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Abstract—We introduce BERT, a mutation testing tool that
uses a pre-trained language model (CodeBERT) to generate
mutants. This is done by masking a token from the expression
given as input and using CodeBERT to predict it. Thus, the
mutants are generated by replacing the masked tokens with
the predicted ones. We evaluate 4BERT on 40 real faults from
Defects4] and show that it can detect 27 out of the 40 faults,
while the baseline (PiTest) detects 26 of them. We also show that
UBERT can be 2 times more cost-effective than PiTest, when the
same number of mutants are analysed. Additionally, we evaluate
the impact of ¢ BERT’s mutants when used by program assertion
inference techniques, and show that they can help in producing
better specifications. Finally, we discuss about the quality and
naturalness of some interesting mutants produced by pBERT
during our experimental evaluation.

I. INTRODUCTION

Mutation testing seeds faults using a predefined set of
simple syntactic transformations, aka mutation operators, that
are (typically) defined based on the grammar of the targeted
programming language [29]. As a result, mutation operators
often alter the program semantics in ways that often lead to
unnatural code (unnatural in the sense that the mutated code
is unlikely to be produced by a competent programmer).

Such unnatural faults may not be convincing for developers
as they might perceive them as unrealistic/uninteresting [3],
thereby hindering the usability of the method. Additionally,
the use of unnatural mutants may have actual impact on the
guidance and assessment capabilities of mutation testing [13].
This is because unnatural mutants often lead to exceptions, or
segmentation faults, infinite loops and other trivial cases.

To deal with this issue, we propose forming mutants
that are in some sense natural; meaning that the mutated
code/statement follows the implicit rules, coding conventions
and generally representativeness of the code produced by
competent programmers. We define/capture this naturalness
of mutants using language models trained on big code that
learn (quantify) the occurrence of code tokens given their
surrounding code.

In particular, recent research has developed pre-trained
models, such as CodeBERT [10], using a corpus of more
than 6.4 million programs, which could be used to generate
natural mutants. Such pre-trained models have been trained to
predict (complete) missing tokens (masked tokens) from token
sequences. For example, given the masked sequence int a
= <mask>;, CodeBERT predicts that 0, 1, b, 2, and 10 are
the (five) most likely tokens/mutants to replace the masked
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one (ordered in descending order according to their score —
likelihood).

In view of this, we present uBERT, a mutation testing
tool that uses a pre-trained language model (CodeBERT) to
generate mutants by masking and replacing tokens. uBERT
combines mutation testing and natural language processing
to form natural mutants. In contrast to resent research [5],
[24] that aims at mutant selection, uBERT directly generates
mutants without relying on any syntactic-based mutation op-
erators. This approach is further appealing since it simplifies
the creation of mutants and limits their number.

Although, there are many ways to tune 4BERT by consid-
ering mutants’ locations and their impact, in our preliminary
analysis, we seed faults in a brute-force way, similarly to
mutation testing, by iterating every program statement and
masking every involved token. In particular, we make the
following steps: (1) select and mask one token at a time,
depending on the type of expression being analysed; (2)
feed CodeBERT with the masked sequence and obtain the
predictions; (3) create mutants by replacing the masked token
with the predicted ones; and (4) discard non-compilable and
duplicate mutants (mutants syntactically the equal to original
code). Figure 1 shows an overview of uBERT workflow.

To show the potential of tBERT we perform a preliminary
evaluation on the following two use cases:

Fault Detection: We focus on a mutation testing scenario
and analyse the fault detection capabilities of suites designed
to kill xBERT’s mutants, and compare them with those of a
popular mutation testing tool, i.e., PiTest [6]. We consider a
total of 40 bugs from Defects4J [19] for 3 projects, namely Cli,
Collections and Csv. Our results show that test suites guided
by uBERT finds 27 out of the 40 bugs, while PiTest’s mutants
helps in finding 26 out of the 40 bugs. 3 of the bugs found
by uBERT are not found by PiTest, while 2 of the bugs found
by PiTest are not found by uBERT. Moreover, we show that
UBERT is (up to 100%) more cost-effective than PiTest.

Assertion inference: We study the usefulness of uBERT’s
mutants in the context of program assertion inference tech-
niques, that use mutants to rank and discard candidate as-
sertions [16] (typically, assertions that kill more mutants are
preferred among others, and assertions not killing any mutant
are discarded). In particular, we focus on the 4 cases recently
reported in [26] in which traditional mutation testing did not
perform well. We show that uBERT can complement and
contribute with interesting mutants than can help in improving
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Fig. 1: uBERT Workflow: (1) it parses the Java code given as input, and extracts the expressions to mutate according to the
mutation operators; (2) it masks the token of interest and invokes CodeBERT; (3) it generates the mutants by replacing the
masked token with CodeBERT predictions; and (4) it discards non-compilable and syntactic the same mutants.

the quality of the assertions inferred.

Finally, we show examples of the mutants generated by
uBERT with interesting properties, demonstrating their differ-
ences from traditional mutation.

II. PRE-TRAINED LANGUAGE MODELS

CodeBERT [10] is a powerful bimodal pre-trained language
model that produces general-purpose representations for natu-
ral language, in six programming languages, including Java. It
supports several tasks, such as, natural language code search
and code documentation. Particularly, CodeBERT supports the
Masked Language Modelling (MLM) task that consists of
randomly masking some of the tokens from the input, and the
objective is to predict the original tokens of the masked word
based only on its context. To do so, CodeBERT uses multi-
layer bidirectional Transformer [33] to capture the semantic
connection between the tokens and the surrounding code,
meaning that the predictions are context-dependent (e.g. the
same variable name, masked in different program locations,
will likely get different predictions).

Precisely, CodeBERT can be fed with sequences of up
to 512 tokens (maximum sequence length supported) that
include exactly one (1) masked token (<mask>). Hence, when
fed with a masked sequence, CodeBERT will predict the 5
most likely tokens to replace the masked one. Despite the
good precision of CodeBERT in reproducing the original
(masked) token, uBERT uses all the predicted tokens to
introduce mutations in the original program. We argue that
mutations introduced by 4BERT will be in some sense natural,
since CodeBERT was pre-trained on a large corpus (near 6.4
million programs) and thus, the mutated statements will follow
frequent/repetitive coding conventions and patterns produced
by programmers learned by the pre-trained language model.

It is worth noticing that yBERT uses CodeBERT as a
black-box, so it will benefit from any improvement that the
pre-trained model can bring in the future, as well as, other
language models (supporting MLM task) can be integrated.
Perhaps more importantly, generative pre-trained language
models simplify the creation and selection of mutants to a
standard usage of the model.

III. uBERT: CODEBERT-BASED MUTANT GENERATION

UBERT is an automated approach that uses a pre-trained
language model (namely, CodeBERT) to generate mutants for

Java programs. Figure 1 describes the workflow of ¢BERT that
can be summarised as follows:

1) uBERT starts by parsing the Java class given as input,
and extracts the candidate expressions to mutate.

2) The mutation operators analyse and mask the token of
interest for each java expression (e.g., the binary expres-
sion mutation will mask the binary operator), and then
invoke CodeBERT to predict the masked token. BERT
will try to feed CodeBERT with sequences covering as
much surrounding context as possible of the expression
under analysis (512 tokens maximum).

3) uBERT takes CodeBERT predictions, and generate mu-
tants by replacing the masked token with the predicted
tokens (5 mutants are created per masked expression).

4) Finally, mutants that do not compile, or are syntactic the
same as the original program (cases in which CodeBERT
predicts the original masked token), are discarded.

Our prototype implementation supports a wide variety of
Java expressions, being able to mutate unary/binary expres-
sions, assignment statements, literals, variable names, method
calls, object field accesses, among others. This indicates
that for the same program location, several mutants can be
generated. For instance, for a binary expression like a + b,
uBERT will create (potentially 15) mutants from the following
3 masked sequences: <mask> + b,a <mask> b,anda +
<mask>. Bellow we provide some examples that demonstrate
the different mutation operators supported by ©BERT.

A. Binary Expression Mutation

Given e = <exp> <op> <exp>, a binary expression
of a method M in program P to mutate, where <exp>
and <op> denote a Java expression and a binary oper-
ator, respectively, uBERT creates a new expression ¢ =
<exp> <mask> <exp> by replacing (masking) the binary
operator <op> with the special token <mask>. Then, a new
method M’ = Mle « €] is created that looks exactly as
M, but expression e is replaced by masked expression e’.
uBERT invokes CodeBERT with the largest code sequence
from method M’ that, includes e’ and, does not exceed the
maximum sequence length (512 tokens). CodeBERT returns
a set with the 5 predicted tokens (¢1,...,t5). Hence, uBERT
generates 5 mutants, namely P, ..., Ps, such that each mutant
P; replaces the mutated operator <op> by the predicted one
t;. Thatis, P; = Ple < e;], where e; = <exp> t; <exp> and



i € [1..5]. Finally, uBERT discards non-compilable mutants,
and those that are syntactic the same as the original program
(i.e., when <op> = t;).

Figure 2 shows one example of mutants that uBERT can
generated for binary expressions. Function isLeapYear
returns true if a calendar year given as input is leap. One of
the binary expressions to mutate is e : year % 4. To do so,
1BERT masks binary operator %, leading to masked expression
e’ : year <mask> 4. The entire masked method is used to
feed CodeBERT, for which it predicts the following 5 tokens:
t1 07 %', ty T/, g "%,y =" and t5 1 7 /7.
First notice that tokens ¢; and ¢3 only differs in a space and
coincides with the original token, so these mutants will be
discarded. Second, tokens ¢, and t5 are the same, except the
extra space in t5, so only one will be used for generating the
mutant. Finally, tBERT produces 2 compilable mutants, based
of the expressions e : year / 4 and e4 : year — 4.

boolean isLeapYear (int year) {
// if the year is divided by 4
// and not 100, except 400.

uBERT

Expression to mutate

if ((year % 4 == 0) && e : year % 4
((year % 100 '= 0) || Masked expression:

(year % 400 == 0))) e'
return true;
else

return false;
} tg:'=" ts:’ /'

: year <mask> 4

CodeBERT predictions:
tr1:" % t2:/' t3 1'%

Fig. 2: uBERT’s mutation operator for binary expressions.

B. Unary Expression Mutation

When dealing with unary expressions, tBERT distinguishes
two cases, depending if the operator appears before or after
the expression (e.g.++x and x——). For the sake of simplicity,
consider that e = <op><exp> is the unary expression to mu-
tate. Then, tBERT will mask the operator token <op>, leading
to masked expression ¢/ = <mask> <exp>, and the masked
sequence is then fed to CodeBERT. uBERT takes CodeBERT
predictions (t1,...,t5) and creates mutants Pj,..., P; by
replacing the unary operator <op> by the predicted tokens
t;. That is, P, = Ple + e;], where e; = t; <exp> and
i € [1..5]. Duplicated, syntactic the same and non-compilable
mutants are finally discarded.

Figure 3 shows an example of mutants that 4¢BERT can
generate for unary expressions. Function printArray prints
the elements of the array arr given as input in reverse
order. Consider that 4BERT is going to mutate unary ex-
pression e : ——1i, for which it generates masked expression
e’ : <mask> i that is fed into CodeBERT. uBERT receives
the following predictions: ¢ : " ++',ty: ' —=",t3:" —=',
ty o’ ++7 and t5 : ’ !/, uBERT discards mutants syntactic
the same as the original (tokens ¢ and ¢3), and considers two
candidate mutants (t; and t5), but only mutation ¢; compiles
(obtaining e; : ++1i).

C. Literal and Variable Name Mutation

This mutation is straightforward. For the sake of simplic-
ity, consider that expression e = <cons> to mutate is a

puBERT
) Expression to mutate
void printArray(String[] arr) { e : —-i
//prlml: elgments in reverse grder Masked expression:
for (int i = arr.length; --1i >= 0; ) \ X
print (arr[i]); e': <mask> i
} CodeBERT predictions:
[ TS S PR P A

ty3 i’ = tgi’ 4

Fig. 3: uBERT’s mutation operator for unary expressions.

literal (constant). uBERT starts by masking e, leading to
e/ = <mask> that is used to feed CodeBERT. uBERT creates
mutants Pp,..., P; by replacing the mutated literal name by
the predicted tokens (i.e., P; = Ple « t;] for i € [1..5]).

Consider again function isLeapYear from Figure 2,
where literal expression e : 4 is the expression to mutate (from
year % 4). After replacing e with mask token, CodeBERT
returns the following 5 predictions: ¢; : "4', t53 : "100',
tz3 : 74007, t4 : 710’ and t5 : ' 27 . Notice that, tokens ¢
and t3 are present in the context of the mutated expression.
Also note that first prediction (¢1) coincides with the original
token, so it is discarded. Finally, uBERT returns 4 compil-
able mutants, generated by replacing the masked token with
predicted tokens to, t3, t4 and 5.

D. More Mutation Operators

UBERT is also able to mutate assignments, method calls,
object field accesses, array reading and writing, and reference
type expressions. Bellow we provide examples of the resulting
masked sequences that tBERT generates to mutate these kind
of expressions. Following the same process already described
before, BERT will generate the mutants by replacing the
masked token with CodeBERT predictions. Notice that the
shown predictions were observed during our experimentation,
but these will likely change if are evaluated under different
surrounding context.

o For an assignment expression like avg += it_result,
UBERT produces the masked expression
avg <mask>= it_result. Typical CodeBERT
predictions are +, —, * and / leading to potential compilable
mutants, e.g., avg —= it_result.

o In a method call expression, such as children.add (c)
in Figure 4, uBERT masks the method name, producing
children.<mask> (c). CodeBERT predicts the follow-
ing method names: add, addAll, push, remove and
added. uBERT discards equally the same and non-compilable
mutants, obtaining two mutants: children.push (c) and
children.remove (c).

« In expressions that access to particular object fields, BERT
masks the object field name. For instance, for an expres-
sion like 1ist.head = new_node, uBERT produces the
masked expression list.<mask> = new_node. Code-
BERT predictions that we usually get cover head, next,
tail, last and first.

e In array reading (and/or writing) expressions, yBERT
masks the entire index used to access to the array. For instance,



void addChild(Composite c) { puBERT

if (¢ == null)
throw new IllegalArgumentException(); | Expressiontomutate
if ((c == this) || (c.parent != null) e : children.add(c);
|l ('c.children.isEmpty())) Masked expression:
throw new IllegalArgumentException(); e': children.<mask>(c);

c.setParent (this);
children.add(c);

update (c) ;
} ts :'remove’ ts :’added’

CodeBERT predictions:
t; :'add’ tz:’addAll’ t; :’push’

Fig. 4: uBERT’s mutation operator for method calls.

for the expression arr [mid-1] in Figure 5, uBERT pro-
duces arr [<mask>] masked expression. Then, CodeBERT
predictions are 0, n, mid, 1 and low, allowing to yuBERT
generate 5 compilable mutants (variables n, 1ow and mid are
present in the context). It is worth noticing that the array name
(arr) and the index expression mid - 1 will be mutated by
the variable name mutation operator and binary expression
mutation operator, respectively.

int peakElement (int[] arr,int n) {
int low=0; int high=n-1;

while (low<=high) {
int mid=(low+high)/2;

/A,&SERT

Expression to mutate

if ((mid==0 || arr[mid]>=arr[mid-1])

&& (mid==n-1 || arr[mid]>=arr[mid+1])) € : arr[mid-1]
return mid; Masked expression:
else if (arr[mid]<=arr[mid+1]) e': arr[<mask>]

low=mid+1;

CodeBERT predictions:

else £1:707 £z :'n’ t3:'mid’

high=mid-1;
} ty:'1’ ts:'low’
return -1;

}

Fig. 5: uBERT’s mutation operator for array expressions.

expressions that refers to some type, such
as int number = (int) (Math.random() = 10),
UBERT masks that class name of the referred type.
In this case, puBERT produces the masked expression
int number = (int) (<mask>.random() * 10). For
this example, predictions we obtained refer to Math,
random, Random and System, leading to mutants such as
* 10).

o In

int number = (int) (Random.random ()

IV. RESEARCH QUESTIONS

We start our analysis by investigating the fault detection
capabilities of test suites designed to kill ©BERT’s mutants.
Thus, we ask:

RQ1 How effective are the mutants generated by puBERT in
detecting real faults? How does uBERT compare with
PiTest in terms of fault detection?

To answer this question we evaluate the fault detection
ability of test suites selected to kill the mutants produced
by uBERT and PiTest [6], our baseline. The fault detection
ability is approximated by using a set of real faults taken from
Defects4] [19].

Another application case of mutation testing regards the
program assertion generation. In particular, using mutation
testing for selecting and discarding assertions by program
assertion inference techniques. In view of this, we ask:

RQ2 Is uBERT successful in selecting “good” assertions?
How does it compare with PiTest?

To answer this question we use a dataset composed by
manually written assertions (ground-truth) that was recently
used for evaluating SpecFuzzer tool [26], a state-of-the-art
specification inference technique. Particularly, we select 4
manually written assertions that were mistakenly discarded by
SpecFuzzer, since they do not kill any mutant. We thus, inves-
tigate whether uBERT can help in selecting these assertions
and compare it with PiTest.

Finally, we qualitatively analyse some of the mutants gen-
erated with uBERT and ask:

RQ3 Does uBERT generates different mutants than tradi-
tional mutation testing operators?

We showcase the mutants generated by pBERT that help
in detecting faults not found by PiTest, and mutants that help
SpecFuzzer in preserving assertions from the ground-truth, that
are discarded by mutants from PiTest.

V. EXPERIMENTAL SETUP
A. Faults and Assertions (Ground-truth)

For the fault detection analysis, we use Defects4] [19]
v2.0,0, which contains the build infrastructure to reproduce
(over 800) real faults for Java programs. Every bug in the
dataset consists of the faulty and fixed versions of the code
and a developer’s test suite accompanying the project that
includes at least one fault triggering test that fails in the faulty
version and passes in the fixed one. Since this is a preliminary
evaluation, we target projects with low number of bugs in the
dataset. Precisely, we consider a total of 40 bugs, reported
for the following 3 projects: Cli (22), Collections (2) and Csv
(16).

For the assertion assessment analysis, we use the dataset
from SpecFuzzer, a specification inference technique recently
introduced by Molina et al. [26], that includes (41) assertions
manually written by developers. Each subject contains the
source code, the test suite used during the inference process,
and the set of manually written expected assertions. Partic-
ularly, we focus on 4 methods of the dataset (StackAr.pop,
StackAr.topAndPop, Angle.getTurn and Composite.addChild)
in which 6 assertions from the ground-truth are discarded since
they do not kill any mutant (cf. [26, Table 4]). We study
whether ¢BERT can help SpecFuzzer in selecting the discarded
assertions, and compare with PiTest.

B. Experimental Procedure

To answer RQ1, we start by generating mutants with ¢BERT
and PiTest for the fixed version of each fault. Table I sum-
marises the number of mutants generated by the tools. Then,
we make an objective comparison between the techniques in
terms of the number of generated mutants and faults detected.
We select minimal test cases, from the developer test suites,
that kill the same number of mutants for both tools and
check whether they detect the associated real faults or not.
This is important since uBERT generates by far less mutants
than PiTest. We then, perform a cost-effective analysis by
simulating a scenario where a tester selects mutants based
on which he designs tests to kill them. We start by taking



TABLE I: Number of (compilable) mutants generated by
uBERT and PiTest for each project.

Project uBERT  PiTest
Cli (22 bugs) 4282 19.482
Collections (2 bugs) 280 1.162
Csv (16 bugs) 4515 18.378
Total 9.077  39.022

the set of mutants created by a tool, randomly picking up a
mutant and selecting a test that kills it or judging the mutant
as equivalent and discard it. We then run this test with all
mutants in the set and discarding those that are killed. We
repeat this process until we reach a maximum number of
mutants killed. We adopt as effort/cost metric the number of
times a developer analyses mutants (either these result to a test
or not). This means that effort is the number of tests selected
plus the number of mutants judged as equivalent. We then
check if the generated test suite detect or not the real faults.
We repeat this process 100 times to reduce the impact of the
random selection of mutants and killing tests on our results.
This cost-effective evaluation aims at emphasising the effects
of the different mutant generation approaches.

To answer RQ2, we start by generating mutants with fBERT
and PiTest for the four methods under analysis. Then we run
the inference tool, SpecFuzzer [26], to obtain the a set of valid
assertions for the method of interest (i.e., never falsified by the
test suite). SpecFuzzer then performs a mutation analysis on
the inferred assertions, and discards the ones that do not kill
any mutant. We confirm that the 6 assertions from the ground-
truth are discarded in this process. Hence, we run again the
mutation analysis of SpecFuzzer, but in this case we consider
mutants from pBERT and PiTest, and analyse whether the
ground-truth assertions are discarded or not.

To answer RQ3, we discuss on some examples from ¢BERT
and the potential benefits that it can provide to mutation testing
and assertion inference approaches.

C. Implementation

uBERT uses Spoon [30]' for manipulating the Java pro-
grams. It employs the current pre-trained version of Code-
BERT?, and provides the scripts to integrate other pre-trained
language models if required. The source code, a set of exam-
ples, and the results of our preliminary evaluation are publicly
available at: https://github.com/rdegiovanni/mBERT.

VI. EXPERIMENTAL RESULTS
A. RQI: Fault Detection Analysis

Figure 6 summarises the fault detection capabilities of
uBERT and PiTest. Figure 6a shows that test suites killing
all the mutants from puBERT can detect 27 out of 40 faults
(67.5%). While suites killing all Pilest mutants can detect
26 out of 40 faults (65.0%). There are 11 faults (27.5%) not
detected neither by uBERT and PiTest. When we check for
overlapping, we observe that 3 faults detected by uBERT were

Uhttps://spoon.gforge.inria.fr
Zhttps://github.com/microsoft/CodeBERT

TABLE II: Manually written assertions discarded by Spec-
Fuzzer, because they do not kill any mutant [26, Tablle 4].
When SpecFuzzer uses the mutants generated by pBERT, it
does not discard 3 out of the 6 valid assertions. When it uses
PiTest mutants, it preserves 2 out of the 6 assertions, but it
analyses many more mutants (up to 10 times).

HUBERT PiTest
Subject Assertions Suc. #M  #K | Suc. #M #K
StackAr.pop theArray[old(top)] == null 4 4 42 29
StackAr.topAndPop theArray[old(top)] == null 6 6 46 39
Angle.getTurn abs (res) <=1 v 23 23 v 81 15
Composite.addChild | c.value == old(c.value) v 86 42 v 9% 52
children == old(children) v

ancestors == old(ancestors)

not detected by PiTest, and 2 faults detected by PiTest were not
detected by puBERT. These indicate ©uBERT’s fault detection
effectiveness is comparable with the one of PiTest, and uBERT
mutants can potentially complement other mutation testing
techniques.

Figure 6b summarises the cost-effective evaluation of the
techniques; fault detection effectiveness (y axis) in relation to
the same number of analysed mutants (effort) (x axis). An
effort of 100% means that the maximum possible number of
mutants were analysed (for uBERT), which in the case of
PiTest is the same number as by pBERT to enable a fair
comparison. As Table I noted, PiTest produces way many
more mutants than pgBERT and thus killing all its mutants
requires way more effort than 4BERT. We observe that BERT
is more cost-effective, indicating that suites selected based
on the mutants of uBERT are more likely to find real faults
than those selected by PiTest, when the same number of
mutants are analysed. Figure 6¢ emphasises this cost-effective
comparison, and particularly focus the fault detection ratio
when the maximum number of mutants was analysed (i.e., total
number of mutants generated by uBERT). In average (mean),
test suites killing all the mutants from pyBERT have 40.0%
(46.0%) of likelihood of detecting a real fault; while, suites
killing exactly the same number of PiTest mutants have 20.0%
(39.5%).

B. RQ2: Assertion Assessment Analysis

Table II summarises the performance of SpecFuzzer when
uses the mutants from pBERT and PiTest for selecting the
assertions. For each tool, we report if the assertions in the
ground-truth were selected or discarded (Suc. column), we also
report the number of generated and killed mutants (#M and
#K, respectively). We can observe that 3 out of the 6 assertions
under analysis, kill some mutant produced by ¢BERT and thus,
SpecFuzzer does not discard them. In the case of PiTest, it
helps in preserving 2 out of 6 assertions from the ground-truth,
but in general in produces many more mutants than yBERT
(e.g., up to 10 times in StackAr program) what affects the time
require for filtering the assertions.

C. RQ3: Qualitative Analysis of uBERT Mutants

Table III shows examples of mutants produced by pBERT
that help in finding the three real faults (namely, faults with
ids Cli_10, Csv_15 and Csv_16) not found by PiTest. For
each case, we report the diff between the fixed and the buggy
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(a) wBERT detects 27 out of 40 faults
(67.5%), while PiTest detects 26 (65.0%).
UBERT detects 3 faults not detected by
PiTest, but misses 2 faults detected by PiTest.
A total of 11 faults out of 40 (27.5%) were
not detected neither by uBERT and PiTest.

Fig. 6: RQL:

version, as well as, the diff between the fixed version and the
mutants generated by 4BERT. Lines in red correspond to the
fixed version, while lines in green correspond to the buggy
version and the mutants.

The real fault denoted by Cli_10, located in file Parser.java,
resides inside function setOptions and the problem is
that it creates an aliasing between the internal object
field requiredOptions and same field from the ob-
ject options given as parameter. ¢BERT generates mu-
tants that interact with this field trough the getter method
getRequiredOptions (). For instance, MUTANT 1
changes an if condition regarding the size of list containing the
required options. MUTANT 2 changes method call remove
by add, then the list requiredOptions will add an
element instead of removing it.

Csv_15 is a real fault inside method printAndQuote,
located in class CSVFormat.java, in which some chars in the
sequence to print were causing a failure in the parser. uBERT
generates mutants that change predefined special tokens, later
used to print the strings. For instance, MUTANT 3 changes
the return value of function getDelimiter () by returning
always 0, instead of the preset delimiter token. MUTANT
4 replaces object value with object this when calling
toString in a condition that initialises the values to print.

Fault denoted as Csv_16 is present in file CVSParser.java,
precisely inside class CSVRecordIterator that imple-
ments an iterator that returns the records of the csv. uBERT
generates mutants that change the control flow of the pro-
gram, for instance, the mutated expression this.current
current in MUTANT 5, will always evaluate to true,
and MUTANT 6 introduces an infinite recursion in function
isClosed. MUTANT 7 modifies the initialization of variable
inputClean in method addRecordValue, that is later
used by the iterator.

If the reader prefer, please refer to the appendix to find more
examples of mutants generated by uBERT useful for detecting
these faults.

mutants analysed by a tester, while the effec-
tiveness (y-axis) indicates the fault detection
ratio of the tools. Effort of 100% means the
maximum number of mutants analysed (num-
ber of tests and number mutants considered
as equivalent) by a tester when using BERT.

(c) Test suites killing all the mutants from
MBERT have 40.0% (median) of likelihood
of detecting a real fault (46.0% in average);
while suites killing exactly the same number
of PiTest mutants have 20.0% (median) of
likelihood in succeeding (39.5% in average).

Fault detection comparison between the uBERT and PiTest.

Table IV shows the mutants generated by uBERT that help
to SpecFuzzer to not discard good assertions, taken from the
ground-truth. Particularly, the 3 mutants created for method
Angle.getTurn clearly violate the assertion abs (res)
<= 1 and thus, it will not be discarded.

In the case of Composite.addChild we can
observe that MUTANT 4 replaces the invocation
c.setParent (this) by c.update(this). This
mutant makes that the value of the child object ¢ (c.value)
be updated with the value of object this (the parent). Then,
assertion c.value old(c.value) will be clearly
violated by this mutant and thus, will not be discarded by
SpecFuzzer.

Similarly, MUTANT 5 replaces invocation
ancestors.add(p) by children.add(p). This
mutant clearly can change children set values. Assertion
children old(children) clearly kills this mutant,
so SpecFuzzer will preserve it.

VII. THREATS TO VALIDITY

One of the threats related to external validity relies on the
election of the projects from Defects4J used in our evaluation
(Cli, Collections and Csv). This is a preliminary study and
we do not exclude the threat of having different results
when conducting the same study on other projects from other
domains. Other threat is related to the use of the mutation
testing tool PiTest as a baseline in our experiments. Despite
that this is one of the state-of-the-art tools for creating mutants,
the results may change when compared with other mutant
generation techniques.

Internal validity threats may relate with our implementation
of uBERT. To mitigate this threat we made publicly available
our implementation, repeated several times the experiments,
and manually validated the results. Other threat may arise from
the type of expressions selected to mutate (mutation operators),
whose effectiveness can be affected when applied to other
projects, or implemented in other programming language.



TABLE III: Examples of “good” mutants generated by 4BERT that help in detecting the faults for Cli_10, Csv_15 and Csv_16,
not found by PiTest.

BuglD: Cli_10. Class: Parser.java

@@ PATCH -44.,7 +43,7 @@
— this.requiredOptions = new ArrayList(options.getRequiredOptions ());
+ this.requiredOptions = options.getRequiredOptions ();

@@ MUTANT 1: -306,7 +306,7 @@
— if (getRequiredOptions (). size () > 0)
+ if (getRequiredOptions (). size () > 1)

@@ MUTANT 2: -402,7 +402,7 @@
— getRequiredOptions (). remove(opt.getKey ());
+ getRequiredOptions ().add (opt.getKey ());

BuglID: Csv_15. Class: CSVFormat.java

@@ PATCH -1186,7 +1186,9 @@

- if (¢ <= COMMENT)

+ if (newRecord && (¢ < 0x20 || ¢ > 0x21 && ¢ < 0x23 || ¢ > 0x2B && ¢ < 0x2D || ¢ > Ox7E)) {
+ quote = true;

+ } else if (¢ <= COMMENT) {

@@ MUTANT 3: -763,7 +763,7 @@
public char getDelimiter () {
- return delimiter;

+ return 0;

}
@@ MUTANT 4: -1081,7 +1081,7 @@
— charSequence = value instanceof CharSequence ? (CharSequence) value : value.toString ();
+ charSequence = value instanceof CharSequence ? (CharSequence) value : this.toString();
BugID: Csv_16. Class: CSVParser.java
@@ PATCH

@@ -286,7 +286,6 -355,7 +354,6 -522,10 +520,7 -573,6 +568,7 @@

— private final CSVRecordIterator csvRecordIterator;

- this.csvRecordIterator = new CSVRecordIterator ();
public Iterator <CSVRecord> iterator () {

— return csvRecordIterator;

-}
- class CSVRecordIterator implements Iterator <CSVRecord> {
+ return new Iterator <CSVRecord>() {

private CSVRecord current;

private CSVRecord getNextRecord () {

throw new UnsupportedOperationException ();
}
}s

+ )
@@ MUTANT 5: -542.,7 +542,7 @@
- if (this.current == null) {
+ if (this.current == current) {

@@ MUTANT 6: -505,7 +505,7 @@

public boolean isClosed () {
- return this.lexer.isClosed ();
+ return this.isClosed ();

}

@@ MUTANT 7: -363,7 +363,7 @@
- final String inputClean this.format. getTrim () ? input.trim() : input;

+ final String inputClean ;




TABLE IV: uBERT generates these mutants that are killed
by the ground-truth assertions and thus, SpecFuzzer does not
discard them.

Subject: Angle.getTurn
Assertion: abs (res) <= 1

@@ MUTANT 1: -43,7 +43,7 @@
if (crossproduct > 0) {

- res = 1;

+ res = 2;

@@ MUTANT 2: -43,7 +43,7 @@
if (crossproduct > 0) {

— res = 1;

+ res = 255;

@@ MUTANT 3: -43,7 +43,7 @@
if (crossproduct > 0) {

- res = 1;

+ res = 360;

Subject: Composite.addChild
Assertion: c.value == old(c.value)

@@ MUTANT 4: @@ -70,7 +70,7 @@
- c.setParent (this);
+ c.update (this);

Subject: Composite.addChild
Assertion: children == old(children)

@@ MUTANT 4: @@ -82,7 +82,7 @@
— ancestors.add(p);
+ children.add(p);

To mitigate this threat, xBERT mutates expressions typically
handled by mutation testing tools, such as PiTest, and it
is also possible to extend our implementation to provide
further mutation operators if required. The performance of
CodeBERT can also affect uBERT’s effectiveness. Currently,
uBERT uses CodeBERT as a black-box, so it can be benefit
for future improvements of the pre-trained model. Moreover,
generated mutants may change if a different pre-trained model
is employed for predicting the masked tokens.

Regarding construct validity threats, our assessment metrics,
such as the number of analysed mutants and the number of
found faults, may not reflect the actual testing cost / effective-
ness values. However, these metrics have been widely used
by the literature [2], [22], [29] and are intuitive, since the
number of analyzed mutants essentially simulate the manual
effort involved by testers, while the test suites selected to kill
the mutants can also be used to measure its effectiveness in
finding the fault. In our experiments, test cases were selected
from the pool of tests provided by Defects4J, which may not
reflect the real cost/effort in designing such test cases.

VIII. RELATED WORK

Mutation testing has a long history with multiple advances
[29], either on the faults that it injects or on the processes that
it supports. Despite the rich history, the creation of “good”
mutants is a question that remains.

The problem has traditionally been addressed by the defini-
tion of mutation operators using the underlying programming
language syntax. These definitions span across languages [7],
[8], [25], artefacts (such as specification languages and be-

havioural models) [14], [21], [28], and specialised applications
(such as energy-aware [15] and security-aware [23] operators).

More recent attempts include the composition of mutation
operators (composition of fault patterns) using historical fault
fixing commits. These approaches are either mined using sim-
ple syntactic changes [4], or more complex patterns manually
crafted [20], or automatically crafted patterns using machine
translation techniques [32].

Independently of the way mutants are created, they are
often too many to be used, with many of them being of
different “quality” [27], as they are either trivially killed or
simply redundant. To this end, recent attempts aim at selecting
mutants that are likely killable [5], [9], [31], likely to couple
with real faults [5], likely subsuming [11], [12], [18] or
relevant to regression changes [24].

Our notion of mutant naturalness is somehow similar to
the n-gram based notion of naturalness used by Jimenez et
al. [17]. Though, we differ as we generate mutants instead of
selecting and rely on a transformer-based neural architecture
that captures context both before and after the mutated point.

IX. CONCLUSION AND FUTURE WORK

We presented pBERT, a mutation testing approach that
generates ‘“‘natural” mutants by leveraging self-supervised
model pre-training of big code. As such it does not require
any training on historical faults, or other mutation testing
data that are expensive to gather, but rather large corpus of
source code that are easy to gather and use. Interestingly,
our analysis showed that uBERT’s performance is comparable
with traditional mutation testing tools, and even better in
some cases, both in terms of fault detection and assertion
inference. These results suggests that “natural” mutants do not
only concern readability but also test effectiveness. Perhaps
more importantly, 4BERT is the first attempt that leverage
self-supervised language methods in mutation testing, thereby
opening new directions for future research.

There are a few lines of future work that we plan to
explore. We plan to extend our evaluation to the entire datasets
of Defects4] and SpecFuzzer for analysing pBERT’s fault
detection and assertion inference capabilities. We also plan
to include other mutation testing tools than PiTest in the
comparison. So far uBERT uses CodeBERT as a black-box and
mutants are generated in a brute-force way, i.e., we iterate on
every program statement to mask and generate mutants. We
plan to analyse CodeBERT’s embedding and predictions to
study whether it is possible to predict “interesting” locations
to mutate, for instance, locations where subsuming mutants
can be generated from [1], [11].
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APPENDIX
EXTRA EXAMPLES

TABLE V: This table presents more mutants generated by uBERT for the faults Cli_10, Csv_15 and Csv_16.

BugID: Cli_10. Class: Parser.java

@@ MUTANT: -306,7 +306,7 @@
— if (getRequiredOptions ().size () > 0)
+ if (getRequiredOptions ().size () > 2)

@@ MUTANT: -321.,7 +321,7 @@
— throw new MissingOptionException(buff.substring (0, buff.length() - 2));
+ throw new MissingOptionException(buff.substring (0, buff.length()+2));

BuglID: Csv_15. Class: CSVFormat.java

@@ MUTANT: -790,7 +790,7 @@

public String[] getHeaderComments () {

- return headerComments != null ? headerComments.clone () : null;
+ return headerComments==null ? headerComments.clone() : null;

}

@@ MUTANT: -879.,7 +879,7 @@
public boolean getTrailingDelimiter () {
- return trailingDelimiter;

+ return true;
}
@@ MUTANT: -1081,7 +1081,7 @@
— charSequence = value instanceof CharSequence ? (CharSequence) value : value.toString ();
+ charSequence = value instanceof Object ? (CharSequence) value : value.toString ();

@@ MUTANT: -1726,7 +1726,7 @@
return new CSVFormat(delimiter , quoteCharacter, quoteMode, commentMarker, escapeCharacter ,
— ignoreSurroundingSpaces , ignoreEmptyLines, recordSeparator, nullString , headerComments, header,
+ ignoreSurroundingSpaces , ignoreEmptyLines, null, nullString , headerComments, header,
skipHeaderRecord , allowMissingColumnNames, ignoreHeaderCase, trim, trailingDelimiter , autoFlush);

BuglID: Csv_16. Class: CSVParser.java

@@ MUTANT: -362.,7 +362,7 @@
- final String input
+ final String input

this.reusableToken.content.toString ();
this.toString ();

@@ MUTANT: -557,7 +557,7 @@
- if (next == null) {
+ if (current == null) {

@@ MUTANT: -363,7 +363,7 @@
- final String inputClean = this.format.getTrim() ? input.trim() : input;

3993

+ final String inputClean = this.format.getTrim () ? input.trim() : R
@@ MUTANT: -463,7 +463,7 @@

- if (formatHeader != null) {
+ if (format != null) {

@@ MUTANT: -463,7 +463,7 @@
- if (formatHeader != null) {
+ if (this != null) {

@@ MUTANT: -546,7 +546,7 @@
- return this.current != null;
+ return this != null;




