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ABSTRACT. We study the splitting fields of the family of polynomials fn(X) = Xn − X − 1. This
family of polynomials has been much studied in the literature and has some remarkable properties. In
[Ser03], Serre related the function on primes Np(fn), for a fixed n ≤ 4 and p a varying prime, which
counts the number of roots of fn(X) in Fp to coefficients of modular forms. We study the case n = 5,
and relate Np(f5) to mod 5 modular forms over Q, and to characteristic 0, parallel weight 1 Hilbert
modular forms over Q(

√
19 · 151).

1. INTRODUCTION

Serre in [Ser03] considers the family of polynomials fn(X) = Xn −X − 1 ∈ Z[X] for integers
n ≥ 2.

This is a fascinating family in a number of ways. The irreducibility of fn was established by
Selmer in [Sel56]. The discriminant of fn equals dfn = (−1)(n−1)(n−2)/2 · (nn − (1− n)n−1). The
first remarkable fact is that the discriminant of the associated number field Kfn = Q[X]/(fn(X)) is
squarefree and that the residue degree of any ramified prime is 1.1 By work of Kondo [Kon95] (Theo-
rems 1 and 2) this implies that the Galois group of fn(X), i.e. the Galois group of the Galois closure
K of Kfn over Q, is the symmetric group Sn, that K contains the quadratic field E = Q(

√
dfn)

and that the extension K/E is unramified at all finite primes. It should be stressed that constructing
polynomials (and number fields) with squarefree discriminants is a hard problem. Kedlaya [Ked12]
gave a construction, whose crucial point is that the signature of the field can be prescribed. In our
case, the signature of Kfn is (1, n − 1) if n is odd2 and (2, n − 2) if n is even.3 Consequently, the
image of any complex conjugation of K/Q in Sn is a product of ⌊n−1

2 ⌋ transpositions with disjoint
supports and E is real if and only if n is congruent to 1 or 2 modulo 4.

It might be useful to mention that the polynomials fn themselves do not always have a squarefree
discriminant. These have been studied on their own in a number of papers, for instance in [BMT15].
The first n for which dfn is not squarefree is 130.4 It is important to point out that the squarefreeness

1This follows immediately from [LNV91, Theorems 1,2]. It can also be proved directly as follows. Let p be a prime
dividing dfn . Then p ∤ n(n−1), in particular p ̸= 2. Suppose a ∈ Fp is a multiple root of fn(X) modulo p. Then it is also
a root of f ′

n(X) = nXn−1 − 1 modulo p, from which a = n/(1 − n) follows. As f ′′
n (a) ̸= 0 we see that fn(X) factors

as fn(X) ≡ (X − n
1−n

)2 · g(X) mod p with g(X) being squarefree and coprime to (X − n
1−n

) modulo p. From this it
follows that there is at most one ramified prime above p and then that prime has residue degree 1 and ramification index 2.
Consequently, the discriminant of the number field is squarefree.

2Indeed, fn has exactly one real root if n is odd because fn(x) < 0 for all x ≤ 1 and it does not possess any local
extremum at any x ≥ 1.

3Indeed, if n is even, then fn has exactly two real roots because it has a unique local minimum and takes a negative
value there.

4See https://oeis.org/A238194
1
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of dfn implies that Z[X]/(fn(X)) is the ring of integers of Kfn because in general the square of the
index divides discriminant. We will exploit this for n = 5.

In [Ser03], Serre asks for information about the number of rootsNp(fn) of these polynomials in Fp.
In other words he considers the point counting function #Afn(Fp) whereAfn is the zero-dimensional
affine scheme Z[X]/(fn(X)). We let θstn be the n − 1-dimensional standard representation defined
as the quotient of the natural n-dimensional permutation representation of Sn modulo the trivial one.
Then we have for all unramified primes p

Np(f) = tr(θstn (Frobp)) + 1.

For n ≤ 4, Serre relates the Np(fn)’s to coefficients of modular forms, as follows.

n = 3. (See [Ser03, §5.3 and corresponding notes].) For n = 3 the splitting field of f3 is an S3-
extensionK of Q and ζKf3

(s)/ζ(s) is a holomorphic function, equal to the ArtinL-functionL(θst3 , s).
The representation θst3 arises by induction of an order 3 character of Gal(K/E) whereE is Q(

√
−23).

It turns out that K is the Hilbert class field of E, and in fact is the maximal unramified extension of
E. Thus the representation θst3 arises from the weight one (dihedral or CM) modular form F (z) ∈
S1(Γ0(23), (

·
23)) given by the product formula (with q = e2πiz)

F (z) = q ·
∞∏
k=1

(1− qk) ·
∞∏
k=1

(1− q23k).

It can also be written in terms of Θ-series as

1

2

∑
x,y∈Z

qx
2+xy+6y2 − 1

2

∑
x,y∈Z

q2x
2+6xy+3y2 .

The S3-extension K/Q is also the field cut out by the Galois representation associated to the Ra-
manujan ∆-function mod 23. This is explained by the congruence

∆(q) = q ·
∞∏
k=1

(1− qk)24 ≡ q ·
∞∏
k=1

(1− qk) ·
∞∏
k=1

(1− q23k) (mod 23).

n = 4. (See [Ser03, §5.4 and corresponding notes].) For degree n = 4 the picture to relate Np(f4) to
a weight one modular form is more complicated. Serre observes that:

(i) The S4 = PGL2(F3)-extension is embedded in K̃ = K(
√
7− 4x2), where K is the splitting

field of f4 over Q and x is a root of f4(X), of degree 2 over K and the resulting Galois group is
isomorphic to GL2(F3), which embeds in GL2(Z[

√
−2]). Furthermore the field K̃ turns out to

be the maximal unramified extension of the quadratic field E = Q(
√
−283).

(ii) From this one gets a 2-dimensional odd representation ρ : GQ → GL2(C) with fixed field K̃
such that

ρ⊗ ρ = ϵ⊕ θst4 ,

factoring through a representation of Gal(K/Q) = S4, where ϵ is the sign character of a per-
mutation. The representation ρ arises by the Deligne-Serre construction from a modular form
f ∈ S1(Γ0(283), χ) with χ the order 2 Dirichlet character of conductor 283. This also gives
Np(f)− 1 = ap(f)

2 − ϵ(p).
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n = 5. In this article, we look at the n = 5 case of the question and try to respond to the gauntlet
implicitly thrown down by Serre:

The case n ≥ 5. Here the only known result seems to be that fn = xn − x − 1
is irreducible (Selmer [15]) and that its Galois group is the symmetric group Sn.
No explicit connection with modular forms (or modular representations) is known,
although some must exist because of the Langlands program.

The paper partly arose from graduate courses one of us (CBK) has taught at UCLA partly based on
Serre’s paper [Ser03] in which he suggested that students try and tackle Serre’s challenge.

We propose two approaches to answer Serre’s challenge. The first one is computational in nature.
The key point is that we explore the exceptional isomorphism S5 ∼= PGL2(F5) and, instead of Kf5 ,
work with a degree 6 polynomial g ∈ Q[X] on which the Galois group acts via the natural action
of PGL2(F5) on the projective line P1(F5), leading to an ‘exotic’ embedding of S5 into S6. Serre
pointed out to us that in classical terms, this was called the sextic resolvent and that this ‘exotic’ S5
may also be viewed as the image of the standard S5 under an outer automorphism of S6.

Explicit class field theory then allows us to explicitly solve a Galois embedding problem for the
group C4 ·6 S5 = 4−PGL2(F5) (in notation of Tim Dokchiter’s project GroupNames [Dok] and
Quer’s article [Que95], respectively). That group can be characterised as the unique central extension
of PGL2(F5) by C4 which restricts to the unique non-trivial central extension of PSL2(F5) by C4

and which is not GL2(F5). We solve the embedding problem by computing a polynomial h ∈ Q[X]
of degree 48 describing a cyclic C8 extension of Kg = Q[X]/(g(X)). It corresponds to a subgroup
of C4 ·6 S5 which is isomorphic to the dihedral group D5. An explicit polynomial h(X) is included
in §3.3.

This leads to the following result, linking f5 to a modular form F of weight one in characteristic 5.
Its Hecke eigenvalues at primes p ̸= 19, 151 can be explicitly computed from the polynomial h(X),
for instance, using Magma [BCP97].

Theorem 1.1. There is a Hecke eigenform F in S1(19 · 1512, χ−19,F5), the space of weight one
cuspidal Katz modular forms5 of level 19 · 1512 and Dirichlet character χ−19 corresponding to
Q(

√
−19)/Q enjoying the following properties. The attached Galois representation

ρ : GQ := Gal(Q/Q) → GL2(F5)

has conductor 19 · 1512, its image is isomorphic to C4 ·6 S5 = 4−PGL2(F5), its projectivisation

ρproj : GQ
ρ−→ GL2(F5) → PGL2(F5)

has image PGL2(F5) ∼= S5 and ker(ρproj) is the absolute Galois group of K, the splitting field of f5.
The modular form F is not the reduction of any holomorphic modular form of weight one in any level.

Moreover, the restriction of ρ to the absolute Galois group GE of E = Q(
√
19 · 151) is unramified

at 19, but ramifies at 151. However, there is a character δ of GE such that ρ|GE
⊗ δ is unramified at

all finite places.

The second approach consists in showing the existence of a cuspidal Hilbert eigenform of parallel
weight 1 defined over the real quadratic field E, denoted by G, such that a twist of its Asai transfer to

5Katz modular forms were defined by Katz in [Kat73]. A comprehensive account of them is given in [Gor02] and a short
summary can be found in [Edi97].
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GL4(AQ) is attached to an Artin representation which factors through θst5 . Let us record for complete-
ness that the conductor of θst5 equals 19 · 151.6 This uniquely identifies the representation as [LMF22,
Artin representation 4.2869.5t5.b.a].

We prove the following general result, which slightly improves on a theorem of Calegari [Cal13].
The improvement results from using stronger modularity results due to Pilloni and Stroh [PS16] than
were available when [Cal13] was written.

Theorem 1.2. Let K/Q be a Galois extension with Galois group Gal(K/Q) ∼= S5 and let E be the
subfield of K fixed by the subgroup of Gal(K/Q) isomorphic to A5. We assume that K is totally
imaginary and E is real.
(a) There is a Hilbert modular eigenform G over E of parallel weight one with attached Galois

representation η : GE → GL2(C) and there is a character χ : GQ → C× such that

θst5
∼= Asai

GQ
GE

(η)⊗ χ.

(b) Let Π = Π∞ ⊗
⊗

pΠp be the automorphic form on GL4(AQ) obtained by twisting the Asai
transfer of G from E to Q by the Hecke character corresponding to χ. Then the L-function of Π
coincides with that of θst5 at all but finitely many primes p:

Lp(s,Π)
−1 = det(I − θst5 (Frobp)p

−s).

We remark that Calegari’s original theorem depended on the local condition that the Frobenius
element at 5 should be conjugate to the double transposition (1, 2)(3, 4). We note that this is not
satisfied if K is the splitting field of f5 because f5 is irreducible modulo 5, whence the Frobenius
element is a 5-cycle. We further point out that it was also remarked in [Dwy14] that this condition is
superfluous.

We now elaborate more on how our results respond to Serre’s challenge, which we interpret in
various ways:
(1) Vaguely, we see it as asking about a relation between the polynomial f5 and ‘automorphic objects’.
(2) More precisely, we see it as relating conjugacy classes of unramified Frobenius elements in

Gal(K/Q) to Hecke eigenvalues of ‘automorphic objects’.
(3) We also consider the original question about expressing Np(f5) explicitly via an automorphic

form.
The vague interpretation (1) can be answered affirmatively in a number of ways and in different

characteristics. For instance, in characteristic 5, the projective Galois representation attached to the
weight one form F over F5 cuts out the field K/Q. This is also true for the Hilbert modular form G
over E in characteristic 0. One can also reduce G modulo (a prime above) 2. The image of the
attached Galois representation will be SL2(F4) ∼= A5 and K will again be the field cut out by it. In
that sense, F , G and the reduction of G modulo 2 are automorphic objects giving rise to K/Q, and
their Galois representations ‘control’ K/Q and, hence, the arithmetic of the polynomial f5.

Concerning the more precise interpretation (2), from Theorem 1.1 we obtain the following result.

Corollary 1.3. Let F be the weight one Katz modular eigenform over F5 from Theorem 1.1. For any
prime p, denote by ap(F ) the eigenvalue of the Hecke operator Tp on F .

6This follows because the only ramified primes in K/Q are 19 and 151 and, as K/E is unramified at all finite places,
the inertia groups at both these primes are cyclic of order 2. Moreover, they are generated by a transposition since they are
not contained in A5. As a consequence they fix a 3-dimensional subspace of vector space underlying θst5 , leading to the
claimed conductor.
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Then for every prime p ∤ 19 · 151, we have the formula

Np(f5) ≡ 1 +

(
19 · 151

p

)
·
((

−19

p

)
ap(F )

2 +

(
19 · 151

p

)
− 1

)
mod 5.

Moreover, for every prime p ∤ 19 ·151, the triple (ap(F ),
(
−19
p

)
,
(
−151
p

)
) uniquely determines the

conjugacy class of any Frobenius element at p in Gal(K/Q) ∼= S5 with the exception that 5-cycles
cannot be distinguished from the identity.

The exception is due to the fact that order 5 elements are non-semisimple in characteristic 5. Since
the determinant of ρ is χ−19 =

(−19
·
)
, we recognise that

(
−19
p

)
ap(F )

2 =
ap(F )2(

−19
p

) indeed only

depends on the projective representation ρproj.

Concerning (3), Serre’s original question is completely answered by the following corollary of
Theorem 1.2, which also gives the strongest form of (2).

Corollary 1.4. Let K be the splitting field of f5 over Q. There exists a Hilbert modular eigenform G
over E = Q(

√
19 · 151) of parallel weight one, the Tp-eigenvalues of which are denoted ap(G), such

that for every prime p ∤ 19 · 151, we have the formula

Np(f5) = 1 +

(
−151

p

)
·
∏
p|p

ap(G),

where p runs through the primes of E above p.
Moreover, for every prime p ∤ 19·151, the triple ((ap(G))p|p,

(
−19
p

)
,
(
−151
p

)
) uniquely determines

the conjugacy class of any Frobenius element at p in Gal(K/Q) ∼= S5.

We remark that holomorphic cuspidal Hilbert modular forms overE of parallel weight 1 and level 1
were constructed by Bryk, who used them to express the square of Np(f5) (see [Bry12, Prop. 6.3.5]).
Bryk’s forms are different from the modular form G of Corollary 1.4 because the level of G is non-
trivial. However, the Artin representation attached to any of Bryk’s forms cuts out an everywhere
unramified extension of E. Its projectivisation is the same as that of G, namely the one cutting out
K/E. This implies that our form G is a twist of one of Bryk’s forms by a Hecke character of E.

Finally, as we remarked at the beginning of the introduction, the splitting field K of fn is an An-
extension of its quadratic subfield E that is unramified at all finite places. For n = 3 and n = 4, one
knows the maximal extension L/E that is unramified at all finite places explicitly. In both these cases,
L is the field cut out by a linear Galois representation with projectivisation corresponding to the An-
extension K/E. This pattern does not continue for n = 5. Indeed, Kf (

√
−151) has class number 7

and EKf (
√
−151) is an unramified extension of E; its class number is hence divisible by 7 (in fact,

it equals 21 under GRH). So, there is a cyclic extension of K of order 7, which is unramified over E,
but not accounted for by the Artin representations in question because the orders of their images are
coprime to 7.

Acknowledgements. We would like to thank the anonymous referee for useful suggestions improving
the exposition of the paper. We also thank J-P. Serre for helpful remarks on the manuscript. We also
thank Jürgen Klüners for significantly reducing the size of the polynomial h(X). G.W. thanks Sara
Arias-de-Reyna for very helpful suggestions, Jordi Guàrdia and Enric Nart for helpful communication
about maximal orders as well as Frank Calegari for recalling the article [Dwy14] to us.
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2. CERTAIN CENTRAL EXTENSIONS AND EMBEDDING PROBLEMS

We start with a very brief outline of the general theory relating lifts of projective representations,
Galois embedding problems and group cohomology.

Let π : G ↠ G be a surjective group homomorphism and assume C = ker(π) lies in the centre
of G. We are interested in lifting a projective representation

ρproj : G→ PGLn(K)

to a linear representation ρ : G→ GLn(K), where K is any field and n ∈ Z≥1.
We will use (continuous) cochains in (continuous) group cohomology, which are for instance ex-

plained in [NSW08, Chapter 1]. We consider the multiplicative group K× as a trivial module for G
and G and start by associating with ρproj an inhomogeneous 2-cocycle γ ∈ Z2(G,K×) as follows:
for each g ∈ G, choose once and for all a lift ρ̃(g) ∈ GLn(K) of ρproj(g) such that ρ̃(1) = 1 and let

γ(g, h) := ρ̃(g) · ρ̃(h) · ρ̃(gh)−1.

One easily checks that γ is indeed an inhomogeneous 2-cocycle, i.e. that it satisfies γ(gh, i)·γ(g, h) =
γ(h, i) · γ(g, hi) for all g, h, i ∈ G. Via inflation along π (i.e. by precomposing with π), we also
consider γ as a 2-cocycle ofG, i.e. as an element of Z2(G,K×). By definition, the inflation of γ is a 2-
coboundary if and only if there is a map of sets σ : G→ K× such that γ(g, h) = σ(g)·σ(h)·σ(gh)−1

for g, h ∈ G. If this is the case, by equating the two expressions for γ, we have for all g, h ∈ G:(
ρ̃(π(g))σ(g)−1

)
·
(
ρ̃(π(h))σ(h)−1

)
=

(
ρ̃(π(gh))σ(gh)−1

)
,

showing that ρ : G → GLn(K) with ρ(g) = ρ̃(π(g))σ(g)−1 is a linear representation of G lifting
ρproj. These arguments can be read backwards, showing that the triviality of the cocycle class in
H2(G,K×) exactly characterises the liftability of ρproj to a linear representation G→ GLn(K).

We analyse this a bit further and see that σ|C is a group homomorphism C → K× as γ(c1, c2) = 1
for all c1, c2 ∈ C. Moreover, we can replace σ by σ · φ for any character φ : G → K×. This
leads to twisting ρ by φ. Conversely, if σ′ : G → K× is a map of sets that satisfies the relation
γ(g, h) = σ′(g) · σ′(h) · σ′(gh)−1, then σσ′−1 is a character, showing that the ambiguity exactly
comes from twisting. We summarise this as follows.

Proposition 2.1. Let γ ∈ Z2(G,K×) be the 2-cocycle associated with ρproj. Then the inflation of γ
is a 2-coboundary in Z2(G,K×) if and only if ρproj admits a linear lift ρ : G → GLn(K). Different
linear lifts are twists of each other by characters G→ K×.

We remark that this can also be elegantly rephrased in the language of group cohomology via the
following four terms of the so-called 5-term exact sequence (see e.g. [NSW08, (1.6.7)])

Hom(G,K×)
res−−→ Hom(C,K×)

tg−→ H2(G,K×)
infl−−→ H2(G,K×),

using that H1 = Hom for trivial modules. Here tg is the transgression map, which for a character
δ : C → K× can be explicitly described by tg(δ)(π(g), π(h)) = σ(g) · σ(h) · σ(gh)−1 for g, h ∈ G
and σ : G→ K× the map defined by σ(cs(g)) = δ(c) for g ∈ G and c ∈ C where s : G→ G is any
fixed set-theoretic split of π sending 1 to 1.

For Galois representations, we have the following fundamental result of Tate’s (see [Que95, §4]).

Theorem 2.2. Let G be the absolute Galois group of a global or a local field (non-Archimedean
local fields are assumed to have finite residue field) and assume K algebraically closed. Then
H2(G,K×) = 1.
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Applying the above with an absolute Galois group G as in the theorem and G = G, we see that
every projective representation ρproj : G→ PGLn(K) admits a (unique up to twisting) lift to a linear
representation ρ : G→ GLn(K). Passing to images leads to a central extension

(1) 1 → A→ ρ(G) → ρproj(G) → 1,

where A is a subgroup of K×, upon identifying K× with the group of scalar matrices. Every
central extension corresponds to a 2-cocycle class (see [NSW08, (1.2.4)]), in this case lying in
H2(ρproj(G), A). Applying the map

α : H2(ρproj(G), A) → H2(ρproj(G),K×)

induced from the inclusion A → K× returns the 2-cocycle class attached with ρproj seen as a rep-
resentation of its image via inclusion. We remark explicitly that the map α need not be injective; its
kernel is isomorphic to Hom(ρproj(G),K×/A)/Hom(ρproj(G),K×). This means that more than one
central extension with kernel A can be associated with the same projective representation.

Next, we explain how to construct a lift ρ : G → GLn(K) of a given projective representation
ρproj : G → PGLn(K) with attached 2-cocycle class γ ∈ H2(ρproj(G),K×). Start with a central
extension G of ρproj(G) byA, a finite subgroup ofK× as in (1). It corresponds to the class of a cocycle
δ ∈ H2(ρproj(G), A) and we assume α(δ) = γ. We further have by Proposition 2.1 that the inflation
of γ to H2(G,K×) is trivial if and only if ρproj can be lifted to a representation G → GLn(K). If G
is an absolute Galois group as above, the question to decide whether a map π : G ↠ G exists such
that the diagram

G

ρproj����
π

zzzz
1 // A // G // ρproj(G) // 1

commutes, is called a Galois embedding problem.
In the cases of interest to us, namely the groups ρproj(G) = PGL2(Fq) with an odd prime power q

and A = C2r , this problem was studied by Quer in [Que95], building on work by Serre [Ser84]. By
Propositions 2.1(i) and 2.4 (i)-(ii) in [Que95], we have the commutative diagram

H2(PGL2(Fq), C2r)
∼ //

res��

Z/2Z× Z/2Z

��
H2(PSL2(Fq), C2r)

∼ // Z/2Z.

There are thus three non-trivial central extensions of PGL2(Fq) by C2r , two of which restrict to
the unique non-trivial central extension 2rPSL2(Fq) of PSL2(Fq) by C2r . For r = 1, the latter is
simply SL2(Fq). Following [Que95, p. 549], the extension 2−PGL2(Fq) is defined by the pull-back
of the exact sequence

1 → C2 ↪→ SL2(Fq) ↠ PSL2(Fq) → 1

under the embedding PGL2(Fq) ↪→ PGL2(Fq) = PSL2(Fq). For every r > 1, let 2r−PGL2(Fq) be
defined as the image of 2−PGL2(Fq) under the map

H2(PGL2(Fq), C2) → H2(PGL2(Fq), C2r)

induced by the embedding C2 ↪→ C2r . Concretely,

2−PGL2(Fq) = {M ∈ SL2(Fq) | ∃λ ∈ F×
q : λ ·M ∈ GL2(Fq)} = ⟨SL2(Fq),

(
0 −y

y−1 0

)
⟩
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for any fixed y ∈ Fq2 such that y2 is a non-square in F×
q . As furthermore C2r lies in the centre, we

have
2r−PGL2(Fq) = ⟨SL2(Fq),

(
0 −y

y−1 0

)
, ( u 0

0 u )⟩ ⊂ GL2(Fq),

where u ∈ F×
q is a fixed element of order 2r.

We now assume G = GQ and q = 5, but point out explicitly that Quer’s results cover all q (but
with modified formulas). We exploit the exceptional isomorphism S5 ∼= PGL2(F5). Let K1 be the
fixed field of the stabiliser group of one element for the action of ρproj(GQ) ∼= PGL2(F5) ∼= S5 on
5 letters and let dK1 be its discriminant. For any prime p, let w(K1)p be the Hasse–Witt invariant
associated with the trace form trK1/Q(x

2) viewed as a quadratic form over Qp, and, further, denote
by (−,−)p the Hilbert symbol over Qp. Now, let P (K1) be the finite set of primes p such that
w(K1)p · (−2, dK1)p ̸= 1. Finally, in order to finish the set-up, let µ(p) denote the exponent of the
highest power of 2 dividing p − 1 with the convention µ(2) = 1. Set µ(ρproj) = max{µ(p) | p ∈
P (K1)} (or 0 if P (K1) = ∅). We have the following proposition of Quer’s ([Que95, Prop. 4.1(ii),
Theorem 3.7]).

Proposition 2.3 (Quer). Let ρproj : GQ → PGL2(F5) be a surjective projective Galois representa-
tion. It has a lifting ρ : GQ → GL2(F5) with image 2r−PGL2(F5) if and only if r > µ(ρproj).

We apply this now withK1 = Kf5 . Then we have dK1 = 19·151 and the trace form trKf5
/Q(x

2) is
equivalent to the quadratic formX2

1+4X2
2−4dK1X

2
3+X4X5 by [Ser84, Appendix II, Proposition 6].

It can therefore be represented by the matrix diag(4,−1,−4dKf5
, 1, 1) and we compute for its Hasse-

Witt invariant at the prime p: w(QKf5
)p = (−1, d)p and so w(QKf5

)p · (−2, dKf5
)p = (2, dKf5

)p =

(2, 19)p · (2, 151)p. Thus, the only primes that could be in P (Kf5) are 2, 19, 151. For each of them
µ(p) = 1, whence µ(ρproj) ≤ 1, showing that a lift of ρproj exists for C4. In fact, a short computation
with Hilbert symbols gives us P (ρproj) = {19} and so µ(ρproj) = 1.

3. COMPUTATIONAL SOLUTION IN CHARACTERISTIC 5

3.1. An explicit embedding problem. In this section, we give a concrete computational construc-
tion of the lift provided by Proposition 2.3 in our case. All computations were carried out using
Magma [BCP97] and we state the results of these computations here without recalling every time how
they were obtained.

In view of the exceptional isomorphism S5 ∼= PGL2(F5), the basic idea is to work with a degree 6
extension of Q instead of Kf5 . This is natural because PGL2(F5) acts on the six elements of P1(F5).
Concretely, the field K, originally defined as the splitting field of f5 over Q, is also the splitting field
of the polynomial g(X) = x6−x5−10x4+30x3−31x2+7x+9 ∈ Z[x]. We letKg := Q[x]/(g(x))7

and consider the projective Galois representation

ρproj : GQ ↠ Gal(K/Q) ∼= PGL2(F5).

We know from §2 that there is a linear lift with kernel C4. Now, we will construct a polynomial the
splitting field of which corresponds to such a lift. By §2, there are three non-trivial group extensions of
PGL2(F5) by C4, but only two of them restrict to the unique non-split extension of A5 = PSL2(F5)
by C4. The split extension of A5 by C4 cannot correspond to a linear lift of the projective repre-
sentation. The other two extensions are GL2(F5) and C4.6S5 in the notation of Tim Dokchitser’s
project GroupNames [Dok]. The former cannot occur either since in that case the determinant of ρ
would be a Dirichlet character of order 4 ramifying only at 19 and 151, which does not exist because

7[LMF22, Number Field 6.2.23615200909.1]
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Conjugacy class in S5 tr in θst5 (tr, det) in G ⊂ GL2(F5) sgn
(1) 4 (1, 4), (2, 1), (3, 1), (4, 4) 1
(1, 3, 5, 4, 2) −1 (1, 4), (2, 1), (3, 1), (4, 4) 1
(2, 5)(3, 4) 0 (0, 1), (0, 4) 1
(1, 4) 2 (0, 1), (0, 4) −1
(1, 4, 5) 1 (1, 1), (2, 4), (3, 4), (4, 1) 1
(1, 5)(2, 3, 4) −1 (ζ, 4), (2ζ, 1), (−ζ, 4), (−2ζ, 1) −1
(1, 2, 5, 3) 0 (ζ, 1), (2ζ, 4), (−ζ, 1), (−2ζ, 4) −1

TABLE 1. Data on representations

(Z/19 · 151Z)× does not possess any element of order 4. Consequently, C4.6S5 is the extension
4−PGL2(F5) (this can also be verified explicitly).

The group G = C4.6S5 is a transitive permutation group on 48 letters, and this is the minimum.
One finds that G has a unique conjugacy class of subgroups [H] of order 80. Furthermore, H contains
a unique normal subgroup U of order 5. The quotientH/U is isomorphic to C8×C2. There are hence
also two normal subgroups N1, N2 of H of order 10 having C8 as quotient. None of them contains a
non-trivial normal subgroup of G.

If there is a Galois extension K̃ of Q with Galois group G such that Kg = K̃H , then by the
preceding group theory discussion, Kg admits two cyclic extensions of degree 8 contained in K̃ and
both these extensions have K̃ as splitting field. This necessary condition leads us to look for C8-
extensions of Kg in order to construct K̃. One can use explicit class field theory in Magma to find
a cyclic extension of degree 8 of Kg inside the ray class field of conductor 151 if one allows one of
the two infinite places to ramify. One can compute a polynomial h ∈ Z[x] of degree 48 describing it
and computationally check that its Galois group is indeed G. See the appendix §3.3 for an example of
such a polynomial. We remark that it is not enough to include only one of the two primes above 151
into the conductor. This is in accordance with the computations at the inertia groups at 19 and 151
below.

3.2. A linear Galois representation. By the explicit matrix description of 4−PGL2(F5) ∼= C4.6S5
given in §2, we obtain a Galois representation

ρ : GQ ↠ Gal(K̃/Q) = G ⊂ GL2(F5)

lifting ρproj with image the subgroup of GL2(F5) generated by SL2(F5), the scalar ( 2 0
0 2 ) and the or-

der 2 matrix
(

0 ζ
−ζ−1 0

)
, where we take ζ ∈ F×

52
of order 8 satisfying ζ2 = 2. This explicit description

allows us to relate the cycle type of an element in S5 ∼= PGL2(F5) to the trace and determinant of all
possible lifts. Table 1 contains all pairs of trace and determinant that occur for a given cycle type as
well as other information.

We next determine the conductor of ρ. As only 19 and 151 ramify, the ramification is tame and
inertia groups are cyclic. Recall that at both primes the inertia groups inK/Q are of order 2 generated
by transpositions. Each one of the corresponding inertia groups of K̃/Q will hence be generated by
a lift of a transposition. According to Table 1, such lifts have characteristic polynomials X2 − 1 or
X2 + 1 and thus the inertia orders are 2 or 4. Recall further that the polynomial h was obtained
via a ray class field unramified at 19. Consequently, the order of inertia at 19 in K̃/Q is still 2 and,
moreover, it fixes a line since 1 is an eigenvalue of the inertia generator. As the extension K̃/K
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Character Quadratic Field Group Name [Dok] of ker Generators
sgn E = Q(

√
19 · 151) C4.A5 SL2(F5), ( 2 0

0 2 )

det Q(
√
−19) CSU2(F5) ∼= 2−PGL2(F5) SL2(F5),

(
0 ζ

−ζ−1 0

)
det ·sgn Q(

√
−151) C2.S5 SL2(F5),

(
0 ζ

ζ−1 0

)
TABLE 2. Normal subgroups of index 2 in G

ramifies at 151, the inertia group at 151 of K̃/Q is of order 4 and does not fix any line. This implies
that the conductor of ρ is 19 · 1512 = 433219.

The group G admits three surjective group homomorphisms G → C2, namely: the determinant det
(via the embedding of G in GL2(Fp) described above), the sign of a permutation sgn via the projection
G → S5 and the product det ·sgn. As Q(

√
19 · 151) is fixed by the sign, we have sgn = χ19·151 =(

19·151
·

)
. As the characteristic polynomial of a generator of the inertia group of 151 is X2 + 1, the

character det ◦ρ is unramified at 151; it does ramify at 19. Consequently, det ◦ρ = χ−19 =
(−19

·
)

and det ◦sgn =
(−151

·
)
. Table 2 summarises this information and names the three normal subgroups

of G of index 2.
Let L = Q(

√
−19,

√
−151) ⊂ K̃ be the compositum of the three corresponding quadratic fields.

We first remark thatL/E is an unramified CM extension. It hence corresponds to a quadratic character
ϵ : GE → {±1} ⊂ F×

5 , which is unramified at all finite places and totally odd.
Another character will be of importance to us. Let p be the prime of E lying above 151. The ray

class group of E of conductor p∞1 is cyclic of order 150. Thus, E admits a C2-extension ramifying
only at p and one of the two (real) places. Let δ : GE → {±1} ⊂ F×

5 be the corresponding character.
It is not the restriction of any character of GQ.

The restriction to GE of ρ is unramified at 19 (as I(K̃/Q)19 = C2 and E/Q ramifies at 19), but it
does ramify at 151. The inertia group I(K̃/Q)151 is generated by an order 4 matrix of determinant 1
lifting a transposition, whence it is conjugate to

(
0 2ζ

2ζ−1 0

)
, so that I(K̃/E)151 is generated by its

square, i.e. by
(−1 0

0 −1

)
. Consequently, the twist ρ|E ⊗ δ is unramified at all finite places. It is a lift of

the projective representation GE → A5.

Proof of Theorem 1.1. Let ρ be the Galois representation constructed in this section. By Serre’s Mod-
ularity Conjecture proved in [KW09, Theorem 1.2] and [Kis09, Corollary 0.2], together with re-
sults on the optimal weight due to Edixhoven [Edi92, Theorem 4.5], there exists a Hecke eigenform
F ∈ S1(19 · 1512, χ−19,F5) such that its attached Galois representation ρF is isomorphic to ρ. The
other assertions have been established above except for the non-liftability to a holomorphic weight
one modular form. This simply follows from the well-known group theoretic result already known to
Klein [Kle93] that S5 is not a subquotient of PGL2(C), contradicting the existence of any attached
Artin representation. □

As its level is very big, we do not see how to compute the weight one modular form F explicitly
on the computer without using its Galois representation ρ.

Proof of Corollary 1.3. All statements can be verified using Tables 1 and 2 together with the relation
ap(F ) = tr(ρ(Frobp)) and sgn =

(
19·151

·
)

as well as det ◦ρ = χ−19 =
(−19

·
)
. More conceptually,

the congruence of θst5 can also be derived from Corollary 1.4. □
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3.3. Appendix. Here is a polynomial the splitting field of which is the field cut out by ρ in charac-
teristic 5 from Theorem 1.1.
h(X) = x48 − 10x47 − 13x46 + 173x45 − 1278x44 + 27542x43 − 113958x42 − 286430x41 + 4655329x40

− 26503188x39 + 81919958x38 + 32368110x37 − 2439071195x36 + 10669493052x35 − 26002615844x34

+164051953843x33−205565265490x32−3098320327510x31+15580543347067x30−72094759904784x29

+ 145352373756651x28 + 1124294833301773x27 − 4736762045102396x26 − 4428623245164253x25

+46182217850444449x24−135621698076328862x23+69305601476994468x22+3791910125162463418x21

− 14065814910470191337x20 − 13348365591179322148x19 + 124088837951469551773x18

− 286160102141567453230x17 + 886712293571081863675x16 + 1149044936598536032213x15

− 14719660664892430787424x14 + 10532624944253653528232x13 + 56786830275191356552239x12

− 52406153009314731797162x11 − 149323467251503445783614x10 + 669256616167712724103315x9

− 899500431661959205787756x8 − 3108487402346193671659483x7 + 4134225816838771492997125x6

+14451282311965453942468438x5−6338226206230170122590826x4−39455974427388666679528925x3

− 30466901209941980350644125x2 + 70704214646412544819950625x+ 72894568328135627845675625

4. SOLUTION VIA ASAI TRANSFER

4.1. The standard representation via the Asai transfer. In this section we work with complex
representations. For the convenience of the reader, we recall the construction of the Asai transfer (also
called tensor induction or multiplicative induction) of a group representation. We follow [Pra92]. Let
G be a group and H a subgroup of G of index m. Let V be an n-dimensional representation of
H . Let g1, . . . , gm be a set of representatives for the left cosets of H in G. For g ∈ G and for
each j ∈ {1, . . . ,m}, choose i ∈ {1, . . . ,m} such that ggi ∈ gjH and define h(g, i) ∈ H by
ggi = gjh(g, i). The Asai transfer of V from H to G, denoted AsaiGH(V ), is the vector space V ⊗m

equipped with the action defined by

g(v1 ⊗ . . .⊗ vm) = w1 ⊗ . . .⊗ wm

where, for each j ∈ {1, . . . ,m}, wj = h(g, i)vi.
We now describe the special case of tensor induction which we will need. We assume the index of

H in G to be 2 and we let η : H → GLn(C) be a representation with character ψ. For g ∈ G \H and
h ∈ H , we then have (see Lemma 4.1 of [Isa82] and the discussion preceding it)

(2) tr(AsaiGH(η)(h)) = ψ(h)ψ(g−1hg) and tr(AsaiGH(η)(g)) = ψ(g2).

Let r ≥ 1 and η : 2rPSL2(F5) → GL2(C) be an irreducible representation. Write Asai(η) for

Asai
2r−PGL2(F5)

2rPSL2(F5)
(η). We now describe it on any element c in the centre of 2r−PGL2(F5). Such c lies

in 2rPSL2(F5) and we have η(c) =
(
λ 0
0 λ

)
. Consequently, from (2) we get

(3) tr
(
Asai(η)(c)

)
= 4λ2 = 4 · det(η(c)).

We next aim at twisting the representation appropriately, making it trivial on the centre.

Lemma 4.1. For r ≥ 1 let α : C2r → C× and β : PGL2(F5) → C× be characters such that α
restricted to the subgroup C2 of C2r is trivial. Then there exists a unique character

χ : 2r−PGL2(F5) → C×

such that χ|C2r
= α and χ|2−PGL2(F5) = β ◦ π for the natural projection π : 2−PGL2(F5) ↠

PGL2(F5).
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Proof. The point is that the image of the 2-cycle γ ∈ H2(PSL2(F5), C2r) which describes the central
extension 2r−PGL2(F5) lies in C2 by construction. Writing elements of 2r−PGL2(F5) uniquely as
(c, g) ∈ C2r × PGL2(F5), we define χ uniquely by letting χ

(
(c, g)

)
= α(c)β(g). This is indeed a

group homomorphism with the desired properties because

χ
(
(c, g) · (c′, g′)

)
= χ

(
(cc′γ(g, g′), gg′)

)
= α(cc′γ(g, g′)) · β(gg′) = χ

(
(c, g)

)
· χ

(
(c′, g′)

)
since α(γ(g, g′)) = 1 by assumption. □

Proposition 4.2. Let r ≥ 1, η : 2rPSL2(F5) → GL2(C) and Asai(η) as above. Let
χ : 2r−PGL2(F5) → C× be the unique character from Lemma 4.1 such that χ|C2r

=
(
det ◦η|C2r

)−1

and χ|2−PGL2(F5) = ϵ ◦ π where ϵ : PGL2(F5) ∼= S5 → {±1} is the sign character.
Then Asai(η)⊗ χ factors through PGL2(F5) ∼= S5 and

Asai(η)⊗ χ ∼= θst5 .

Proof. By (3), the restriction of Asai(η) ⊗ χ to C2r is the trivial 4-dimensional representation, im-
plying that it factors through PGL2(F5) ∼= S5. An inspection of the character table of S5 shows that
Asai(η)⊗χ is then one of the two irreducible 4-dimensional representations of S5, which are θst5 and
θst5 ⊗ ϵ. Indeed, if it were a sum of four 1-dimensional representations, then all character values would
be even, which is not the case as the trace of η is odd on elements of order 3 in 2PSL2(F5).

As in §3.2, consider g =
(

0 −ζ
ζ−1 0

)
∈ 2−PGL2(F5) for ζ ∈ F52 such that ζ2 = 2 is a non-square

in F5. We have tr(η(g2)) = tr(η(
(−1 0

0 −1

)
)) = −2. As g lies in 2−PGL2(F5) but not in 2PSL2(F5)

its projection to PGL2(F5) ∼= S5 is a transposition, whence χ(g) = ϵ(g) = −1 and tr(ρst(g)) = 2.
Thus, this computation proves that Asai(η) ⊗ χ is not isomorphic to θst5 ⊗ ϵ, so it is isomorphic to
θst5 . □

In view of (2), we obtain the following description of the character of θst5 .

Corollary 4.3. With notation as in Proposition 4.2 and ψ = tr ◦ η, for any g ∈ S5 \ A5 and any
h ∈ A5 we have

tr(θst5 (h)) = ψ(ĥ) · ψ(ĝ−1ĥĝ) · χ(ĥ) and tr(θst5 (g)) = ψ(ĝ2) · χ(ĝ),

where ĝ ∈ 2r−PGL2(F5) and ĥ ∈ 2rPSL2(F5) are any lifts of g and h, respectively.

4.2. Automorphy. In this section, we prove Theorem 1.2. The key input providing the automorphy
is the following strong result of Pilloni and Stroh.

Theorem 4.4 ([PS16], Théorème 0.3). Let E be a totally real field and η : GE → GL2(C) be a
totally odd, irreducible representation. Then η is modular, attached to a Hilbert cuspidal eigenform
of weight one.

Proof of Theorem 1.2 (a). We start by viewing the S5-extension K/Q as a surjective projective Ga-
lois representation ρproj : GQ → PGL2(F5). By Proposition 2.3, it lifts to a linear Galois repre-
sentation ρ : GQ → GL2(F5) with image 2r−PGL2(F5) for any fixed choice of r > µ(ρproj). Let
K̃ be the number field ‘cut out’ by ρ, i.e. the one such that its absolute Galois group equals ker(ρ).
Then Gal(K̃/Q) ∼= 2r−PGL2(F5), the subgroup Gal(K̃/K) is its centre C2r and Gal(K̃/E) ∼=
2rPSL2(F5).

Let now
η : GE ↠ G(K̃/E) ∼= 2rPSL2(F5) → GL2(C)
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be obtained from any two-dimensional irreducible complex representation of 2rPSL2(F5) (such a
representation exists because 2PSL2(F5) admits two of them and the centre can be realised via scalar
matrices). Let c ∈ GE be any complex conjugation. As K is totally imaginary, c does not lie in the
centre of 2rPSL2(F5). Thus η(c) is a non-scalar involution in GL2(C) and as such has determinant 1.
Consequently, η is a totally odd representation. Then Theorem 4.4 shows the existence of the claimed
Hilbert modular form G.

Seeing η alternatively as a representation of Gal(K̃/E), we naturally identify Asai
GQ
GE

(η) with

Asai
Gal(K̃/Q)

Gal(K̃/E)
(η). The claimed formula is now the content of Proposition 4.2. □

We next appeal to the functoriality of the Asai transfer. LetL/F be a quadratic extension of number
fields and π =

⊗
w πw be a cuspidal representation of GL2(AL). If ρ : GL → GL2(C) is a Galois

representation such that its Artin L-function equals L(s, π), except for finitely many places, one can
associate an L-function to π, denoted LAsai(s, π), in such a way that the local factors of LAsai(s, π)

match the local factors of the Artin L-function of AsaiGF
GL

(ρ), again, with the exception of finitely
many places. We refer the readers to the articles [Ram02] and to sections 2 and 3 of [Kri12] for the
relevant constructions and for the proof of the following result.

Theorem 4.5 ([Ram02, Theorem 1.4 (a)]). Let L/F be a quadratic extension of number fields, and
let π be a cuspidal automorphic representation of GL2(AL). Then there exists an automorphic rep-
resentation Π for GL4(AF ) such that the L-function of Π equals LAsai(s, π) except at finitely many
finite places. We denote by Asai(π) the automorphic form Π.

Proof of Theorem 1.2 (b). The Galois representation η is attached to a cuspidal automorphic represen-
tation for GL2(AE), say π, corresponding to the Hilbert modular form G. By Theorem 4.5 applied
with L = E and F = Q, we obtain that the L-function of Asai(π) equals the Artin L-function
of AsaiGQ

GE
(η). The result follows by twisting Asai(π) by the Hecke character corresponding to χ

because that twist corresponds to twisting Asai
GQ
GE

(η) by χ. □

Proof of Corollary 1.4. We specialise Theorem 1.2 (a) to the splitting field K of f5 over Q. Table 2
shows that χ =

(−151
·

)
because χ|C4 = det ◦η and χ|2−PGL2(F5) factors through PGL2(F5) ∼= S5

as the sign character. Furthermore, if ψ denotes the character of η, by the properties of η, for any
unramified finite place p of E we have ψ(p) = ap(G). The proof is now finished by Corollary 4.3 and
an inspection of Table 1. □
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