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ABSTRACT
The popularization of large-scale federated Genome-Wide
Association Study (GWAS) where multiple data owners share
their genome data to conduct federated analytics uncovers
new privacy issues that have remained unnoticed or not
given proper attention. Indeed, as soon as a diverse type
of interested parties (e.g., private or public biocenters and
governmental institutions from around the globe) and indi-
viduals from heterogeneous populations are participating in
cooperative studies, interdependent and multi-party privacy
appear as crucial issues that are currently not adequately
assessed. In fact, in federated GWAS environments, the
privacy of individuals and parties does not depend solely
on their own behavior anymore but also on others, because
a collaborative environment opens new credible adversary
models. For instance, one might want to tailor the privacy
guarantees to withstand the presence of potentially collud-
ing federation members aiming to violate other members’
data privacy and the privacy deterioration that might oc-
cur in the presence of interdependent genomic data (e.g.,
due to the presence of relatives in studies or the perpetu-
ation of previous genomic privacy leaks in future studies).
In this work, we catalog and discuss the features, unsolved
problems, and challenges to tackle toward truly end-to-end
private and practical federated GWAS.

1. INTRODUCTION
In this work, we identify and discuss current and future

challenges to pave the way for end-to-end private and acces-
sible to the masses Genome-Wide Association Study (GWAS),
which we designate as practical GWAS. In particular, we ar-
gue that most of the challenges are consequences of a trend
towards interdependent and multi-party genomic settings.

In the following, we introduce the state of the art of GWAS,
discussing the benefits, drawbacks and remaining challenges
of existing mechanisms that allow privacy-preserving GWAS.

GWAS is an observational study that computes corre-
lation statistics to identify associations between genomic
variations with a particular phenotype, e.g., a disease. In
fact, GWAS has been playing an essential role in develop-
ing personalized and preventive medicine, early disease di-
agnoses, etc. GWAS operates over genome variants (usu-
ally Single-Nucleotide Polymorphisms – SNPs) of donors
from a case population consisting of individuals expressing
a given trait and a control population comprising healthy
individuals. To improve the statistical power, and therefore
the confidence of GWAS findings, the research community
adopts collaborative environments where GWAS are con-

ducted over a larger set of genomes that several stakeholders
(commonly geographically distant from each other) dissem-
inate for federated analytics. Such a scheme is known as
federated GWAS [12, 23, 25].

Despite its benefits, federated GWAS raises several pri-
vacy constraints since managing, outsourcing, and process-
ing such sensitive data needs appropriate care [9]. To that
extent, many works have proposed privacy-preserving so-
lutions that leverage cryptographic mechanisms to protect
the integrity, confidentiality, and privacy of the data com-
municated by federation members. For instance, solutions
that relies on local Differential Privacy (DP) [8], Homomor-
phic Encryption (HE) [12], Secure Multi-party Computation
(SMC) [28] and Trusted Execution Environment (TEE) [23,
20] have been offered.

Unfortunately, relying on privacy-preserving mechanisms
to allow secure and private federated GWAS processing is
not sufficient since to achieve its full potential the results
of a GWAS should ideally be published publicly, which re-
quires additional care. In particular, public access to GWAS
results has been prohibited since several works have demon-
strated the feasibility of genomic privacy attacks on the ob-
servation of GWAS statistics. For instance, Zhou et al. [32]
described genomic recovery attacks that can infer SNP in-
formation of participants in a study by the observation of
released statistics and GWAS metadata (e.g., number of par-
ticipants and SNPs). Later, other works showed how high-
order correlations among variants of the human genome [29,
10] and kinship [15, 3, 16] could be leveraged to increase
the power of attribute inference attacks. Similarly, Homer
et al. introduced membership inference attacks that can
identify the participation of a given individual in a study
using likelihood-ratio statistical tests [14]. Following this
rationale, subsequent works have offered several other infer-
ence methods to measure the risks of membership inference
of individuals from GWAS statistics [26, 30, 32]. Coupled
with the above issues, Humbert et al. not only demonstrate
potential risks associated with interdependent privacy but
also measure how genomic privacy is jeopardized when ad-
versaries combine the observation of publicly known GWAS
statistics with familial relationships of individuals [17, 15].

Notably, these attacks might reduce the number of donors
willing to participate in future studies since they cannot
trust existing solutions to ensure their privacy [11, 23]. Be-
sides that, federation members also need assurance that
their private shares cannot be attacked during the feder-
ated analysis, which consists of aggregation operations that
might leak secret data. Therefore, we claim that federated



GWAS solutions must place maximum efforts on reconciling
privacy-preserving processing and releasing [23], thus, im-
planting a holistic solution that satisfies a wider range of
privacy constraints.

Although significant efforts have been placed to create
end-to-end private federated GWAS workflows, new unsolved
challenges arise when considering practical GWAS proper-
ties, which aspire to support current data privacy regula-
tions requirements. Moreover, additional privacy issues arise
when interdependent and multi-party privacy are consid-
ered, which we discuss next.

2. TOWARDS PRACTICAL GWAS
For the upcoming years, we envision the development of a

practical GWAS environment capable of accommodating the
best practices of secure and privacy-preserving processing
with releasing of GWAS results, but at the same time com-
plying with 21st-century data privacy regulations. Based on
these assumptions, we categorize below requirements needed
to support practical GWAS in the future.

1. Allowing public releases of results so that the bene-
fits of GWAS findings can achieve their full potential,
i.e., being delivered and accessible to the masses. We
note that since the description of the first membership
inference attack by Homer et al. [14], the NIH has re-
stricted access to GWAS results [31].

2. Enabling donors to withdraw consent at any time to
comply with privacy regulations, such as GDPR. How-
ever, such operations need to be carefully crafted since
an improper update might facilitate genomic privacy
attacks mounted on the observation of how statistics
have evolved [23].

3. Considering that new donors are sequenced over time
(and currently at an increased pace due to reduced
DNA sequencing costs [13]), and therefore GWAS re-
sults should be updated as soon as possible, but in a
private and safe fashion because result updates inherit
the same issues discussed above.

4. Acknowledging that the presence of multiple studies
increases the chance of overlapping data being used [22,
18], which directly impacts the privacy guarantees of
existing mechanisms that aim at enforcing the privacy
of single studies and therefore cannot support privacy
under the presence of interdependent GWASes.

5. Assuming stronger adversary model assumptions. For
instance, the presence of honest-but-curious parties
that might collude with other parties in order to strengthen
their knowledge to facilitate genomic privacy attacks
and/or circumvent known private release conditions.

2.1 Challenges for enforcing practical GWAS
Although a considerable number of works that offer se-

cure and privacy-preserving federated GWAS have been pro-
posed, only a minority combines privacy-preserving process-
ing with private GWAS releases [24, 4, 23]. Indeed, simul-
taneously addressing all these constraints is not an intuitive
task. Further, when bearing practical GWAS features in
mind, additional care needs to be enforced, which we de-
scribe below.

Besides identifying and creating the conditions to allow
safe updates of GWAS results (independently of the as-
sumed approach, e.g., relying on Differential Privacy mecha-
nisms [24, 4], theoretical complexity analyses of attacks [32,
29], or statistical inference methods [26, 23]), dynamic re-
leases are highly dependent on the genomic privacy deterio-
ration over time [5]. In particular because genomic privacy
degrades according to the sharing rate of genomic data and
the heterogeneity of populations. Therefore, ensuring safe
releases considering static privacy (i.e., examining risks until
the moment results are published) might not be sufficient.
As a result, additional diligence to assess the impact of a
given release on subsequent ones should be investigated.

In addition, there is a known issue regarding privacy con-
flicts that arise from the presence of dependent records. In
fact, Almadhoun et al. [1] have shown that the privacy guar-
antees enabled by Differential Privacy mechanisms cannot
be kept when dependent genomes are present in a study.
Besides that, unfortunately, we are not aware of any DP-
based solution that can enforce the same DP guarantees over
continuous releases of data. In contrast, genome-oriented
statistical inference methods such as the one proposed by
Sankararam et al. [26] enables the detection of relatives in
studies, even though extensions must be compelled to pre-
serve the privacy guarantees of the scheme under a dynamic
release setting [23].

On the system side specter, collusion-tolerance remains a
feature that has not been enforced by all cryptographic ap-
proaches, mainly when resulting data needs to be published.
Secret sharing, threshold-SMC, or collective HE methods al-
low private shares to be securely and privately aggregated,
e.g., not allowing improper recovery if a sufficient num-
ber of shares is gathered. These approaches assume that
aggregated data is kept within a trusted curator or is se-
cured by relying on cryptographic primitives (i.e., stored in
an encrypted form and decrypted only by authorized par-
ties). However, when results (e.g., GWAS statistics) from
aggregated data needs to be disclosed (to allow open-access
GWAS), they might become subject to genomic privacy at-
tacks from external adversaries or internal (colluding) par-
ties. On the one hand, external adversaries can mount stan-
dard recovery or membership attacks on the observation of
the GWAS metadata and released statistics [32, 14]. On the
other hand, colluding members of a federation might join
their data in order to decrease the solution space one has to
attack from the GWAS statistics when launching recovery
attacks or combine genome data in a specific way to breach
existing private release assurances [23].

The decreased computational performance and restricted
computational resource availability are other limiting factors
of current cryptographic-based mechanisms. Even though
several promising works have shown the feasibility of con-
ducting federated GWAS leveraging multi-key HE [12] and
SMC schemes [6], cryptographic methods exhibit extra com-
munication costs (the case of SMC approaches) and de-
mand increased storage resources (the case of HE-based solu-
tions), for example. Similarly, Intel SGX, the most popular
TEE-based technology, carries limitations regarding mem-
ory availability (only 96 MB is usable inside the processor’s
isolated – cryptographically protected – regions). In addi-
tion, recent works have shown that Intel SGX is vulnerable
to side-channel attacks [21]. Such limitations oblige the de-
ployment of data-oblivious versions of the privacy-protecting



algorithms, which decreases the overall performance of the
solutions due to increased running time entailed by oblivious
operations [27, 21, 2].

As a summary, despite enabling secure and privacy-preserving
processing (e.g., by the adoption of cryptographic schemes),
solutions for federated GWAS should also apply proper privacy-
preserving releasing mechanisms since released results can
be subject to genomic privacy attacks. As a result, imped-
ing genomic privacy leaks throughout the entire pipeline of
the study. Hence, we claim that an indispensable feature of
federated GWAS solutions is to reconcile privacy-preserving
processing with privacy-preserving releasing. Thus, creating
an end-to-end privacy-aware collaborative environment.

2.2 Future research directions
In our previous work, Dynamic, Private and Secure GWAS

(DyPS) [23] published at PETS’21, we addressed some of
these challenges, namely (i) reconciling privacy-preserving
processing (leveraging a TEE-enabled architecture) with pri-
vate releases of federated GWAS (selecting genome data
that can safely participate in GWAS releases that accom-
modate the conditions to protect releases against recovery
(selecting data to keep the complexity of recovery attacks
large enough) and membership attacks (reverse engineering
genome-oriented statistical inference tests); (ii) extend the
approach to allow safe and dynamic updates of GWAS statis-
tics while enabling consent withdrawal and addition of new
donors at any time; and at the same time (iii) supporting the
presence of colluding federations members. We have lever-
aged Intel SGX as our TEE enabler. Our choice for SGX
over other TEEs is arbitrary and following its adoption in
previous works and by the increasing availability of SGX on
cloud services [7, 19]. Nevertheless, our privacy-protecting
mechanism applies well to other TEE implementations.

Nevertheless, there are still some open issues regarding
several aspects debated in the previous section. For in-
stance, studying the privacy vs. data utility trade-off tai-
lored with DP-based mechanisms to certify that released
statistics do not become impractical or overly inaccurate,
which might compromise correct conclusions from GWAS
results. In addition to that, there is a lack of mechanisms
capable of determining safe conditions for safe GWAS re-
leases provided adversaries might observe the presence of
overlapping genome data. In particular, this interdepen-
dent threat model directly impacts the privacy guarantees
enabled by existing solutions. Copying with this adversar-
ial model is crucial since we anticipate that it will become
common to detect particular genomes participating in sev-
eral studies simultaneously. As one could expect, this novel
interdependent privacy assumption would impact genomic
privacy assurances in a crossed-over manner.

On the system side aspects, recent works have shown
that multiparty cryptographic schemes can reasonably ac-
commodate current federated GWAS security requirements.
However, existing works still fail to offer holistic solutions,
i.e., a workflow that simultaneously enables both privacy-
preserving processing and releasing of GWAS.

Regarding TEE-based solutions, although Intel SGX is be-
coming deprecated on desktop versions due to side-channel
attacks, Intel will continue manufacturing and providing
support for Intel SGX on server platforms1. Unfortunately,
this can limit the use of the technology mainly in distributed

1https://github.com/intel/linux-sgx/issues/760

settings, e.g., by systems that leverage multiple TEE in-
stances. Nevertheless, since Intel SGX will not be fully dep-
recated and because of the existence of other TEE solutions
(e.g., ARM TrustZone), we envisage as future improvements
the creation of built-in oblivious operations (i.e., applied on
the hardware level) in the subsequent versions of TEE-based
technologies.

As we can observe, paving the way to enable secure and
end-to-end private workflows for federated GWAS is in its
early stages and therefore requires not only scalable but also
usable, fully privacy-aware solutions. Indeed, as identified
in previous sections, most of these challenges are inherited
from the existence of interdependent and multi-party ge-
nomic privacy [17, 15].

Although the community has been making great efforts
to develop fully privacy-aware solutions, we claim that the
field still requires a standardization of genomic privacy vs.
data utility metrics. Therefore, we envision as another fu-
ture direction the creation of studies to categorize and com-
bine privacy guarantee parameters with federated GWAS
(system) settings. Namely, assessing reasonable values of ε
for DP-based approaches or acceptable confidence levels to
be specified in statistical inference analyses while combining
with system settings such as the desired number of dynamic
releases a study will sustain, the number of honest and sup-
ported colluding members the federation will support, re-
moval/addition rate of genomes, etc. This would enable not
only the general community but also GWAS federations to
evaluate and decide the most suitable approach according
to their expectations.

3. CONCLUSION
In this work, we present an overview and remaining chal-

lenges to support the creation of end-to-end private and
practical federated GWAS. In particular, we show that many
aspects of interdependent and multi-party genomic privacy
are still uncovered and therefore require suitable treatment.
Even though previous works have shown that it is already
possible to (i) enforce several privacy guarantees to protect
the data of federation members whose genome datasets are
to be outsourced for federated analysis, and (ii) measure
personal genomic privacy (i.e., enforcing privacy on a per-
genome basis) while updating GWAS statistics, when stud-
ies start overlapping and/or more dependent data become
present (e.g., the presence of individuals’ relatives), new pri-
vacy risks are still to be quantified and suitable mitigation
implemented. In addition, we highlight the need for usable
solutions capable of complying with existing data privacy
regulation guidelines, which is a key factor in determining
the success and large-scale adoption of federated GWAS in
the future.
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