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ABSTRACT. We study the splitting fields of the family of polynomials f,(X) = X™ — X — 1. This
family of polynomials has been much studied in the literature and has some remarkable properties. In
[Ser03], Serre related the function on primes Np(fy), for a fixed n < 4 and p a varying prime, which
counts the number of roots of f,(X) in F}, to coefficients of modular forms. We study the case n = 5,
and relate Np(f5) to mod 5 modular forms over Q, and to characteristic 0, parallel weight 1 Hilbert

modular forms over Q(+/19 - 151).

1. INTRODUCTION

Serre in [Ser03]] considers the family of polynomials f,,(X) = X" — X — 1 € Z[X] for integers
n > 2.

This is a fascinating family in a number of ways. The irreducibility of f,, was established by
Selmer in [Sel56]. The discriminant of f,, equals ds, = (—1)~D"=2)/2. (p™ — (1 — n)"~1). The
first remarkable fact is that the discriminant of the associated number field Ky, = Q[X]/(fn(X)) is
squarefree and that the residue degree of any ramified prime is 1EI By work of Kondo [Kon95]] (Theo-
rems 1 and 2) this implies that the Galois group of f,,(X), i.e. the Galois group of the Galois closure
K of Ky, over Q, is the symmetric group S, that K contains the quadratic field £ = Q(\/@ )
and that the extension K /E is unramified at all finite primes. It should be stressed that constructing
polynomials (and number fields) with squarefree discriminants is a hard problem. Kedlaya [Ked12]
gave a construction, whose crucial point is that the signature of the field can be prescribed. In our
case, the signature of Ky, is (1,n — 1) if n is odcﬂ and (2,n — 2) if nis evenﬂ Consequently, the
image of any complex conjugation of K/Q in .S, is a product of L%J transpositions with disjoint
supports and E is real if and only if n is congruent to 1 or 2 modulo 4.

It might be useful to mention that the polynomials f,, themselves do not always have a squarefree
discriminant. These have been studied on their own in a number of papers, for instance in [BMT15]].
The first n for which dy, is not squarefree is 130E| It is important to point out that the squarefreeness

I'This follows immediately from [LNVO91, Theorems 1,2]. It can also be proved directly as follows. Let p be a prime
dividing dy,,. Then p { n(n — 1), in particular p # 2. Suppose a € F,, is a multiple root of f,(X) modulo p. Then it is also
aroot of f;(X) =nX""' — 1 modulo p, from which a = n/(1 — n) follows. As f/(a) # 0 we see that f,,(X) factors
as fn(X) = (X — 12-)* - g(X) mod p with g(X) being squarefree and coprime to (X — 1=-) modulo p. From this it
follows that there is at most one ramified prime above p and then that prime has residue degree 1 and ramification index 2.
Consequently, the discriminant of the number field is squarefree.

%Indeed, fn has exactly one real root if n is odd because f,,(x) < 0 for all z < 1 and it does not possess any local
extremum at any z > 1.

3Indeed, if n is even, then f,, has exactly two real roots because it has a unique local minimum and takes a negative
value there.

4Seehttps://oeis.org/A238194
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of dy, implies that Z[X]/(f,(X)) is the ring of integers of K, because in general the square of the
index divides discriminant. We will exploit this for n = 5.

In [Ser03]], Serre asks for information about the number of roots N, ( f;,) of these polynomials in F),.
In other words he considers the point counting function # A, (IF,) where Ay, is the zero-dimensional
affine scheme Z[X|/(fn(X)). We let 65 be the n — 1-dimensional standard representation defined
as the quotient of the natural n-dimensional permutation representation of S;, modulo the trivial one.
Then we have for all unramified primes p

Np(f) = tr (6} (Froby)) + 1

For n < 4, Serre relates the Nj,(f,,)’s to coefficients of modular forms, as follows.

n = 3. (See [Ser03, §5.3 and corresponding notes].) For n = 3 the splitting field of f3 is an S3-
extension K of Q and (x, (s)/((s) is a holomorphic function, equal to the Artin L-function L(65, s).
The representation 65! arises by induction of an order 3 character of Gal(K/E) where E is Q(v/—23).
It turns out that K is the Hilbert class field of F, and in fact is the maximal unramified extension of
E. Thus the representation 65 arises from the weight one (dihedral or CM) modular form F(z) €
S1(T'0(23), (53)) given by the product formula (with ¢ = €2™%)

oo

ﬁl—q Hl—q23k).

k=1

It can also be written in terms of ©-series as

1 2 +ay+6y°2 1 222 +-6xy+3y>
DI W

z,YEL z,YEL

The Ss-extension K /Q is also the field cut out by the Galois representation associated to the Ra-
manujan A-function mod 23. This is explained by the congruence

ﬁl—q Eq-ﬁ(l—q ﬁ ¢**)  (mod 23).
k=1 k=1 k=1

n = 4. (See [Ser03| §5.4 and corresponding notes].) For degree n = 4 the picture to relate N, (fs) to
a weight one modular form is more complicated. Serre observes that:

(i) The Sy = PGLo(F3)-extension is embedded in K = K (/7 — 422), where K is the splitting
field of f4 over Q and x is a root of f4(X), of degree 2 over K and the resulting Galois group is
isomorphic to GLo(F3), which embeds in GLy(Z[v/—2]). Furthermore the field K turns out to
be the maximal unramified extension of the quadratic field £ = Q(1/—283).

(ii) From this one gets a 2-dimensional odd representation p : Gg — GL2(C) with fixed field K
such that

pRp=cd0y,

factoring through a representation of Gal(K/Q) = S4, where € is the sign character of a per-
mutation. The representation p arises by the Deligne-Serre construction from a modular form
f € S1(T'0(283), x) with x the order 2 Dirichlet character of conductor 283. This also gives

Np(f) =1 =ap(f)* — e(p)-
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n = 5. In this article, we look at the n = 5 case of the question and try to respond to the gauntlet
implicitly thrown down by Serre:

The case n > 5. Here the only known result seems to be that f, = "™ — x — 1
is irreducible (Selmer [15]) and that its Galois group is the symmetric group S,.
No explicit connection with modular forms (or modular representations) is known,
although some must exist because of the Langlands program.

The paper partly arose from graduate courses one of us (CBK) has taught at UCLA partly based on
Serre’s paper [SerO3]] in which he suggested that students try and tackle Serre’s challenge.

We propose two approaches to answer Serre’s challenge. The first one is computational in nature.
The key point is that we explore the exceptional isomorphism S5 = PGL(F5) and, instead of K,
work with a degree 6 polynomial g € Q[X] on which the Galois group acts via the natural action
of PGLy(FF5) on the projective line P!(F5), leading to an ‘exotic’ embedding of S5 into Sg. Serre
pointed out to us that in classical terms, this was called the sextic resolvent and that this ‘exotic’ Ss
may also be viewed as the image of the standard S5 under an outer automorphism of Sg.

Explicit class field theory then allows us to explicitly solve a Galois embedding problem for the
group Cy ¢ S5 = 4_PGLy(F5) (in notation of Tim Dokchiter’s project GroupNames [Dok] and
Quer’s article [[Que93|, respectively). That group can be characterised as the unique central extension
of PGLy(IF5) by C4 which restricts to the unique non-trivial central extension of PSLq(F5) by Cy
and which is not GLg(FF5). We solve the embedding problem by computing a polynomial » € Q[X]
of degree 48 describing a cyclic Cy extension of K, = Q[X]/(¢g(X)). It corresponds to a subgroup
of Cy -¢ S5 which is isomorphic to the dihedral group D5. An explicit polynomial i (X)) is included
in 3.3

This leads to the following result, linking f5 to a modular form F' of weight one in characteristic 5.
Its Hecke eigenvalues at primes p # 19, 151 can be explicitly computed from the polynomial h(X),
for instance, using Magma [BCP97]].

Theorem 1.1. There is a Hecke eigenform F in S1(19 - 1512, x _19,F5), the space of weight one
cuspidal Katz modular formsﬂ of level 19 - 1512 and Dirichlet character x_19 corresponding to
Q(v/—19)/Q enjoying the following properties. The attached Galois representation

p: Go = Gal(Q/Q) — GLy(F5)

has conductor 19 - 1512, its image is isomorphic to Cy -¢ S5 = 4_PGLy(F5), its projectivisation
pproj : G@ ﬁ) GLQ(FE)) — PGLQ(F,{))

has image PGLy(F5) = S5 and ker(pP™) is the absolute Galois group of K, the splitting field of fs.
The modular form F' is not the reduction of any holomorphic modular form of weight one in any level.

Moreover, the restriction of p to the absolute Galois group G of E = Q(+/19 - 151) is unramified
at 19, but ramifies at 151. However; there is a character 0 of G such that p|G, ® ¢ is unramified at
all finite places.

The second approach consists in showing the existence of a cuspidal Hilbert eigenform of parallel
weight 1 defined over the real quadratic field F, denoted by G, such that a twist of its Asai transfer to

SKatz modular forms were defined by Katz in [Kat73]. A comprehensive account of them is given in [Gor(O2]] and a short
summary can be found in [Edi97].
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GL4(Aq) is attached to an Artin representation which factors through 65°. Let us record for complete-
ness that the conductor of 65 equals 19 - 151H This uniquely identifies the representation as [LMFE22,
Artin representation 4.2869.5t5.b.a].

We prove the following general result, which slightly improves on a theorem of Calegari [Call3]].
The improvement results from using stronger modularity results due to Pilloni and Stroh [PS16] than
were available when [Call3|] was written.

Theorem 1.2. Let K/Q be a Galois extension with Galois group Gal(K/Q) = S5 and let E be the
subfield of K fixed by the subgroup of Gal(K/Q) isomorphic to As. We assume that K is totally
imaginary and FE is real.

(a) There is a Hilbert modular eigenform G over E of parallel weight one with attached Galois
representation 1) : G — GLa(C) and there is a character x : Gg — C* such that

63" = Asaic? () @ x.

(b) Let 11 = Tl ® ®p I1,, be the automorphic form on GL4(Ag) obtained by twisting the Asai
transfer of G from E to Q by the Hecke character corresponding to x. Then the L-function of 11
coincides with that of 05 at all but finitely many primes p:

Ly(s, )" = det(I — 65 (Frob,)p~*).

We remark that Calegari’s original theorem depended on the local condition that the Frobenius
element at 5 should be conjugate to the double transposition (1,2)(3,4). We note that this is not
satisfied if K is the splitting field of f5 because f5 is irreducible modulo 5, whence the Frobenius
element is a 5-cycle. We further point out that it was also remarked in [Dwy14] that this condition is
superfluous.

We now elaborate more on how our results respond to Serre’s challenge, which we interpret in
various ways:

(1) Vaguely, we see it as asking about a relation between the polynomial f5 and ‘automorphic objects’.

(2) More precisely, we see it as relating conjugacy classes of unramified Frobenius elements in
Gal(K/Q) to Hecke eigenvalues of ‘automorphic objects’.

(3) We also consider the original question about expressing N, (f5) explicitly via an automorphic
form.

The vague interpretation can be answered affirmatively in a number of ways and in different
characteristics. For instance, in characteristic 5, the projective Galois representation attached to the
weight one form F over F5 cuts out the field K /Q. This is also true for the Hilbert modular form G
over E in characteristic 0. One can also reduce G modulo (a prime above) 2. The image of the
attached Galois representation will be SLy(F4) = A5 and K will again be the field cut out by it. In
that sense, F', G and the reduction of G modulo 2 are automorphic objects giving rise to K /Q, and
their Galois representations ‘control” K /Q and, hence, the arithmetic of the polynomial f5.

Concerning the more precise interpretation (2)), from Theorem [I.I] we obtain the following result.

Corollary 1.3. Let F be the weight one Katz modular eigenform over Fs from Theorem For any
prime p, denote by a,(F') the eigenvalue of the Hecke operator T,, on F.

OThis follows because the only ramified primes in K/Q are 19 and 151 and, as K/ FE is unramified at all finite places,
the inertia groups at both these primes are cyclic of order 2. Moreover, they are generated by a transposition since they are
not contained in As. As a consequence they fix a 3-dimensional subspace of vector space underlying 6°, leading to the
claimed conductor.
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Then for every prime p 1 19 - 151, we have the formula

= (12)- (2o (12) ) s

—19
P
conjugacy class of any Frobenius element at p in Gal(K/Q) = Sy with the exception that 5-cycles

cannot be distinguished from the identity.

Moreover, for every prime p 1 19-151, the triple (a,(F'), ( ) , (%51)) uniquely determines the

The exception is due to the fact that order 5 elements are non-semisimple in characteristic 5. Since

the determinant of p is x_19 = (%19), we recognise that (_719) ap(F)2 = (E”(fg); indeed only
P

depends on the projective representation pP™J.

Concerning (3), Serre’s original question is completely answered by the following corollary of
Theorem[I.2] which also gives the strongest form of (2.

Corollary 1.4. Let K be the splitting field of f5 over Q. There exists a Hilbert modular eigenform G
over E = Q(v/19 - 151) of parallel weight one, the T,-eigenvalues of which are denoted a,(G), such
that for every prime p 1 19 - 151, we have the formula

M) =1+ (72 ) T (@),

p plp

where p runs through the primes of E above p.

Moreover, for every prime p 1 19-151, the triple ((ay(G))p|p, (_719> , (%)) uniquely determines

the conjugacy class of any Frobenius element at p in Gal(K/Q) = Ss.

We remark that holomorphic cuspidal Hilbert modular forms over E of parallel weight 1 and level 1
were constructed by Bryk, who used them to express the square of N, (f5) (see [BryI2| Prop. 6.3.5]).
Bryk’s forms are different from the modular form G of Corollary because the level of G is non-
trivial. However, the Artin representation attached to any of Bryk’s forms cuts out an everywhere
unramified extension of E. Its projectivisation is the same as that of G, namely the one cutting out
K /E. This implies that our form G is a twist of one of Bryk’s forms by a Hecke character of E.

Finally, as we remarked at the beginning of the introduction, the splitting field K of f,, is an A,,-
extension of its quadratic subfield E that is unramified at all finite places. For n = 3 and n = 4, one
knows the maximal extension L/ E that is unramified at all finite places explicitly. In both these cases,
L is the field cut out by a linear Galois representation with projectivisation corresponding to the A,,-
extension K /E. This pattern does not continue for n = 5. Indeed, K f(1/—151) has class number 7
and EK¢(1/—151) is an unramified extension of [; its class number is hence divisible by 7 (in fact,
it equals 21 under GRH). So, there is a cyclic extension of K of order 7, which is unramified over F,
but not accounted for by the Artin representations in question because the orders of their images are
coprime to 7.
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thank Jiirgen Kliiners for significantly reducing the size of the polynomial 4 (X). G.W. thanks Sara
Arias-de-Reyna for very helpful suggestions, Jordi Guardia and Enric Nart for helpful communication
about maximal orders as well as Frank Calegari for recalling the article [Dwy14] to us.
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2. CERTAIN CENTRAL EXTENSIONS AND EMBEDDING PROBLEMS

We start with a very brief outline of the general theory relating lifts of projective representations,
Galois embedding problems and group cohomology.

Let 7 : G — G be a surjective group homomorphism and assume C' = ker () lies in the centre
of G. We are interested in lifting a projective representation

PP G — PGL,(K)

to a linear representation p : G — GL,,(K), where K is any field and n € Z>;.

We will use (continuous) cochains in (continuous) group cohomology, which are for instance ex-
plained in [NSWO8| Chapter 1]. We consider the multiplicative group K * as a trivial module for G
and G and start by associating with pP™ an inhomogeneous 2-cocycle v € Z? (G, K*) as follows:
for each g € G, choose once and for all a lift 5(g) € GL,(K) of pP*(g) such that p(1) = 1 and let

(g, h) = p(g) - p(h) - plgh) ™.
One easily checks that v is indeed an inhomogeneous 2-cocycle, i.e. thatit satisfies v(gh,i)-v(g,h) =
v(h,i) - (g, hi) for all g, h,i € G. Via inflation along 7 (i.e. by precomposing with 7), we also
consider v as a 2-cocycle of G, i.e. as an element of Z?(G, K*). By definition, the inflation of  is a 2-

coboundary if and only if there is a map of sets o : G — K * such that v(g, h) = o(g)-o(h)-o(gh)~!
for g, h € G. If this is the case, by equating the two expressions for v, we have for all g, h € G:

(A(m(9)a(9)™") - (A(m()a(h)™H) = (p(m(gh))o(gh) ™),

showing that p : G — GL,(K) with p(g) = p(7(g))o(g)~! is a linear representation of G lifting
pP™I. These arguments can be read backwards, showing that the triviality of the cocycle class in
H?(G, K*) exactly characterises the liftability of pP™J to a linear representation G — GL,, (K).

We analyse this a bit further and see that o | is a group homomorphism C' — K* as y(c1,c2) =1
for all ¢;,c2 € C. Moreover, we can replace o by o - ¢ for any character ¢ : G — K*. This
leads to twisting p by . Conversely, if ¢/ : G — K* is a map of sets that satisfies the relation
v(g,h) = o'(g) - o’(h) - a’(gh)~!, then oo’~! is a character, showing that the ambiguity exactly
comes from twisting. We summarise this as follows.

Proposition 2.1. Let v € Z2(G, K*) be the 2-cocycle associated with pP . Then the inflation of
is a 2-coboundary in Z*(G, K*) if and only if pP™ admits a linear lift p : G — GL,,(K). Different
linear lifts are twists of each other by characters G — K*.

We remark that this can also be elegantly rephrased in the language of group cohomology via the

following four terms of the so-called 5-term exact sequence (see e.g. [NSWOS,, (1.6.7)])
Hom(G, K*) % Hom(C, K*) & HX(G, K*) 2% H2(G, K*),

using that H! = Hom for trivial modules. Here tg is the transgression map, which for a character
§ : C — K can be explicitly described by tg(d)(m(g), 7(h)) = o(g) - o(h) - U(gh)_ifor g,heG
and 0 : G — K* the map defined by o(cs(g)) = d(c) forg € G and ¢ € C where s : G — G is any
fixed set-theoretic split of 7 sending 1 to 1.

For Galois representations, we have the following fundamental result of Tate’s (see [Que95, §41]).

Theorem 2.2. Let G be the absolute Galois group of a global or a local field (non-Archimedean
local fields are assumed to have finite residue field) and assume K algebraically closed. Then
H(G,K*¥) = 1.
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Applying the above with an absolute Galois group G as in the theorem and G = G, we see that
every projective representation pP*® : G — PGL,, (K') admits a (unique up to twisting) lift to a linear
representation p : G — GL,, (K). Passing to images leads to a central extension

(1) 1= A= p(G) = pP™(G) = 1,

where A is a subgroup of K*, upon identifying K> with the group of scalar matrices. Every
central gxtension corresponds to a 2-cocycle class (see [NSWOS8, (1.2.4)]), in this case lying in
H2(pPi (@), A). Applying the map

a: H2(pPO)(G), A) — B2 (0PN (G), K )

induced from the inclusion A — K returns the 2-cocycle class attached with pP™ seen as a rep-
resentation of its image via inclusion. We remark explicitly that the map « need not be injective; its
kernel is isomorphic to Hom(pP™(G), K* /A)/Hom(pP*(G), K*). This means that more than one
central extension with kernel A can be associated with the same projective representation.

Next, we explain how to construct a lift p : G — GL,(K) of a given projective representation
PPl G — PGL,(K) with attached 2-cocycle class v € H2(pP™I(G), K*). Start with a central
extension G of pP™J(G) by A, a finite subgroup of K* as in (T]). It corresponds to the class of a cocycle
§ € H?(pP™I(@G), A) and we assume () = . We further have by Proposition [2.1|that the inflation
of v to H(G, K¥) is trivial if and only if pP™J can be lifted to a representation G — GL,(K). If G
is an absolute Galois group as above, the question to decide whether a map 7 : G — § exists such
that the diagram

G

7
T

Va .
1‘>A‘>g‘>ppr0J(G)‘>1

commutes, is called a Galois embedding problem.

In the cases of interest to us, namely the groups pP™(G) = PGLy(F,) with an odd prime power ¢
and A = Cyr, this problem was studied by Quer in [Que95]], building on work by Serre [Ser84]. By
Propositions 2.1(i) and 2.4 (i)-(ii) in [Que95], we have the commutative diagram

H?(PGLy(F,), Oor) > 7Z./27 x 7./27.

Jres |

H?(PSLy(F,), Ogr) ——— Z/27.

There are thus three non-trivial central extensions of PGLy(F,) by Car, two of which restrict to
the unique non-trivial central extension 2"PSLy(F,) of PSLy(FF,) by Cor. For r = 1, the latter is
simply SLy(F). Following [Que95| p. 549], the extension 2_PGLy(F,) is defined by the pull-back
of the exact sequence

1— CQ — SLQ(ﬁq) —» PSLQ(Fq) —1

under the embedding PGLy(F,;) < PGLy(F,) = PSLy(F,). For every r > 1, let 2" PGLy(F,) be
defined as the image of 2_PGLy(F,) under the map

H?(PGLy(F,), C2) — H?(PGLy(F,), Car)
induced by the embedding C'> — C5-. Concretely,
2 PCLy(F,) = {M € SLy(F,) | IA € F, : A- M € GLy(F,)} = (SLa(F,), (y91 *Oy)>



8 CHANDRASHEKHAR B. KHARE, ALFIO FABIO LA ROSA, GABOR WIESE

for any fixed y € Fg2 such that y? is a non-square in F7. As furthermore Cyr lies in the centre, we
have

2 PGLa(F,) = (SLa(Fy), (% ')+ (§9)) € GLa(Fy),

where u € F; is a fixed element of order 2".

We now assume G = G and ¢ = 5, but point out explicitly that Quer’s results cover all ¢ (but
with modified formulas). We exploit the exceptional isomorphism S5 = PGLy(F5). Let K be the
fixed field of the stabiliser group of one element for the action of pP*(Gg) = PGLy(F5) = S5 on
5 letters and let dg, be its discriminant. For any prime p, let w(K), be the Hasse—Witt invariant
associated with the trace form try, /Q(a:Q) viewed as a quadratic form over Q,, and, further, denote
by (—,—), the Hilbert symbol over Q,. Now, let P(K) be the finite set of primes p such that
w(K1)p - (—2,dk,)p # 1. Finally, in order to finish the set-up, let ;(p) denote the exponent of the
highest power of 2 dividing p — 1 with the convention z(2) = 1. Set u(pP™) = max{u(p) | p €
P(K4)} (or 0if P(K7) = (). We have the following proposition of Quer’s ([Que93, Prop. 4.1(ii),
Theorem 3.7]).

Proposition 2.3 (Quer). Let pP™ : g(@ — PGLy(F5) be a surjective projective Galois representa-
tion. It has a lifting p : Gg — GLa(F5) with image 2" PGLx(F5) if and only if r > p(pP™).

We apply this now with Ky = Ky, Then we have dj, = 19-151 and the trace form trjc Jo(2?) is
equivalent to the quadratic form X?+4X2 —4d, X. § + X4 X5 by [Ser84, Appendix II, Proposition 6].
It can therefore be represented by the matrix diag(4, —1, —4dx oo Lo 1) and we compute for its Hasse-
Witt invariant at the prime p: w(Qk,, )p = (—1,d)p and so w(Qk, )p - (—2,dk,, )p = (2,dk,, )p =
(2,19), - (2,151),,. Thus, the only primes that could be in P(K,) are 2,19, 151. For each of them
w(p) = 1, whence u(pP™) < 1, showing that a lift of pP*J exists for Cy. In fact, a short computation
with Hilbert symbols gives us P(pP ) = {19} and so p(pP™)) = 1.

3. COMPUTATIONAL SOLUTION IN CHARACTERISTIC 5

3.1. An explicit embedding problem. In this section, we give a concrete computational construc-
tion of the lift provided by Proposition 2.3] in our case. All computations were carried out using
Magma [BCP97|| and we state the results of these computations here without recalling every time how
they were obtained.

In view of the exceptional isomorphism S5 = PGLy(F5), the basic idea is to work with a degree 6
extension of Q instead of K s,. This is natural because PGL2(F5) acts on the six elements of P! (F5).
Concretely, the field K, originally defined as the splitting field of f5 over Q, is also the splitting field
of the polynomial g(X) = 2% —2°— 1024 +302° — 3122 + 72 +9 € Z[z]. Welet K, := Q[z]/(g(x))[]
and consider the projective Galois representation

PP Gg — Cal(K/Q) = PGLy(F5).

We know from §2]that there is a linear lift with kernel Cy. Now, we will construct a polynomial the
splitting field of which corresponds to such a lift. By §2] there are three non-trivial group extensions of
PGLy(F5) by Cy, but only two of them restrict to the unique non-split extension of A5 = PSLy(F5)
by Cy4. The split extension of As by C cannot correspond to a linear lift of the projective repre-
sentation. The other two extensions are GL2(F5) and C4.6S5 in the notation of Tim Dokchitser’s
project GroupNames [Dokl]. The former cannot occur either since in that case the determinant of p
would be a Dirichlet character of order 4 ramifying only at 19 and 151, which does not exist because

7[LMF22, Number Field 6.2.23615200909.1]
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Conjugacy class in S5 | trin 65 | (tr,det) in G C GLo(Fs5) sgn
(1 4 (1,4),(2,1),(3,1),(4,4) 1
(1,3,5,4,2) —1 (1,4),(2,1),(3,1),(4,4) 1
(2,5)(3,4) 0 (0,1),(0,4) 1
(1,4) 2 (0,1),(0,4) -1
(1,4,5) 1 (1,1),(2,4),(3,4),(4,1) 1
(175)(27374> -1 (Ca4>7(2 71) ( C74)7( 2(7 1) —1
(1727573) 0 (Ca 1) (2C7 )7( C: 1)7( 2(74) —1

TABLE 1. Data on representations

(Z/19 - 1517)* does not possess any element of order 4. Consequently, Cy.4S5 is the extension
4_PGLy(IF5) (this can also be verified explicitly).

The group G = C4.¢S5 is a transitive permutation group on 48 letters, and this is the minimum.
One finds that G has a unique conjugacy class of subgroups [H| of order 80. Furthermore, H contains
a unique normal subgroup U of order 5. The quotient H/U is isomorphic to C x C5. There are hence
also two normal subgroups Ny, Na of H of order 10 having Cy as quotient. None of them contains a
non-trivial normal subgroup of G.

If there is a Galois extension K of Q with Galois group G such that K. g = K* | then by the
preceding group theory discussion, K, admits two cyclic extensions of degree 8 contained in K and
both these extensions have K as splitting field. This necessary condition leads us to look for Cg-
extensions of K, in order to construct K. One can use explicit class field theory in Magma to find
a cyclic extension of degree 8 of K inside the ray class field of conductor 151 if one allows one of
the two infinite places to ramify. One can compute a polynomial & € Z[x] of degree 48 describing it
and computationally check that its Galois group is indeed G. See the appendix §3.3|for an example of
such a polynomial. We remark that it is not enough to include only one of the two primes above 151
into the conductor. This is in accordance with the computations at the inertia groups at 19 and 151
below.

3.2. A linear Galois representation. By the explicit matrix description of 4_PGLy(F5) = Cy.6S5
given in §2] we obtain a Galois representation

p:Go — Gal(K/Q) = G C GLy(F;5)

lifting pP™) with image the subgroup of GLo(F5) generated by SLo(F5), the scalar (3 9) and the or-

der 2 matrix ( C) where we take ¢ € IE‘ of order 8 satisfying (2 = 2. This explicit description

0
—¢ 1o
allows us to relate the cycle type of an element in S5 = PGL2(F5) to the trace and determinant of all
possible lifts. Table [1|contains all pairs of trace and determinant that occur for a given cycle type as
well as other information.

We next determine the conductor of p. As only 19 and 151 ramify, the ramification is tame and
inertia groups are cyclic. Recall that at both primes the inertia groups in K /Q are of order 2 generated
by transpositions. Each one of the corresponding inertia groups of K /Q will hence be generated by
a lift of a transposition. According to Table 1} such lifts have characteristic polynomials X2 — 1 or
X2 4+ 1 and thus the inertia orders are 2 or 4. Recall further that the polynomial h was obtained
via a ray class field unramified at 19. Consequently, the order of inertia at 19 in K /Q is still 2 and,

moreover, it fixes a line since 1 is an eigenvalue of the inertia generator. As the extension K /K
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Character | Quadratic Field Group Name [Dok] of ker | Generators

sgn E=Q(V/19-151) | C4.45 SLa(F5), (39)

det Q(v=19) CSUs(Fs) & 2_PGLy(Fs) | SLa(Fs). ( _ 0 g)
det-sgn | Q(v—151) Cs.55 SLa(Fs). ( g)

TABLE 2. Normal subgroups of index 2 in G

ramifies at 151, the inertia group at 151 of K /Q is of order 4 and does not fix any line. This implies
that the conductor of pis 19 - 1512 = 433219.

The group G admits three surjective group homomorphisms G — C'5, namely: the determinant det
(via the embedding of G in GL2(F,) described above), the sign of a permutation sgn via the projection
G — S5 and the product det -sgn. As Q(+/19 - 151) is fixed by the sign, we have sgn = x19.151 =
(M) As the characteristic polynomial of a generator of the inertia group of 151 is X2 + 1, the
character det op is unramified at 151; it does ramify at 19. Consequently, det op = x_19 = (;19)
and det osgn = (ﬂ) Table [2| summarises this information and names the three normal subgroups
of G of index 2.

Let L = Q(v/—19,v/—151) C K be the compositum of the three corresponding quadratic fields.
We first remark that L/ F is an unramified CM extension. It hence corresponds to a quadratic character
e : Gp — {£1} C FZ, which is unramified at all finite places and totally odd.

Another character will be of importance to us. Let p be the prime of E' lying above 151. The ray
class group of F of conductor poo; is cyclic of order 150. Thus, E admits a Cs-extension ramifying
only at p and one of the two (real) places. Let § : Gg — {£1} C F; be the corresponding character.
It is not the restriction of any character of G.

The restriction to G of p is unramified at 19 (as 1 (f( /Q)19 = Cs and E/Q ramifies at 19), but it
does ramify at 151. The inertia group I (f( /Q)151 is generated by an order 4 matrix of determinant 1

lifting a transposition, whence it is conjugate to ( ) Co,l 204), so that I(K /E)151 is generated by its

square, i.e. by ( _01 91 ) Consequently, the twist p|p ® 6 is unramified at all finite places. It is a lift of
the projective representation G — As.

Proof of Theorem|I.1} Let p be the Galois representation constructed in this section. By Serre’s Mod-
ularity Conjecture proved in [KW09, Theorem 1.2] and [Kis09, Corollary 0.2], together with re-
sults on the optimal weight due to Edixhoven [Edi92, Theorem 4.5], there exists a Hecke eigenform
F e 5(19- 1512, X_197F5) such that its attached Galois representation pr is isomorphic to p. The
other assertions have been established above except for the non-liftability to a holomorphic weight
one modular form. This simply follows from the well-known group theoretic result already known to
Klein [KIe93]] that S5 is not a subquotient of PGLy(C), contradicting the existence of any attached
Artin representation. g

As its level is very big, we do not see how to compute the weight one modular form F' explicitly
on the computer without using its Galois representation p.

Proof of Corollary[I.3] All statements can be verified using Tables [T] and 2] together with the relation
ap(F) = tr(p(Frob,)) and sgn = (12151) as well as det op = x_19 = (=2). More conceptually,
the congruence of 65! can also be derived from Corollary (|
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3.3. Appendix. Here is a polynomial the splitting field of which is the field cut out by p in charac-
teristic 5 from Theorem [L.1}

h(X) = 28 — 10217 — 13216 + 173245 — 12782 4 27542213 — 113958212 — 28643024 + 465532921
— 26503188239 + 81919958238 + 32368110237 — 2439071195236 + 1066949305223% — 2600261584423
+164051953843x33 — 2055652654902 — 3098320327510231 + 1558054334706 7230 — 72094759904 78422
+ 145352373756651228 + 11242948333017732%7 — 47367620451023962%¢ — 442862324516425322°
+461822178504444492>* —13562169807632886222*+693056014769944682>2+37919101251624634182*
— 1406581491047019133722° — 133483655911793221482'° + 124088837951469551773z18

— 286160102141567453230217 + 886712293571081863675x16 + 114904493659853603221321°

— 147196606648924307874242* + 10532624944253653528232213 4 56786830275191356552239212

— 524061530093147317971622'! — 14932346725150344578361421° + 6692566161677127241033152°

— 899500431661959205787756x% — 3108487402346193671659483x7 + 41342258168387714929971252°
+144512823119654539424684382° — 63382262062301701225908262* — 3945597442738866667952892523
— 3046690120994198035064412522 + 70704214646412544819950625z + 72894568328135627845675625

4. SOLUTION VIA ASAI TRANSFER

4.1. The standard representation via the Asai transfer. In this section we work with complex
representations. For the convenience of the reader, we recall the construction of the Asai transfer (also
called tensor induction or multiplicative induction) of a group representation. We follow [Pra92]]. Let
G be a group and H a subgroup of GG of index m. Let V be an n-dimensional representation of
H. Let g1,...,9m, be a set of representatives for the left cosets of H in G. For g € G and for
each j € {1,...,m}, choose i € {1,...,m} such that gg; € g;H and define h(g,i) € H by
9gi = g;h(g,i). The Asai transfer of V from H to G, denoted Asai% (V'), is the vector space V™
equipped with the action defined by

g ® ... QUy) =W R ... R Wy

where, for each j € {1,...,m}, w; = h(g,1)v;.

We now describe the special case of tensor induction which we will need. We assume the index of
H in G tobe 2 and we letp : H — GL,,(C) be a representation with character ¢). For g € G\ H and
h € H, we then have (see Lemma 4.1 of [[sa82] and the discussion preceding it)

) tr(Asaif (n)(h)) = ¥(h)1(g~ " hg) and tr(Asai% (1)(g)) = ¥ (g?).

Let r > 1 and n : 2"PSLy(F5) — GL2(C) be an irreducible representation. Write Asai(n) for
2" PGLy(Fs)
AsaIQTPSLg(Fs)

in 2"PSLy(F5) and we have n(c) = (3 Q). Consequently, from (2) we get
(3) tr(Asai(n)(c)) = 4A% = 4 - det(n(c)).

(n). We now describe it on any element c in the centre of 2" PGLa(F5). Such c lies

We next aim at twisting the representation appropriately, making it trivial on the centre.

Lemma 4.1. Forr > 1let o : Cyr — C* and § : PGLy(F5) — C* be characters such that «
restricted to the subgroup Co of Cor is trivial. Then there exists a unique character

X : 2" PGLy(F5) — C*

such that X|c,r = « and X|y_par,(rs) = B o T for the natural projection w : 2_PGLa(F5) —
PGLo(Fs).
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Proof. The point is that the image of the 2-cycle v € H?(PSLy(IF5), Car) which describes the central
extension 2" PGLy(F5) lies in Cy by construction. Writing elements of 2" PGLy(F5) uniquely as
(¢,g) € Cyr x PGLy(F5), we define x uniquely by letting x((c, g)) = a(c)B(g). This is indeed a
group homomorphism with the desired properties because

x((c,9) - (¢,9) = x((ccv(9.9),99")) = alecdv(g.9")) - Blag') = x((c,9)) - x((',9))
since a(y(g,4")) = 1 by assumption. O

Proposition 4.2. Let r > 1, n : 2"PSLa(F5) — GL2(C) and Asai(n) as above. Let
X : 2" PGLy(F5) — C* be the unique character from Lemmasuch that X|c,, = (deton|c,, ) !

and x|o_pary(rs) = € o ™ where € : PGLa(F5) = S5 — {+£1} is the sign character.
Then Asai(n) ® x factors through PGLy(F5) = S5 and

Asai(n) ®@ x = 65"

Proof. By (3), the restriction of Asai(n) ® x to Cyr is the trivial 4-dimensional representation, im-
plying that it factors through PGL2(F5) = S5. An inspection of the character table of S5 shows that
Asai(n) ® x is then one of the two irreducible 4-dimensional representations of S5, which are 65" and
9? ®e. Indeed, if it were a sum of four 1-dimensional representations, then all character values would
be even, which is not the case as the trace of 7 is odd on elements of order 3 in 2PSLy(F5).

As in consider g = (Cgl _(f) € 2_PGLy(F5) for ¢ € Fs2 such that (2 = 2 is a non-square

in F5. We have tr(n(g?)) = tr(n(( 3 % ))) = —2. As g lies in 2_PGLy(F5) but not in 2PSLy(F5)
its projection to PGLy(F5) = Sj is a transposition, whence x(g) = €(g) = —1 and tr(p**(g)) = 2.
Thus, this computation proves that Asai(n) ® x is not isomorphic to 65* ® e, so it is isomorphic to
65k, O

In view of (2)), we obtain the following description of the character of 65"

Corollary 4.3. With notation as in Proposition and i) = tron, forany g € S5\ As and any
h € As we have

tr(65' (h)) = ¢ (h) - (™ hg) - x(h) and tr(65'(9)) = ¥ (5%) - x(9),
where § € 2" PGLy(Fs) and h € 2"PSLy(F5) are any lifts of g and h, respectively.

4.2. Automorphy. In this section, we prove Theorem The key input providing the automorphy
is the following strong result of Pilloni and Stroh.

Theorem 4.4 ([PS16]], Théoreme 0.3). Let E be a totally real field and n : G — GL2(C) be a
totally odd, irreducible representation. Then 1 is modular, attached to a Hilbert cuspidal eigenform
of weight one.

Proof of Theorem|[I.2] (a). We start by viewing the Ss-extension K /Q as a surjective projective Ga-
lois representation pP™ : G — PGLy(F5). By Proposition , it lifts to a linear Galois repre-
sentation p : Gg — GLa(F5) with image 2" PGLy(F5) for any fixed choice of r > pu(pP™)). Let
K be the number field ‘cut out’ by p, i.e. the one such that its absolute Galois group equals ker(p).
Then Gal(K/Q) = 2" PGLy(F5), the subgroup Gal(K /K) is its centre Cyr and Gal(K/FE) =
2"PSLy(F5).
Let now
n:Gp — G(K/E) = 2"PSLy(F5) — GLy(C)
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be obtained from any two-dimensional irreducible complex representation of 2"PSLo(F5) (such a
representation exists because 2PSLy(F5) admits two of them and the centre can be realised via scalar
matrices). Let ¢ € Gg be any complex conjugation. As K is totally imaginary, ¢ does not lie in the
centre of 2"PSLy(IF5). Thus 7(c) is a non-scalar involution in GL2(C) and as such has determinant 1.
Consequently, 7 is a totally odd representation. Then Theorem 4.4]shows the existence of the claimed
Hilbert modular form G.

Seeing 7 alternatively as a representation of Gal(K/E), we naturally identify Asaig% (n) with

Asaigiggi (n). The claimed formula is now the content of Proposition ([l

We next appeal to the functoriality of the Asai transfer. Let L/ F be a quadratic extension of number
fields and 7 = @), T be a cuspidal representation of GL2(Ar). If p : G — GL2(C) is a Galois
representation such that its Artin L-function equals L(s, ), except for finitely many places, one can
associate an L-function to 7, denoted L ,i($, 7), in such a way that the local factors of L sai(s, )
match the local factors of the Artin L-function of Asaigf (p), again, with the exception of finitely
many places. We refer the readers to the articles [Ram02]] and to sections 2 and 3 of [Kril2] for the
relevant constructions and for the proof of the following result.

Theorem 4.5 ([Ram02, Theorem 1.4 (a)]). Let L/F be a quadratic extension of number fields, and
let w be a cuspidal automorphic representation of GLa(AyL). Then there exists an automorphic rep-
resentation 11 for GL4(Ap) such that the L-function of 11 equals Lagai(s, ) except at finitely many
finite places. We denote by Asai(r) the automorphic form IL.

Proof of Theorem|[I.2] (b). The Galois representation 7 is attached to a cuspidal automorphic represen-
tation for GLy(Ap), say m, corresponding to the Hilbert modular form G. By Theorem 4.5 applied
with L = F and F' = Q, we obtain that the L-function of Asai(m) equals the Artin L-function

of Asaig% (n). The result follows by twisting Asai(7) by the Hecke character corresponding to x

because that twist corresponds to twisting Asaig% (n) by x. O

Proof of Corollary[I.4) We specialise Theorem [1.2] (a) to the splitting field K of f5 over Q. Table
shows that y = (ﬂ) because x|, = deton and x|z_par,(ry) factors through PGLy(F5) = S;
as the sign character. Furthermore, if ¢/ denotes the character of 7, by the properties of 7, for any
unramified finite place p of £ we have ¢(p) = a,(G). The proof is now finished by Corollary [4.3|and
an inspection of Table[] O
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