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Abstract

Vehicular networks provide useful functionalities based on the data exchanged over the network

that are not encrypted to reduce the computational complexity and time. Without a mechanism that

guarantees authentication, and data integrity leaves the system open to endless security threats. A

Public Key Infrastructure (PKI) is consistently used throughout the literature, which only works to avoid

external attacks. However, the networks are also vulnerable to many types of internal attacks, including

position falsification attacks. The position falsification attack can lead to hazardous situations for traffic

efficiency management applications, and increase the possibility of collisions. Therefore, the vehicular

network highly requires the deployment of additional security mechanisms. The misbehavior detection

system is considered a possible solution to detect position falsification attacks. Numerous misbehavior

detection systems have been proposed to thwart these attacks. However, the existing solutions suffer

from a lack of accuracy and dynamicity and require extensive information to detect position falsification

attacks.

To overcome these limitations, we propose a novel dynamic system that integrates a Machine

Learning (ML) model and Software-defined Networking (SDN) c to detect attacks associated with

position falsification. Our system leverages an efficient ML-model which only uses vehicles’ positions

as input to detect the attacks. In our system design, a central SDN controller is responsible for installing,

updating, and deploying the ML-model on each vehicle. In addition, we design a report investigation

system that enables collaboration between vehicles for increasing the accuracy of detecting attacks.

Finally, we evaluate the performance of our system using several detection metrics to assess its ability

for identifying different types of position falsification attacks precisely. Obtained results show that our

proposed system is able to detect position falsification attacks with almost 100% of accuracy.

Keywords — Vehicular network, software define network, machine learning, security, misbehavior

detection, position falsification attack.
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Introduction

The evolution of communication technologies, together with the variety of network access mediums and

service providers, has led to the birth of Intelligent Transportation Systems (ITS). An ITS is an advanced

application which aims to provide innovative services relating to transport and traffic management. The

development of ITS has made a big step, which can enable users to be better informed and make their

life safer on the road.

According to the World Health Organization (WHO) [1], road accidents annually cause around 1.2

million deaths worldwide. Another 20 to 50 million more people suffer non-fatal wounds, including

many acquiring a disability due to the injury. If we do not take the preventive measures inside the

account, street death is likely to become the third leading reason for death in 2022 from the ninth position

in 1990 [2]. However, the total number of deaths produced by car collisions or other road incidents is

avoidable in principle. According to the investigation of the U.S. Department of Transportation, roadway

departures and intersection-related conflicts [3] cause 21,000 to 43,000 of the annual deaths barely in

the U.S. This number of death can be significantly reduced by deploying local warning through the

vehicular system.

On the other hand, the number of vehicles has risen dramatically in recent times. Vehicles, capable

of achieving high speeds, are found jam-packed on roads during peak traffic hours in almost all big

cities of the world. A small road maintenance task or accident can result in massive traffic jams and

further accidents. Watchful information from surrounding vehicle positions could be vital in these cases

to improve the driver’s and passengers’ safety on board. Meanwhile, vehicular technology has seen

tremendous advancements in recent years, where the vehicles are equipped with multiple computing and

sensing devices [4]. These devices collect vehicle statistics such as speed, GPS location [5] to assist

the driver actively. It is expected that by 2026, most vehicles will be network-enabled and convert to a

wireless node of a big dynamic network.

Vehicular networking is entirely based on data transmission to ensure road safety, which is also an

open network. The safety messages exchanged through the network is not encrypted to reduce the

computational complexity and overhead. This leaves the system open to endless security threats without

1



2 INTRODUCTION

a system that guarantees sender authentication and data integrity. A public key infrastructure (PKI) is

consistently used throughout the literature to solve the issue, PKI is a popular cryptographic technique,

enables participants to communicate on an insecure public network securely, and reliably verify the

identity of the participants via digital signatures, only works to avoid external attacks. However,

the networks are also vulnerable to many types of internal attacks, including position falsification

attack, which can lead the system to a hazardous situation, especially can destroy the road traffic

management and efficiency of safety application. Therefore, securing communication against any

position falsification attack has become a fundamental requirement. To address these issues, we propose

a novel scheme based on machine learning and software-defined network (SDN) to detect position

falsification attacks accurately. In our system design, a central SDN controller is considered responsible

for installing, updating, and deploying the machine learning model on each vehicle, which can be

controlled dynamically. The local exposure will be verified and enhanced by executing a collaborative

report investigation system. We summarize the main contributions of the thesis below:

• We provide a synthesis of the exiting work associated with position falsification attack and

identify their limitations.

• We propose a dynamic novel misbehavior detection system with the combination of SDN and

machine learning model that overcomes the existing limitations.

• We propose a novel method for features extraction based on vehicles’ positions and develop an

accurate multi-class classifier for detecting different types of position falsification attacks.

• We assess the performance of our system for detecting position falsification attacks using

several metrics.

The remainder of the thesis is as follows: chapter 1 describes the background literature, architecture, and

communication standards, security requirements, and possible attacks on vehicular networks. Chapter 2

presents misbehavior detection systems and overviews existing mechanisms that have been proposed to

detect position falsification attacks in vehicular networks. Chapter 3 describes our proposed misbehavior

detection system. Moreover, chapter 4 validates our system through publicly available data sets and

simulations as well. Finally, the thesis ends with a conclusion followed by some future directions.



CHAPTER 1

Background

1.1 Introduction

Today, the fleet is growing, and the roads are becoming more dangerous because of congestion, which

increases the likelihood of collisions. Meanwhile, vehicular technology, usually developed as a part of

ITS, has shown tremendous advantages in recent years. It is an emerging network that can effectively

improve road safety, transportation efficiency, and passenger comfort, which are the main motivations of

the vehicular networking systems. Because of the high mobility of vehicles, it exhibits several unique

features and characteristics such as delay-tolerant network, dynamic topology due to the sensitive data

exchanged, and the specific characteristics. The network could be subject to a variety of cyber-threats in

principle; it could connect to an untrusted network. Hence, the security of vehicular networks has got

paramount research importance to ensure road safety.

This chapter designs an illustration of the architecture with existing communication technology, charac-

teristics, and applications of the vehicular network. Nevertheless, vehicular networks must maintain

initial sets of standard requirements. We summarized the security specifications that must be considered

and the most significant attacks that can be performed to violate these requirements. We also provide

fundamental concepts of Artificial Intelligent (AI) and Software Define Network (SDN) since our future

goal is to introduce a novel approach by using these two promising technologies.

The rest of this chapter organized as follows: Section 1.2 discusses the architecture, characteristics,

communications technologies, and available services of vehicular networks. Section 1.3 presents the

security requirements and attacker models. Section 1.4 presents machine learning and different kinds of

learning processes. Section 1.5 discusses the architectures, benefits of software-defined networks for the

vehicular network, and finally, section 1.6 concludes the chapter.

3



4 1 BACKGROUND

1.2 Vehicular Networks

In the vehicular communication system, vehicles and road side units are the primary communicating

nodes, providing each other information, such as safety warnings, traffic updates, and accident notifica-

tions, where a vehicle is equipped with various communication technologies such as cellular network

and IEEE 802.11p [6] to communicate with others.

1.2.1 Architecture

The architecture of vehicular networks involves various hardware and software components, as shown

in Fig.-1.1. In principle, the entire vehicular system’s design consists of three entities: the Certificate

Authority (CA), the Road Side Units (RSU) and the vehicles illustrated below:

Certificate Authority (CA)

Road Side Unit (RSU)

I 2 I

4G / 5G

Road Side Unit (RSU)

V 2 V

Road Side Unit (RSU)

FIGURE 1.1. Different Components of Vehicular Network.

(1) Certificate authority (CA): is the only authentic credential verifier for the whole network

consider as a control center, is also responsible for vehicle registration, key management,

verification, and other significant operations [7].

(2) On-board unit (OBU): are intelligent functional units equipped with vehicles for interaction

with RSUs or other vehicles [8] to communicate each others.

(3) Road-Side Unit (RSU): are computing infrastructure located on the roadside that provides

connectivity support to passing vehicles.
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In vehicular network, there are three types of communication: Vehicle to Vehicle (V2V) communication,

Vehicle to Infrastructure (V2I) communication and Hybrid communications.

(A) Vehicle to Vehicle Communication (V2V): In today’s vehicles, sensors carry out essential

functions with the help of radar, and camera technologies allow vehicles to see and analyze

their surroundings to make safe decisions while on board. A vehicle can communicate valuable

data directly to other vehicles. Any relevant information gathered on a vehicle or transmitted to

the vehicle can be sent to nearby vehicles, known as V2V communication. However, sensors

have limited transmission range, particularly when it comes to hidden objects on-road and

generally unexpected behavior from other vehicles, V2V communication aims to correct these

limitations by letting cars speak with one another directly.

(B) Vehicle to Infrastructure Communication (V2I): The exchange of information between any

onboard units (car, bus, trucks) and other roadside infrastructure ( traffic signals, line markings)

are known as V2I Communication. The vehicles use support from road site infrastructure to

connect the service providers.

(C) Hybrid communications: this communications is a combination of V2V and V2I, and the

primary motivation is to extend the existing services. The idea behind this technology is to

make the vehicle able to communicate with its surroundings in real-time.

The main features of hybrid communication are followings:

• Informing the autonomous vehicles about sight vehicles.

• Warning distracted pedestrians of oncoming traffic.

• Delivering alerts for weather and road conditions to drivers

1.2.2 Characteristics

The communication on vehicular networks is wireless, where the high mobility vehicle is the central

communicating node and implies unique individual characteristics [9]; these characteristics are:

• Variable Network Density: The network density varies depending on the location and the

pick or off pick hours. Network density is a crucial parameter, it is highly variable in time and

often deciding factor to consider while calculating the delay and overhead [10].

• Dynamic Topology and Large Scale Network: The architecture involves high mobility,

the vehicle speed led the topology to change rapidly, and the connection times are also short,
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especially between nodes moving in opposite directions. The highly dynamic network topology

together the short connection times makes things challenging. However, the network scale

depends on traffic density, with the tremendous growth of vehicle [11].

• Energy storage and computing: Since the vehicles can provide continuous power, and the

system do not suffer energy problem, computing capacity, or storage failure like other mobile

networks. However, the real-time operation of an outsized amount of information may be

a challenge. Moreover, the nodes are often equipped with an adequate number of sensors

and a Global Positioning System (GPS). They help to get reliable wireless communication

and acquires accurate information regarding its current position, speed, and direction [12];

sometimes, these resources may move up to the computational capacity.

• Scalability: Especially in an extensive distributed network, scalability is a crucial aspect, can

be defined as the ability to add additional participants without noticeable performance loss. In

the vehicular networking scenario, scalability issues arise in several contexts, since the number

of active nodes has ethical impacts on the network bandwidth [13].

1.2.3 Standards and communications technologies

The exchange of messages with information could be challenging due to the unique characteristics of

the vehicular network, and we must need a set of standards to assure the best secure communication, and

several standards have been proposed [14]. The standards vary country-wise, significant standards stacks

are taking place in the United States (US), Europe, and Japan, because of the corresponding dominance

in the automotive industry [15]. The summary of the most reliable standards is as in Fig.-1.2.

IEEE 1609.1

Resource Manager

Safety / Non safety Applications

IEEE 1609.2

Security Services

IEEE 1609.3

Networking Services

IEEE 1609.4

Channel Coordinator, multichannel Operations

IEEE 802.11p   MAC

Wireless access vehicular environment (WAVE) 

IEEE 802.11p   PHY

FIGURE 1.2. Wireless Access Standards for Vehicular Network.
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• IEEE 1609 Family: According to the standards sheets published by IEEE [16], the 1609

family defines the communication model, network security, and physical access management

to obtain low latency wireless communications in the vehicular network, together they provide

the foundation of the networking environment with the following set of protocol:

– IEEE 1609.1 (Resource Manager): This standard describes the basic components such

as storage data formats and device types that can be supported by the on-board unit.

– IEEE 1609.2 (Security Services for Applications): This standard describes some meth-

ods for securing application messages and the functions necessary to support the security

of the vehicle’s messages and privacy.

– IEEE 1609.3 (Networking Services): This standard describes services for the network;

these services include routing and addressing secure data exchange. Besides, IEEE 1609.3

defines the Management Information Base (MIB) (is a database used for managing the

entities in a communication network) for wireless access.

– IEEE 1609.4 (Multi-Channel Operations): It specifies interval timers, priority access

parameters, control channels, and service channel operations. It also defines management

services, channel routing, and switching parameters [17].

• IEEE 802.11p: is an approved amendment to the IEEE 802.11 [18] standard to add wireless

access in vehicular environments is required to support ITS applications [19], including data

exchange between high-speed vehicles and other communicating nodes. IEEE 80211p is also

the basis of a European standard for vehicular communication known as ETSI ITS-G5 [20].

• Dedicated Short Range Communication (DSRC): is an extension of 802.11p-based wireless

communication technology that enables vehicles to communicate with each other directly

without involving any infrastructure [21]. A dedicated 75MHz spectrum in the band 5.9

GHz, was allocated for Dedicated Short Range Communications (DSRC) to provide low

latency information exchange with maximal cybersecurity, can even handle a fast-changing

environment at speeds as high as 500 km/h and in extreme weather conditions [22].

In Europe, to replace the US promoted DSRC, Cellular Vehicle to Everything (C-V2X) was developed

within the 3rd Generation Partnership Project (3GPP) [23].

C-V2X 5G communication: C-V2X wireless communication technology has been one of the notable

services for 5G [24]. For C-V2X transmission mode, there is a newly defined communication channel

(sidelink) that can support direct C-V2X communication. Direct C-V2X communication is a technology

that allows vehicles to interact and share safety-related data with other participates instantly without

going through infrastructure support [25].
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1.2.4 Services and applications

The vehicular network supports a wide range of promising applications and services are typically

classified in (i) active road safety applications (ii) traffic efficiency and management applications and

(iii) comfort and infotainment applications [26].

i. Safety Applications: According to the World Health Organization (WHO) [1], road accidents annu-

ally cause approximately 1.2 million deaths worldwide, and it is expected that till 2022 road accidents

will become the third cause of death. However, this number of death can be significantly reduced

by deploying safety applications (local warnings) through the vehicular network. For example, the

departing vehicles can inform other vehicles that they intend to depart the highway, and arriving cars at

intersections can send warning messages to other vehicles traversing that intersection. Safety applica-

tions are always paramount to reduce the number of accidents significantly, and the main focus is to

avoid accidents from happening in the first place [27].

ii. Traffic Efficiency and Management Applications: Traffic monitoring and management are essen-

tial to maximize road capacity and avoid traffic congestion. Crossing intersections in city streets can

be tricky and dangerous at times. Traffic light scheduling can facilitate drivers to cross intersections.

Allowing a smooth flow of traffic can significantly increase vehicle throughput and reduce travel time.

iii. Comfort and Infotainment Application: In general, comfort and infotainment applications are

motivated to provide comforts of the driver and passengers, essentially provides services such as mobile

internet access, messaging, a discussion between vehicles, collaborative network games, and various

traveler information. For instance, the driver could receive local information regarding restaurants,

hotels using vehicular network services.

1.3 Security for Vehicular Networks

Though vehicular networks are the most prominent enabling network technology for intelligent trans-

portation systems that provide many new exciting facilities, still security features remain a significant

concern in deployment to mitigate possible attack vectors. Standardization agencies have developed an

initial standard for practical implementation that serves as the basis. This section aims to describe the

security requirements, including security threats on each requirement.
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1.3.1 Security requirements

The base security requirements for the vehicular network summarised in a several survey tutorial [28],

these requirements include the following as shown in Fig.-1.3:

Security requirements 

of vehicular network

Integrity

Availability 

Confidentiality 

Privacy and 

anonymity 

Non –

repudiation 
Authentication

FIGURE 1.3. Security requirements of vehicular networks.

• Authentication: Authentication is the verification of the identity verifies the validity of the

credentials (Public or private keys) to determine if it is cleared to use the resources. It ensures

that all vehicles are the right vehicle to communicate within the network.

• Confidentiality: Confidentiality involves a set of rules usually executed through agreements

that limit access to certain information and ensures the data can be accessed only by the

designated user. These requirements ensure that outside users cannot access the confidential

information of the designated user.

• Integrity: Data integrity ensures that the delivered message’s content is not altered or modified

during the transmission process; the receiving vehicle performs data verification to check

whether the message contains the correct or corrupted data. The task can be done by the public

key infrastructure and cryptography revocation mechanism [29].

• Availability: Availability plays a crucial role since it ensures that it remains functional even if

it is under an attack without affecting its performance [30]. This concept is not different from

other networks but not easy to ensure, mainly because of the high speed of vehicles.

• Privacy and anonymity: used to hide the identity of the vehicle and location information

against nodes that are not authorized so that no one can trace the movement.

• Non-repudiation: This requirement used to ensure that a person who sends a message cannot

deny later that he has not sent the message, which also used to find the person who performs a

malicious activity; for example, drivers must be identified in case of accidents.
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1.3.2 Attacker models

Before describing the attacks, it is essential to define the attacker, to classify the capacities of an attacker

and to do so [31] defined four dimensions as in Fig.-1.4:

FIGURE 1.4. Attacker model in vehicular networks.

• Insider vs. Outsider: The origin of any attack is through an external or internal source. If the

attacker is an authenticated member to communicate with other members of the network, it

will be known as an insider [32]. Whereas an outsider not authenticated to communicate with

other members directly, an outside attacker aims to obtain the credentials of an insider.

• Malicious vs. Rational: A malicious attacker uses methods to damage the network without

looking for personal benefit. However, a rational attacker expects to benefit from the attacks.

• Active vs. Passive: An active attacker can modify the content of the messages, whereas a

passive attacker attempts to learn by listing like eavesdropping or monitoring transmission to

obtain information but does not affect system resources.

• Local vs. Extended: An attacker is considered local if it is limited in scope. An extended

attacker expands its scope by controlling several entities that are scattered across the network.

1.3.3 Attacks and threats on Vehicular Networks

In this subsection, we describe the security threats facing vehicular networks. Since we cannot envision

all the possible attacks available on the networks due to space limitations, we provide a general

classification of the most critical attacks we have identified, and this classification was done according

to the security requirements that they violate, respectively and Fig.-1.5 shows the classification.
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FIGURE 1.5. Classification of attacks by security requirements.

1.3.3.1 Attacks on availability

One of the crucial requirements for the vehicular network is the services available, and all use protocols

should remain functional, even attack occurs. This requirement is known as availability, guarantees that

the working network is functional, and all useful information is available throughout the networks at any

functioning time. Several attacks belong in this category, but the most concerning and hurtful one is the

Denial of Service Attacks (DoS) attacks, [28].

• Denial of service attacks (DoS) and Distributed denial of service (DDoS): is always one

of the most severe attacks in every network, [32] not only in the vehicular network. That

targets network service availability, which can have serious consequences, especially for safety

applications. The main aim is to prevent authentic vehicles from accessing network services.

In DoS attacks, attackers try to block the principal means of communication, transmit dummy

messages to jam the channel and reduce the network performance. The Distributed Denial of

Service (DDoS) is more severe than the DoS, where several malicious cars attack a legitimate

vehicle in a distributed manner, which considers as a distributed DoS attack [33].

• Jamming attacks: The jamming attack is an attack particularly challenging to detect and

consider as a physical level of DoS attack. A signal is transmitted by the attacker to distract

the communication channel, which is mostly intentional, and it lowers the signal to noise

ratio for the receiver [28]. The study [34] showed the impact of jamming attacks in vehicular
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communications by creating a series of indoor and outdoor jamming scenarios under different

jamming behaviors such as constant and reactive.

• Black-hole attack: in this attack, the attacker node refuses to forward or even drop the data

packet [35] that makes a most dangerous attack on the vehicular network. As the name says,

the black hole can be considered an area where the routing traffic is redirected, either there is

no node, or the nodes reside in that area refuse to participate [36]. A malicious node always

claims that it has the shortest path to the destination that the source node is looking for and

cheats the routing protocol without having a look at the routing table firstly. Moreover, the

attacker node wins the right to receive the packet to forward to the destination node, and the

forged route is successfully established after it depends on the attacker whether to drop or

forward the packets even can redirect to wherever it wants.

• Gray-hole attack: is mostly a variation of black hole attack [37], where an adversary vehicle

first behaves as usual during the route discovery process. Then silently drops some or all of

the received data packets sent to it without further forwarding to its neighbors. Detection of

this kind of attack is more laborious than others because nodes can partially drop packets not

only due to malicious behavior but also due to selfish nature or overload, such as node may

unwilling to spend its battery consumption, unavailability of network bandwidth [38].

• Wormhole attack: A wormhole [39] is a security attack at the network layer, which can

severely affect the unicast multihop communication based on popular routing protocols such as

Ad Hoc on Demand Distance Vector (AODV) [40] and Dynamic Source Routing (DSR) [41].

This attack typically requires the presence of at least two malicious vehicles in the network.

These two malicious vehicles need to be geographically separated and connected via a tunnel.

• Timing attack: One of the most essential and promising use cases of vehicular networks are

safety applications. However, they are time-critical and require data transmissions from one

vehicle to another vehicle at the right time. In timing attacks [42], when malicious vehicles

receive a message, they do not forward it as usual but add some timeslots to the original

message to create delay. Thus, neighboring vehicles of the attackers receive the message after

the moment when they should receive that message.
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1.3.3.2 Attacks on authenticity

In these types of attacks, the affected area is identification. Only a reliable vehicle is allowed to

communicate after successfully identified or authenticated. The different types of attacks that aim to

violates this requirement are as follows:

• Sybil attack: The Sybil attack is a well-known hurtful attack that was first described and

formalized by Douceur [43] in the context of peer-to-peer networks. In this kind of attack, a

vehicle declares to be several vehicles either at the same time or in succession. This attack is

hazardous since a vehicle can claim in different positions at the same time, thereby creating

chaos and substantial security threats. The Sybil attack may damage network topologies as

well as bandwidth consumption.

• Tunnelling attack: In this attack, internal attackers establish a private connection (tunnel)

to exchange packets to the partner. The Tunneling attack connects two distant parts of the

vehicular network using an additional communication channel such as a tunnel [44].

• Key and Certificate Replication attack: The attack consists of duplicate keys and certificates

to use as proof of identification. That makes it more difficult for authorities to identify a vehicle,

especially in a conflict [45].

1.3.3.3 Attacks on confidentiality

confidentiality is one of the critical security requirements in vehicular communication, and it assures that

the intended receiver will only read the message. Some threats aim to violate this requirement, such as:

• Eavesdropping attack: The eavesdropping attack is against confidentiality, without an immi-

nent impact on the network only attacks by listening [46] the communication. Through this

attack, several types of useful information can be collected, such as location data that can be

used for tracking vehicles. These attacks represent a significant violation of privacy.

• Man in the middle attack: As the name indicates, the attacker comes between the sender and

the receiver [47]. The attacker controls the communication between the two victims, while

they believe that they are in direct communication.
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1.3.3.4 Attacks on integrity

In a vehicular network, it is always expected to ensure the data integrity and trust to assure the accuracy

and consistency of data broadcasting over the network. The following attacks address on data integrity

and trust, which affects the whole system’s reliability.

• Replay attack: This classic attack consists of replaying (broadcast) a message already sent to

take the benefit of the message at the moment of its submission [48]. Therefore, the attacker

injects it again in the network packets previously received. This attack can be used to replay

beacons, to manipulate the location and routing tables.

• GPS spoofing attack: In the vehicular network, the position of a vehicle is critical should be

very accurate. A log file maintains the location generated by the GPS satellite [49]. In this

attack, the attacker used a trick to create false GPS location information and did not reveal the

correct position to avoid the vehicles that may think it is available in another location.

• Position falsification attack: the attacker broadcast false position information in the safety

messages, due to system error or to obtain personal benefits on the road traffic. There are five

varieties of position falsification attack studied in the literature [50].

– Constant position attack: the attacker transmits a fixed pre-configured position.

– Constant offset Position attack: The attacker added a fixed offset to the actual position.

– Random position attack: sends a position inside the simulation area, which is uniformly

random in the playground.

– Random offset attack: add a random offset bounded by a rectangle around the vehicle.

– Eventual stop attack: usually behaves for some time and then attacks by repeatedly

transmitting the same position (i.e., as if it had stopped).

• Message Tampering/Fabrication attack: this attack consists of modifying, constructing, or

altering existing data. It can occur by modifying a specific part of the message to be sent. For

example, the attacker falsifies received data indicating that the route is congested, and changes

them to no congestion and traffic on the road is ordinary [28]. In this attack, the attacker alters

or makes new messages to achieve the intended purpose of the attack.

• Illusion attack: A direct application of the fabrication of messages attack is the Illusion attack,

which is an attack against integrity and data trust [51]. It consists of placing voluntary sensors

that generate false data that can generally move in the network.
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Attacks on non-repudiation: When two or more user shares the same key, then non-repudiation occurs,

two users are not distinguished from each other, so their actions can be repudiated. That is entirely

unexpected in the vehicular network case, and the following are the attacks that implemented to violate

this requirement.

• Loss of tractability: The non- repudiation attack consists of exercising action, allowing an

attacker to deny having made one or more actions. Some attacks can serve as preliminary to

non-repudiation attacks such as Sybil attack [52] and duplication of keys and certificates.

1.3.4 Application vs Security

We have already seen vehicular networks suffer from different threats and attacks, the damage caused by

attacks, and the negative impact that also influences the available service and application [29]. Most

of the suitable security scheme comes with a high computational cost; therefore, it is considered an

inappropriate approach for low latency safety applications (especially time-critical safety applications)

which raises the security threat on the application itself [53].

• Attack on Safety Applications

The available safety applications are vulnerable by different attacks related to the channel

allocation such as DoS attacks, distributed denial of service attacks and jamming attack, the

attack occurs when the dishonest vehicle sends multiple messages which block all possible

way of communication [54].

• Attack on Communication and Traffic management application

In traffic management, communication is time sensitives and requires message arrival on time

for settlement. However, they are vulnerable by several attacks [55], such as the timing attack

can create massive damage to the traffic management system of vehicular networks [42].

• Attack on Comfort and Infotainment Application

The increasing demand for comfort and infotainment functionality in vehicular networks has

also created new attack surfaces. They are easily vulnerable, increase the privacy, and anomaly

threat [56] compare to others, overwhelming use of comfort and infotainment application also

can disrupt the network performances [57].
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1.4 Machine learning

Machine learning primarily consists of designing efficient and accurate prediction algorithms (learning

algorithms), and the achievement of a learning algorithm depends on the data utilized for training,

machine learning is inherently associated to data analysis and statistics, which can be broadly described

as computational methods that use experience (historical data) to enhance performance (accurate

predictions). Here, experience refers to past information, typically collected data; the quality and size of

the data are crucial to the prediction’s success. According to the working criteria of different algorithms,

machine learning can be divided into four branches as shows in Fig.-1.6, with possible application.

Machine learning yields a ubiquitous set of practical applications, which include the following:

• Internet of Things (IoT): Rapid developments of technologies have facilitated the emergence

of Internet-connected devices that provide observations and data measurements from the real

world, known as Internet of Things (IoT) [58]. Machine Learning can eliminate errors and

enable data to generate real-time insights and allow IoT devices to reach their full potential.

• Autonomous Vehicle: Significant progress in Machine Learning techniques like Deep Neural

Networks (DNN) [59], has enabled the development of autonomous cars. Several major car

manufacturers, including Tesla, BMW, and Waymo, are building and actively testing them.

• Intelligent Transportation Systems (ITS): The latest advances in autonomous technologies,

transportation are evolving into more intelligent systems, called ITS. A combination of ITS

and machine learning provides practical and effective solutions for optimal traffic Traffic Signal

Control (TSC), autonomous vehicle control for 21st-century transportation, which is initial to

provide safe, effective, and reliable trip on the road [60].

The following signifies a list of terminology regularly used in machine learning.

Data Set: A collection of related sets of information can be manipulated as a unit by a computer,

instances of data use for learning or evaluation.

Features: the feature, or column, represents a measurable piece of data that can be used for analysis.

Sometimes features are also called attributes and the number of features are called dimensions.

Labels: Labels are the final output (misbehavior or normal), to be predicted by learning algorithms

Hyper parameters: Free parameters that are not determined by the learning algorithm, the user can

specified as inputs to the learning algorithm.



1.4 MACHINE LEARNING 17

Training Data: the data used to train a learning algorithm.

Validation: The process to find the best hyper parameters setting using validation sample.

Test Data: sample data use to evaluate the performance of a learning algorithm.

Loss function: a function that measures the difference between a predicted label and a true label.

FIGURE 1.6. Branches of machine learning and possible application.

1.4.1 Supervised learning

Supervised learning is the machine learning task where each learning algorithm was learning a function

that maps an input to an output based on features - labels pairs. In supervised learning, the operator

provides a known data set that includes desired inputs (features), outputs (labels), and the algorithm

must find a method to determine how to arrive at those inputs and outputs pair, the algorithm identifies

patterns in data, learns from observations, and makes predictions.

The following are some standard machine learning tasks associated with supervised learning:

Classification: The task is assigning a category to each observation. For example, each underlying

safety message consists of assigning a group such as malicious or normal.

Regression: this is the problem of predicting a real value for each observation. For example, predicting

a trust value or threshold based on attacker movements.
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1.4.2 Unsupervised learning

The learning algorithm exclusively receives unlabeled training data and makes predictions for incoming

data. Unsupervised learning is a type of machine learning algorithm used to draw inferences from data

sets consisting of input data without labeled responses. Since, in general, no labeled example is available,

it can be challenging to evaluate the performance of a learning algorithm quantitatively.

The most common standard machine learning tasks associated with unsupervised learning:

Clustering: this is the problem of partitioning a set of observations into homogeneous subsets. Cluster-

ing is often used to analyze extensive data sets.

Dimensionality Reduction: this problem consists of transforming an initial representation of observa-

tion into a lower-dimensional representation while preserving some properties of the initial representation.

Mostly use for data preprocessing in computer vision tasks.

1.4.3 Semi-supervised learning

Semi-supervised learning is similar to supervised learning, but the training sample consists of both

labeled and unlabelled data to make predictions for incoming data. Semi-supervised learning is an

approach that combines a small amount of labeled data with a large amount of unlabeled data during

training, which falls between unsupervised learning and supervised learning.

The semi-supervised is commonly used where unlabeled data is easily accessible, but labels are expensive

to obtain. Likely supervised learning semi-supervised learning also can be used for classification,

regression, but unlabeled data accessible to the algorithm can help to archive a better performance [61].

1.4.4 Reinforcement learning

Reinforcement learning refers to goal-oriented learning, which learns how to attain a complex objective

and to maximize a particular dimension over many steps. It focuses on controlled learning processes,

where a learning algorithm takes a set of actions, parameters, and end values (reward) with associate

rules and tries to explore different options and possibilities, monitoring and evaluating each reward to

determine which one is optimal (best reward).
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The algorithm must learn from past experiences and adapts its approach to the situation to achieve the

best possible result, which differs from supervised learning in several ways. The essential difference is

that there is no presentation of input (features) - output (labels) pairs. Instead, a software-defined agent

must gather useful experience about the possible system states, actions, transitions, and rewards actively

to act optimally.

Reinforcement learning has proved their efficiency in several applications, such as a self-driving car,

vehicle route optimization, and predictive maintenance of automated systems.

1.5 Software Defined Networking (SDN)

Recently, software-defined networking SDN has become one of the most promising solutions to

Information and Communication Technologies (ICT). However, being a new concept, it is kind of hard

to reach on its exact definition, many different definitions have surfaced over the literature, each of

which has its own merits. In this section, we first present a generally accepted definition of SDN, outline

a set of essential benefits, and finally promising applications of SDN.

1.5.1 General SDN Architectures

The most explicit and well known definition of SDN as: is an emerging network architecture where

control plane is decoupled from forwarding and is a directly programmable approach to network manage-

ment that enables dynamic, programmatically efficient configuration in order to improve performance

and monitoring, making it more like cloud computing than traditional network management [62].

As in the Fig.-1.7 SDN decouples the control plane from the network devices and becomes an external

entity: the network operating system With SDN, management becomes simpler.

1.5.2 Application and Promising Benefits of SDN

Software-defined networking has applications in a wide variety of ICT environments and introduces

promising benefits, especially for the enterprise network [63]. By decoupling the control and data

planes, programmable networks enable customized control, eliminate middleboxes, and simplify the

development and deployment of new network services and protocols [64]. Some of the promising

applications are as below:
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FIGURE 1.7. Software-Defined Networking (SDN)

• Enterprise Networks: Enterprises often run large networks, while also having strict security

and performance requirements. Furthermore, different enterprise environments can have

very different requirements, characteristics which can be very challenging for management.

Adequate management is critically important in enterprise environments and SDN can be used

to pro-grammatically enforce and adjust network policies as well as help monitor network

activity and tune network performance.

• Satellite communications: Satellite systems have served humankind in several ways since

its invention. Including the feature of global coverage, they have provided services such as

TV broadcasting, digital messaging, GPS navigation, and worldwide telecommunications for

decades [65]. In recent times, the tremendous growth in mobile devices and the desire for

connectivity, Satellite systems enhance an essential complement to the next-generation cellular

system (5G) [66]. The integrated dynamic network management and control in a programmable

manner is the demand of time. The integration of SDN to satellite communication enhances

those functionalities and reprograms the data plane at any time.

• SDN for Vehicular Network: The integration of SDN into vehicular networks is considered

one of the promising future solutions for routing and resource allocations, which makes the

system update and dynamically reconfigure without having challenging tasks [67].
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1.6 Conclusion

In this chapter, we have reviewed the fundamental architecture of vehicular networks with various

communication technology and standards. Few significant applications and the network characteristics

were discussed. We have also summarized the security requirements and the corresponding feasible

attacks. That can be executed to violate the particular requirements, including the promising application

that is also vulnerable by several attacks. An attacker model was designed to classify the dimensions of

an attacker. The significant portions of machine learning and SDN were also noted.

A secure and attack-free atmosphere is a prerequisite in vehicular networks for message distribution

over the network. However, since the networks are vulnerable to many types of attacks, including the

position falsification attacks, it can produce dangerous circumstances and defeat the purpose of vehicular

networks. Therefore, the system extremely requires the deployment of additional mechanisms for more

immediate attack exposure before any critical damage occurs. The next chapter intends to investigate

the feasibility of existing literature linked with position falsification attacks.



CHAPTER 2

ML-based Misbehavior Detection systems for position falsification

attacks

2.1 Introduction

Vehicular networks provide useful functionalities entirely based on the data exchanged over the network

are not encrypted to reduce the local computational complexity and time. Without a system that

guarantees sender authentication, and data integrity leaves the system open to endless security threats. A

public key infrastructure (PKI) consistently used throughout the literature as a solution. That enables

participants to securely communicate on an insecure public network after reliably verifying the identity

via digital signatures, which only works to avoid external attacks. However, the networks are also

vulnerable to many types of internal attacks, including position falsification attacks, which can lead

to hazardous situations, especially for traffic efficiency and management application, and increase the

possibility of traffic collisions. Therefore, the vehicular network highly requires the deployment of

additional security mechanisms that can detect the misbehaving entities. Misbehavior Detection Systems

(MDSs) are considered an efficient way to detect such data semantic levels of internal attacks.

This chapter intends to overview existing ML-based MDSs for position falsification attacks within the

current ecosystem to secure vehicular networks. We describe detection mechanisms based on their

feasibility and focus on every detection method’s relevant details. The main contribution is to provide a

novel comparison of the existing ML-based MDSs for false position attacks identifying their weaknesses.

The chapter’s organization is as follows: Section 2.2 presents the definition and different types of MDSs.

Section 2.3 provides the existing literature review associated with the position falsification attacks.

Section 2.4 presents a synthesis of existing solutions. Section 2.5 concludes this chapter.

22
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2.2 Misbehavior Detection Systems

In this section, we define misbehavior detection systems with a classification based on system develop-

ment and requirements. There are fundamentally different approaches that can be used to categorize

existing mechanisms. We focus on considering whether mechanisms based on data values contained in

messages or on the node behavior that is sending the messages.

2.2.1 Definition

The misbehavior is a broad term, and it is commonly used for ad-hoc networks to discuss specific attacks

that are executed by the participating nodes, as opposed to cyber-attacks or intrusions. Many authors are

not using misbehavior to define attackers, but only malicious participants [68]. However, our definition

covers not only malicious and attackers but also faulty nodes of the networks. Therefore misbehaving

nodes are thus any node that transmits erroneous data, should not transmit in case of normal behavior.

Misbehaving node is the type of node we should detect to ensure safety.

However, the literature often distinguishes [69], [70], between the malicious node and faulty node.

Faulty nodes are those in the network that produce incorrect data without malicious intent. For example,

a malfunctioning GPS sensor can produce incorrect data due to damage or other technical issues, which

can cause to transmit an erroneous position and bring threats. On the other hand, malicious nodes or

attacker nodes are those nodes that transmit erroneous messages with malicious intent. They get more

research and development attention by researchers as they bring direct security threat to the network’s

safety-related application. Sometimes, they can actively attempt to avoid detection and control other

nodes to transmit their erroneous messages, such as the denial of service attacks. In this study, we use

misbehavior detection to refer to the detection of both faulty and malicious nodes, though throughout

the literature are not consistently used these definitions [71].

2.2.2 Classification

According to the detection requirements and behavior, there are fundamentally different approaches to

misbehavior detection that can be used to categorize, as shown in Fig. 2.1, the first distinction is whether

mechanisms focus on the node sending the messages: (i). node-centric detection or on data values

contained in messages: (ii). data-centric detection and combination of both: (iii). hybrid detection,

which we are going to discuss over this subsection in detail.
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FIGURE 2.1. Classification of misbehavior detection system

2.2.2.1 Node-centric Misbehavior Detection

In the node-centric detection, a security model monitors authentication credentials, like a digital signature

with PKI’s help and use knowledge to detect malicious senders. The node centric detection mechanism

is precisely concerned with a participating node behavior by analyzing whether the message frequency,

headers, and content are in line with protocol specifications to find unusual patterns and create a history

with a trust value based on the current behavior. Node centric detection can be divided into two

categories, (i). behavior-based detection, and (ii). trust-based detection.

(A) Behavior-based detection: This mechanism focuses on finding messages that are not in the

correct pattern (message format), identifying nodes that send messages too frequently or nodes

that modify the content of the messages in a way that does not adhere to protocol criteria [72].

The main focus of these mechanisms is to monitor the behavior and find abnormal operation

such as messages sending frequency, packet drop, or duplication rates are exceeding from

standard rates, neighbor nodes in the vehicle neighborhood are responsible for monitoring.

(B) Trust-based detection: The main idea of trust-based detection mechanisms is to assign trust

values according to the participating nodes’ behavior. When a node reputation (trust) exceeds

a predefined threshold [73], it will be considered as an attacker. Furthermore, the trusted

authority is available to remove malicious nodes according to the trust values. Which nodes

should remove from the network will depend on the past and present reputation history. The

fundamental assumption is that a vehicle behaving correctly in the past is more likely to behave

correctly. Essentially, this brings down to some form of reputation control where correct

performance increases the reputation, and misbehavior reduces.
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2.2.2.2 Data-centric Misbehavior Detection

The data-centric detection mechanism concentrates on analyzing transmitted data for plausible misbe-

havior. The broadcasted message data is compared to find implausibility and inconsistency. The node

explores reasonable evidence to verify introduced message data locally or with neighbors’ cooperation

and use it to generate safety alerts. The disclosure of false safety alerts consists of local-based detection

or cooperative-based detection, [74]. Based on the underlying data verification specifications, we can

divide the data-centric detection mechanism into (i). Plausibility check and (ii). consistency check.

(A) Plausibility check: The plausibility checks utilize to validate the correctness of the commu-

nicated data and rapidly filters that are malicious. For example, the movement plausibility

can be verified from two successive beacon messages: measuring the distance traveled and

comparing it with speed in that direction. This detection technique operates by analyzing

packets originating from unique senders, and the data in the packet is either examined against

a predefined threshold or a confidence interval [75].

(B) Consistency: Consistency checking is a mechanism for monitoring whether messages do not

contain semantically conflicting data. Consistency-based disclosure uses relations between

packets to discover the trustworthiness of newly received packets. For example, a consistency-

based detection mechanism may recognize previously computed average speed of vehicles

on a highway to judge newly received speed messages. Messages that differ (departing from

accepted thresholds) from the average speed are contradictory can be recognized as suspicious.

However, honest historical majorities are usually expected to draw reliable judgments.

2.2.2.3 Hybrid Misbehavior Detection

In some states, neither a data-centric nor node centric strategy alone can efficiently disclose the misbe-

havior in vehicular networking. To this end, a combination of both appearances has been introduced [76]

to enhance the detector’s performance, which is known as a hybrid misbehavior detection system. In

the hybrid approach, vehicles are judged based on their behavior, integrity, consistency, and plausibility

inspection of the generated message. The hybrid method is more promising to adequately detect multiple

types of illusion and context originated attacks since it merges numerous detection concepts in a single

design and mounted on top of node centric and data-centric misbehavior detection system.
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All misbehavior exposure tools studied in the literature rely on the fundamental concept of the above

three varieties of strategies. Many scholars previously produced schemes based on these strategies that

could be considered resolutions of attack associated with position falsification in the vehicular network,

which we review in the next section.

2.3 Misbehavior Detection Systems for Position Falsification Attacks

Numerous approaches have been suggested to detect position falsification attacks over the past year

through scholarly research. The well-known approach consists of recognizing the correctness and

comparing of data broadcasted with the past received data. In this section, we evaluate the existing

works associated with false position attacks and focusing on summarizing them.

Grover et al. [77] proposed an approach using a machine learning technique to discover the features

of the legitimate and misbehaving vehicle based on their behavior. The features were extracted based

on validation checking, such as geographical position validation, acceptance field verification, speed

variation verification, and received signal strength. To determine the pattern of onboard vehicle behavior,

they practiced another set of features by calculating the total number of generated packets, and packets

received, delivery ratio, drop ratio, capture ratio, and transmission error ratio, based on the neighbor

observation. They examined packet suppression, packet replay, packet detention, identity spoofing,

position falsification, and a combination of identity and forging attack to evaluate the proposed approach.

A network simulator (NCTUns-5.0) [78] was used to produce these sets of features, and the generated

features used as input for several machine learning classification algorithms contained in the WEKA

[79] toolset to classify as malicious or legitimate. This work was improved in [80] by choosing a

multi-class classification, and a majority decision was considered classification results. However, both of

these works rely on the specific attack implementation depends on the extracted features, but no details

provided regarding these. There are no base scenarios to link the generated data sets and features with

associated attacks.

Joseph Kamel et al. [81] introduced a mechanism based on the fundamental of plausibility and

consistency checks; these mechanisms can be divided into four steps: local misbehavior detection,

misbehavior reporting, global misbehavior detection, and misbehavior reaction. The local detection

mechanism was applied in the first place, and the results were published to the misbehavior authority

after a global check was performed on the authorities’ side. They proposed a comparative approach of
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local detection mechanisms, which are as follows: threshold Based: consists of testing the result of

every local plausibility and consistency checking against a predefined threshold, a message is considered

malicious if any check fails. A non-cooperative threshold-based: This solution aims to evaluate a node

centric trust by using data-centric plausibility factor considering the same logic as in [82], Cooperative

Trust-Based: This solution aim to determine a shared level of trust between all participating node in

the network by using the similar approach described in [83]. Machine learning-based: The aim is to

detect misbehavior by using trained ML algorithms, using four popular algorithms and a grid search

based on 5-fold cross-validation, to find the best hyperparameters of the algorithms, more technical

details, and the implementation shared on GitHub [84]. For every message, two features sets were

created: Checks Feature: based on historical plausibility and consistency check done and Kinematic

Feature Set: based on the difference between position, speed, acceleration, heading and time of the last

two beacons. To evaluate the solutions, they used an open-source framework known as F2MD [84], and

the considered evaluation metrics are Recall, Precision, F1-score, accuracy, bookmaker informedness

(BM), markedness (MK) Matthews correlation coefficient (MCC) and cohen’s kappa, these evaluation

metrics are detailed in [85]. The results comparison showed machine learning solutions outperform

some time but only by a small margin. This work relies entirely on the local and global plausibility, and

consistency check depends on a predefined threshold even for the machine learning-based detector to

generate features of the training data. A message was considered misbehaving if the global trust level

falls below an absolute value. However, these solutions are vulnerable to sophisticated attacks [86] in

which the attackers are aware of the predefined threshold context since the predefined static consistency

and plausibility thresholds were kept and not replaced dynamically or updated in a timely fashion.

Besides, to develop cooperative trust, they considered sharing the global trust levels between all the

communication nodes, and no details found how sharing helped to improve the detector’s performance.

Issam Mahmoudi et al. [87] proposed an ML-based global misbehavior detection system to analyze

the reported misbehavior sent by vehicles and RSU. The aim was to judge local detection solutions; a

set of algorithms was trained to assess the detection based on a few selected features. The first features

are local detection functionality like [85] relay on plausibility and consistency check. The second set of

features was considered from kinematic data from V2X communications and the final set of generic

features such as binary features computing the number of checks that return a complete failure. In order

to evaluate the solution, they used the same framework as [84].
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Rens W. van der Heijden et al. [50] took the first steps by introducing the vehicular Reference

Misbehavior Data set (VeReMi), which is extensible and publicly available and allow researchers to

compare detection results. Five different attacks associated with position falsification called random,

constant, constant offset, random offset, and event stop was implemented, and many researchers already

used this data set to show the efficiency of their proposed mechanisms [88], [89]. Since this data set

contains a list of message logs, it is easy to run against a misbehavior detector and compare it to others.

They also introduced a detector system based on plausibility check (the acceptance range threshold and

sudden appearance warning), as two detector speed checkers and distance moved versifier. However, the

proposed detector working mechanisms depend on a pre define threshold (static).

So et al. (1), [90] also proposed mechanisms to detect position falsification attacks using a set of

plausibility checks. They designed plausibility metrics with six features: local plausibility check

(feature-1): The sender’s reported location was compared with a predicted plausible location based on

the previous velocity, location, and the distribution of average acceleration. To give a score [0,2] on the

plausibility of the x and y coordinates, the sum of these two scores was considered the total score of

the plausibility check. A confidence interval was calculated for the average acceleration of 95% and

99% confidence, respectively. Then a range of plausible location of the vehicle was estimated using the

formula:

predicted(x,confidence) = xi + ∆t(v(x,i) + a(x,confidence) ∗∆t) (2.1)

where predicted(x,confidence) is the range of predicted coordinates values for 95% or 99% confidence

accordingly, x refers previous GPS x- coordinate, ∆t time difference between previous and current

packet, (v(x,i) velocity in the x-direction and a(x,confidence) acceleration range in x- direction within the

respective confidence. If the range of predicted coordinates in 95% confidence range then the plausibility

score was set to 0, if outside 95% but within 99% then the score one otherwise the score is 2. Movement

plausibility check: the feature was designed for constant position attack, the aim is to find average

velocity during the entire trip and compare with total displacement. If the total displacement is 0, but

the average velocity is not 0, then leveled as malicious. Quantitative Information (features 3, 4, 5, 6):

these features are nothing but a numerical description of the vehicle behavior, feature 3 and 4 represent

the difference between the calculated average velocities. Based on total displacement, time, and the

predicted average velocity, feature 5 is the magnitude of features 3 and 4, where feature 6 is the total

between the calculated distance and predicted displacement. Two machine learning algorithms were

trained based on the output generated by the mention plausibility. The VeReMi dataset was considered

to Check the efficiency of the system. The results analysis showed that SVM was able to obtain the most
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significant precision.

Le and Maple [91], suggested machine learning approaches to detect misbehavior in vehicular networks

based on n- sequence trajectory inspection where a sequence of messages was considered to form a

trajectory [92]. Three features used to extract the data: Movement plausibility check, Minimum distance

to trajectories, and minimum translation to the trajectories. Movement plausibility check: focus where

the vehicle is moving but reported as uncharged, by observing a sequence of trajectories, aims to classify

constant and eventual stop attacks. On the other hand, constant attack transmits the same location all

the time and eventual stop attack, there should be at least one message that reflects the previous. This

check only works for constant and eventual stop attacks and fails for other types of considered attacks

since they do not transmit a fixed location. Minimum distance to trajectories: aims to find moving

patterns of the vehicle in the legitimate set. According to their consideration, the minimum distance to

the trajectories should be large in the case of constant offset, random, and random offset attack since

they have small changes in the movement patters. The minimum distance to trajectories work well to

find the random attacks but would not help very much to detect constant offset and random offset since

they have a very close distance to the trajectories. To solve this issue, they proposed another feature.

Minimum translation to the trajectories: The paper’s analysis showed the value should be very close

to 0 for constant offset attack since it is translated from legitimate trajectories, and the value remains

large for random offset attack. They implemented two machine learning algorithms like [90] to detect

and classify the malicious attack with the proposed features. The training data was extracted from the

VeReMi data set, and 80% of the sample data were used to training the model but the remaining to test

the performance. To evaluate the results, they did cross-validation with [90], and the analysis showed

that the proposed approach provides better performance all most in every case. However, we found in

case of constant offset and random offset attack, the distance comparison is not semantically accurate

always since the added position to the normal can be tiny and will not be possible to differentiate. The

attacker can be aware of the predefined confidence interval (threshold) and implement an attack by

adding tiny little offset that lies between the confidence interval.

So et al. (2) [75], proposed three physical layer plausibility checks that leverage the received signal

strength indicator (RSSI) of BSM. To execute the proposed plausibility check, VeReMi was used but

with some source code modification mainly to record the location of the receiver, but the simulation

was run only for 30% attack density. In their consideration, when a vehicle enters a new area, it must

know the distance versus RSSI distribution, either by downloading from roadside units or predefined,

every safety message will be classified using this distribution, and the output of these checks defined
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the sender as usual or misbehaving. A threshold was generated in terms of the confidence interval. To

determine the certainty interval, they measured the distance between the sender and receiver and group

all the messages have 1-meter distance maximum. RSSI was calculated for each group of the messages

to find a confidence interval. This confidence interval was used as a threshold for plausibility checks.

When a message is outside the confidence interval, the transmitting vehicle is immediately classified as

a misbehaving refers to the first plausibility check. The second plausibility check uses majority rules;

if the majority of the incoming messages from the same source are classified as malicious, then the

vehicle is classified as malicious. The third check is to assign a score and update this score for every

new message. When a vehicle reaches a lower than 99.7% of the regular vehicle scores, it is classified as

an attacker. However, these plausibility checks have multi-step mechanisms to improve the detection

rate and decrease false positives. These checks run independently by each vehicle based on a predefined

threshold.

Gyawali and Qian [93] proposed a cooperative MDS using machine learning algorithms, where each

vehicle is equipped with MDS, always broadcast the disclosure results to its neighbors. To create

a learning feature for ML algorithms, they generated labeled data sets through vehicular network

simulations called the Luxembourg SUMO traffic scenario (LuST) [94], but this simulation was done

only for false information messages. They used the VeReMi data set to get the learning features for

position falsification attacks and compared each received beacon with the previous one to measure

the distance between the sender and receiver. In order to evaluate system performance and show the

effectiveness, they compared the results with VeReMi. However, this work focuses on the false alter

attacks detection rather than position falsification attack.

2.4 Synthesis

In this section, we analyze the exiting literature associated with position falsification attacks, shown in

Table-2.1, where each column describes a comparison criteria. The first column " Solution" signifies

the referees of exiting work in alphabetical order accompanied by the author’s name and publishing

year. The second column, " Category", indicates to which category the proposed solution belongs. For

example, Data-centric: plausibility indicates the proposed solution is based on a data-centric plausibility

check. The third column "Collaborative" specifies if proposed solution is collaborative or not. The

collaboration in our context refers to the need for the ML-based MDSs of multiple vehicles’ feedback

before making a decision. The fourth column " Dynamic" exposes, all mechanisms are suggested based
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on a predefined threshold, which narrows the detection system as static (model parameters are fixed and

can not be updated in a timely fashion), one the other hand, a dynamic system is the one responsible for

updating system parameters in a timely fashion. In a dynamic model, the predefined static consistency,

plausibility, and behavioral thresholds were replaced by dynamic setting recommendations that are

constructed online and updated in a timely fashion. The fifth column " Model update" determines

if the ML-model model is updated after its deployment. The sixth column "ML Features" specifies

which information is needed to build the ML-model. The seventh column "Validation" determines

which tools are used to validate, and the eighth column "Used dataset" specifies which data set is used

to verify the solution.

Solutions Category Collaborative Dynamic Model
update ML Features Validation Used

dateset

Grover et al.
2011 [77]

Hybrid: Behavioral
plausibility No No No

Position
Velocity, RSSI
Transmitted pack-
ets

Analytical Simulator
generated

A Le, C Maple
2019 [91] Data centric: Plausibility No No No Position

Trajectories Analytical VeReMi

P Sharma, J Petit,
2018 [90]

Data centric: plausibility
Numerical check No No No

Position
Velocity
time difference

Analytical VeReMi

S So, J Petit
2019 [75] Data centric: Plausibility No No No Position

RSSI Analytical VeReMi

S Gyawali, Y Qian
2019 [93], [95] Data centric: Plausibility No No No

Position
Velocity
RSSI

Simulation VeReMi

Issam Ma.
2020 [87]

Data centric: Plausibility
Consistency No No No

Position
Velocity
Acceleration
time difference

Simulation F2MD
[84]

J Kamel
2019 [81]

Hybrid: Plausibility
Consistency
Behavioral

No No No

Position
Velocity
Acceleration
time difference

Analytical
simulation F2MD

PK Singh
2019 [96] Data centric: Plausibility No No No

Position (sender)
position (receiver)
Speed difference

Analytical VeReMi

Our solution Data centric: Numerical
check Yes Yes Yes Position Analytical

Simulation

VeReMi
Simulator
generated

TABLE 2.1. Misbehavior detection systems overview associated with position falsifica-
tion attacks

After reviewing the table -2.1, from the category column, we can conclude, all the works are practicing

data-centric mechanisms, while only [77] and [81] are using a hybrid technique, which combines

data-centric and node-centric mechanisms. We can also see from the collaborative column all proposed

solutions are non-cooperative approaches, but our proposed solutions are collaborative in which each

vehicle cooperates to provide accurate detection of the attacks. One of the most significant parameters is
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the detection threshold that demands to be dynamic since the static threshold can be subject to security

threats and vulnerable by attacks [97]. In our system, the threshold is considered as dynamic, and the

SDN controller dynamically update. Additionally, the SDN controller is responsible for the ML-model

installation and update on the dynamic context. It is also clear that our proposed solutions required less

information (only position) than the exiting works. We propose using the VeReMi data set to validate

our detection mechanisms but also introduce a simulator generated data set for cross-validation.

2.5 Conclusion

The vehicular network is a promising future to achieve safer, more efficient, and comfortable travel.

However, this network is vulnerable by different variations of position falsification attacks requiring

earlier detection before any critical damage occurs where the PKI already fails, leading to the devel-

opment of a misbehavior detection system on top of PKI. In this chapter, we have first defined the

misbehavior detection system, and a classification of different mechanisms proposed in the literature,

specially designed for position falsification attacks variation to understand better the limitations of

existing approaches. To solve the limitation of the existing solutions, we introduce a novel system which

integrates ML and SDN to secure the system from different types of false position attacks. In the next

chapter, We will discuss the methodology and design of our proposed system to solve the limitations of

exiting works.



CHAPTER 3

SDN and ML for detecting false position attacks in vehicular networks

3.1 Introduction

The earlier chapter forces us to conclude, the existing literature to secure vehicular network from

position falsification attacks relies on plausibility and consistency check, has significant disadvantages.

A considerable drawback is that they required filtering based on a certain threshold, and a combination

of unnecessary data having no link with the considering attack detection led to substantial privacy issues.

We have also seen it is intuitively hard to build a mechanism that deals with such insider attacks since

the PKI fails.

To address these issues, we propose a novel scheme based on machine learning and software-defined

network (SDN) to detect earlier mentioned attacks accurately. In our system design, a global SDN

controller is considered the brain and responsible for installing, updating, and deploying the machine

learning model for local attack detection. The local exposure will be verified and enhanced by executing

a collaborative report investigation system.

The remainder of the chapter is as follows: Section 1.2 describes the architecture of the proposed

misbehavior system. Section 1.3 presents the details concept about the system attacker model and the

variation of position falsification attack. Then section 1.4 presents the building model for ML-based

local misbehavior system followed by section 1.5 describes the misbehavior report investigation. Finally,

section 1.6 concludes this chapter and gives some future concepts for the next chapter.

3.2 System Architecture

As shown in Fig.-3.1, our proposed architecture mainly consists of three types of entities:

33
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FIGURE 3.1. Software defined vehicular network architecture for MDS

(A) The Trusted Authority (TA): is only trustworthy control center. All significant operations

such as vehicle registration, key management, verification, and secret keys allocated to the

vehicles are stored in TA since it has adequate storage and computation ability.

(B) Road-Side Unit (RSU): In our architecture, RSU is one of the fundamental components,

equipped with two network interfaces: wired link to communicate with the neighboring RSUs,

and a 4/5G interface to communicate with the global SDN controller located at the TA and all

communication links are secure, RSU performs as the intermediaries between TA and vehicles.

(C) Vehicle: The vehicles are service receivers, where each vehicle is equipped with an 802.11p

network interface to communicate with RSUs (V2I) and other vehicles (V2V). Every t mil-

lisecond, each vehicle periodically broadcasts a safety message, where each message includes

location, time, velocity etc. We consider each vehicle has the ML-based misbehavior detector

installed locally, always activated, ready to classify every safety message upon arrival, and any

detection should be reported to the TA immediately.

The global SDN controller: The global SDN controller, which is installed at the TA, have comprehen-

sive knowledge of the network and acts as a strategic control point; essentially, it is the brain of the

networks and has the following two major functionalities:

• Install/ Update the model: The vehicle meets the eligibility criteria (registered member and

has the secure keys) check by opening a bidirectional stream. The stream is used to verify
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PKI, and after successful keys verification, the SDN controller (TA), send the ML-based

detection model (binary) to the vehicle and installed it for local detection. The SDN controller

periodically updates the model based on several criteria. A sequence diagram that shows install

and model updating process in time sequence is in Fig.-3.2

FIGURE 3.2. Sequence diagram of the system interactions to install the model

• Report investigation: After receiving a misbehavior detection reports from the onboard

vehicle, the SDN controller always needs to verify whether the report is accurate or not that

where report investigation comes from, which we are going to discuss in section 1.5 later. The

SDN controller asks feedback from the vicinity of the vehicle before taking any action against

the reported detection. It investigates all the feedback and comes up with a threshold. Based

on the already generated threshold and neighbor response, the SDN controller decides whether

it is an attack. The top level view of this interactions are in the sequence diagram Fig.-3.3.

3.3 System Attacker Model

We focus on a specific set of attacks associated with position falsification to show the efficiency of our

approach.

It is one of the fundamental and, most crucial issue to consider the vehicle on broad will not be able to

transmit a false location. Considerable different variations of position falsification attacks [50] are in

Table-3.1:
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FIGURE 3.3. Sequence diagram of the reports investigation

ID: Attack Detail Parameters

1: Constant Transmits a fixed location (x, y)
2: Constant offset a fixed offset added to the real location (∆x,∆y)
4: Random Transmits a random location uniformly random constant in playground
8: Random Offset Transmits a random bounded by a rectangle (∆x,∆y) bounded range [−a, a]
16: Eventual Stop transmits the same location repeatedly eventually stop (stop probability = p)

TABLE 3.1. Position falsification attack and associate parameters

(A) Constant position attack: In this type, the attacker transmits a fixed, pre-configured position.

As in Fig.3.4, the attacker sends a constant pre-configured (x = 5560, y = 5820) position.

(B) Constant offset Position attack: The attacker always generates a fixed offset, and add to

the real locations, as in the Fig -3.4 a constant offset (x = 250, y = −150) added; It is hard

to detect by using a traditional misbehavior detection system since the offset can be a small

number and does not make a big difference with a regular trip.

(C) Random position attack: The attacker transmits a random position from the simulation area,

which is a newly generated random message. The transmitted position could be any values

from the playground; as shown in Fig-3.4, it does not seem the road trip at all.

(D) Random offset attack: This case of attack generates a random offset from a pre-configured

rectangular area around the vehicle, which could be considered a close variation of the random

attacks. However, in this case, the vehicle chooses a random value that ranged over the

rectangle region, as in Fig-3.4.
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(E) Eventual stop attack: An attacker generally behaves for some time and then attacks by

transmitting the same position repeatedly (i.e., as if it had stopped), Fig-3.4 represents a

scenario, where two green triangles to show the start and endpoint of the trip. This attack can

be very harmful as the attacker can pretend not to be on board.
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FIGURE 3.4. Different Attacker Scenarios

3.4 Building a model for ML-based Detection

Our detection mechanism has several stages based on the fundamental of supervised machine learning

techniques, and these phases are as described in Fig- 3.5:

3.4.1 Data Set

Our approach’s goal is to use machine learning techniques for misbehavior detection to come up with a

smart model from finite training data and correctly classify future data as malicious or usual. As we all

know, machine learning techniques entirely rely on the training dataset, so it is essential to select the right

dataset. Different approaches could be taken to select the dataset, such as real-world scenario testing,

analytical models, and a simulation-generated dataset. One of the biggest challenges is interpreting
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FIGURE 3.5. Machine learning based misbehavior system.

locally collected data to find patterns or merge results from a set of participating nodes into one coherent

training data, and several schemes adapt ideas from machine learning [98], [99]. These approaches

provide useful tools for analyzing data and deriving certain exciting features that might point at attacks,

permanently the idea behind various machine learning approaches. A large volume of data is labeled

and used to train a classifier algorithm, for this latter case, collecting labeled data that is sufficiently

diverse is a considerable challenge [100].

It is obvious to say that one of the main issues of this research field is the luck of the dataset, only a

few available datasets, but most of them are not an optimal choice due to the luck of the implemented

attackers, BSMs broadcast rate, and the vehicle density as well. For that reason, we decided to use the

VeReMi dataset [50], which has been published recently and publicly available for research purposes.

As the dataset is already labeled, it is very convenient for our approach.

VeReMi Data Set:

The VeReMi dataset comprises of 5 position falsification attacks, three-vehicle densities (low, medium

and high), three attacker densities (10, 20 and 30 percent), and each parameter set was repeated five

times for randomization, has 225 individual simulations; the summary of the dataset is in the Table-3.2.

The three density split into low density (corresponding to a run starting at 3:00) has 35 to 39 vehicles,

while the medium density (a run at 5:00) has between 97 and 108 vehicles, and the high density (7:00)

has between 491 and 519 vehicles. Out of these vehicles, a subset is malicious: this decision is made by

sampling a uniform distribution [0, 1] and comparing it to the attacker fraction parameter, essentially

assigning each vehicle to be an attacker with that probability. For each scenario, a log file maintains the
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record of BSMs received by a single-vehicle (same) from neighboring vehicles (300-meter range) during

its entire journey. The implementation was done based one the principal of the sender-receiver pair,

defining the complete trip for an individual sender. Each vehicle node keeps track of all the messages in

a JSON file locally; one the other side, a Ground Truth file keeps track of the real messages which allow

us to label the data as usual or an attacker.

VeReMi Data Set

Time Traffic Density Number of Vehicles Attacker Density Number of Messages (sent)

3.00 Low 35 to 39 10%, 20%, 30% 908 to 1144
5.00 Medium 97 to 108 10%, 20%, 30% 3996 to 4489
7.00 High 491 to 519 10%, 20%, 30% 20482 to 21878

TABLE 3.2. Brief summary of VeReMi data-set

3.4.2 Feature extraction

For accurately detecting the position falsification attack, we need to extract representative features

that characterize the different patterns of the attack. Figures 3.6 illustrates the variation of positions

received from normal and suspicious vehicles. Each curve illustrates the variation in positions of a

given vehicle. The blue curves represent the behaviors of normal vehicles, while the rest represent

the behaviors of suspicious vehicles. As we can see, suspicious vehicles can have no variation in the

consecutive positions or can a random variation in position every two consecutive positions, which can

be interpreted as constant and random attackers, respectively.

FIGURE 3.6. The variation in distance of normal vehicles and suspicious vehicles
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Thus, the problem becomes how to select a set of features that can best represent the variation in position

patterns. In our algorithm, we use the simple concept of sampling in signal processing to convert the

variation of positions to a sequence of samples, and each sample will be used as one feature in the

learning vector. Figure 3.7 shows an example of the process of feature extraction from the variation

in positions trace. There are two main parameters, sampling length ∆ and sampling interval δ, that

determine the dimension and attribute value of the feature vector. Specifically, we split the curve into

small segments of length δ and calculate the average distance xi of each segment. A set of consecutive

∆ samples constitute the final feature vector X = [x1, x2, ..., x∆].

FIGURE 3.7. Sampling process

3.4.3 Training process

This stage aims to find an optimized model, a hyper-parameters set, and a training dataset. The labeling

process aims to label an instance according to its actual class (e.g., misbehaving or not misbehaving) of

the preprocessed dataset, and a sampling process divides the labeled dataset into multiple datasets. Then

choose a common approach to divide the dataset into training and testing datasets. The first one is for

training, while the second dataset is for testing the model. During the training process, the model learns

to associate a given instance to its actual label and must learn to distinguish a misbehaving instance

from a non-misbehaving one based on the actual label and learning features (each features column).

The shuffling process aims to avoid having training data that contains only a dataset of misbehaving

instances.
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3.4.4 Testing

The testing stage evaluates the performance of a previously trained model on the testing data set and

commonly has three classification, evaluation, and validation steps. The classification process aims to

tests data set where each instance label is unknown; for example, in our case, this could be the learning

features, the classifier model predicts the label of each encountered instance based on these learning

features and classifies as an attack or normal. Evaluates the classifier performance on the testing data by

doing cross-validation between the actual label and the predicted one, validation of the classifier model

depends on several criteria.

3.5 Report investigation

FIGURE 3.8. Report investigation

In order to increase the detection accuracy, we propose a report investigation system. When the vehicle

detects an attack, it immediately sends a report about the detection to the controller. If the SDN controller

receives a report, it requests all vehicles’ opinions in the vicinity. The controller makes the final decision

whether the vehicle is malicious or not based on a dynamic threshold. The threshold is basically the

minimum number of attack reporting vehicles to confirm the attack. This threshold is dynamic .i.e. it

is updated from time to time according to the number of attacks on the networks. The Fig.-3.8 shows

the visual explanation of the process. As we can see, there is an attacker A, and the vehicle B can

detect immediately. B sends reports to the controller with the help of RSU and the controller request
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feedback of the neighborhood. Algorithm (1) represents a pseudo code that the SDN controller executes

to determine the attacks. The attacks is added to the Attack Set (AS) only if the number of positive

feedbacks are greater or equal to the dynamic threshold.

Algorithm 1: Position falsification attack detection
Data: Attack Report (TR)
Result: Attacker set (SA)
nb_report← nb_report+ 1
if (nb_report >= threshold) then
SA← SA ∪ IDv;

3.6 Conclusion

The vehicular communication system offers many exciting safety and comfort applications such as

accident notification, traffic cognition alarm, mostly based on the vehicles’ real-time position. The

transmission of false positions can lead to the passenger’s and drivers’ life in danger and destroy the

benefits of the system. Hence the system needs to be protected from false position attacks, needs to

be detected immediately before something wrong happens. In this study, we proposed a misbehavior

detection system to detect position falsification attacks based on the integration of ML and SDN, a novel

approach from the best of our knowledge. Evaluation of the system by showing the accuracy of detection

and other relevant matrices will be presented in later chapter 4 through an experimental simulation.



CHAPTER 4

Performance Evaluation

4.1 Introduction

It is essential to evaluate our proposed ML-based MDS to assess its efficiency of detecting position

falsification attacks. This can be done through the building and testing of the ML-model using a realistic

data set implementing position falsification attacks. To this end, this chapter focuses on describing the

evaluation procedure and discussing the obtained results.

This chapter is organized as follows: Section 4.2 is designed to describe our machine learning methodol-

ogy, which includes prepossessing, feature selection, evaluation metrics. The end of this section presents

our obtained classification results. Section 4.3 presents a use case evaluation of the proposed architecture

through simulation and compare the results with exiting works. Finally, section 4.4 concludes the

chapter.

4.2 Machine Leaning Model Evaluation

Our proposed machine learning models should be able to provide reliable predictions to detect the

attacks on actual use case circumstances. While training a model is a key, how the model concludes

on unseen attacks is an equivalently significant aspect that should be examined. We need to recognize

whether it operates and, consequently, if we can consider the model predictions. This subsection will

illustrate the procedures used to provide the data pipeline, accompanied by evaluating how well the

proposed model concludes to new, previously unseen position falsification attacks.

43
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4.2.1 Experimental Setup

As discussed in the previous chapter, we will continue using the VeReMi dataset to estimate our system

performances. We have also noticed that the complete dataset comprises 225 subdirectories for the

modified parameter settings; we exercised a small subset from the random seed and combine them in a

single CSV file to train our model and test it with the newly generated messages, Table - 4.1 represent

the top-level view of the process.

Data Pipeline

Repetition Traffic Density Attack Type Attacker Density

2 Medium: 5 Constant: 1 20%
2 Medium: 5 Constant Offset: 2 20%
2 Medium: 5 Random: 4 20%
2 Medium: 5 Random Offset: 8 20%
2 Medium: 5 Eventual Stop: 16 20%

TABLE 4.1. Considered partial VeReMi data set as Pipeline

4.2.2 Prepossessing

To prepare the experimental instruments ready, we possessed to go through several preprocessing stages

as follows:

(A) Preparation: We have downloaded the subset of the dataset, as specified beforehand, and

received five different zip files for distinct kinds of attacks. The VeReMi is a simulated dataset

was generated utilizing LuST (Version 2) and VEINS (with adjustments, based on version

4.6). Each simulation log holds a ground truth file (JSON) for all messages and a collection of

message logs (JSON) for each vehicle. All JSON file is contacting both GPS data regarding

the vehicle location and BSM messages received from other vehicles through DSRC.

The filename of a message log identifies the receiver by vehicle number and OMNeT++

module number, e.g., JSONlog-0-7-A0.json refers to the 0th vehicle with OMNeT++ module

ID 7. A0 refers to the fact that this vehicle is not an attacker. In the case where A1 shows the

fact that the vehicle is an attacker.

(B) Cleaning & Integration: This stage focuses on generating the data to train and test the ML

model, cleans, and formats each source data into the preprocessed data set. Indeed, source
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data contains duplicated, noisy, and unnecessary numbers of features. Therefore, we need

to select the required features without compromising accuracy. To do so, we followed a few

preprocessing steps:

The directory comprises 97-108 JSON log files and one ground truth for each particular

attack. The number of log files depends on the number of vehicles engaging during the

simulations and, we had to combine all the log files except the ground truth to a single CSV

file. Furthermore, we prepared it for five separate attacks to come up with only one single CSV

file for each kind of attack. The bottom line is to formulate a pandas data frame practicing

Jupyter notebook, making our cleaning and filtering task more comfortable. We removed all

the GPS (type: 2) messages and duplicated messages from our data frame and considered

unique BSM (type: 3). The raw dataset has 16 features, but in our case, we only need the

position coordinates, and the sending time of the messages, after removing all unnecessary

features and cleaning, our Dataframe as in Fig.-4.2.

FIGURE 4.1. Overview of training & testing process.

(C) Labeling, Shuffling & Sampling: The labeling process intends to label an instance according

to its actual class (e.g., misbehaving or not misbehaving). Our classifier must learn to recognize

a misbehaving instance from a non-misbehaving one. Therefore, we label each occurrence

non-misbehaving or misbehaving within the preprocessed dataset by assigning 0 or 1.

The Shuffling process sets a random situation order addressed in preprocessed data. This

process avoids owning testing data that contains only a dataset of misbehaving cases; we did

shuffle the dataset before spilled into training and testing.
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The Sampling process distributes the preprocessed dataset into multiple datasets. A

common approach is to divide the dataset into training data and testing data. The first data is

for training the classifier model, while the second dataset is for testing the model performance.

In this study, we used 70% of the sample occurrences from the preprocessed dataset for training,

whereas the rest for testing.

FIGURE 4.2. Screen shoot of clean and integrated data Frame

4.2.3 Features Selection

It is one of the most important steps to choose the right number of features. We tried with different

numbers of features ranging from 5 to 300. These features were generated from the exchanged messages

between each vehicle, as discussed earlier. We considered the distance between two consecutive position

by using the following formula:

dn =

√
(xi − xi+1)2 + (yi − yi+1)2 (4.1)

where dn represent distance between two positions (xi, yi) and (xi+1, yi+1) and n, i are integers. The

Fig. - 4.3 shows a screed shoot our generated features data frame.
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FIGURE 4.3. Screen shoot of our generated features data

4.2.4 Metrics

Detection achievement is a complex task, varies across publications to publications, depending mostly

on the detector’s purpose. In misbehavior disclosure, it is intelligent to use false positive/negative

valuations or comparable metrics to determine how well attacks are detected. The metrics we are going

to examine for our model evaluation are accuracy, precision, recall, and F-1 score, see the Table.-4.3 for

the definition of each term.

Confusion Matrix

Predicted

Actual Normal Misbehaving

Normal TP FN

Misbehaving FP TN

TABLE 4.2. Binary classification Matrix

Confusion matrix: The Confusion matrix is one of the most intuitive and most comfortable metrics

used for evaluation of the classification model, see Table-4.2. The terms associated with confussion

metrics is shown in the Table-4.3 Using different partitions of the confusion metric, we can calculate the

following detection evaluation metrics: Accuracy, Precision, Recall and F-1 score.
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Terms associated with confusion matrix

Terminology Notation Short definition

True Positive TP instance predicted as non misbehaving and truly non misbehaving

False Positive FP instance predicted as non misbehaving but is labeled as misbehaving

True negative TN instance predicted as misbehaving and truly misbehaving

False negative FN instance predicted as misbehaving but is labeled as non misbehaving

TABLE 4.3. Terms related to the confusion matrix

To evaluate the detection quality, the metric we use based on the well-established confusion matrix.

There are many options to choose from, but we only choose accuracy, precision, recall, and F-1 score,

and the formulas to calculate them is in the Table-4.4. The accuracy is the ratio of all correctly detected

over all the considered detection. The precision indicates the classifier’s ability to distinguish between

misbehaving and palpable nodes; for example, a low precision means the system is yielding a lot of false

positives. The Recall mark the classifier’s ability to detect a misbehaving node, i.e., a low recall means

an attack is difficult to detect. The F-1 score is the harmonic mean between the Recall and Precision. In

our case, it could be considered as a measure of the overall detection quality.

Evaluation matrix Formulas

Metric Equation

Accuracy:
TP + TN

TP + FP + TN + FN

Precision:
TP

TP + FP

Recall:
TP

TP + FN

F1- score: 2 ∗ Precision ∗Recall
Precision+Recall

TABLE 4.4. Formulas related to the evaluation matrix

4.2.5 Classifier Results for VeReMi data set

In order to better analysis of the pipeline data and the problem we are solving, we perform binary

classification (one vs. one) and multi classification on the VeReMi data set using the six most efficient

ML algorithms. The most relevant results are discussed in this subsection:
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Binary Classification: The actual output of binary classification algorithms is a prediction level. The

level indicates whether the observation should be classified as normal or misbehaving. We interpret the

level by assigning 0 for normal vehicles an 1 for attacks and the experimental results of all the trained

algorithms listed in Table-4.5. To make the results more visual, we have plotted in a bar diagram, see

Fig.-4.4, showing in some cases do not constitute good results. Since the data is unbalanced and few rows

have inconsistency due to the limitation of the simulation. To evaluate the detection results we consider

the following detection metrics: Accuracy, Precision, Recall and F1score, as shown in the Table- 4.5.

The first thing we notice the detection quality largely depends on the type of misbehavior.misbehavior.

Evaluation Metrics

Accuracy

Misbehavior Type SVM DT RF KNN NaiveBayes LR
Constant 0.916 1.000 0.960 0.965 0.965 0.833
ConstPosOffset 0.833 0.583 0.416 0.416 0.416 0.583
RandomPos 1.000 1.000 1.000 0.930 1.000 1.000
RandomPosOffset 0.708 0.750 0.708 0.708 0.783 0.654
EventualStop 1.000 1.000 0.916 0.916 0.910 0.675

Precision

Misbehavior Type SVM DT RF KNN NaiveBayes LR
Constant 0.888 1.000 1.000 0.900 1.000 1.000
ConstPosOffset 0.454 0.547 0.666 1.000 1.000 0.530
RandomPos 1.000 1.000 1.000 0.830 1.000 1.000
RandomPosOffset 0.500 0.571 0.500 0.500 0.500 0.764
EventualStop 1.000 1.000 0.714 0.714 0.714 0.745

Recall

Misbehavior Type SVM DT RF KNN NaiveBayes LR
Constant 0.888 1.000 0.900 0.900 0.900 0.712
ConstPosOffset 0.833 0.706 1.000 0.666 1.000 0.730
RandomPos 1.000 1.000 1.000 1.000 1.000 1.000
RandomPosOffset 0.857 0.571 0.485 0.425 0.428 0.540
EventualStop 1.000 1.000 1.000 1.000 1.000 0.670

F1 - score

Misbehavior Type SVM DT RF KNN NaiveBayes LR
Constant 0.964 1.000 0.960 0.965 0.960 0.833
ConstPosOffset 0.871 0.583 0.542 0.542 0.544 0.534
RandomPos 1.000 1.000 1.000 1.000 1.000 1.000
RandomPosOffset 0.708 0.750 0.701 0.701 0.712 0.710
EventualStop 1.000 1.000 0.921 0.921 0.9212 0.923

TABLE 4.5. Experimental results achieved by different classifiers, best results are in bold.
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FIGURE 4.4. Accuray vs attack variations using different algorithms

(A) Constant Attack: The Decision Tree (DT) algorithm perform well to detect constant attack

and was able to get 100% accuracy with same percents of precision, recall and F1- score.

However, rest of the algorithms were able to get 0.965% accuracy with different variations of

the rest of the considered metrics.

(B) Constant offset Attack: Since constant offset is considered one of the most difficult attack

to detect as mentioned through the literature, but in our case Support Vector Machine (SVM)

was able to get 0.833% accuracy which is already higher than [93] and [75]. K-nearest

neighbour (KNN) and Naive Bayes (NB) were able to get 100% precision, Random Forest (RF)

is showing 100%. Though rest of the algorithms is showing significant decrease of the metrics.

(C) Random Position Attack: The results showing all detector algorithms were able to detect

accurately the random position attacker except KNN algorithms has 0.830% accuracy.

(D) Random Position offset Attack: As mentioned earlier because of the limitation of the VeReMi

data set and the offset attacks implementation our classifier was not able to show efficiency

bout still we are able to show the better performance than the exiting work since we got 0.783%

accuracy from NB algorithm.

(E) Eventual stop Attack: For eventual stop attack the SVM and DT were able to get the best

results with efficient precision, recall and F1-score.

The binary classification allow us to find misbehaving vehicle without knowing the types of misbehavior.

However, in real use case it’s also expected to know the type of the attacks in order to take action to
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against the attacker. This is why, we also train a multi-class classifier which can help us to distinguish

between different types position falsification attacks.

Multi-class classification: We perform a multi-class classification which takes into the account each

class of position falsification attacks. Normal vehicles are labelled as 0, whereas attackers are labeled

with their corresponding attacks ids. The obtained results are shown in the Table-4.6, which summarized

the Logistic Regression (LR) has the better performance (74% scores) compared to the other algorithms.

The multi-class classification provides more realistic use case scenario since it helps us to analysis

Evaluation Metrics (multi-classification)

ML- model

Evaluation matrix SVM DT RF KNN NaiveBayes LR
Accuracy 0.633 0.733 0.696 0.422 0.400 0.744
Precision 0.633 0.707 0.696 0.416 0.410 0.744
Recall 0.630 0.734 0.696 0.430 0.410 0.744
F1-score 0.633 0.733 0.696 0.400 0.400 0.744

TABLE 4.6. Experimental results achieved by different classifiers for multi class classi-
fication, best results are in bold.

the corresponding types of attacks. However, as we can see from the table -4.6, our ML model is not

able to get good accuracy using VeReMi data set. This is because that VeReMi data set presents some

inconsistencies. For example, in many cases, eventual stop attacks were simulated as the same way as

constant position attacks but they are considered as different attacks on the ground truth file. To well

evaluate our multi-class classifier, we decided to generate our own data set through simulations, which

is consistent and makes a clear difference between position falsification attacks.

4.3 Simulation

We have carried out a set of simulations to validate the performance of our proposed ML-based MDS.

These simulations are conducted using the Veins Simulation Framework [101]. The main foundations of

Veins are based on two well-established simulators OMNet++and SUMO [102]. These simulation tools

are bi-directionally coupled and communicate through a Transmission Control Protocol (TCP) socket

during the simulation run-time. Table 4.7 summarizes the simulation parameters.



52 4 PERFORMANCE EVALUATION

4.3.1 Parameters settings

As illustrated in Figure 4.5, the considered scenario models the traffic of the city of Manhattan New

York, USA using SUMO. We focused on a region of interest of dimensions 2km x 2km. The vehicles

were generated using SUMO to take trips of 5 min duration over the city. We considered 100 vehicles,

30% of them are malicious. In our simulation, we have considered more advanced position falsification

called attack-and-stop attack, which is an extension of eventual-stop attack. In attack-and-stop attack,

the attack periodically switches between the attack behavior were null positions are sent and the normal

behavior. The Table -4.8 describe the parameters of consider attackers.

Parameter Value

Simulation duration 300 s
Transmission Range 500 m
Number of vehicles 100
Ratio of misbehaving vehicles {30%}
Number of constant attackers 6
Number of constant offset attackers 6
Number of random attackers 6
Number of random offset attackers 6
Number of attack-and-stop attackers 6

TABLE 4.7. Simulation Parameters

FIGURE 4.5. The scenario of simulation
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In our consideration the constant attacks transmits a pre configured constant position (x = 500, y = 500),

where the constant offset always transmits position after adding a offset (x = 200, y = 200).

Attack Description

Constant (x = 500 ; y = 500)
ConstantPosOffest (x = X_position+200 ; y = Y_position+200)
Random (x= random(100,1800) ; y= random(100,1800))
RandomPosOffest (x = X_position+random(1,200) ; y = Y_position+random(1,200)
Attack-and-stop periodically (attack (x=0 ;y=0) for 5s

and stop (x = X_position ; y = Y_position) for 5s)

TABLE 4.8. Simulation Parameters

4.3.2 Simulation Results

We performed the same experiments as we did with the VeReMi data set to show the consistency of our

data set and the efficiency of the proposed ML- based detection system. The results obtained is in the

Table - 4.9, and the DT algorithm showing the efficiency with 100% percent scores. Where rest of the

algorithms have the scores higher than 94% percent, which shows the efficiency of the built multi-class

classifier.

Evaluation Metrics (multi-classification)

ML- model

Evaluation matrix SVM DT RF KNN NaiveBayes LR
Accuracy 0.983 1.000 0.940 0.947 0.982 0.992
Precision 0.965 1.000 0.919 0.948 0.771 0.948
Recall 0.965 1.000 0.947 0.947 0.822 0.991
F1-score 0.965 1.000 0.947 0.944 0.944 0.983

TABLE 4.9. Experimental results achieved by different classifiers for multi class classi-
fication using our simulator generated data set, best results are in bold.

In vehicular network, the earlier detection of any attacks is always very important. In that case the

system require less messages to efficient detection grantee the earlier detection. In that case we need to

find a minimum set of messages that required to identify the misbehaving vehicle in the network. To

this end, we have added another experiment to find the optimal number of features required to achieved

the desired accuracy. The Fig. - 4.6 shows the our proposed ML- based MDS is able to achieved 100

% accuracy with 22 features which implies that we only need 23 messages from a certain vehicles to

classify as normal or attacker with the types of attack.
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FIGURE 4.6. Accuracy improvement with respect to the number of features.

4.3.3 Results comparison

Figure 4.7 shows the accuracy of our built multi-class classifier on VeReMi data set and on the generated

data set. We can see that the classification results obtained using the generated data set are better than the

results obtained using VeReMi. Indeed, we get 100% of accuracy using DT. As we already, mentioned

the low accuracy values obtained using VeReMi are due to the inconsistency of this data set. The results

obtained using our generated data set demonstrate the effectiveness of our proposed classifier to detect

position falsification attacks.
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FIGURE 4.7. The final score comparison VeReMi vs our generated data set
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4.4 Conclusion

This chapter has validated our proposed ML - base MDS using the VeReMi data set. Additionally, we

have introduced a friendly simulator generated data set that includes five different position falsification

attacks that can be considered as an extension of the VeReMi data set. We have also compared our

results with the results obtained using the VeReMi data set. Our experiment also showed the optimal

number of features need to detect position falsification attacks accurately. We have also provided a

discussion on what should be preferred metrics for results comparison.



Conclusion

Vehicular networks offer exciting applications ranging from safety to comfort. However, the networks are

vulnerable to many types of internal and external attacks, as summarized, such as position falsification

attacks. This can lead to hazardous situations, especially road traffic management systems, increase the

road accident’s likelihood. The position falsification attacks need to be detected immediately before

critical damage happens. Since the network’s internal participant implements the position falsification

attacks that can not be detected using popular cryptographic solutions only works for external attack

prevention. Alternatively, MDS is considered an efficient way to detect position falsification attacks

using different plausibility and consistency check to evaluate transmitted messages’ correctness.

In this thesis, we inscribed the limitations of the existing solutions used to detect position falsification

attacks. We proposed to use the machine learning models with the integration of SDN, which is unique

and novel from the best of our knowledge. Our system design provides dynamic functionalities to update

the ML models’ time to time and improve detection performance without having a challenging task.

To facilitate the spread of our work, we implemented six different popular ML algorithms and evaluated

them on the VeReMi dataset firstly. We have also conducted an inclination of simulations to validate the

performance of our proposed ML-based MDS using the Veins Simulation Framework (OMNet++and

SUMO). The results analysis showed the higher efficiency of our proposed work and produced dataset

shows better performances for multi-classification, which is more realistic.

As future perspectives, we plan to develop and implement the report investigation for efficient attack

detection. We also plan to carry out extensive simulations using multiple scenarios to validate the

accuracy of our system.
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