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Problem Definition: Unexpected failures of equipment can have severe consequences and costs. Such

unexpected failures can be prevented by performing preventive replacement based on real-time degradation

data. We study a component that degrades according to a compound Poisson process and fails when the

degradation exceeds the failure threshold. An online sensor measures the degradation in real-time, but inter-

ventions are only possible during planned downtime. Academic / Practical Relevance: We characterize

the optimal replacement policy that integrates real-time learning from the online sensor. We demonstrate

the effectiveness in practice with a case study on interventional X-ray machines. The data set of this case

study is made available with this article. As such, it can serve as a benchmark data set for future studies on

stochastically deteriorating systems. Methodology: The degradation parameters vary from one component

to the next but cannot be observed directly; the component population is heterogeneous. These parameters

must, therefore, be inferred by observing the real-time degradation signal. We model this situation as a

partially observable Markov decision process (POMDP) so that decision making and learning are integrated.

We collapse the information state space of this POMDP to three dimensions so that optimal policies can

be analyzed and computed tractably. Results: The optimal policy is a state dependent control limit. The

control limit increases with age but may decrease as a result of other information in the degradation sig-

nal. Numerical case study analyses reveal that integration of learning and decision making leads to cost

reductions of 10.50% relative to approaches that do not learn from the real-time signal and 4.28% relative

to approaches that separate learning and decision making. Managerial Implications: Real-time sensor

information can reduce the cost of maintenance and unplanned downtime by a considerable amount. The

integration of learning and decision making is tractably possible for industrial systems with our state space

collapse. Finally, the benefit of our model increases with the amount of data available for initial model

calibration while additional data is much less valuable for approaches that ignore population heterogeneity.

Key words : partially observable Markov decision process; optimal policies; Bayesian learning; maintenance,

data-driven operations
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1. Introduction

Advanced technical systems are critical for the smooth operation of public services such as public

transport (e.g., aircraft, rolling stocks), utilities (e.g., power plants), and health care (e.g., MRI-

scanners, X-ray machines) as well as for the primary processes of companies (e.g., data centers,

lithography machines). Unavailability and failure of these systems – especially when unplanned –

have severe consequences and can even lead to immediate safety hazard. In 2017, for example, the

failure of a deteriorating propeller blade led to the crash of a KC-130T aircraft with 16 casualties

(Insinna and Ziezuliwicz 2018). A year before that, the nuclear power plant in Doel, Belgium, had

to be shut down unexpectedly twice. This caused concerns for citizens in Belgium, the Netherlands

and Germany, as well as expensive power imports by the operator Electrabel (Van Soest 2016).

When unplanned downtime does not lead to immediate safety hazard, the consequences can still

be severe financially. Indeed, recent studies indicate that unplanned downtime costs industrial

manufacturers alone $50 billion annually (Wall Street Journal Custom Studios 2017, Coleman

et al. 2017). Almost half of that unplanned downtime is caused by equipment failures. Minimizing

equipment failures is thus pivotal in reducing both downtime costs and safety hazards. This also

seems to be well-understood by executives in asset management. In a recent survey, they perceive

unplanned equipment failures as the most important risk to manage (Pacquin 2014).

Condition-based maintenance (CBM) is the most advanced maintenance strategy that asset

managers can implement to reduce unplanned equipment failures. Based on real-time condition

monitoring, CBM initiates maintenance actions only if equipment failure is imminent, thereby

trading off costly premature interventions with costly tardy replacements. Conventional CBM

approaches separate estimation and optimization (De Jonge and Scarf 2020). Asset managers first

estimate a statistical model of the degradation behavior of an asset based on historical degradation

data, and they subsequently optimize the decision of when to perform maintenance based on

this model. This separation necessitates the implicit assumption that one asset is statistically

identical to any other asset of the same type. Maintenance actions for each asset of the same type

are consequently equivalent. Through our collaboration with Philips Healthcare, a major medical

equipment manufacturer and service provider, we find however that this assumption is violated in

practice. Figure 1 below shows two historical degradation paths of a component that is critical for

the operation of an interventional X-ray (IXR) system. While these two degradation paths are from

the same type of component, they clearly differ from one another and their maintenance decisions

should be tailored accordingly. This illustrates that the traditional approach that hinges on the

assumption of a homogeneous asset population is no longer appropriate in practice, increases failure

risk, and reduces the useful lifetime of assets. Our case study with Philips Healthcare in Section 7

substantiates these claims.
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Figure 1 Two historical IXR filament degradation paths.

The separation between estimation and optimization was necessitated by the fact that degrada-

tion data of a critical asset could only be obtained by performing expensive measurements during

(planned) asset downtime. Recently built high-tech systems, including the IXR systems of our case

study, are now increasingly equipped with integrated sensor technology that allows degradation

data of a critical component to be gathered at hardly any additional cost (Olsen and Tomlin 2020).

These sensors measure the degradation of components in real-time and are integrated into the

Internet-of-Things (IoT) (Price Waterhouse Coopers 2014). Data that is generated by sensors and

relayed in real-time through the IoT renders the assumption that assets are statistically identical

unnecessary. Indeed, real-time degradation data allows us to learn degradation behavior on the

individual component level and tailor our decision making accordingly. This assumption has been

partially relaxed before, but only in settings where measurements are possible at planned down-

times and not in real-time; see Elwany et al. (2011), Kim and Makis (2013), Chen et al. (2015),

and Van Oosterom et al. (2017). When the condition of a system can only be measured at planned

downtimes, the amount of information that can be learned from the degradation level is limited

compared to the situation with real-time data. Accordingly, attention in the few papers mentioned

above is restricted to population heterogeneity within a finite set of possibilities or heterogeneity

in degradation drift only, with drift defined as the expected degradation increment per unit of

time. By contrast, this paper uses the entire degradation path of each component. This allows us

to infer higher-order properties of the degradation behavior of the individual component, in par-

ticular the volatility, defined as the variance of a degradation increment per unit time (cf. Figure

1). We show numerically that this additional information has substantial value. Grounded on the
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widespread adoption of sensor technology and its integration in the IoT, this paper integrates esti-

mation and decision making in real-time to tailor maintenance intervention decisions to high-tech

systems individually.

We consider a single component that is critical for operating the system in which it is installed.

This component is subjected to stochastic shock deterioration (Esary and Marshall 1973, Sobczyk

1987). Such shock models assume that components accumulate random amounts of damage due to

shocks that occur randomly over time. These models are appropriate for, e.g., certain metal and

ceramic components in trains, aircraft, and medical equipment (including the IXR systems of our

case study) that only deteriorate at events at which they are subjected to shocks. Stochastic wear

models, as opposed to shock models, assume that components deteriorate continuously as long as

they are being used in operation (Kharoufeh and Cox 2005). Such models are more appropriate for,

e.g., rotating machinery and bearings (e.g., Elwany et al. 2011). In this paper, we model random

shock deterioration through a general jump process (Van Noortwijk 2009). More specifically, we

assume that the sequence of random shocks arrives as a Poisson process with a randomly varying

shock size, that is, degradation accumulation is modeled as a compound Poisson process. The

compounding distribution is quite general; the only restriction we impose is that this distribution

belongs to the natural exponential family with non-negative support. This family includes many

well-known distributions such as the geometric distribution and the Poisson distribution.

Components are subject to compound Poisson degradation, but the parameters of the Poisson

process as well as the compounding distribution vary from one component to the next. That is,

the population of components is heterogeneous. These parameters cannot be observed directly and

they therefore need to be learned by observing the degradation signal that is relayed in real-time

through sensors on the component. Although we observe the degradation level of a component

continuously through condition monitoring, we can only interfere with the system at equally spaced

discrete decision epochs (i.e. at planned downtimes). The costs to replace a component after failure

are much higher than before because they include the costs of unplanned downtime. This decision

problem can be modeled by a partially observable Markov decision process (POMDP). The entire

past degradation path of a component is relevant state information in this setting. Dealing with

the entire degradation path can lead to tractability issues. We circumvent these issues by using

conjugate prior pairs to model the heterogeneity of the component population. We further collapse

the state space by identifying structure in the prior to posterior updating procedure. This enables

us to tractably compute optimal policies as well as prove structural results about optimal policies.

This paper makes the following contributions:

1. We tractably model the situation where components are heterogeneous in their degradation

process by using conjugate prior pairs. We collapse the high dimensional state space to only



Drent, Drent, Arts and Kapodistria: Integrated Learning and Decision Making 5

3 dimensions while retaining all relevant information. This collapse gives insight into how all

relevant information in a real-time degradation signal can be parsimoniously represented. Fur-

thermore, this collapse makes the model both tractable numerically and amenable to structural

analysis.

2. We characterize the optimal replacement policy as a threshold replacement policy where the

threshold is increasing in the age of a component and furthermore depends on the volatility

of the observed degradation signal.

3. In a first simulation study, we study (i) the benefits of explicitly modeling heterogeneity, (ii)

the benefits of integrating learning with decision making, and (iii) the impact of the amount

of available historical degradation data for estimation of the population heterogeneity on their

performance. The results of this simulation study indicate that the integration of learning

and decision making leads to excellent results with gaps of only 0.60% on average relative to

an oracle that knows the true population heterogeneity. By contrast, ignoring heterogeneity

altogether leads to average gaps of 15.02% relative to an oracle that knows the true population

heterogeneity. Failing to integrate learning with decision making leads to average gaps of

7.08% relative to that same oracle. Furthermore, we show that models that ignore population

heterogeneity do not perform appreciably better when the amount of historical degradation

data for model calibration increases.

4. In a second simulation study, we assess the performance of the optimal policy (under real-

time, perfect data) when applied in a setting where (i) the degradation signal is not perfect,

and (ii) the degradation signal is not relayed in real-time. The results indicate that having

access to data in real-time is valuable, while at the same time, this real-time data need not

be perfect to achieve excellent performance.

5. We demonstrate the efficacy of integrated learning and decision making on a real data set

of X-ray tube degradation in an IXR machine. This large normalized data set is made avail-

able together with the paper to benchmark future approaches to perform maintenance on

degrading systems. This is the first openly available data set containing real degradation data

of components from a heterogeneous population. We find that integrated learning can save

around 10.50% compared to approaches without learning and around 4.28% compared to an

approach where learning is separated from decision making.

The remainder of the paper is organized as follows. We start with a brief literature review

in Section 2, and subsequently present the model formulation in Section 3. We characterize the

optimal replacement policy in Section 4 and we report on the results of a comprehensive simulation

study 5. We discuss the application of our approach to alternate settings in which the degradation

signal is imperfect or not relayed in real-time in Section 6. We establish the practical value of our
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model in Section 7, where we discuss a real life case study on an IXR machine of Philips Healthcae.

We provide concluding remarks in Section 8.

2. Literature review

Maintenance and replacement models have been studied extensively in both management and engi-

neering literature and have been reviewed over the decades (Pierskalla and Voelker 1976, Valdez-

Flores and Feldman 1989, Scarf 1997, Wang 2002). The question of when to intervene to maintain

or replace a component based on its condition or degradation has been studied already by Der-

man (1963) and Kolesar (1966). Both establish that, under specific conditions on the degradation

process, there exists a threshold such that it is optimal to replace a component if and only if the

degradation level of the component is found to have exceeded that threshold. Since these early

results, many results about the optimality of threshold policies for the replacement of deteriorating

components under many model variations have appeared; see e.g., Ross (1969), Kao (1973), Rosen-

field (1976), Benyamini and Yechiali (1999), Makis and Jiang (2003), Maillart (2006) and Kurt and

Kharoufeh (2010). Within this literature, the degradation process is assumed to be known to the

decision maker and the focus is on proving structural properties of optimal replacement policies.

Elwany et al. (2011) started to study models in which the parameters of the degradation process

are only partially known to the decision maker, and differ from component to component. They

consider a stochastic wear model and model the degradation process as a Brownian motion in

which the drift parameter is initially unknown and comes from a known prior distribution upon

replacement of a component. In the same spirit as our model, this prior distribution models the

heterogeneity of the component population. During each planned downtime, the degradation is

measured and the belief state regarding the drift parameter of the current component is updated.

In this situation, the optimal policy is shown to be a threshold policy where the threshold is an

increasing function of the age of the component. The intuition is that as a component ages without

failing, it is more likely that the drift is not very high. Since then, this result has been extended,

yet only to other stochastic wear degradation processes including the inverse Gaussian process

(Chen et al. 2015), the gamma process (Zhang et al. 2016), and Markovian processes with a prior

distribution on a finite number of possible transition matrices (Van Oosterom et al. 2017). By

contrast, in this paper, we are the first to study a stochastic shock model. In particular, our paper

studies the situation where all parameters of the stochastic shock degradation process are initially

unknown and come from a prior distribution. Furthermore, our model requires that the decision

maker can access the entire degradation signal since the last decision epoch, whereas Elwany et al.

(2011), Chen et al. (2015), Zhang et al. (2016), Van Oosterom et al. (2017) only require that the

decision maker can access the current degradation level. That is, our model exploits the entire
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degradation signal, whereas existing models only use measurements that are made just prior to

decision epochs. This allows us to infer not only the drift of the degradation process but also higher

order properties, in particular the volatility, all of which are unknown to decision makers in real life.

Thus, we add to the existing literature described above, by considering a stochastic shock model

where more relevant information can be used to learn the parameters, but also more parameters

need to be learned (i.e., of both the arrival process and damage distribution).

All the papers in the previous paragraph use, as do we, a partially observable Markov decision

process (POMDP) to study their models. This approach has also been used to study when expensive

condition measurements should be made (e.g., Kim and Makis 2013, Van Staden and Boute 2021,

Khaleghei and Kim 2021) and when spare part inventories should be replenished in anticipation of

failures (e.g., Li and Ryan 2011). A more related and recent paper that also involves a POMDP is

Kim (2016). He studies a condition based maintenance setting akin to ours but in which the initial

priors of the POMDP are mis-specified. The decision maker then seeks a policy that is robust

against such mis-specifications. Furthermore, POMDPs have been frequently used in the literature

on inventory management where learning is somehow involved. In particular to learn unknown

demand distributions from (censored) observations in a single location (e.g., Azoury 1985, Chen

and Plambeck 2008, Chen 2010) and across multiple locations (e.g., Chen et al. 2017), as well as to

learn inventory levels when records are inaccurate (e.g., DeHoratius et al. 2008, Mersereau 2013)

or when there is unobserved inventory shrinkage (e.g., Chen 2021, Li et al. 2022).

The usage of condition monitoring to improve decision making is not limited to the condition

based maintenance settings that we study. In fact, there exists a broad stream of literature that

studies how condition monitoring can improve general decision making; our paper contributes to

this literature stream as well. For example, Uit het Broek et al. (2020) study how the produc-

tion rate of a production system, which affects the degradation rate of such systems, should be

dynamically adjusted based on condition monitoring such that production profits are maximized.

Other examples of applications of condition monitoring include spare parts provision based on

degradation of components (Olde Keizer et al. 2017), managing rental cars based on their condi-

tion (Slaugh et al. 2016), and simultaneously optimizing maintenance and production schedules

for multiple products based on machine condition data (Batun and Maillart 2012).

3. Model formulation

In this section we describe the degradation model as well as the integrated learning problem of

learning the degradation behavior of a component and deciding when to replace it.
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3.1. Compound Poisson degradation

We consider a component that degrades as random shocks arrive. Shocks arrive as a Poisson

process and the damage that accumulates during a shock is random variable, i.e., degradation is a

compound Poisson process. The Poisson intensity of shock arrivals is denoted by λ. The random

amount of damage incurred by a shock follows the law of a member of the one-parameter (denoted

by ϕ) exponential family, supported on R+, where R+ denotes the non-negative real line. Hence,

the probability density or mass function of this random amount can be expressed in the form

f(x|ϕ) = h(x)eϕT (x)−A(ϕ), (1)

where T (x) is the sufficient statistic, and h(x) and A(ϕ) are known functions. We assume that

T (x) := x, which enables a state space collapse in our optimization problem (see Section 3.3).

In the literature, this family of distributions is often referred to as the linear (due to the linear

sufficient statistic) exponential family or natural exponential family and was first introduced by

Morris (1982). This class encompasses many well-known distributions used in maintenance such

as the geometric distribution, the Poisson distribution, the gamma distribution with known shape

parameter, the negative binomial distribution with known number of failures, and the binomial

distribution with known number of trials (see Morris (1982) for a complete overview). The following

two examples illustrate how the geometric distribution with unknown success probability p∈ (0,1)

and the Poisson distribution with unknown mean µ > 0, respectively, can be expressed in the

canonical form of the natural exponential family.

Example 1 (Geometric distribution). Let the damages be geometrically distributed with

(unknown) success probability p∈ (0,1), with support N0 := {0,1, . . .}. The probability mass func-

tion of the random amount of damage, denoted by f(x|p), then takes the form

f(x|p) = (1− p)xp= eln(1−p)x−ln(1/p). (2)

Comparing Equation (2) with Equation (1), we find that h(x) = 1, T (x) = x, ϕ = ln(1− p), and

A(ϕ) = ln(1/p) = ln (1/(1− eϕ)) for the geometric distribution. ♦

Example 2 (Poisson distribution). Let the damages be Poisson random variables with

(unknown) mean µ> 0. The probability mass function of the random amount of damage, denoted

by f(x|µ), then takes the form

f(x|µ) = µxe−µ

x!
=

1

x!
eln(µ)x−µ. (3)

Comparing Equation (3) with Equation (1), we find that h(x) = 1
x!
, T (x) = x, ϕ = ln(µ), and

A(ϕ) = µ= eϕ for the Poisson distribution. ♦
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For simplicity and due to its practical appeal (see Section 7), throughout this paper, we use the

geometric distribution with support N0 to illustrate further results – building further on Example

1 – but we emphasise that all structural results hold for any compounding distribution whose

probability density or mass function can be expressed in the form displayed in (1) with T (x) = x.

The degradation level is observed continuously, but it is only possible to interfere with the system

at equally spaced decision epochs. These decision epochs correspond to planned downtimes. For

convenience, we rescale time such that the time between two decision epochs equals 1. Furthermore,

there exists a threshold ξ ∈ N+, where N+ := {1,2, . . .}, such that a component has failed if its

degradation is equal to or exceeds ξ.

Let N(0,t] ≡Nt denote the total number of shocks received by a component from the start of its

life (i.e., from the installation of the component) up to its operational age t. We write here explicitly

“operational” to emphasize that this age is the cumulative time that the current component is in

use. Components of technical systems such as aircraft and rolling stock, and also the IXR system

in our case study that we discuss in Section 7, only sustain shocks when these systems are in use.

For aircraft and rolling stock, this is the case when they are in operation, while for the IXR system

in our case study, this is during a working day. For components that exhibit this natural on-off

behavior in practice, we can – and we will in our case study – interpret the age t as the cumulative

operational age. Observe that in light of the memory-less property of the Poisson process, this is

also a justifiable interpretation. The number of shocks that arrive between age t−1∈N0 and t∈N0

is denoted by K(t−1,t] :=Nt−Nt−1. Observe that integer ages of components coincide with decision

epochs. Moreover, let Yi denote the damage incurred at the i−th shock since the installation of

the component. The compound Poisson process at component age t∈N0 satisfies

Xt =

Nt∑
i=1

Yi =Xt−1 +

Nt∑
i=Nt−1+1

Yi, t∈N0, (4)

where X0 =N0 = 0, and by definition
∑0

i=1 · ≡ 0. Furthermore, let Yt :=
(
YNt−1+1 YNt−1+2 . . . YNt

)
and let Z(t−1,t] :=

∑Nt

i=Nt−1+1 Yi.

3.2. Learning the degradation model

We assume that each component stems from a heterogeneous population of components in which

each component has different degradation parameters λ and ϕ, which are unknown to the decision

maker. Hence, the degradation parameters differ from one component to the next. This reflects

the fact that the degradation process may be affected by the individual component’s endogenous

conditions. We treat the parameters λ and ϕ as random variables, denoted by Λ and Φ, which can

be inferred with increasing accuracy by observing the degradation signal of the component in a

Bayesian manner.
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Λ has a Gamma distribution with shape α0 and scale β0 (notation: Λ∼ Gamma(α0, β0)) and Φ

is distributed according to the general prior for a member of the exponential family (parameter-

ized by a0 and b0), with α0, β0, a0, b0 > 0, with prior density distribution denoted by fΛ(λ|α0, β0)

and fΦ(ϕ|a0, b0), respectively. We refer to α0, β0, a0, and b0 as the hyperparameters. Upon the

installation of a new component, the parameters of the compound Poisson degradation process, λ

and ϕ, are drawn from these distributions. Let kt denote the observed number of shocks a compo-

nents has sustained between ages t− 1 and t, i.e., kt is the realization of K(t−1,t]. Furthermore let

yt :=
(
y1
t y2

t . . . ykt
t

)
be the array of the observed amounts of damage of the shocks sustained, i.e.,

yt is the realization of Yt. Finally, let zt :=
∑kt

i=1 y
i
t, be the sustained damage between ages t− 1

and t, i.e., zt is the realization of Z(t−1,t]. The tuple θt := (kt,yt) is then the observed degradation

signal of a component between ages t− 1 and t.

The sequential Bayesian updating procedure (also referred to as prior-to-posterior updating,

(Ghosh et al. 2007)) works as follows. When a new component is installed, there is no observed

degradation signal accumulated yet, and hence Λ and Φ follow independent prior distributions,

respectively. This joint prior density distribution, denoted by f0
Λ,Φ(λ,ϕ) := fΛ(λ|α0, β0) ·fΦ(ϕ|a0, b0),

may be obtained from historical or testing data. (In Section C of the Appendix we discuss an

appropriate estimation procedure.) At component age t, we use the observed degradation signal

θt and the joint posterior density distribution of Λ and Φ updated at component age t− 1, say

f t−1
Λ,Φ (λ,ϕ) := fΛ,Φ(λ,ϕ|θ0, . . . ,θt−1), to derive the newly updated joint posterior distribution of Λ

and Φ, denoted by f t
Λ,Φ(λ,ϕ) := fΛ,Φ(λ,ϕ|θ0, . . . ,θt).

For tractability purposes, so-called conjugate pairs, which have the appealing computational

property that the posterior is in the same family as the prior, are often of interest in prior-to-

posterior updating. It is well-known that the gamma distribution is a conjugate prior distribution

for the Poisson distribution and that a member of the exponential family has a conjugate prior

whose density can be expressed in the form (cf. Ghosh et al. 2007)

fΦ(ϕ|at, bt) =H(at, bt)e
atϕ−btA(ϕ). (5)

However, since we infer the joint distribution of Λ and Φ using the same observed degradation

signal, it is not evident which form the joint posterior distribution of Λ and Φ takes. Proposition

1 shows that this joint posterior distribution at component age t can be decomposed into two

independent distributions of the same form with updated parameters that only depend on the

information obtained in the last period (θt). All the proofs are given in Appendix A.

Proposition 1. Given the last observed degradation signal at component age t, θt = (kt,yt),

and the joint prior distribution f t−1
Λ,Φ (λ,ϕ) = fΛ(λ|αt−1, βt−1) · fΦ(ϕ|at−1, bt−1), the joint posterior

distribution, f t
Λ,Φ(λ,ϕ), is equal to fΛ(λ|αt−1 + kt, βt−1 +1) · fΦ(ϕ|at−1 + zt, bt−1 + kt).
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Proposition 1 induces a simple scheme to infer the true parameters of the degradation process

of a component with increasing accuracy. The following example illustrates how the parameter of

the compounding distribution can be inferred in the case of geometrically distributed damages.

Example 3 (Geometric distribution, continuation of Example 1). We endow a prior

on the canonical parameter ϕ with density

fΦ(ϕ|at, bt) =H(at, bt)e
btϕ−atA(ϕ) =H(at, bt)e

ϕbt(1− eϕ)at ,

or equivalently, parameterized in terms of p using p= 1− eϕ,

fP (p|at, bt) =H(at, bt)p
at(1− p)bt ,

in which we recognize, after normalization, the beta distribution with shape parameter at − 1 and

scale parameter bt − 1. Note also that at = a0 +
∑t

i=1 zi and bt = b0 +
∑t

i=1 ki. ♦

We now determine the posterior predictive distribution at component age t of the random variable

Z(t,t+1] given the learned information contained in αt, βt, at, and bt.

Lemma 1. The posterior predictive distribution at component age t of the random variable

Z(t,t+1] given the joint posterior distribution of Λ and Φ, fΛ(λ|αt, βt) · fΦ(ϕ|at, bt), is equal to:

P
[
Z(t,t+1] = z|αt, βt, at, bt

]
=

∞∑
k=0

∫ +∞

−∞
f (k)(z|Φ= ϕ)fΦ(ϕ|at, bt)dϕ

(
k+αt − 1

k

)(
1

βt +1

)k(
βt

βt +1

)αt

, (6)

where f (k)(z|Φ= ϕ) denotes the k-fold convolution of the probability density (or mass) function of

the random variable {Y |Φ= ϕ}.

Lemma 1 can be used to construct an updated posterior predictive distribution at each component’s

age t of the next observed damage increment in real-time based on the observed degradation signal.

Hence, the posterior distribution of the degradation parameters of the system is a Markov process

whose evolution is induced by the degradation trajectory of the current component.

At first sight, the posterior predictive distribution in Lemma 1 seems rather intractable due

to the convolution term involved. Fortunately, members of the natural exponential family with a

linear sufficient statistic are closed under convolution with itself and hence possess a tractable form

(Morris 1982). Upon insertion of the expression for this convolution term and the corresponding

conjugate prior, the posterior predictive distribution reduces to a closed-form expression that can

be used for computational purposes. This is illustrated in the example below.
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Example 4 (Geometric distribution, continuation of Example 3). In this example

we use the parameterization in terms of unknown success probability p, which we treat as a random

variable denoted by P . Due to the discrete nature of the geometric distribution and as p ∈ (0,1),

we have by Lemma 1 that

P
[
Z(t,t+1] = z

∣∣K(t,t+1] = k,αt, βt, at, bt

]
=

∫ 1

0

P
[∑k

i=1
Yi = z

∣∣P = p
]
fP (p|at, bt)dp

=
1

B(at, bt)

(
z+ k− 1

z

)∫ 1

0

pk(1− p)zpat−1(1− p)bt−1dp

=
B(k+ at, z+ bt)

B(at, bt)

(
z+ k− 1

z

)
, (7)

where B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt is the beta function. Note that the distribution of K(t,t+1] is

a continuous mixture of Poisson distributions where the mixing distribution of the Poisson rate

follows a Gamma(αt, βt) distribution, which is known to be the negative binomial distribution with

success probability q= 1
βt+1

and r= αt number of required successes. Hence, we have

P
[
K(t,t+1] = k

∣∣αt, βt

]
=

(
k+αt − 1

k

)(
1

βt +1

)k(
βt

βt +1

)αt

. (8)

Unconditioning Equation (7) using Equation (8) yields the closed form expression of the posterior

predictive distribution:

P
[
Z(t,t+1] = z|αt, βt, at, bt

]
=

∞∑
k=0

B(k+ at, z+ bt)

B(at, bt)

(
z+ k− 1

z

)(
k+αt − 1

k

)(
1

βt +1

)k(
βt

βt +1

)αt

.

♦

3.3. Markov decision process formulation

Each component will incur a cost due to either corrective or preventive replacement. If the degra-

dation level at a decision epoch is greater than or equal to the failure threshold ξ, then the failed

component is replaced correctively at cost cu. If the degradation level at a decision epoch does not

exceed ξ, then we can either perform preventive replacement at cost cp, or continue to the next deci-

sion epoch at no cost. We assume that replacements take negligible time and that 0< cp < cu <∞

to avoid trivial cases.

Recall that each component stems from a heterogeneous population that includes components

with different degradation parameters λ and ϕ. Note that these parameters cannot be observed;

only the degradation signal θi for i= 1, · · · , t is observable at component age t. We will therefore use

a POMDP to model the integrated problem of learning the degradation parameters of a component

and deciding when to replace. First we observe that due to the results in the previous section, the
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information state of a component at age t can be represented by (αt, βt, at, bt). Furthermore, the

decision maker knows the current degradation level x. The state at decision epoch τ is therefore

given by (x,α,β, a, b, τ) where x denotes the degradation level of the component that is in service

and α, β, a, and b encode the most current degradation information of the component that is in ser-

vice. This six dimensional state representation can be collapsed into an equivalent four dimensional

state representation (x,n, t, τ) where n denotes the number of shocks that the current component

has sustained and t denotes its age. Indeed observe that by Proposition 1 we have α = α0 + n,

β = β0 + t, a= a0 + x, and b= b0 +n. This representation is insightful: All the information in the

degradation signal is encoded in the total degradation level, the number of shocks sustained, and

the age of the component. The crucial assumption for this collapse is that the sufficient statistic

T (x) for the damage distribution is equal to x, see Equation (1). If the sufficient statistic would not

be linear in the damage, then the state space would need to include all individual damage arrivals.

We are interested in finding the optimal replacement policy π∗ = {πτ}τ∈N0
that minimizes the

total expected discounted cost of corrective and preventive replacements over an infinite horizon,

where the costs are discounted by a factor γ ∈ (0,1). This policy is a sequence of decision rules

that prescribe whether or not to perform preventive maintenance if x< ξ. By Proposition 1.2.2. of

Bertsekas (2007), there exists an optimal Markov (deterministic) policy depending only on state

(x,n, t) independent of the decision epoch τ ∈N0. Let

V (s) = inf
π∈Π

lim
T→∞

Es

[∑T

τ=1 γ
τC (Sτ , π(Sτ ))

]
(9)

denote the expected total discounted cost given that the process starts in state s= (x,n, t) where

Sτ denotes the state of the component operating at decision epoch τ , Π denotes the set of Markov

(deterministic) policies, Es is the conditional expectation given that the process starts in state

s= (x,n, t), and C(s, π(s)) denotes the cost function defined as

C(s, π(s)) =


cp if x< ξ and π(s) = replace,

0 if x< ξ and π(s) = continue,

cu if x≥ ξ.

Due to this state space collapse, the posterior distribution of Z(t,t+1] is function of the state

s = (x,n, t). Therefore we will use the shorthand notation Z(s) to indicate the random variable

Z(t,t+1] given the state s= (x,n, t). Similarly, we use the shorthand notation K(s) and Y (s)i for the

random variable K(t,t+1] and the random variables {Yi}i∈N, given state s= (x,n, t). Note that Z(s)

and K(s) are dependent random variables. This is intuitively clear as damage can only accumulate

when the component sustains shocks. To keep our notation concise, it is convenient to define the

multivariate random variable A(s) := (Z(s),K(s),1). The conditional distributions (on s) of the
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first two entries of this multivariate random variable can be determined with Proposition 1 and

Lemma 1, while the use of the third entry shortly becomes apparent. The optimal replacement

policy π∗ satisfies the Bellman optimality equations:

V (s) =

{
cu + γE [V (s0 +A(s0))] , if x≥ ξ,

min
{
cp + γE [V (s0 +A(s0))] ;γEs [V (s+A(s))]

}
, if x< ξ,

(10)

where s0 := (0,0,0).

The first case in Equation (10) follows because failed components must be replaced correctively

at cost cu. If the component’s degradation level is less than ξ, we can either perform preventive

replacement at cost cp, or leave the component in operation until the next decision epoch at no cost.

Upon preventive or corrective replacement, the parameters of the new component are unknown

and need to be learned anew as the replacement component ages. The aging of the component is

captured in the third entry of the random variable A(s), where s= (·, ·, t) always moves to (·, ·, t+1)

at the next decision epoch, regardless of the decision. In the remainder of this paper, we refer to

V (s) as the value function.

4. Optimal replacement policy

In this section, we present structural results of the optimal replacement policy. We first prove that

the value function behaves monotonically in its state variables, which we then use to prove that

the optimal replacement policy is a control-limit policy with certain monotonic properties. We

highlight these theoretical results with numerical examples.

In Lemma 1, we establish how the decision maker can update the posterior predictive distribu-

tion of the upcoming degradation increment by utilizing the observed degradation signal s. The

next result, Proposition 2, presents two properties that provide insight into what the decision

maker knows about the distribution of future degradation increments conditionally on the observed

degradation signal.

Proposition 2. The random variables Z(s) satisfy the following stochastic orders:

(i) Z(s) is stochastically decreasing in t in the usual stochastic order;

(ii) Z(s) is stochastically increasing in x in the usual stochastic order.

Part (i) of Proposition 2 shows that older components will accumulate – in expectation – less

damage than younger components. As a component ages without failing, the decision maker infers

that large increments are unlikely to happen for this component. The intuition behind Part (ii) of

Proposition 2 is that when more damage has accumulated already, then we should expect more

damage to accumulate in the future.
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In contrast to x and t, there is no monotone stochastic ordering of Z(s) in n in general, as is

shown in Example 5. In this example we show that when the damages are geometrically distributed,

the first two moments have opposing monotonic behaviors. This contrasts the prerequisite for

stochastic ordering that these are aligned (see, e.g., Shaked and Shanthikumar 2007, Theorem

1.A.3).

Example 5 (Geometric distribution, continuation of Example 4). Consider again

the geometric compounding distribution with a beta prior. Let b0−α0−1> 0, then the expectation

of Z(s).

E[Z(s)] =
a(α0 +n)

β(b0 +n− 1)

increases in n. However, the second moment

E[Z(s)2] =
a(α0 +n)

β2(b0 +n− 1)2

(
β3

(
2(a+1)

b0 +n− 2
+β(b0 +n)+ 2b0 + a−β+2n

)
+ a(α0 +n)

)
is not monotonically increasing. (The derivation of these two moments is provided in Appendix B).

For example, choosing b0 = 2.62, α0 = β = 1 and a= 10 yields that the second moment is increasing

for all n≤ 15 and decreasing for all n≥ 16. We can therefore conclude that there is no monotone

stochastic ordering of the random variables Z(s) in n. ♦

The following two properties of the value function are essential to establish the structure of the

optimal replacement policy. As Proposition 2 is pivotal to establish these two properties, there is

again no monotonic behavior of the value function in n in general.

Lemma 2. The value function V (s) is

(i) non-increasing in t;

(ii) non-decreasing in x.

We are now in the position to establish the main result of this section: the optimality of a control

limit policy, as well as the monotonic structure of this control limit.

Theorem 1. At each component age t∈N0, for a given number of shock arrivals n∈N0, there

exists a control limit δ(n,t) ≤ ξ, such that the optimal action is to carry out a preventive replacement

if and only if x≥ δ(n,t). The control limit δ(n,t) is monotonically non-decreasing in t, for all n.

The optimal control limit is non-decreasing in t because as the component ages without failing,

the decision maker is increasingly assured that the current component degrades slowly relative to

the general population of components.

Figure 2 illustrates the control limit policy and its monotonic behavior, while Figure 3 displays an

example in which this optimal control limit is non-monotonic in the number of shocks sustained. In
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these examples, we again use the geometric distribution as choice for the compounding distribution,

the solid black line depicts the observed degradation path as the component ages, and a star

denotes a shock arrival. The dashed line depicts the optimal control limit, where at each decision

epoch, the optimal action is to carry out a preventive replacement if the degradation level is at or

above the optimal control limit. The failure level ξ is depicted with the dot-dashed line, so that

a corrective replacement has to be performed if the solid black line is at or above this dot-dashed

line.
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Figure 2 Two sample degradation paths and the optimal replacement policy, with α0 = β0 = a0 = b0 = 1, cu = 4,

cp = 1 and ξ = 10. For the compound Poisson processes that generate the sample paths, we have

λ= 0.25 and ϕ= 0.2 (left), and λ= 1.5 and ϕ= 0.8 (right).
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Figure 3 Sample degradation path and the optimal replacement policy, with α0 = β0 = 1 and a0 = 60 and b0 = 10,

cu = 4, cp = 1 and ξ = 10. For the compound Poisson process that generates the sample path, we have

λ= 1.75 and ϕ= 0.9.
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The structural results are not only intuitive and convenient for the implementation of an optimal

policy in practice. They can also be exploited to decrease the computational burden of finding the

optimal policy by employing existing algorithms that rely on these monotonicity properties such

as the monotone policy iteration algorithm (see Puterman 2005, Section 6.11.2).

5. Simulation study

This section reports the results of a comprehensive simulation study. Although the established

structural results hold for any one-parameter member of the exponential family with positive

support, we assume in this section, motivated by practice, that the damages are geometrically

distributed. This simulation study starts from the premise that the true hyperparameters of the

degradation behavior are unknown to the decision maker; they only have access to historical

degradation data for model calibration. This premise differs from previous contributions that use

Bayesian techniques to model real-time learning, where hyperparameters for prior distributions are

generally assumed to be given (e.g., Chen 2010). This latter approach is, however, arguably not

the case in practice. Indeed, decision makers only have access to historical degradation data that

they should leverage in order to estimate hyperparameters. The main objective of this simulation

study is, therefore, twofold:

1. To examine the value of integrating learning and decision making, which takes into account

explicitly that degradation of components is heterogeneous (value of integration).

2. To assess how the amount of available historical degradation data that is used for model

calibration affects the performance (value of data).

To assess the value of integration and data, we define three heuristic approaches, all of which start

from the same historical degradation data, but differ in (i) the model calibration, (ii) the learning,

and (iii) the integration of learning and decision making. We shall compare the performance of

each approach with the performance of an oracle who does know the true hyperparameters of the

degradation behavior of different components. The oracle thus follows the replacement policy that

solves the Bellman optimality equations in (10), calibrated with the true hyperparameters. We

denote the oracle policy by πO.

For each instance of the simulation study, which we describe in detail later, the true hyperparam-

eters of the gamma and beta prior distribution of Λ and Φ that model the population heterogeneity

are denoted by α̃, β̃, ã, and b̃. These are known only to the oracle. The historical degradation

data that serves as starting point for the heuristic approaches of that same instance is obtained

by simulating degradation paths of components whose degradation parameters λ and ϕ are drawn

from a gamma distribution with the true hyperparameters α̃ and β̃, and a beta distribution with

ã and b̃, respectively. We now proceed with defining the three heuristic approaches, after which we

describe the simulation set-up and discuss the results.
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5.1. Offline approach

The first heuristic approach ignores both the population heterogeneity and the real-time degrada-

tion signal, which is the current state-of-the-art. This approach assumes that the degradation of

each component upon installation follows a compound Poisson process with the same parameters λ

and ϕ. Under this assumption, the decision maker faces the classical replacement problem for which

we know that the optimal replacement policy is given by a stationary control limit (e.g., Kolesar

1966). The optimal control limit can be readily found by solving the following one dimensional

Bellman optimality equations:

V (x) =

cu + γE
[
V (Z̃(λ,ϕ))

]
, if x≥ ξ,

min
{
cp + γE

[
V (Z̃(λ,ϕ))

]
;γE

[
V (x+ Z̃(λ,ϕ))

]}
, if x< ξ,

(11)

where Z̃(λ,ϕ) :=
∑K(λ)

i=1 Yi(ϕ) denotes the degradation increment in between two consecutive deci-

sion epochs, K(λ) is a Poisson distributed random variable with parameter λ and Yi(ϕ) are geo-

metrically distributed with parameter ϕ.

Hence, under the first approach, the decision maker approximates the degradation parameters

by the corresponding point estimates λ̄ and ϕ̄, which are obtained using Maximum Likelihood Esti-

mation (MLE) based on the available historical degradation data, and then solves the optimality

equations (11) with those estimates to obtain a single control limit, that is used for all components.

In the remainder of this section, we refer to this approach as the offline approach because it ignores

both the population heterogeneity and the real-time degradation signal. We denote this approach

by πN since it is the most naive heuristic approach of all three approaches, yet it is common

practice.

5.2. Open-loop feedback approach

The second heuristic approach does utilize the real-time degradation signal to update the point

estimates of the degradation parameters of an individual component. As such, this approach takes

into account that the population of components is heterogeneous. This approach is calibrated as

follows. Given the historical degradation paths, we estimate the initial hyperparameters α0, β0,

a0, and b0, by maximizing the likelihood of those degradation paths being induced by components

stemming from a population whose heterogeneity is modeled through a gamma and beta distri-

bution with these hyperparameters. Thus, based on the available historical degradation data, we

estimate the initial hyperparameters α0, β0, a0, and b0, using MLE (further details regarding this

MLE procedure are relegated to Appendix C).

After calibration, this heuristic approach works as follows: At component age t, the decision

maker updates the information state encoded in fΛ(λ|αt, βt) and fΦ(ϕ|at, bt) in the same way as in
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the original Bayes model (cf. Proposition 1). The decision maker then updates the point estimates

of the degradation increment based on the minimum mean square error (MMSE) estimator. In

a Bayesian setting, MMSE estimates correspond to posterior means. Hence, at component age t,

the MMSE estimates for the degradation parameters are given by λ̄t :=
∫∞
0

ufΛ(u|αt, βt)du= αt/βt

and ϕ̄t :=
∫ 1

0
ufΦ(u|at, bt)du = at/(at + bt). The decision maker then computes a control limit by

solving the optimality equations (11), where the parameters of the Poisson and of the geometric

distribution of the degradation increment Z̃(λ,ϕ) are now given by λ̄t and ϕ̄t, respectively. Although

the second approach partly captures the Bayesian learning benefits, it does not integrate learning

with optimization but rather solves a myopic optimization problem repeatedly with the latest

point estimates of the degradation parameters. Such a myopic policy is known as an open-loop

feedback policy in the stochastic control literature, see, e.g., Bertsekas (2007). In the remainder of

this section, we therefore refer to this approach as the open-loop feedback policy, denoted by πF .

5.3. Integrated Bayes approach

The third heuristic approach is the most sophisticated approach. It is similar to πO in that it follows

the replacement policy that solves the Bellman optimality equations in (10). However, as we have

argued before, the true hyperparameters that model the population heterogeneity are unknown to

the decision maker in practice. As such, this approach differs from πO in that we calibrate this

approach using MLE, in the same way as how we calibrate πF . That is, we estimate the initial

hyperparameters α0, β0, a0, and b0, using MLE based on the available historical degradation data.

These estimated hyperparameters are then used as input for finding the optimal replacement policy

through solving the Bellman optimality equations in (10). We henceforth refer to this approach as

the integrated Bayes approach, denoted by πI . It is important to note that this approach is precisely

how the results of this paper should be applied in practice, where the hyperparameters describing

the heterogeneity of the component population should be estimated from historical degradation

data.

5.4. Results

The main performance metric in this simulation study is the gap between the long run average cost

rate induced by the oracle policy and the offline approach, the open-loop feedback approach, and

the integrated Bayes approach, where the latter three models are calibrated based on MLE. More

formally, we are interested in %GAPπ = 100 · (Cπ −CπO)/CπO , where Cπ is the long run average

cost rate of approach π ∈ {πI , πF , πN}.

To achieve the two main objectives stated in the beginning of this section, we set up a large

test-bed consisting of instances obtained through all combinations of the parameter values in Table

1, with ξ = 20 and cp = 1. To vary the heterogeneity in the population of components, we naturally
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vary the coefficient of variation of the gamma and beta prior distributions of Λ and Φ, respectively,

while keeping their respective means fixed at 1 and 0.5 for all instances.

Table 1 Input parameter values for simulation study.

Input parameter No. of choices Values

1 Coefficient of variation of prior gamma distribution, cvΛ 2 0.3, 0.6
2 Coefficient of variation of prior beta distribution, cvΦ 2 0.01, 0.02
3 Corrective maintenance cost, cu 2 5, 10
4 Number of simulated degradation paths, ν 2 10, 50

For each instance of the test-bed, we determine the true hyperparameters α̃, β̃, ã, and b̃, based

on the coefficient of variation of the gamma and beta distribution of that instance (and their fixed

means).

We use these hyperparameters to compute πO and we also simulate a number of degradation

paths corresponding to that instance. We subsequently use these simulated degradation paths to

calibrate approaches πI , πF and πN . That is, we use MLE to estimate α0, β0, a0, and b0, in case

of πI and πF , and point estimates λ̄ and ϕ̄, in case of πN . We then simulate 15 · 103 components,

where upon installation of a new component, its degradation parameters are drawn from a gamma

and beta distribution with the true hyperparameters α̃, β̃, ã and b̃. For each simulated component,

we keep track of the relevant cost rates and subsequently calculate %GAPπ for each approach

π ∈ {πI , πF , πN}. We repeat this procedure 30 times for each instance of the test-bed to ensure

that the confidence intervals of the cost rates are sufficiently small. Throughout this simulation

study, we use a discount factor of 0.99 in solving the corresponding optimality equations of each

approach, and we truncate both state variables n and t at a sufficiently large value (i.e., 40) in

computing the optimal policy under both πI and πO.

The results of the simulation study are summarized in Table 2. In this table, we present the

minimum, average, and maximum %GAPπ for each approach π ∈ {πI , πF , πN}. We first distinguish

between subsets of instances with the same value for a specific input parameter of Table 1 and

then present the results for all instances.

The following main observations can be drawn from Table 2: First, πI yields excellent results

with a gap of only 0.60% on average relative to the oracle. Both heuristic approaches πF and πN

perform poorly, with gaps of 7.08% and 15.02% on average relative to the oracle. Ignoring both

the degradation signal and the heterogeneity in the population can be quite detrimental, as gaps

of up to 24.04% relative to the oracle do occur under πN . Although learning the degradation signal

is beneficial, failing to integrate this with decision making directly can still lead to gaps with the

oracle of up to 11.43%. All three approaches πI , πF , and πN seem to perform worse when the
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Table 2 Results of simulation study

%GAPπ

πI πF πN

Input Value Min Mean Max Min Mean Max Min Mean Max

cvΛ

0.3 0.05 0.58 1.26 3.52 6.14 10.05 7.91 13.97 22.93
0.6 0.15 0.63 1.34 5.24 8.02 11.43 10.16 16.08 24.04

cvΦ
0.01 0.05 0.46 1.02 3.52 5.54 8.11 7.91 11.31 15.25
0.02 0.25 0.75 1.34 5.83 8.62 11.43 13.85 18.73 24.04

cu
5 0.05 0.48 1.16 3.52 5.66 7.74 7.91 12.01 15.73

10 0.24 0.72 1.34 5.21 8.50 11.43 10.83 18.03 24.04

ν
10 0.42 0.95 1.34 3.97 7.23 11.43 8.63 15.46 24.04
50 0.05 0.26 0.49 3.52 6.93 11.36 7.91 14.58 23.00

Total 0.05 0.60 1.34 3.52 7.08 11.43 7.91 15.02 24.04

heterogeneity in the population increases, and when the cost of performing corrective maintenance

becomes higher.

Second, it is generally believed that increasing the amount of data available for model calibration

leads to better decisions. However, when the underlying assumptions of the model are wrong,

then this may not be true. Indeed, the performance of both heuristic approaches πF and πN does

not increase considerably in the number of simulated degradation paths that serve as input to

these models. The performance of πI increases however significantly when this number increases.

Furthermore, even when the amount of available data for estimating the population heterogeneity

is limited, the integrated Bayes approach, πI , still yields excellent results.

6. Alternate settings

We have so far assumed that the degradation signal is relayed in real-time and that it provides a

perfect observation of the actual degradation level. These assumptions are in line with what we have

observed at our industrial partner who instigated this research (see also the case study in the next

section). We note that there may be practical settings where such assumptions are not justified.

It is however intractable to relax these assumptions and consequently compute optimal policies

within our current modelling framework. In this section, we therefore study the performance of our

integrated Bayes approach when it is applied to settings where the degradation signal is imperfect

or relayed periodically. We do so in a simulation study that follows the same procedure as in the

previous section.

6.1. Imperfect degradation signal

In line with most of the research on imperfect condition monitoring (e.g., Maillart 2006, Kim

and Makis 2013), we model an imperfect degradation signal by constructing a state-observation

matrix Q that captures the stochastic relationship between the actual degradation level Xt and
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the (imperfect) observation, denoted with X̄t, that the decision maker observes. More formally, let

Q :=
(
qij

)
ξ×ξ

, whose entry qij := P
[
X̄t = j | Xt = i

]
is equal to

φi(j|σ)∑ξ−1

j=0 φi(j|σ)
, (12)

where φx(y|σ) is the density function of a normal random variable with mean x and standard

deviation σ evaluated at y. Recall that in our simulation study, we assume that the damages are

integer valued, so that we have ξ non-failed states, i.e. 0,1, . . . , ξ− 1, that are not observable, and

one failed state that is observable. The matrix Q applies to the ξ non-failed states. Constructing

this matrix using the parameterization in (12) is an approach often used in literature (see, e.g.,

Maillart 2006, Kim and Makis 2013, Liu et al. 2021), where the standard deviation σ is a measure

of the noise (or imperfectness) of the observations when the system has not failed yet. By varying

the value of σ we can thus investigate the robustness of our approach to the level of imperfectness

of the observations. Note that by setting σ equal to zero, we are in the situation that we have a

perfect observation of the actual degradation level.

6.2. Intermittent degradation signal

When the degradation signal is relayed periodically at decision epochs, the decision maker has only

access to the degradation level of the current component xt (and its age t). However, to apply the

integrated Bayes approach we require the number of sustained loading epochs nt too. To resolve

this, we rely on the following recursive formula to obtain a proxy for nt:

n̄t =
xt(a0 +xt−1 − 1)

b0 + n̄t−1

, t > 0, (13)

and n̄0 = 0. We round to the nearest integer in case n̄t is not integral. This procedure has intuitive

appeal. To obtain a proxy for n1 at t= 1, we divide the degradation level x1 by the expected damage

per loading epoch given the initial hyperparameters a0 and b0 that are obtained through the MLE

procedure for model calibration, i.e. b0
(a0−1)

. (Observe that this is the expectation of a geometric

random variable whose parameter is beta distributed with parameters a0 and b0, see Appendix B

for the derivation.) We then apply the updating rules of Proposition 1 using this proxy, that is

a1 = a0+x1 and b1 = b0+ n̄1, and consequently apply the same logic at t= 2 to obtain a proxy for

n2. This procedure repeats until the component is replaced.

6.3. Results

The long run average cost rate of the integrated Bayes approach applied to the imperfect degra-

dation signal setting and the intermittent degradation signal setting are denoted C imp
πI

and C int
πI
,

respectively. We are interested in how the integrated Bayes approach performs in these alternate
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settings. Therefore we compare said costs rates with the cost rate of the integrated Bayes approach

that does have access to the true degradation signal in real time. That is, we compute %V ALint =

100 · (C int
πI

−CπI )/CπI and %V ALimp = 100 · (C imp
πI

−CπI )/CπI for each instance of the test bed.

The instances of our test bed are identical to the test bed of the previous section, see Table 1. In

the test bed of the imperfect degradation signal, we additionally vary σ over 5 different levels, i.e.

σ ∈ {0.25,0.5,0.75,1,1.25}. Note that in these settings an optimal policy cannot use information

contained in the real-time signal, whereas the integrated Bayes approach does use this information.

Therefore CπI is a practical lower bound on the cost rate of the optimal policy for both alternate

settings.

The average %V ALint and the average %V ALimp are presented in Table 3 and Table 4, respec-

tively. As before, we first distinguish between subsets of instances with the same value for a specific

input parameter and then present the results for all instances.

Table 3 Results for intermittent degradation signals

Input parameter Value %V ALint

Coefficient of variation of prior gamma distribution, cvΛ

0.3 9.20
0.6 20.11

Coefficient of variation of prior beta distribution, cvΦ
0.01 17.78
0.02 11.53

Corrective maintenance cost, cu
5 8.95
10 20.36

Number of simulated paths, ν
10 15.82
50 13.49

Total 14.66

Table 4 Results for imperfect degradation signals

Input parameter Value %V ALimp

Coefficient of variation of prior gamma distribution, cvΛ

0.3 4.09
0.6 8.58

Coefficient of variation of prior beta distribution, cvΦ
0.01 6.30
0.02 6.38

Corrective maintenance cost, cu
5 4.62
10 8.05

Number of simulated paths, ν
10 6.43
50 6.24

Standard deviation of the noise, σ

0.25 0.01
0.5 2.16
0.75 4.93
1 9.25
1.25 15.33

Total 6.34

From Table 3 we see that when the degradation signal is not relayed in real-time, our integrated

Bayes approach performs relatively poorly with a %V ALint of almost 15 percent on average. This
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also implies that relaying a degradation signal in real-time rather than only periodically has con-

siderable value. Indeed, it allows the decision maker to not only learn the drift of a degradation

signal (encoded in the degradation level and the age) but also the volatility of the degradation

signal; the latter can only be inferred if one has access to the individual arrivals of loading epochs

and their corresponding damages in between decision epochs.

By contrast, our integrated Bayes approach performs quite well when the degradation signal is

imperfect. Indeed, from Table 4 we see that %V ALimp is around 6 percent on average, and even

remains below 5 percent for moderate levels of noise.

7. Case study

IXR systems are used by physicians for minimally-invasive image-guided procedures to diagnose

and treat diseases in nearly every organ system. X-ray tubes (denoted by the rectangle in Figure 4)

are the most expensive replacement components of an IXR system and therefore of major concern.

Philips Healthcare produces the IXR system and does maintenance and service for many hospitals

that use the IXR system.

X-ray tube

Figure 4 Example of IXR system with X-ray tube denoted by rectangle. (Philips 2020)

Unexpected downtime incidents have a major impact, especially for the patients whose medi-

cal procedure is cut short or postponed. The cost of premature maintenance is also substantial.

Medical imaging equipment have list-prices on the order of one million US dollars and the annual

maintenance expenses of such equipment are around 10% of the list-price (ECRI 2013). Since these

medical imaging systems generally last up to 10 years, roughly half of the total cost of ownership

of such a system (excluding downtime costs) consists of maintenance costs.
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Philips healthcare faces the challenge of replacing the expensive X-ray tube before failures occur

but also to maximize their useful lifetime. Below we describe a case study on the most critical

component of an IXR system: the X-ray tube. The full data set for this case-study is included in

the online companion to this article.

This section is organized as follows: We describe the dominant failure mechanism of the X-ray

tube (Section 7.1), give a description of the data set (Section 7.2), illustrate the operation of the

optimal policy with real data (Section 7.3) and compare the three approaches outlined in Section

5 on real data with a bootstrapping study (Section 7.4).

7.1. IXR Filaments

A failure analysis performed by Philips Healthcare indicates that X-ray tube failures are predomi-

nantly caused by worn out filaments (Albano et al. 2019, Section 5.3.3.4). These tungsten filaments

are heated to a high temperature by a voltage differential such that they emit electrons. These

electrons are then accelerated by a high voltage potential differential towards the target so that

they emit X-rays when they hit the target. The X-rays are then used to produce the desired image

during image guided medical procedures. This process is depicted in Figure 5.

The tungsten evaporates slowly when the filament heats up. This filament usually develops a

“hot-spot” at the thinnest location. The evaporation causes the hotspot to become thinner with

every image taken. This continues until the tungsten melts at the hot-spot and the filament fails;

see Covington (1973). The degradation state of a filament can be inferred from the resistance of

Electrons

Cooling 
liguid

Anode Target

CathodeFilament Window X-rays

High potential 
differential

Lead 
chamber

Potential 
differential

Figure 5 Simplified X-ray tube schematic.

the filament. Philips Healthcare performed an engineering analysis to derive a single-dimensional

health indicator that perfectly measures the degradation state over time of a filament (Albano

et al. 2019, Section 7.9.7.12). This single-dimensional health indicator, the degradation, is recorded

in a database each time that an IXR system is used for an image-guided procedure.
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7.2. Degradation data of IXR X-ray tubes

The data set of X-ray tube degradation consists of 52 time-series of degradation levels. Let I be

the set of all X-ray tubes for which there is available data; |I| = 52. The time series of a single

X-ray tube i ∈ I is denoted by Ji. Each datum j ∈ Ji in such a time-series is a tuple (tj, xj)i

of the age of the X-ray tube tj and the degradation level xj at that age. Each tuple (tj, xj)i of

X-ray tube i is generated when an IXR system is used and each time-series consists of 20.000-

300.000 data points originating from a time period of 2-5 years. Due to confidentiality reasons we

have left-truncated the data and normalized the data. That is, all time-series start with x0 = 0

for t0 = 0, and end at x|Ji| = 50 (i.e., ξ = 50) for all i ∈ I. For each time-series, we computed

the inter-arrival times (i.e., tj − tj−1) between succeeding data points and damage increments per

data point (i.e., xj −xj−1). By removing outliers in the inter-arrival times due to either weekends,

nights, or other prolonged non-operational periods, we transformed the original time-series into

time-series based on the operational age of each X-ray tube (see also the discussion in Section

3.1 on operational age). We then removed data points for which the image-guided procedure was

considered too short to wear out the X-ray tube (i.e., shock arrival is regarded as non-critical). For

the resulting time-series, the assumption that shocks arrive as a Poisson process is not rejected

based on a Kolmogorov-Smirnov test. Additionally, we normalized the time such that one unit of

time corresponds to roughly the operational time that is considered as minimally achievable for

performing maintenance practices from a practical perspective (e.g., sending a service engineer to

the location of the hospital). Furthermore, based on the Akaike information criterion, the damage

size distribution is within the class of the applicable probability distributions best represented by

the geometric distribution. Finally, pair-wise Kolmogorov-Smirnov tests in our data set show that

the parameters of the distributions for the inter-arrival time and damage size, differed from one

component to another (i.e., there is heterogeneity).

7.3. Illustration of optimal replacement policy

Figure 6 shows two examples of the optimal replacement policy, applied a-posteriori to two time-

series of the filament data set. In these examples, and also throughout the rest of this section, the

ratio cu
cp

is set to 5 based on discussions with Philips Healthcare. Furthermore, the prior values

of the hyperparameters are estimated using the MLE method described in Appendix C applied

on the remaining time-series, which resulted in α0 = 44.88, β0 = 32.43, a0 = 4.29, and b0 = 4.76

for this example. Figure 6 visually confirms that there is heterogeneity in both the shock arrival

process and damage size distribution. In this example, the optimal replacement policy prescribes

to preventively replace the X-ray tube at x= 29 and n= 14 at t= 12 (left) and x= 39 and n= 28

at t= 31 (right), respectively, such that the useful lifetime of the X-ray tube is best utilized. The

examples illustrate how integration of learning and decision making allows for the X-ray tube to

be replaced early when necessary and late when possible.
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(a) Replacement when (x,n, t) = (29,14,12)
with δ(14,12) = 29.
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(b) Replacement when (x,n, t) = (39,28,31)
with δ(28,31) = 39.

Figure 6 Examples of optimal replacement policy applied to IXR filament degradation paths.

7.4. Bootstrapping study

The goal of this section is to illustrate the optimal replacement policy, and to assess the performance

of the integrated Bayes approach compared to both the offline and open-loop feedback approach

described in Section 5 on real life data. The main performance metric is therefore the relative cost

savings that can be attained by using the integrated Bayes approach instead of the two heuristic

approaches commonly used in practice and described in Section 5. More formally, we are interested

in %SAVπ = 100 · (Cπ −CπI )/Cπ, where Cπ is the average cost rate of approach π ∈ {πF , πN}. In
addition, we are interested in the impact of the amount of available historical degradation data on

the %SAVπ of the two heuristic approaches.

We evaluate the performance metric %SAVπ retroactively on the data set described in Section

7.2. To evaluate the impact of the amount of historical data available we bootstrap the amount

of available data. That is, we first sample with replacement s ∈ {5,10,15} time-series from the

data set I. We then use these time-series to estimate the required parameters for the integrated

Bayes approach as well as for the heuristic approaches using MLE (see Appendix C for further

details regarding the MLE procedure). We then implement and evaluate both the integrated Bayes

approach and the heuristic approaches on the remaining time-series that were not used for the

estimation. This procedure is repeated 150 times per choice of s, such that the confidence intervals

on the average cost rates are sufficiently small, resulting in 450 bootstrap instances. The resulting
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average values for %SAVπ are reported in Table 5. Observe that this bootstrapping study indicates

the induced savings when the integrated Bayes approach is implemented instead of the offline

approach or the open-loop feedback approach in a real life setting.

Table 5 Results of bootstrapping study

%SAVπ

Number of time series πF πN

5 4.68 10.46
10 4.08 10.35
15 4.07 10.70

Total 4.28 10.50

Table 5 shows that the integrated Bayes approach reduces the average cost rate with 10.50% on

average compared to the state-of-the-art approach. Moreover, cost savings of 4.28% can be attained

by integrating the learning with the decision making instead of using a data-driven approach

that does not integrate the two. The results furthermore indicates that the attainable savings

are not significantly influenced by the amount of available historical degradation data. Hence, the

integrated Bayes approach does not need a large amount of historical data to perform well. These

results highlight the value of the proposed method to integrate learning and decision making in a

real life setting.

8. Conclusion

In this paper, we have considered the condition based maintenance of components that are sub-

ject to compound Poisson degradation, where the compounding distribution is a member of the

one-parameter non-negative exponential family. The cost to replace a component after failure is

much higher than before failure, because it includes the costs of unplanned downtime. Motivated

by practice, we have assumed that the population of components is heterogeneous. That is, the

degradation parameters of components vary from one component to the other.

Since the degradation parameters of an individual component cannot be observed directly and

need to be learned by observing its degradation signal, we have modeled this replacement problem

as a partially observable Markov decision process. The entire past degradation path of a component

is relevant state information in this setting, which can lead to tractability issues. We have shown

that we can circumvent these issues by using conjugate prior pairs to model the heterogeneity

of the component population. This allowed us to collapse a high dimensional state space to a

3 dimensional state space while retaining all relevant information. This collapse enabled us to

tractably compute optimal policies as well as to characterize the optimal replacement policy. We

have characterized the optimal replacement policy as a threshold replacement policy, where the
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threshold is increasing in the age of a component. Furthermore, we have shown that the threshold

also depends on the volatility of the observed degradation signal of a component. This volatility

can only be captured by observing the entire degradation signal in real-time. Although we have

assumed geometric compounding throughout this paper, we show that these structural properties

hold for a wide variety of compounding distributions.

We performed two comprehensive simulation studies. In the first study, we assessed (i) the

benefits of explicitly modeling heterogeneity, (ii) the value of integrating learning with decision

making, and (iii) the impact of the amount of available historical degradation data for model

calibration on their performance. Our results indicate that the integration of learning and decision

making leads to excellent results with optimality gaps of only 0.60% on average. By contrast,

ignoring heterogeneity leads to average optimality gaps of 15.02% while failing to integrate learning

with decision making leads to average optimality gaps of 7.08%. Furthermore, we have shown that

models that ignore population heterogeneity do not perform appreciably better when the amount

of historical degradation data for model calibration increases. In the second simulation study, we

assessed the performance of the optimal policy (under real- time, perfect data) when applied to

settings where the degradation signal (i) is not perfect or (ii) not relayed in real-time. Our results

indicate that real-time access to degradation data is valuable but this real-time degradation data

need not be perfect to achieve excellent performance.

Finally, we have established the practical value of integrated learning and decision making based

on a real life data set of filament deterioration in an IXR machine. We find that integrated learning

can save up to 10.50% compared to approaches without learning and up to 4.28% compared to an

approach where learning is separated from decision making. This normalized data set with is made

available to benchmark future approaches to perform maintenance on stochastically deteriorating

systems.
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Appendix A: Proofs

Proof of Proposition 1. The joint posterior distribution of Λ and Φ at component age t is proportional

to the product of the joint likelihood function and the joint prior distributions on Λ and Φ at component

age t− 1. The joint likelihood of observing θt given (λ,ϕ), denoted by L(θt|λ,ϕ), is equal to

L(θt|λ,ϕ) := P
[
K(t−1,t] = kt,Yt = yt|Λ= λ,Φ= ϕ

]
=

λkte−λ

kt!

kt∏
i=1

[
h(yi

t)e
ϕyi

t−A(ϕ)
]

=
λkte−λ

kt!
eϕ

∑kt
i=1

yi
t−kt·A(ϕ)

kt∏
i=1

h(yi
t).

where
0∏

i=1

· ≡ 1. This yields

fΛ,Φ(λ,ϕ|θ0, . . . ,θt)

∝L(θt|λ,ϕ) · fΛ(λ|αt−1, βt−1) · fΦ(ϕ|at−1, bt−1)

=
λkte−λ

kt!
eϕ

∑kt
i=1

yi
t−kt·A(ϕ)

kt∏
i=1

h(yi
t) ·

β
αt−1

t−1 λαt−1−1e−βt−1λ

Γ(αt−1)
·H(at−1, bt−1)e

at−1ϕ−bt−1A(ϕ)

∝ λαt−1+kt−1e−(βt−1+1)λH(at−1, bt−1)e

(
at−1+

∑kt
i=1

yi
t

)
ϕ−

(
bt−1+kt

)
A(ϕ),

which is after normalization (over hyperparameters) equal to

(βt−1 +1)(αt−1+kt)λαt−1+kt−1e−(βt−1+1)λ

Γ(αt−1 + kt)
·H(at−1 +

kt∑
i=1

yi
t, bt−1 + kt)e

(
at−1+

∑kt
i=1

yi
t

)
ϕ−

(
bt−1+kt

)
A(ϕ), (14)

where Γ(·) denotes the gamma function and H(at−1 +
∑kt

i=1 y
i
t, bt−1 + kt) is the new normalization factor

with the updated hyperparameters. Observe that the joint posterior distribution of Λ and Φ in Equation

(14) is equal to the product of a Gamma(αt−1+kt, βt−1+1) distribution and the general prior with updated

hyperparameters (at−1 +
∑kt

i=1 y
i
t, bt−1 + kt) for a member of the exponential family, which completes the

proof. □

Proof of Lemma 1. We first consider the posterior predictive distribution conditioned on K(t,t+1],

P
[
Z(t,t+1] = z

∣∣K(t,t+1] = k,αt, βt, at, bt

]
=

∫ ∞

0

f (k)(z|Φ= ϕ)fΦ(ϕ|at, bt)dϕ, (15)

where f (k)(z|Φ= ϕ) denotes the k-fold convolution of probability density (or mass) function of the random

variable {Y |Φ= ϕ}. The distribution of K(t,t+1] is a continuous mixture of Poisson distributions where the

mixing distribution of the Poisson rate follows a Gamma(αt, βt) distribution, which is known to be the

negative binomial distribution with p= 1
βt+1

and r= αt. Hence, we have

P
[
K(t,t+1] = k

∣∣αt, βt

]
=

(
k+αt − 1

k

)(
1

βt +1

)k (
βt

βt +1

)αt

. (16)

Unconditioning Equation (15) using Equation (16) yields the desired result. □
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Proof of Proposition 2. In this proof, we use the following two definitions quantifying the concept of one

random variable being “bigger” than another random variable.

Definition 1 (1.A.1 Definition, Shaked and Shanthikumar (2007)). A random variable X is

stochastically larger than a random variable Y in the usual stochastic order, denoted by X ≥st Y , if and

only if

P[X ≥ x]≥ P[Y ≥ x], for all x∈R. (17)

Definition 1 implies that random variable Y is less likely than random variable X to take on large values,

where large means any value greater than x, and that this holds for all x∈R.
Definition 2 (1.C.1 Definition, Shaked and Shanthikumar (2007)). Let X and Y be continuous

(discrete) random variables with probability densities f and g, respectively, such that

g(t)

f(t)
increases in t over the union of the supports of X and Y

(here a/0 is taken to be equal to ∞ whenever a> 0), or, equivalently,

f(x)g(y)≥ f(y)g(x), for all x≤ y.

Then X is said to be smaller than Y in the likelihood ratio order (denoted by X ≤lr Y ). Note that the

likelihood ratio order is stronger than the usual stochastic order, as such, if X ≤lr Y then X ≤st Y , cf.

(Shaked and Shanthikumar 2007, Theorem 1.C.1).

We now proceed with the proofs of parts (i) and (ii) of Proposition 2:

(i) We consider two different component ages, t+ and t− (t+ > t−), with the same degradation level x and

the same total number of shocks, n, received by the component. By Proposition 1, we have βt+ >βt− ,

whereas all other hyperparameters (i.e., αt, at and bt) remain fixed when only t changes. Note that

P[K(t,t+1] = u |Λ= λ] = e−λλ
u

u!
and P[Λ = λ |α,β] = βα

Γ(α)
λα−1e−βλ.

We can then show that the random variables Λ(α,β) = {Λ |α,β} are stochastically increasing in α and

stochastically decreasing in β. This easily follows from the appropriate likelihood ratio.

We now show that the random variables K(λ) = {K(t,t+1] |Λ= λ} are stochastically increasing in λ, i.e.,

λ≤ λ′ implies K(λ)≤st K(λ′). Consider the likelihood ratio

P[K(λ′) = u]

P[K(λ) = u]
=

P[K(t,t+1] = u |Λ= λ′]

P[K(t,t+1] = u |Λ= λ]
= e−(λ′−λ)

(
λ′

λ

)u

.

It is immediately evident that for λ≤ λ′, the ratio is increasing in u. This yields the likelihood ratio

order and as a consequence the usual stochastic order.

All in all, for t+ > t−, βt+ > βt− , thus Λ(α,βt+) ≤st Λ(α,βt−). From the stochastic monotonicity of

K(Λ), the above yields K(t+) :=K(Λ(α,βt+))≤st K(Λ(α,βt−)) :=K(t−), cf. (Shaked and Shanthikumar

2007, Theorem 1.A.2.). Finally, as the parameters associated with the random variables Yi remain fixed,

it is evident that

Z(t+,t++1] =

K(t+)∑
i=1

Yi ≤st

K(t−)∑
i=1

Yi =Z(t−,t−+1],

cf. (Shaked and Shanthikumar 2007, Theorem 1.A.4.). In conclusion, for s = (x,n, t), it follows that

Z(s) is stochastically decreasing in t.



32 Drent, Drent, Arts and Kapodistria: Integrated Learning and Decision Making

(ii) We consider two degradation levels x+ and x− (x+ > x−) at the same component age t when we have

observed the same total number of shocks n. By Proposition 1, we have ax+ > ax− , whereas all other

hyperparameters are equivalent as they remain fixed when only x changes.

It is well-known that a member of the one-parameter exponential family is likelihood-ratio ordered (and

thus stochastically ordered in the usual stochastic order) according to its parameter (see e.g., Karlin and

Rubin 1956, Bapat and Kochar 1994). Hence, we know that i) the random variables Y(ϕ) = {Y |Φ= ϕ}

are stochastically non-decreasing in ϕ, i.e., ϕ≤ ϕ′ implies Y(ϕ)≤st Y(ϕ′), and ii) the random variables

Φ(a, b) = {Φ |a, b} are stochastically non-decreasing in a, i.e., a≤ a′ implies Φ(a, b)≤st Φ(a
′, b). Then,

by Theorem 6 of Huang and Mi (2020), which relates the stochastic order of a posterior predictive

distribution with the stochastic order of the posterior and the corresponding conditional distribution, we

can conclude that Y(x+) :=Y(Φ(ax+ , b))≥st Y(Φ(ax− , b)) =:Y(x−). Finally, as the parameters associated

with the random variables K(t,t+1] remain fixed, it is evident that

Z
(x+)
(t,t+1] :=

K(t,t+1]∑
i=1

Y(x+)
i ≥st

K(t,t+1]∑
i=1

Y(x−)
i =:Z

(x+)
(t,t+1].

In conclusion, for s= (x,n, t), it follows that Z(s) is stochastically increasing in x.

□

Proof of Lemma 2. We prove part (i) and omit the proof of part (ii) as its proof structure follows

verbatim.

For s = (x,n, t) ∈ N3
0, let V m(s) denote the value function at the m-th iteration of the value iteration

algorithm, so that the value iteration algorithm produces the sequence {V m(s)}m∈N0
. We use induction on

the steps of the value iteration algorithm as a proof technique. Since our state space is countable, γ ∈ (0,1),

and costs are bounded from above, the value function is guaranteed to converge point-wise to the optimal

value function that satisfies Equation (10) (i.e., V m(s)→ V (s) for all s∈N3
0 as m→∞) from any arbitrary

starting position through the value iteration algorithm (Bertsekas 2007, Proposition 1.2.1).

For s= (x,n, t)∈N3
0, we set V

0(s) = 0. Note that V 0(s) is non-increasing in t. We assume that the theorem

holds for the m-th iteration, i.e., V m(s) is non-increasing in t. Then according to Equation (10), we have

V m+1(s) =

{
cu + γE [V m(s0 +A(s0))] , if x≥ ξ,

min
{
cp + γE [V m(s0 +A(s0))] ;γEs [V

m(s+A(s))]
}
, if x< ξ.

(18)

Since V m(s) is non-increasing in t by the induction hypothesis and the random variable A(s) is stochastically

decreasing in t in the usual stochastic order (cf. Proposition 2 and the proof therein), the expectation

Es [V
m(s+A(s))] holds this property as well (cf. Shaked and Shanthikumar 2007, Theorem 1.A.3). Because

the terms of the right-hand side of Equation (18) are non-increasing in t, V m+1(s) is also non-increasing in

t. Due to the point-wise convergence in which the structure of V m(s) is preserved, we may conclude that

V (s) is also non-increasing in t (cf. Puterman 2005, Theorem 6.3.1.). □
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Proof of Theorem 1. Preventive replacement is optimal when the following equation holds

cp + γE [V (A(s0))]≤ γEs [V (s+A(s))] . (19)

Since the expectation E [V (A(s0))] is constant with respect to x, the left-hand side of Inequality (19) is

constant with respect to x. Based on part (ii) of Lemma 2, the right-hand side of Inequality (19) is non-

decreasing in x. Hence, if the optimal decision is to carry out preventive replacement in state (δ(n,t), n, t),

then the same decision is optimal for any state (x,n, t) with x≥ δ(n,t), which implies the control limit policy.

Similarly, the right-hand side of Inequality (19) is non-increasing in t by part (i) of Lemma 2. Hence, if it

optimal to carry out a preventive replacement in state (δ(n,t), n, t), then it is optimal to carry out a preventive

replacement in any state (δ(n,t), n, t′) with t′ < t, which implies that δ(n,t) is monotonically non-decreasing in

t. □

Appendix B: Derivation of E[Z(s)] and E[Z(s)2] for the compound Poisson process

We first repeat some notation. Let s = (x,n, t) ∈ N3
0 and let Z(s) =

∑K(s)
i=1 Yi(s), where K(s) is a Poisson

random variable unknown rate λ, and {Yi(s)}i∈N is a sequence of independent and (identically) geometrically

distributed random variables with unknown success probability p, independent from K(s). We endow p and

λ with prior beta and gamma distributions, denoted by P and Λ, respectively. We can then find the first and

second moment of Z(s) by repeatedly using the tower property of expectations and the law of total variance.

We have

E[Yi(s)] =E
[
E[Yi(s) | P ]

]
=E

[
P

1−P

]
=

∫ 1

0
p

1−p
pat−1(1− p)bt−1dp

B(at, bt)
=

B(at +1, bt − 1)

B(at, bt)
=

at

bt − 1
, (20)

where the fourth equality follows from manipulating the term inside the integral to the density of another

beta distribution.

Proceeding with E[K(s)], we have

E[K(s)] =E
[
E[K(s) |Λ] =E[Λ] =

αt

βt

. (21)

Combining (20) and (21) and using the updating rules of Proposition 1 for s= (x,n, t), we have

E[Z(s)] =E
[∑K(s)

i=1
Yi(s)

]
=E[K(s)]E[Yi(s)] =

a0 +x

b0 +n− 1

α0 +n

β0 + t
.

For the second moment, we first compute the variance. We have

Var[Z(s)] =Var

[∑K(s)

i=1
Yi(s)

]
=E

[
Var

[∑K(s)

i=1
Yi(s) |K(s)

]]
+Var

[
E
[∑K(s)

i=1
Yi(s) |K(s)

]]
=E

[
K(s)

]
Var

[
Yi(s)

]
+Var

[
K(s)

]
E
[
Yi(s)

]
=

αt

βt

Var
[
Yi(s)

]
+

at

bt − 1
Var

[
K(s)

]
, (22)

where E [Yi(s)] and E
[
K(s)

]
are computed in (20) and (21), respectively. We now proceed with the two

variances in (22). For Var
[
Yi(s)

]
we have

Var
[
Yi(s)

]
=E

[
Var

[
Yi(s) | P

]]
+Var

[
E
[
Yi(s) | P

]]
=E

[
P

(1−P )2

]
+Var

[
P

1−P

]
(23)
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For E
[

P
(1−P )2

]
, we have

E
[

P

(1−P )2

]
=

∫ 1

0
p

(1−p)2
pat−1(1− p)bt−1dp

B(at, bt)
=

B(at +1, bt − 2)

B(at, bt)
=

at(at + bt − 1)

(bt − 2)(bt − 1)
, (24)

where the second equality follows from manipulating the term inside the integral to the density of another

beta distribution. Similarly, we can write

Var

[
P

1−P

]
=E

[
P 2

(1−P )2

]
−E2

[
P

(1−P )

]
=

B(at +2, bt − 2)

B(at, bt)
−
( at

bt − 1

)2

=
at(at +1)

(bt − 2)(bt − 1)
−
( at

bt − 1

)2

, (25)

which completes all the ingredients for Var
[
Yi(s)

]
. Using again the law of total variance, we can compute

Var
[
K(s)

]
as follows

Var
[
K(s)

]
=E

[
Var

[
K(s) |Λ

]]
+Var

[
E
[
K(s) |Λ

]]
=E [Λ]+Var [Λ] =

αt

βt

+
αt

β2
t

. (26)

Plugging (24) and (25) in (23), and combining this with (26) in (22) gives us Var[Z(s)]. We can then use the

variance expansion Var[Z(s)] =E[Z(s)2]−E2[Z(s)] to obtain an explicit expression for the second moment

in terms of the hyperparameters associated with state s= (x,n, t).

Appendix C: Maximum likelihood estimation

Let I denote the set containing all simulated sample paths (without maintenance). For each sample path

i∈ I, we let xi, ni, and ti, denote, respectively, the total damage accumulated by the component, the number

of critical loading epochs sustained by the component, and the number of decision epochs that the component

was operated until its failure. Thus the tuple si = (xi, ni, ti) contains all relevant information for sample path

i. Because the prior distributions of Φ and Λ are independent, we next look at their respective likelihoods

given the set of simulated degradation paths I separately.

From Equation (15) we know that the likelihood of the degradation paths in I being induced by components

stemming from a population whose degradation parameter Φ follows a beta prior distribution with parameters

a0 and b0 is given by

LΦ(s1, . . . ,s|I| |a0, b0) =
|I|∏
i=1

[
B(ni + a0, xi + b0)

B(a0, b0)

(
xi +ni − 1

xi

)]
.

Observe that the number of critical loading epochs sustained by the i-th component of age ti has a Poisson

distribution with parameter tiΛ, where Λ∼ Γ(α0, β0). By the scaling property of the gamma distribution,

this number is therefore a continuous mixture of Poisson distributions where the mixing distribution of

the Poisson rate follows a Γ(α0, β0/ti) distribution, which is known to be a negative binomial (or Pascal)

distribution with parameters r= α0 and p= ti
β0+ti

. Hence, the likelihood of the degradation paths in I being

induced by components stemming from a population whose degradation parameter Λ follows a gamma prior

distribution with parameters α0 and β0 is given by

LΛ(s1, . . . ,s|I| |α0, β0) =

|I|∏
i=1

[(
ni +α0 − 1

ni

)(
ti

β0 + ti

)ni
(

β0

β0 + ti

)α0
]
.
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We are interested in maximizing both likelihoods. For convenience, we maximize the log likelihoods. That

is,

argmax
α0,β0,a0,b0

lnLΛ(s1, . . . ,s|I| |α0, β0)+ lnLϕ(s1, . . . ,s|I| |a0, b0),

which is a nonlinear multidimensional maximization problem that can be solved using standard numerical

methods (e.g., the Nelder-Mead method).
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