additionally, flexible power allocation is able to save
on-board energy, which is advantageous to satellites’ lifetime [16].

• Frequency-domain flexibility (referring to Fig. 1.1(b)): With a group of band-pass filters, frequency
conversion and bandwidth assignment can be realized [1, 22, 23]. The assignment of bandwidth
can be facilitated discretely or continuously [1]. In this way, bandwidth allocation can be optimized
based on the demands of different beams or terminals. Besides, co-channel interference can be
mitigated by allocating different frequency bands to adjacent beams or terminals.

• Time-domain flexibility (referring to Fig. 1.1(c)): The satellite payload is equipped with a transpar-
ent bent-pipe architecture with a switching matrix to activate/deactivate the selected beams within
several hundred nanoseconds [2]. Ferrite switch is a mature technology for the implementation
of beam hopping (BH) [24, 25]. BH can support time-division multiple access (TDMA) among
different beams and leverage time-domain flexibility. The decision of beam illumination at each
timeslot is made according to traffic distribution and/or co-channel interference level. Besides, as
fewer beams are activated, the number of radio-frequency (RF) chains can be reduced, and thus
the mass of the payload can be smaller [2].

• Spatial-domain flexibility (referring to Fig. 1.1(d)): Thanks to the application of active antennas
and beamforming networks (BFN), beam radiation patterns can be adjusted to alter the resulted
beam coverage (or footprint) [26]. In this case, beam patterns can be adaptively changed to cater
for irregular traffic profile [26], mitigate co-channel interference [27], and improve integration to
terrestrial systems [28].

With the introduction of these flexibilities, the resource allocation in SatCom can be more adaptive to
the dynamic wireless environment and the co-channel interference can be reduced so that the resource
utilization could be enhanced.

Flexible payloads offer a platform for the sophisticated design of resource allocation schemes to
achieve performance gain. In this context, the emerging resource management problems and algorithmic
solutions need further investigation. On the one hand, flexibility in each domain has not been fully
exploited yet. For example, in conventional satellite systems, each orthogonal resource (e.g., time-
frequency resource unit) can be accessed by only one terminal, which limits its spectral efficiency and
applicability in the scenarios with the requirements of massive connectivity, e.g., in the case of delivering
massive machine type communications (mMTC) services. On the other hand, the study on resource opti-
mization for multi-dimension flexibilities is necessary for further performance improvement. Therefore,
flexibility exploitation of one or more domains and the development of advanced resource management
approaches are of importance for next-generation HTS systems.

1.2 Non-Orthogonal Multiple Access: Enhancement of Power-Domain
Flexibility

Non-orthogonal multiple access (NOMA) is one of the promising new radio techniques for future mobile
communication systems [29]. The term NOMA usually includes power-domain NOMA, pattern division
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1.2. Non-Orthogonal Multiple Access: Enhancement of Power-Domain Flexibility

Figure 1.2: An illustrative satellite-NOMA scenario of downlink transmission. Terminal 1 is at the beam center
with better channel gain while terminal 2 is at the beam edge with worse channel gain. The gateway is in charge
of superposition coding and power allocation. The satellite relays the superposed signals to ground terminals.
Terminal 1 performs SIC to decode and remove terminal 2’s signal whereas terminal 2 directly decodes its own
signal by viewing terminal 1’s signal as noise.

multiple access (PDMA), sparse code multiple access (SCMA), etc [30]. In the dissertation, NOMA
refers to power-domain NOMA. In conventional orthogonal multiple access (OMA), each orthogonal
time-frequency resource unit can be accessed by only one terminal. This can avoid co-channel inter-
ference but meanwhile limit further performance improvement. In NOMA, superposition coding and
successive interference cancellation (SIC) are adopted at the transmitter side and receiver side, respec-
tively [31]. The non-orthogonality of time-frequency resource can be introduced and the power-domain
flexibility can be enhanced [31].

We illustrate the basis of NOMA by an example in Fig. 1.2, where the satellite provides downlink
transmission to two ground terminals with asymmetric channel gains. Terminal 1 is located at the beam
center with better channel gain (called “strong terminal”) whereas terminal 2 stands at the beam edge with
worse channel gain (called “weak terminal”). At the gateway side, terminals’ signals are superposed with
different power levels. Then the superposed signal is transmitted to the satellite and then delivered to the
two terminals. Terminal 1 firstly performs SIC to decode and remove the signal of terminal 2 such that the
co-channel interference from terminal 2 can be canceled. Terminal 2 decodes the received signal directly
by viewing terminal 1’s signal as noise. In this way, more than one terminal can be multiplexed at the
same time-frequency resource unit and the spectral efficiency can be improved compared to conventional
OMA [32]. The performance gain of NOMA in terrestrial systems has been demonstrated, e.g., capacity
improvement, power reduction, energy efficiency enhancement, etc.

We note that the applications of NOMA may result in some practical issues and challenges. For
example, additional computational complexity will be introduced to the receivers when processing SIC.
Besides, security issues might arise among receivers since some terminals can decode other terminals’
signals.

By introducing NOMA to SatCom, the flexibility in power domain can be enhanced and the per-
formance can be potentially improved [33]. But due to the exclusive properties of satellite scenarios,
terrestrial-NOMA resource optimization strategies may not be simply applied in SatCom. The main
differences between terrestrial-NOMA and satellite-NOMA resource optimization are summarized as
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follows:

• First, the channel propagation models in SatCom are distinctive. In a multi-beam satellite system,
terminals located closely to each other have highly correlated channels, but meanwhile, these
terminals with homogeneous receive antennas may have similar channel gains [34]. The strategy
of pairing terminals with highly correlated channels and large channel gain difference is widely
adopted in terrestrial multiple-input multiple/single-output (MIMO/MISO) systems [35, 36, 37,
38, 39, 40], but may not be suitable in satellite systems [41]. When the number of terminals
exceeds two and terminals are with heterogeneous traffic demand, the grouping strategies could be
more sophisticated. Another concern is weak receive signals and large propagation delay caused
by long-distance transmission [2].

• Second, the characteristics of SatCom are different from terrestrial networks, which leads to new
constraints [2], e.g., on-board power constraints, signal distortion, non-linearities of amplifiers,
etc. Besides, the complexity issues might occur if we directly apply terrestrial-NOMA schemes in
multi-beam satellite systems due to the existence of a large number of beams [34].

• Third, in SatCom, the targeted goals of resource management are different from those in ter-
restrial systems. For example, sum-rate/weighted-sum-rate maximization is widely discussed in
terrestrial-NOMA systems, which aims at improving total throughput or proportional fairness
[42, 43]. But this objective may not be practical in satellite systems. This is because sum-
rate/weighted-sum-rate maximization ignores the influence of heterogeneous traffic distribution,
which would cause severe capacity-traffic mismatch issues [44]. Thus, more practical goals spe-
cific to SatCom should be considered.

As new challenges arise when NOMA is applied, it is of great significance to investigate the design
of resource allocation schemes for NOMA-based satellite systems.

1.3 Motivations and Research Questions

In SatCom, NOMA has proven its advantages in enhancing capcaity [41, 45] and outage rate [46], im-
proving capability of supporting massive connectivity [47], guaranteeing fairness [48] and security [49],
etc., which attracts studies on resource allocation for NOMA-based satellite systems. A detailed litera-
ture review will be provided in Chapter 2. However, resource allocation for satellite-NOMA systems is
still not fully studied. To investigate the potential synergies of NOMA in satellite systems, we are moti-
vated to enrich this line of studies in this dissertation. We aim at resolving the following three research
questions.

Question 1: How to optimize resource allocation when NOMA is applied and how much per-
formance gain can be obtained by enhancing power-domain flexibility compared to conventional
schemes?

Early-attempt works mainly focused on studying resource optimization in NOMA-enabled satellite sys-
tems, where the applied performance metrics are targeted for general communication systems, e.g., ca-
pacity, outage rate, fairness, etc. But whether and how NOMA can help to enhance the performance
metrics related to practical SatCom scenarios are unknown yet. As mentioned above, resource allocation
with limited flexibility may not adapt to heterogeneous traffic distribution, leading to unnecessary unmet
and unused capacity. To enhance the utilization of onboard resources, it is necessary to improve the match
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between offered capacity and requested traffic. Thus, metrics that capture capacity-demand mismatch ef-
fects should be considered, e.g., offered-capacity-to-requested-traffic rate (OCTR) and capacity-demand
gap. By augmenting power-domain flexibility, NOMA may have potentials to alleviate the capacity-
demand mismatch. In this dissertation, we are going to investigate algorithmic design for resource allo-
cation to reduce capacity-demand mismatch effects and fathom how much performance gain NOMA can
bring to satellite systems.

Question 2: For complicated resource management, how to accelerate the decision-making proce-
dure and achieve a good tradeoff between complexity reduction and performance improvement?

Regarding satellite-NOMA resource allocation, the typical optimization problems can be combinatorial
with discrete decision variables, which are generally difficult to solve, even for small- or medium-scale
instances. Approaches that can attain optimum or near-optimum would consume a large amount of
computational efforts and time, which may not be desired for practical implementation. It is challenging
to design efficient schemes that can speed up the decision-making process and achieve a good tradeoff
between performance and complexity. The conventional way is to design model-based approaches under
the analysis of convex optimization theory. As an alternative, we apply machine learning to assist the
procedure of decision making. Compared to model-based approaches, data-driven learning techniques
can exploit useful information from empirical data first, and approximate optimal decisions with less
computational complexity. However, applying learning techniques to solve optimization problems may
encounter some challenges, e.g., how to utilize the exploited information and guarantee the feasibility of
the predicted solutions. In this dissertation, we attempt to address this open issue to enable an efficient
resource allocation scheme for NOMA-satellite systems.

Question 3: What are the mutual impacts among multiple dimensions of resource optimization,
and how to boost the underlying synergies of NOMA and exploit flexibilities in other domains?

As we discuss in Section 1.1, besides power domain, advanced satellite payloads offer flexibilities in
other domains, e.g., time and spatial domains. Potential performance gain may be obtained by op-
timizing resource allocation with multi-dimension flexibilities. But it is unknown how NOMA can be
coordinated with these techniques, e.g., BH with time-domain flexibility and adaptive beam patterns with
spatial-domain flexibility, which requires investigation of the mutual impacts and underlying synergies
of different domains. In the scenarios with the coexistence of NOMA and BH, for instance, the decision
of beam illumination patterns is coupled with terminal-timeslot assignment and power allocation in the
NOMA process, which may not be captured by mathematical expressions and is challenging to study.

1.4 Methodologies

Resource allocation can be modeled by mathematical languages and the corresponding optimization
problems can be formulated. An optimization problem includes objective, parameters, variables, and
constraints [50]. Before solving the resource optimization problems, the first step is to identify which
category the formulated problem falls into (e.g., linear programming, convex programming, etc.) and
reveal the implicit properties of the problem (e.g., non-deterministic polynomial-time (NP) hardness,
monotonicity). Then we design approaches to find a feasible solution to the problem based on the convex
optimization theory or from the perspective of machine learning.
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1.4.1 Optimization-Based Approaches

Conventionally, we analyze the problem via convex optimization theory and employ optimization-based
approaches to design algorithmic solutions. Compared to learning-assisted approaches, optimization-
based approaches are with solid mathematical analysis, e.g., the guarantee of convergence, optimality
or local optimality, Karush-Kuhn-Tucker (KKT) conditions, etc. [50]. The approaches can be designed
with the assistance of mature optimization solvers, e.g., MOSEK [51], and widely-applied methods.

Due to the nonconvex expression of rate functions w.r.t. transmit power and the existence of integer
variables, optimization problems for NOMA-based satellite systems can be in the format of mixed-
integer nonconvex programming (MINCP) [42, 43, 52]. Solving MINCP is non-trivial in general, where
the difficulty lies in tackling the nonconvexity and binary variables [53].

Nonconvex programming is more complicated than convex programming or linear programming due
to the presence of several local optimums. Here we introduce some methods to tackle the nonconvexity
in satellite-NOMA problems:

• In single-cell/beam NOMA scenarios, the nonconvex power allocation problem can be transformed
into an equivalent convex rate assignment problem by a widely-used substitution approach [42].
In multi-beam satellite systems, we can apply this approach to reveal the implicit convexity of the
problem and obtain the optimum via mature approaches for convex programming, e.g., interior-
point method [54].

• Considering the properties of the rate function, the problem can be tackled by the fixed-point
iteration method. For example, the max-min problem satisfying a set of certain conditions can
be solved by Parron-Frobenius (PF) Theory based fixed-point iteration approach [55]. By tuning
power iteratively, the fast convergence to the optimum can be guaranteed. Another instance is
to apply the fixed-point iteration method to tackle fractional programming. In the rate function,
the expression of signal-to-interference-plus-noise (SINR) is in a fractional format, which can be
converted to a convex quadratic formulation. A stationary point can be obtained by iteratively
solving a series of convex quadratic programming problems [56].

• The nonconvex problems can be tackled by convex approximation approaches, e.g., successive
convex approximation (SCA) [57]. In SCA, we can at each iteration construct a convex problem
that can tightly approximate the nonconvex problem at a local point. The problem can be solved by
iteratively tackling a sequence of convex problems. SCA is widely applied to deal with complex
nonconvex problems due to its simplicity of implementation.

• For more complicated problems with the presence of a large number of variables, we can apply
the idea of the block coordinate descent (BCD) method [58]. In BCD, the variable set can be
divided into several mutually exclusive blocks. The original problem can be decomposed into
multiple subproblems, where each subproblem is only with a subset of variables and thus is simpler
compared to the original problem. Compared to directly tackling the difficult problem, BCD is
much easier to implement by iteratively solving smaller-scale subproblems. Moreover, BCD can
be executed in a distributed way.

In the decision-making procedure, the optimal integer solution can be found via exhaustive search but
with exponential-time complexity [59], which cannot be realized in practical scenarios. Some alternative
methods can be considered to accelerate the decision-making procedure and reduce the computational
complexity and time:

• Branch-and-bound approach is a popular method, which can find the optimal integer solutions to
mixed-integer linear programming (MILP). The typical branch-and-bound approach performs in
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a tree structure [60]. In the branching stage, an integer variable is branched into several possi-
ble nodes, where each node refers to a potential solution. At each node, the unexplored integer
variables are relaxed and a continuous subproblem is solved. Based on the optimums to these sub-
problems, the upper and lower bounds to the original problem can be obtained. In the bounding
stage, the nodes beyond the bounding range, which do not contain the optimal solution, will be
pruned. The operation of pruning reduces the search space of solutions and thus leads to smaller
complexity compared to the exhaustive search method. Together with the outer-approximation
approach, the branch-and-bound approach can be extended to solving mixed-integer convex pro-
gramming (MICP) with the performance guarantee [53]. Furthermore, since the branch-and-bound
approach is powerful in achieving the optimum/near-optimum of MILP/MICP, it is widely adopted
in optimization solvers, e.g., Gurobi [61] and MOSEK [51]. However, the branch-and-bound ap-
proach may exhaustively search all the potential integer solutions in the worst case, which could
lead to cumbersome computation in solving medium-/large-scale problems.

• The integer part of the problem can be reformulated as a typical game problem, e.g., matching
problem [62]. In the past few years, matching theory becomes a hot topic to tackle the optimization
problems in wireless networks, e.g., user association and subcarrier scheduling [63]. In one-to-
one/many matching problems, each player formulates a preference list. Players from one side
propose a matching request to the players from the other side based on the list. Then players
from the other side decide to accept/reject the requests according to the priority in the preference
list. In the end, the two-sided exchange stability can be achieved. In many-to-many matching
problems, the operation of swapping matching pairs is adopted to iteratively improve the utility of
the problem.

• Relaxation of integer variables can simplify the decision-making process by transforming mixed-
integer problems into continuous problems. The complexity can be reduced by solving a contin-
uous problem instead of directly tackling a mixed-integer problem. Several heuristic approaches
can be applied to obtain integer solutions. For instance, rounding is one of the widely-used meth-
ods [64]. The obtained continuous solutions can be rounded to the nearest integer values. Besides,
we can penalize the objective if the relaxed variables are not integer [65].

1.4.2 Learning-Assisted Approaches

Optimization-based approaches are based on theoretical analysis to reveal the internal properties of the
targeted problems, which, however, may not be a trivial task in general, especially for the problems
involving decision making. Methods like the branch-and-bound approach may consume a large amount
of computational efforts and time in attaining the optimum or near-optimum. Alternatively, we can tackle
the difficult part of the mixed-integer problem from the angle of learning. Different from optimization-
based approaches, data-driven machine learning techniques can first exploit useful information from
empirical data and then approximate the optimal decisions with much smaller computational complexity
[66].

Supervised learning, as one of the main subcategories of machine learning, can excavate the implicit
information of labeled data sets to train a learning model to classify or predict data within a short period
[67]. Thereinto, deep learning (DL) techniques, which imitate the structure of human brains to acquire
knowledge, have received tremendous attention due to their advantages in handling a huge amount of
data [68]. DL has proven its advantages in several learning tasks, e.g., classification, regression, complex
function approximation, etc. [68, 69]. By treating part of the algorithmic framework as a black box, deep
neural networks (DNN) can be employed to learn the underlying relationships between input and output
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instead of performing the algorithmic operations [69, 70]. With a well-trained DNN, a good trade-off
between complexity reduction and performance guarantee can be achieved.

However, DL may not be directly applicable to sophisticated mixed-integer optimization problems.
End-to-end learning, for example, predicts the optimal integer solution in a straightforward way [66],
which can be applied to problems with simple constraints or unconstrained problems. But for problems
with more complex structures, end-to-end learning may not perform well since imperfect prediction will
lead to dissatisfaction of some constraints and thus causes the infeasibility issue. It is essential to identify
whether the predicted solution is feasible or not and to obtain a near-optimal feasible solution efficiency.
How to design a learning-assisted approach to appropriately address the feasibility issues and achieve
a good trade-off between complexity and performance is non-trivial, and requires careful design in a
tailored way.

1.5 Contributions and Related Publications

In this dissertation, we aim at providing answers to the three research questions as summarized in Section
1.3 and investigate the exploitation of single- and multi-dimension flexibilities and resource optimization
for NONA-based satellite systems. The contributions are summarized as follows:

Chapter 2

We first provide a literature review of state-of-the-art flexible resource allocation schemes in SatCom.
Then we review related works on resource management in terrestrial-NOMA and satellite-NOMA sys-
tems. At last, we discuss the limitations of related works.

Chapter 3

We address Question 1 in this chapter and design an optimization framework to enable efficient re-
source allocation in general NOMA-enabled multi-beam satellite systems. Concerning practical metrics
of capacity-demand mismatch in satellite systems, we investigate joint optimization of power alloca-
tion, decoding orders, and terminal-timeslot assignment to improve the max-min fairness of the offered-
capacity-to-requested-traffic ratio (OCTR). The problem is identified as a MINCP problem, which is
challenging in general. We provide an optimal fast-convergence algorithmic framework of power allo-
cation and decoding-order decision under fixed terminal-timeslot assignment. Based on the framework,
we design a heuristic scheme for the considered joint optimization problem, which iteratively updates
terminal-timeslot assignment and recoding vectors, and improves the overall OCTR performance. Nu-
merical results demonstrate that the performance gain of the proposed NOMA scheme in matching ca-
pacity to demand compared to the conventional OMA scheme.

Related publications:

[J1] A. Wang, L. Lei, E. Lagunas, A. I. Pérez-Neira, S. Chatzinotas, and B. Ottersten, “NOMA-enabled
multi-beam satellite systems: Joint optimization to overcome offered-requested data mismatches,”
IEEE Transactions on Vehicular Technology (TVT), vol. 70, no. 1, pp. 900-913, Jan. 2021, doi:
10.1109/TVT.2020.3047453.

[C1] A. Wang, L. Lei, E. Lagunas, A. I. Pérez-Neira, S. Chatzinotas, and B. Ottersten, “On fairness
optimization for NOMA-enabled multi-beam satellite systems,” in Proc. IEEE 30th Annual Inter-
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national Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2019, pp.
1–6, doi: 10.1109/PIMRC.2019.8904429.

Chapter 4

In Chapter 4, we aim to answer Question 2 with an attempt to tackle the resource allocation prob-
lem in satellite-NOMA systems from the perspective of learning. To accelerate the decision-making
procedure in mixed-integer programming problems, we introduce DNN to predict integer variables and
design learning-assisted optimization schemes to jointly optimize power allocation and terminal-timeslot
assignment. To address the feasibility issues of end-to-end learning, we provide a post-processing ap-
proach and a dual-DNN approach to improve the feasibility ratio. The proposed learning-optimization
schemes achieve a good trade-off between complexity and performance compared to the optimal/near-
optimal solution and other benchmarks. Besides, we discuss the pros and cons of learning-based and
optimization-based approaches in tackling mixed-integer problems.

Related publications:

[J2] A. Wang, L. Lei, E. Lagunas, S. Chatzinotas, and B. Ottersten. “Completion time minimization in
NOMA systems: Learning for combinatorial optimization,” IEEE Networking Letters, vol. 3, no.
1, pp. 15-18, Mar. 2021, doi: 10.1109/LNET.2021.3052891.

[C2] A. Wang, L. Lei, E. Lagunas, S. Chatzinotas, and B. Ottersten, “Dual-DNN assisted optimization
for efficient resource scheduling in NOMA-enabled satellite systems,” in Proc. 2021 IEEE Global
Communications Conference (GLOBECOM), 2021, pp. 1-6, doi: 10.1109/GLOBECOM46510.
2021.9685660.

Chapter 5

Both Chapter 5 and Chapter 6 focus on resolving Question 3 by exploiting multi-dimension flexibilities.
From the time-domain perspective, BH is promising to mitigate the capacity-demand mismatch effects
and inter-beam interference by selectively and sequentially illuminating different subsets of beams over
timeslots. Motivated by this, in Chapter 5, we investigate the potential synergies and mutual influence
between NOMA and BH in multi-beam satellite systems and study flexible resource allocation in power
and time domains. We jointly optimize power allocation, beam scheduling, and terminal-timeslot as-
signment to minimize the gap between offered capacity and requested demand. The global optimum
may not be achieved due to the NP-hardness of the problem. We develop a bounding scheme to tightly
gauge the global optimum and propose a suboptimal algorithm to enable efficient resource assignment.
Numerical results demonstrate the benefits of combining NOMA and BH and validate the superiority of
the proposed BH-NOMA schemes over conventional BH and OMA schemes.

Related publications:

[J3] A. Wang, L. Lei, E. Lagunas, A. I. Pérez-Neira, S. Chatzinotas, and B. Ottersten, “Joint opti-
mization of beam-hopping design and NOMA-assisted transmission for flexible satellite systems.”
Accepted by IEEE Transaction on Wireless Communications (TWC).

[C3] A. Wang, L. Lei, E. Lagunas, S. Chatzinotas, A. I. Pérez-Neira, and B. Ottersten, “Joint beam-
hopping scheduling and power allocation in NOMA-assisted satellite systems,” in Proc. 2021
IEEE Wireless Communications and Networking Conference (WCNC), 2021, pp. 1-6, doi: 10.
1109/WCNC49053. 2021.9417306.
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Chapter 6

In this chapter, we provide an analytical response to Question 3 by exploiting spatial- and time-domain
flexibilities. In the spatial domain, adaptive beam patterns can adjust the beam coverage to serve ir-
regular traffic demand and alleviate co-channel interference. For performance improvement, adaptive
beam patterns are introduced in NOMA-based low earth orbit (LEO) satellite systems. We investigate
resource allocation with the coordination of power- and spatial-domain flexibilities. We formulate a joint
optimization problem of power allocation, beam pattern selection, and terminal association. Due to the
coupling between NOMA and adaptive beam patterns, the corresponding algorithmic design is chal-
lenging. To ease the discrete and nonconvex properties, we design an algorithmic framework for joint
optimization. To reduce the complexity of the joint approach, we analyze the implicit characteristics
via a special case and put forward a low-complexity scheme based on the analysis. Numerical results
show the advantages of jointly optimizing NOMA and beam pattern selection compared to conventional
schemes.

Related publications:

[J4] A. Wang, L. Lei, X. Hu, E. Lagunas, A. I. Pérez-Neira, and S. Chatzinotas, “Joint optimization of
adaptive beam patterns and NOMA for LEO satellite systems: Exploitation of power- and spatial-
domain flexibilities.” To be submitted to IEEE Transaction on Wireless Communications (TWC).

[C4] A. Wang, L. Lei, X. Hu, E. Lagunas, A. I. Pérez-Neira, and S. Chatzinotas, “Joint optimization
of NOMA and adaptive beam patterns in LEO satellite systems,” submitted to 2022 IEEE Global
Communications Conference (GLOBECOM).

Chapter 7

In the final chapter, we conclude the dissertation by summarizing the contributions and discussing po-
tential future directions.
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Chapter 2
Literature Review

In this chapter, we first provide a literature survey for general flexible resource allocation schemes
in satellite systems. Next, we review the works of state-of-the-art resource allocation schemes for
terrestrial-NOMA and satellite-NOMA systems. Finally, we summarize the limitations of related works
beyond the state-of-the-art.

2.1 Flexible Resource Allocation in Satellite Systems

Thanks to the development of satellite payloads, flexibilities in resource allocation are introduced to satel-
lite systems for performance improvement. How to manage flexibilities in single or multiple domains
becomes a challenging task. Related works of flexible resource optimization in SatCom are summarized
in Table 2.1.

Flexible power allocation provides an opportunity to adjust transmit power to adapt to dynamic vari-
ation of channel conditions and traffic demands, instead of being uniformly distributed to beams/carriers.
To improve the adaptation to channel variation caused by unstable weather conditions, the authors in [71]
and [72] investigated the design of dynamic power allocation schemes to minimize the number of non-
served terminals. But the change of channel conditions is not the only factor influencing the transmission
quality in SatCom. Concerning the impacts of traffic demands and channel conditions, the authors in [44]
optimized power allocation to minimize the gap between capacity and demand to enhance the utilization
of on-board resources in multi-beam satellite systems. However, the coupling among beams raised by
co-channel interference, which can generally complicate the resource optimization problems, was not
included in those early-attempt works. To tackle the difficulty in optimization brought by co-channel
interference, the authors in [21] and [16] designed flexible power allocation schemes to minimize unmet
capacity and power consumption. From the perspective of dynamic games, the authors in [73] proposed
a novel market-based power allocation scheme to ease the impacts of co-channel interference. Besides,
a deep reinforcement learning (DRL) framework was designed in [74] for continuous power optimiza-
tion. Further, in [75], the authors discussed the implementation and evaluated the performance of several
popular artificial algorithms in solving power optimization problems.

As frequency-domain flexibility was introduced, flexible bandwidth/carrier allocation became an
open issue. To reduce the capacity-demand gap, the authors in [76] moved from power to frequency
domain and proposed a flexible bandwidth allocation scheme based on channel conditions and traffic
demands. The work in [77] provided a comprehensive discussion of bandwidth allocation strategies when
different fairness metrics are considered. In [78], the authors optimized bandwidth allocation to reduce
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Table 2.1: Related works of flexible resource allocation in SatCom (Power, frequency, time, and spatial
are simplified as P., F., T., and S.)

Ref. Objective
Flexibility

P. F. T. S.
[71, 72] Min the number of non-served terminals

√

[44] Min capacity-demand gap
√

[21, 16, 74, 75] Min unmet capacity and power consumption
√

[73] Max payoff function
√

[76] Min capacity-demand gap
√

[77] Max fairness (different metrics)
√

[78] Min packet loss and power consumption
√

[79] Max throughput
√

[80, 81] Min capacity-demand gap
√ √

[82] Max throughput
√ √

[10] Max satisfaction-gap objective
√ √

[83] Min the number of occupied carriers and power consumption
√ √

[24] Max throughput and min power consumption
√

[84] Max throughput
√

[85] Max-min OCTR
√

[86] Min delay, max throughput, min delay fairness
√

[87] Min capacity-demand gap, coverage error, and cost
√

[26] Max fair distribution of demand
√

[27] Max SNR and min interference to terrestrial networks
√

[88] Max OCTR, min capacity-demand gap
√ √

[89] Max traffic accommodation rate
√ √

[90] Max throughput and delay fairness
√ √ √

[91] Min capacity-demand gap, EIRP, and used bandwidth
√ √ √

packet loss and transmit power consumption. In [79], frequency-domain flexibility was further exploited,
where the underlying interplay of bandwidth adjustment between adjacent beams was investigated.

In addition, growing attention has been drawn to the exploitation of power- and frequency-domain
flexibilities for more performance gain. Power and bandwidth allocation was optimized to improve the
rate matching to demand in [80], but without the discussion of the influence of inter-beam interference.
In [81], inter-beam interference was introduced, where a more complicated joint optimization problem
was studied. Regarding the transmission of real-time and non-real-time services, the authors in [82]
proposed a scheme of power and bandwidth allocation to maximize the throughput. The authors in [10]
discussed the practical implementation of flexible resource management in realistic satellite payloads
and digital video broadcasting-satellite-second generation (DVB-S2) standard, and designed a scheme
of power and bandwidth allocation to reduce the capacity-demand gap and improve the fairness. Further
in [83], the authors jointly optimized power and carrier assignment to minimize the number of occupied
carriers and power consumption while satisfying terminals’ traffic demands.

In the time domain, the major task is to optimize the scheduling of timeslots to terminals/beams.
BH technique is a typical application of time-domain flexibility. In [92], practical implementation of
BH was discussed and the benefits of BH were demonstrated via performance evaluation compared with
several conventional resource allocation schemes. In general, the BH optimization problems involve
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the decision of beam illumination, which are with challenging combinatorial properties. Considering
the difficulty of optimizing beam illumination patterns, the authors in [24] proposed a genetic-based
approach to maximize the capacity and minimize the power consumption. In [84], iterative algorithms
based on minimal co-channel interference (MinCCI) and maximal SINR (MaxSINR) were proposed
to maximize capacity. Moreover, considering the potential benefits of machine learning, the authors
in [85, 86] applied DL or DRL to tackle the BH optimization problems and accelerate the decision of
beam scheduling. The advantages of learning-assisted schemes in tackling combinatorial problems were
verified with the comparison of traditional optimization-based approaches.

The technique of adaptive beam patterns, with the capability of changing beam shapes, is promising
to facilitate spatial-domain flexibility [93, 94] to embrace the challenges of heterogeneous traffic distri-
bution in satellite systems. In [87, 26], the authors investigated the multiple factors that can affect the
beam shapes, e.g., beamwidth, beam center position, and tilt angle, and designed footprint optimization
schemes to match capacity to irregular traffic distribution. The authors in [28] proposed to adjust the
beam size to support different configurations in different networks for better integration of terrestrial
cellular networks and NTN. In [27], an adaptive beam control scheme was designed to minimize the
co-channel interference from LEO satellites to terrestrial systems.

Compared to single-domain flexibility, resource optimization based on multiple dimensions offers
more space for performance enhancement but is more complicated with the intrinsic mutual influence
among techniques in different domains. The sophisticated duality between frequency- and time-domain
flexibilities was analyzed in [88]. In [89], the authors studied the optimization trade-off between beam
size and transmit power. However, the interplay among different domains is not easy to reveal through
conventional optimization-based approaches. Learning might be an alternative to ease the problem solv-
ing by viewing the input/output relationships as a black box and exploiting useful information from
empirical data. In [90], multi-agent deep reinforcement learning was applied to jointly optimize beam
hopping and bandwidth allocation. To accommodate flexibilities in power, bandwidth, and spatial do-
mains, the authors in [91] applied multi-agent deep reinforcement learning to solve a multi-objective
problem to minimize the capacity-demand gap, effective isotropic radiated power (EIRP), and occupied
bandwidth.

2.2 NOMA-Based Resource Allocation in Terrestrial Systems

NOMA is superior to conventional OMA in many aspects, e.g., providing enhanced spectral efficiency,
supporting massive connectivity, reduced transmission latency and signaling cost, etc. [32, 31], which
attract investigations on NOMA-based resource allocation in terrestrial systems.

NOMA-based optimization problems are generally related to power allocation and user grouping
(or scheduling). In the early attempts, power allocation strategy is designed simple. Power can be
split based on a pre-determined policy [95], e.g., fairness-aware fraction transmit power control (FTPC)
strategy [96]. These power allocation strategies can provide performance benchmarks for NOMA-based
resource optimization design. Regarding user grouping, the authors in [97] provided preliminary insights
on user pairing strategies in NOMA, where two typical scenarios were discussed, i.e., fixed power alloca-
tion NOMA (F-NOMA) and cognitive-radio-inspired NOMA (CR-NOMA). It was shown that F-NOMA
would follow the best-worst pairing policy whereas CR-NOMA tends to pair the best-channel user with
the second-best-channel user. In [98], the rate-maximization problem was decomposed into two sub-
problems: user grouping and power allocation. The low-complexity strategies of user grouping in uplink
and downlink NOMA were further analyzed. Intuitively, the best-worst pairing policy is deemed as a
beneficial method to facilitate NOMA in some simple scenarios since large channel gain difference can
augment the performance gap between NOMA and OMA [99]. For its simplicity, best-worst pairing is
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one of the widely-adopted strategies to simplify the problem solving or to be viewed as a benchmark for
performance comparison.

To exploit more performance gain, joint optimization of user scheduling and power allocation is fur-
ther investigated. Dealing with NOMA-based resource optimization problems is challenging due to the
nonconvex expression of the rate functions and combinatorial properties of the user scheduling (decision-
making) part. In some cases, the NP-hardness of the problems has been proven [42, 100, 43]. The optimal
solutions to these problems in general cases cannot be obtained in polynomial time unless P=NP. In [101],
the convexity of the resource allocation problems in single-cell NOMA scenarios was revealed by trans-
forming the rate function into an equivalent power function. To achieve the near-optimum, the authors
in [42] proposed an efficient power and subchannel allocation scheme based on Lagrangian duality and
dynamic programming. In [43], the authors reformulated the subchannel-user scheduling subproblem as
a many-to-many matching problem and designed a swap-matching-based strategy. The authors in [102]
developed the optimal solution of joint power and subcarrier allocation problems in full-duplex multi-
carrier systems via monotonic optimization. To reduce the complexity, an iterative CSA-based approach
was proposed. In [52], the authors went deeper in this direction and provided theoretical algorithmic
designs of optimal, approximate, and heuristic schemes to solve these NP-hard problems.

Apart from general NOMA systems, researchers studied NOMA applications in multi-antenna sce-
narios and fathomed the interplay between NOMA and MIMO/MISO techniques [103]. In [104, 102,
105, 106], NOMA was employed to exploit spatial-dimension flexibility. The synergy of NOMA and
precoding techniques in non-overloaded systems was investigated, where the number of users is smaller
than that of transmit antennas. In such systems, NOMA can bring performance gain but the applicability
is limited when the number of users is large due to the potential error propagation and complexity issues
in the SIC process. NOMA is not good at exploiting spatial-domain flexibility compared to MIMO/MISO
techniques [103]. However, NOMA seems more suitable to support the transmission in overloaded sys-
tems where users are more than transmit antennas. In this context, NOMA is applied to enhance the
power-domain flexibility within each beam to multiplex more than one user and mitigate intra-beam in-
terference whereas precoding is employed among beams to alleviate inter-beam interference, which is a
widely-adopted approach [35, 36, 37, 38, 39, 40]. The joint optimization of NOMA strategies (involv-
ing power allocation and user grouping/pairing) is challenging in multi-beam systems. To simplify the
decision-making process, the idea of grouping/pairing users with highly-correlated channels and large
channel gain difference is widely used [35, 37, 38, 40, 107], which can efficiently reduce inter-beam
interference while guaranteeing performance gain in each beam over OMA.

As discussed in Chapter 1, terrestrial-NOMA schemes may not be directly applied to satellite-NOMA
systems due to the distinctive features of satellite systems. Different channel propagation models call for
the specific design of satellite-NOMA resource allocation. For instance, the authors in [41] found that, in
multi-beam satellite systems, pairing terminals with highly correlated channels and smallest channel gain
difference outperforms the other two schemes, i.e., pairing terminals with lowest Euclidean distance and
pairing terminals with highly correlated channels and largest channel gain difference. This result may not
be consistent with terrestrial-NOMA systems. When the number of terminals in each beam exceeds two
and terminals request heterogeneous traffic demand, the grouping strategies would be more sophisticated.
Besides, distinctive constraints and targeted metrics bring new challenges, e.g., the objective related to
the matching between offered capacity and requested traffic is unusual in terrestrial systems but practical
in SatCom.
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2.3 NOMA-Based Resource Allocation in SatCom

The potential applicability and performance improvement of NOMA in satellite systems have been ana-
lyzed in many works [108, 109, 34, 33, 110, 111]. The authors in [108] analyzed the performance evalu-
ated by general metrics, e.g., ergodic capacity, energy efficiency, outage probability, and average symbol
error rate, in a NOMA-based satellite system. The numerical results verified the performance gain com-
pared to conventional OMA. In [109], the authors discussed the practical implementation of NOMA
in the DVB-S2X standard. Besides, considering that the performance of NOMA in SatCom could be
limited by inevident channel gain difference within the beam coverage, the work demonstrated that the
heterogeneity in terminals’ antennas could be advantageous to performance improvement. In [34], the
applicability of NOMA in multi-beam satellite systems was analyzed. The authors also envisioned some
open challenges of NOMA schemes coordinated with precoding and frequency reuse patterns. In [33],
NOMA applications in several typical scenarios, e.g., cognitive satellite-terrestrial systems and coopera-
tive satellite/terrestrial relay systems, were discussed. In [110], NOMA was introduced to an integrated
satellite-terrestrial system with dual satellites to improve capacity and fairness. Furthermore, a realistic
NOMA-based satellite system for delivering mMTC services was described in [111]. The implementa-
tion of NOMA in practical SatCom was demonstrated and the bright future of satellite-NOMA systems
was envisioned.

With proven power-domain enhancement, researchers started to focus on resource optimization in
NOMA-enabled satellite systems to embrace the requirements of high throughput and massive connec-
tivity for next-generation HTS. We summarize the related works of satellite-NOMA resource allocation
in Table 2.2. In multi-beam satellite systems, especially the ones with the full frequency reuse (FFR)
pattern and over-loaded transmission, co-channel interference could largely deteriorate the system per-
formance. NOMA can be applied in each beam to reduce part of intra-beam interference and accom-
modate more terminals. Towards this end, the authors in [112] and [47] optimized power allocation to
maximize capacity and the number of associated terminals, respectively, while guaranteeing the quality
of service (QoS) requirements. To achieve the network stability, the authors in [113] designed a particle
swarm optimization based approach to optimize power allocation for NOMA-based satellite internet of
things (IoT) services. But more generally, NOMA is coordinated with precoding for additional perfor-
mance gain, where NOMA and precoding target at intra-beam and inter-beam interference mitigation,
respectively. In [41], the authors discussed strategies of terminal scheduling when NOMA is coordinated
with precoding and found that scheduling strategies in SatCom could be different from that in terrestrial
systems. To tackle the issues of imperfect channel state information (CSI), robust design of precoding
schemes were studied in [114] and [48]. Considering practical SatCom scenarios with multiple gate-
ways, the authors in [115] proposed a distributed strategy to optimize precoding and power allocation. In
[45], precoding vectors and power allocation were optimized for rate maximization in a NOMA-based
massive MIMO satellite system.

With the trend of satellite-terrestrial integration in future beyond 5G and 6G, NOMA is also widely
studied in hybrid/integrated satellite-terrestrial networks. In [107, 116, 117], the authors optimized pre-
coding vectors, power allocation, and user pairing/association for NOMA-based satellite-terrestrial inte-
grated networks. In [118], the authors focused on completion time minimization in NOMA-based LEO
satellite-terrestrial integrated networks. In the above works, the satellite served as a supplemental com-
ponent to terrestrial systems where NOMA was not applied in the satellite part. Considering NOMA
at both terrestrial and satellite sides, NOMA was designed to cooperate with bandwidth compression in
satellite-terrestrial integrated systems in [119]. To alleviate severe co-channel interference, the authors
designed a novel NOMA scheme with iterative SIC and symmetrical coding. In [120], joint optimization
of power allocation, user association, and bandwidth assignment was investigated in an uplink NOMA-
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Table 2.2: Related works of NOMA-based resoure allocation in SatCom

Ref. Scenario Target

[112]
Satellite IoT (further integrated

with terrestrial IoT)
Power allocation to max capacity with QoS guarantee

[47] Satellite systems
Joint power allocation and admission control

to max the number of associated terminals

[113] LEO Satellite IoT
Joint network stability and power allocation

to max long-term network utility
[41] Satellite systems Terminal scheduling to max capacity

[114] LEO satellite IoT
Robust beamforming design

to min power for long-term QoS

[48] Satellite systems
Robust beamforming design

to max α-fairness for long-term QoS

[115]
Multi-gateway multi-beam

satellite systems
Distributed approach to power allocation,
terminal scheduling, and precoding design

[45]
LEO satellite systems
with massive MIMO

Joint precoding design and power allocation
to max sum rate

[107]
Satellite-terrestrial integrated

networks (NOMA in terrestrial part)
Precoding design, user pairing,

and power allocation to max total capacity

[116]
Satellite-terrestrial integrated

networks (NOMA in terrestrial part)
User pairing design and joint optimization of

precoding and power allocation to max total capacity

[117]
Satellite-terrestrial integrated

networks (NOMA in terrestrial part)
Precoding design, user pairing,

and power allocation to max energy efficiency

[118]
LEO satellite-terrestrial integrated

networks (NOMA in terrestrial part)

Jointly optimizing power allocation,
cooperative data, and subcarrier assignment

to min completion time

[119]
Hybrid satellite-

terrestrial networks
NOMA cooperates with bandwidth compression

to mitigate interference and improve spectral efficiency

[120]
Satellite-terrestrial
integrated networks

Jointly optimizing power allocation, user
association, and bandwidth assignment to max

capacity and min cross-tier interference

based satellite-terrestrial integrated system with caching. Furthermore, NOMA applications have been
extended to space-air-ground integrated networks, e.g., [121] and [122].

Considering the difficulty of satellite-NOMA resource optimization, learning techniques enrich the
methodology in solution development. In [123], DL was applied in satellite-IoT systems to approximate
the implicit mapping between queue size + channel gain and decoding order and predict the optimal
decoding order for the SIC process in NOMA. To deal with the nonconvexity in the formulated problem,
the authors in [124] employed DRL to speed up the optimization of power allocation. Besides, sup-
port vector machine (SVM) was adopted to tackle the issues raised by imperfect CSI and achieve high
efficiency in user pairing [125].

We summarize the limitations of recent works on satellite-NOMA resource allocation schemes:

• As discussed in Chapter 1, the performance metrics and targeted objectives for practical satellite
systems are different from those widely-used in terrestrial systems. Objective metrics like sum-rate
maximization [42, 100, 43], power minimization [101], and energy efficiency [126] have already
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been fully discussed in terrestrial networks, which, however, neglect the influence of capacity-
demand mismatch in satellite systems. This may cause severe waste and low utilization of on-
board resources. Metrics specific for SatCom, e.g., OCTR and capacity-demand gap, should be
considered in the design of satellite-NOMA schemes. However, in the literature, the study on
NOMA-based resource allocation to optimize these practical SatCom metrics is limited.

• Resource optimization problems for satellite-NOMA systems are difficult in general, especially
the ones with combinatorial properties. Most of the related works focused on algorithmic design
based on optimization theory, e.g., the ones summarized in Table 2.2. In [123, 124, 125], machine
learning was employed to assist the problem solving, which demonstrated the efficiency of the
learning-assisted method. However, how learning helps to solve problems in satellite-NOMA
systems and deliver an efficient solution has not been fully investigated yet. A challenging issue
is to fathom how to guarantee the feasibility of the predicted integer solutions to a complicated
satellite-NOMA resource optimization problem.

• The exploitation of multi-dimension flexibilities has been discussed for many years, e.g., joint opti-
mization for power- and frequency-domain flexibilities. Besides, the cooperation of NOMA in the
power domain and bandwidth compression in the frequency domain was investigated in [119]. But
the synergy investigation of NOMA and SatCom techniques, e.g., BH with time-domain flexibility
and adaptive beam patterns with spatial-domain flexibility, is in the stage of early attempt. How to
accommodate multi-dimension flexibilities and design efficient resource optimization schemes is
an open challenge.

19



2.3. NOMA-Based Resource Allocation in SatCom

20



Chapter 3
Resource Optimization based on
Power-Domain Flexibility

This chapter provides a resource optimization paradigm for general NOMA-enabled multi-beam satellite
systems, where NOMA is adopted to enhance power-domain flexibility. We investigate whether NOMA
can help to improve the matching between offered capacity and requested demand and how much gain
can be obtained when NOMA is applied. Towards this end, we formulate a problem of jointly optimiz-
ing power allocation, decoding orders, and terminal-timeslot assignment to maximize the worst OCTR
among terminals. To solve the challenging problem, we design an algorithmic framework to jointly
allocate power and decide decoding orders, with the guarantee of optimality and convergence. Based
on the framework, a heuristic scheme is proposed to solve the original joint problem, which iteratively
updates terminal-timeslot assignment and precoding vectors to further enhance the minimum OCTR.
Numerical results demonstrate the convergence of the algorithmic framework and the advantages of the
proposed NOMA schemes in matching offered capacity to traffic demand compared to the conventional
OMA scheme. Besides, we verify the applicability of the proposed NOMA schemes in some practical
scenarios.

3.1 Introduction

A multi-beam satellite system provides wireless services to wide-range areas. On the one hand, traffic
distribution is typically asymmetric among beams [12]. On the other hand, satellite capacity is restricted
by practical aspects, e.g., payload design, limited flexibility in resource management, and tended to be
fixed before launch [2]. The asymmetric traffic and the predesigned capacity could result in mismatches
between requested traffic and offered capacity [127], i.e., hot beams with unmet traffic demand or cold
beams with unused capacity [10]. Both cases are undesirable for satellite operators, which motivates
the investigation of flexible resource allocation to reduce the mismatches for future multi-beam satellite
systems.

In terrestrial systems, NOMA has demonstrated its superiority, e.g., in throughput, energy, fairness,
etc., [128, 31], over OMA. By performing superposition coding at the transmitter side, more than one
terminal’s signal can be superimposed with different levels of transmit power and broadcast to co-channel
allocated terminals. At the receiver side, SIC is performed. In this way, NOMA is capable of alleviating
co-channel interference, accommodating more terminals, and improving spectral efficiency [31].

The authors in [110, 41, 34, 33] analyzed the applicability of integrating NOMA to satellite sys-
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tems. In [110], NOMA was applied in satellite-terrestrial integrated systems to improve capacity and
fairness. NOMA was considered in multi-beam satellite systems in [41, 34], where precoding, power
allocation, and user grouping schemes were studied to maximize the capacity. In [33], the authors pro-
vided an overview for applying NOMA to satellite networks. Under a single-beam scenario, the authors
in [108, 129] analyzed outage performance for satellite-NOMA. In [108], a comprehensive study on out-
age probability, capacity, and energy efficiency for a NOMA-based land mobile satellite network was
provided. In [129], the outage performance of a NOMA-based satellite network was investigated in the
cases of perfect and imperfect SIC.

In the literature, resource optimization for NOMA-enabled multi-beam satellite systems is studied
to a limited extent. First, the study of integration between NOMA and the satellite is limited, e.g.,
[107, 116], where the satellite is functioned as a supplemental component. In both works, NOMA was
applied to the terrestrial systems but not to the satellite component. Second, the previous satellite-NOMA
works commonly adopted general terrestrial-oriented metrics, e.g., capacity [110, 41], fairness [110], and
outage probability [108, 129]. Nevertheless, practical and featured metrics for multi-beam satellite sys-
tems, e.g., mismatches between requested traffic and offered capacity, have not been fully discussed.
Third, for NOMA-enabled multi-beam satellite systems, how to derive an appropriate decoding order
which is coupling with the beam-power variations, needs to be addressed. The authors in [112] studied
power optimization to reduce the traffic-capacity mismatch for NOMA-based multi-beam satellite sys-
tems, with adopting a predefined and fixed decoding order, thus simplifying the power allocation. In
practical scenarios, decoding orders may change when beam power is adjusted [130]. Therefore, it is
important to optimize decoding orders for multi-beam satellite systems since an inappropriate decoding
order can result in unsuccessful SIC and thus performance degradation. In this chapter, we consider a
full frequency reuse system, where inter-beam interference is mitigated via precoding while NOMA is
applied to reduce intra-beam interference within a beam.

3.1.1 Challenges and Contributions

In general, resource allocation schemes for terrestrial multi-antenna NOMA systems may not be directly
applied to multi-beam satellite systems [2, 34]. For instance, terminals with highly correlated channels
and large channel-gain difference are favorable to be grouped to mitigate inter-beam and intra-beam
interference by precoding and NOMA, respectively [38, 35, 40]. Such desired terminal groups or pairs
can be observed in terrestrial-NOMA systems but might not be easily obtained in satellite scenarios. In
addition, channel models, payload design, and on-board limitations could render resource optimization
in satellite-NOMA systems more challenging than terrestrial-NOMA systems [21].

In the literature, how NOMA can help to improve the performance of the practical metric, OCTR
[10], has not been fully studied. In this chapter, we focus on jointly optimizing power, decoding orders,
and terminal-timeslot assignment in multi-beam satellite systems to improve the performance of OCTR.
The main contributions are summarized as follows:

• We formulate a max-min resource allocation problem to jointly optimize power allocation, decod-
ing orders, and terminal-timeslot assignment, such that the lowest OCTR among terminals can be
maximized. The problem falls into the domain of combinatorial non-convex programming, which
brings more performance gain in OCTR but is more challenging compared to our previous work
[131].

• Unlike previous studies, we develop a simple approach to circumvent the difficulties in jointly op-
timizing undetermined optimal decoding order and undetermined rate-function expressions based
on the derived theoretical analysis.
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• By fixing the terminal-timeslot assignment, we augment the power-tune solution in [131] and pro-
pose a PF theory based approach to solve the remaining problem, i.e., jointly optimizing power
allocation and decoding orders (JOPD). We also provide theoretical results to prove that the ap-
proach is with guaranteed fast convergence to the optimum. The fixed terminal-timeslot assign-
ment is determined by grouping the terminals with maximum channel correlation (MaxCC).

• We provide a complete algorithmic solution for the considered joint optimization problem. Under
the framework of JOPD, we develop a heuristic algorithm to jointly optimizing power allocation,
decoding orders, and terminal-timeslot scheduling (JOPDT), which iteratively updates terminal-
timeslot assignment and precoding vectors, and improves the overall OCTR performance. JOPDT
aims at providing benchmarks and upper bounds for JOPD.

• The numerical results, firstly, verify the fast convergence of JOPD. Secondly, we show the OCTR
performance gain of NOMA over OMA in the two proposed NOMA-based schemes, i.e., JOPD
+ MaxCC (with lower complexity) and JOPDT (with higher complexity). Thirdly, we compare
the performance of the max-min OCTR objective with another widely-used objective. Lastly, we
evaluate the OCTR performance in the scenarios with practical consideration, e.g., atmospheric-
fading effects and SIC imperfection, to demonstrate the applicability of the proposed algorithms
to more practical scenarios.

3.2 System Model

3.2.1 A Multi-Beam Satellite System

We consider the forward-link transmission in a multi-beam satellite system, where a geostationary earth
orbit (GEO) satellite is equipped with an array-fed reflector antenna to generate B spot beams. The
satellite provides fixed services to ground terminals. Each terminal is equipped with a single antenna.
We denote B = {1, . . . , B} as the set of the beams. One feed per beam is implemented in the system
and the index of a feed is assumed to be consistent with that of the beam it serves. We follow a typical
scenario in satellite systems, e.g., [12, 2, 10, 41], as shown in Fig. 6.3. The motivation is to facilitate our
investigation on how NOMA-enabled resource optimization performs in an aggressive frequency-reuse
scenario for addressing a practical issue, i.e., to overcome the mismatch effect between requested traffic
and offered capacity. The gateway with the co-located resource management unit connects the core
network and the satellite payload. The gateway collects terminals’ feedbacks, e.g., channel conditions
and traffic demand, via the return link. The resource manager is responsible for generating optimized
decisions, and the outcome is communicated to the gateway and then to the payload. The satellite plays
as a transparent transceiver to relay data from the gateway to ground terminals.

Let Ub be the set of all the fixed ground terminals located within the service area of the b-th beam. For
each scheduling period, Kb terminals from Ub are selected for transmission. Denote Kb = {1, . . . ,Kb}
as the set of the selected terminals in beam b, where Kb ⊆ Ub. We focus on resource allocation during a
scheduling period consisting of C timeslots. Let C = {1, . . . , C} be the set of the timeslots.

As we consider fixed ground terminals, the channel gains vary over scheduling periods but keep static
during a scheduling period. Define hbk = [h1

bk, . . . , h
i
bk, . . . , h

B
bk]

T ∈ CB×1 as the channel vector of the
k-th terminal in beam b at timeslot c. The i-th element of the vector, hibk, denotes the channel coefficient
from the i-th feed to the k-th terminal in beam b, where i ∈ B. The channel coefficient can be expressed
as

hibk = ejϑbk

√
GSat
ibkLbkG

Rx
bk

κTBW
, (3.1)
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Figure 3.1: An illustrative scenario of the NOMA-enabled multi-beam satellite system, where all the beams share
the same frequency band.

where GSat
ibk is the transmit antenna gain corresponding to the off-axis angle between the beam center and

the terminal. Let Lbk denote the free-space propagation loss from the GEO satellite to the k-th terminal
in beam b, which is calculated by,

Lbk = (
v

4πffreqdbk
)2, (3.2)

where v, ffreq, and dbk represent the propagation speed, the frequency, and the distance between the GEO
satellite and the k-th terminal in beam b, respectively. GRx

bk is the receiver antenna gain. κTBW is the
noise distribution, where κ, T , and BW denote the Boltzmann constant, the receiver noise temperature,
and the occupied bandwidth, respectively. ejϑbk denotes the phase variation due to the long propagation
paths to each terminal, where ϑbk is uniformly distributed between 0 and 2π. The channel model has
been widely adopted in the literature, e.g., [41, 132, 133]. By introducing NOMA and precoding to
mitigate interference, 1-color frequency-reuse pattern is adopted, where all the beams share the same
frequency band [2]. In terms of payload, the on-board payload is equipped with the module of multi-port
amplifier (MPA) such that power can be flexibly distributed across different beams.

3.2.2 Precoding and NOMA

To alleviate inter-beam interference, we adopt a linear precoding scheme, minimum mean square error
(MMSE), which has been widely considered in satellite systems, e.g., [12, 2, 134, 135]. Compared to
dirty-paper coding which can attain the maximum capacity with unaffordable computational complexity,
MMSE can achieve a good trade-off between high spectral efficiency and low computational complexity
[41]. On the other hand, MMSE can achieve better performance in addressing both inter-beam inter-
ference and noise than zero-forcing and maximum ratio transmission schemes [136]. In the system
model, we assume that CSI is available at the gateway so that precoding and resource optimization can
be performed. In practice, a CSI estimation procedure can be performed first by using pilot-assisted
approaches, which is facilitated by the DVB-S2X standard and its superframe structure [137].
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Denote wbc = [w1
bc, . . . , w

i
bc, . . . , w

B
bc]
T ∈ CB×1 as the precoding vector for the b-th beam at timeslot

c. The i-th element of the vector, wibc, represents the precoding coefficient of the i-th feed for the b-th
beam, where i ∈ B. The received signal can be expressed as:

ybkc =hHbkwbc
√
pbkcsbkc︸ ︷︷ ︸

desired signal

+
∑

l∈Kb\{k}

hHbkwbc
√
pblcsblc︸ ︷︷ ︸

intra-beam interference

+
∑

b′∈B\{b}

∑
j∈K

b
′

hHbkwb′c

√
pb′jcsb′jc︸ ︷︷ ︸

inter-beam interference

+ nbkc︸︷︷︸
noise

,

(3.3)

where sbkc, pbkc, and nbkc ∼ CN (0, σ2) are the signal with unit power, power scaling factor, and the
complex circular symmetric independent identically distributed additive white gaussian noise with zero
mean and variance σ2, respectively. The transmit power of the b-th beam (or feed) is ρbc

∑
k∈Kb pbkc,

∀c ∈ C, where ρbc = [
∑

i∈Bwicw
H
ic ]b,b denotes the power radiated by the b-th feed for precoding [132].

To implement MMSE, we construct H ∈ CB×B as the channel matrix, where the b-th row represents
the channel vector of the terminal with maxk∈Kb ‖hbk‖ [40]. The precoding matrix reads,

W = βHH(HHH + σ2IB)−1, (3.4)

where IB is the identity matrix with the dimension B by B. β is a scaling factor to normalize the
precoding matrix as [WWH ]b,b ≤ 1, ∀b ∈ B. The scaling factor can be determined as

β2 =
1

max{diag((HHH)−1)}
. (3.5)

Note that the regularization factor before I is fixed to σ2 in this work.

Within a beam, NOMA is applied to mitigate intra-beam interference among terminals. The signal-
to-interference-plus-noise ratio (SINR) γbkc is expressed as,

γbkc =
|hHbkwbc|2pbkc∑

l∈Kb\{k}
φbklc|hHbkwbc|2pblc +

∑
b′∈B\{b}

|hHbkwb′c|2
∑

j∈K
b
′

pb′jc + σ2
, (3.6)

where φbklc ∈ {0, 1} indicates decoding order, where k 6= l. Let gbkc denote the ratio between channel
gain and inter-beam interference plus noise,

gbkc =
|hHbkwbc|2∑

b′∈B\{b}
|hHbkwb′c|2

∑
j∈K

b
′

pb′jc + σ2
. (3.7)

In the system model, we adopt a descending order of gbkc as the decoding order in SIC, which is a
proper decoding order and widely used in the literature for NOMA, e.g., [31, 130, 38, 131, 138]. By
the definition, gbkc > gblc means that terminal k decodes the signal of l before decoding its own signal.
Otherwise, terminal k treats l’s signal as noise when gbkc < gblc. To ease the presentation, we assume the
decoding order is consistent with the terminal index, i.e., gb1c ≥ gb2c ≥ · · · ≥ gbKbc, unless otherwise
stated.

The throughput of terminal k in beam b at timeslot c is,

Rbkc = BW log(1 + γbkc). (3.8)
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Hence the offered capacity of that terminal is derived as,

Rbk =
∑
c∈C

Rbkc. (3.9)

We remark that, in this work, we assume perfect SIC (as well as CSI) to explore an upper-bound
performance of NOMA over OMA. The performance can be served as benchmarks for the cases with
various imperfections. In practice, there are a set of approaches being developed, and can be applied to
facilitate successful SIC. For instance, one can group terminals with large channel-gain difference and
significant power disparity such that the terminals are able to distinguish the intended signal and more
likely to perform successful SIC [139]. In addition, some advanced techniques, e.g., soft-in soft-out
decoding [140] and multi-branch SIC [141], can help to alleviate the performance degradation caused by
imperfect SIC, and keep the error ratio of imperfect SIC at low levels.

3.3 Problem Formulation

We formulate a max-min fairness problem to improve the OCTR performance by power, decoding-order,
and terminal-timeslot optimization. We define the variables and formulate the max-min fairness problem
P0 as follows:

pbkc ≥ 0, allocated power for terminal k in beam b at timeslot c,

φbklc =

{
0, in beam b, terminal k decodes l’s signal at timeslot c before decoding its own signal,
1, terminal k does not decode l’s signal and treat it as noise,

αbkc =

{
1, terminal k in beam b is scheduled to timeslot c,
0, otherwise,

(3.10a)

P0 : max
pbkc,φbklc,αbkc

min
b∈B,k∈Kb

Rbk
Dbk

(3.11a)

s.t.
∑
b∈B

ρbc
∑
k∈Kb

pbkc ≤ Ptot,∀c ∈ C, (3.11b)

ρbc
∑
k∈Kb

pbkc ≤ Pb,max, ∀b ∈ B,∀c ∈ C, (3.11c)

ρbc
∑
k∈Kb

pbkc = ρbc′
∑
k∈Kb

pbkc′ , ∀b ∈ B, ∀c, c
′ ∈ C, c 6= c

′
, (3.11d)

∑
k∈Kb

αbkc ≤ K̄,∀b ∈ B,∀c ∈ C, (3.11e)

∑
c∈C

αbkc = 1,∀b ∈ B,∀k ∈ Kb, (3.11f)

pbkc ≤ P̂αbkc, ∀b ∈ B, ∀c ∈ C,∀k ∈ Kb, (3.11g)

gblc − gbkc ≤ Aφbklc, ∀b ∈ B, ∀c ∈ C,∀k, l ∈ Kb, k 6= l, (3.11h)

φbklc + φblkc = 1,∀b ∈ B,∀c ∈ C,∀k, l ∈ Kb, k 6= l. (3.11i)
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In the objective, we focus on the OCTR improvement and fairness enhancement at the terminal level
[133]. The OCTR metric for terminal k in beam b is defined as Rbk

Dbk
, where Rbk and Dbk are the of-

fered capacity and requested traffic demand, respectively. The optimization task is to maximize the
worst OCTR among terminals in Kb, such that the mismatch and the fairness issues can be addressed.
In (4.7d), the total power is less than a budget Ptot, due to the limited on-board power supply. Con-
straints (3.11c) state that the allocated power for each beam should be restricted by the power constraint,
Pb,max. Constraints (3.11d) denote that, the power allocated to each beam is identical across timeslots,
considering the practical issues in waveform design, dynamic range of the signal, and non-linearities of
the amplifier [2, 21, 72]. For each beam, the number of terminals simultaneously accessing the same
timeslot is no more than K̄ in (3.11e). In (3.11f), each terminal is limited to be scheduled once during
a scheduling period to avoid imbalanced timeslot assignment among terminals, which is important for
serving a large number of terminals. Constraints (3.11g) connect two sets of variables, pbkc and αbkc,
where P̂ is no smaller than the maximal pbkc, e.g., P̂ = Ptot. If αbkc = 0, pbkc is zero. If αbkc = 1,
P̂ ≥ pbkc > 0 since the option αbkc = 1 and pbkc = 0 is clearly not optimal, thus will be excluded from
the optimum. Constraints (3.11h) and (3.11i) confine variables φbklc to perform SIC by the descending
order defined in (3.7), where A is no smaller than the maximum value of gbkc. If gbkc > gblc, φbklc = 0
which means that terminal k decodes the signal of l before decoding its own signal, and terminal l treats
k’s signals as noise. If φbklc = 1, it implies gbkc < gblc, then terminal k does not decode l’s signal and
treat it as noise. Note that due to the constraints φbklc + φblkc = 1 in (3.11i), φbklc = 1 also implies
φblkc = 0 and gblc > gbkc in the mean time.
P0 is a mixed-integer non-convex programming due to the binary variables, αbkc and φbklc, and the

non-convexity of Rbkc. Solving mixed-integer non-convex programming is in general challenging. A
typical way to address a max-min problem is to check whether it can be reformulated as a monotonic
constrained max-min utility (MCMU) problem, where the objective functions and constraints are com-
petitive utility functions (CUFs) and monotonic constraints (MCs), respectively [55]. If yes, PF can be
applied with fast convergence. The general MCMU is expressed as:

PPF : max
Q

min
j=1,...,J

fj(Q) (3.12a)

s.t. Fm(Q) ≤ F̄m,m = 1, . . . ,M. (3.12b)

In PPF , Q = [Q1, . . . , Qj , . . . , QJ ] is the vector collecting all theQ-variables. fj(Q) represents the ob-
jective function. Fm(Q) and F̄m are the constraint functions and upper-bound parameters, respectively.
The properties of CUF and MC are presented in Definition 1 and Definition 2, respectively.

Definition 1. The objective function fj(Q) in PPF is CUF if the following properties are satisfied:

• Positivity: fj(Q) > 0 if Q � 0; fj(Q) = 0 if and only if Q = 0.

• Competitiveness: fj(Q) strictly monotonically increases inQj but decreases inQj′ , where j
′ 6= j.

• Directional Monotonicity: For ζ > 1 and Q � 0, fj(ζQ) > fj(Q).

Definition 2. The constraints, Fm(Q) ≤ F̄m, ∀m = 1, . . . ,M , are MCs if the following properties
are satisfied:

• Strict Monotonicity: Fm(Q1) > Fm(Q2) if Q1 � Q2, ∀m.

• Validity: If Q � 0, ∃ζ > 0 such that Fm(ζQ) ≥ F̄m for some m.

MCMU and PF may not be directly applied to solve P0 due to the following reasons:
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• The solutions for MCMU (e.g., [55, 142, 143]) are derived for a specific scenario, e.g., one terminal
per cell or per beam. When the scenario of multiple users per beam, along with undetermined
decoding orders and binary variables, is considered in this work, the satisfiability of Definition 1
and Definition 2 no longer holds for original P0.

• In P0, determining decoding orders is coupled with beam power allocation. Optimizing beam
power could result in changes of decoding orders. As a consequence, the function of Rbk in P0

becomes undetermined (corresponding to the objective function in PPF ), which is an obstacle in
analyzing the applicability of MCMU and PF.

• Precoding vectors are decided based on the terminal-timeslot assignment. The coupling between
precoding vectors and terminal-timeslot assignment could result in undetermined |hbkwbc|2 in the
objective function (4.7a) while optimizing αbkc.

To solve P0, the following issues should be tackled. First, the applicability of MCMU and PF for
different special cases of P0 should be analyzed. Second, the challenges to deal with the combinatorial
and non-convex components in P0 need to be addressed. Towards these ends, we first discuss the opti-
mization of power allocation and decoding orders with the fixed terminal-timeslot assignment. Then we
focus on solving the whole joint optimization problem.

3.4 Optimal Joint Optimization of Power Allocation and Decoding Or-
ders

With fixed αbkc in P0, we formulate the remaining power and decoding-order optimization problem in
P1.

P1 : max
pbkc>0,φbklc

min
b∈B,k∈Kb

Rbk
Dbk

(3.13a)

s.t. (4.7d), (3.11c), (3.11d), (3.11h), (3.11i). (3.13b)

Note that prior to optimization, we have pre-processed pbkc according to the fixed variables αbkc. That
is, only positive p-variables, i.e., pbkc > 0 (resulted by αbkc = 1), retain in P1 and to be optimized. P1

is complicated due to the coupled power and decoding-order optimization. From P1, we can observe
that if the decoding orders can be determined by temporarily fixing the beam power, the remaining
power allocation problem resembles PPF . This enables us to take advantages of the PF method in fast
convergence and optimality guarantee. In this section, we first discuss the strategy of fixing the terminal-
timeslot assignment. Next, we discuss the solution of P1, and the applicability of MCMU and PF.

3.4.1 Terminal-Timeslot Scheduling

Terminal-timeslot scheduling or terminal grouping is significant for NOMA and precoding. In the litera-
ture, the grouping strategies are either optimal or suboptimal. The former is to find the optimal terminal
groups but with prohibitively computational complexity, e.g., an optimal scheme for joint precoding and
terminal-subcarrier assignment in [102]. For the latter, some heuristic approaches are developed for
terrestrial-NOMA systems but might not be directly applied to satellite NOMA. For example, the strat-
egy of grouping terminals with highly correlated channels and large channel gain difference is widely
used in terrestrial-NOMA systems [38, 35, 40]. However, in satellite systems, neighboring terminals
may have highly correlated channels but small channel gain difference [34], whereas terminals far away
from each other may have non-correlated channels.
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Considering the trade-off between interference reduction and computational complexity, we apply
MaxCC strategy to select terminals with the largest correlation [132]. The reasoning behind this strategy
is that the precoder should be able to mitigate inter-beam interference more effectively whenever the ter-
minals grouped within the same beam have highly correlated channel vectors. The procedure is summa-
rized in the following. In a timeslot, we select one terminal, say k

′
, randomly from Ub. Then we calculate

its correlation factors (or cosine similarity metric) with all the other terminals, i.e., θ =
|hH
bk
′hbj |

‖h
bk
′ ‖‖hbj‖ [41],

where j ∈ Ub \ {k
′}. The terminal with the largest θ is scheduled with k

′
to the same timeslot. The

selected terminals are deleted from Ub and added to Kb. The above procedure is performed for each
timeslot one by one until all the timeslots are processed or Ub becomes empty.

3.4.2 Terminal Power Optimization with Fixed Beam Power

We define P = [P1, . . . , Pb, . . . , PB] as the vector collecting all the beam power. With fixed αbkc
and temporarily fixed P, the terminal power allocation is independent among beams. Thus P1 can
be decomposed to B subproblems. The b-th subproblem, P1(b), corresponds to the terminal power
optimization in beam b. Let P̄b collect all the beam power except the b-th beam’s power, i.e., P̄b =
[P1, . . . , Pb−1, Pb+1, . . . , PB]. In (3.7), gbkc can be considered as a function of P̄b, which is defined as,

gbkc = f̂bkc(P̄b). (3.14)

The decoding order variables φbklc are determined when P is fixed. Thus, constraints (3.11h) and (3.11i)
do not apply in P1(b).

P1(b) : max
pbkc

min
k∈Kb

Rbk
Dbk

(3.15a)

s.t. ρbc
∑
k∈Kb

pbkc = Pb,∀c ∈ C, (3.15b)

where (3.11d) is equivalently converted to (3.15b) and denotes that the sum of terminals’ power in each
beam across timeslots is equal to the beam power. By introducing an auxiliary variable tb, P1(b) can be
equivalently transformed to a maximization problem:

P1(b) : max
pbkc,tb

tb (3.16a)

s.t. (3.15b), tbDbk −Rbk ≤ 0,∀k ∈ Kb. (3.16b)

To better reveal the convexity of P1(b), we express pbkc by a function of Rbkc based on (4.5) [130]. Then
the power variables pb1c, ..., pbKbc read,

pb1c =
e
Rb1c
BW − 1

gb1c
,

pb2c =
e
Rb2c
BW − 1

gb2c
(gb2cpb1c + 1),

...

pbKbc =
e
RbKbc

BW − 1

gbKbc
(gbKbc

Kb−1∑
j=1

pbjc + 1). (3.17)
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The constraints in (3.15b) can be equivalently written as:

Kb∑
k=1

(
1

gbkc
− 1

gb(k−1)c

)
e

∑
j≥k

Rbjc
BW − 1

gbKbc
=
Pb
ρbc

, ∀c ∈ C, (3.18)

where 1
gb0c

= 0. Then P1(b) is equivalently converted to P2(b) by treating Rbkc as variables:

P2(b) : max
Rbkc,tb

tb (3.19a)

s.t. (3.18), (4.7b). (3.19b)

Note that constraints (3.18) are not affine. We further relax the equality constraints in (3.18) to inequality
in (4.9c), leading to a convex exponential-cone format,

Kb∑
k=1

(
1

gbkc
− 1

gb(k−1)c

)
e

∑
j≥k

Rbjc
BW − 1

gbKbc
≤ Pb
ρbc

, ∀c ∈ C. (3.20)

We then conclude the equivalence between (3.18) and (4.9c) at the optimum, thus concluding the con-
vexity of P2(b) and P1(b).

Proposition 1. The optimum of P2(b), i.e., t∗b , which is located on timeslot c∗, can be obtained by the
following equation:

Kb∑
k=1

(
1

gbkc∗
− 1

gb(k−1)c∗

)
e

∑
j≥k

t∗bDbj
BW − 1

gbKbc∗
=

Pb
ρbc∗

. (3.21)

Proof. We can obtain the optimum of the relaxed problem based on KKT conditions. The corresponding
Lagrangian dual function is:

L(Rbkc, tb;λc, µk) =

− tb +
∑
c∈C

λc

(
Kb∑
k=1

(
1

gbkc
− 1

gb(k−1)c

)
e

∑
j≥k

Rbjc
BW − 1

gbKbc
− Pb
ρbc

)
+

Kb∑
k=1

µk(tDbk −Rbk), (3.22)

where λc ≥ 0 and µk ≥ 0 are Lagrangian multipliers for constraints (3.18) and (4.7b), respectively. The
KKT conditions can be derived as

∂L
∂Rbkc

= λc

k∑
n=1

(
1

gbnc
− 1

gb(n−1)c

)
e

∑
j≥n

Rbjc
BW − µk = 0,∀c ∈ C, k ∈ Kb, (3.23a)

∂L
∂t

= −1 +

Kb∑
k=1

µkDbk = 0, (3.23b)

λc

(
Kb∑
k=1

(
1

gbkc
− 1

gb(k−1)c

)
e

∑
j≥k

Rbjc
BW − 1

gbKbc
− Pb
ρbc

)
= 0, ∀c ∈ C, (3.23c)

µk(tbDbk −Rbk) = 0,∀k ∈ Kb. (3.23d)

At the optimum ofP1(b), at least one constraint in (4.7b), say the k∗-th constraint/terminal, will be active,
i.e., the equality holds, whereas the others keep inequalities [50]. The optimal value t∗b is then achieved
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at the equality t∗bDbk∗ − Rbk∗ = 0 [143, 50]. In (3.23d), for the inequality terms t∗bDbk − Rbk < 0,
the corresponding µk must be zero, while for the equality term t∗bDbk∗ − Rbk∗ = 0, µk∗ > 0 instead of
zero since (3.23b) cannot hold for all-zero µk. Hence, the optimal t∗b is associated with positive µ∗k. The

positive µ∗k in (3.23a) results in positive λc which leads to
∑Kb

k=1( 1
gbkc
− 1

gb(k−1)c
)e

∑
j≥k

Rbjc
BW − 1

gbKbc
−

Pb
ρbc

= 0 in (3.23c). Thus the conclusion.

Proposition 1 establishes the equivalence between (3.18) and (4.9c) at the optimum. The convexity of
P1(b) and P2(b) is concluded. We define a function t∗b = fb(P) in an inexplicit way in (3.21) by moving
t∗b to the left side of the equality and the remaining to the right, where fb(P) denotes the function of the
optimal OCTR of beam b when beam power is P.

3.4.3 Beam Power Optimization

Given P, the optimal power allocation among terminals can be obtained from KKT conditions. Next, we
optimize the beam power allocation. The problem is formulated in P3,

P3 : max
P

min
b∈B

fb(P) (3.24a)

s.t.
∑
b∈B

Pb ≤ Ptot, (3.24b)

Pb ≤ Pb,max,∀b ∈ B, (3.24c)

where the objective fb(P) is the function of the optimal OCTR of the b-th beam with P and can be
equivalently converted from (3.21). The expression of fb(P) depends on P and the decoding order. Next,
we prove P3 is an MCMU. Constraints (3.24b) and (3.24c) are linear, which satisfy the MC conditions.
The CUF conditions of fb(P) are analyzed in Lemma 1 and Lemma 2.

Lemma 1. The objective function fb(P) in P3 is a CUF for any decoding orders.

Proof. Given any P and the corresponding decoding order, according to Definition 1, we check the three
conditions for fb(P), ∀b ∈ B.

Positivity: Rewrite (3.21) equivalently as:

Kb−1∑
k=1

1

gbkc∗
e

∑
j>k

t∗bDbj
BW

(e
t∗bDbk
BW − 1) +

1

gbKbc∗
(e

t∗bDbKb
BW − 1) =

Pb
ρbc∗

. (3.25)

The right-hand side is positive, then the term e
t∗bDbk
BW − 1 in the left-hand side has to keep positive. Hence

t∗b is positive.
Competitiveness: By deriving the partial derivatives of fb(P), i.e., ∂fb∂Pb

and ∂fb
∂P

b
′

in (3.26) and (3.27),

respectively, we observe ∂fb
∂Pb

> 0 and ∂fb
∂P

b
′
< 0, which means that fb(P) monotonically increases with

beam b’s power Pb but decreases with any other beam’s power Pb′ .

∂fb
∂Pb

=
1∑Kb

k=1

(
1

gbkc∗
− 1

gb(k−1)c∗

)
e
∑
j≥k

t∗
b
Dbj
BW

∑
j≥k

Dbj
BW

, (3.26)
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∂fb
∂Pb′

= −

∑Kb−1
k=1

|hHbkwb′c∗ |
2

|hHbkwbc∗ |2ρbc∗
e
∑
j>k

t∗bDbj
BW (e

t∗bDbk
BW − 1) +

|hHbKbwb′c∗ |
2

|hHbKbwbc∗ |
2ρbc∗

(e
t∗bDbKb
BW − 1)

∑Kb
k=1

(
1

gbkc∗
− 1

gb(k−1)c∗

)
e
∑
j≥k

t∗
b
Dbj
BW

∑
j≥k

Dbj
BW

. (3.27)

Directional Monotonicity: Let ζ > 1. We assume fb(ζP) = τ1 and fb(P) = τ2. From equation
(3.21), τ1 can be derived by the following equation:

Kb−1∑
k=1

1

f̂bkc∗(ζP̄b)
e

∑
j>k

τ1Dbj
BW

(e
τ1Dbk
BW − 1) +

1

f̂bKbc∗(ζP̄b)
(e

τ1DbKb
BW − 1)− ζPb

ρbc∗
= 0. (3.28)

By substituting fb(P) = τ2 into (3.21), both sides of the equation multiply ζ, i.e.,

Kb−1∑
k=1

ζ

f̂bkc∗(P̄b)
e

∑
j>k

τ2Dbj
BW

(e
τ2Dbk
BW − 1) +

ζ

f̂bKbc∗(P̄b)
(e

τ2DbKb
BW − 1)− ζPb

ρbc∗
= 0. (3.29)

Based on the equation in (3.7), we can derive 1
f̂bkc∗ (ζP̄)

< ζ

f̂bkc∗ (P̄)
by:

1

f̂bkc∗(ζP̄)
=

∑
b′ 6=b |h

H
bkwb′c∗ |

2ζ
P
b
′

ρ
b
′
c∗

+ σ2

|hHbkwbc∗ |2
< ζ

∑
b′ 6=b |h

H
bkwb′c∗ |

2 P
b
′

ρ
b
′
c∗

+ σ2

|hHbkwbc∗ |2
=

ζ

f̂bkc∗(P̄b)
. (3.30)

Based on (3.30), the terms 1
f̂bkc∗ (ζP̄)

and 1
f̂bKbc∗ (ζP̄)

in (3.28) are smaller than ζ

f̂bkc∗ (P̄b)
and ζ

f̂bKbc∗ (P̄b)
in

(3.29), respectively. Hence, the equalities in (3.28) and (3.29) cannot hold under both cases τ1 = τ2 and
τ1 < τ2. Thus τ1 > τ2 and fb(ζP) > fb(P).

Based on Lemma 1, we can develop PF-based algorithm to converge if the decoding order remains
under the power adjustment. However, the expression of fb(P) typically changes since the adjustment
of P can result in new decoding orders. As a consequence, it is not straightforward to observe the
satisfiability of CUF and the convergence when fb(P) varies. Next, we conclude that the objective
function in P3 is a CUF even if the decoding order changes.

Lemma 2. fb(P) in P3 remains a CUF even if the decoding order changes.

Proof. Positivity: The positivity of fb(P) holds whether the decoding order changes or not according to
(3.25).

Competitiveness: The decoding order in beam b depends on P̄b. Given any two terminals k and k
′

in
beam b, suppose that in beam b

′
, there exist Pb′ and δ such that Pb′ leads to gbkc = gbk′c; setting Pb′ − δ

results in terminal k decoding k
′

(gbkc > gbk′c); and Pb′ + δ changes the decoding order to k
′

decoding
k (gbkc < gbk′c). fb(P) is competitive when the decoding order stays unchanged. When gbkc = gbk′c,
fb(P) remains the same under both decoding orders. Thus fb(P) is continuous, indicating that fb(P)
monotonically decreases in Pb′ even if the decoding order changes. The competitiveness is concluded.

Directional monotonicity: Assume that the decoding order changes from k decoding k
′

to k
′

decod-
ing k as the beam power increases from P to ζP, where ζ > 1. There exists ζ0, where 1 < ζ0 < ζ, such
that ζ0P corresponds to gbkc = gbk′c. As proven in Lemma 1, fb(P) < fb(ζ0P) and fb(ζ0P) < fb(ζP).
Thus fb(P) < fb(ζP).

Based on Lemma 1 and Lemma 2, the objective function in P3 is a CUF. Constraints (3.24b) and
(3.24c) are linear and thus satisfy the MC conditions, which concludes P3 is an MCMU.
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Algorithm 1 JOPD
Input:

Initial beam power, P(0);
iteration index: n = 0;
maximum number of iterations, Nmax;
precision: ξ1 > 0.

1: repeat
2: for b = 1, . . . , B do
3: Update and sort gbkc with P(n).
4: Determine decoding order φbklc based on the descending order of gbkc.
5: Calculate t∗(n)

b = fb(P
(n)) by (3.21).

6: Update P by Pb =
P

(n)
b

t
∗(n)
b

.

7: end for
8: Calculate ε = max

{
Pb

Pb,max
,∀b ∈ B;

∑
b∈B

Pb
Ptot

}
.

9: Update P(n+1) = P
ε , n = n+ 1.

10: until n > Nmax or |t∗(n+1)
b − t∗(n)

b | < ξ1

11: Calculate pbkc based on P(n).
Output:

t∗b , pbkc.

3.4.4 A Fast-Convergence Approach Based on PF for Joint Power and Decoding-Order
Optimization

P3 is an MCMU where the objective function is CUF and the constraints are MCs. We propose an
iterative algorithm based on PF, i.e., JOPD, in Alg. 8 to solve P3. Let P(n), P (n)

b and t∗(n)
b represent the

values of P, Pb, and t∗b at the n-th iteration, respectively. For each iteration (line 3 to line 6), decoding
orders are updated according to the descending order of gbkc in line 3 and line 4. Then the optimal OCTR
of each beam is calculated in line 5. Beam power is adjusted inversely proportional to the value of t∗b in
line 5 [55], which suggests that power for the beams with larger t∗b will be reduced in the next iteration,
and more power is allocated to the beams with worse OCTR. In line 8, we introduce a factor ε to confine
beam power in the domain of (3.24b) and (3.24c). The iteration breaks if either n exceeds the maximum
number of iterations, Nmax, or |t∗(n+1)

b − t∗(n)
b | is smaller than the tolerance ξ1. The convergence and

optimality of JOPD are concluded in Theorem 1.
Theorem 1. With any initial vector P, JOPD converges geometrically fast to the optimum of P3.

Proof. At the optimum, fb(P∗) = t∗, ∀b ∈ B, where P∗ = [P ∗1 , . . . , P
∗
b , . . . , P

∗
B] and t∗ are the optimal

beam power and the optimal OCTR value, respectively. Define function ηb(P) = Pb
fb(P) ,∀b ∈ B. At the

convergence, P
∗
b
t∗ =

P ∗b
fb(P∗)

, ∀b ∈ B.
The algorithm converges geometrically fast to t∗ with any initial P if ηb(P) satisfies the following

conditions [144]:

• There exist τ and τ , where 0 < τ ≤ τ , such that τ ≤ ηb(P) ≤ τ , ∀b ∈ B.

• For any beam power P1 � 0 and P2 � 0, and 0 < ζ ≤ 1, if ζP1 � P2, then ζηb(P1) ≤ ηb(P2),
∀b ∈ B. For 0 < ζ < 1, if ζP1 ≺ P2, then ζηb(P1) < ηb(P2), ∀b ∈ B.
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For the first condition, ηb(P) stays between τ and τ , which means the function could not be zero or
infinite with any P. Due to the positivity of fb(P), ηb(P) = Pb

fb(P) > 0, i.e., ηb(P) ≥ τ > 0. Since P is
bounded by Pb,max, ηb(P) is finite. Thus the function is upper bounded, i.e., ηb(P) ≤ τ .

For the second condition, we prove ζηb(P1) ≤ ηb(P2) via showing the inequality below.

ζηb(P1) ≤ ηb(ζP1) ≤ ηb(P2). (3.31)

The first inequality ζηb(P1) ≤ ηb(ζP1) reads,

ζPb
fb(P1)

≤ ζPb
fb(ζP1)

. (3.32)

Let ζP1 = P, then P1 = 1
ζP, where 1

ζ ≥ 1. According to Lemma 1 and Lemma 2, fb(P) satis-
fies directional monotonicity, thus fb(1

ζP) ≥ fb(P) and ζηb(P1) ≤ ηb(ζP1) holds. For the second

inequality in (3.31), ηb(ζP1) ≤ ηb(P2). Based on ∂fb
∂Pb

> 0 and ∂fb
∂P

b
′
< 0 in (3.26) and (3.27), we

can derive the partial derivatives of ηb(P) as ∂ηb
∂Pb

=
fb(P)−Pb

∂fb
∂Pb

f2
b (P)

, and ∂ηb
∂P

b
′

= −
Pb

∂fb
∂P
b
′

f2
b (P)

, where ∂ηb
∂P

b
′

is

positive. We derive ∂2fb
∂P 2

b
< 0 based on (3.26), which indicates the concavity of fb(P) on Pb [50]. Let

P0 = [P1, . . . , 0, . . . , PB]. According to the first-order condition of concavity [50] and fb(P0) = 0,

fb(P) − fb(P0) > (Pb − 0) ∂fb∂Pb
, and thus ∂ηb

∂Pb
=

fb(P)−Pb
∂fb
∂Pb

f2
b (P)

> 0. The monotonicity of ηb(P) is

concluded, i.e., ηb(P) is an increasing function of P. Hence ηb(ζP1) ≤ ηb(P2) holds in (3.31), and thus
ζηb(P1) ≤ ηb(P2). The result that ζηb(P1) < ηb(P2) if ζ0P1 ≺ P2 follows analogously.

In JOPD, the complexity of each iteration (line 3 to line 6) is mainly from sorting gbkc in line 3 and
deriving t∗(n)

b by solving (3.21) in line 5. Sorting can be achieved by typical methods, e.g., heapsort
[145]. The computational complexity of sorting gbkc in beam b for Kb users is O(Kb log (Kb)) [145].
The complexity of solving the nonlinear equation in (3.21) with t∗(n)

b bounded by [0, 1] and tolerance
ε1 is O(− log(ε1)) [146], where 0 < ε1 < 1. Deriving t∗(n)

b for each beam in (3.21) can dominate the
complexity when the pre-defined ε1 is small enough. On the other hand, sorting could be with higher
complexity when ε1 is large. Thus, the complexity of each iteration isO(max{Kb log (Kb),− log(ε1)}).
With maximumNmaxB iterations, the complexity of JOPD isO(NmaxBmax{Kb log (Kb),− log(ε1)}).
Overall, the convergence is geometrically fast if there exist 0 < $ < 1 and a constant Π > 0 such that
‖P (n)

b − P ∗b ‖ ≤ Π$n for all n [55], where P ∗b denotes the optimal beam power.
Next, in Corollary 1, we conclude that although the optimal beam power, coupling with decoding

orders, in P1 is challenging to be directly obtained, the optimum of P1, in fact, can be achieved by
solving a simple problem, i.e., P3.

Corollary 1. The optimum of P1 is equal to that of P3.
The reasons can be explained as follows. P1 and P3 solves de facto the same problem, i.e., with

the fixed α-variables then obtain the max-min OCTR along with the optimal beam and terminal power
allocation since in P3, when P is known, pbkc is also known. Theorem 1 indicates that, under the same
αbkc, no better beam power allocation than P∗ can be found. Thus P∗ is optimal for P1 and P3. Given
P∗ to P1, the resulting max-min OCTR and terminal power allocation are therefore optimal, and thus
the conclusion.

The difference between P1 and P3 is that, in P1, one has to deal with the issue of unconfirmed
convergence and undetermined optimal Rbk expressions due to the decoding-order variations and the
undetermined optimal decoding order. In P3, we circumvent these difficulties by using the established
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analytical results in this section. By solving P3 via Alg. 1, we update beam power associated with
decoding order successively, instead of obtaining the optimum directly. Guaranteed by Lemma 1, Lemma
2, and Theorem 1, this simple power-adjustment approach eventually leads to the optimal beam power
and optimal decoding order for the given α-variables.

3.5 A Heuristic Algorithm for Joint Power, Decoding-Order, and Terminal-
Timeslot Optimization

JOPD is limited by the one-off terminal-timeslot assignment. Based on the framework of JOPD and
taking its fast-convergence advantages, we design a heuristic approach, JOPDT, to iteratively update
timeslot-terminal assignment and improve the overall performance. The procedure of the heuristic ap-
proach is presented in Alg. 2.

Line 3 to line 10 present the process of implementing the JOPD framework. In line 2 and line 5,
precoding vectors and decoding orders are updated based on the terminal-timeslot assignment and beam
power allocation, respectively. In line 6, a joint power-allocation, decoding-order, and terminal-timeslot
optimization problem is solved. The problem is constructed as follows. Analogous to JOPD, by fixing
P, P0 is decomposed intoB subproblems, each of which represents the optimization of terminals’ power
allocation and terminal-timeslot assignment in the beam. The b-th subproblem is expressed as,

P4(b) : max
pbkc,αbkc

min
k∈Kb

Rbk
Dbk

(3.33a)

s.t. ρbc
∑
k∈Kb

pbkc = ρbc′
∑
k∈Kb

pbkc′ , ∀c, c
′ ∈ C, c 6= c

′
, (3.33b)

∑
k∈Kb

αbkc ≤ K̄,∀c ∈ C, (3.33c)

∑
c∈C

αbkc = 1,∀k ∈ Kb, (3.33d)

pbkc ≤ P̂αbkc,∀c ∈ C,∀k ∈ Kb. (3.33e)

The decoding order indicators φbklc are determined based on P and gbkc. Thus variables φbklc are there-
fore fixed and constraints (3.11h) and (3.11i) are no longer needed in P4(b). By expressing pbkc by Rbkc,
P4(b) is reformulated as:

P5(b) : max
Rbkc,αbkc,tb

tb (3.34a)

s.t. (3.33c), (3.33e), (3.33d), (3.34b)
Kb∑
k=1

(
1

gbkc
− 1

gb(k−1)c

)
e

∑
j≥k

Rbjc
BW − 1

gbKbc
≤ Pb
ρbc

,

∀c ∈ C, (3.34c)

tbDbk −Rbk ≤ 0,∀k ∈ Kb, (3.34d)

where the inequalities in (3.33b) are relaxed as the inequalities in (3.34c) to convert the constraints to
exponential cones. Thus P5(b) is identified as mixed-integer exponential conic programming (MIECP)
[50], whose optimum can be solved by branch and bound or outer approximation approach.

Similar to fb(P) = t∗b in P2(b), the optimal objective t̄∗b in P5(b) can be re-expressed by an inexplicit
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Algorithm 2 JOPDT
Input:

Initial beam power, P(0);
iteration index in the JOPD framework, n = 0;
iteration index, n̄ = 0;
maximum iteration in the JOPD framework, Nmax;
maximum iteration, N̄max;
initial terminal-timeslot assignment, α(0)

b , ∀b ∈ B;
precision: ξ2 > 0.

1: repeat
2: Update precoding vectors wbc based on α

(n̄)
b .

3: repeat
4: for b = 1, . . . , B do
5: Update and sort gbkc with P(n).
6: Decide decoding orders φbklc based on the descending orders of gbkc.
7: Solve P5(b) and obtain t̄∗(n)

b with P(n).

8: Update P by Pb =
P

(n)
b

t̄
∗(n)
b

.

9: end for
10: Calculate ε = max

{
Pb

Pb,max
, ∀b ∈ B;

∑
b∈B

Pb
Ptot

}
.

11: Update P(n+1) = P(n+1)

ε . n = n+ 1.

12: until n > Nmax or |t̄∗(n+1)
b − t̄∗(n)

b | < ξ2

13: n̄ = n̄+ 1.
14: Update timeslot assignment α(n̄)

b .
15: until n̄ > N̄max

16: Calculate pbkc based on P(n).
Output:

t̄∗b , pbkc, αb, wbc.

function of P, say f̄b(P). Based on Lemma 1 and Lemma 2, the objective function fb(P) in P2(b) is a
CUF. We then conclude that f̄b(P) is also a CUF in Corollary 2.

Corollary 2: f̄b(P) is a CUF.

Proof. The properties of positivity and competitiveness follow analogously from Lemma 1 and Lemma
2. Regarding the directional monotonicity, given ζP and P to P5(b), we can obtain the optimal terminal-
timeslot allocation α∗1 and α∗2, respectively, where α∗1 and α∗2 collect all α-variables in beam b. Note that
the difference between P5(b) and P2(b) is that αbkc is treated as fixed parameters in P2(b), whereas αbkc
is to be optimized in P5(b) as variables. Thus, under the same α∗2 in P2(b), fb(ζP) > fb(P) can hold
for ζ > 1 according to Lemma 1 and Lemma 2. Since α∗2 is the optimal outcome of using P in P5(b),
then f̄b(P) = fb(P). Compared with fb(ζP) and f̄b(ζP), fb(ζP) with a suboptimal α∗2 is no higher
than f̄b(ζP) with its optimal α∗1, thus f̄b(ζP) > fb(ζP), and f̄b(ζP) > f̄b(P), then the conclusion.

Owing to the linearity, the constraints in the formulation of P3 are MCs. With the properties of CUF
and MC, the beam power allocation problem is an MCMU and can be tackled by the PF-based approach.
By solving P5 in line 7, a new terminal-timeslot assignment α(n̄)

b is obtained (updated in line 14), and
the optimal t̄∗b(n) is achieved, which is used to update beam power in line 8. The algorithm terminates
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Table 3.1: Simulation Parameters

Parameter Value
Frequency 20 GHz (Ka band)
BW 500 MHz

Satellite location 13◦ E [148]
Satellite height 35,786 km [148]

Beam radiation pattern provided by ESA [148]
Receive antenna gain 42.1 dBi

Channel model free-space propagation loss
σ2 -126.47 dBW
B, C 4, 5

Pb,max, Ptot 120 W, 400 W [21]
|Ub| 70
K̄ 2
Dbk uniform distribution [149],traffic emulator in [127]

Nmax, N̄max 15, 5

when the number of iterations (line 2 to line 14) reaches N̄max.

In Alg. 2, there are at most N̄maxNmaxB MIECPs to be solved. For each MIECP, the optimum
can be obtained by branch and bound approach with exponential-time complexity [59]. For the worst-
case scenario, the approach fathoms all the combinations of binary variables [147], resulting in solving
2KbC conic programmings. The complexity of solving a conic programming by interior-point method is
O(−ν log ε2) [54], where ν and ε2 represent the self-concordant barrier parameter and precision. Thus
the upper-bound complexity of Alg. 2 is O(−N̄maxNmax

∑
b∈B 2KbCν log ε2). Note that the global

optimum of P0 is absent. Alg. 2 with exponential complexity aims at providing benchmarks and upper
bounds for low-complexity algorithms.

3.6 Performance Evaluation

3.6.1 Parameter Settings

We evaluate the performance of the proposed resource allocation approaches in a NOMA-enabled multi-
beam satellite system. The key parameters are summarized in Table 6.1. The parameters related to the
satellite and beam radiation patterns are provided by European Space Agency (ESA) [148]. The power
parameters follow the typical values in [21]. Fig. 6.5 illustrates the beam pattern we consider. In the
system, NOMA is applied in a small cluster of beams (B = 4) which are served by an MPA. Adjacent
clusters occupy orthogonal frequencies such that the inter-cluster interference can be neglected. Note that
the variation of transmit antenna gain is related to the off-axis angle between the beam center and the
terminal. In NOMA, since the complexity of multi-user detection increases with the number of signals
to be detected by the receiver [34], K̄ = 2 is set in the simulation unless otherwise stated. The results
are averaged over 1000 instances. For each instance, one terminal is randomly selected from Ub and
the other is paired via MaxCC for each timeslot. Two NOMA-based schemes, i.e., JOPD+MaxCC with
lower complexity and JOPDT with higher complexity, are compared to OMA and other benchmarks.
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Figure 3.2: Beam pattern covering Europe provided by ESA. The figure shows an instance of four beams (high-
lighted in red color) served by an MPA.
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Figure 3.3: Evolutions of t∗b and Pb over iterations in JOPD.

3.6.2 Numerical Results

Convergence performance of JOPD

We first verify the convergence performance of JOPD. Fig. 3.3 shows the evolutions of t∗b and Pb over
iterations. From the figures, we observe that beam power is adjusted based on the values of t∗b . The power
of the beams with smaller t∗b increases while the power of the other beams decreases in each iteration.
As it is proven in Theorem 1, JOPD converges, e.g., in Fig. 3.3(a) within around 15 iterations. Besides,
the results verify the conclusion of Lemma 2, that is, the convergence of a CUF is not affected by the
variation of decoding orders.

Comparison of max-min OCTR between NOMA and OMA

Next, we compare the max-min OCTR performance among JOPDT, JOPD+MaxCC, and OMA in Fig.
6.9 to verify the superiority of the proposed NOMA-based schemes. Different frequency-reuse patterns,
i.e., 1-color, 2-color, and 4-color frequency-reuse patterns, are implemented. In 1-color frequency-reuse
pattern, the entire bandwidth is shared by all the spot beams. 2-color (or 4-color) pattern refers to the
scenarios that the bandwidth is equally divided into 2 (or 4) portions, each of which is occupied by one
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Figure 3.4: Max-min OCTR with respect to traffic demand among JOPDT, JOPD+MaxCC, and OMA.

of the 2 (or 4) adjacent beams. In OMA, the available frequency band is halved. Each half of the band is
occupied by one terminal at each timeslot. Note that terminals are paired and scheduled to each timeslot
by MaxCC in OMA.

In average, JOPD with MaxCC outperforms OMA with MaxCC in max-min OCTR by 24.0%,
20.0%, and 17.5% under 1-color, 2-color, and 4-color pattern, respectively. Particularly, with the im-
plementation of 1-color pattern, the max-min OCTR in JOPD is 30.1% higher than that in OMA when
the average requested demand is 0.5 Gbps. JOPD coordinated with precoding and MaxCC benefits from
both reduced inter-beam and intra-beam interference compared to OMA. Remark that in 2-color pattern,
both JOPD+MaxCC and OMA are worse than other frequency-reuse patterns. The reason is that com-
pared to 2-color pattern, precoding is more effective in 1-color to mitigate strong inter-beam interference
to a large extent, whereas 4-color pattern inherently receives much less inter-beam interference than that
of 2-color pattern. Besides, the OCTR performance of JOPD+MaxCC is compared with JOPDT. By
taking into account optimizing the terminal-timeslot assignment, JOPDT is able to improve the max-min
fairness by approximately 16.2%, 98.2%, and 12.7% under 1-color, 2-color, and 4-color reuse patterns,
respectively. The results validate the improvement of JOPDT over JOPD by iteratively updating the
terminal-timeslot assignment.

In Fig. 3.5(a), we present the OCTR performance among JOPD+MaxCC, JOPDT, and OMA, with
respect to Pb,max. By using higher beam power Pb,max, the max-min-OCTR value in all the three al-
gorithms can be improved, but not significant. This might suggest that, to improve the worst-OCTR
terminal’s performance in practice, developing advanced user-scheduling and power-allocation schemes
would be the key rather than simply increasing beam power.

In Fig. 3.5(b), we show the OCTR performance with various K̄ for the proposed two algorithms.
The max-min OCTR in two NOMA schemes increases effectively when K̄ grows from 2 to 3. The
growth becomes slow when 4 to 5 terminals are multiplexed on each slot. As we mentioned before,
higher K̄ might not necessarily bring significant improvement but imposes more complexity to multi-
user detection and SIC at the receiver side. Thus, in the simulation, we set K̄ = 2 for the trade-off
between performance gain and complexity.
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Figure 3.5: Max-min OCTR with respect to: (a), Pb,max; (b), K̄, among JOPDT, JOPD+MaxCC, and OMA.
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Figure 3.6: Max-min OCTR with respect to traffic demand among different terminal-timeslot assignment ap-
proaches.

Comparison of max-min OCTR among different terminal-timeslot allocation approaches

Different strategies of terminal-timeslot scheduling are compared in Fig. 6.10 in order to illustrate the
advantages of MaxCC with NOMA in improving OCTR performance. The basis of MaxCC is to allocate
each timeslot to terminals with highest-correlation channels without considering the gap of ‖hbk‖. The
benchmarks are listed as follows:

• MaxPi [41]: Allocate each timeslot to terminals with highly correlated channels and the largest
gap of ‖hbk‖,

• MinPi [41]: Allocate each timeslot to terminals with highly correlated channels and the smallest
gap of ‖hbk‖,

• Random: Allocate each timeslot to terminals randomly.

Note that in MaxPi and MinPi, terminals with the largest and smallest gain difference, respectively, are
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Figure 3.7: An illustration of the distribution of (a) OCTR; (b) Ratio |Rbk −Dbk|/Dbk among terminals achieved
by max-min OCTR and min

∑
b,k |Rbk −Dbk|2.

selected from those with correlation factor θ > 0.9.
From Fig. 6.10, JOPD+MaxCC brings the largest gain compared to other benchmarks. In MaxCC,

the terminals with the highest channel correlation are selected. Hence MaxCC can effectively reduce
the inter-beam interference and exploit the synergy of NOMA with precoding. Besides, the OCTR
performance is sensitive to inter-beam interference. The non-highest correlated channels in MinPi and
MaxPi introduce a considerable amount of inter-beam interference and thus degrade the performance to
a certain extent.

Comparison of objective functions between “max-min OCTR” and “min
∑

b,k |Rbk −Dbk|2”

Fig. 3.7(a) presents the distribution of OCTRs among terminals achieved by JOPD+MaxCC, compared
with NOMA to minimize

∑
b,k |Rbk −Dbk|2. Previous works, e.g., [21, 44], focus on reducing the sum

of the gap between offered capacity and requested traffic demand, i.e., “min
∑

b,k |Rbk−Dbk|2”. The ap-
proach proposed in [138] is adopted to solve the problem with the objective of “min

∑
b,k |Rbk−Dbk|2”.

We can observe that the max-min operator compromises the performance of high-capacity terminals,
e.g., terminals 9 to 12, to compensate terminals with low OCTRs, e.g., terminals 2 and 6. The average
OCTR in “max-min OCTR” is lower than that in “min

∑
b,k |Rbk −Dbk|2” by 8.82%, but the minimum

OCTR increases by 18.4% in “max-min OCTR”.
We evaluate the performance of “max-min OCTR” and “min

∑
b,k |Rbk −Dbk|2” by another metric,

|Rbk−Dbk|
Dbk

, in Fig. 3.7(b). The performance in “min
∑

b,k |Rbk−Dbk|2” achieves 14.78% higher average

performance but loses of 19.54% in the worst |Rbk−Dbk|Dbk
than “max-min OCTR”. In addition, by adopting

the Jain fairness index [10], i.e., (
∑

b,k
Rbk
Dbk

)2/((
∑

bKb)
∑

b,k(
Rbk
Dbk

)2), the performance in both functions
“max-min OCTR” and “min

∑
b,k |Rbk − Dbk|2” leads to satisfactory fairness values 0.99 and 0.98,

respectively.

Evaluation in the scenarios with pracitcal factors

In Fig. 3.8, we evaluate the max-min OCTR among the three algorithms when practical factors are
considered. The performance achieved by the three schemes over the channels with free-space propaga-
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Figure 3.8: Max-min OCTR comparison: (a) by adopting two channel models: 1, atmospheric-fading model based
on ITU-R P.1853-2, 2, free-space model; (b) considering error ratio of imperfect SIC.

tion loss and with atmospheric fading is compared in Fig. 3.8(a). The channel model with atmospheric
fading (consisting of long-term effects and rain effects) is emulated based on Recommendation ITU-R
P.1853-2 [150]. From the results, firstly, we observe that the performance improvement of the proposed
two NOMA schemes, i.e., JOPDT and JOPD+MaxCC, over OMA is consistent in both channel models.
Secondly, the benefits of adopting NOMA in the atmospheric-fading model over OMA are even more
significant than that in the free-space cases.

In Fig. 3.8(b), we investigate the OCTR performance under imperfect-SIC conditions. We adopt an
approach proposed in [139] which uses an error ratio to represent the residual intra-beam interference
due to error propagation of imperfect SIC. With a lower error ratio, e.g., from 10−5 to 10−3, the perfor-
mance of both NOMA schemes slightly decreases, but keeps considerable performance gain over OMA.
However, as the error ratio increases, this performance gain can be diminished because a non-negligible
residual interference has to be taken into account in NOMA but this type of interference does not present
in OMA. The NOMA performance can be lower than that of OMA when error ratios are very high, e.g.,
10−2 and 10−1. This suggests that to maintain the advantages of NOMA in practice, the error ratio of
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SIC has to be confined at low levels, otherwise OMA might be a more favorable option. In addition, we
observe that JOPDT is more robust than JOPD+MaxCC in against imperfect SIC. This is because that
when the error ratio and the resulting interference become non-negligible, JOPDT is able to properly
update the terminal groups iteratively whereas JOPD+MaxCC has to keep the fixed terminal-timeslot
assignment.

3.7 Conclusion

This chapter has introduced NOMA into multi-beam satellite systems to facilitate aggressive frequency
reuse and enhance power-domain flexibility. We have provided a resource optimization framework for
general NOMA-enabled SatCom. A max-min problem of jointly optimizing power, decoding orders,
and terminal-timeslot assignment has been formulated to improve the worst OCTR among terminals.
We have proposed a PF-based algorithmic framework JOPD to jointly allocate power and decide de-
coding orders by fixing terminal-timeslot assignment with the guarantee of fast convergence. Based
on the framework of JOPD, a heuristic approach JOPDT has been developed to iteratively update the
terminal-timeslot assignment and improve the overall OCTR performance. The superiority of the pro-
posed algorithms in max-min fairness over OMA has been demonstrated.
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Chapter 4
Learning-Assisted Approaches for Resource
Optimization in NOMA-Satellite Systems

In this chapter, we move from optimization to machine learning and provide learning-assisted resource
optimization frameworks for general NOMA-enabled satellite systems. We investigate a problem to min-
imize the transmission time by jointly optimizing power allocation and terminal-timeslot assignment for
accomplishing a transmission task. The problem appears non-linear/non-convex with integer variables
and can be equivalently reformulated in the format of MICP. Conventional optimal or near-optimal itera-
tive methods may be applied but at the expenses of high computational complexity. Towards an efficient
solution, we train DNN to perform fast and high-accuracy predictions to tackle the difficult combina-
torial parts, i.e., determining the minimum consumed timeslots and terminal-timeslot scheduling. Con-
ventional end-to-end learning directly predict the integer solutions, which, however, may encouter the
feasibility issue when the problem is complex. To provide feasible power allocation, we develop a low-
complexity post procedure to process the predicted outcomes. For further enhancement of feasibility, we
propose a dual-DNN assisted approach, where the first learning task is to predict the integer variables
while the second task is to guarantee the feasibility of the solutions. Numerical results show that the
proposed learning-assisted algorithms outperform benchmarks in terms of average computational time,
transmission time performance, and feasibility guarantee. In the end, we discuss the pros and cons of
optimization-based and learning-assisted schemes.

4.1 Introduction

SatCom has drawn growing attention owing to the advantages in providing wide coverage and high
throughput [2]. However, due to the long distance between satellites and ground terminals, large trans-
mission time restricts the performance of satellite systems, especially in the context of delivering ser-
vices with latency restrictions [2], which motivates studies on resource optimization for satellite delay-
constrained services [151, 152, 153, 118]. The authors in [151] and [152] focused on delay-constrained
resource allocation problems in satellite multi-beam and satellite-backhauling systems, respectively. In
[153] and [118], the authors investigated completion time minimization problem in LEO satellite assisted
uplink IoT networks. To embrace future trends of SatCom, new applications, e.g., satellite-backhauling
and content delivery, require more sophisticated design in terms of latency reduction.

Due to the capability of multiplexing more co-channel users and enhancing spectral efficiency than
OMA, power-domain NOMA has the potentials to further reduce delay for satellite systems. Satellite-
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NOMA has already proven its performance gains in capacity [108], outage performance [108], and
OCTR [154] compared to conventional satellite-OMA systems. However, resource allocation for trans-
mission delay minimization in NOMA-enabled satellite systems has not been fully investigated yet.
Delay is considered in the constraints of resource optimization in NOMA-based multi-beam satellite
systems in [112]. In [118], the objective of the resource allocation problem is to minimize the com-
pletion time for LEO-satellite-assisted Internet of things systems. However, NOMA is applied in the
terrestrial part but not in satellite transmission. It is unknown how satellite-NOMA schemes perform
in transmission delay reduction compared to conventional satellite-OMA schemes. To the best of our
knowledge, this is the first work to investigate resource optimization of transmission time minimization
for NOMA-enabled satellite systems.

Another factor that influences the delivery of satellite delay-constrained services is the computa-
tional complexity of resource allocation algorithms. High-complexity algorithms may cause process-
ing delays and thus fail to satisfy terminals’ demands before deadlines [2]. A majority of resource
allocation problems in satellite systems fall into the domain of constrained combinatorial optimization
[151, 152, 153, 118, 93, 154, 155]. Conventional algorithms for solving such problems may consume
a large amount of computational efforts and time in attaining the optimum or near-optimum, and with
limited capability to well balance optimality and computational complexity [101]. In comparison to
model-based optimization, data-driven learning techniques can exploit useful information from empiri-
cal data first, and then approximate optimal decisions with less computational complexity [156].

Applying DL techniques to resource optimization in satellite systems has been studied from various
aspects, e.g., predicting the optimal decoding order for NOMA-based satellite systems [123], assist-
ing beam-timeslot scheduling for beam hopping satellite systems [85], compensating for the non-linear
distortion at receivers in LEO satellite systems [157], etc. Applying DL to address constrained combi-
natorial problems is, however, studied to a limited extent in the literature. Directly applying end-to-end
learning may not achieve desired performance due to the feasibility issue [158]. In addition, RL/DRL-
based approaches are prone to address the unconstrained problems or with few constraints due to the
feasibility issue. RL/DRL requires a Markov process to guarantee a satisfactory performance [68]. How-
ever, for addressing the practical combinatorial optimization problems, the Markov process might not be
satisfied and the problems could be complicated with numerous constraints. These can result in difficul-
ties in reward function design, infeasibility issues, and thus potential degradation in the overall perfor-
mance. The challenges of designing a DL-based solution lie in how to apply DL to obtain a solution of
constrained combinatorial optimization with low complexity, and at the meantime, achieve satisfactory
approximating performance and guarantee a feasible solution by meeting all the constraints.

In this chapter, a DL-assisted approach is designed to minimize the transmission time in NOMA-
enabled satellite systems. The main contributions are summarized as follows.

• We formulate a mixed-integer non-linear programming (MINLP) problem to minimize the trans-
mission time via power allocation and timeslot-terminal assignment in a NOMA-based satellite
system. With the identified convexity, we reformulate the primal problem as MICP, whose op-
timum or near optimum can be achieved by applying mature optimization methods in spite of
high complexity. By doing so, optimal labels in (supervised) training can be obtained through
well-established optimization approaches.

• As mentioned above, simply applying end-to-end learning may not provide a near-optimal solution
and guarantee the feasibility in terminal-timeslot-power allocation for the considered MICP. We
design two learning-assisted schemes, i.e., hybrid solution with DL and post-process optimiza-
tion (DPO) and hybrid solution with dual DNNs and convex optimization (DDCO), which are
combined with data-driven learning and model-based optimization approaches.
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• The core idea of DPO is to tackle the high-complexity part in discrete optimization by relying on
DNN predictions and a low-complexity post-process procedure to provide feasible power alloca-
tion, such that the overall algorithm can avoid a time-consuming iterative process meanwhile is
able to maintain the satisfactory performance.

• To further improve the feasibility of the predicted binary solution, we adopt another DNN to iden-
tify its feasibility in power allocation after the integer solution prediction of the first DNN. Both
solution prediction and feasibility-check identification are classification-like tasks and suited to be
learned by DNN. With the obtained terminal-timeslot allocation, the remaining power allocation
problem is optimally and efficiently solved by convex optimization.

• The numerical results demonstrate the superiority of the proposed learning assited algorithms in
computational time reduction, near-optimality approaching, and feasibility guarantee, compared
with state-of-the-art optimal and suboptimal solutions.

4.2 System Model

We consider resource allocation for forward-link transmission in a GEO satellite system. In the system,
four-color frequency-reuse pattern is implemented, where the bandwidth is equally segmented into two
portions and each portion makes use of vertical and horizontal polarizations. Each color is occupied by
one of the neighboring four beams, such that any two adjacent beams can access to different orthogonal
resources [2]. Hence, inter-beam interference has limited impacts on other beams and can be viewed as
fixed. Resource optimization can be therefore decoupled into each beam. In this work, we focus on the
algorithmic design of resource allocation for the single-beam scenario. For practical implementation, the
proposed algorithm can be executed parallelly in the resource manager at the gateway side for multiple
beams.

We consider that the satellite system provides services to K fixed ground terminals within a beam.
Terminals’ requested demands need to be satisfied by allocating power and scheduling timeslots to ter-
minals before the deadline. We define that the number of available timeslots is up to T timeslots. In con-
ventional OMA-based satellite systems, each timeslot can only be assigned to one terminal. In NOMA-
enabled satellite systems, however, more than one terminal is allowed to access to each timeslot. The
higher resource utilization in NOMA may enable the less duration in delivering deadline-constrained
services compared to conventional OMA schemes.

According to the basis of NOMA, terminals’ signals are superimposed at the gateway and transmitted
to the satellite and then to the corresponding ground terminals. Having received the signals, terminals
perform the SIC process to eliminate part of the co-channel interference. We denote the channel gain of
terminal k as Gk, which is derived by,

Gk = GTx
k LkG

Rx
k . (4.1)

Here, GTx
k denotes the satellite transmit antenna gain depending on the off-axis angle between terminal

k and the corresponding beam center. GRx
k is the receive antenna gain of terminal k. Lk represents the

free-space path loss from the satellite to the k-th terminal. The path loss is computed by,

Lk =

(
c

4πfdk

)2

, (4.2)

where c, f , and dk denote the light speed, the frequency, and the distance between the satellite and
terminal k, respectively. In a GEO satellite system with fixed ground terminals, the channel gains are
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assumed to stay unchanged with large coherence time. The decoding order is determined based on the
descending order of the channel gains. For presentation simplicity, we define that terminals’ indices keep
the same with the decoding order, i.e.,

G1 > G2 > · · · > GK . (4.3)

The signal-to-interference-plus-noise ratio (SINR) of terminal k at timeslot t is expressed as,

SINRkt =
GkPkt

k−1∑
j=1

GkPjt + Ik + σ2

, (4.4)

where Pkt denotes the transmit power of terminal k at timeslot t. Ik is the empirical expectation of the
inter-beam interference to terminal k. σ2 is the noise power. In (4.4), terminal k is unable to decode
terminal j’s signal when j < k, and terminal j’s signal is thus treated as interference at terminal k’s
receiver. For j > k, terminal k performs SIC to decode and remove j’s signal such that the inter-terminal
interference can be reduced. Note that, if Pkt = 0, SINRkt = 0 and other terminals will not suffer the
co-channel interference from the k-th terminal. The allocated capacity for terminal k at timeslot t can be
derived as,

Ckt = W log (1 + SINRkt) , (4.5)

where W is the occupied bandwidth. Thus, the achievable offered capacity of terminal k is derived as

Ck =

T∑
t=1

Ckt. (4.6)

4.3 Problem Formulation and Analysis

We formulate a resource optimization problem to minimize the transmission time of accomplishing a
task for delivering requested services to ground terminals. The variables are defined as follows:

0 ≤ Pkt ≤ Pmax, transmit power of terminal k at timeslot t;

akt =

{
1, terminal k is scheduled at timeslot t,
0, otherwise;

bt =

{
1, timeslot t is assigned by any terminal,
0, otherwise.

We define vectors a, b, and P to collect all the akt, bt, Pkt variables, respectively. The problem is
formulated as,

P1 : min
a,b,P

T∑
t=1

btτ + max
k

{
dk + dGW

c

}
(4.7a)

s.t. Ck ≥ Dk, ∀k = 1, . . . ,K, (4.7b)

(Ck −Dk)
2 ≤ ∆, ∀k = 1, . . . ,K, (4.7c)
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K∑
k=1

Pkt ≤ Pmax, ∀t = 1, . . . , T, (4.7d)

K∑
k=1

akt ≤ K̄bt,∀t = 1, . . . , T, (4.7e)

bt ≥ bt+1,∀t = 1, . . . , T − 1, (4.7f)

Pkt ≤ Pmaxakt,∀k = 1, . . . ,K, ∀t = 1, . . . , T. (4.7g)

Here, τ denotes the duration of one timeslot and dGW denotes the distance between the gateway and the
satellite. In the objective, the transmission time includes completion time, defined as the total duration
of all the occupied timeslots, and transmission delay, defined as the maximum propagation duration
among terminals. To avoid unnecessary delay, constraints (4.7f) restrict that no idle timeslot appears
before the transmission task is accomplished. Once the t-th timeslot is not assigned to any terminals,
the timeslots after t will be no longer scheduled. Constraints (4.7b) denote that each terminal’s demand
Dk must be satisfied within at most T timeslots. In (4.7c), the difference between offered capacity and
requested demands of each terminal should be smaller than ∆ to reduce unused capacity. In (4.7d),
the total consumed power at each timeslot is no more than the beam power budget Pmax. Constraints
(4.7e) confine the number of scheduled terminals at each timeslot no larger than K̄. Constraints (4.7e)
also connect a with b. That is

∑K
k=1 akt = 0 if bt = 0. Note that the solution

∑K
k=1 akt = 0 and

bt = 1 is clearly not the optimal and thus is excluded from the optimum. Constraints (4.7g) confine the
dependence between P and a, where Pkt = 0 if akt = 0, and Pkt ≤ Pmax if akt = 1.

We observe that P1 is identified as an MINLP due to the presence of binary variables a, b, and non-
linear function Ckt in (4.4) and (4.5) [50]. To reveal the convexity of the original problem, we derive
Pkt as the function of capacity Ckt based on (4.4) and (4.5) via a substituting procedure [101]. Then∑K

k=1 Pkt reads:

K∑
k=1

Pkt =
K∑
k=1

(
Ik + σ2

Gk
− Ik−1 + σ2

Gk−1

)
exp

(∑
j≥k Cjt

W

)
− IK + σ2

GK
, (4.8)

where we define I0+σ2

G0
= 0. Substituting (4.8) into P1, the original problem is equivalently reformulated

as,

P2 : min
a,b,C

T∑
t=1

btτ + max
k

{
dk + dGW

c

}
(4.9a)

s.t. (4.7b), (4.7c), (4.7e), (4.7f), (4.9b)
K∑
k=1

(
Ik + σ2

Gk
− Ik−1 + σ2

Gk−1

)
exp

(∑
j≥k Cjt

W

)
− IK + σ2

GK
≤ Pmax, ∀t = 1, . . . , T, (4.9c)

Ckt ≤ Cmaxakt,∀k = 1, . . . ,K, ∀t = 1, . . . , T, (4.9d)

where vector C collects all the capacity variables Ckt. The optimization variables are a, b, and C.
Similar to (4.7g), we confine the relationships between C and a in (4.9d), where Cmax > maxk,t{Ckt}.
That is, Ckt = 0 if akt = 0, and Ckt ≤ Cmax if akt = 1. Note that since P1 and P2 are equivalent, the
solution of P can be computed by the expression of C based on the substituting procedure after solving
P2.

The expression of (4.9c) is the sum of exponential functions, which is convex [50]. More specifically,
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we recognize that the convex constraints (4.9c) are in fact in the format of non-symmetric exponential
cones. Besides, constraints (4.7c) are in the convex quadratic format. Thus P2 is identified as an MICP
problem [159]. On the one hand, optimal or near-optimal solutions of small-/medium-scale MICP prob-
lems can be obtained by conventional branch-and-bound and outer-approximation methods [160]. Some
state-of-the-art solvers, e.g., MOSEK [51], can also apply. The procedure of solving a MICP problem
in MOSEK follows four steps: presolve, cut generation, starting-point initialization, and iterative search
[51]. The first three steps aim to pre-optimize the problem and find a good initial point. In the iter-
ative search, the optimum is bounded and approached by branch-and-bound and outer-approximation
approach. Nevertheless, the intrinsic difficulties in discrete optimization lead to exponentially increased
computational complexity and time, which are unaffordable in practical scenarios. With deadline con-
straints, the applicability of these approaches in satellite systems may be inevitably cause the failure of
accomplishing a transmission task.

On the other hand, DL has already proven satisfactory performance in several learning tasks, e.g.,
classification and regression, where a mapping from training inputs to outputs is learned [68]. However,
DL may not be directly applicable to complicated mixed-integer optimization problems like P2. Direct
end-to-end learning, for example, does not perform well in the prediction of optimal integer solutions
[158] since imperfect prediction will lead to dissatisfaction of some constraints and thus the infeasibility
issue. It is essential to identify whether the predicted solution is feasible or not and to obtain a near-
optimal feasible solution efficiently. How to design a DL-based approach to appropriately address P2 is
non-trivial, and requires careful design in a tailored way.

4.4 DPO: Hybrid Solution Combined with DNNs and a Post-Process Op-
timization

In this section, we design DPO to tackle P2. A complete solution for P2 consists of three terms, i.e., the
minimum number of consumed timeslots (b∗ = min

∑
t∈T bt), the terminal-timeslot assignment on b∗

slots, and the corresponding capacity/power allocation. The procedure of DPO is illustrated in Fig. 4.1
and Alg. 3, where three DNNs work parallelly to predict different variables.

As an input to DPO, the first DNN directly learns the mapping between channel-demand parameters
and b∗. We adopt a widely-used Softmax function as the activation function in the output layer, which
normalizes the outputs to a categorical distribution [68]. For example, the t-th element in the output
vector, bt, represents the probability of consuming t timeslots, which is derived by

bt =
exp(b̃t)∑
t′ 6=t exp(b̃t′)

, (4.10)

where b̃t denotes the output at t-th node in the last hidden layer. The predicted b̂ is obtained by selecting
the highest probability from output nodes, i.e.,

b̂ = max
t∈T
{bt}. (4.11)

For training, we use a tuple {G,D;b∗}n, n = 1, . . . , N to represent the n-th training set, where
the input channel-coefficient vector is G = [G1, . . . , GK ] (real values) and demand vector is D =
[D1, . . . , DK ]. The corresponding optimal binary label is organized in b∗ = [b1, . . . , bT ].

The second and third DNN-based predictions output estimated terminal-timeslot assignment â and
power (or rate) splitting ratios r̂, with trained by two sets of tuples {G,D;a∗}n and {G,D; r∗}n, re-

50



Learning-Assisted Approaches for Resource Optimization in NOMA-Satellite Systems

Figure 4.1: Illustration of the proposed DPO

spectively. The optimal labels in a∗ are binary, and the labels in vector r∗ are prepared by

r∗kt =
P ∗kt∑K
k=1 P

∗
kt

, ∀r∗kt ∈ r∗. (4.12)

The predicted â and r̂ may not be feasible for P2 since imperfect predictions may cause constraint
violation. However, the predicted â carries the information of which users with high probability to be
scheduled on each timeslot. In addition, the approximated ratios in r∗ gives more flexibility in post-
processing and performance scaling, compared to directly learning power values. We then rely on â, r̂,
and b̂ as useful guidance and develop a post-processing approach in line 2 to line 14. In line 2, to enable
a higher successful rate in delivering feasible solutions, we introduce an integer offset δ as a scaling
parameter to provide more chance to find a feasible power solution since with more timeslot resources,
e.g., b̂ + δ, all the terminals’ demands can be satisfied more easily than using fewer timeslots, e.g., b̂.
There are two inaccurate cases, b̂ < b∗ or b̂ > b∗. In the first case, b̂ < b∗ directly results in infeasible
power allocation, then δ provides more tolerance for the inaccurate b̂ and finding feasible solution. In
the second case, we confine δ to be small, e.g., δ = 1 or 2, in case of large performance degradation.
In line 3 to line 4, by sorting â, we select up to K̄ highest-probability users on each time slot to satisfy
constraints (4.7e), saying users 1, . . . , K̄ for simplicity. Based on the user allocation, we assign power
in line 5 to meet Pmax in constraints (4.7d). We check if all the users’ demands are delivered in line 9 to
ensure constraints (4.7b). The algorithm terminates when K̂ = ∅ or b̂+ δ is reached.

The complexity of a fully-connected DNN mainly comes from the operations of matrix multiplica-
tion, vector addition, and activation functions [68]. The number of floating-point operations (FLOPs)
of a hidden layer is (2N in

l + 1)Nout
l [68], where N in

l and Nout
l denote the number of input and output

nodes at the l-th hidden layer, respectively. In line 1, the complexity for 3 DNNs in the testing phase is
O(3

∑Nh

l=1(2N in
l +1)Nout

l ), whereNh is the number of hidden layer. In the post-process, the complexity
is dominated by line 3 and 7. In line 3, sortingK elements in â on each TS costsO(K log(K)) complex-
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Algorithm 3 DPO
Input:
Trained DNNs by {G,D;b∗}n, {G,D;a∗}n and {G,D; r∗}n, n = 1, . . . , N .
Initialize unfinished-terminal set K̂ = K and offset δ (integer).

1: Given a test set to the DNNs and obtain b̂, â, r̂.
2: for t = 1 to b̂+ δ do
3: Sort â1t, . . . , âKt ∈ â by a descending order.
4: Select up to K̄ highest-probability users {1, . . . , K̄} ∩ K̂ according to â1t, . . . , âKt.
5: Power allocation Pkt = Pmax × r̂kt, ∀r̂kt ∈ r̂, ∀k ∈ {1, . . . , K̄} ∩ K̂
6: for k = 1 to K̄ do
7: Calculate delivered capacity Ckt by (4.5) and (4.4).
8: Update residual demand Dk = Dk − Ckt
9: if Dk ≤ 0 then

10: K̂ = K̂\{k}.
11: end if
12: end for
13: Break if K̂ = ∅.
14: end for
Output: Power-terminal allocation

ity [145]. In line 7, the FLOPs number of SINR calculation for the selected L users is (1 + K̄)K̄. Thus
the complexity of DPO can be expressed as O(max{3

∑Nh

l=1(2N in
l + 1)Nout

l , TK log(K) + TK̄(K̄ +
1)}).

4.5 DDCO: Hybrid Solution Combined with Dual DNNs and Convex Op-
timization

To further improve the feasibility performance, in this section, we propose DDCO to tackle P2. The idea
is that we rely on the fast prediction in dual DNNs to tackle the most difficult and time-consuming part in
MICP, i.e., optimizing discrete variables a and b, instead of performing iterative searching algorithms.
The remaining power (or capacity) allocation can be solved by efficient convex optimization approaches.
Overall, DDCO is expected to reap advantages from learning and optimization, and thus to enable an
efficient, feasible, and near-optimal solution. The procedure is illustrated in Fig. 4.2.

In DDCO, we extract two classification-like tasks from P2, and let dual DNNs train and learn from
optimal labels to provide a promising terminal-timeslot allocation with identified feasibility. The 1-st
DNN is used to predict the binary elements in a, i.e., learning the mapping from the input of channel-
gain vector G = [G1, . . . , GK ] and demand vector D = [D1, . . . , DK ] to optimal terminal-timeslot
allocation a∗. We use a tuple {G,D;a∗}n to represent the n-th training-testing set, where the input
vectors G and D are generated from the n-th realization in an emulator, and the corresponding optimal
label a∗ can be obtained by solving P2 offline. The predicted a from the 1-st DNN may not necessarily
be binary, a threshold η is then introduced to round the fractional elements to binary.

Ideally, the predicted a should lead to a feasible terminal-timeslot allocation. That is, satisfying∑T
t=1 akt ≥ 1, ∀k = 1, . . . ,K, i.e., each terminal is scheduled to at least one timeslot to satisfy con-

straints (4.7b), and no violation for constraints (4.7e) and (4.7f). However, these feasibility conditions
cannot be always guaranteed because of DL’s imperfect prediction. To deal with this issue, we per-
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DNN1 DNN2

{

Figure 4.2: Illustration of the proposed DDCO

form a post-process for the predicted a to list M feasible and promising terminal-timeslot allocation
ā1, . . . , āM . We use an example with K = 4, T = 4, K̄ = 2 to illustrate the process. After rounding,
the predicted a reads,

[1, 1, 1, 0︸ ︷︷ ︸
a11,...,a41

, 1, 0, 1, 1︸ ︷︷ ︸
a12,...,a42

, 0, 0, 0, 0︸ ︷︷ ︸
a13,...,a43

, 1, 0, 1, 0︸ ︷︷ ︸
a14,...,a44

]. (4.13)

This allocation consumes 3 timeslots but the completion time is 4 timeslots, which violates constraints
(4.7f), and schedules 3 terminals on the first two timeslots, which violates constraints (4.7e). To sat-
isfy (4.7f), we move the terminals scheduled at timeslot 4 to timeslot 3 and leave timeslot 4 idle. To
meet (4.7e), we select K̄ = 2 terminals from 3 for the 1-st and 2-nd timeslots, giving 9 combinations((

3
2

)
×
(

3
2

))
in total. Filtered by constraints

∑T
t=1 akt ≥ 1, ∀k = 1, . . . ,K, 4 out of 9 feasible terminal-

timeslot allocations ā1, . . . , ā4 are generated.

A follow-up question is that whether a feasible power (or capacity) allocation (satisfying constraints
(4.7b), (4.7c), (4.9c), and (4.9d)) exists under these feasible terminal-timeslot allocations. One may
notice that once a is fixed in P2, then b is determined. The remaining power (or capacity) optimization
problem becomes a decision-version problem, that is providing a yes-or-no answer to the existence of
feasible power (or capacity) allocation under the certain a and b. This feasibility-check problem is
presented as,

P3 : Find C, s.t. (4.7b), (4.7c), (4.9c), (4.9d), (4.14)

which amounts to solving a convex optimization problem.

In general, the complexity for answering a problem’s feasibility is of the same magnitude as solving
the corresponding optimization problem. Thus in order to identify at least one feasible solution from
ā1, . . . , āM , in the worst case, M convex problems have to be solved, which may not be computationally
affordable when M is large. We train the 2-nd DNN to enable a quick feasibility check for ā1, . . . , āM .
The training sets are organized in tuples {G,D, ā;β}i, i = 1, . . . , I , where ā is a terminal-timeslot
allocation, and optimal label β, obtained by solving P3 via convex optimization, stands for the corre-
sponding feasibility (β = 1) or infeasibility (β = 0) of ā. A mapping from inputs G, D, ā to optimal
label β is learned. In the testing phase, the value of the m-th output node, βm, refers to the probability of
a feasible power (or capacity) solution existing for ām. We select the terminal-timeslot allocation with
the highest probability, say the m-th element βm = max{β1, . . . , βM}, and solve the convex optimiza-
tion problem under ām in order to validate the feasibility of power (or capacity) allocation to against
DNN’s imperfect prediction. If no feasible power exists, we reduce threshold η by step θ to involve
more feasible terminal-timeslot allocations to set {ā1, . . . , āM}, otherwise, DDCO outputs the feasible
terminal-timeslot allocation āM and corresponding capacity (or power) allocation C (or P).
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Table 4.1: Simulation Parameters of Satellite Systems

Parameter Value
Frequency 20 GHz (Ka band)

Bandwidth, W 250 MHz
Satellite location 13◦ E

Satellite height, dGW, dk 35,786 km
Beam radiation pattern provided by ESA [148]
Receive antenna gain 42.1 dBi

Noise power, σ2 -126.47 dBW
Maximum transmit power, Pmax 20 dBW

Number of time slots, T 100
Maximum multiplexed users, K̄ 2

Duration of each timeslot, τ 1 ms
Demand, Dk 325 to 750 Mbps

4.6 Performance Evaluation

In this section, we evaluate the performance of the proposed DPO and DDCO. The parameter settings
are summarized in Table 6.1. Both DNNs are implemented in TensorFlow, where ReLu, Mean Square
Error (MSE), and Adam algorithm are adopted as the activation function, loss function, and optimizer,
respectively. The inputs G and D are generated from the adopted emulator based on the parameter
settings in Table 6.1, where the beam radiation pattern is provided by ESA in the context of [148]. We
set the following approaches as benchmarks:

• Opt: The optimal solution is obtained by solving P2 with MOSEK solver [51], which is capable
of tackling MICP by branch-and-cut approaches.

• BW-FTPC [98]: Terminals are grouped on the basis of best-worst (BW) pairing and power alloca-
tion is based on fractional transmit power control (FTPC) rule.

• SM-CP [43]: Terminal-timeslot assignment is iteratively updated by swap-matching (SM) ap-
proach. For each iteration, a conic programming (CP) of capacity allocation should be solved.

• SD: The single-DNN (SD) scheme follows the procedure of DDCO but without using the 2-
nd DNN, instead, adopting convex optimization to verify the capacity (or power) feasibility for
ā1, . . . , āM .

• OMA: Each timeslot can be only scheduled to one terminal, i.e., K̄ = 1.

• End-to-end learning [161]: The scheme directly learns and predicts power allocation.

Computational time performance

Firstly, in Table 4.3, we compare the average computational time among Opt, BW-FTPC, SM-CP, SD,
DDCO, and DPO. In the optimal algorithm, the computation time increases exponentially as the prob-
lem’s scale increases. In comparison, the computational time in BW-FTPC, DDCO, and DPO is signifi-
cantly reduced to millisecond level while SM-CP consumes time in second level with higher magnitude.
SD consumes much longer time than DDCO since the complexity for solving up to M convex problems
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Table 4.2: Simulation Parameters of DNN

Parameter Value
Number of hidden layers 5
Nodes per hidden layer 256

Activation function Relu, Sigmoid, Softmax
Optimizer Adam

Loss function MSE, cross entropy
Training samples, N 6000
Testing samples, I 1000

Table 4.3: Average Computational Time (in Seconds) (η = 0.2, δ = 1)

K Opt BW-FTPC SM-CP SD DDCO DPO
4 1.33 0.12 0.64 1.79 0.325 0.15
6 5.17 0.13 3.51 10.32 0.577 0.19
8 38.23 0.16 6.74 123.28 0.698 0.21

10 798.4 0.17 9.38 146.05 0.842 0.29

in SD remains considerable. With K increases, the proposed DDCO and DPO are capable of providing
an overall computationally efficient solution.

Performance of minimizing transmission time

Secondly, in Fig. 4.3, we evaluate the performance of reducing transmission time. In Fig. 4.3(a),
we compare the objective values, i.e., minimized transmission time, in the proposed learning-assisted
approaches, DDCO and DPO, and benchmarks, Opt, BW-FTPC, SM-CP, and OMA. In general, the
gap between optimal and suboptimal solutions increases significantly as the number of terminals grows,
whereas the gap between DDCO and the optimum keeps less than 5% in average. The main reason for
this near optimality is that, when M feasible terminal-timeslot allocations are generated for the 2-nd
DNN, DDCO has strong capability to retain the optimal allocation a∗ in the candidate set, i.e., a∗ ∈
{ā1, . . . , āM}. This is verified in Fig. 4.3(b), where DDCO hits optimal a∗ in more than 95% testing
sets in average. Recall that by design, ā1, . . . , āM have the same objective value. As a consequence,
even though DDCO’s outputted allocation ām may not be necessarily as same as the optimal a∗, the
optimal objective value can be achieved when a∗ ∈ {ā1, . . . , āM} holds. We can observe that the
performance of DPO is close to that of SM-CP, with a gap of 0.26%, but DPO has an obvious reduction
in computational time compared to SM-CP as displayed in Table 4.3. Both learning-assisted approaches
can achieve a good trade-off between performance and complexity. Furthermore, DDCO outperforms
DPO in minimizing transmission time. This is because, in DDCO, more potential integer solutions are
considered such that the algorithm has higher possibility to hit the optimum than DPO.

Feasibility performance

Thirdly, we demonstrate the performance of DDCO and DPO in delivering feasible solutions. In Fig. 4.4,
the adopted threshold η = 0.2 is suited for 4-terminal cases, i.e., leading to a feasible terminal-timeslot
and capacity (or power) solutions in 99% instances. In contrast, the same threshold for 10-terminal
cases fails, leading to infeasible solutions in most of the instances. Next, in Fig. 4.5, we decrease η
for 10-terminal cases, and observe the significant performance improvement. The reason is that when η
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Figure 4.3: Minimized transmission time with respect to K (η = 0.14 in DDCO and η = 1 in DPO).

decreases in the 1-st DNN, the fractional elements in the predicted vector a are prone to be rounded to
1, then it results in more allocations in set {ā1, . . . , āM}. Smaller η and larger M in fact increase the
probability of DDCO in obtaining a feasible capacity (or power) allocation. The results necessitate the
threshold-adjustment procedure (η = η − θ) in DDCO.

In 4.6, we present the performance of DPO in delivering feasible solutions with different K and δ.
We can observe that, as the problem scale increases, the difficulty of finding a feasible solution grows.
The feasibility rate can be improved by scaling up δ but enlarges the gap the the optimum.

To enable a fair feasibility comparison, the number of consumed timeslots is uniform for all the
algorithms in Fig. 4.7. Directly applying end-to-end learning performs the worst. The ratios of BW-
FTPC and SM-CP are much lower than DDCO, DPO, and SD since both algorithms require iterative
operations to improve the performance. By exploiting more potential solutions and identifying their
feasibility, DDCO and SD have gains in hitting feasible solution over DPO. SD performs the best as
it identifies the feasibility of potential solutions by directly solving them but consumes more time than
DDCO and DPC as presented in Table 4.3.

4.7 Conclusion and Discussion

In this chapter, we have provided insights on the design of learning-assisted schemes to tackle the chal-
lenging satellite-NOMA resource optimization problem. We have formulated a problem to minimize
transmission time by optimizing transmit power and terminal-timeslot scheduling in a general NOMA-
enabled satellite system. We have investigated how to apply DL to address a typical constrained combina-
torial optimization problem. The convexity of the primal problem has been revealed by the reformulation
into a MICP problem, such that the optimum/near-optimum can be obtained by conventional iterative ap-
proaches. Considering its inherent difficulty and high complexity, we have proposed DPO and DDCO to
accellerate the problem solving and provide efficient, feasible, and near-optimal solutions.

In the end, we discuss the pros and cons of optimization-based and learning-assisted schemes. In
optimization-based schemes, one can achieve some guaranteed performance by deriving solid analysis,
e.g., monotonicity, convergence, optimality/local-optimality conditions, etc. But generally, the theoreti-
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Figure 4.4: DDCO in delivering feasible solutions with respect to K (η = 0.2).
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Figure 4.5: DDCO in delivering feasible solutions with respect to threshold η (K = 10).

cal analysis is not always easy to derive due to the challenging combinatorial and nonconvex properties of
the considered problems. To attain a good result, e.g., global/local/near optimum, considerable computa-
tional efforts would be consumed, which may not be applied in practical satellite systems. For example,
in some typical GEO satellite systems, algorithms with large complexity could fail to perform due to
the presence of hundreds or thousands of spot beams. In more dynamic wireless environment, e.g., non-
geostationary satellite systems, the algorithms should be adaptive to the variations, which requires fast
decision-making process. To reduce the complexity, designing low-complexity suboptimal algorithms is
an alternative choice, but with performance loss and insufficient performance guarantee.

On the other hand, learning-assisted schemes can tackle the challenging procedures in optimiza-
tion problems, e.g., decision-making process, by exploiting useful information from empirical data.
We can apply learning techniques to approximate the implicit mapping between input parameters and
the optimal/near-optimal solution by training a learning model instead of directly solving the problem.
This could reduce complexity and guarantee the performance gain if we obtain a well-trained learning
model. Besides, learning can be applied to predict the demands or channel gains when considering de-

57



4.7. Conclusion and Discussion

4 6 8 10

(b) Number of Users

40

50

60

70

80

90

100

R
at

io
 o

f 
D

el
iv

er
in

g
 F

ea
si

b
le

 S
o

lu
ti

o
n

s 
(%

)

DNN ( =0)

DNN ( =1)
DNN ( =2)

Figure 4.6: DPO in delivering feasible solutions with respect to K and δ.
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Figure 4.7: Successful ratio of delivering feasible solutions in 1000 testing sets (K = 10).

layed/imperfect issues. However, the performance of learning-assisted schemes may be deteriorated in
the case of insufficient training data, hard-to-obtain data sets, invalidation of learning models in dynamic
scenarios, etc. We cannot conclude which type of approaches is better in general. The selection of
applied schemes depends on the properties of targeted scenarios and formulated problems.
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Chapter 5
Joint Optimization of Power- and
Time-Domain Flexibilities

This chapter starts to study resource optimization in the case of multi-dimension flexibilities in NOMA-
based SatCom. Considering the advantages of BH in matching capacity to demand and alleviating co-
channel interference, we exploit time-domain flexibility in multi-beam satellite systems by optimizing
BH design. In this chapter, we investigate the potential synergy and mutual influence between BH and
NOMA in resource optimization. In the considered system, BH is operated among beams to mitigate
inter-beam interference and NOMA is employed within each beam to reduce intra-beam interference.
We jointly optimize power allocation, beam scheduling, and terminal-timeslot assignment to minimize
the gap between requested traffic demand and offered capacity. In the solution development, we formally
prove the NP-hardness of the optimization problem. Next, we develop a bounding scheme to tightly
gauge the global optimum and propose a suboptimal algorithm to enable efficient resource assignment.
Numerical results demonstrate the benefits of combining NOMA and BH, and validate the superiority of
the proposed BH-NOMA schemes over benchmarks.

5.1 Introduction

In conventional multi-beam satellite systems, all beams are simultaneously illuminated and on-board
resources are pre-assigned before launch due to limited flexibility and capability in satellite payloads [1].
While this design is efficient for static and uniform traffic patterns, the evolution of data services leads
to highly dynamic and spatially non-uniform traffic. In this case, the efficiency of resource utilization
is low and the system fails to adapt to heterogeneous traffic distribution over the coverage area [2].
With the development of advanced satellite payloads, more attention has been drawn to flexible on-
board resource allocation (e.g., power, bandwidth) to embrace the dramatic growth of data traffic and the
uneven distribution [2, 10].

BH is a promising technique to enhance the flexibility of resource management by selectively and
sequentially activating or deactivating beams [2, 24, 162]. The benefits of BH are from the following
aspects. First, in a BH system, beam scheduling (or beam illumination pattern design) is optimized based
on the requested traffic such that unmet and unused capacity can be reduced [24, 162]. Second, without
illuminating all the beams together, the required number of radio-frequency chains is smaller, thus power
consumption and payload mass are reduced [162]. Third, spatially induced co-channel interference can
be alleviated by illuminating the beams that are distant from each other [17, 88]. In the DVB-S2X
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standard [137], a super-frame format to facilitate BH implementation and performance enhancement has
been specified. In the literature, BH has been applied in different scenarios, e.g., load balancing networks
[163], cognitive satellite networks [164], and ultra-dense LEO systems [165].

To improve the performance of BH, a majority of works focus on how to design efficient approaches
to decide beam-timeslot scheduling. In [24], a genetic algorithm was adopted to determine beam illu-
mination patterns. In [164], a resource allocation problem for cognitive BH systems was studied. The
authors decomposed the problem and proposed low-complexity approaches. In [84], the authors de-
signed two iterative BH approaches based on minimum co-channel interference and maximum SINR.
The authors in [166] studied resource allocation for a novel satellite system where conventional BH is
combined with cluster hopping. Considering the benefits of machine learning techniques, the authors in
[86] and [85] proposed resource allocation schemes assisted by deep reinforcement learning and deep
learning, respectively.

Compared to conventional OMA, NOMA can achieve higher spectral efficiency and serve more ter-
minals [33]. Beyond terrestrial systems, it is natural to investigate how NOMA can help to improve
the performance for multi-beam satellite systems, e.g., [34, 154, 167, 113]. The authors in [34] studied
the cooperation between NOMA and precoding in a multi-beam satellite system. In [154], joint op-
timization of power allocation, decoding orders, and terminal-timeslot assignment in NOMA-enabled
multi-beam satellite systems was studied. To mitigate channel-phase uncertainty effects, two robust
beamforming schemes were provided in [167] to minimize power consumption for delivering satellite
internet-of-things services. In [113], the authors jointly optimized power allocation and network stability
to maximize long-term average capacity for NOMA-based satellite internet-of-things systems. NOMA
has shown superiorities in enhancing spectral efficiency and improving the performance of practical
metrics for multi-beam satellite systems in the literature.

Considering the individual benefits from BH and NOMA, we are motivated to investigate how to
exploit the joint advantages of these two techniques and optimize resource allocation for BH-NOMA
systems. In the literature, the joint scheme of BH and NOMA is studied to a limited extent. The potential
synergies of NOMA and BH were firstly studied in our previous work [168], where we considered a
simplified problem without joint optimization, and focused on performance evaluation in order to verify
the initial synergy between BH and NOMA.

5.1.1 Motivations and Contributions

In general, joint resource optimization for BH-NOMA systems typically leads to a combinatorial opti-
mization problem. In some cases, the optimum might not be achievable for large-scale instances due to
unaffordable complexity and time, e.g., branch-and-bound approach in solving large-scale integer linear
programming problems [85, 93]. For some difficult problems, the optimum might even be unknown for
small or medium cases, e.g., unknown optimum in solving MINCP problems [168]. It is therefore of
importance to: 1) Identify how difficult the resource optimization problem is; 2) Provide a tight bound
for the optimum; 3) Properly benchmark the developed suboptimal solutions.

In this work, we investigate joint optimization for the considered BH-NOMA scheme to enhance the
performance gain by optimizing power allocation, beam scheduling, and terminal-timeslot assignment.
We apply BH to selectively and sequentially activate beams over timeslots. NOMA is then implemented
within each active beam to further improve the spectral efficiency. Recap that in Chapter 3, we focus
on maximizing the worst OCTR performance among terminals such that the fairness of terminals with
heterogeneous traffic demand can be improved. In this case, even terminals with extremely small demand
could be served to improve the worst capacity-to-demand ratio. To fathom the influence of NOMA
to various practical metrics in SatCom, we try to study resource optimization from different angles to
enrich the findings and results in this thesis. In this chapter, we move from max-min OCTR to another
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objective function, minimizing the gap between capacity and demand. Different from max-min OCTR,
the capacity-demand gap concentrates more on the whole system’s rate-matching performance but the
performance of terminals with small demand might be sacrificed.

Beyond state-of-the-art and compared to [168], the main contributions are summarized as follows:

• We formulate a resource allocation problem to minimize the gap between offered capacity and
requested traffic, leveraging by BH and NOMA. The work, together with [168], provides an early-
attempt investigation for BH-NOMA systems.

• We formally prove the NP-hardness for the joint BH-NOMA optimization problem, and outline the
mutual influence between BH and NOMA. We investigate the problem’s insights by developing
theoretical analysis.

• To gauge the unknown global optimum, we design an effective bounding scheme. In the upper-
bound approach (UBA), we develop an iterative near-optimal algorithm. In the lower-bound ap-
proach (LBA), we first resolve the problem’s non-convexity by simplifying the estimation of inter-
beam interference. Then we construct a MICP problem to approximate the original problem.

• We design an efficient low-complexity algorithm for joint power allocation, beam scheduling,
and terminal-timeslot assignment (E-JPBT) to overcome the high complexity in UBA and provide
feasible solutions for large-scale instances.

• The numerical results validate the benefits of jointly considering BH and NOMA, and the tightness
of the bounds in gauging optimality. We demonstrate the superiority of the proposed BH-NOMA
schemes in matching offered capacity to requested traffic compared to benchmarks.

5.2 System Model

We consider a GEO satellite system which provides services to fixed ground terminals via forward links.
The satellite generates B spot beams to cover the targeted area. We denote B as the set of the beams.
Let K and Kb represent the set of terminals in the system and in the b-th beam, respectively. Note that
users are assigned to beams implicitly based on their geographical coordinates [148], e.g., user k located
within the 4.3 dB contour of the b-th beam’s coverage area belonging to Kb. Denote K ′ as the number
of terminals per beam. Each terminal is equipped with a single directional antenna. All the beams share
the same frequency band, i.e., 1-color frequency-reuse pattern.

The architecture of the considered multi-beam satellite system is depicted in Fig. 5.1, where the
telemetry, tracking, and command (TT&C) station is part of the satellite operation center whereas the
gateway and the resource manager are part of the network operation center [2]. The TT&C station is
responsible for the synchronization among beams during the BH process [25]. The bent-pipe transparent
satellite payload is assumed to be equipped with switching matrix and digital transparent processors to
enable beam activation/deactivation and power distribution among different active beams, respectively
[2, 1]. The procedure in Fig. 5.1 is described as the following: Step 1: The gateway collects information
from ground terminals, e.g., traffic demand and channel status, via return links. Step 2: Based on the
feedbacks, the resource manager (co-located with the gateway) executes the algorithm to optimize the
beam illumination pattern and power-terminal-timeslot scheduling. The optimization outcomes are com-
municated to the satellite payload via the TT&C station and to the gateway [85, 2]. Step 3: Following the
planned scheduling decisions, the gateway requests data from the core networks to the satellite payload.
Step 4: According to the optimized beam illumination pattern, the satellite payload relies on a switching
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Figure 5.1: An illustrative scenario of the considered BH-NOMA system. Three beams are activated simultaneously according
to the BH design. By applying NOMA in beam 1, terminal 1 at the beam center with better channel gain only receives inter-
beam interference from the other two active beams, while terminal 2 at the beam edge with worse channel gain receives both
intra-beam and inter-beam interference. (The numbers in the circle denote the steps of the communication procedure.)

matrix to activate the selected beams. The satellite payload delivers data to the ground terminals in active
beams.

In the system, BH illuminates no more than B0 (B0 < B) beams at each timeslot due to payload
architecture limitations. A scheduling period consists of T timeslots, defined as a BH window. Denote
T as the set of the timeslots. For each beam,

⌈
K′

K0

⌉
timeslots are required such that all the terminals can

be scheduled to at least one timeslot. The minimum number of timeslots to illuminate all the beams at
least once is

⌈
B
B0

⌉
. Thus the value of T should meet

T ≥
⌈
K ′

K0

⌉⌈
B

B0

⌉
. (5.1)

In an active beam, NOMA is adopted to multiplex one or more terminals in a timeslot. The signals
intended for the scheduled terminals in one beam are superimposed with different power per targeted
terminal. We denote pkt as the transmit power for terminal k at timeslot t. The SINR of terminal k in
beam b at timeslot t is derived as,

γkt =
|hbk|2pkt∑

k′∈Kb\{k}
k′<k

|hbk|2pk′t

︸ ︷︷ ︸
intra-beam interference

+
∑

b′∈B\{b}

∑
k′∈Kb′

|hb′k|2pk′t︸ ︷︷ ︸
inter-beam interference

+σ2
, (5.2)

where σ2 represents the noise power. We denote |hbk|2 as the channel gain from the b-th satellite antenna
to the k-th terminal (assuming consistent indexes between antennas and beams). We use a widely-
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adopted channel model in multi-beam satellite systems [85, 164, 17, 154, 167], which is derived as,

|hbk|2 =
Gtx
bkG

rx
k

κT noiseW

(
c

4πdkf fr

)2

, (5.3)

where Gtx
bk is the transmit antenna gain from the b-th antenna to terminal k. Grx

k denotes the receive
antenna gain of terminal k. The term κT noiseW represents the distribution of noise, where κ, T noise,
and W denote the Boltzmann constant, the noise temperature of the receiver, and the carrier bandwidth,

respectively. The term
(

c
4πdkf fr

)2
is the free-space propagation loss, where dk, f fr, and c denote the dis-

tance between the satellite and terminal k, the frequency, and the light speed, respectively. We consider
that the channel gains are static within T timeslots and updated every T timeslots.

The intra-beam interference and inter-beam interference are denoted as the first term and the second
term of the denominator in (6.9), respectively. We assume consistent indexes between terminals and
the descending order of channel gains, e.g., two terminals k and k′ in Kb, where k′ < k and |hbk′ |2 >
|hbk|2. In this case, k′ performs successive interference cancellation (SIC) to decode and remove k’s
signals whereas k treats k′’s signals as noise. We remark that, to facilitate the analysis, we assume that
the channel coefficients satisfy the conditions derived in [130] (Lemma 1), such that determining the
decoding order in each beam is independent of the beams’ transmit power and inter-beam interference.
The available rate of terminal k at timeslot t is,

Rkt = W log2(1 + γkt), (5.4)

whereW is the bandwidth for the carrier (single carrier per beam). The total offered capacity of terminal
k is,

Rk =
∑
t∈T

Rkt. (5.5)

5.3 Problem Formulation and Analysis

5.3.1 Problem Formulation

We formulate an optimization problem to minimize the gap between offered capacity and requested
traffic by jointly optimizing power allocation, beam scheduling, and terminal-timeslot assignment. The
variables are defined as:

pkt ≥ 0, transmit power for terminal k at timeslot t;

αbt =

{
1, beam b is illuminated at timeslot t,
0, otherwise;

βkt =

{
1, terminal k is assigned to timeslot t,
0, otherwise.

Denote Dk as the requested traffic demand (in bps) of terminal k over a scheduling period. We apply a
widely-adopted metric, (Rk−Dk)

2, to measure the capacity-traffic mismatch of terminal k [88, 10]. The
objective function captures the average mismatch level among K terminals. The problem is formulated
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as:

P0 : min
αbt,βkt,pkt

∑
k∈K

(Rk −Dk)
2 (5.6a)

s.t.
∑
k∈Kb

pkt ≤ P,∀b ∈ B,∀t ∈ T , (5.6b)

∑
b∈B

αbt ≤ B0, ∀t ∈ T , (5.6c)∑
k∈Kb

βkt ≤ K0αbt, ∀b ∈ B, ∀t ∈ T , (5.6d)

pkt ≤ Pβkt,∀k ∈ K,∀t ∈ T , (5.6e)

Rk ≥ Rmin
k ,∀k ∈ K, (5.6f)

αbt + αb′ t ≤ 1, b 6= b
′
, ∀(b, b′) ∈ Ω,∀t ∈ T . (5.6g)

In (6.14b), the total transmit power of terminals in each beam at each timeslot is no larger than the beam
power budget P . In (6.14c), no more than B0 beams can be illuminated at each timeslot. Constraints
(6.14d) confine that no more than K0 terminals can be allocated to a timeslot. No terminal will be
scheduled in an inactive beam. Constraints (6.14f) connect pkt and βkt, where pkt is confined to zero
if βkt = 0, otherwise, pkt ≤ P . In (6.14h), the rate of each terminal should meet the minimum-
rate requirement to maintain a certain level of fairness among terminals. Usually, the minimum rate is
smaller than the requested traffic demand, i.e., Rmin

k < Dk. In (6.14i), we introduce Ω ⊂ B × B as
a set to include all the undesired beam pairs, e.g., adjacent beams with strong interference. If a beam
pair {b, b′} ∈ Ω, beam b or b′ can be illuminated alone or grouped with other beams, e.g., illuminating
beam b and b′′ in timeslot t, but beam b and b′ cannot be activated together in the same timeslot because
αbt + αb′t = 2 violates (6.14i).

In P0, the performance and optimization decisions in BH and NOMA are coupled with each other.
In general, jointly optimizing the two components is challenging. Determining NOMA resource alloca-
tion in each beam depends on the outcome of BH design, whereas achieving a high-quality BH scheme
requires appropriate decisions from NOMA resource allocation. On the one hand, BH design is of impor-
tance to the resource allocation in NOMA. When a set of inappropriate beams with strong interference
are activated, this can possibly result in degraded performance, e.g., low data rates per timeslot. As a con-
sequence, each terminal might need to be assigned with more power to satisfy its demand or scheduled
to more timeslots (thus suggests more timeslots consumed in total for all the terminals), which typically
leads to a more complicated problem with a larger dimension and more sensitive to the feasibility issue
in NOMA.

On the other hand, the decisions made in NOMA can in its turn influence the BH design. When
an optimal power and terminal-timeslot allocation can be obtained in NOMA, as a result, each active
beam radiates less inter-beam interference to each other compared to a suboptimal NOMA solution,
and some beams can be activated with fewer timeslots due to the higher rate achieved per timeslot,
which can greatly ease the BH design. Towards an overall high-quality solution for BH-NOMA systems,
it is necessary to capture this mutual dependence and iteratively improve the overall performance in
algorithmic design.
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5.3.2 Complexity Analysis in Solving P0

P0 is an MINCP problem [50] due to the nonlinear and nonconvex functions in (5.6a) and (6.14h), and the
presence of binary variables αbt and βkt. Solving an MINCP can be challenging in general. We further
identify the intractability of P0 by proving the NP-completeness for its decision-version problem (or
feasibility-check problem) and the NP-hardness for the optimization problem in Lemma 1 and Theorem
1, respectively. The decision-version problem of P0 is defined as a true-or-false problem to check if
there exists a feasible solution [169]. If the decision version of P0 is NP-complete, then the optimization
problem P0 is NP-hard [170], because solving P0 is no easier than solving its decision version. The
former needs to obtain optimal solutions, whereas the latter only needs to offer a yes-or-no answer for
feasibility check.

Lemma 1: The decision-version (feasibility-check) problem of P0 is NP-complete.

Proof. We construct a polynomial-time reduction from three-dimensional matching (3DM) problem
[171], one of the typical NP-complete problems, to an instance of the decision-version problem of P0.
Consider three different sets X , Y , and Z , where |X | = |Y| = |Z|. The 3DM problem is to check
whether there exists a matching set Θ ⊂ X × Y × Z such that x1 6= x2, y1 6= y2, and z1 6= z2 for any
two different triplets (x1, y1, z1) and (x2, y2, z2) in Θ. If yes, Θ is called a 3DM.

Consider a special case with one terminal per beam, i.e., K = B. In this case, we use terminals’
indexes and beams’ interchangeably. The set of beams is divided into two subsets, B1 and B2, where
B1 ∩ B2 = ∅ and B1 ∪ B2 = B. For any beam b ∈ Bi, ∀i = {1, 2}, the channel gains satisfy the
following conditions,

|hb′b|2 =


1 + ε, if b′ = b,
1 + ε

2 , else if b′ ∈ Bi,
ε, else if b′ ∈ Bj , j 6= i,

(5.7)

where 0 < ε ≤ 2
1
B−1. That means, for any two beams from different subsets, the inter-beam interference

remains zero. We set the parameters as follows: P = 1, σ2 = ε, B0 = 2, T = B
2 , Ω = ∅, Rmin

b = 1,
and Db � 1.

First, we prove that the instance problem is feasible if the answer to the 3DM problem is yes. We
let X = T , Y = B1, and Z = B2. For any two triplets (t1, b1, b

′
1) and (t2, b2, b

′
2), the following

relationships hold: t1 6= t2, b1 6= b2, and b1′ 6= b′2. In this case, any two beams scheduled to the same
timeslot are from different subsets and thus the inter-beam interference is zero. If beam b is illuminated
at timeslot t, the rate of each beam is derived as,

log2(1 +
|hbb|2P

|hb′b|2P + σ2
) = log2(1 +

1 + ε

ε+ ε
) > 1 = Rmin

b , (5.8)

which meets constraints (6.14b) to (6.14i). Thus the instance problem is feasible.
Next, we prove that if the instance problem is feasible, the answer to the 3DM problem is yes. Since

T = B
2 and B0 = 2, all beams are scheduled only once. If there exist two beams from the same subset

scheduled to the same timeslot, then the rates for these two beams are,

log2(1 +
|hbb|2P

|hb′b|2P + σ2
) = log2(1 +

1 + ε

1 + ε
2 + ε

) < log2(1 + 1) = 1 = Rmin
b , (5.9)

which violates the minimum-rate constraint in (6.14h). To meet the constraints, the interference must be
zero, requiring that any two beams scheduled to the same timeslot are from different subsets. Thus, the
answer to the 3DM problem is yes. In conclusion, the yes answer to the 3DM problem is the necessary

65



5.3. Problem Formulation and Analysis

and sufficient condition of the existence of a feasible solution of the instance problem. As the 3DM
problem is NP-complete, the Lemma follows.

Based on Lemma 1, the NP-hardness of P0 can be therefore concluded.

Theorem 1: P0 is NP-hard.

Being aware of the NP-hardness of P0 and the coupling effects between BH and NOMA, it is chal-
lenging to solve the original problem directly. Instead, we fix the binary variables and provide theoretical
analysis of how to deal with the remaining problem.

It is worth noting that, even with the fixed binary variables αbt and βkt, the remaining power alloca-
tion problem, shown as in P1, is still non-convex [50].

P1 : min
pkt

∑
k∈K

(Rk −Dk)
2 (5.10a)

s.t. (6.14b), (6.14h), (5.10b)

where pkt ≥ 0 for βkt = 1 and pkt = 0 for βkt = 0. We introduce auxiliary variables δk and equivalently
convert P1 as

P ′1 : min
pkt,δk

∑
k∈K

δ2
k (5.11a)

s.t. (6.14b), (6.14h), (5.11b)

− δk ≤ Rk −Dk ≤ δk,∀k ∈ K. (5.11c)

At the optimum, Rk − Dk is equal to either −δk or δk, ∀k ∈ K, where δk ≥ 0. In the following
proposition, we prove that Rk ≤ Dk at the optimum, which can simplify P ′1.

Proposition 1: At the optimum of P1, Rk ≤ Dk, ∀k ∈ K.

Proof. The proposition can be proven by raising the contradiction that there exist some terminals with
Rk > Dk at the optimum. Define Kt as the set of the terminals scheduled to the t-th timeslot. We divide
Kt into two subsets, K+

t and K−t , containing terminals with Rk > Dk and Rk ≤ Dk, respectively. Let
p∗kt be the optimal power. For presentation convenience, we denote Ik′kt as the interference of terminal
k caused by k′ at timeslot t. We apply 0 < ζ ≤ 1 to adjust the power of all the terminals in K+

t . As p∗kt
is optimal, ζ = 1 should be optimal. For k ∈ K+

t , the SINR is expressed as,

γkt =
|hbk|2ζp∗kt∑

k′∈K+
t \{k}

ζIk′kt +
∑

k′∈K−t
Ik′kt + σ2

. (5.12)

The SINR of terminals in K−t is,

γkt =
|hbk|2p∗kt∑

k′∈K+
t
ζIk′kt +

∑
k′∈K−t \{k}

Ik′kt + σ2
. (5.13)

Given p∗kt, the objective can be viewed as the function of ζ, say f̃(ζ; p∗kt). We present the derivative of
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f̃(ζ; p∗kt) in the following,

f̃ ′(ζ; p∗kt) =
∑
k∈K+

t

2(Rk−Dk)γkt
ζ(1+γkt)

( ∑
k′∈K−t

Ik′kt + σ2

)
∑

k′∈K+
t \{k}

ζIk′kt +
∑

k′∈K−t

Ik′kt + σ2
−
∑
k∈K−t

2(Rk−Dk)γkt
ζ(1+γkt)

∑
k′∈K+

t

Ik′kt∑
k′∈K+

t

ζIk′kt +
∑

k′∈K−t \{k}
Ik′kt + σ2

,

(5.14)
which is obviously larger than zero since Rk > Dk for terminals in K+

t and Rk < Dk for terminals in
K−t . Thus the objective can be smaller by letting ζ < 1 to reduce power of the terminals in K+

t , which
contradicts the assumption of the optimality. Thus the proposition.

With Proposition 1, constraints (5.11c) can be converted into,

− δk ≤ Rk −Dk,∀k ∈ K, (5.15)

which indicates thatRk−Dk = −δk at the optimum. In spite of the problem conversion, we observe that
solving P ′1 remains challenging due to the nonconvexity of the logarithmic-fractional composite expres-
sions in the R-functions [50]. A widely-adopted approach to address the fractional nonconvex function
is to decouple the numerator and denominator, and transform it into a series of convex problems, e.g.,
Dinkelbach’s transform [172], and quadratic transform [56]. Compared to conventional Dinkelbach’s
transform, quadratic transform has shown advantages in tackling multi-ratio fractional programming by
building the equivalence of the objectives between the primal and the transformed problem [56]. Be-
sides, quadratic transform has proven its competitiveness compared to conventional successive convex
approximation method [173] in power control [56]. By applying quadratic transform [56], we convert
Rkt from fractional format to the following,

fRkt(θkt, pkt) = log
(

1 + 2θkt
√
|hbk|2pkt

−θ2
kt

 ∑
k′∈Kb\{k}

k′<k

|hbk|2pk′t +
∑

b′∈B\{b}

∑
k′∈Kb′

|hb′k|2pk′t + σ2


 , (5.16)

where θkt ≥ 0 is the auxiliary variable. With fixed θkt, fRkt is a concave function according to the basis
of convex preservation for composite functions [50]. Then P ′1 is rewritten as the following,

P2 : min
θkt,pkt,δk

∑
k∈K

δ2
k (5.17a)

s.t. (6.14b), (5.17b)∑
t∈T

fRkt(θkt, pkt) ≥ Rmin
k , ∀k ∈ K, (5.17c)∑

t∈T
fRkt(θkt, pkt)−Dk ≥ −δk,∀k ∈ K. (5.17d)

P2 is nonconvex in general, but can become convex when θkt is fixed, which enables an iterative approach
to optimize pkt with fixed θkt by solving the convex problem and updating θkt under fixed pkt.
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Algorithm 4 Iterative approach for power allocation

Input: feasible pkt and δk.
1: repeat
2: Update θkt by (5.18).
3: Optimize pkt and δk by solving P2.
4: until convergence
5: Calculate Rk by (6.9), (6.12), (5.5).
6: if there exists terminals with Rk > Dk then
7: Solve nonlinear equations in (5.19).
8: end if

Output: optimized pkt, δk.

5.4 An Iterative Approach for Upper Bound

In this section, we propose UBA algorithm to obtain an upper bound (a feasible suboptimal solution)
for P0. In UBA, we optimize power allocation with fixed integer variables and iteratively update beam
scheduling and terminal-timeslot assignment to progressively improve the performance.

5.4.1 Power Allocation with Fixed Integer Solution

The considered iterative algorithm for solving P2 is summarized in Alg. 4. In each iteration, line 2 and
line 3 describe the procedures of alternatively update θkt and pkt, respectively, where θkt is updated with
fixed power allocation and pkt is optimized given θkt. In the end, terminals’ rates are calculated. With
fixed pkt, the optimal θkt is derived by [56],

θkt =

√
|hbk|2pkt∑

k′∈Kb\{k}
k′<k

|hbk|2pk′t +
∑

b′∈B\{b}

∑
k′∈Kb′

|hb′k|2pk′t + σ2
. (5.18)

With fixed θkt, P2 becomes convex. The optimum can be obtained by conventional algorithms, e.g.,
interior-point method [54]. Based on the theoretical results in [56], we conclude that the iterative process
in lines 1-4 converges to a stationary point. At the end of convergence, there may exist terminals with∑

t∈T f
R
kt > Dk. According to the conclusion of Proposition 1, a post process in lines 6-8 is performed

for these terminals by solving the following equations,

Rk = Dk,∀k ∈ K∗, (5.19)

where K∗ includes the terminals with Rk ≥ Dk. The nonlinear equations can be efficiently solved via
fixed-point iteration approach [174].

The complexity of Alg. 4 mainly falls into the optimization process in line 3. For optimizing pkt in
line 3, we apply interior-point method to solve P2 with the complexity of O(ψ log(1

ε )) [54], where ψ is
the self-concordant barrier parameter and ε is the precision [54]. The complexity of Alg. 4 is therefore
O(Nψ log(1

ε )), where N is the maximum number of iterations.

5.4.2 Beam Scheduling and Terminal-Timeslot Assignment

Next, we jointly optimize beam scheduling and terminal-timeslot assignment to improve the performance
iteratively. Some approaches, e.g., exhaustive search method, branch and bound [175], or simulated
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Algorithm 5 UBA

Input: Feasible p̃kt, α̃bt, and β̃kt (corresponding to M̃ and Ñ ).
1: repeat
2: Construct S based on α̃bt and (5.20).
3: if S 6= ∅ then
4: Select a swap Sbtb′t′ and constructM with (b′, t′).
5: Optimize pkt underM via Alg. 4.
6: else
7: UBA terminates.
8: end if
9: if M̃ andM do not satisfy (5.21) then

10: Remove Sbtb′t′ from S.
11: Move to line 3.
12: end if
13: Let M̃ = M and p̃kt = pkt and update α̃bt, β̃kt, and Ñ . Construct S̄ based on β̃kt, (5.22), and

(5.23).
14: if S̄ 6= ∅ then
15: Select a swap S̄ktk′t′ and construct N with (k′, t′).
16: Optimize pkt under N via Alg. 4.
17: end if
18: if Ñ and N do not satisfy (5.24) then
19: Remove S̄ktk′t′ from S̄.
20: Move to line 14.
21: end if
22: Let Ñ = N and p̃kt = pkt and update β̃kt.
23: until the number of iterations reaches N ′

Output: p̃kt, α̃bt, β̃kt.

annealing [43], are capable of obtaining the optimal or near optimal integer solution but at the expense
of unaffordable computational complexity. To avoid exponential-time complexity, we provide a scheme
based on matching theory to decrease the capacity-demand gap iteratively.

The optimization of integer solutions can be viewed as two many-to-many matching problems [43],
i.e., beam-to-timeslot matching and terminal-to-timeslot matching. DefineM andN as the sets contain-
ing tuples of beam-to-timeslot and terminal-to-timeslot matching, respectively. Denote y(M,N ) as the
objective value obtained by Alg. 4 underM and N , whereM and N are constructed based on αbt and
βkt, respectively. For instance, if αbt = 1, then (b, t) ∈ M, otherwise, (b, t) /∈ M. The many-to-many
matching problem can be solved via swap [43]. Consider a setM1 where (b, t) ∈M1 but (b′, t′) /∈M1.
We define a swap Sbtb′t′ as the operation of convertingM1 intoM2 by removing (b, t) and introducing
(b′, t′), i.e., setting αbt = 0 and αb′t′ = 1. A swap happens ifM1 andM2 meet the following conditions:

1.M2 satisfies constraints (6.14c) and (6.14i); (5.20)

2. y(M1,N ) > y(M2,N ). (5.21)

Define S as the set containing all the possible Sbtb′t′ .
Analogous to beam-to-timeslot swap, we consider a set,N1 where (k, t) ∈ N1 but (k′, t′) /∈ N1. We

define a swap S̄ktk′t′ as the operation of convertingN1 intoN2 by removing (k, t) and introducing (k′, t′),
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i.e., setting βkt = 0 and βk′t′ = 1. A swap occurs if N1 and N2 satisfy the following conditions:

1. N2 satisfies constraints (6.14d); (5.22)

2. k, k
′ ∈ Kb and αbt = αbt′ = 1; (5.23)

3. y(M,N1) > y(M,N2). (5.24)

Define S̄ as the set containing all the possible S̄ktk′t′ .
We summarize the procedure of UBA, in Alg. 5. Denote N ′ as the maximum number of iterations.

Line 3 to line 13 represent the swap of beam-to-timeslot matching and line 14 to line 22 indicate the
terminal-to-timeslot swap. Remark that the algorithm starts to assign terminals to timeslots once beam-
to-timeslot swap is executed. The algorithm terminates when the number of iterations reaches N ′ or
there is no more valid swap.

In UBA, the complexity for each iteration consists of two parts, i.e., beam-to-timeslot swap and
terminal-to-timeslot swap. The numbers of all the possible beam-to-timeslot and terminal-to-timeslot
swaps are at most TB0×T (B−B0) and B0×TK0×T (K ′−K0), respectively, where K ′ denotes the
maximum number of terminals in each beam. For each iteration, the worst case is to optimize power for
all the swaps in S and S̄ by Alg. 4. Thus the complexity of UBA is O(N ′T 2B0(B − B0 + K0(K ′ −
K0))Nψ log(1

ε )). Remark that, in practice, the complexity can be largely reduced by eliminating a
certain number of swaps which do not satisfy conditions (5.20), (5.22), and (5.23).

5.5 An MICP Approximation Approach for Lower Bound

In this section, we resolve P0’s non-convexity by intentionally simplifying the inter-beam interference,
and construct an MICP formulation to enable a lower bound for P0. We observe that, in some BH
cases, the inter-beam interference may become negligible, e.g., illuminating two distant beams. If this
interference can be ignored, P0 becomes an MICP problem. In this case, pkt for terminals in Kb can be
derived as follows,

p1t =
(

2
R1t
W − 1

) σ2

|hb1|2
,

p2t =
(

2
R2t
W − 1

)(
p1t +

σ2

|hb2|2

)
,

. . .

pKbt =

(
2
RKbt

W − 1

)(Kb−1∑
k′=1

pk′t +
σ2

|hbKb |2

)
. (5.25)

Thus (6.14b) can be rewritten in an equivalent expression as,

Kb∑
k=1

(
σ2

|hbk|2
− σ2

|hb(k−1)|2

)
2

Kb∑
k′=k

Rk′t

W − σ2

|hbKb |2
≤ P,∀b ∈ B,∀t ∈ T , (5.26)

where we define that σ2

|hb0|2
= 0. Then P0 becomes,

P3 : min
αbt,βkt,Rkt,δk

∑
k∈K

δ2
k (5.27a)
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s.t. (5.26), (6.14c), (6.14d), (6.14h), (6.14i), (5.11c), (5.27b)

Rkt ≤ Rmaxβkt, ∀k ∈ K,∀t ∈ T , (5.27c)

where Rmax is a constant, no smaller than all possible Rkt. Constraints (5.27c) connect R-variables with
β-variables, where Rkt = 0 if βkt = 0, otherwise, Rkt ≤ Rmax. P3 is an MICP with the presence of
exponential cones in (5.26) and the quadratic cones in (5.27a). The optimum of P3 can be achieved by
branch and bound or outer approximation approach [53].

Note that, since inter-beam interference has been intentially removed, the optimum of P3 is no larger
than that of P0 and thus can be viewed as a lower bound of P0.

Remark 1: The gap between the lower bound (the optimum of P3) and the optimum of P0 follows
three cases:

• Zero gap: The optimum at P0 and P3 is equivalent if only one beam is illuminated at each timeslot,
since there is no inter-beam interference in the system.

• Close-to-zero gap: P3 provides a close lower bound to the optimum of P0 if the level of inter-beam
interference keeps low.

• Large gap: In some cases, the lower bound becomes loose when inter-beam interference is strong.
However, due to the inherent characteristics in BH optimization, only the beams with less mutual
interference are preferred to be activated at the same timeslot. Thus, this undesired issue can be
avoided in a majority of cases. �

5.6 An Efficient Algorithm for Joint Optimization

UBA aims at providing a tight upper bound (or near-optimal solution) to P0 at the expense of high
complexity. To further reduce the computational complexity, we design a low-complexity approach, i.e.,
E-JPBT, to provide an efficient solution for P0. The basic idea of E-JPBT is to divide the whole decision
process of P0 into T stages (or timeslots) and then solve a subproblem at each stage or timeslot. To avoid
directly tackling integer variables with large complexity, the subproblem for each timeslot is relaxed to a
continuous problem, which can be solved by Alg. 4.

The residual demand for terminal k at timeslot t is,

D̄k = Dk −
t−1∑
τ=0

Rkτ , (5.28)

where R0t = 0. At the t-th timeslot, the resource allocation problem for the current timeslot is expressed
as,

P0(t) : min
αbt,βkt,pkt

∑
k∈K

(
Rkt − D̄k

)2
+
∑
k∈K

φk

[
Rmin
k −Rkt −

t−1∑
τ=0

Rkτ

]+

(5.29a)

s.t.
∑
k∈Kb

pkt ≤ 1,∀b ∈ B, (5.29b)

∑
b∈B

αbt ≤ B0, (5.29c)
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Algorithm 6 E-JPBT
Input: φk.

1: for t = 1, . . . , T do
2: Optimize ᾱbt and β̄kt by solving P4(t) via Alg. 4.
3: Select j∗ = arg maxj{

∑
b∈Bj ᾱbt}.

4: Set αbt = 1, ∀b ∈ Bj∗ .
5: Select K0 largest-β̄kt terminals for each illuminated beam.
6: Set accordingly βkt = 1.
7: Optimize pkt by solving P4(t) via Alg. 4 with αbt and βkt.
8: Update D̄k by (5.28).
9: end for

10: Optimize pkt via Alg. 4 with determined αbt and βkt.
Output: αbt, βkt, and pkt.

∑
k∈Kb

βkt ≤ K0αbt, ∀b ∈ B, (5.29d)

pkt ≤ βkt, ∀k ∈ Kb, (5.29e)

αbt + αb′ t ≤ 1, b 6= b
′
, ∀(b, b′) ∈ Ω, (5.29f)

where the second term of the objective is the penalty for constraints (6.14h) and φk > 0 is the penalty fac-
tor. The objective is penalized if the rate of terminal k is lower than Rmin

k , which means more resources
should be allocated to this terminal in the later timeslots.

Since P0(t) is MINCP and is still challenging, we relax αbt and βkt into continuous variables, i.e.,
0 ≤ ᾱbt ≤ 1 and 0 ≤ β̄kt ≤ 1. Then we convert the R-function into fRkt(θkt, pkt) as expressed in (5.16)
via quadratic transform. P0(t) can be reformulated as,

P4(t) : min
ᾱbt,β̄kt,pkt,θkt

∑
k∈K

(
fRkt − D̄k

)2
+
∑
k∈K

φk

[
Rmin
k − fRkt −

t−1∑
τ=0

fRkτ

]+

(5.30a)

s.t. (5.29b), (5.29c), (5.29d), (5.29e), (5.29f), (5.30b)

which can be solved via Alg. 4. We define Bj ⊆ B as the j-th beam group. Note that the beam groups
are constructed based on Ω. We schedule the beam group on the basis of j∗ = arg maxj{

∑
b∈Bj ᾱbt}.

Then we select K0 largest-β̄kt terminals for each active beam. Accordingly, we decide αbt and βkt for
the current timeslot. To update the residual demand D̄k, we solve the remaining of P4(t) via Alg. 4 with
the decided integer solution. At the end, with all determined αbt and βkt, we optimize pkt by solving P1

via Alg. 4.

The procedure of E-JPBT is summarized in Alg. 6, where line 2 to line 6 are the process of de-
termining integer variables for each timeslot. In line 2, we solve the relaxed problem via Alg. 4 and
obtain continuous solution, ᾱbt and β̄kt. The decisions of αbt and βkt are described in line 4 and line
6, respectively. With determined integer variables, power optimization is executed via Alg. 4 to update
D̄k. At the end of E-JPBT, we optimize power with all the determined integer solution in line 7. The
complexity of E-JPBT mainly falls into the optimization process. In conclusion, E-JPBT needs to apply
Alg. 4 for 2T + 1 times, and thus the complexity of E-JPBT is O((2T + 1)Nψ log(1

ε )).
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Table 5.1: Simulation parameters

Parameter Value
Frequency, f fr 20 GHz (Ka band)
Bandwidth, W 500 MHz

Satellite location 13◦ E
Satellite height 35,786 km

Beam radiation pattern Provided by ESA [148]
Power budget per beam, P 20 dBW
Receive antenna gain, Grx

k 42.1 dBi
Noise power, σ2 -126.47 dBW

Number of timeslots, T 256
Number of beams, B 37

Maximum active beams, B0 5
Number of terminals per beam, K ′ 5

Minimum capacity, Rmin
k 5 Mbps

Traffic demand, Dk 100 Mbps to 1.2Gbps
Error ratio of imperfect SIC 10−4

Maximum multiplexed terminals, K0 3
Maximum iterations in Alg. 4, N 20
Maximum iterations in Alg. 5, N ′ 100

5.7 Performance Evaluation

5.7.1 Simulation Settings and Benchmarks

In this section, we evaluate the performance of the proposed NOMA-BH scheme and the proposed al-
gorithms in a multi-beam satellite system. The parameter settings are summarized in Table 6.1 unless
stated otherwise. The beam radiation pattern is provided by European Space Agency (ESA) [148], which
is depicted in Fig. 5.2. We set T = 256, which is larger than the minimum required number of timeslots,⌈
K′

K0

⌉ ⌈
B
B0

⌉
= 16. In this setting, all the terminals can be scheduled to at least one timeslot. The results

are averaged by 1000 instances. In NOMA, we consider a practical issue in performance evaluation, i.e.,
residual interference in decoding terminals’ signals due to imperfect SIC [139]. Note that imperfect SIC
is always considered in performance evaluation. When calculating the offered-requested data rate gap,
the units of capacity and demand are unified as Mbps.

In simulation, we aim to demonstrate the applicability of the proposed BH-NOMA schemes in vari-
ous satellite scenarios. We consider two typical satellite scenarios [1] (highlighted in Fig. 5.2):

• Scenario 1 (Fig. 5.2(a)): We extract a set of adjacent beams from 245 beams, where the beam
illumination design is carried out within a concentrated area, e.g., covering a country. Scenario 1
refers to the systems with the presence of high-level inter-beam interference.

• Scenario 2 (Fig. 5.2(b)): We randomly select a set of non-adjacent beams from 245 beams, where
BH is performed within a large area. One instance is to serve terminals in some distributed target
areas, e.g., mountains or rural areas. Since no adjacent beams exist in Scenario 2, the inter-beam
interference is typically smaller than that in Scenario 1.

We summarize the benchmark schemes as the following for different purposes of performance eval-
uation. To investigate the benefits of combining BH and NOMA, we compare the proposed BH-NOMA
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Figure 5.2: Beam pattern covering Europe provided by ESA and the adopted two scenarios, where BH is operated among the
considered 37 beams (highlighted in red color).

schemes with the following standalone schemes either considering BH or NOMA (referring to Fig. 5.3
and Table II):

• BH-OMA (without NOMA): The BH-OMA problem can be formulated by simply restricting only
one terminal at each timeslot, i.e., K0 = 1 in P0, and then apply Alg. 5 to obtain the optimized
result.

• 1c-NOMA (without BH): NOMA is adopted with 1-color frequency-reuse pattern (full-frequency
reuse). All the beams keep illuminated without considering BH.

• 2c-NOMA (without BH): NOMA is coordinated with 2-color frequency-reuse pattern where each
color represents either vertical and horizontal polarization such that adjacent two beams can oc-
cupy orthogonal resources.

• 4c-NOMA (without BH): NOMA is coordinated with 4-color frequency-reuse pattern. In the
system, the frequency band is equally divided into two segments and each segment utilizes vertical
and horizontal polarization. In this way, the adjacent four beams can occupy four different colors
and the inter-beam interference can be reduced.

We also compare the performance achieved by the proposed algorithms with the following bench-
marking schemes from the literature (referring to Fig. 5.5):

• RA: We apply the resource allocation scheme proposed in [176] to determine the number of sched-
uled timeslots for each beam. Then Alg. 6 is applied to decide terminal-timeslot assignment and
power allocation.

• MaxSINR: An approach proposed in [88] and [84] is adopted to determine the illuminated beams
at each timeslot by selecting the beams with maximum SINR. Then Alg. 6 is then adapted to
optimize power allocation and terminal-timeslot assignment.

• MinCCI: An efficient approach used in [84] is applied to activate beams with the minimum inter-
beam interference, then Alg. 6 is adopted analogously to MaxSINR.
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(a) UBA (1-color) (b) E-JBPT (1-color)

(c) BH-OMA (1-color) (d) NOMA (1-color)

(e) NOMA (2-color) (f) NOMA (4-color)

Figure 5.3: An illustration of gaps between each user’s data demand (blue dashed line) and the offered capacity (red solid line)
obtained in: (a) UBA, (b) E-JPBT, (c) BH-OMA, (d) 1c-NOMA, (e) 2c-NOMA, and (f) 4c-NOMA (K = 48, B = 16, B0 = 4,
and K0 = 2).

Table 5.2: Power consumption and energy efficiency of different schemes in Fig. 5.3

Schemes UBA E-JPBT BH-OMA 1c-NOMA 2c-NOMA 4c-NOMA
Power (Watts) 227.0 221.5 192.8 860.44 584.45 929.24

Energy efficiency (Mbps/Watt) 112.3 100.4 87.0 25.1 36.2 26.4

For a fair comparison with other metrics for evaluating the offered-requested data rate matching, we
adapt UBA to optimize the following widely-used objective functions (referring to Table III):

• Scheme 1: The objective is to max-min offered-capacity-to-requested-traffic ratio (OCTR), i.e.,
max mink∈K

Rk
Dk

, [17, 154, 10] such that the worst capacity-traffic mismatch effects among termi-
nals can be mitigated.

• Scheme 2: The objective aims at minimizing the total unmet capacity of terminals, i.e., min
∑

k∈K
[Dk −Rk]+, [93, 21, 10].

5.7.2 Benefits of Jointly Considering BH and NOMA

In Fig. 5.3, we discuss the benefits and evaluate the performance gains of combining BH and NOMA.
The proposed BH-NOMA schemes, i.e., UBA and E-JPBT, are compared with the standalone schemes,
either considering BH or NOMA. We adopt 1-color frequency-reuse pattern in UBA, E-JPBT, and BH-
OMA. The gaps are large in standalone NOMA or BH schemes, i.e., Fig. 5.3(c) to Fig. 5.3(f). In
contrast, by jointly optimizing BH and NOMA, the proposed BH-NOMA schemes in Fig. 5.3(a) and Fig.
5.3(b) significantly alleviate the mismatch effects, e.g., the objective value is reduced from 105 − 108

in (Fig. 5.3(c) – Fig. 5.3(f)) to 102 − 103 (in Fig. 5.3(a) and Fig. 5.3(b)). In Table 5.2, we further
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Figure 5.4: The gap performance between upper bound and lower bound, where we set 5 terminals in each beam and K0 = 2.

summarize the power consumption and energy efficiency in these schemes. BH-OMA consumes the least
power, slightly lower than UBA and E-JPBT, but does not perform well in capacity-demand matching
and energy efficiency. Compared to 1c-NOMA, 2c-NOMA, and 4c-NOMA, the proposed UBA and E-
JPBT, by augmenting both power- and time-domain flexibilities, consume much less power and achieve
good trade-offs between power saving and capacity-demand mismatch reduction.

5.7.3 Performance in Bounding and Approaching the Optimum

We evaluate the tightness of upper and lower bounds in Scenario 1 and Scenario 2 with 16 or 37 beams.
From Fig. 5.4, we observe that the bounding gap increases as the average demand grows. For presen-
tation convenience, we apply the term “×105” in y-label as the magnitude of the values on y-axis. The
proposed bounding scheme achieves near-zero gaps in Scenario 2, even for the cases with large demand.
This is because the inter-beam interference can maintain at a very low level when distant beams are
activated. When this small amount of inter-beam interference is intentionally neglected in LBA, it has
limited impact and therefore keeps a tight lower bound for the optimum. In contrast, when Scenario 1
is considered, a larger amount of inter-beam interference is removed in LBA, thus results in larger gaps,
e.g., 14.9% in 37 beams and 19.2% in 16 beams. The numerical results are consistent with the anal-
ysis in Remark 1. By our design in LBA, less interference is neglected and a tighter lower bound can
be obtained. We can observe three major differences of the optimized BH solutions between Fig. 2(a)
and Fig. 2(b). Firstly, the optimized BH solutions lead to smaller capacity-demand gaps, i.e., objective
value, in Scenario 2 than that in Scenario 1. Secondly, in Scenario 1, the optimized BH scheme may
prefer to activate a fewer number of beams per timeslot due to the presence of higher-level inter-beam
interference, while more beams tend to be activated together in Scenario 2 due to the fact of distantly
located beams with less mutual interference. Thirdly, the activated beams are typically non-neighboring
and far away from each other in order to avoid strong inter-beam interference in Scenario 1, which may
not always be the case in the optimized BH solutions of Scenario 2. This is because a beam can possibly
be activated together with its nearest or neighboring beams (but geographically non-adjacent in Scenario
2) at the optimum when the interference maintains at the low level.
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Figure 5.5: The gap performance with respect to traffic demand among the proposed schemes and benchmarks. (Scenario
1, 5 terminals per beam, K0 = 3) (Solid line: under free-space channel model; Dash line: atmospheric channel model with
long-term effects and rain effects.)

5.7.4 Performance Comparison between the Proposed Algorithms and Benchmarks

In Fig. 5.5, we compare the performance of the proposed UBA, LBA, and E-JPBT with BH-OMA
and benchmarking schemes from the literature. We observe that the proposed schemes outperform all
the four benchmarks in reducing the gap between requested and offered data rates. Firstly, due to the
higher spectral efficiency in NOMA, the proposed BH-NOMA schemes outperform BH-OMA, e.g.,
80.8% and 76.3% improvement in UBA and E-JPBT. Compared to RA, MaxSINR, and MinCCI, E-
JPBT decreases the effect of offered-requested data mismatches by 93.2%, 90.7%, 70.4%, respectively.
The proposed BH-NOMA schemes can largely reduce the mismatch effects by joint optimization of BH
and NOMA compared to GA, MaxSINR, and MinCCI. We also observe that E-JPBT can achieve the cost
close to the upper bound with a gap of 18.95%. Moreover, we evaluate the schemes under the channel
model with atmospheric fading including long-term effects and rain effects [150]. The results verify
that the advantages of the proposed UBA and E-JBPT over other benchmarks remain. The two schemes
can achieve good performance in reducing the capacity-demand gaps under different channel models.
The average computational time of UBA, E-JPBT, MinCCI, and MaxSINR normalized by that of RA
is 14.16, 1.15, 1.10, and 1.08, respectively, where E-JPBT consumes 91.88% less time compared to
UBA and maintains the same magnitude of computational time with other efficient benchmark schemes.
Considering the observed performance gains, E-JPBT thus achieves a good trade-off between complexity
and performance compared to other schemes.

5.7.5 The Performance of the Proposed Schemes with Different Frequency-Reuse Pat-
terns

In Fig. 5.6, we evaluate the applicability of the proposed BH-NOMA schemes in the scenarios with
the implementation of 1-color, 2-color, and 4-color frequency-reuse patterns. The performance of the
proposed schemes in all the three scenarios is promising. With higher spectral efficiency, the proposed
schemes in 1-color scenario can perfectly match capacity to demand when the requested demand is no
larger than 650 Mbps. With less inter-beam interference, the average performance gaps between upper
bound and lower bound in 2-color and 4-color scenarios are 11.23% and 2.32%, respectively, which are
smaller than that in 1-color scenario. The result also verifies the conclusion in Remark 1.
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Figure 5.6: The gap performance value with respect to traffic demand of the proposed BH-NOMA schemes in different scenarios
with 1-color, 2-color, adn 4-color frequency-reuse patterns.

Table 5.3: The performance comparison among different metrics

Metrics
Schemes

UBA Scheme 1 Scheme 2

Sum squared gaps
∑

k∈K(Rk −Dk)
2 1.57× 103 3.0× 104 1.69× 104

The worst OCTR 0.93 0.96 0.88
Sum unmet capacity

∑
k∈K[Dk −Rk]+ 218.47 1013.181 215.30

5.7.6 Comparison among Different Metrics for Evaluating the Offered-Requested Data
Rate Mismatch

Next, we compare the offered-requested data mismatch performance among different metrics. In Table
5.3, we summarize the performance, where each scheme is solved by its own objective, e.g., 1.57× 103

is obtained by UBA with the objective (5.6a) in the first row. By summarizing the obtained solutions,
the results for the other two metrics can be obtained, e.g., the worst OCTR for UBA in the second row.
As expected, all the three schemes perform the best with their own objectives, referring to the diagonal
values, but can degrade sharply when measured with other metrics. The proposed BH-NOMA scheme
shows good adaptation and generalization capabilities among different metrics, which means that UBA
achieves the best performance in reducing the sum squared gaps, and slightly losses around 1% to 3%
performance than the other two schemes.

5.7.7 Impact of imperfect SIC on BH-NOMA Performance

At last, we evaluate the impact of practical issues of NOMA on the performance of UBA and E-JPBT.
We introduce 0 ≤ ηk ≤ 1 to represent residual interference due to imperfect SIC [139]. Specifically, the
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Figure 5.7: The gap performance versus error ratio of imperfect SIC of the proposed NOMA schemes.

intra-beam interference in (6.9) is rewritten as∑
k′∈Kb\{k}

k′<k

|hbk|2pk′t +
∑

k′∈Kb\{k}
k′>k

|hbk|2pk′tηk. (5.31)

The result in Fig. 5.7 shows the applicability of the proposed BH-NOMA schemes to imperfect-SIC
scenarios. We can observe that the performance increases slowly when the error ratio of imperfect SIC is
small, e.g., from 10−5 to 10−2. When the ratio increases more than 10−2, OMA might become a better
choice. Besides, when the error is large, e.g., 10−1, the mismatch effects in the case of K0 = 5 is worse
than those of K0 = 2 and K0 = 3. This is because the intra-beam interference caused by imperfect SIC
increases with the number of co-channel terminals in the same beam.

5.8 Conclusion

In this chapter, we have investigated joint resource optimization for the coexistence of power- and time-
domain flexibilities. A resource allocation problem has been formulated to minimize the gap between
requested and offered data rates of terminals by jointly optimizing power allocation, beam scheduling,
and terminal-timeslot assignment. We have identified the NP-hardness of the problem and proposed
an effective bounding scheme, UBA and LBA, to benchmark the optimality. To reduce computational
complexity, we have designed an efficient algorithm for joint optimization. In the end, we have verified
the necessity of combining BH and NOMA, and demonstrated the advantages of the proposed BH-
NOMA schemes compared to different benchmarks.
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Chapter 6
Joint Optimization of Power- and
Spatial-Domain Flexibilities

In this chapter, we continue exploiting multi-dimension flexibilities in satellite systems. Compared to
conventional fixed beam pattern, adaptive beam patterns can adjust the footprint to meet irregular traffic
distribution and mitigate co-channel interference. In this chapter, we study the implicit synergy be-
tween adaptive beam patterns and NOMA and investigate resource optimization in the context of power-
and spatial-domain flexibilities in a multi-LEO satellite system. The formulated problem is to jointly
opotimize power allocation, beam pattern selection, and terminal association to minimize the effects
of capacity-demand mismatch. To tackle the challenging issues raised by discrete variables and non-
convexity, we derive a joint optimization framework. Considering the complexity of the framework, we
reveal the underlying relationships between beam pattern selection and NOMA optimization, based on
which we design an efficient approach to achieve a good trade-off between performance and complexity.
In simulation, we discuss the synergy between adaptive beam patterns and NOMA and demonstrate the
superiority of the proposed schemes over benchmarks in different scenarios.

6.1 Introduction

Considering the advantages of offering high-throughput transmission and extending coverage to the
space, LEO satellite systems are envisioned as one of the promising solutions to the upcoming beyond
5G (B5G) and 6G era [3]. To deliver exponentially growing traffic and support ubiquitous connectivity,
the industry is motivated to develop projects on the deployment of hundreds or thousands of LEO satel-
lites in the space [177], e.g., SpaceX Starlink. However, with densely-deployed LEO satellites, terminals
may receive considerable interference from neighboring satellites [178, 179]. Besides, due to the het-
erogeneity of traffic distribution, resource allocation in LEO satellite systems needs to be more adaptive
[15]. How to mitigate co-channel interference and provide high-quality services is challenging, which
calls for the introduction of more flexibilities in resource allocation.

In conventional satellite systems, beam patterns are pre-determined and the projected beam shapes
(or footprints) are fixed [1]. When LEO satellites are densely deployed and traffic demands are irregu-
larly distributed, this fixed footprint plan may limit the performance improvement. With the development
of flexible payloads, beam shapes can be altered by changing beam patterns via BFN without mechan-
ically moving antennas [1, 180, 94]. By adjusting beam patterns, satellite transmission can be more
adaptive to non-uniform traffic distribution [89, 26, 87]. Besides, the integration to terrestrial systems
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Figure 6.1: Illustrative examples of adaptive beam patterns.

can be improved by adapting footprints to mitigate co-channel interference to terrestrial systems [27] and
satisfying different configuration requirements [28]. We provide illustrative instances of adaptive beam
patterns in Fig. 6.1. When a terminal is located in the area covered by two adjacent satellite beams, e.g.,
in Fig. 6.1(a), the terminal may suffer from strong inter-satellite interference. To reduce the interference,
both satellites could select patterns with smaller but more concentrated beams to cover the associated
terminals, as depicted in Fig. 6.1(b). Another typical example is to change patterns with larger radiated
beams to cover terminals beyond the beam edge but with high demand, e.g., from Fig. 6.1(c) to Fig.
6.1(d).

Considering the advantages in traffic adaptation and interference mitigation, adaptive beam pattern
has received growing attention. The authors in [89] jointly optimized beamwidth and transmit power to
adapt to varying traffic. Besides beamwidth, more factors affecting the beam shape, e.g., beam center
and rotation angle, were taken into account and the footprint planning was designed to match irregular
traffic distribution in [26]. In both works, regular beam shapes (e.g., circular or elliptical) are applied.
The expressions of transmit antenna gain w.r.t. configuration parameters (e.g., beamwidth, beam center,
rotation angle) are sophisticated in general, even in the cases of regular beam shapes. Directly optimizing
footprints is difficult for practical implementation and may not be applied to irregular beam shapes [1].
Alternatively, multiple candidate beam patterns can be designed in advance for various possible scenarios
and a suitable beam pattern can be selected from the candidate set depending on traffic distribution and
interference. Beam pattern selection can be applied to all kinds of footprints and candidate patterns can be
easily updated when necessary. In [87], the authors optimized beam pattern selection to meet irregular
traffic distribution and discussed its implementation in practical satellite payloads. The above works
focused on optimizing rate matching to traffic distribution over an area instead of traffic demands of
specific terminals. In this work, we study beam pattern selection to alleviate capacity-demand mismatch
at the terminal level.

To facilitate the accommodation of multiple terminals in each beam, NOMA is applied. By super-
position coding at the transmitter side and SIC at the receiver side, spectral efficiency can be enhanced
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Figure 6.2: Illustrative instances of the coupling between adaptive beam patterns and NOMA. The terminals and their associated
satellite are depicted in the same color.

compared to OMA [33]. NOMA has proven its advantages in LEO satellite systems, e.g., supporting
massive connectivity [114] and assisting file delivery [181]. In this work, we study resource allocation in
LEO satellite systems where NOMA is applied in each satellite beam to reduce intra-beam interference
and facilitate multi-terminal access whereas adaptive beam pattern is adopted to mitigate inter-satellite
interference and adapt to irregular traffic distribution.

6.1.1 Motivations and Contributions

Due to the coupling between beam pattern selection and NOMA (involving power allocation and terminal
scheduling), resource management in the targeted LEO satellite systems is challenging. On the one hand,
selecting different beam patterns could lead to the adjustment of NOMA strategies. For instance, from
Fig. 6.2(a) to Fig. 6.2(b), as the green beam is enlarged, more terminals are covered, resulting in more
possible combinations of terminal scheduling in this beam. On the other hand, different NOMA solutions
could influence the choice of beam patterns. In Fig. 6.2(c), the green beam chooses to schedule terminals
on the left to avoid large inter-satellite interference. But if the demand of the terminal in the area covered
by two satellite beams grows, that terminal should be scheduled. In this case, the red beam needs to select
a beam pattern with a smaller size, as depicted in Fig. 6.2(d), such that the inter-satellite interference
can be reduced. The relationship between beam pattern selection and NOMA is more complicated than
the instances. However, the underlying synergy and the corresponding optimization of NOMA strategies
and beam pattern selection are still unknown in the literature.

As an early attempt, we are motivated to provide an investigation on resource management of beam
pattern selection and NOMA in multi-LEO-satellite systems, where each satellite selects one beam pat-
tern from multiple candidates whereas NOMA is applied in each satellite beam to accommodate multiple
terminals. The main contributions are summarized as follows:

• We formulate a joint optimization problem of power allocation, beam pattern selection, and termi-

83



6.2. System Model

Figure 6.3: An illustrative scenario of the considered LEO satellite system. Adaptive beam patterns are adopted to adjust the
beam shapes and NOMA is applied in each beam to serve multiple terminals.

nal scheduling in a multi-LEO-satellite system to minimize the capacity-demand gap. The problem
falls into the category of MINCP.

• Considering the difficulty in MINCP, we provide theoretical insights on how to tackle the non-
convexity and combinatorial properties in the formulated problem. Based on this, we design a
joint optimization framework to allocate power, select beam patterns, and schedule terminals to
timeslots/satellites (JPST).

• We analyze the implicit connection between beam pattern selection and NOMA via a special case.
Based on the analysis, we design a low-complexity scheme to decide the solution of pattern se-
lection and terminal-satellite association first and then optimize terminal-timeslot scheduling and
power allocation (LC-PST).

• Numerical results show the advantages of jointly optimizing beam pattern selection and NOMA
over conventional systems with OMA and fixed beam pattern.

6.2 System Model

We consider downlink transmission in a multi-LEO-satellite system, as depicted in Fig. 6.3. S satellites
fly over the area of interest, where the coverages may overlap partially with neighboring satellite beams.
Denote S as the set of the satellites and Ks as the set of the terminals associated to the s-th satellite.
As an early-attempt study, we consider that each satellite generates one beam. In the system, all the
satellites access the same frequency band. The communication procedure is described as follows: First,
messages containing terminals’ status, e.g., channel conditions, traffic demand, terminals’ positions, etc.,
are feedbacked to the gateway via return links. Then the resource manager co-located with the gateway
executes the resource optimization algorithm to generate optimized decisions. Next, the gateway informs
optimal decisions to satellites and delivers data from the core networks to satellites. At last, satellites
transmit data to targeted terminals.
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Figure 6.4: The shaped beam antenna with BFN.

6.2.1 Adaptive Beam Patterns

Denote Ns as the set of the candidate beam patterns of satellite s. Each pattern refers to one specific
beam shape. With optimized decisions informed by the gateway, one beam pattern is selected out ofNs.
Remark that beam patterns change on a frame-by-frame basis and resource allocation is targeted for one
frame. Denote T as the set of the T timeslots in one frame. We assume that satellites stay static within
each frame. The beam pattern is generated by the BFN on the satellite payload, as depicted in Fig. 6.4.
By BFN controlling phase shifters and variable power dividers to alter phases and amplitudes, each feed
element generates an elementary beam and the shaped beam is constructed by these elementary beams
[1]. The resulted beam shape is defined as the coverage within the ϕ-dB contour [1].

The relationship between the transmit antenna gain of a beam pattern and the corresponding configu-
ration parameters is sophisticated and may not be captured by explicit expressions, especially for patterns
with irregular beam shapes [1, 26, 87]. For better illustration, we use circular beam as an example to
abstract the beam pattern model. The transmit antenna gain of satellite s under beam pattern n regarding
terminal k is expressed by,

GTx
snk = GTx

s,max

(
J1(usnk)

2usnk
+ 36

J3(usnk)

u3
snk

)2

, (6.1)

where J1(·) and J3(·) are Bessel functions of the first kind of order one and three, respectively. GTx
s,max

is the peak transmit antenna gain of satellite s. The notation usnk is expressed as,

usnk = 2.07123
sin θsk

sin θsn,3dB
, (6.2)

where θsk denotes the off-axis angle between the s-th satellite’s beam center and the k-th terminal.
θsn,3dB denotes the 3-dB angular beamwidth of pattern n radiated by satellite s. The beam pattern
model in (6.1) is widely adopted, e.g., a simplified Bessel function was adopted in 3GPP TR 38.811
[182]. An example of transmit antenna gain with different beamwidth is presented in Fig. 6.5. With a
large beamwidth, the beam can cover a wider area but the resulted inter-satellite interference is stronger.
On the other hand, the decrease of beamwidth causes a smaller coverage, but the directivity is more
concentrated on the beam center with less interference outwards.

For other types of beam shapes, the expression could be more complicated, e.g., the transmit antenna
gain for elliptical beams depends on beam center position, beamwidth (including the major and minor
axises), and tilt angle [1, 26]. Remark that this work only focuses on beam pattern selection, where
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Figure 6.5: Transmit antenna gain pattern with beamwidth 1◦ and 4◦.

the candidate patterns are pre-designed and can be updated easily when necessary. Thus the methods
discussed in this work can be applied to any kind of footprint.

6.2.2 Channel Model

The channel loss from satellite s to terminal k is [182],

[Ltotal
sk ] = [Lba

sk ] + [Lga
sk] + [Lsc

sk] + [Lra
sk], (6.3)

where Lga
sk, Lsc

sk, and Lra
sk are gaseous, scintillation, and rain attenuation exceeded for ρ% of an average

year, respectively. Here, the operator [·] converts the value into dB. Lba
sk is the basic path loss, which is

derived by,
[Lba
sk ] = [Lsk] + [Lsf

sk], (6.4)

where Lsf
sk denotes shadow fading following log-normal distribution. Lsk denotes the free-space path

loss, expressed by,
Lsk = 32.45 + 20 log10(f freq) + 20 log10(dsk), (6.5)

where dsk is the distance from satellite s to terminal k, and f freq is the frequency. The channel gain from
satellite s to terminal k under beam pattern n is expressed as,

|hskn|2 = GTx
sknG

Rx
k /Ltotal

sk , (6.6)

where GRx
k is the receive antenna gain of terminal k. The channel gain from satellite s to terminal k is

derived as,
|hsk|2 =

∑
n∈Ns

ysn|hskn|2, (6.7)
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where ysn ∈ {0, 1} indicates beam pattern selection, where satellite s selects the n-th pattern if ysn = 1
and not otherwise.

6.2.3 NOMA

By employing NOMA, each satellite can multiplex at most K̄ terminals with different power levels at
the same frequency-time resource unit. We use φslk[t] to indicate the decoding order between terminal
k and l served by satellite s at timeslot t. If φslk[t] = 0, terminal k performs SIC to decode l’s signal
and remove it. If φslk[t] = 1, terminal k views l’s signal as noise. Denote psk[t] as the transmit power
of terminal k assigned by satellite s at timeslot t. We apply one of the most widely-adopted rules
to decide decoding orders, where the decoding order is identical to the ascending order of ωsk[t] =∑

s′∈S\{s} |hs′k|2
∑
k′∈Ks′

ps′k′ [t]+σ
2

|hsk|2
[154], i.e.,

φslk[t] =

{
0, if ωsk[t] ≤ ωsl[t];
1, otherwise.

(6.8)

The signal-to-interference-plus-noise ratio (SINR) of terminal k associated to satellite s at timeslot t is
derived as,

γsk[t] =
|hsk|2psk[t]

I intra
sk [t] + I inter

sk [t] + σ2
, (6.9)

where

I intra
sk [t] =

∑
l∈K\{k}

|hsk|2φslk[t]psl[t], (6.10)

I inter
sk [t] =

∑
s′∈S\{s}

|hs′k|2
∑

k′∈K\{k}

ps′k′ [t], (6.11)

are intra-beam and inter-satellite interference, respectively. σ2 is the noise power. The available rate of
terminal k allocated by satellite s at timeslot t is,

Rsk[t] = B log(1 + γsk[t]), (6.12)

where B is bandwidth. Thus the offered capacity of terminal k is,

Rk =
∑
t∈T

∑
s∈S

Rsk[t]. (6.13)

6.3 Problem Formulation

We formulate a resource allocation problem to jointly optimize power allocation, beam-pattern selection,
and terminal scheduling. The optimization variables are listed as follows,

psk[t] ≥ 0, satellite s allocates transmit power to terminal k at timeslot t;

xsk[t] =

{
1, if satellite s schedules timeslot t to terminal k,
0, otherwise;
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ysn =

{
1, if satellite s selects the n-th beam pattern,
0, otherwise;

zsk =

{
1, if terminal k is associated to satellite s,
0, otherwise;

φslk[t] =

{
1, if terminal l decodes k’s signal at timeslot t when associated to satellite s,
0, if terminal k decodes l’s signal at timeslot t when associated to satellite s.

Fro presentation simplicity, we apply p, x, y, z, and φ to collect all psk[t], xsk[t], ysn, zsk, and φslk[t],
repsectively. The objective is to minimize the sum of capacity-demand gap, which is measured by
F(p,y) =

∑
k∈K(Rk − Dk)

2. This metric is widely adopted in satellite systems, which can cap-
ture the mismatch effects between offered capacity and demand. The case of Rk equaling to Dk reflects
a perfect match. The gap value increases if Rk is larger or smaller than Dk. The optimization problem is
formulated as,

P0 : min
p,x,y,z,φ

F(p,y) (6.14a)

s.t.
∑
k∈K

psk[t] ≤ P̄s,∀s ∈ S,∀t ∈ T , (6.14b)

psk[t] ≤ xsk[t]P̄s, ∀s ∈ S, ∀k ∈ K,∀t ∈ T , (6.14c)∑
s∈S

zsk ≤ 1,∀k ∈ K, (6.14d)∑
k∈K

zsk ≤ K̃,∀s ∈ S, (6.14e)∑
k∈K

xsk[t] ≤ K̄,∀s ∈ S,∀t ∈ T , (6.14f)

xsk[t] ≤ zsk,∀s ∈ S,∀k ∈ K,∀t ∈ T , (6.14g)∑
n∈Ns

ysn = 1,∀s ∈ S, (6.14h)

Rk ≥ Rmin
k zsk,∀k ∈ K,∀s ∈ S, (6.14i)

ωsk[t]− ωsl[t] ≤ Cφslk[t],∀s ∈ S,∀k, l ∈ K, k 6= l,∀t ∈ T , (6.14j)

φskl[t] + φslk[t] = 1,∀s ∈ S, ∀k, l ∈ K, k 6= l,∀t ∈ T . (6.14k)

In (6.14b), the total transmit power at each timeslot should be constrained no larger than the power
budget of the satellite. Constraints (6.14c) convey the relationship between p and x, where psk[t] = 0 if
xsk[t] = 0, otherwise psk[t] ≤ Ps. Each terminal can be associated to at most one satellite in (6.14d). In
(6.14e), each satellite can support the transmission of at most K̃ terminals. In (6.14f), each satellite can
serve at most K̄ terminals at each timeslot. The connection between x and z is expressed in (6.14g). If
terminal k is not associated to satellite s, i.e., zsk = 0, xsk[t] is restricted to zero; otherwise, xsk[t] =
{0, 1}. Constraints (6.14h) limit that each satellite can only select one beam radiation pattern. In (6.14i),
the allocated rate for terminal k should be larger than Rmin

k if it is associated to satellite s. Constraints
(6.14j) and (6.14k) jointly express the relationship between ωsk[t] and φslk[t] depicted in (6.8). Here C
is a large number satisfying C ≥ maxs∈S,k∈K{ωsk}. If ωsk[t] ≥ ωsl[t], terminal l decodes k’s signal
and thus φslk[t] = 1 to establish ωsk[t] − ωsl[t] ≤ C. If ωsk[t] < ωsl[t], terminal k decodes l’s signal.
Together with (6.14k), φslk[t] is confined as 0 so that ωsk[t]− ωsl[t] ≤ 0.
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The expressions of Rsk[t] and ωsk[t] are non-convex, resulting in the non-convexity of the objective
function and constraints (6.14i) and (6.14j). With the presence of binary variables x, y, z, and φ, we
can observe that P0 is identified as a MINCP problem. Considering the combinatorial properties and
non-convexity, solving P0 is a challenging task.

6.4 JPST: A Joint Approach for Power Allocation, Beam Pattern Selec-
tion, and Terminal Scheduling

In this section, we provide an algorithmic framework on how to tackle the nonconvexity and combinato-
rial properties inP0. We first relax binary variables and then reformulateP0 into a continuous nonconvex
problem. Next, we decompose and convexify the problem, and design a joint optimization approach, i.e.,
JPST, to allocate power, select beam pattern, and schedule terminals to timeslots/satellites.

6.4.1 Problem Reformulation

Since φslk[t] depends on ωsk[t], we do not directly optimize φ but decide decoding orders according
to (6.8) when ωsk[t] (or psk[t]) is updated. We relax the residual binary variables into 0 � x � 1,
0 � y � 1, and 0 � z � 1. We then rewrite P0 as the following formulation,

P ′0 : min
p,x,y,z

F(p,y) +
1

ρ
(X (x) + Y(y) + Z(z)) (6.15a)

s.t. (6.14b)− (6.14i), (6.15b)

where ρ is the penalty factor and X (x), Y(y), and Z(z) are expressed as,

X (x) =
∑
s∈S

∑
k∈K

∑
t∈T

xsk[t](1− xsk[t]), (6.16a)

Y(y) =
∑
s∈S

∑
n∈N

ysn(1− ysn), (6.16b)

Z(z) =
∑
s∈S

∑
k∈K

zsk(1− zsk). (6.16c)

In (6.16a), xsk[t](1 − xsk[t]) = 0 if xsk[t] = {0, 1}, and otherwise, xsk[t](1 − xsk[t]) > 0. Besides,
xsk[t](1−xsk[t]) reaches the maximum when xsk[t] = 0.5. Similar observations can be applied to Y(y)
and Z(z). Thus, P ′0 aims to minimize the capacity-demand gap and the penalty caused by non-binary
solutions of x, y, and z.

6.4.2 Algorithmic Design

Due to the coupling between p and y in the nonconvex function in (6.9), solving P ′0 is still non-trivial.
We adopt the idea of block coordinate descent (BCD) to decompose P ′0 into two subproblems with
variable blocks {p,x, z} and {y} and iteratively optimize the variables.
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Optimize p, x, and z

At the i-th iteration, given y(i−1) (the value of y at the (i−1)-th iteration), the remaining of P ′0 is written
as,

P1 : min
p,x,z
F(p;y(i−1)) +

1

ρ
(X (x) + Z(z)) (6.17a)

s.t. (6.14b)− (6.14g), (6.14i). (6.17b)

The nonconvexity lies in the objective function and constraints (6.14i). We approximate F(p;y(i−1)) at
around p = p(i−1) to a surrogate function F̃(p;y(i−1)), which satisfies the following assumptions [183]
(Assumption 1):

• F̃(p;y(i−1)) is strictly convex in p;

• ∇F̃(p(i−1);y(i−1)) = OF(p(i−1);y(i−1)).

Here, ∇ is the gradient operator. Based on the assumption, we apply the following convex function,

F̃(p;y(i−1)) =∇F(p(i−1);y(i−1))(p− p(i−1)) +
1

2ap
‖p− p(i−1)‖2, (6.18)

where ap > 0. Similarly, we approximate X (x) and Z(z) at around x = x(i−1) and z = z(i−1) to the
following surrogate functions,

X̃ (x) = ∇X (x(i−1))(x− x(i−1)) +
1

2ax
‖x− x(i−1)‖2, (6.19)

Z̃(z) = ∇Z(z(i−1))(z− z(i−1)) +
1

2az
‖z− z(i−1)‖2, (6.20)

where ax > 0 and az > 0.
In (6.14i), the R-function can rewritten as Rk = f+

k (p,y)− f−k (p,y), where

f+
k (p,y) =

∑
t∈T

∑
s∈S

B log(|hsk|2psk[t] + I intra
sk [t] + I inter

sk [t] + σ2), (6.21a)

f−k (p,y) =
∑
t∈T

∑
s∈S

B log(I intra
sk [t] + I inter

sk [t] + σ2). (6.21b)

Constraints (6.14i) are equivalently converted into

− f+
k (p,y) + f−k (p,y) +Rmin

k zsk ≤ 0, ∀k ∈ K, ∀s ∈ S. (6.22)

Given y(i−1), (6.22) is in the format of difference of convex (DC), where the nonconvexity is reflected in
the concave function f−k (p;y(i−1)). We approximate f−k (p;y(i−1)) to a convex function f̃−k (p;y(i−1))
at around p = p(i−1), which meets the following assumptions [183] (Assumption 2):

• f̃−k (p;y(i−1)) is convex;

• f̃−k (p(i−1);y(i−1)) = f−k (p(i−1);y(i−1));

• ∇f̃−k (p(i−1);y(i−1)) = ∇f−k (p(i−1);y(i−1));

• f̃−k (p;y(i−1)) ≤ f−k (p;y(i−1)).
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Then we construct the following surrogate linear function,

f̃−k (p;y(i−1)) = f−k (p(i−1);y(i−1)) +∇f−k (p(i−1);y(i−1))(p− p(i−1)). (6.23)

Then (6.22) is transformed into,

− f+
k (p,y) + f̃−k (p,y) +Rmin

k zsk ≤ 0,∀k ∈ K, ∀s ∈ S. (6.24)

Finally, P1 is converted to the following strongly convex inner approximation,

P ′1 : min
p,x,z
F̃(p;y(i−1)) +

1

ρ
(X̃ (x) + Z̃(z)) (6.25a)

s.t. (6.14b)− (6.14g), (6.24). (6.25b)

The optimal solution p∗, x∗, and z∗ can be solved by interior-point method [50]. We can update the
variables by the following rule,

p(i) = p(i−1) + δ(i)
p (p∗ − p(i−1)), (6.26a)

x(i) = x(i−1) + δ(i)
x (x∗ − x(i−1)), (6.26b)

z(i) = z(i−1) + δ(i)
z (z∗ − z(i−1)), (6.26c)

where δ(i)
p , δ(i)

x , and δ(i)
z are the stepsizes at the i-th iteration for updating p, x, and z, respectively. The

stepsizes can be pre-determined (constant or diminishing) or updated by line search methods [184].

Optimize y

With p(i), x(i), and z(i), P ′0 is reduced to,

P2 : min
y
G(y) = F(y;p(i)) +

1

ρ
Y(y) s.t. (6.14h), (6.27)

where the objective is nonconvex. Similar to P1, we approximate the objective function locally at y =
y(i−1) to the following convex surrogate function:

G̃(y) = ∇G(y(i−1))(y − y(i−1)) +
1

2ay
‖y − y(i−1)‖2, (6.28)

where ay > 0 and∇G(y) = ∇F(y;p(i))+ 1
ρ∇Y(y). The problem is then approximated to the following

convex problem,

P ′2 : min
y
G̃(y) s.t. (6.14h). (6.29)

The optimal solution y∗ can be solve via interior-point method. The value of y(i) is updated by,

y(i) = y(i−1) + δ(i)
y (y∗ − y(i−1)), (6.30)

where δ(i)
y is the update stepsize at iteration i.
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Algorithm 7 JPST
Inputs: Initialized p, x, y, z.

1: repeat
2: Calculate ωsk[t] and update decoding orders φ by (6.8).
3: Obtain p∗, x∗, and z∗ by solving P ′1.
4: Compute stepsizes and update p, x, and z by (6.26).
5: Obtain y∗ by solving P ′2.
6: Compute stepsize and update y by (6.30).
7: until Convergence or reaching I1 iterations

Outputs: Optimized p, x, y, z, φ.

Complexity analysis

The overall procedure of JPST is illustrated in Alg. 7. At the beginning of each iteration, the decoding
orders are updated based on ωsk[t] in line 2. Then P ′1 is solved and p, x, and z are updated in line 3.
Analogously, we solve P ′2 and update y in line 5. The stepsize parameters and variables are updated in
line 4 and line 6. The algorithm terminates if it reaches I1 iterations or it converges.

The complexity of each iteration in Alg. 7 mainly lies in the process of solving P ′1 and P ′2 in
line 3 and line 5, respectively. Since P ′1 contains SK(2T + 1) decision variables, SK convex and
2SKT+SK+ST+K linear constraints,vthe complexity of solving P ′1 isO(S3K3(2T+1)3(2SKT+
SK + ST + K)) [185]. Similarly, the complexity of solving P ′2 is O((SN)3S) with SN decision
variables and S linear constraints. Solving P ′1 takes the lead in complexity. Thus the complexity of Alg.
7 is O(I1S

3K3(2T + 1)3(2SKT + SK + ST +K)).

6.5 LC-PST: A Low-Complexity Algorithm

The complexity of the joint approach, i.e., JPST, is large, especially when the problem scale increases. To
reduce the complexity, we propose a low-complexity approach, i.e., LC-PST, to accelerate the decision-
making process. Before that, we analyze the underlying synergy of NOMA and adaptive beam patterns.

6.5.1 A Special Case: A Dual-Satellite Scenario

Given integer solutions, the remaining power allocation problem is written as,

P3 : min
psk[t]

∑
s∈S

∑
k∈Ks

(Rk −Dk)
2 +

∑
k∈K0

D2
k (6.31a)

s.t.
∑
k∈Ks

psk[t] ≤ P̄s,∀s ∈ S,∀t ∈ T , (6.31b)

Rk ≥ Rmin
k ,∀k ∈ Ks, ∀s ∈ S, (6.31c)

where Ks denotes the set of the terminals associated to satellite s and K0 is the set containing the non-
associated terminals. We start with a special case of a dual-satellite scenario with T = 1. The index of
t is omitted for presentation simplicity. Let K1 = {1, . . . ,K1}, K2 = {K1 + 1, . . . ,K1 + K2}, and
K0 = {K1 +K2 + 1, . . . ,K}. Assume that the terminals’ indexes are consistent with decoding orders,
i.e., terminal k decodes k′’s signals if k < k′ in Ks. In the best case, all the associated terminals can be
satisfied with demands, i.e., Rk = Dk, and the objective is

∑
k∈K0

D2
k. By substituting Rk = Dk into

92



Joint Optimization of Power- and Spatial-Domain Flexibilities

(6.9) and (6.12), we can derive the following equations based on a widely-adopted substituting approach
[101], ∑

k∈K1

(ω1k − ω1(k−1))2
∑
l≥k

Dl
W − ω1K1 = P1, (6.32a)

∑
k∈K2

(ω2k − ω2(k−1))2
∑
l≥k

Dl
W − ω2(K1+K2) = P2, (6.32b)

where and P1 =
∑

k∈K1
p1k and P2 =

∑
k∈K2

p2k. Note that ω10 = ω2K1 = 0. The equations can be
rewritten as,

−P1 +A1P2 +B1 = 0,

A2P1 − P2 +B2 = 0, (6.33)

where

A1 =
∑
k∈K1

|h2k|2

|h1k|2
2
∑
l>k

Dl
W (2

Dk
W − 1), (6.34a)

B1 =
∑
k∈K1

σ2

|h1k|2
2
∑
l>k

Dl
W (2

Dk
W − 1), (6.34b)

A2 =
∑
k∈K2

|h1k|2

|h2k|2
2
∑
l>k

Dl
W (2

Dk
W − 1), (6.34c)

B2 =
∑
k∈K2

σ2

|h2k|2
2
∑
l>k

Dl
W (2

Dk
W − 1). (6.34d)

Thus the solution of P1 and P2 is derived as,

P ′1 =
A1B2 +B1

1−A1A2
, (6.35)

P ′2 =
A2B1 +B2

1−A1A2
, (6.36)

where P ′s denotes the required transmit power of satellite s to satisfy all terminals’ demands.
Proposition 1: According to (6.14b), the transmit power for each satellite should meet 0 ≤ Ps ≤ P̄s,

∀s ∈ S. The following two cases of P ′s can be derived:

• If 0 < P ′s ≤ P̄s, all associated terminals’ demand can be satisfied with Rk = Dk.

• If P ′s > P̄s or P ′s < 0, it is impossible to satisfy the demand of all the associated terminals.

The following remark illustrates the synergy of NOMA and beam pattern selection based on Propo-
sition 1.

Remark 1: We discuss the integer solution based on (6.36) from the following two aspects:

• Given the decision of terminal association/scheduling, the optimal power allocation is achieved
in the first case of Proposition 1. In this case, the solution of y is optimal. Regarding the second
case, power allocation cannot satisfy terminals’ demand. One can increase 1 − A1A2 such that
P ′s, when negative, tends to be positive or P ′s can be reduced when P ′s > P̄s. Thus, to increase
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1−A1A2, satellites can select beam patterns with smaller |hs′k|
2

|hsk|2
for k ∈ Ks, i.e., beams with more

concentration on the associated terminals but less inter-satellite interference to other terminals.

• Consider that beam pattern selection is determined. In the first case of Proposition 1, the transmit
power is sufficient to satisfy all the associated terminals’ demand. To decrease the objective value,
i.e.,

∑
k∈K0

D2
k, satellites can schedule terminals with higher demand and smaller |hs′k|

2

|hsk|2
. A sim-

ilar strategy can be applied in the second case. Terminals with smaller |hs′k|
2

|hsk|2
are desired to be

scheduled to increase 1−A1A2 such that the capability of offering rate to associated terminals can
be improved. To reduce the objective, satellites tend to serve terminals with higher demand.

In short, Remark 1 conveys that satellites tend to select beam patterns with smaller but concentrated
beams to cover the associated terminals and schedule terminals with higher demand and better channel
conditions (large channel coefficients from their associated satellites but less inter-satellite interference).

6.5.2 Algorithmic Design

The analysis of multi-satellite scenarios is much more complicated than the above special case. But we
can still apply the basic findings in dual-satellite scenarios (as discussed in Remark 1) to simplify the
algorithmic design. The procedure of LC-PST is summarized in Alg. 8. The basic idea is to first select
beam patterns and associate terminals to satellites and then optimize terminal-timeslot scheduling and
power allocation.

At the initialization stage of LC-PST, the solutions of y and z are determined following some rules,
e.g., each satellite randomly selects a beam pattern and terminals are assigned to the satellites with the
largest |hsk|2.

In the first stage, beam pattern selection and terminal association are updated iteratively. Given beam
pattern selection, terminals’ ratios of |hsk|22Dk∑

s′∈S\{s} |hs′k|2
are calculated for each satellite. Then each satellite

chooses K̃ largest-ratio terminals for association and update z. Based on z, we update Ks, which is the
set of the terminals associated to satellite s. With decided terminal-satellite association, each satellite
compute the ratio of

∑
k∈Ks

|hsk|2∑
s′∈S\{s} |hs′k|2

for each beam pattern and select the pattern with the largest

ratio. The process terminates if the iteration number exceeds I2 or the solutions stay unchanged. At the
end of the stage, y and z are obtained.

In the second stage, terminal-timeslot scheduling and power allocation are optimized under y and z.
At timeslot t, terminal k’s accumulated rate from timeslot 1 to t− 1 is derived as,

R̄k[t] =

{∑t−1
τ=0Rk[τ ], if t > 1;

0, if t = 0,
(6.37)

where Rk[t] is the allocated rate of terminal k at timeslot t. The residual demand at timeslot t is D̄k[t] =

Dk − R̄k[t]. We sort the ratios of |hsk|22D̄k[t]∑
s′∈S\{s} |hs′k|2

among associated terminals. Define K̂s as the set of

terminals inKs with the accumulated rate smaller than the minimum requirement in (6.14i). The satellite
selects K̄ largest-ratio terminals, first in K̂s and then in Ks \ K̂s. With the terminal-timeslot assignment,
the residual power allocation problem at timeslot t is written as,

P4(t) : min
psk[t]

∑
k∈K

(∑
s∈S

Rsk[t]− D̄k[t]

)2

+
1

%

∑
k∈K

[Rmin
k −Rk[t]− R̄k[t]]+ (6.38a)

s.t. (6.14b), (6.38b)
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Algorithm 8 LC-PST
Inputs: Initialized y, z.

First stage: beam pattern selection and terminal association
1: repeat
2: Calculate and sort |hsk|22Dk∑

s′∈S\{s} |hs′k|2
among terminals for each satellite.

3: Each satellite select K̃ largest terminals for association.
4: Update z and Ks, ∀s ∈ S.
5: Each satellite computes

∑
k∈Ks

|hsk|2∑
s′∈S\{s} |hs′k|2

for each beam pattern and select the one with the

largest value.
6: Update y.
7: until y and z stay constant or reaching I2 iterations

Second stage: terminal-timeslot scheduling and power allocation
8: for t = 1, . . . , T do
9: Update R̄k[t] and D̄k[t].

10: Remove terminal k from Ks if D̄k[t] ≤ 0.
11: Remove terminal k from K̂s if R̄k[t] ≤ 0.

12: Calculate and sort |hsk|22D̄k[t]∑
s′∈S\{s} |hs′k|2

for each satellite.

13: Each satellite select K̄ largest terminals first from K̂s and then from Ks \ K̂s.
14: Solve P4(t) via Alg. 7 under scheduled terminals.
15: end for
Outputs: Optimized p, x, y, z, φ.

where [·]+ is the operator equivalent to max{·, 0}. % is applied to penalize the objective if the allocated
rate does not satisfy (6.14i). The problem is a special case of P1 with fixed integer variables and can be
solved by Alg. 7. Then we update R̄k[t] and D̄k[t]. At the end, with decided x, y, and z, we optimize
power allocation during T timeslots via Alg. 7.

The details of LC-PST are presented in Alg. 8, where line 1 to line 7 refer to the first stage and line 8
to line 13 refer to the second stage. The complexity falls in solving multiple power allocation problems
at the second stage. For solving P4(t) with SK̄ variables and S linear constraints, the complexity is
O(I1S

4K̄3), where I1 is the maximum number of iterations of power allocation. The overall complexity
is O(I1S

4K̄3T ).

6.6 Numerical Results

6.6.1 Simulation Settings

In simulation, we consider a square area with 500× 500 km2, where the generation of terminals follows
two-dimension normal distribution [177]. The main parameters are summarized in Table 6.1, unless
otherwise stated. We consider beam patterns which generate circular beams on the ground with 3-dB
beamwidths {1◦, 1.5◦, 2◦, 4◦, 8◦} [1]. Beams with 1◦ beamwidth have the largest directivity to the beam
center and smallest inter-satellite interference whereas those with 8◦ beamwidth generate the widest
service range but largest interference to terminals associated to adjacent satellites. For practical consid-
eration, we assume imperfect SIC where the error ratio is set as 10−3. The results are averaged over
500 instances. For comparison, we set the following strategies as benchmarks to decide the solutions of
terminal scheduling and beam pattern selection:
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Table 6.1: Simulation parameters

Parameter Value
Frequency, f freq 20 GHz (Ka band)
Bandwidth, W 400 MHz
Satellite height 600 km

Number of satellites, S 5
Power budget, P̄s 43 dBm

Number of beam patterns, N 5
Receive antenna gain, GRx

sk 42, 36, 32 dBi
Noise power, σ2 -126.47 dBW

Number of terminals, K 30
Number of timeslots, T 10

Minimum association rate, Rmin
k 500 kbps

Maximum multiplexed terminals
per satellite, K̄

3

Maximum associated terminals
per satellite, K̃

6

Number of iterations, I1, I2 2000, 20

• Round-Robin strategy (RR): Each satellite selects K̃-best-channel terminals for association. Then
the beam pattern with the smallest beamwidth to cover all the associated terminals is chosen. At
each timeslot, terminals are scheduled following the Round-Robin basis [186].

• Best-channel strategy (BC) [187]: Terminal association and beam pattern selection are similar
to RR. During each timeslot, terminals are scheduled based on their channel condition unless
D̄k[t] ≤ 0.

• Swap-matching strategy (SM) [179, 188]: The terminal-satellite-timeslot problem can be divided
into two many-to-many matching problems: terminal-satellite matching and terminal-timeslot
matching. The solution can be obtained by performing the swap matching approach. We select the
smallest beam to cover all the associated terminals.

With the decided integer solutions, the residual power allocation problem is solved by Alg. 7.

6.6.2 Performance Evaluation

Benefits of adopting NOMA

We consider two scenarios of terminals’ distribution, where the distribution in Fig. 6.6(b) is more con-
centrated to each beam’s center than that in Fig. 6.6(a). The capacity-demand gap performance of the
proposed schemes concerning K̄ is evaluated in these two scenarios. Note that the case of K̄ = 1 refers
to the conventional OMA scheme. From Fig. 6.7, a smaller capacity-demand gap is observed in the
“concentrated” scenario than the “scattered” scenario. As terminals are located closer to the beam cen-
ter, beam patterns with a smaller beam size can be chosen such that the inter-satellite interference can
be largely reduced and thus better performance. In addition, JPST has an average reduction of 8.9% and
13.9% in minimizing the capacity-demand gap over LC-PST in “concentrated” and “scattered” scenar-
ios, respectively. Compared to the conventional OMA scheme, NOMA has an average performance gain
from 32.6% (K̄ = 2) to 56.7% (K̄ = 5) in minimizing the capacity-demand gap.
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Figure 6.6: Two considered scenarios: (a) the distribution of terminals is scattered; (b) the distribution of terminals is concen-
trated to the centers of beams.
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Figure 6.7: Gap performance with respect to K̄.

Benefits of applying multiple beam patterns

In Fig. 6.8, we compare the performance of the proposed schemes between multiple beam patterns
and single fixed beam pattern. Among the three fixed-pattern schemes, the one with 2◦ beamwidth
outperforms the other two, demonstrating the necessity for an appropriate selection of beam patterns.
The performance is largely improved by introducing spatial-domain flexibility compared to conventional
single beam pattern schemes. Compared to the schemes with single beam pattern, the schemes with 3
beam patterns (with beamwidth 1◦, 2◦, and 8◦) and 5 beam patterns result in 35.3% and 64.9% gain in
reducing the capacity-demand gap.

In practice, LEO satellites functioned with adaptive beam patterns would coexist with those with
conventional payloads in the system. We evaluate the scenarios with the coexistence of different types
of LEO satellites in Fig. 6.9. By introducing satellites with adaptive beam patterns, the capacity-demand
gap can be largely reduced, from 64.9 × 104 to 40.2 × 104 and 49.1 × 104 when introducing 5 and 3
beam patterns, respectively. The more satellites with spatial-domain flexibility, the more performance
gain is obtained.
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Figure 6.8: Performance evaluation in scenarios with the coexistence of satellites with single pattern and multiple patterns.
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Figure 6.9: Performance evaluation in scenarios with the coexistence of satellites with single pattern and multiple patterns.

Benefits of joint optimization

In Fig. 6.10, we evaluate the performance of the proposed schemes with benchmarks, i.e., RR, BC, and
SM. Compared to benchmarking schemes without joint optimization, JPSA outperforms the others. On
average, JPSA has a reduction of 63.0%, 48.8%, and 37.1% in minimizing the capacity-demand gap
over RR, BC, and SM, respectively, which shows the advantages of designing a joint scheme to optimize
beam pattern selection and NOMA.

6.7 Conclusion

In this chapter, we have exploited multi-dimension flexibilities in power and spatial domains and inves-
tigated the synergy between NOMA and adaptive beam patterns. We have proposed a joint algorithmic
framework, JPST, to optimize power allocation, beam pattern selection, and terminal scheduling. To
reduce the complexity, we have analyzed the implicit synergies between adaptive beam patterns and
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Figure 6.10: Gap performance in different schemes with respect to average traffic demand.

NOMA to simplify the problem solving. Then we have designed a low-complexity approach, LC-PST,
to first decide beam patterns and terminal association and then optimize terminal scheduling and power
allocation. In the end, we have evaluated the performance and demonstrated the superiority of the pro-
posed joint schemes compared to benchmarks.
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Chapter 7
Conclusions and Future Works

7.1 Conclusions

In this dissertation, we have enriched the studies on the exploitation of flexibilities and resource optimiza-
tion for next-generation HTS systems, where NOMA is applied to enhance the power-domain flexibility.
The dissertation has resolved the three main research questions: First, how to optimize resource alloca-
tion to minimize the mismatch effects between offered capacity and requested demand, and how much
gain can be obtained when NOMA is introduced to the satellite systems? Second, how to design an effi-
cient resource allocation scheme to achieve a good tradeoff between performance and complexity? Third,
how to boost the synergies of NOMA and exploit multi-dimension flexibilities in resource optimization?
The table in Fig. 7.1 illustrates the conclusion of the thesis.

Chapter 3 and Chapter 4 have investigated the resource optimization for single power-domain flexi-
bility in NOMA-enabled satellite systems from different angles. In Chapter 3, we have designed a general
resource optimization framework from the perspectives of optimization. The problems solving can be
analyzed based on optimization theory, which may provide some solid theoretical guarantee of perfor-
mance. By deriving mathematical closed-form expressions, some implicit relationships can be revealed
to assist the problem solving. However, in order to achieve guaranteed performance, e.g., the global
optimum or local optimum, the designed approaches may suffer from large computational complexity.
Besides, not all the characteristics of the targeted problems can be reveal by mathematical analysis,
especially problems with nonconvex and combinatorial properties.

Alternatively, we can tackle the problem with the assistance of machine learning techniques. In Chap-
ter 4, two learning-assisted approaches have been provided to accelerate the decision-making procedure
and address the feasibility issues. Compared to optimization-based approaches, learning can approximate
sophisticated relationships by exploiting information from empirical data instead of deriving mathemat-
ical expressions directly. By constructing a well-trained learning model, the complexity can be largely
reduced. But there are some disadvantages we need to be careful when designing learning-assisted
approaches. First, when the data is hard to obtain, the training of a learning model will be extremely dif-
ficult. Second, the interpretation of learning techniques, especially deep learning, is insufficient. Third,
the generalization of learning models to dynamic environment is another open challenge.

Chapter 5 and Chapter 6 have studied resource optimization for multi-dimension flexibilities. The
synergies of NOMA and BH, with flexibilities of power and time domains, respectively, have been in-
vestigated in Chapter 5. We have proposed a bounding scheme to gauge the optimality and an efficient
scheme to optimize power allocation, beam scheduling, and terminal-timeslot assignment. In Chapter
6, we have discussed the mutual influence between NOMA and adaptive beam patterns, in power and



7.2. Future Works

Figure 7.1: Conclusion of the thesis

spatial domains. A joint optimization scheme of power allocation, beam pattern selection, and terminal
scheduling and a low-complexity scheme have been put forward. In numerical results, NOMA with BH
has a gain of over 70% whereas NOMA with adaptive beam pattern improves the performance by over
35% compared to conventional schemes. NOMA with BH seems has more enhancement over NOMA
with adaptive beam pattern. The reason behind this may be the large reduction of inter-beam interference
by illuminating non-adjacent beams in BH. When confronting a choice between NOMA with BH and
NOMA with adaptive beam pattern in network achitecture design, the former might be superior. For fur-
ther performance improvement in the latter, more interference mitigation techniques could be introduced,
e.g., precoding. Another alternative method could be the coordination of NOMA, BH, and adaptive beam
pattern to facilitate more flexibilities.

7.2 Future Works

In the end, we provide the following potential directions for future extension.

Further exploitation of flexible resource allocation

The pursuit of more flexibilities of resource allocation in SatCom never stops [90, 91]. In Chapter 5 and
Chapter 6, we have studied the joint optimization of NOMA + BH and NOMA + adaptive beam patterns,
respectively. To achieve more performance gain, it is natural to investigate resource optimization in the
context of considering the flexibilities in power, time, and spatial domains. In the targeted systems,
the coordination of NOMA, BH, and adaptive beam patterns is considered, where NOMA is applied
within each beam to reduce intra-beam interference while BH and adaptive beam patterns are adopted
to mitigate inter-beam interference. The three techniques can also cooperate to adapt to heterogeneous
traffic distribution and boost capacity-demand match. One may concern about the difficulty in dealing
with the corresponding optimization problem due to the presence of multi-dimension variables, e.g.,
power allocation, terminal-timeslot assignment, beam scheduling, beam pattern selection, etc. To this
end, we are motivated to study the implicit synergies among NOMA, BH, and adaptive beam patterns
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and design an efficient scheme for the problem solving. To further embrace the trend of flexible satellite
payload, full flexibilities in power, frequency, time, and spatial domains would be realized [93]. The
difficulty lies in the high complexity of solving a large-scale problem with all related variables. The
design of efficient schemes and the underlying relationships among different-domain flexibilities could
be investigated.

Facilitating NOMA by leveraging adaptive beam patterns

In the dissertation, as well as most of the recent works, NOMA is employed within each beam to en-
able multi-terminal accommodation in an overloaded system, where more than one terminal is served
in each beam. One open challenge lies in how to adopt NOMA to alleviate inter-beam interference in
multi-beam satellite systems. Indeed, NOMA application is demonstrated as an inefficient strategy in
spatial-dimension exploitation compared to MISO techniques [189], which is one of the reasons why
the discussion of NOMA has been excluded from 3GPP study items. With the development of dynamic
BFN/active antennas [93], the receive power imbalance could be facilitated spontaneously by leveraging
adaptive beam patterns. In a large area with heterogeneous traffic distribution, for example, a narrow
but concentrated beam can be used to cover the traffic-burst region whereas the wide beam serves the
whole area [94]. In this context, NOMA can be applied to mitigate inter-beam interference. The power
imbalance can be enlarged by employing different beam patterns to the same area, which could be advan-
tageous to NOMA applications in exploiting performance gain in the spatial dimension. This motivates
us to study how to apply adaptive beam patterns to facilitate power imbalance and design a beam-level
NOMA transmission framework.

Resource optimization for multiple numerologies

In SatCom, the channel gain imbalance among terminals in the same beam (within the 3-dB or 4.3dB
contour) is not large. Conventional power-driven NOMA may confront some practical issues, e.g., lim-
ited performance gain over OMA and difficulty in detecting/demodulating different signals to perform
SIC. In this case, we can apply NOMA from another angle. To accommodate the properties and QoS
requirements of different services, radio access network (RAN) slicing is introduced, where radio re-
sources are reconfigured with flexible frequency spacings and time intervals. This new radio technique
is also essential for the integration of satellite and terrestrial networks since the waveform parameters of
both networks are different [190]. This is a new dimension of flexibility in resource optimization. How-
ever, as different frequency spacings are applied, the orthogonality among resource blocks is broken, and
thus inter-numerology interference is introduced. The research question lies in how to optimize resource
allocation for satellite systems with multiple numerologies. Besides, NOMA, with the properties of non-
orthogonality, may multiplex various numerologies at the same frequency/time, which is advantageous
to inter-numerology interference mitigation [191]. NOMA application in this context would be different
from general power-domain NOMA, which calls for a novel design of superposition coding and SIC
process to accommodate different numerologies.

Distributed optimization for multi-layer satellite systems

As launched satellites in the space become crowded, flexible resource allocation for multi-layer satellite
systems will be challenging [94], where the properties of satellites in various orbits are different in
multiple aspects, e.g., exclusive objectives, limitations of payload capability, propagation delay, channel
conditions, etc. A harmonious orchestration for resource allocation in a multi-layer satellite system is
necessary. However, such orchestration will be challenging in practice, e.g., the issues of synchronization
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among different satellites, severe computational complexity, etc [2, 93]. Centralized methods, gathering
all the information in the system and allocating resources for all the components, may not be suitable.
The idea of distributed optimization is a choice for practical implementation. In distributed optimization,
resource optimization is decentralized to multiple agents and the algorithmic process is executed locally
at each agent side [192]. In this case, the synchronization and complexity issues could be eased to some
extent. However, the design of a distributed approach may not be easy for multi-layer satellite systems.
The cooperation among satellites is necessary to manage interference mitigation for better performance,
but meanwhile, the competition for more resources to achieve their own goals is fierce. The challenge
lies in: How to coordinate resource optimization among multiple agents to satisfy their users’ demands
and achieve their exclusive targets, cooperatively, competitively, or both?
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[12] Ana I Pérez-Neira, Miguel Ángel Vázquez, M. R. B. Shankar, Sina Maleki, and Symeon Chatzino-
tas. Signal processing for high-throughput satellites: Challenges in new interference-limited sce-
narios. IEEE Signal Processing Magazine, 36(4):112–131, 2019.

[13] Xinran Fang, Wei Feng, Te Wei, Yunfei Chen, Ning Ge, and Cheng-Xiang Wang. 5g embraces
satellites for 6g ubiquitous iot: Basic models for integrated satellite terrestrial networks. IEEE
Internet of Things Journal, 8(18):14399–14417, 2021.

[14] Eva Lagunas, Shree Krishna Sharma, Sina Maleki, Symeon Chatzinotas, and Björn Ottersten.
Resource allocation for cognitive satellite communications with incumbent terrestrial networks.
IEEE Transactions on Cognitive Communications and Networking, 1(3):305–317, 2015.

[15] Hayder Al-Hraishawi, Houcine Chougrani, Steven Kisseleff, Eva Lagunas, and Symeon Chatzino-
tas. A survey on non-geostationary satellite systems: The communication perspective. arXiv
preprint arXiv:2107.05312, 2021.

[16] Christos N Efrem and Athanasios D Panagopoulos. Dynamic energy-efficient power allocation in
multibeam satellite systems. IEEE Wireless Communications Letters, 9(2):228–231, 2019.

[17] Mirza Golam Kibria, Eva Lagunas, Nicola Maturo, Danilo Spano, and Symeon Chatzino-
tas. Precoded cluster hopping in multi-beam high throughput satellite systems. arXiv preprint
arXiv:1905.01162, 2019.
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satellite scenarios. In 2016 50th Asilomar Conference on Signals, Systems and Computers, pages
497–501, 2016.

[42] Lei Lei, Di Yuan, Chin Keong Ho, and Sumei Sun. Power and channel allocation for non-
orthogonal multiple access in 5G systems: Tractability and computation. IEEE Transactions on
Wireless Communications (TWC), 15(12):8580–8594, 2016.

[43] Boya Di, Lingyang Song, and Yonghui Li. Sub-channel assignment, power allocation, and user
scheduling for non-orthogonal multiple access networks. IEEE Transactions on Wireless Commu-
nications, 15(11):7686–7698, 2016.

[44] Jihwan P Choi and Vincent WS Chan. Optimum power and beam allocation based on traffic
demands and channel conditions over satellite downlinks. IEEE Transactions on Wireless Com-
munications (TWC), 4(6):2983–2993, 2005.

[45] Zhixiang Gao, Aijun Liu, Chen Han, and Xiaohu Liang. Sum rate maximization of massive
mimo noma in leo satellite communication system. IEEE Wireless Communications Letters, 10
(8):1667–1671, 2021.

[46] Xiaojuan Yan, Hailin Xiao, Cheng-Xiang Wang, and Kang An. Outage performance of NOMA-
based hybrid satellite-terrestrial relay networks. IEEE Wireless Communications Letters, 7(4):
538–541, 2018.

[47] Ruisong Wang, Wenjing Kang, Gongliang Liu, Ruofei Ma, and Bo Li. Admission control and
power allocation for noma-based satellite multi-beam network. IEEE Access, 8:33631–33643,
2020.

[48] Zining Wang, Min Lin, Shiyong Sun, Ming Cheng, and Wei-Ping Zhu. Robust beamforming
for enhancing user fairness in multibeam satellite systems with noma. IEEE Transactions on
Vehicular Technology, 2021.

[49] Zhisheng Yin, Min Jia, Wei Wang, Nan Cheng, Feng Lyu, Qing Guo, and Xuemin Shen. Secrecy
rate analysis of satellite communications with frequency domain noma. IEEE Transactions on
Vehicular Technology, 68(12):11847–11858, 2019.

[50] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

[51] Sven Wiese. The mixed-integer conic optimizer in Mosek. https://docs.mosek.com/
slides/2018/ismp2018/ismp-wiese.pdf. July 2, 2018.

108

https://docs.mosek.com/slides/2018/ismp2018/ismp-wiese.pdf
https://docs.mosek.com/slides/2018/ismp2018/ismp-wiese.pdf


Bibliography

[52] Lou Salaün, Marceau Coupechoux, and Chung Shue Chen. Joint subcarrier and power allocation
in noma: Optimal and approximate algorithms. IEEE Transactions on Signal Processing, 68:
2215–2230, 2020.

[53] Jon Lee and Sven Leyffer. Mixed integer nonlinear programming, volume 154. Springer Science
& Business Media, 2011.

[54] Simon P Schurr, Dianne P O’Leary, and André L Tits. A polynomial-time interior-point method
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